
Prolog cumple 50, larga vida a Prolog!
Reflexiones sobre su evolución, situación actual, y desarrollo futuro

Manuel Hermenegildo1,2

SISTEDES/PROLE’22, September 7, 2022

1T. U. of Madrid (UPM)
2IMDEA Software Institute

Part of the contents of this talk appear in the recent TPLP paper “ 50 years of Prolog and Beyond,” by

Philipp Körner, Michael Leuschel, João Barbosa, V́ıtor Santos Costa, Verónica Dahl,
Manuel V. Hermenegildo, Jose F. Morales, Jan Wielemaker, Daniel Diaz,

Salvador Abreu, and Giovanni Ciatto

written for Prolog’s 50th anniversary and TPLP’s 20th anniversary.

The Year of Prolog

• Summer of 1972:
Alain Colmerauer and team in Marseille develop the first version of Prolog.

• This event + earlier and later collaborations w/Bob Kowalski and colleagues
in Edinburgh, lay the foundations for the Prolog and LP of today.

• The “Year of Prolog” celebrates the 50th anniversary of these events.

Organizers: Association for Logic Programming and Prolog Heritage Association.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 2

The Year of Prolog

• Initiatives:

I ALP Alain Colmerauer Prolog Heritage Prize. For recent practical
accomplishments that highlight the benefits of Prolog-inspired computing.

I Prolog Day Symposium (November 10, 2022) in which the Alain Colmerauer
Prize will be awarded (subsequent editions at ICLP). Registration open!

I Prolog Education initiative (long-term initiative):

• map and provide Prolog education resources for educators,
• introduce schoolchildren/young adults to logic, programming, and AI w/Prolog.

I Survey paper on “Fifty Years of Prolog and Beyond” published in the 20th
anniversary special issue of TPLP.

I Special sessions and invited talks (e.g., at CILC, ICLP/FLoC, . . . SISTEDES!).

I Special volume (Springer LNAI).

and others... do join in! prologyear.logicprogramming.org

Activities are overseen by a Scientific Committee, chaired by Bob Kowalski.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 3

https://prologyear.logicprogramming.org

• So, Prolog is 50!

I What, 50 years?!? Half a century?!?!
I Is Prolog therefore now ’old’? Is Prolog now irrelevant?

• Actually... continued interest:

I Many active implementations, and more appearing continuously.

I TIOBE index of programming languages shows Prolog:

• In upper 10% of all languages tracked (270).
• Stable, even somewhat upward trend since 2012.
• One of only 13 languages that are tracked ’long term’.

I A truly impressive body of research and scientific firsts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 4

• So, Prolog is 50!

I What, 50 years?!? Half a century?!?!
I Is Prolog therefore now ’old’? Is Prolog now irrelevant?

• Actually... continued interest:

I Many active implementations, and more appearing continuously.

I TIOBE index of programming languages shows Prolog:

• In upper 10% of all languages tracked (270).
• Stable, even somewhat upward trend since 2012.
• One of only 13 languages that are tracked ’long term’.

I A truly impressive body of research and scientific firsts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 4

• So, Prolog is 50!

I What, 50 years?!? Half a century?!?!
I Is Prolog therefore now ’old’? Is Prolog now irrelevant?

• Actually... continued interest:

I Many active implementations, and more appearing continuously.

I TIOBE index of programming languages shows Prolog:

• In upper 10% of all languages tracked (270).
• Stable, even somewhat upward trend since 2012.
• One of only 13 languages that are tracked ’long term’.

I A truly impressive body of research and scientific firsts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 4

• So, Prolog is 50!

I What, 50 years?!? Half a century?!?!
I Is Prolog therefore now ’old’? Is Prolog now irrelevant?

• Actually... continued interest:

I Many active implementations, and more appearing continuously.

I TIOBE index of programming languages shows Prolog:

• In upper 10% of all languages tracked (270).
• Stable, even somewhat upward trend since 2012.
• One of only 13 languages that are tracked ’long term’.

I A truly impressive body of research and scientific firsts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 4

Early steps, major milestones

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 5

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Ancestors and birth

• Not possible to do full justice in this talk!
See Kowalski (1988, 2013), Cohen (1988), VanRoy
(1994), Colmerauer (1996), Gupta et al. (2001),
vanEmden (2006), McJones’s archive, etc.

• Anyway, some highlights:
I McCarthy (1962): the AI language LISP → “very high-level languages.”

I Robinson (1965): resolution inference rule.

I Elcock (1967): Aberdeen System (“AbSys”).

I Green (1969): extend resolution to answer questions in FO-logic (QA3).

I Colmerauer (1970): Q-systems.

I Kowalski and Kuehner (1971): SL-resolution (focused search).

I Boyer and Moore (1972): structure sharing.

→ Marseilles - Edinburgh collaboration (Colmerauer/Kowalski and teams).

→ Prolog! (1972–1973)

I The competing “procedural” view of AI (e.g., Hewitt).

→ Prompted Kowalski to marry the procedural and logical views.

I Edinburgh: DHD Warren, +Pereira(s)/Bowen/Byrd; later Lisbon.

→ Dec-10 Prolog . . .⇒
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 6

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

• First Prolog(s): fundamental characteristics already there!

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

• First Prolog(s): fundamental characteristics already there!

• Dec-10 Prolog: Compilation (+ improved syntax, etc.)
→ performance (≈ lisp),
→ much more widespread use –but portability.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

• First Prolog(s): fundamental characteristics already there!

• Dec-10 Prolog: Compilation (+ improved syntax, etc.)
→ performance (≈ lisp),
→ much more widespread use –but portability.

• CDL-Prolog, MU-Prolog, ..., C-Prolog: portability (but interpreter).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

• First Prolog(s): fundamental characteristics already there!

• Dec-10 Prolog: Compilation (+ improved syntax, etc.)
→ performance (≈ lisp),
→ much more widespread use –but portability.

• CDL-Prolog, MU-Prolog, ..., C-Prolog: portability (but interpreter).

• The WAM: portability + speed... and implementation beauty.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

• First Prolog(s): fundamental characteristics already there!

• Dec-10 Prolog: Compilation (+ improved syntax, etc.)
→ performance (≈ lisp),
→ much more widespread use –but portability.

• CDL-Prolog, MU-Prolog, ..., C-Prolog: portability (but interpreter).

• The WAM: portability + speed... and implementation beauty.

(FGCS → MCC → ECRC → ESPRIT → EU research programs, and others.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

• WAM optimizations (Quintus, SICStus, BIM, YAP, ...), GC, ...

→ commercial/PD, dissemination, more performance.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

• WAM optimizations (Quintus, SICStus, BIM, YAP, ...), GC, ...

→ commercial/PD, dissemination, more performance.

• Or- and and-parallelism.

• Global analysis (abstract interpretation), P.Eval.; Aquarius, &-Prolog/Ciao.
(Independence/aliasing, modes, types, determinacy, sharing, non-failure, cost, ...)
First practical compiler(s) using abstract interpretation?

→ Performance (≈ imperative), auto-parallelization, real parallel speedups.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

• Constraints (Prolog II; CLP scheme and CLP(R))

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

• Constraints (Prolog II; CLP scheme and CLP(R))

I Finite domains.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

• Constraints (Prolog II; CLP scheme and CLP(R))

I Finite domains.

• A good number of other WAM(and non-WAM)-based Prologs (see later).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao

• Constraints (Prolog II; CLP scheme and CLP(R))

I Finite domains.

• A good number of other WAM(and non-WAM)-based Prologs (see later).

• Higher-order / functional syntax support (λ-Prolog, HiLog, Hiord, ...).

• Types/modes, verification, testing, assertions.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao
1994

XSB

• Constraints (Prolog II; CLP scheme and CLP(R))

I Finite domains.

• A good number of other WAM(and non-WAM)-based Prologs (see later).

• Higher-order / functional syntax support (λ-Prolog, HiLog, Hiord, ...).

• Types/modes, verification, testing, assertions.

• Early ded., Tabling, SLG-resolution, minimal-model / well-founded semantics.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao
1994

XSB

1995

ISO Prolog

• Constraints (Prolog II; CLP scheme and CLP(R))

I Finite domains.

• A good number of other WAM(and non-WAM)-based Prologs (see later).

• Higher-order / functional syntax support (λ-Prolog, HiLog, Hiord, ...).

• Types/modes, verification, testing, assertions.

• Early ded., Tabling, SLG-resolution, minimal-model / well-founded semantics.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao
1994

XSB

1995

ISO Prolog

All this progressed in parallel with further advances in the theoretical underpinnings:

• Kowalski/van Emden (1976): linear res. for Horn clauses, no factoring rule, ...

• Clark (1978): correctness of NaF w.r.t. program completion.

• Reiter (1978): formalization of “Closed world assumption.”

• Minker, Gallaire, Cohen, Lassez/Jaffar/Maher, DHD Warren, Tamaki/Sato, DS Warren, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao
1994

XSB

1995

ISO Prolog

After ISO – much additional evolution:

• Constraints in standard Prologs: “Opening the box” (attvars/CHR).

• Learning (ILP), probabilistic.

• ASP Prolog-ASP combinations s(CASP).

• Web embedding, playgrounds, notebooks.

