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universidad politécnica de madrid
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Abstract

The characteristics of CC and CLP systems are in principle very different. However, a
recent trend towards convergence in the implementation techniques for these systems
can be observed. While CLP and Prolog systems have been incorporating capabilities
to deal with user–defined suspension and coroutining, CC compilers have been trying to
coalesce fine–grained tasks into coarser–grained sequential threads. This convergence
of techniques opens up the possibility of having a general purpose kernel language and
abstract machine to serve as a compilation target for a variety of user–level languages.
We propose a transformation technique directed towards such an objective. In partic-
ular, we report on techniques to support the Andorra computational model, essentially
emulating the Andorra-I system, via program transformation into a sequential lan-
guage with delay primitives. The system is automatic, comprising an optional program
analyzer and a basic transformer to the kernel language. It turns out that a simple
(parallel) CLP (or Prolog) system with dynamic scheduling is sufficient as a kernel
language for this purpose. The preliminary results are quite encouraging: performance
of the resulting system is comparable to the current Andorra-I implementation.
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QE-Andorra: A Quiche–Eating Implementation of the Basic Andorra Model 1

1 Introduction

Many current proposals for parallel or concurrent logic programming languages and
models are actually “bundled packages”, in the sense that they offer a combined so-
lution affecting a number of issues such as choice of computation rule, concurrency,
exploitation of parallelism, etc. This is understandable since a practical model has to
offer solutions for all the problems involved. However, the bundled nature of (the de-
scription of) these proposals has two significant disadvantages. First, performing com-
parisons among these systems becomes difficult due to the complexity of determining
how different design decisions might affect performance. Second, reusing components
of one system in another turns out to be a difficult task. As a result, implementors
are typically forced to build their systems from scratch, by writing their own runtime
systems and constructing compilers to compile programs into low-level languages such
as C or assembler. The tremendous engineering and manpower overhead involved in
such an enterprise means that, in many cases, implementors may be unable to take
advantage of clever optimizations that other researchers have implemented, or to in-
vest the time and effort necessary to turn their systems from research prototypes to
mature and robust systems that can be shared with other researchers and users. Very
often, researchers find the “non-research” engineering overhead of system implementa-
tion sufficiently daunting that their ideas and languages do not make it past the paper
design stage.

This is an unfortunate state of affairs, and leads to a great deal of duplicated effort
and wasted time. This situation can be improved by performing a “separation analysis”
of the execution model underlying the language and isolating its fundamental principles
[15]. Such un-bundling not only identifies fundamental principles but also shows that
the applicability of such principles can be enhanced by allowing the transfer of good
features of one model to another. This fact at the same time explains and is supported
by the recent trend towards convergence in the analysis and implementation techniques
of models that are in principle very different. In fact, the techniques used in various and-
parallel implementations of Prolog (e.g., [14, 22]), in the implementations of various
committed choice languages (e.g., [3, 11, 16, 26, 27]), and in the implementation of
sequential Prolog systems using coroutining (e.g., [8, 2, 25, 9]), are often very similar.

This convergence of trends opens up the possibility of having a general purpose kernel
language and abstract machine to serve as a compilation target for a variety of user-
level languages. Given a sufficiently high level intermediate language of this kind, and
carefully crafted compilers and runtime systems for this language, the implementation
of other logic programming languages would be simplified considerably: rather than
reinvent all aspects of an implementation from scratch, it would be possible to share the
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QE-Andorra: A Quiche–Eating Implementation of the Basic Andorra Model 2

“back end” across different systems, and thus require only the construction of compilers
to the intermediate representation. Encouraging initial results in this direction have
been demonstrated in the sequential context by the QD-Janus system [7]. QD-Janus,
which compiles down to SICStus Prolog and uses the delay primitives of the Prolog
system to implement data-flow synchronization, offers performance that is competitive
with some natively implemented concurrent logic programming systems.

In this paper we set a more ambitious target: supporting the Basic Andorra Model
[22], which incorporates a rather smart, concurrent, determinacy-based selection rule.
We show how a standard Prolog/CLP system with delay primitives can serve as a target
language for compiling Andorra (and, in particular, Andorra-I) programs, and achieve
good performance. We show how to translate such programs (Section 2), including the
determinacy-based suspension conditions (Section 3) and support for built-ins (Section
4). We also propose optimizations that can be applied both during and after such
translation (sections 5 and 6). The transformation is illustrated in Section 7 with a
detailed example in which we follow all the different steps involved. We also show
how using our approach it is possible to arbitrarily mix Prolog and Andorra execution
(Section 8). Our transformation can then be seen as a straightforward way of adding
Andorra-style search to a Prolog or CLP system, which can be used optionally in parts
of a program. Finally, in Section 9 we provide some experimental results which are
encouraging: performance of the resulting system is comparable to the direct Andorra-
I implementation [23].

We do not mean to imply that the performance of a system implemented using our
approach is optimal or that it will achieve better results than a native Andorra-I imple-
mentation, but rather that the technique is practical and allows the support of the Basic
Andorra Model on a generic system with reasonable performance. Our main overall
message is that using this approach, it is possible to construct implementations for logic
programming languages—even those whose execution models depart quite significantly
from Prolog’s—in terms of simple and easy-to-verify source-level transformations, in
a fairly straightforward way (e.g., without having to reimplement garbage collectors,
stack shifters, complex low-level compiler optimizations such as register allocation and
instruction scheduling, etc.), in a fairly short time, and nevertheless attain fairly good
performance.

