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Prolog is 50

• So, then, Prolog is 50!

I What, 50 years?!? Half a century?!?!
I Is Prolog therefore now ’old’?

• Actually... continued interest:

I Many active implementations, and more appearing continuously.

I TIOBE index of programming languages shows Prolog:

• In upper 10% of all languages tracked (270).
• Stable, even somewhat upward trend since 2012.
• One of only 13 languages that are tracked ’long term’.

But, what is Prolog?
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What is Prolog? Why is it important?

Prolog is an acronym of two words:

Programming
and

Logic

• What is the best way to program computers?
I.e., how do we get them to solve problems and/or do what we need?

• How can logic help us in this task?
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A New View of Computing

• If we have an effective mechanical proof method.

 a new view of problem solving and computing is possible:

I First: program once and for all this deduction procedure in the computer,
I Then, for each problem we want to solve:

• Find a suitable representation for the problem.
• Then, to obtain solutions, ask questions and let deduction procedure do rest:
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A New View of Computing

• If we have an effective mechanical proof method.

 a new view of problem solving and computing is possible:

I First: program once and for all this deduction procedure in the computer,
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But then,
• No correctness proofs needed?
• Even no programming needed?
• Is this possible?
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Prolog is the Materialization of this Dream!

• If we have an effective mechanical proof method.

 a new view of problem solving and computing is possible:

I First: program once and for all this deduction procedure in the computer,
I Then, for each problem we want to solve:

• Find a suitable representation for the problem.
• Then, to obtain solutions, ask questions and let deduction procedure do rest:

Horn clauses

Problem

(Correct) Answers / Results

Prolog

Questions

SL−Resolution
over

But then,
• No correctness proofs needed?
• Even no programming needed?
• Is this possible?
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Family relations

Susan is the mother of Mary.
Susan is the mother of John.
Mary is the mother of Michael.

David

JohnMary

Susan

Michael
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Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

One is the grandmother of someone else if one is the
mother of the mother (or father) of that other person.
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Family relations
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father_of(john, david).

grandmother_of(X,Y) :-
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grandmother_of(X,Y) :-
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Circuit topology

r1

r2

Power

n3

n5n4

n1

t1

t3

n2

t2

resistor(power,n1).
resistor(power,n2).

transistor(n2,ground,n1).
transistor(n3,n4,n2).
transistor(n5,ground,n4).

inverter(Input,Output) :-
transistor(Input,ground,Output), resistor(power,Output).

nand_gate(Input1,Input2,Output) :-
transistor(Input1,X,Output), transistor(Input2,ground,X),

resistor(power,Output).
and_gate(Input1,Input2,Output) :-
nand_gate(Input1,Input2,X), inverter(X, Output).

?- and_gate(In1,In2,Out)  In1=n3, In2=n5, Out=n1
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From specifications to efficient programs

“Max is the maximum element of a set if there is no element in the set
that is larger than it.”

max(L,Max)← Max ∈ L ∧ @E | E ∈ L ∧ E > Max

max(L,Max) :-
member(Max,L),

\+ (member(E,L), E>Max).
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max(L,Max) :-
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\+ (member(E,L), E>Max).

?- max([3,5,2,8,1],Max).
Max = 8

max2([H|T],Max) :-
max_(T,H,Max).

max_([],Max,Max).
max_([H|T],TMax,Max) :-

H > TMax,
max_(T,H,Max).

max_([H|T],TMax,Max) :-
H =< TMax,
max_(T,TMax,Max).
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So, what is Prolog?

Procedure = Horn clause + Top-down reasoning (SL-resolution)

(Algorithm = Logic + Control)

So:

• Computational procedures can be given a logical form.