+ applications of techniques to other languages,
combination with deep learning / explainable AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

Early Prologs and main milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao
1994

XSB

1995

ISO Prolog

After ISO – much additional evolution:

• Constraints in standard Prologs: “Opening the box” (attvars/CHR).

• Learning (ILP), probabilistic.

• ASP Prolog-ASP combinations s(CASP).

• Web embedding, playgrounds, notebooks.

+ applications of techniques to other languages,
combination with deep learning / explainable AI, ...

Let’s jump forward and take a look at the current state of things!
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 7

An overview of current systems

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 8

Prolog system heritage

Prolog 0 & I

negation as failure

Prolog II

cyclic structures

Prolog III

constraints

Prolog IV

DEC-10 Prolog

compiled, de facto standard
C-Prolog

interpreted, portable

The WAM
compiled, portable

Quintus

commercial, de-facto standard

SICStus
commercial support, JIT

BIM
commercial, native

&-Prolog / Ciao

parallel, assertions

SWI
libraries

YAP
indexing

SB-Prolog

XSB
tabling

GNU
fd/indexicals

. . .

B-Prolog
TOAM

BinProlog

binarization

tuProlog

JVM, interoperability

. . .

Marseille
Prolog line

Prologs

WAM-based

WAM alternatives

White background: currently active/supported systems.
Lower legends: just some highlight(s) (see later).
Arrows: influences and inspiration.

Again, more missing!: ECLiPSe , IBM, LIFE, Andorra-I, Scryer, Tau, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 9

Prolog system heritage

Prolog 0 & I

negation as failure

Prolog II

cyclic structures

Prolog III

constraints

Prolog IV

DEC-10 Prolog

compiled, de facto standard
C-Prolog

interpreted, portable

The WAM
compiled, portable

Quintus

commercial, de-facto standard

SICStus
commercial support, JIT

BIM
commercial, native

&-Prolog / Ciao

parallel, assertions

SWI
libraries

YAP
indexing

SB-Prolog

XSB
tabling

GNU
fd/indexicals

. . .

B-Prolog
TOAM

BinProlog

binarization

tuProlog

JVM, interoperability

. . .

Marseille
Prolog line

Prologs

WAM-based

WAM alternatives

White background: currently active/supported systems.
Lower legends: just some highlight(s) (see later).
Arrows: influences and inspiration.

Again, more missing!: ECLiPSe , IBM, LIFE, Andorra-I, Scryer, Tau, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 9

Support status for selected features - I

System Open Src. Modules Non-Std. Data Types Foreign Language Interfaces
B-Prolog arrays, sets, hashtables C, Java
Ciao 3 3 C, Java, Python, JScrpt
ECLiPSe 3 3 arrays, strings C, Java, Python, PHP
GNU Prolog 3 arrays C, Java, PHP
JIProlog 3 3 Java
SICStus 3 C, Java, .NET, Tcl/Tk
SWI 3 3 dicts, strings C, C++, Java
τProlog 3 3 JavaScript
tuProlog 3 arrays Java, .NET, Android, iOS
XSB 3 3 C, Java, PERL, Python
YAP 3 3 C, Python, R

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 10

Support status for selected features - I

System Open Src. Modules Non-Std. Data Types Foreign Language Interfaces
B-Prolog arrays, sets, hashtables C, Java
Ciao 3 3 C, Java, Python, JScrpt
ECLiPSe 3 3 arrays, strings C, Java, Python, PHP
GNU Prolog 3 arrays C, Java, PHP
JIProlog 3 3 Java
SICStus 3 C, Java, .NET, Tcl/Tk
SWI 3 3 dicts, strings C, C++, Java
τProlog 3 3 JavaScript
tuProlog 3 arrays Java, .NET, Android, iOS
XSB 3 3 C, Java, PERL, Python
YAP 3 3 C, Python, R

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 10

Support status for selected features - I

System Open Src. Modules Non-Std. Data Types Foreign Language Interfaces
B-Prolog arrays, sets, hashtables C, Java
Ciao 3 3 C, Java, Python, JScrpt
ECLiPSe 3 3 arrays, strings C, Java, Python, PHP
GNU Prolog 3 arrays C, Java, PHP
JIProlog 3 3 Java
SICStus 3 C, Java, .NET, Tcl/Tk
SWI 3 3 dicts, strings C, C++, Java
τProlog 3 3 JavaScript
tuProlog 3 arrays Java, .NET, Android, iOS
XSB 3 3 C, Java, PERL, Python
YAP 3 3 C, Python, R

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 10

Support status for selected features - I

System Open Src. Modules Non-Std. Data Types Foreign Language Interfaces
B-Prolog arrays, sets, hashtables C, Java
Ciao 3 3 C, Java, Python, JScrpt
ECLiPSe 3 3 arrays, strings C, Java, Python, PHP
GNU Prolog 3 arrays C, Java, PHP
JIProlog 3 3 Java
SICStus 3 C, Java, .NET, Tcl/Tk
SWI 3 3 dicts, strings C, C++, Java
τProlog 3 3 JavaScript
tuProlog 3 arrays Java, .NET, Android, iOS
XSB 3 3 C, Java, PERL, Python
YAP 3 3 C, Python, R

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 10

Support status for selected features - I

System Open Src. Modules Non-Std. Data Types Foreign Language Interfaces
B-Prolog arrays, sets, hashtables C, Java
Ciao 3 3 C, Java, Python, JScrpt
ECLiPSe 3 3 arrays, strings C, Java, Python, PHP
GNU Prolog 3 arrays C, Java, PHP
JIProlog 3 3 Java
SICStus 3 C, Java, .NET, Tcl/Tk
SWI 3 3 dicts, strings C, C++, Java
τProlog 3 3 JavaScript
tuProlog 3 arrays Java, .NET, Android, iOS
XSB 3 3 C, Java, PERL, Python
YAP 3 3 C, Python, R

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 10

Support status for selected features - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 11

Support status for selected features - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 11

Support status for selected features - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 11

Support status for selected features - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 11

Support status for selected features - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 11

Support status for selected features - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 11

Support status for selected features - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 12

Support status for selected features - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 12

Support status for selected features - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 12

Support status for selected features - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 12

Support status for selected features - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 12

Support status for selected features - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 12

Support status for selected features - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Many other features!

• Auto-documentation, attributed variables, objects, enhanced expansions, playgrounds, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 12

Summary (so far)

• Prolog systems have come a long way!

• ISO standard generally supported (with minor differences).

• Basic module system pretty compatible.

• A good number of commonly available features:

I Constraints.
I Multi-threading.
I Tabling.
I Coroutining.
I ...

However,

I Interfaces and details often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some features (e.g., Types/modes/verification, s(CASP), ...)
still in few systems.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 13

Summary (so far)

• Prolog systems have come a long way!

• ISO standard generally supported (with minor differences).

• Basic module system pretty compatible.

• A good number of commonly available features:

I Constraints.
I Multi-threading.
I Tabling.
I Coroutining.
I ...

However,

I Interfaces and details often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some features (e.g., Types/modes/verification, s(CASP), ...)
still in few systems.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 13

Summary (so far)

• Prolog systems have come a long way!

• ISO standard generally supported (with minor differences).

• Basic module system pretty compatible.

• A good number of commonly available features:

I Constraints.
I Multi-threading.
I Tabling.
I Coroutining.
I ...

However,

I Interfaces and details often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some features (e.g., Types/modes/verification, s(CASP), ...)
still in few systems.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 13

Summary (so far)

• Prolog systems have come a long way!

• ISO standard generally supported (with minor differences).

• Basic module system pretty compatible.

• A good number of commonly available features:

I Constraints.
I Multi-threading.
I Tabling.
I Coroutining.
I ...

However,

I Interfaces and details often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some features (e.g., Types/modes/verification, s(CASP), ...)
still in few systems.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 13

Summary (so far)

• Prolog systems have come a long way!

• ISO standard generally supported (with minor differences).

• Basic module system pretty compatible.

• A good number of commonly available features:

I Constraints.
I Multi-threading.
I Tabling.
I Coroutining.
I ...

However,

I Interfaces and details often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some features (e.g., Types/modes/verification, s(CASP), ...)
still in few systems.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 13

Summary (so far)

• Prolog systems have come a long way!

• ISO standard generally supported (with minor differences).

• Basic module system pretty compatible.

• A good number of commonly available features:

I Constraints.
I Multi-threading.
I Tabling.
I Coroutining.
I ...

However,

I Interfaces and details often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some features (e.g., Types/modes/verification, s(CASP), ...)
still in few systems.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 13

Summary (so far)

• Prolog systems have come a long way!

• ISO standard generally supported (with minor differences).

• Basic module system pretty compatible.

• A good number of commonly available features:

I Constraints.
I Multi-threading.
I Tabling.
I Coroutining.
I ...

However,

I Interfaces and details often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some features (e.g., Types/modes/verification, s(CASP), ...)
still in few systems.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 13

Summary (so far)

• Prolog systems have come a long way!

• ISO standard generally supported (with minor differences).

• Basic module system pretty compatible.

• A good number of commonly available features:

I Constraints.
I Multi-threading.
I Tabling.
I Coroutining.
I ...

However,

I Interfaces and details often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some features (e.g., Types/modes/verification, s(CASP), ...)
still in few systems.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 13

Summary (so far)

• Prolog systems have come a long way!

• ISO standard generally supported (with minor differences).

• Basic module system pretty compatible.