2 A General Transformation for the Andorra Model

In the Basic Andorra Model a goal—or, more precisely, a reduction—is delayed until
either it becomes determinate, or it becomes the leftmost reduction and no determinate
reduction is available. Implementing the first condition is conceptually simple (although
the machinery required might be nontrivial); achieving the second condition is more
complicated because it is necessary to keep track of the order in which the goals would
have been reduced in a sequential system with a left-to-right computation rule. This
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QE-Andorra: A Quiche–Eating Implementation of the Basic Andorra Model 3

operational behavior can be realized in a system with a left-to-right computation rule
as follows by maintaining two sequences of goals: a list of non-delayed goals, and a list
of delayed goals (see [6, 19] for more formal accounts of operational semantics for logic
programming languages with delay primitives). The non-delayed goals are inspected
from left to right, and reductions are carried out as follows:

1. If the leftmost non-delayed goal is determinate, it is reduced; otherwise, it is
delayed, i.e., transferred to the list of delayed goals.

2. If the list of non-delayed goals is empty, i.e., no deterministic reductions are
possible, the leftmost delayed goal is reduced.

3. Whenever a delayed goal becomes determinate (because of bindings created by
other goals), it is awakened and moved to the list of non-delayed goals.

To achieve this effect, we propose to use program transformation into a language with
left-to-right computational rule and delay. The main technical challenge here is to
maintain, as efficiently as possible, enough information to allow us to easily determine
(a) which of a collection of delayed goals is the leftmost, and (b) which of a collection
of delayed goals have become determinate and should be awakened. There are many
ways in which this can be done, mainly depending on the concept of determinacy
chosen and the kind of structure used to identify leftmost delayed goals. The concept
of determinacy will be specified later on in Section 3. To identify the leftmost of a list
of delayed goals, we use a list of variables Inf, where each variable is associated with a
delayed goal, and the relative order among the variables in this list reflects the relative
left-to-right reduction order among the corresponding goals. A delayed goal becomes
the leftmost when the associated variable becomes bound to a non-variable term.

Our program transformation constructs the list Inf using difference lists. In particu-
lar, for each program predicate p/n, we create two predicates: p/n+2 and p susp/n+2.
The definition of p/n+2 is the following:

p(X̄,L,L1):- L = [S|L0], det susp( (det cond(X̄);nonvar(S)),
p susp(X̄,L0,L1) ).

where X̄ is a sequence of n distinct variables, det cond(·) is a condition on X̄ such that
det cond(X̄ ∧ c) is true if and only if p(X̄) is determinate in a constraint store c, and
det susp/2 is a suspension primitive of the language which delays the goal provided
as second argument until the condition provided as first argument becomes true. Our
definitions of these two functions are given in Section 3. Intuitively, S is the variable
associated with p(X̄) in the list Inf, and L0 and L1 are pointers that delimit the sublist
of Inf corresponding to the variables associated with the subgoals in the derivation tree
of p(X̄,L0,L1). The variables L0 and L1 can be thought of as links that connect the
reductions needed to execute p(X̄,L0,L1) with those needed to execute the goals to the
left and right of p(X̄,L0,L1), respectively, in the chain Inf. Since the role of a variable
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QE-Andorra: A Quiche–Eating Implementation of the Basic Andorra Model 4

in the list Inf, associated with a goal G, is to indicate when G has become the leftmost
delayed goal (by becoming bound to a non-variable term), we refer to these variables
as “leftmost-tokens.”

The definition of p susp/n+2 is derived from the definition of p/n as follows:

• For every fact p(X̄), we add the fact p susp(X̄,L,L).

• For every clause p(X̄):- q1(Ȳ1) , · · ·, qn(Ȳn)., with n > 0, we add the clause
p susp(X̄, L1, Ln+1):- q1(Ȳ1, L1, L2), · · ·, qn(Ȳn, Ln, Ln+1).

When a fact is selected during the execution of p/n+2, no further reductions are needed,
and therefore we must unify the pointers associated to the goal thus closing the asso-
ciated list. Otherwise, we need to split up such list in as many sublists as goals appear
in the body of the clause, always keeping the left-to-right order.

The instantiation of the leftmost tokens is achieved by means of a transformed query:

• For a given query :- q1(Ȳ1), · · ·, qn(Ȳn), where n > 0, we create the new
query
:- q1(Ȳ1, L1, L2), · · ·, qn(Ȳn, Ln, Ln+1), wakeup(L1, Ln+1).

where wakeup/2 is defined as follows:

wakeup(L1,L2) :- L1==L2, !.
wakeup([L1|L2],L3) :- L1=up, wakeup(L2,L3).

Given a language with left-to-right computation rule and which awakes suspended
goals as soon as possible (eager awakening), the sequential execution of the transformed
program in the target language emulates the determinate phase of an Andorra-I execu-
tion: the program is executed left-to-right but only determinate goals are reduced, non-
determinate goals being suspended. As the reduction of determinate goals progresses,
suspended goals which have become determinate are woken and the determinate phase
continues. When no more determinate goals are available, wakeup/2 is reduced and
instantiates the first token in the chain-list, thus awakening the leftmost suspended
(non-determinate) goal.

Example 2.1 Consider the following Andorra-I program:

p:- p1,p2. q(X). p1(X). p2.
p. q(Y). p1(Y).