• Horn clause reasoning can be performed as efficiently as computation.
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The birth of Prolog (Sources: Colmerauer, Kowalski)
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Prolog!
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The birth of Prolog (Sources: Colmerauer, Kowalski)
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Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

• First Prolog(s): all fundamental characteristics of the language already there!
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Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

• Dec-10 Prolog: compilation (+ improved syntax, etc.)
 performance (≈ lisp),
 much more widespread use –but portability an issue.
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Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

• In parallel, many further advances in the theoretical underpinnings:

I Kowalski (1974): linear resolution for Horn clauses, no factoring rule.
I Kowalski and vanEmden (1976): minimal model and fixed-point semantics.
I Clark (1978): correctness of NaF w.r.t. program completion.
I Reiter (1978): formalization of “closed world assumption.”

Others: Minker, Gallaire, Cohen, Lassez/Jaffar/Maher, DHD Warren, Sato/Tamaki,

DS Warren, ...
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Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

• CDL-Prolog, MU-Prolog, ...,
• C-Prolog: portability (but interpreter).
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Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

• The WAM: portability + speed... and implementation beauty.
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Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
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1982
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1983

WAM

• FGCS  MCC  ECRC  ESPRIT  EU research programs, and others.
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Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

• First WAM-based systems: Quintus, SICStus, BIM, ...

I Both commercial and public domain  more dissemination.
I Many optimizations, GC, ...  more performance.
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&-Prolog (Ciao)

• Or- and and-parallelism: Aurora, &-Prolog/Ciao, MUSE, DASWAM, IDIOM,
Andorra, EAM, ...
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&-Prolog (Ciao)

• Or- and and-parallelism: Aurora, &-Prolog/Ciao, MUSE, DASWAM, IDIOM,
Andorra, EAM, ...

• Global analysis (abstract interpretation): Aquarius, &-Prolog/Ciao.
(Independence,modes, types, determinacy, non-failure, cost, ...)

First practical compiler(s) using abstract interpretation?
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Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)&-Prolog (Ciao)

• Or- and and-parallelism: Aurora, &-Prolog/Ciao, MUSE, DASWAM, IDIOM,
Andorra, EAM, ...

• Global analysis (abstract interpretation): Aquarius, &-Prolog/Ciao.
(Independence,modes, types, determinacy, non-failure, cost, ...)

First practical compiler(s) using abstract interpretation?

 Performance (≈ imperative), auto-parallelization - real parallel speedups.
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Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

• Constraints (Prolog II; CLP scheme and CLP(R))

I Allow many extensions to unification (“domains”), e.g., infinite terms.
I Recover declarativity for Prolog arithmetic (now also reversible!).
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• Constraints (Prolog II; CLP scheme and CLP(R))

I Allow many extensions to unification (“domains”), e.g., infinite terms.
I Recover declarativity for Prolog arithmetic (now also reversible!).

I Finite domains.
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1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

• Constraints (Prolog II; CLP scheme and CLP(R))

I Allow many extensions to unification (“domains”), e.g., infinite terms.
I Recover declarativity for Prolog arithmetic (now also reversible!).

I Finite domains.

• A good number of other WAM and non-WAM-based Prologs (see later).
• Constraints in standard Prologs: “Opening the box” (attvars,CHR).
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Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao

• A different form of building the language:

I Pure kernel, all built-ins are in libraries.
 pure subsets of Prolog supported.
 Many extensions: e.g., full higher-order and functional syntax support.

(also λ-Prolog, HiLog, Hiord, ...).
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Ciao

• A different form of building the language:

I Pure kernel, all built-ins are in libraries.
 pure subsets of Prolog supported.
 Many extensions: e.g., full higher-order and functional syntax support.

(also λ-Prolog, HiLog, Hiord, ...).

• Assertions: Types/modes, det, cost  verification, automatic. testing.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12



Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
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Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao
1994

XSB

• Tabling (Early deduction, SLG-resolution, ...):

I Much improved termination (bounded term size).
I Some nice complexity guarantees.
I Support for negation with well-founded semantics.
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Some milestones (≈ up to ISO)

1972
Prolog 0
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Prolog II

1986
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1988
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1993
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1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao
1994

XSB

1995

ISO Prolog

• The ISO standard brought much needed standardization; most systems
followed (mostly).
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Fast forward...