• A good number of commonly available features:

I Constraints.
I Multi-threading.
I Tabling.
I Coroutining.
I ...

However,

I Interfaces and details often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some features (e.g., Types/modes/verification, s(CASP), ...)
still in few systems.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 13

Summary (so far)

• Prolog systems have come a long way!

• ISO standard generally supported (with minor differences).

• Basic module system pretty compatible.

• A good number of commonly available features:

I Constraints.
I Multi-threading.
I Tabling.
I Coroutining.
I ...

However,

I Interfaces and details often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some features (e.g., Types/modes/verification, s(CASP), ...)
still in few systems.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 13

Summary (so far)

• Prolog systems have come a long way!

• ISO standard generally supported (with minor differences).

• Basic module system pretty compatible.

• A good number of commonly available features:

I Constraints.
I Multi-threading.
I Tabling.
I Coroutining.
I ...

However,

I Interfaces and details often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some features (e.g., Types/modes/verification, s(CASP), ...)
still in few systems.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 13

Summary (so far)

• Prolog systems have come a long way!

• ISO standard generally supported (with minor differences).

• Basic module system pretty compatible.

• A good number of commonly available features:

I Constraints.
I Multi-threading.
I Tabling.
I Coroutining.
I ...

However,

I Interfaces and details often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some features (e.g., Types/modes/verification, s(CASP), ...)
still in few systems.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 13

Influences on others

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 14

Influence in other languages within LP and its extensions

• Goedel, Mercury, Turbo-Prolog (static typing)

• λ-Prolog, Curry, Babel

• CP, GHC, Parlog, Erlang (committed choice)

• Datalog, ASP

• s(ASP) and s(CASP) (can also be seen as extensions)

• HyProlog, Flora-2/ErgoAI, Co-inductive LP, ...

• Probabilistic LP

• ProGol, ILP

• LogTalk

• Picat

• CHR, CHRG

• ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 15

Influence beyond LP

• Theorem proving technology.

• Java (abstract machine, specification, ...).

• Erlang.

• Many embeddings in other languages.

• Many others: C++, many compilers, ...

• Analyzers and verifiers for other languages.

• ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 16

Further analysis of current status

and outlook

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 17

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog strengths

• Clean, simple syntax and semantics.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Arbitrary precision arithmetic.

• Safety (garbage collection, no NullPointer exceptions, ...).

• Tail-recursion and last-call optimization.

• Efficient inference, pattern matching, and unification; DCGs.

• Meta-programming, programs as data.

• Constraint solving.

• Independence of the selection rule (coroutines).

• Indexing, efficient tabling.

• Fast development, REPL (Read, Execute, Print, Loop), debugging, ...

• Commercial and open-source systems (some very substantive and mature!).

• Active developer community with constant new implementations, features, etc.

• Sophisticated tools: analyzers, partial evaluators, parallelizers, ...

• Many books, courses, and learning materials.

• Successful applications, including:

I Program analysis (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...).
I Domain-specific languages.
I Heterogeneous data integration.
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 18

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Prolog weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a
huge amount of resources → teach it well, use the right tools! (see later)

• Lack of static typing → but notable exceptions!

• Lack of data hiding → but notable exceptions!

• Lack of object orientation. → but notable exceptions!

• Packages: availability and management → improve compatibility.

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a
mainstream language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some
areas (e.g., refactoring) → future work?

• Limitations in portability across systems → need to improve.

• UI development (usually conducted in a foreign language via FLI) →
exceptions / need to improve?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 19

Threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Fragmented community with limited interactions.

• Active developer community with constant new implementations, features.

• Further fragmentation of Prolog implementations.

• New programming languages.

• Post-desktop world of JavaScript web-applications.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. → continue
cooperative/competitive evolution (vs. going for single system).

• But, good forum needed for discussion.

• Also, bring together community across systems.

• Again, improved teaching.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 20

Threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Fragmented community with limited interactions.

• Active developer community with constant new implementations, features.

• Further fragmentation of Prolog implementations.

• New programming languages.

• Post-desktop world of JavaScript web-applications.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. → continue
cooperative/competitive evolution (vs. going for single system).

• But, good forum needed for discussion.

• Also, bring together community across systems.

• Again, improved teaching.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 20

Threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Fragmented community with limited interactions.

• Active developer community with constant new implementations, features.

• Further fragmentation of Prolog implementations.

• New programming languages.

• Post-desktop world of JavaScript web-applications.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. → continue
cooperative/competitive evolution (vs. going for single system).

• But, good forum needed for discussion.

• Also, bring together community across systems.

• Again, improved teaching.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 20

Threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Fragmented community with limited interactions.

• Active developer community with constant new implementations, features.

• Further fragmentation of Prolog implementations.

• New programming languages.

• Post-desktop world of JavaScript web-applications.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. → continue
cooperative/competitive evolution (vs. going for single system).

• But, good forum needed for discussion.

• Also, bring together community across systems.

• Again, improved teaching.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 20

Threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Fragmented community with limited interactions.

• Active developer community with constant new implementations, features.

• Further fragmentation of Prolog implementations.

• New programming languages.

• Post-desktop world of JavaScript web-applications.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. → continue
cooperative/competitive evolution (vs. going for single system).

• But, good forum needed for discussion.

• Also, bring together community across systems.

• Again, improved teaching.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 20

Threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Fragmented community with limited interactions.

• Active developer community with constant new implementations, features.

• Further fragmentation of Prolog implementations.

• New programming languages.

• Post-desktop world of JavaScript web-applications.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. → continue
cooperative/competitive evolution (vs. going for single system).

• But, good forum needed for discussion.

• Also, bring together community across systems.

• Again, improved teaching.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 20

Threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Fragmented community with limited interactions.

• Active developer community with constant new implementations, features.

• Further fragmentation of Prolog implementations.

• New programming languages.

• Post-desktop world of JavaScript web-applications.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. → continue
cooperative/competitive evolution (vs. going for single system).

• But, good forum needed for discussion.

• Also, bring together community across systems.

• Again, improved teaching.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 20

Threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Fragmented community with limited interactions.

• Active developer community with constant new implementations, features.

• Further fragmentation of Prolog implementations.

• New programming languages.

• Post-desktop world of JavaScript web-applications.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. → continue
cooperative/competitive evolution (vs. going for single system).

• But, good forum needed for discussion.

• Also, bring together community across systems.

• Again, improved teaching.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 20

Threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Fragmented community with limited interactions.

• Active developer community with constant new implementations, features.

• Further fragmentation of Prolog implementations.

• New programming languages.

• Post-desktop world of JavaScript web-applications.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. → continue
cooperative/competitive evolution (vs. going for single system).

• But, good forum needed for discussion.

• Also, bring together community across systems.

• Again, improved teaching.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 20

Threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Fragmented community with limited interactions.

• Active developer community with constant new implementations, features.

• Further fragmentation of Prolog implementations.

• New programming languages.

• Post-desktop world of JavaScript web-applications.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. → continue
cooperative/competitive evolution (vs. going for single system).

• But, good forum needed for discussion.

• Also, bring together community across systems.

• Again, improved teaching.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 20

Threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Fragmented community with limited interactions.

• Active developer community with constant new implementations, features.

• Further fragmentation of Prolog implementations.

• New programming languages.

• Post-desktop world of JavaScript web-applications.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. → continue
cooperative/competitive evolution (vs. going for single system).

• But, good forum needed for discussion.

• Also, bring together community across systems.

• Again, improved teaching.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 20

Threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Fragmented community with limited interactions.

• Active developer community with constant new implementations, features.

• Further fragmentation of Prolog implementations.

• New programming languages.

• Post-desktop world of JavaScript web-applications.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. → continue
cooperative/competitive evolution (vs. going for single system).

• But, good forum needed for discussion.

• Also, bring together community across systems.

• Again, improved teaching.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 20

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 21

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 21

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 21

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 21

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 21

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 21

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 21

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 21

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 21

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 21

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 21

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 21

Some issues that need joint attention and agreement

• Improve portability of existing features (cf., Prolog systems tables):

I ISO, vs. Prolog Commons, vs. future initiatives,
I Library infrastructure and conditional code,
I Standard test suites beyond ISO.

• Module system (some aspects), interfaces, objects.

• More unified macro system.

• Improved syntactic support for data structures.

• Support for functional programming syntax.

•
• Reactivity.

• ... (also, community infrastructure, see at the end).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 22

Some issues that need joint attention and agreement

• Improve portability of existing features (cf., Prolog systems tables):

I ISO, vs. Prolog Commons, vs. future initiatives,
I Library infrastructure and conditional code,
I Standard test suites beyond ISO.

• Module system (some aspects), interfaces, objects.

• More unified macro system.

• Improved syntactic support for data structures.

• Support for functional programming syntax.

•
• Reactivity.

• ... (also, community infrastructure, see at the end).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 22

Some issues that need joint attention and agreement

• Improve portability of existing features (cf., Prolog systems tables):

I ISO, vs. Prolog Commons, vs. future initiatives,
I Library infrastructure and conditional code,
I Standard test suites beyond ISO.

• Module system (some aspects), interfaces, objects.

• More unified macro system.

• Improved syntactic support for data structures.

• Support for functional programming syntax.

•
• Reactivity.