Following the transformation mentioned above, we will obtain the transformed program:
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QE-Andorra: A Quiche–Eating Implementation of the Basic Andorra Model 5

p(L,L1):- L=[S|L0], det_susp( nonvar(S), p_susp(L0,L1) ).
q(X,L,L1):- L=[S|L0], det_susp( nonvar(S), q_susp(X,L0,L1) ).
p1(X,L,L1):- L=[S|L0], det_susp( nonvar(S), p1_susp(X,L0,L1) ).
p2(L,L1):- L=[S|L0], det_susp( (true;nonvar(S)), p2_susp(L0,L1) ).

p_susp(L1,L3):- p1(L1,L2),p2(L2,L3). q_susp(X,L,L). p1_susp(X,L,L).
p_susp(L,L). q_susp(Y,L,L). p1_susp(Y,L,L).

p2_susp(L,L).

Consider the query :- p,q(X). The transformed query is: :- p(L1,L2), q(X,L2,L3),

wakeup(L1,L3). The following trace represents the computation states in the execution
of the transformed program. Note that some steps are summarized and the current store
is omitted and already applied to the resolvent.

⟨p(L1, L2) : q(X, L2, L3) : wakeup(L1, L3), nil⟩
L1=[Sp|L11]

⟨q(X, L2, L3) : wakeup([Sp|L11], L3), p susp(L11, L2)⟩
L2=[Sq|L21]

⟨wakeup([Sp|L11], L3), q susp(X, L21, L3) : p susp(L11, [Sq|L21])⟩
Sp=up

⟨p susp(L11, [Sq|L21]) : wakeup(L11, L3), q susp(X, L21, L3)⟩
⟨p1(X, L11, L12) : p2(L12, [Sq|L21]) : wakeup(L11, L3), q susp(X, L21, L3)⟩

L11=[Sp1|L111]

⟨p2(L12, [Sq|L21]) : wakeup([Sp1|L11], L3), p1 susp(A, L111, L12) : q susp(X, L21, L3)⟩
L12 = [Sq|L21]

⟨wakeup([Sp1|L111], L3), p1 susp(A, L111, [Sq|L21]) : q susp(X, L21, L3)⟩
Sp1=up

⟨p1 susp(A, L111, [Sq|L21]) : wakeup(L111, L3), q susp(X, L21, L3)⟩
L111 = [Sq|L21]

⟨wakeup([Sq|L21], L3), q susp(X, L21, L3)⟩
Sq=up

⟨q susp(X, L21, L3) : wakeup(L21, L3), nil⟩
L21 = L3

⟨wakeup(L3, L3), nil⟩
⟨nil, nil⟩

There is, in fact, a simpler and more elegant variation of this transformation that was
suggested to us by Lee Naish [20], and which we use in the remainder of this paper. It
is similar to the short-circuit technique. Basically, a pair of variables is added to each
predicate in the program and a chain of them formed in all clause body atoms. Once
a goal succeeds, the chain is closed by unifying the two variables acting as pointers to
the chain. The call to wakeup/2 is replaced by instantiating the first variable in the
chain to a token, which is then passed around by closing the chain. At arrival of the
token to a predicate, it is leftmost in the execution. The transformation is as follows:
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QE-Andorra: A Quiche–Eating Implementation of the Basic Andorra Model 6

• For each program predicate p/n, the following clause is added:
p(X̄,I,O):- det susp( (det cond(X̄);nonvar(I)), (p susp(X̄,I,NO),NO=O)

).

• The definition of p susp/n+2 is derived from the definition of p/n as explained
before, and substitutes it.

• For a given query :- q1(Ȳ1), · · ·, qn(Ȳn), where n > 0, we create the following
new query
:- q1(Ȳ1, T1, T2), · · ·, qn(Ȳn, Tn, Tn+1), T1=up.

so that the last “wakeup” goal starts the token-passing mechanism.

Because this avoids consing up a list structure on the heap, this transformation is
usually more efficient than that described earlier. However, this is not always the case,
since the goals delayed include now a structure. Preliminary experiments show that
the tradeoff between the two transformations varies from a speedup of 3 to a slowdown
of 1.5.

3 Determinacy Conditions and Suspension Declarations

The concept of determinacy (of goals, literals, or predicates) has been defined in a
number of different ways in the logic programming community. In general, the idea
is that, for a given goal to a predicate, at most one clause will succeed. Informally, a
predicate is said to be determinate if every goal that complies with the intended use
of that predicate is determinate. In a particular program, we will say that a literal is
determinate if all goals arising from that literal are; and a predicate is determinate if
all literals for that predicate in the program are determinate.

In the following we will apply the definition used in the Andorra-I compiler, namely,
flat determinacy [5, 24]. This refers to determinacy that can be recognized by means
of a simple analysis of head unification and built-ins. We will use this exact notion
of determinacy for two very practical reasons: first, we would like to make a fair
comparison between our results and those of Andorra-I; and, second, we would like to
reuse the determinacy detection phase of the Andorra-I compiler in our implementation.

Another relevant issue in the context of determinacy detection is the nature and
complexity of the determinacy conditions, which can vary from the simplest conditions
such as true or false, to complex conjunctions and/or disjunctions of tests regarding
the instantiation states, the type, or the unifiability of some variables. In fact, it is
generally possible to express the det susp/2 function introduced in the previous section
using the suspension primitives that are available in most general purpose Prolog/CLP
systems [2, 8, 9, 25]. SICStus Prolog, for example, provides coroutining facilities by
means of block declarations and when meta-calls, among others. The block declaration
takes the form:
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QE-Andorra: A Quiche–Eating Implementation of the Basic Andorra Model 7

:- block Spec, . . ., Spec.