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao
1994

XSB

1995

ISO Prolog

 Let’s jump forward and take a look at the current state of things!
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Prolog system heritage

Prolog 0 & I

negation as failure

Prolog II

cyclic structures

Prolog III

constraints

Prolog IV

DEC-10 Prolog

compiled, de facto standard
C-Prolog

interpreted, portable

The WAM
compiled, portable

Quintus

commercial, de-facto standard

SICStus
commercial support, JIT

BIM
commercial, native

&-Prolog / Ciao

parallel, assertions

SWI
libraries

YAP
indexing

SB-Prolog

XSB
tabling

GNU
fd/indexicals

. . .

B-Prolog
TOAM

BinProlog

binarization

tuProlog

JVM, interoperability

. . .

Marseille
Prolog line

Prologs

WAM-based

WAM alternatives

White background: currently active/supported systems.
Lower legends: just some highlight(s) (see later).
Arrows: influences and inspiration.

Again, more missing!: microProlog, LPA, ECLiPSe , IBM, LIFE, Andorra-I, Scryer, Tau, ...
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Some features of current systems - I

System Open Src. Modules Non-Std. Data Types Foreign Language Interfaces
B-Prolog arrays, sets, hashtables C, Java
Ciao 3 3 C, Java, Python, JScrpt
ECLiPSe 3 3 arrays, strings C, Java, Python, PHP
GNU Prolog 3 arrays C, Java, PHP
JIProlog 3 3 Java
SICStus 3 C, Java, .NET, Tcl/Tk
SWI 3 3 dicts, strings C, C++, Java
τProlog 3 3 JavaScript
tuProlog 3 arrays Java, .NET, Android, iOS
XSB 3 3 C, Java, PERL, Python
YAP 3 3 C, Python, R
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Some features of current systems - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT
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Some features of current systems - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3
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Some features of current systems - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

• Many other features and extensions:

I Other types of negation, other combinations with ASP.
I Attributed variables, enhanced expansions.
I Functional syntax, lazy execution, higher-order, objects, ...
I Learning (ILP), probabilistic rules, combination with deep learning.
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I Applications of Prolog technology to other languages (analyzers, provers, ...).
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Summary of current state

• Prolog systems have come a very long way!
I As seen, a good number of features available on several systems:

• Indexing, constraints/CHR, multi-threading, tabling, foreign interfaces,
coroutining, global vars, mutables, testing, ...

• An issue is portability:

I ISO standard generally supported (with only minor differences).
I Basic module system pretty compatible.

However,

I Interfaces and details of extensions often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some useful features still present in only a few systems:
e.g., types/modes/verification, functional syntax, s(CASP), ...

→ Work needed to improve portability.

• Also, better community infrastructure would be useful (see at the end).
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Prolog influences

• In other languages within LP and its extensions:

I Goedel, Mercury, Turbo-Prolog (static typing)
I λ-Prolog, Curry, Babel, HiLog (FP/HO)
I CP, GHC, Parlog, Erlang (committed choice)
I Datalog, ASP – Co-inductive LP, s(ASP) and s(CASP) (Prolog extensions)
I HyProlog (assumptions and abduction), Flora-2/ErgoAI, ...
I Probabilistic LP, ProbLog, ...
I ProGol, ILP (learning)
I LogTalk (objects), Picat (imperative syntax)
I CHR, CHRG, ...

• Beyond LP:

I Theorem proving technology
I Erlang
I Java (abstract machine, specification, ...)
I Many embeddings in other languages
I Many others: C++, many compilers, ...
I Many analyzers and verifiers for other languages
I ...
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Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
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Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.
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Possible threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Somewhat fragmented community.

• Active developer community with constant new implementations, features.
(Good but possible further fragmentation of Prolog implementations.)

• New programming languages.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. →
cooperative/competitive evolution (vs. unified system and/or libraries).

• In any case, good forum needed for discussion and bringing together
community across systems.
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Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 22



Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 22



On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures  Horn clauses
& SLD-resolution (effectiveness/semi-decidability)  classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.
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Breadth-First Search
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On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
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• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?
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Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.
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• An ideal system should allow covering: pure LP (w/several search rules, tabling),
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Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
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