• ... (also, community infrastructure, see at the end).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 22

Some issues that need joint attention and agreement

• Improve portability of existing features (cf., Prolog systems tables):

I ISO, vs. Prolog Commons, vs. future initiatives,
I Library infrastructure and conditional code,
I Standard test suites beyond ISO.

• Module system (some aspects), interfaces, objects.

• More unified macro system.

• Improved syntactic support for data structures.

• Support for functional programming syntax.

•
• Reactivity.

• ... (also, community infrastructure, see at the end).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 22

Some issues that need joint attention and agreement

• Improve portability of existing features (cf., Prolog systems tables):

I ISO, vs. Prolog Commons, vs. future initiatives,
I Library infrastructure and conditional code,
I Standard test suites beyond ISO.

• Module system (some aspects), interfaces, objects.

• More unified macro system.

• Improved syntactic support for data structures.

• Support for functional programming syntax.

• Types and modes, and other properties.

• Reactivity.

• ... (also, community infrastructure, see at the end).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 22

Some issues that need joint attention and agreement

• Improve portability of existing features (cf., Prolog systems tables):

I ISO, vs. Prolog Commons, vs. future initiatives,
I Library infrastructure and conditional code,
I Standard test suites beyond ISO.

• Module system (some aspects), interfaces, objects.

• More unified macro system.

• Improved syntactic support for data structures.

• Support for functional programming syntax.

• Types and modes, and other properties.

• Reactivity.

• ... (also, community infrastructure, see at the end).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 22

Some issues that need joint attention and agreement

• Improve portability of existing features (cf., Prolog systems tables):

I ISO, vs. Prolog Commons, vs. future initiatives,
I Library infrastructure and conditional code,
I Standard test suites beyond ISO.

• Module system (some aspects), interfaces, objects.

• More unified macro system.

• Improved syntactic support for data structures.

• Support for functional programming syntax.

• Types and modes, and other properties.

• Reactivity.

• ... (also, community infrastructure, see at the end).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 22

Some issues that need joint attention and agreement

• Improve portability of existing features (cf., Prolog systems tables):

I ISO, vs. Prolog Commons, vs. future initiatives,
I Library infrastructure and conditional code,
I Standard test suites beyond ISO.

• Module system (some aspects), interfaces, objects.

• More unified macro system.

• Improved syntactic support for data structures.

• Support for functional programming syntax.

• Types and modes, and other properties.

• Reactivity.

• ... (also, community infrastructure, see at the end).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 22

Some issues that need joint attention and agreement

• Improve portability of existing features (cf., Prolog systems tables):

I ISO, vs. Prolog Commons, vs. future initiatives,
I Library infrastructure and conditional code,
I Standard test suites beyond ISO.

• Module system (some aspects), interfaces, objects.

• More unified macro system.

• Improved syntactic support for data structures.

• Support for functional programming syntax.

• Types and modes, and other properties.

• Reactivity.

• ... (also, community infrastructure, see at the end).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 22

Some issues that need joint attention and agreement

• Improve portability of existing features (cf., Prolog systems tables):

I ISO, vs. Prolog Commons, vs. future initiatives,
I Library infrastructure and conditional code,
I Standard test suites beyond ISO.

• Module system (some aspects), interfaces, objects.

• More unified macro system.

• Improved syntactic support for data structures.

• Support for functional programming syntax.

• Types and modes, and other properties.

• Reactivity.

• ... (also, community infrastructure, see at the end).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 22

Some issues that need joint attention and agreement

• Improve portability of existing features (cf., Prolog systems tables):

I ISO, vs. Prolog Commons, vs. future initiatives,
I Library infrastructure and conditional code,
I Standard test suites beyond ISO.

• Module system (some aspects), interfaces, objects.

• More unified macro system.

• Improved syntactic support for data structures.

• Support for functional programming syntax.

• Types and modes, and other properties.

• Reactivity.

• ... (also, community infrastructure, see at the end).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 22

Some issues that need joint attention and agreement

• Improve portability of existing features (cf., Prolog systems tables):

I ISO, vs. Prolog Commons, vs. future initiatives,
I Library infrastructure and conditional code,
I Standard test suites beyond ISO.

• Module system (some aspects), interfaces, objects.

• More unified macro system.

• Improved syntactic support for data structures.

• Support for functional programming syntax.

• Types and modes, and other properties.

• Reactivity.

• ... (also, community infrastructure, see at the end).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 22

Some perspectives from the Ciao Prolog system:

A new-generation Prolog

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 23

Context (early 90’s): many languages/systems, each with one extension

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (early 90’s): many languages/systems, each with one extension

• Parallelism/concurrency: &-Prolog, MUSE, Andorra, GHC, CC, ...

• Equations, functions, CLP(X), HO unification, ...

• Control rules: Andorra, tabling, iterative deepening, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (early 90’s): many languages/systems, each with one extension

• Parallelism/concurrency: &-Prolog, MUSE, Andorra, GHC, CC, ...

• Equations, functions, CLP(X), HO unification, ...

• Control rules: Andorra, tabling, iterative deepening, ...

→ Ciao principle I: Language definition/extension is library-based

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (early 90’s): many languages/systems, each with one extension

→ Ciao principle I: Language definition/extension is library-based

• Start from small, very extensible LP kernel – a language-building language.
• Build gradually extensions in layers on top of it.
• Syntactic and semantic extensions can be activated/deactivated per module.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (early 90’s): many languages/systems, each with one extension

→ Ciao principle I: Language definition/extension is library-based

• Start from small, very extensible LP kernel – a language-building language.
• Build gradually extensions in layers on top of it.
• Syntactic and semantic extensions can be activated/deactivated per module.

(This approach is also taken nowadays by, e.g., Racket.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (early 90’s): many languages/systems, each with one extension

→ Ciao principle I: Language definition/extension is library-based

• Start from small, very extensible LP kernel – a language-building language.
• Build gradually extensions in layers on top of it.
• Syntactic and semantic extensions can be activated/deactivated per module.

(This approach is also taken nowadays by, e.g., Racket.)

→ A multi-paradigm Prolog:
Bring in the most useful features from different programming paradigms.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (early 90’s): many languages/systems, each with one extension

→ Ciao principle I: Language definition/extension is library-based

→ A multi-paradigm Prolog:
Bring in the most useful features from different programming paradigms.

• Pure LP + full ISO Prolog

I With several search and computation rules.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (early 90’s): many languages/systems, each with one extension

→ Ciao principle I: Language definition/extension is library-based

→ A multi-paradigm Prolog:
Bring in the most useful features from different programming paradigms.

• Pure LP + full ISO Prolog

I With several search and computation rules.

• Constraint programming: clpr, clpq, CHR, fd, ...

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (early 90’s): many languages/systems, each with one extension

→ Ciao principle I: Language definition/extension is library-based

→ A multi-paradigm Prolog:
Bring in the most useful features from different programming paradigms.

• Pure LP + full ISO Prolog

I With several search and computation rules.

• Constraint programming: clpr, clpq, CHR, fd, ...

• Functional programming:

I Function definitions, function calls, functional syntax for predicates.
I Higher-order and lazyness for functions and predicates.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (early 90’s): many languages/systems, each with one extension

→ Ciao principle I: Language definition/extension is library-based

→ A multi-paradigm Prolog:
Bring in the most useful features from different programming paradigms.

• Pure LP + full ISO Prolog

I With several search and computation rules.

• Constraint programming: clpr, clpq, CHR, fd, ...

• Functional programming:

I Function definitions, function calls, functional syntax for predicates.
I Higher-order and lazyness for functions and predicates.

• Concurrency, parallelism, distributed execution.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (early 90’s): many languages/systems, each with one extension

→ Ciao principle I: Language definition/extension is library-based

→ A multi-paradigm Prolog:
Bring in the most useful features from different programming paradigms.

• Pure LP + full ISO Prolog

I With several search and computation rules.

• Constraint programming: clpr, clpq, CHR, fd, ...

• Functional programming:

I Function definitions, function calls, functional syntax for predicates.
I Higher-order and lazyness for functions and predicates.

• Concurrency, parallelism, distributed execution.

• Imperative features: mutables, assignment, loops, cases, arrays, etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (early 90’s): many languages/systems, each with one extension

→ Ciao principle I: Language definition/extension is library-based

→ A multi-paradigm Prolog:
Bring in the most useful features from different programming paradigms.

• Pure LP + full ISO Prolog

I With several search and computation rules.

• Constraint programming: clpr, clpq, CHR, fd, ...

• Functional programming:

I Function definitions, function calls, functional syntax for predicates.
I Higher-order and lazyness for functions and predicates.

• Concurrency, parallelism, distributed execution.

• Imperative features: mutables, assignment, loops, cases, arrays, etc.

• Objects: a naturally embedded notion of classes and objects.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (early 90’s): many languages/systems, each with one extension

→ Ciao principle I: Language definition/extension is library-based

→ A multi-paradigm Prolog:
Bring in the most useful features from different programming paradigms.

• Pure LP + full ISO Prolog

I With several search and computation rules.

• Constraint programming: clpr, clpq, CHR, fd, ...

• Functional programming:

I Function definitions, function calls, functional syntax for predicates.
I Higher-order and lazyness for functions and predicates.

• Concurrency, parallelism, distributed execution.

• Imperative features: mutables, assignment, loops, cases, arrays, etc.

• Objects: a naturally embedded notion of classes and objects.