where each Spec is a mode specification of the goals for the predicate, and specifies
a condition for blocking goals of the predicate referred to by it. When a goal for the
predicate is to be executed, the mode specifications are interpreted as conditions for
blocking the goal, and if at least one condition evaluates to true, the goal is blocked. A
block condition evaluates to true iff all arguments specified as “-” are uninstantiated,
in which case the goal is blocked until at least one of those variables is instantiated.
The more general (and more expensive) when meta-call has the general form:

when(Condition,Goal)

and blocks Goal until Condition is true, where Condition is a Prolog goal given by the
following restricted syntax:

Condition ::= nonvar(X) | ground(X) | X ?= Y | Condition, Condition |
Condition; Condition

Whenever the determinacy condition det cond only contains nonvar tests over the
predicate arguments, then a block-like suspension declaration can be used. It will only
be necessary to put det cond in conjunctive normal form and define one mode spec for
each conjunct, where each of these will have the corresponding argument replaced by
a “-” flag. If this is not possible, but the condition fits into the above syntax, then
when-like literals can be used. Again, the condition can be put in either conjunctive
or disjunctive normal form, each item in this expression replaced by the corresponding
checks, and an expression built from the latter. If neither of them can be used, user-
defined predicates should be used, which will be the result of compiling the decision
graph which corresponds to the condition into Prolog itself. This compilation process
is based on the observation that conditions can always be reduced to conjunctions of
tests from the above syntax, plus other Prolog tests. For each of the former, a predicate
exists which suspends until the condition is satisfied, and then checks all of the latter.
See Section 7 for an example, and [10] for details.

4 Handling Non-Pure Features

In this section we will discuss the transformation of built-ins. There are basically
three kinds of built-ins. The first type is formed by those built-ins which can be con-
sidered as normal user goals whose low-level implementation is only due to efficiency
reasons. In this case, there are only two differences between the general transforma-
tion defined in the previous section and that applied to these built-ins.1 Firstly, the
determinacy condition is obtained from an internal database rather than from the ex-

1To avoid having to include such transformed built-ins in each transformed program, they are part
of a special module that is loaded with every transformed program.
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QE-Andorra: A Quiche–Eating Implementation of the Basic Andorra Model 8

amination of the definition of the predicate. Secondly, the predicate provided as the
second argument of det susp/2 is the original built-in.

Example 4.1 One possible transformation for the >/2 built-in could be the following:

>(X,Y,I,O) :- when( (ground(X/Y);nonvar(S)), (X>Y,O=I) ).

The second class is formed by those built-ins whose early evaluation may affect the
correctness of the execution. For example, side-effect built-ins such as write/1, meta-
logical predicates such as var/1, or pruning operators such as cuts. In the Andorra-I
system this problem is easily solved by just delaying such built-ins until they become
leftmost [5]. In our approach, this simply corresponds to creating a false determinacy
condition.

The third class is formed by built-ins which can be affected by the early execution
of goals which are dependent on it. In particular, whenever:

• an early failure prevents the execution of a side-effect, or

• an early binding affect cuts, meta-logical predicates, and side-effects that assume
their arguments to be unbound.

Many different approaches can be taken in order to eliminate this problem [5]. We
will follow the same approach taken by the Andorra-I system, namely to detect these
sensitive built-ins and prevent any execution of goals to the right of one such built-in
until both all goals to its left and the built-in itself have been completely executed.
In order to do this we will split the token-passing chain in two parts, and force the
token to circulate the leftmost part before allowing it to reach the rightmost one. Since
the method is simple and intuitive, we omit its formal definition. The technique is as
follows.

The idea is to add a wakeup goal just after the transformed sensitive built-in, thus
forcing all goals to the left to be executed before continuing with those to its right. This
implies adding (at least) an extra argument to the predicates in order to provide the
wakeup goal with the appropriate “initial” pointer. Note that for those built-ins which
belong both to the second and third classes, allocating the wakeup goal just before the
original (non transformed) built-in, would both prevent any execution of goals to its
right and delay the built-in until it becomes leftmost, thus solving both problems.

Example 4.2 Consider the following fragment of a program:

p(X):- q(X), r(X), write(X), s(X).
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An early execution of write(X) might affect the correctness of the execution. Thus
we will delay it until leftmost. Also, it is a “sensitive” built-in and therefore we must
disallow early execution of the goals to the right. The predicate can be transformed as
follows:

p(X,I,O,I1):- det_susp( nonvar(S), (p_susp(X,I,NO,I1),NO=O) ).

p_susp(X,T1,T4,In):- q(X,T1,T2,In), r(X,T2,T3,In), In=up, write(X), s(X,T3,T4,T3).

The transformation is just changed in that we have to add an extra argument, which
will be the first argument of the intermediate wakeup goal introduced just before the
sensitive built-in. Then, all goals in the chain between In and T3 will be executed
before the computation proceeds to after the wakeup goal.

5 Optimizing the Transformation

Several sources of possible overheads arise in the above transformation. First, the
amount of code generated: for each procedure definition, the (generic) transformation
yields at least two other procedures. Second, the addition of some arguments — at
least the pointers to the chain-list of tokens, which may happen to be unnecessary.
Finally, the need for detecting the conditions for determinism and the leftmost goal,
and the related suspension on these conditions. In this section we discuss some op-
timizations that can be performed regarding these three sources of possible overhead,
based on information available prior to performing the transformation. We then define
an improved transformation.

5.1 Simple enhancements

If a goal is determinate at the time it is first considered for execution, it should not
be suspended to be immediately woken. Therefore, a translated program which checks
the determinacy condition det cond(X̄) first before blindly suspending with det susp/2
can be more efficient at execution time:

p(X̄,I,O):-

goal(det cond(X̄)) -> p det(X̄,I,NO), NO=O

; det susp( (det cond(X̄);nonvar(I)), (p susp(X̄,I,NO), NO=O) ).