+ many other extensions and libraries (e.g., s(CASP)).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 24

Context (also early 90’s):

• A tendency to restrict languages (generally for performance).

I Elimination of unification: Mercury, GHC, CC, Erlang, ...
I Elimination of non-determinism/search: GHC, CC, Erlang, ...

• Static languages, strong typing:

I ML, Haskell | Gödel, Mercury.
• At the same time:

Abstract interpretation-based global analysis becoming practical (LP).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 25

Context (also early 90’s):

• A tendency to restrict languages (generally for performance).

I Elimination of unification: Mercury, GHC, CC, Erlang, ...
I Elimination of non-determinism/search: GHC, CC, Erlang, ...

• Static languages, strong typing:

I ML, Haskell | Gödel, Mercury.
• At the same time:

Abstract interpretation-based global analysis becoming practical (LP).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 25

Context (also early 90’s):

• A tendency to restrict languages (generally for performance).

I Elimination of unification: Mercury, GHC, CC, Erlang, ...
I Elimination of non-determinism/search: GHC, CC, Erlang, ...

• Static languages, strong typing:

I ML, Haskell | Gödel, Mercury.
• At the same time:

Abstract interpretation-based global analysis becoming practical (LP).

Ciao principle II:
High performance via optimization, not language restriction.

• No need to eliminate unification or tabling or backtracking or constraints, etc.

• Optimization via analysis, partial evaluation, parallelization, profiling, . . .

• Separate/incr. compilation, small executables, high-performance, . . .

Interfaces/Embeddability (C, many other languages, Web).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 25

Context (also early 90’s):

• A tendency to restrict languages (generally for performance).

I Elimination of unification: Mercury, GHC, CC, Erlang, ...
I Elimination of non-determinism/search: GHC, CC, Erlang, ...

• Static languages, strong typing:

I ML, Haskell | Gödel, Mercury.
• At the same time:

Abstract interpretation-based global analysis becoming practical (LP).

Ciao principle III:
Combine the best of the dynamic and static language approaches.

• Provide the flexibility of dynamic languages:

I Dynamic typing, dynamic load, dynamic program modification,
meta-programming, top level, call (eval), scripts, ...

• But with guaranteed safety and efficiency.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 25

Context (also early 90’s):

• A tendency to restrict languages (generally for performance).

I Elimination of unification: Mercury, GHC, CC, Erlang, ...
I Elimination of non-determinism/search: GHC, CC, Erlang, ...

• Static languages, strong typing:

I ML, Haskell | Gödel, Mercury.
• At the same time:

Abstract interpretation-based global analysis becoming practical (LP).

Ciao principle III:
Combine the best of the dynamic and static language approaches.

• Provide the flexibility of dynamic languages:

I Dynamic typing, dynamic load, dynamic program modification,
meta-programming, top level, call (eval), scripts, ...

• But with guaranteed safety and efficiency.

Enabler:
• Abstract Interpretation-based checking of optional assertions →

Provably safe approximations → The Ciao assertions model

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 25

Context (also early 90’s):

• A tendency to restrict languages (generally for performance).

I Elimination of unification: Mercury, GHC, CC, Erlang, ...
I Elimination of non-determinism/search: GHC, CC, Erlang, ...

• Static languages, strong typing:

I ML, Haskell | Gödel, Mercury.
• At the same time:

Abstract interpretation-based global analysis becoming practical (LP).

Ciao principle III:
Combine the best of the dynamic and static language approaches.

• Provide the flexibility of dynamic languages:

I Dynamic typing, dynamic load, dynamic program modification,
meta-programming, top level, call (eval), scripts, ...

• But with guaranteed safety and efficiency.

• Approach not particularly in line with the trends at the time!

→ ”Ciao: (first?) dynamic language with safety assurances,
trying to survive in a world dominated by strong typing.”

• However, idea quite popular now: hybrid typing, Racket, liquid Haskell, etc.
Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 25

Ciao Prolog demo (ciao-lang.org)

• Interactive CiaoPP (Verifly) (See also slides at the end.)

• The Ciao playground

I A simple example
I Web embedding / tutorial example

• s(CASP) playground

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 26

https://ciao-lang.org/
file:/Users/herme/clip/Systems/ciao-devel/bndls/ciaopp/examples/verifly/.
https://ciao-lang.org/playground/#:-%20module(_,%5Bmain/1%5D,%5Bassertions,nativeprops,regtypes%5D).%0A%0Amain(Y)%20:-%20qsort(%5B3,1,4,2%5D,Y).%0A%0Aqsort(%5B%5D,%20%5B%5D).%0Aqsort(%5BFirst%7CRest%5D,Result)%20:-%0A%20%20%20%20partition(Rest,First,Sm,Lg),%20%0A%20%20%20%20qsort(Sm,SmS),%20%0A%20%20%20%20qsort(Lg,LgS),%0A%20%20%20%20append(SmS,%5BFirst%7CLgS%5D,Result).%0A%0Apartition(%5B%5D,_,%5B%5D,%5B%5D).%0Apartition(%5BX%7CY%5D,F,%5BX%7CY1%5D,Y2)%20:-%20%0A%20%20%20%20X%20=%3C%20F,%20%0A%20%20%20%20partition(Y,F,Y1,Y2).%0Apartition(%5BX%7CY%5D,F,Y1,%5BX%7CY2%5D)%20:-%20%0A%20%20%20%20X%20%3E%20F,%0A%20%20%20%20partition(Y,F,Y1,Y2).%0A%0Aappend(%5B%5D,Xs,Xs).%0Aappend(%5BX%7CXs%5D,Ys,%5BX%7CZs%5D)%20:-%0A%20%20%20%20append(Xs,Ys,Zs).%0A
https://ciao-lang.org/ciao/build/doc/ciao_playground.html/factorial_peano_iso.html
https://ciao-lang.org/playground/scasp.html

The Ciao Integrated Approach to Specification, Debugging,
Verification, Testing, and Optimization

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

(ACC)

(optimized)

code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

PREPROCESSOR

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 27

Discussion: Comparison with Classical Types

“Traditional” Types Ciao Assertion-based Model
“Properties” limited by decidability Much more general property language
May need to limit prog. lang. No need to limit prog. lang.
“Untypable” programs rejected Run-time checks introduced
(Almost) Decidable Decidable + Undecidable (approximated)
Expressed in a different language Expressed in the source language
Types must be defined Types can be defined or inferred
Assertions are only of type “check” “check”, “trust”, ...
Type signatures & assertions different Type signatures are assertions

• But quite popular now: gradual typing, Racket, liquid Haskell, etc.

• Some key issues:
Safe / Sound approximation Suitable assertion language
Abstract Interpretation Powerful abstract domains

• Works best when properties and assertions can be expressed in the source
language (i.e., source lang. supports predicates, constraints).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 28

Discussion: Comparison with Classical Types

“Traditional” Types Ciao Assertion-based Model
“Properties” limited by decidability Much more general property language
May need to limit prog. lang. No need to limit prog. lang.
“Untypable” programs rejected Run-time checks introduced
(Almost) Decidable Decidable + Undecidable (approximated)
Expressed in a different language Expressed in the source language
Types must be defined Types can be defined or inferred
Assertions are only of type “check” “check”, “trust”, ...
Type signatures & assertions different Type signatures are assertions

• But quite popular now: gradual typing, Racket, liquid Haskell, etc.

• Some key issues:
Safe / Sound approximation Suitable assertion language
Abstract Interpretation Powerful abstract domains

• Works best when properties and assertions can be expressed in the source
language (i.e., source lang. supports predicates, constraints).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 28

Discussion: Comparison with Classical Types

“Traditional” Types Ciao Assertion-based Model
“Properties” limited by decidability Much more general property language
May need to limit prog. lang. No need to limit prog. lang.
“Untypable” programs rejected Run-time checks introduced
(Almost) Decidable Decidable + Undecidable (approximated)
Expressed in a different language Expressed in the source language
Types must be defined Types can be defined or inferred
Assertions are only of type “check” “check”, “trust”, ...
Type signatures & assertions different Type signatures are assertions

• But quite popular now: gradual typing, Racket, liquid Haskell, etc.

• Some key issues:
Safe / Sound approximation Suitable assertion language
Abstract Interpretation Powerful abstract domains

• Works best when properties and assertions can be expressed in the source
language (i.e., source lang. supports predicates, constraints).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 28

Teaching (and preaching) Prolog

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 29

On teaching (and preaching) Prolog

• Prolog / LP / CLP must be taught in CS programs,

I A CS graduate is simply not complete without knowledge of Prolog.

(and maybe also in other majors and maybe in schools –cf. Prolog Year?)

• But it has to be done right!

I The standard ’programming paradigms’ approach can be counter-productive.
I Simply cannot be done in a couple of weeks emulating Prolog in Scheme.

• What to do if that is the only slot available?

• On the way dispel unfounded myths about the language, and show how many
of the shortcomings of early Prologs have been addressed over the years.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 30

On teaching (and preaching) Prolog

• Prolog / LP / CLP must be taught in CS programs,

I A CS graduate is simply not complete without knowledge of Prolog.

(and maybe also in other majors and maybe in schools –cf. Prolog Year?)

• But it has to be done right!

I The standard ’programming paradigms’ approach can be counter-productive.
I Simply cannot be done in a couple of weeks emulating Prolog in Scheme.

• What to do if that is the only slot available?

• On the way dispel unfounded myths about the language, and show how many
of the shortcomings of early Prologs have been addressed over the years.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 30

On teaching (and preaching) Prolog

• Prolog / LP / CLP must be taught in CS programs,

I A CS graduate is simply not complete without knowledge of Prolog.

(and maybe also in other majors and maybe in schools –cf. Prolog Year?)

• But it has to be done right!

I The standard ’programming paradigms’ approach can be counter-productive.
I Simply cannot be done in a couple of weeks emulating Prolog in Scheme.

• What to do if that is the only slot available?

• On the way dispel unfounded myths about the language, and show how many
of the shortcomings of early Prologs have been addressed over the years.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 30

On teaching (and preaching) Prolog

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use a system that can alternatively and selectively run in breadth-first,
iterative deepening, tabling, etc.

I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite

failures, etc.), and thus why breadth-first works, and why depth-first
sometimes may not.

I Do relate it to the halting problem: no-one (Prolog, logic, nor other
Turing-complete prog. language) can solve that (but tabling helps).

I Discuss advantages and disadvantages of search rules (time, memory).
Motivate the choices made for Prolog benchmarking actual executions.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 31

On teaching (and preaching) Prolog

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use a system that can alternatively and selectively run in breadth-first,
iterative deepening, tabling, etc.

I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite

failures, etc.), and thus why breadth-first works, and why depth-first
sometimes may not.

I Do relate it to the halting problem: no-one (Prolog, logic, nor other
Turing-complete prog. language) can solve that (but tabling helps).

I Discuss advantages and disadvantages of search rules (time, memory).
Motivate the choices made for Prolog benchmarking actual executions.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 31

On teaching (and preaching) Prolog

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use a system that can alternatively and selectively run in breadth-first,
iterative deepening, tabling, etc.

I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite

failures, etc.), and thus why breadth-first works, and why depth-first
sometimes may not.

I Do relate it to the halting problem: no-one (Prolog, logic, nor other
Turing-complete prog. language) can solve that (but tabling helps).

I Discuss advantages and disadvantages of search rules (time, memory).
Motivate the choices made for Prolog benchmarking actual executions.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 31

On teaching (and preaching) Prolog

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use a system that can alternatively and selectively run in breadth-first,
iterative deepening, tabling, etc.

I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite

failures, etc.), and thus why breadth-first works, and why depth-first
sometimes may not.

I Do relate it to the halting problem: no-one (Prolog, logic, nor other
Turing-complete prog. language) can solve that (but tabling helps).

I Discuss advantages and disadvantages of search rules (time, memory).
Motivate the choices made for Prolog benchmarking actual executions.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 31

On teaching (and preaching) Prolog

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use a system that can alternatively and selectively run in breadth-first,
iterative deepening, tabling, etc.

I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite

failures, etc.), and thus why breadth-first works, and why depth-first
sometimes may not.

I Do relate it to the halting problem: no-one (Prolog, logic, nor other
Turing-complete prog. language) can solve that (but tabling helps).

I Discuss advantages and disadvantages of search rules (time, memory).
Motivate the choices made for Prolog benchmarking actual executions.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 31

On teaching (and preaching) Prolog

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use a system that can alternatively and selectively run in breadth-first,
iterative deepening, tabling, etc.

I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite

failures, etc.), and thus why breadth-first works, and why depth-first
sometimes may not.

I Do relate it to the halting problem: no-one (Prolog, logic, nor other
Turing-complete prog. language) can solve that (but tabling helps).

I Discuss advantages and disadvantages of search rules (time, memory).
Motivate the choices made for Prolog benchmarking actual executions.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 31

On teaching (and preaching) Prolog

• “Prolog gets into infinite loops.”

This is true –in fact, of any programming language or proof system.
However, it is likely to discourage beginners if not explained well:

I Use a system that can alternatively and selectively run in breadth-first,
iterative deepening, tabling, etc.

I Start by running all predicates, e.g., breadth-first – everything works!
I Then, explain the shape of the tree (solutions at finite depth, possible infinite

failures, etc.), and thus why breadth-first works, and why depth-first
sometimes may not.

I Do relate it to the halting problem: no-one (Prolog, logic, nor other
Turing-complete prog. language) can solve that (but tabling helps).

I Discuss advantages and disadvantages of search rules (time, memory).
Motivate the choices made for Prolog benchmarking actual executions.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 31

Characterization of the search tree

solution

solution

fail

fail

solution
fail

infinite failure

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 32

Depth-First Search

solution

solution

fail

fail

solution
fail

infinite failure

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 33

Breadth-First Search

solution

fail

fail

solution
fail

infinite failure

solution

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 34

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

• “Arithmetic is not reversible.”

I Start with Peano arithmetic: beautiful but slow.
I Then justify Prolog arithmetic for efficiency.
I Then show (arithmetic) constraint domains: beautiful and efficient!

• “There is no occur check.”

I Explain why, and that there is a built-in for it.
I Have a package (expansion) that calls it by default for all unifications.
I Explain the existence of infinite tree unification (as a constraint domain).

• “Prolog is not pure (cut, assert, etc.)”

I Have a pure mode in the implementation so that impure built-ins simply are
not present.

I Develop pure libraries (including monad-style).
I Develop purer built-ins.

and accept that impurity is necessary sometimes, but keep it encapsulated
when possible.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 35

On teaching (and preaching) Prolog

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students:
they have already been exposed to other languages (imperative/OO, sometimes functional) and
probably have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after

SSA). It is simply that and more.
(This idea useful for analysis of other languages!)

I Show that it is completely normal if used in one direction and there is only one
definition per procedure.

I But it can also have several definitions, search, run backwards, etc.
I In addition to a stack of forward continuations, as every language, to know

where go when a procedure returns (succeeds), it also has a stack of
backwards continuations to go if there is a failure (previous choice point).

• “Prolog has no applications / interest / nobody uses it.”
I The TIOBE index disagrees...
I Show some good examples of applications (cf. Prolog Year).

• “The Fifth Generation failed!” Not true...
and it did not use Prolog or “real LP” anyway!
They used in fact “something like Erlang”
(probably why it was not as successful as it could have been.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 36

On teaching (and preaching) Prolog

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students:
they have already been exposed to other languages (imperative/OO, sometimes functional) and
probably have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after

SSA). It is simply that and more.
(This idea useful for analysis of other languages!)

I Show that it is completely normal if used in one direction and there is only one
definition per procedure.

I But it can also have several definitions, search, run backwards, etc.
I In addition to a stack of forward continuations, as every language, to know

where go when a procedure returns (succeeds), it also has a stack of
backwards continuations to go if there is a failure (previous choice point).

• “Prolog has no applications / interest / nobody uses it.”
I The TIOBE index disagrees...
I Show some good examples of applications (cf. Prolog Year).

• “The Fifth Generation failed!” Not true...
and it did not use Prolog or “real LP” anyway!
They used in fact “something like Erlang”
(probably why it was not as successful as it could have been.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 36

On teaching (and preaching) Prolog

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students:
they have already been exposed to other languages (imperative/OO, sometimes functional) and
probably have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after

SSA). It is simply that and more.
(This idea useful for analysis of other languages!)

I Show that it is completely normal if used in one direction and there is only one
definition per procedure.

I But it can also have several definitions, search, run backwards, etc.
I In addition to a stack of forward continuations, as every language, to know

where go when a procedure returns (succeeds), it also has a stack of
backwards continuations to go if there is a failure (previous choice point).

• “Prolog has no applications / interest / nobody uses it.”
I The TIOBE index disagrees...
I Show some good examples of applications (cf. Prolog Year).

• “The Fifth Generation failed!” Not true...
and it did not use Prolog or “real LP” anyway!
They used in fact “something like Erlang”
(probably why it was not as successful as it could have been.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 36

On teaching (and preaching) Prolog

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students:
they have already been exposed to other languages (imperative/OO, sometimes functional) and
probably have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after

SSA). It is simply that and more.
(This idea useful for analysis of other languages!)

I Show that it is completely normal if used in one direction and there is only one
definition per procedure.

I But it can also have several definitions, search, run backwards, etc.
I In addition to a stack of forward continuations, as every language, to know

where go when a procedure returns (succeeds), it also has a stack of
backwards continuations to go if there is a failure (previous choice point).

• “Prolog has no applications / interest / nobody uses it.”
I The TIOBE index disagrees...
I Show some good examples of applications (cf. Prolog Year).

• “The Fifth Generation failed!” Not true...
and it did not use Prolog or “real LP” anyway!
They used in fact “something like Erlang”
(probably why it was not as successful as it could have been.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 36

On teaching (and preaching) Prolog

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students:
they have already been exposed to other languages (imperative/OO, sometimes functional) and
probably have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after

SSA). It is simply that and more.
(This idea useful for analysis of other languages!)

I Show that it is completely normal if used in one direction and there is only one
definition per procedure.

I But it can also have several definitions, search, run backwards, etc.
I In addition to a stack of forward continuations, as every language, to know

where go when a procedure returns (succeeds), it also has a stack of
backwards continuations to go if there is a failure (previous choice point).

• “Prolog has no applications / interest / nobody uses it.”
I The TIOBE index disagrees...
I Show some good examples of applications (cf. Prolog Year).