In general, det cond(X̄) may not be directly executable in the target language, and
thus it must be mapped into suitable goals by goal(det cond(X̄)). If this goal succeeds,
a specialized version of p susp/n+2 which does not need to suspend, p det/n+2, will
be called. Because this predicate will only be called when goals are known to be
determinate, it is possible to avoid the creation of choice-points when reducing the
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predicate with its clauses by appropriately adding cuts. This would closely simulate
the commitment to certain clauses introduced by Andorra-I once a reduction is known
to be determinate.

5.2 Unchaining calls to predicates

This optimization is based on the observation that certain clauses do not need the
extra arguments of chain pointers for the token to be passed. Such clauses include
facts, and others which only have literals in their body which, in turn, do not need
such arguments, either. A clause is, therefore, said to be unchained if all literals in
its body are either constraints (or unification equations), “always-executable” built-ins
(such as true), or goals for an unchained predicate. A predicate is said to be unchained
if all clauses in its definition are unchained and the predicate itself is determinate.

Note that an unchained clause does not need to have the extra arguments because, as
soon as it is reduced, the left-to-right execution of its body corresponds to the Andorra
model, due to the nature of the literals in it. Also, since the previous definitions are
recursive, one might imagine that an analysis for “unchainedness” would require an
iterative fixpoint computation, but it turns out that this is not necessary. The reason
for this is that if all of the literals of a clause are unchained, except for a recursive
call, then the clause will be unchained only if this recursive call does not need a token
to be passed, and this is so only if it is determinate. For handling mutually recursive
predicates in this manner, we regard them to be a single predicate in what follows.
Therefore, a simpler algorithm in this style, which will allow marking clauses and
predicates as unchained, can be defined as follows:

unchained(p/n)← constraint(p/n)
unchained(p/n)← ready builtin(p/n)
unchained(p/n)← determinate(p/n) ∧ ∀C ∈ defn(p/n) unchained(C)

unchained(C)← body(C) = ∅
unchained(C)← ∀p/n ∈ body(C)

(¬recursive(p/n)→ unchained(p/n))∧
(recursive(p/n)→ determinate(p/n))

where constraint(p/n) holds if p/n is a constraint symbol, ready builtin(p/n) if it
is an “always-executable” built-in, determinate(p/n) if predicate p/n is known to be
determinate, recursive(p/n) if it is recursive, defn(p/n) gives the set of clauses defining
it, and body(C) gives the list of predicates of the body of a clause C. Given this
definition, unchained goals and predicates can be identified in linear time by a simple
depth-first traversal of the call graph of the program.

Given that some predicates and clauses are marked as unchained, the definition of
p susp/n+2 presented in Section 2 can be modified to take this into account:
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• If unchained(p/n), then we can avoid the two extra arguments, the definition of
p susp/n being the result of renaming the functor p by the functor p susp.

• Otherwise, for every clause C in the set of clauses SC defining p/n:

– If C ≡ p(X̄)., it is transformed into p susp(X̄,T,T).

– If C ≡ p(X̄):- q1(Ȳ1) · · ·
qn(Ȳn)., with n > 0, and ∃i ∈ [1, n] unchained(qi/ni), C is transformed
into the clause p susp(X̄,T1,Tn+1):- Q1, · · · , Qn. where

Qi =

{
qi(Ȳi), Ti = Ti+1 if unchained(qi/ni)
qi(Ȳi, Ti, Ti+1) otherwise

Obviously the unification equations can be solved during the transformation, sub-
stituting one variable for the other. In the following we will denote by chain(SC) the
function which transforms the set of clauses SC following the above proposed method.

5.3 Determinacy condition is true

It is sometimes possible through program analysis to determine that a determinacy
condition will always succeed. When the determinacy condition is reduced to true,
the general transformation defined previously, which was based on the construction
of an if-then-else, can obviously be reduced to its “then” part. Therefore the extra
clause that the transformation adds amounts to a simple renaming, which, in fact, can
be performed at transformation time. Alternatively, this can be achieved by partial
evaluation with a simple one-step unfolding.

Global analysis can help in determining such situations. The conditions for deter-
minacy of a predicate are often expressed as checks on the degree of instantiation of
certain argument variables. A mode or moded type analysis can then guarantee that
the required degree of instantiation is always reached at the time of executing a given
goal. Let SC be the set of clauses in the definition of a predicate. Let us assume
that we associate with each clause Ci ∈ SC the subset Mi of the set of facts which
define the meaning of such clause, so that the mutual exclusion of such subsets makes
the predicate determinate. The condition to be checked is that for a given abstract
constraint λ, and for every constraint c approximated by λ, it holds that for every two
sets Mi and Mj , i ̸= j, there are at least one fi ∈Mi and one fj ∈Mj , such that either
fi ∧ c or fj ∧ c is inconsistent, but not both. Note that, in our terms, a determinacy
condition is one built up from the Mi sets which is sufficient for such inconsistency to
hold. The main issue in performing such a global analysis is to take into account the
different selection rule being used (see Section 6).

In some cases, even a simple local analysis of the program can allow optimizations.
A simple case of determinate goals, for which nothing more than local inspection of the
program text is needed, is that of goals of a predicate defined by a unique clause. In
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this case, a straightforward compile-time optimization can be achieved by a naive one-
step unfolding of such goals. For some other predicates, determinacy can be inferred
by simply examining the head of the clauses and/or simple built-ins appearing at the
beginning of the body.

5.4 Determinacy condition is false

When the determinacy condition is reduced to false, it is clear that the general
transformation based on an if-then-else defined previously can be reduced to its “else”
part. The only thing needed is introducing a leftmost-token (i.e., to attach a particular
variable), so that goals always suspend until leftmost. In this case the original definition
of predicate p is not only renamed to p susp, but additionally an extra argument is
added on which to suspend.

In this case, the condition to be checked is that, for at least two sets Mi and Mj

of facts which are true for clauses Ci and Cj of the predicate, it holds that for every
fi ∈ Mi and fj ∈ Mj , i ̸= j, and for every constraint c (which could possibly happen
upon execution of the program), fi∧ fj ∧ c is consistent. In some cases, it is possible to
detect simply from the definitions of predicates that it is not possible for the clauses to
be exclusive. This happens if for every fi ∈Mi and fj ∈Mj , i ̸= j, fi∧fj is consistent.

5.5 An optimized algorithm

The optimizations presented, except that of unchaining calls, can be defined in terms
of program specialization and code reduction. Having such a specializer, together with
a simple partial evaluator, the transformation proposed can default to the most general
one, plus unchaining. All other optimizations will then be performed by specialization
and partial evaluation of the transformed program. However, because doing the whole
process in one single step can be more efficient, and also because some unfoldings can be
done which relate to predicates affected by delay declarations (something that a partial
evaluator will normally not consider), we present a generic algorithm performing the
translation from the original program and achieving all the optimizations.

Let SC be the set of clauses which define predicate p/n, with most general goal
p(X̄), and C(X̄) be the determinacy condition w.r.t. p(X̄), already simplified making
use of the information available. The transformation will substitute SC by a new set
of clauses SC ′ as follows:

• If C(X̄) = true and unchained(p/n) holds, the predicate will never suspend and no
goal will be suspended during its execution. Therefore, we need neither suspension
conditions, nor chain pointers. Thus, SC ′ = SC.

• If C(X̄) = true but unchained(p/n) does not hold, the predicate will never sus-
pend but goals might suspend during its execution. Thus we might need chain
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pointers. Therefore, SC ′ = chain(SC, p).

• If C(X̄) = false and unchained(p/n) holds, the predicate will always be initially
suspended but, once it has been woken, no goal will be suspended during its
execution. Thus, we will just need to attach a variable for the leftmost token,
and place a condition on the instantiation state of such variable. Therefore SC ′

is equal to SC plus the following clauses:

:- block p(?̄,-,?).
p(X̄,I,O):- p(X̄), O=I.

• If C(X̄) = false and unchained(p/n) does not hold, we may also have to add
chain pointers. Therefore SC ′ is equal to chain(SC, p det) plus the following
clauses:

:- block p(?̄,-,?).
p(X̄,I,O):- p det(X̄,I,NO), O=NO.

• Otherwise, SC ′ is formed by the following clauses:

p(X̄,I,O):- goal(C(X̄)) -> work goal(p(X̄), I, O) ; det susp(C(X̄), p(X̄), I, O)
work def (SC, p(X̄))

where work def , work goal, and det susp are defined as follows:

work def (SC, p(X̄)) =

{
SC if unchained(p/n)
chain(SC, p det) otherwise

work goal(p(X̄), I, O) =

{
p(X̄), O=I if unchained(p/n)
p det(X̄,I,NO), O=NO otherwise

det susp(C(X̄), p(X̄), L0, L1) =
if block(C(X̄))


p susp(X̄,I,O).

:- block p susp(block(C(X̄)),-,?).
p susp(X̄,I,O):- work goal(p(X̄), I, O).

if when(C(X̄)) when( ( when(C(X̄)) ; nonvar(I) ), work goal(p(X̄), I, O) )

where chain(SC, f) is identical to the function chain(SC) defined before but using
the functor f instead of p susp, goal(C(X̄)) gives the Prolog goal corresponding to
a determinacy condition C(X̄), block(C(X̄)) gives the sequence of block annotations
corresponding to C(X̄) or fails if it is not possible to do so, and when(C(X̄)) does the
same for when annotations. These functions, as well as the general transformation for
when these two cannot be applied, have been informally defined in Section 3.

Report No. CLIP05/96 February 1996



QE-Andorra: A Quiche–Eating Implementation of the Basic Andorra Model 14

6 Applying Global Analysis

As mentioned during the description of the optimizations, global analysis can poten-
tially greatly improve detection of when the optimizations can be applied. Unfortu-
nately in this application Prolog semantics based analyses are not safe: such analyses
will not take into account that goals may run “ahead of their turn.” Therefore the in-
ferred state of instantiation of the variables would not be guaranteed to always hold at
execution time. Analyses designed for traditional concurrent logic languages cannot be
used “as is” either, since most of these analyses do not take into account backtracking
and are designed for a different delay rule. Even if backtracking were included in the
semantics, the language assumed is generally concurrent by default, and all possible
interleavings of the computation usually have to be considered. Since this is not our
case, a loss of accuracy may be expected from such an analysis.

Analyses aimed at sequential programs with delay primitives, such as for example
[19], are on the other hand closer to our purposes. Such an analysis can be applied
directly to the transformed programs (we refer to this as an “a posteriori” analysis).
The analysis keeps track of the possible suspensions occurring at each point in the pro-
gram, while computing safe approximations of the instantiation states of the program
variables. Such information can then be used to reduce the determinacy conditions,
even if they cannot be detected to always hold, nor to always fail. Each test in the
condition can be checked against the inferred information. Those which are found to
be “abstractly executable” [12] (reducible to true, false, or some simple constraints) in
their (abstract) context are replaced, and the applicable code reduction performed.