• “The Fifth Generation failed!” Not true...
and it did not use Prolog or “real LP” anyway!
They used in fact “something like Erlang”
(probably why it was not as successful as it could have been.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 36

On teaching (and preaching) Prolog

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students:
they have already been exposed to other languages (imperative/OO, sometimes functional) and
probably have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after

SSA). It is simply that and more.
(This idea useful for analysis of other languages!)

I Show that it is completely normal if used in one direction and there is only one
definition per procedure.

I But it can also have several definitions, search, run backwards, etc.
I In addition to a stack of forward continuations, as every language, to know

where go when a procedure returns (succeeds), it also has a stack of
backwards continuations to go if there is a failure (previous choice point).

• “Prolog has no applications / interest / nobody uses it.”
I The TIOBE index disagrees...
I Show some good examples of applications (cf. Prolog Year).

• “The Fifth Generation failed!” Not true...
and it did not use Prolog or “real LP” anyway!
They used in fact “something like Erlang”
(probably why it was not as successful as it could have been.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 36

On teaching (and preaching) Prolog

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students:
they have already been exposed to other languages (imperative/OO, sometimes functional) and
probably have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after

SSA). It is simply that and more.
(This idea useful for analysis of other languages!)

I Show that it is completely normal if used in one direction and there is only one
definition per procedure.

I But it can also have several definitions, search, run backwards, etc.
I In addition to a stack of forward continuations, as every language, to know

where go when a procedure returns (succeeds), it also has a stack of
backwards continuations to go if there is a failure (previous choice point).

• “Prolog has no applications / interest / nobody uses it.”
I The TIOBE index disagrees...
I Show some good examples of applications (cf. Prolog Year).

• “The Fifth Generation failed!” Not true...
and it did not use Prolog or “real LP” anyway!
They used in fact “something like Erlang”
(probably why it was not as successful as it could have been.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 36

On teaching (and preaching) Prolog

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students:
they have already been exposed to other languages (imperative/OO, sometimes functional) and
probably have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after

SSA). It is simply that and more.
(This idea useful for analysis of other languages!)

I Show that it is completely normal if used in one direction and there is only one
definition per procedure.

I But it can also have several definitions, search, run backwards, etc.
I In addition to a stack of forward continuations, as every language, to know

where go when a procedure returns (succeeds), it also has a stack of
backwards continuations to go if there is a failure (previous choice point).

• “Prolog has no applications / interest / nobody uses it.”
I The TIOBE index disagrees...
I Show some good examples of applications (cf. Prolog Year).

• “The Fifth Generation failed!” Not true...
and it did not use Prolog or “real LP” anyway!
They used in fact “something like Erlang”
(probably why it was not as successful as it could have been.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 36

On teaching (and preaching) Prolog

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students:
they have already been exposed to other languages (imperative/OO, sometimes functional) and
probably have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after

SSA). It is simply that and more.
(This idea useful for analysis of other languages!)

I Show that it is completely normal if used in one direction and there is only one
definition per procedure.

I But it can also have several definitions, search, run backwards, etc.
I In addition to a stack of forward continuations, as every language, to know

where go when a procedure returns (succeeds), it also has a stack of
backwards continuations to go if there is a failure (previous choice point).

• “Prolog has no applications / interest / nobody uses it.”
I The TIOBE index disagrees...
I Show some good examples of applications (cf. Prolog Year).

• “The Fifth Generation failed!” Not true...
and it did not use Prolog or “real LP” anyway!
They used in fact “something like Erlang”
(probably why it was not as successful as it could have been.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 36

On teaching (and preaching) Prolog

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students:
they have already been exposed to other languages (imperative/OO, sometimes functional) and
probably have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after

SSA). It is simply that and more.
(This idea useful for analysis of other languages!)

I Show that it is completely normal if used in one direction and there is only one
definition per procedure.

I But it can also have several definitions, search, run backwards, etc.
I In addition to a stack of forward continuations, as every language, to know

where go when a procedure returns (succeeds), it also has a stack of
backwards continuations to go if there is a failure (previous choice point).

• “Prolog has no applications / interest / nobody uses it.”
I The TIOBE index disagrees...
I Show some good examples of applications (cf. Prolog Year).

• “The Fifth Generation failed!” Not true...
and it did not use Prolog or “real LP” anyway!
They used in fact “something like Erlang”
(probably why it was not as successful as it could have been.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 36

On teaching (and preaching) Prolog

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students:
they have already been exposed to other languages (imperative/OO, sometimes functional) and
probably have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after

SSA). It is simply that and more.
(This idea useful for analysis of other languages!)

I Show that it is completely normal if used in one direction and there is only one
definition per procedure.

I But it can also have several definitions, search, run backwards, etc.
I In addition to a stack of forward continuations, as every language, to know

where go when a procedure returns (succeeds), it also has a stack of
backwards continuations to go if there is a failure (previous choice point).

• “Prolog has no applications / interest / nobody uses it.”
I The TIOBE index disagrees...
I Show some good examples of applications (cf. Prolog Year).

• “The Fifth Generation failed!” Not true...
and it did not use Prolog or “real LP” anyway!
They used in fact “something like Erlang”
(probably why it was not as successful as it could have been.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 36

On teaching (and preaching) Prolog

The following views are specially relevant to teaching Prolog (and LP) to (CS) college students:
they have already been exposed to other languages (imperative/OO, sometimes functional) and
probably have some notions of PL implementation.

• “Prolog is a strange language.”
I Show that Prolog subsumes functional and imperative programming (after

SSA). It is simply that and more.
(This idea useful for analysis of other languages!)

I Show that it is completely normal if used in one direction and there is only one
definition per procedure.

I But it can also have several definitions, search, run backwards, etc.
I In addition to a stack of forward continuations, as every language, to know

where go when a procedure returns (succeeds), it also has a stack of
backwards continuations to go if there is a failure (previous choice point).

• “Prolog has no applications / interest / nobody uses it.”
I The TIOBE index disagrees...
I Show some good examples of applications (cf. Prolog Year).

• “The Fifth Generation failed!” Not true...
and it did not use Prolog or “real LP” anyway!
They used in fact “something like Erlang”
(probably why it was not as successful as it could have been.)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 36

Personal Sequential Inference –PSI– machine (Prolog machine) in FGCS ICOT’s
basement (the large refrigerator-size box on the right).

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 37

On teaching (and preaching) Prolog

• Do show the beauty:

I Explain “Green’s dream,” discuss for what logics we have effective deduction
procedures, justify the choice of FO and semi-decidability, SLD-resolution →
classical LP (Kowalski/Colmerauer).

I Show how logic programs are both logical theories (with declarative meaning)
and procedural programs that can be debugged, followed step by step, etc.

• An operational (in addition to declarative) semantics is a requirement in the
language (vs., e.g., Goedel) and we do need to teach it.

• Otherwise not a programming language, just specification/KR – Prolog is both.
• How otherwise to reason about complexity, memory consumption, etc.? To say

that these things don’t matter does not make sense in PL.

I Show with examples (and benchmarking them) how you can go from
executable specifications to efficient algorithms gradually, and as needed.

I Show how unification is also a device for constructing and matching complex
data structures with (declarative) pointers. Show it in the top level, giving
“the data structures class.”

I Do use types (and properties in general): define them as predicates, show
them used to check if something is in the type (dynamic checking), or “run
backwards” to generate the “inhabitants”; property-based testing for free!

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 38

On teaching (and preaching) Prolog

• Do show the beauty:

I Explain “Green’s dream,” discuss for what logics we have effective deduction
procedures, justify the choice of FO and semi-decidability, SLD-resolution →
classical LP (Kowalski/Colmerauer).

I Show how logic programs are both logical theories (with declarative meaning)
and procedural programs that can be debugged, followed step by step, etc.

• An operational (in addition to declarative) semantics is a requirement in the
language (vs., e.g., Goedel) and we do need to teach it.

• Otherwise not a programming language, just specification/KR – Prolog is both.
• How otherwise to reason about complexity, memory consumption, etc.? To say

that these things don’t matter does not make sense in PL.

I Show with examples (and benchmarking them) how you can go from
executable specifications to efficient algorithms gradually, and as needed.

I Show how unification is also a device for constructing and matching complex
data structures with (declarative) pointers. Show it in the top level, giving
“the data structures class.”

I Do use types (and properties in general): define them as predicates, show
them used to check if something is in the type (dynamic checking), or “run
backwards” to generate the “inhabitants”; property-based testing for free!

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 38

On teaching (and preaching) Prolog

• Do show the beauty:

I Explain “Green’s dream,” discuss for what logics we have effective deduction
procedures, justify the choice of FO and semi-decidability, SLD-resolution →
classical LP (Kowalski/Colmerauer).

I Show how logic programs are both logical theories (with declarative meaning)
and procedural programs that can be debugged, followed step by step, etc.

• An operational (in addition to declarative) semantics is a requirement in the
language (vs., e.g., Goedel) and we do need to teach it.

• Otherwise not a programming language, just specification/KR – Prolog is both.
• How otherwise to reason about complexity, memory consumption, etc.? To say

that these things don’t matter does not make sense in PL.

I Show with examples (and benchmarking them) how you can go from
executable specifications to efficient algorithms gradually, and as needed.

I Show how unification is also a device for constructing and matching complex
data structures with (declarative) pointers. Show it in the top level, giving
“the data structures class.”