Alternatively, an analysis can be designed that directly models Andorra execution
and can thus be applied before the transformation (we refer to this as an “a priori”
analysis). Such an analysis can be based on an extension of classical Prolog analysis
technology, following similar ideas to those of [6]. It keeps track of the relevant proper-
ties of the variables, while determining if the literals in the program will definitely not
suspend. If it is not known that a literal will not suspend, then a safe approximation of
the execution state is taken, and analysis proceeds. The non-suspension conditions on
a predicate are identified as the demand of the predicate — in our context this demand
is given by the determinacy conditions. The analysis identifies goals whose degree of
instantiation satisfies the demand of the predicate.

Note that for both types of analysis, if definite success or failure of the determinacy
conditions cannot be determined, the analysis can be unfolded for the two cases (as is
already done in [19]). The cases in which determinacy of a predicate might condition
the determinacy of other predicates can then be captured to a higher extent. To take
advantage of this situation, and still be safe w.r.t. all cases at execution time, multiple
program specialization [28, 21] of the resulting program should be done.
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Figure 1: Andorra-I Decision Graph.

7 An Example

In this section we will illustrate the transformation and optimization procedure by
means of a detailed, simple example, the well known program for computing the Fi-
bonacci series.

fib(0,1).
fib(1,1).
fib(A,B) :- A>1, C is A-1, D is A-2, fib(C,E), fib(D,F), B is F+E.

The decision graph created by the Andorra-I preprocessor for this program is the one
shown in Figure 1. Given that graph, it is easy to conclude that fib(X,Y) will be
determinate as soon as (a) X becomes non-variable or (b) Y becomes a term not unifiable
to 1. If only condition (a) had been necessary, a block suspension primitive would had
been enough:

:- block fib(-,?,-,?).

fib(A,B,I,O) :- fib_det(A,B,I,NO), NO=O.

fib_det(0,1,T,T).
fib_det(1,1,T,T).
fib_det(A,B,T1,T7) :- >(A,1,T1,T2), is(C,A-1,T2,T3), is(D,A-2,T3,T4),

fib(C,E,T4,T5), fib(D,F,T5,T6), is(B,F+E,T6,T7).

However, given the need for a non-unifiability test, even a when declaration is not
enough. Thus, the transformation needs to perform an explicit checking on the condi-
tions the above graph represents:

fib(A,B,I,O):- nonvar(I), !, fib_det(A,B,I,NO), NO=O.
fib(A,B,I,O):- nonvar(A), !, fib_det(A,B,I,NO), NO=O.
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fib(A,B,I,O):- nonvar(B), !,
B\==1 -> fib_det(A,B,I,NO), NO=O

; when( ( nonvar(I) ; nonvar(A) ), fib(A,B,I,O) ).
fib(A,B,I,O):-

when( ( nonvar(I) ; nonvar(A) ; nonvar(B) ), fib(A,B,I,O) ).

Given a(n) (abstract) query where the first argument is known to be ground, a rela-
tively simple abstract interpretation-based analysis can usually determine that it will
be ground recursively for all calls to fib/2, and thus that fib/2 is determinate. Fur-
thermore, it will also determine that the built-ins are directly reducible. In this case,
the unchaining optimization discussed in Section 5.2 would be applicable, and would
result in code identical to the original Prolog program.

An a posteriori analysis can also provide similar information. Furthermore, this
kind of analysis may allow further optimizations. For example, given the transformed
program, it is perfectly possible that queries occur with the first two arguments free
and the third ground. In this case, since suspensions do occur, the a priori analysis
would probably not infer the necessary information for optimizing the code. However,
an a posteriori analysis can determine that for such queries no goal is ever determinate
(i.e. the goals are only awakened on the attached variable I), and suspensions can be
further reduced. The following program could be obtained:

:- block fib(?,?,-,?).

fib(X,Y,I,O) :- fib_det(X,Y,I,NO), NO=O.

8 Mixing Prolog and Andorra-I Code

As argued in the introduction, while the Basic Andorra Principle is certainly inter-
esting for its pruning capabilities, in some cases a simple Prolog execution may be more
desirable. This can be the case for programs known to be deterministic, or for which a
fixed ordering of choice points is known to be best. In Prolog execution the determinacy
checking overhead can be avoided (as well as the associated compilation time). One
interesting possibility that the transformational approach brings is to mix execution in
“Andorra mode” with normal (in this case, Prolog) execution. It is quite easy to call
from straight Prolog code to “Andorra transformed” code and the other way around.
We will assume that the source is marked in some way to distinguish those predicates
that should be compiled as normal Prolog predicates from those that are to be com-
piled to support the Andorra model. The transformation is then done only on those
predicates (files, modules,...) marked as meant to run under the Andorra model. Calls
from Prolog to Andorra goals are done in the same way as shown previously for queries:
a call to wakeup/2 is introduced after the goal, so that the whole Andorra computation
is completed before continuing the Prolog execution (if this is what is desired — we

Report No. CLIP05/96 February 1996



QE-Andorra: A Quiche–Eating Implementation of the Basic Andorra Model 17

Bench Andorra-I QE-Andorra+SICStus A/QEcompiled A/QEinterp SICStus

(A) Compiled Interpreted Compiled

crypt 196,972 196,400 214,620 1.003 0.918 2,070,760

dia sums 135,023 280,010 891,860 0.482 0.151 3,730

fib 112 89 480 1.258 0.233 30

map 470 19 39 24.737 12.051 10

money 751 980 1,010 0.766 0.744 1,606,370

mqu 136,196 205,660 1,045,369 0.662 0.130 > 2 days

mutest 223 69 409 3.232 0.545 10

qu evan 8,956 9,550 14,200 0.938 0.631 49

qu vitor 7,765 31,310 34,020 0.248 0.227 190

Geometric Mean: 1.214 0.523 –

Table 1: Execution times in milliseconds

assume the intended operational behavior is to isolate both executions).2 Calls from
Andorra-I to Prolog are simply not transformed (no leftmost-token passing), and will
be then executed normally, outside the context of any Andorra goals (again, if this is
what is desired). An interesting alternative, from the point of view of marking Andorra
and Prolog execution parts would also be to simply mark certain calls as Andorra calls
(by, for example, wrapping them in a bam/1 goal). The compiler would then simply
generate special, transformed versions of all the predicates called by that goal and its
descendents (in addition to the normal ones). This avoids having to mark program
parts instead.