I Do use types (and properties in general): define them as predicates, show
them used to check if something is in the type (dynamic checking), or “run
backwards” to generate the “inhabitants”; property-based testing for free!

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 38

On teaching (and preaching) Prolog

• Do show the beauty:

I Explain “Green’s dream,” discuss for what logics we have effective deduction
procedures, justify the choice of FO and semi-decidability, SLD-resolution →
classical LP (Kowalski/Colmerauer).

I Show how logic programs are both logical theories (with declarative meaning)
and procedural programs that can be debugged, followed step by step, etc.

• An operational (in addition to declarative) semantics is a requirement in the
language (vs., e.g., Goedel) and we do need to teach it.

• Otherwise not a programming language, just specification/KR – Prolog is both.
• How otherwise to reason about complexity, memory consumption, etc.? To say

that these things don’t matter does not make sense in PL.

I Show with examples (and benchmarking them) how you can go from
executable specifications to efficient algorithms gradually, and as needed.

I Show how unification is also a device for constructing and matching complex
data structures with (declarative) pointers. Show it in the top level, giving
“the data structures class.”

I Do use types (and properties in general): define them as predicates, show
them used to check if something is in the type (dynamic checking), or “run
backwards” to generate the “inhabitants”; property-based testing for free!

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 38

On teaching (and preaching) Prolog

• Do show the beauty:

I Explain “Green’s dream,” discuss for what logics we have effective deduction
procedures, justify the choice of FO and semi-decidability, SLD-resolution →
classical LP (Kowalski/Colmerauer).

I Show how logic programs are both logical theories (with declarative meaning)
and procedural programs that can be debugged, followed step by step, etc.

• An operational (in addition to declarative) semantics is a requirement in the
language (vs., e.g., Goedel) and we do need to teach it.

• Otherwise not a programming language, just specification/KR – Prolog is both.
• How otherwise to reason about complexity, memory consumption, etc.? To say

that these things don’t matter does not make sense in PL.

I Show with examples (and benchmarking them) how you can go from
executable specifications to efficient algorithms gradually, and as needed.

I Show how unification is also a device for constructing and matching complex
data structures with (declarative) pointers. Show it in the top level, giving
“the data structures class.”

I Do use types (and properties in general): define them as predicates, show
them used to check if something is in the type (dynamic checking), or “run
backwards” to generate the “inhabitants”; property-based testing for free!

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 38

On teaching (and preaching) Prolog

• Do show the beauty:

I Explain “Green’s dream,” discuss for what logics we have effective deduction
procedures, justify the choice of FO and semi-decidability, SLD-resolution →
classical LP (Kowalski/Colmerauer).

I Show how logic programs are both logical theories (with declarative meaning)
and procedural programs that can be debugged, followed step by step, etc.

• An operational (in addition to declarative) semantics is a requirement in the
language (vs., e.g., Goedel) and we do need to teach it.

• Otherwise not a programming language, just specification/KR – Prolog is both.
• How otherwise to reason about complexity, memory consumption, etc.? To say

that these things don’t matter does not make sense in PL.

I Show with examples (and benchmarking them) how you can go from
executable specifications to efficient algorithms gradually, and as needed.

I Show how unification is also a device for constructing and matching complex
data structures with (declarative) pointers. Show it in the top level, giving
“the data structures class.”

I Do use types (and properties in general): define them as predicates, show
them used to check if something is in the type (dynamic checking), or “run
backwards” to generate the “inhabitants”; property-based testing for free!

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 38

On teaching (and preaching) Prolog

• Do show the beauty:

I Explain “Green’s dream,” discuss for what logics we have effective deduction
procedures, justify the choice of FO and semi-decidability, SLD-resolution →
classical LP (Kowalski/Colmerauer).

I Show how logic programs are both logical theories (with declarative meaning)
and procedural programs that can be debugged, followed step by step, etc.

• An operational (in addition to declarative) semantics is a requirement in the
language (vs., e.g., Goedel) and we do need to teach it.

• Otherwise not a programming language, just specification/KR – Prolog is both.
• How otherwise to reason about complexity, memory consumption, etc.? To say

that these things don’t matter does not make sense in PL.

I Show with examples (and benchmarking them) how you can go from
executable specifications to efficient algorithms gradually, and as needed.

I Show how unification is also a device for constructing and matching complex
data structures with (declarative) pointers. Show it in the top level, giving
“the data structures class.”

I Do use types (and properties in general): define them as predicates, show
them used to check if something is in the type (dynamic checking), or “run
backwards” to generate the “inhabitants”; property-based testing for free!

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 38

On teaching (and preaching) Prolog

• Do show the beauty:

I Explain “Green’s dream,” discuss for what logics we have effective deduction
procedures, justify the choice of FO and semi-decidability, SLD-resolution →
classical LP (Kowalski/Colmerauer).

I Show how logic programs are both logical theories (with declarative meaning)
and procedural programs that can be debugged, followed step by step, etc.

• An operational (in addition to declarative) semantics is a requirement in the
language (vs., e.g., Goedel) and we do need to teach it.

• Otherwise not a programming language, just specification/KR – Prolog is both.
• How otherwise to reason about complexity, memory consumption, etc.? To say

that these things don’t matter does not make sense in PL.

I Show with examples (and benchmarking them) how you can go from
executable specifications to efficient algorithms gradually, and as needed.

I Show how unification is also a device for constructing and matching complex
data structures with (declarative) pointers. Show it in the top level, giving
“the data structures class.”

I Do use types (and properties in general): define them as predicates, show
them used to check if something is in the type (dynamic checking), or “run
backwards” to generate the “inhabitants”; property-based testing for free!

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 38

On teaching (and preaching) Prolog

• Do show the beauty:

I Explain “Green’s dream,” discuss for what logics we have effective deduction
procedures, justify the choice of FO and semi-decidability, SLD-resolution →
classical LP (Kowalski/Colmerauer).

I Show how logic programs are both logical theories (with declarative meaning)
and procedural programs that can be debugged, followed step by step, etc.

• An operational (in addition to declarative) semantics is a requirement in the
language (vs., e.g., Goedel) and we do need to teach it.

• Otherwise not a programming language, just specification/KR – Prolog is both.
• How otherwise to reason about complexity, memory consumption, etc.? To say

that these things don’t matter does not make sense in PL.

I Show with examples (and benchmarking them) how you can go from
executable specifications to efficient algorithms gradually, and as needed.

I Show how unification is also a device for constructing and matching complex
data structures with (declarative) pointers. Show it in the top level, giving
“the data structures class.”

I Do use types (and properties in general): define them as predicates, show
them used to check if something is in the type (dynamic checking), or “run
backwards” to generate the “inhabitants”; property-based testing for free!

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 38

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

On teaching (and preaching) Prolog

• System types:

I Classical installation.
Most appropriate for more advanced students / “real” use.
Show serious, competitive language.

I Playgrounds and notebooks
(e.g., Ciao Playgrounds/Active Logic Documents, SWISH, τ -Prolog).

• Server-based.
• Browser-based.

Can be attractive for beginners, young students.
Very useful for executable examples in manuals and tutorials.

• Ideally the system should allow covering:

I pure LP (with several search rules, tabling),
I ISO-Prolog,
I higher-order (and functional programming),
I constraints,
I ASP/s(CASP),
I etc.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 39

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandfather’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught well.

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.
I Some parts of this will result from the Year of Prolog efforts.

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 40

Demo slides for the part on:

Types, modes, and other properties

(Some perspectives from the Ciao Prolog system)

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 41

Example: qsort

Ciao warns that it cannot verify that the call to =</2 will not generate a run-time
error (assertion is in library!):

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 42

Example: qsort

Ciao warns that it cannot verify that the call to =</2 will not generate a run-time
error (assertion is in library!):

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 43

Example: qsort

Adding useful entry information Ciao can infer that =</2 is called correctly, and
no warnings are flagged (this would normally be obtained from analysis of caller to
this module):

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 44

Example: qsort

We add some more assertions... :

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 45

Example: qsort

...and they get verified by Ciao:

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 46

Example: qsort

...and they get verified by Ciao:

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 47

Example: qsort

If we replace =</2 with </2 Ciao warns that partition/3 can fail
(cannot prove not fails):

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 48

Example: qsort

If we replace >=/2 with >/2 Ciao warns that partition/3 is not deterministic
(cannot prove is det):

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 49

Example: nrev (using the functional syntax package)

An example with more complex properties, a cost error is flagged:

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 50

Example: nrev

Ciao reminds us that nrev/2 is of course quadratic, not linear:

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 51

Example: nrev

With the cost expression fixed all properties are now verified:

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 52

Example: nrev

If we change the assertion for conc/3 from complexity order (o) to upper
bound (ub) then Ciao flags that length(A) is not a correct upper bound:

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 53

Example: nrev

If we change the assertion for conc/3 from complexity order (o) to upper
bound (ub) then Ciao flags that length(A) is not a correct upper bound:

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 54

Example: nrev

With the cost expression fixed all properties are now verified:

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 55

Example: nrev

With the cost expression fixed all properties are now verified:

Manuel Hermenegildo – Reflections on Prolog’s Evolution, Status, and Future on its 50th Anniversary (SISTEDES/PROLE’22, Sep. 7, 2022) 56

	
	Context and Design Principles
	Integrated Static / Dynamic Verification & Debugging
	Discussion: Comparison with Classical Types