9 Performance Figures

In this section we present results obtained from a preliminary implementation of the
proposed approach. The system implements the automatic transformation described
in the previous sections. Optimizations are applied as follows (no global analysis is
used in the experiments presented). First, the necessary code to avoid the suspension
of a goal that is determinate at the moment it is processed is added to the program,
as explained in Section 5.1. Second, eligible predicates are unchained following the
algorithm described in Section 5.2. Third, cases in which the determinacy conditions are
false are taken into account and simplified. Finally, predicates which are determinate
because their definition is a single clause are also taken into account and simplified.
However, they are not unfolded into the calling clause since Andorra-I does not perform
this optimization.

The benchmark programs have been previously used in benchmarking Andorra-I

2Note that this has some resemblance to a deep guard, as used in AKL [17].
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Figure 2: Speedup Curves: Sicstus 3.0/Muse

and have been taken directly from the Andorra-I distribution. They were first run
directly with the Andorra-I system, on a 55MHz SPARC-10, with 64Mbytes of memory,
SunOS 4.1.3. The same programs were transformed by our preprocessor and then run
on SICStus 2.1(8), on the same machine. For the latter, two cases were considered:
compiling to native code, and interpreting the source code. This was done because the
implementation technology of the Andorra-I system available to us (which is not the
latest, fully compiler-based version), is somewhere between a compiler and an optimized
interpreted system. The bodies of the clauses are executed by an optimized interpreter
written directly in C, which should be faster than the source-level meta-interpreter used
in the SICStus interpreter. The indexing operations are compiled by the preprocessor
into specialized instructions. These may be slower than the native code produced by the
SICStus compiler, although on the other hand the indexing is more sophisticated, since
it is done on all arguments, while SICStus only indexes on the first argument. Table
1 shows the resulting execution times in milliseconds (the times given for QE-Andorra
include garbage collection time; we were unable to determine whether the Andorra-I
system was doing garbage collection or not). For comparison, the result of running the
original programs directly on SICStus Prolog, compiling to native code, is also shown.

The performance of the resulting system, even without any optimizations based on
global dataflow analysis, is comparable to the native Andorra-I implementation: us-
ing compiled SICStus Prolog, our system is about 20% faster, on the average, than
the Andorra-I system; if we disregard the two outliers in the benchmark suite—map,
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on which QE-Andorra significantly outperforms Andorra-I, and qu vitor, where it is
outperformed—the two systems have essentially identical performance on the average.
By using global analysis, these results could be improved further. Preliminary experi-
ments on some of the benchmarks show encouraging speedups (e.g. 1.45 for fib, 1.09
for map).

The comparison with direct Prolog execution shows that there is advantage to avoid-
ing the transformation overheads, except for those cases where the Andorra selection
rule is performing better search. This supports our idea of mixing Prolog/Andorra
execution, and also that if the transformation can be optimized more, better results
can be obtained.

One additional advantage of the transformation is that existing parallel implementa-
tions can be exploited with little additional effort. In particular, note that or-parallelism
comes for free by simply running the transformed program on an or-parallel system,
such as Muse [1] or Aurora [18]. In order to test this we ran a subset of the trans-
formed programs (those that involve search) on SICStus V3.0, with the or-parallelism
option turned on (which uses the Muse model), on a 10 processor SPARC Server 2000
(each processor running at 55MHz). The results are represented graphically in Figure
2. Quite reasonable speedups were obtained automatically on these programs.

10 Conclusions

We have reported on a transformation technique which allows supporting the An-
dorra computational model, essentially emulating the Andorra-I system, via program
transformation into a sequential language with delay primitives. We have also proposed
several optimizations to the transformation. The system is automatic, comprising a ba-
sic transformer to the kernel language, which can optionally be interfaced with a global
analyzer. The preliminary results are quite encouraging: performance of the resulting
system is comparable to the current Andorra-I implementation, even without global
analysis.

Given the results obtained, we argue that the “quiche-eating” approach is practical,
and allows the support of the Basic Andorra Model on a generic system with rea-
sonable performance. We do not mean to suggest that the performance of a system
implemented using our approach is optimal or that it will achieve in the end better
results than a highly optimized, native Andorra-I implementation, but rather that the
transformational approach we pursued is viable. This is specially useful in view of the
proposed methods for combining traditional Prolog (or CLP) code and Andorra code.

We plan to further optimize and benchmark the system. Coupling the transforma-
tion with the global analyses we have outlined could drastically improve the overall
performance. The global analyses sketched are actually under construction. We are
also planning on testing performance on other parallel systems. In particular, we also
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plan on implementing and-parallelism (both determinate-dependent and also indepen-
dent) by using the recently proposed notions of independence in systems with delay
[4] and the associated compilation technology. And/Or parallelism can potentially be
directly supported on a system like ACE [13].
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