
50 Years of Prolog and Beyond

Manuel Hermenegildo1,2

The Prolog Year
Prolog Day Symposium, November 10, 2022

1T. U. of Madrid (UPM)
2IMDEA Software Institute

Part of the contents of this talk appear in the recent TPLP paper “ 50 years of Prolog and Beyond,” by
Philipp Körner, Michael Leuschel, João Barbosa, V́ıtor Santos Costa, Verónica Dahl, Manuel V. Hermenegildo,
Jose F. Morales, Jan Wielemaker, Daniel Diaz, Salvador Abreu, and Giovanni Ciatto written for Prolog’s 50th
anniversary and TPLP’s 20th anniversary.

Also big thanks to Bob Kowalski for historical input, feedback, and permanent inspiration.

Prolog is 50

• So, then, Prolog is 50!

I What, 50 years?!? Half a century?!?!
I Is Prolog therefore now ’old’?

• Actually... continued interest:

I Many active implementations, and more appearing continuously.

I TIOBE index of programming languages shows Prolog:

• In upper 10% of all languages tracked (270).
• Stable, even somewhat upward trend since 2012.
• One of only 13 languages that are tracked ’long term’.

But, what is Prolog?

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 2

Prolog is 50

• So, then, Prolog is 50!

I What, 50 years?!? Half a century?!?!
I Is Prolog therefore now ’old’?

• Actually... continued interest:

I Many active implementations, and more appearing continuously.

I TIOBE index of programming languages shows Prolog:

• In upper 10% of all languages tracked (270).
• Stable, even somewhat upward trend since 2012.
• One of only 13 languages that are tracked ’long term’.

But, what is Prolog?

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 2

Prolog is 50

• So, then, Prolog is 50!

I What, 50 years?!? Half a century?!?!
I Is Prolog therefore now ’old’?

• Actually... continued interest:

I Many active implementations, and more appearing continuously.

I TIOBE index of programming languages shows Prolog:

• In upper 10% of all languages tracked (270).
• Stable, even somewhat upward trend since 2012.
• One of only 13 languages that are tracked ’long term’.

But, what is Prolog?

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 2

Prolog is 50

• So, then, Prolog is 50!

I What, 50 years?!? Half a century?!?!
I Is Prolog therefore now ’old’?

• Actually... continued interest:

I Many active implementations, and more appearing continuously.

I TIOBE index of programming languages shows Prolog:

• In upper 10% of all languages tracked (270).
• Stable, even somewhat upward trend since 2012.
• One of only 13 languages that are tracked ’long term’.

But, what is Prolog?

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 2

Prolog is 50

• So, then, Prolog is 50!

I What, 50 years?!? Half a century?!?!
I Is Prolog therefore now ’old’?

• Actually... continued interest:

I Many active implementations, and more appearing continuously.

I TIOBE index of programming languages shows Prolog:

• In upper 10% of all languages tracked (270).
• Stable, even somewhat upward trend since 2012.
• One of only 13 languages that are tracked ’long term’.

But, what is Prolog?

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 2

What is Prolog? Why is it important?

Prolog is an acronym of two words:

Programming
and

Logic

• What is the best way to program computers?
I.e., how do we get them to solve problems and/or do what we need?

• How can logic help us in this task?

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 3

What is Prolog? Why is it important?

Prolog is an acronym of two words:

Programming
and

Logic

• What is the best way to program computers?
I.e., how do we get them to solve problems and/or do what we need?

• How can logic help us in this task?

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 3

What is Prolog? Why is it important?

Prolog is an acronym of two words:

Programming
and

Logic

• What is the best way to program computers?
I.e., how do we get them to solve problems and/or do what we need?

• How can logic help us in this task?

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 3

A New View of Computing

• If we have an effective mechanical proof method.

 a new view of problem solving and computing is possible:

I First: program once and for all this deduction procedure in the computer,
I Then, for each problem we want to solve:

• Find a suitable representation for the problem.
• Then, to obtain solutions, ask questions and let deduction procedure do rest:

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 4

A New View of Computing

• If we have an effective mechanical proof method.

 a new view of problem solving and computing is possible:

I First: program once and for all this deduction procedure in the computer,
I Then, for each problem we want to solve:

• Find a suitable representation for the problem.
• Then, to obtain solutions, ask questions and let deduction procedure do rest:

system
Deduction

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 4

A New View of Computing

• If we have an effective mechanical proof method.

 a new view of problem solving and computing is possible:

I First: program once and for all this deduction procedure in the computer,
I Then, for each problem we want to solve:

• Find a suitable representation for the problem.
• Then, to obtain solutions, ask questions and let deduction procedure do rest:

Problem

system
Deduction

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 4

A New View of Computing

• If we have an effective mechanical proof method.

 a new view of problem solving and computing is possible:

I First: program once and for all this deduction procedure in the computer,
I Then, for each problem we want to solve:

• Find a suitable representation for the problem.
• Then, to obtain solutions, ask questions and let deduction procedure do rest:

Problem
Representation/specification (Logic)

Deduction
system

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 4

A New View of Computing

• If we have an effective mechanical proof method.

 a new view of problem solving and computing is possible:

I First: program once and for all this deduction procedure in the computer,
I Then, for each problem we want to solve:

• Find a suitable representation for the problem.
• Then, to obtain solutions, ask questions and let deduction procedure do rest:

Deduction

Problem

Questions

(Correct) Answers / Results

Representation/specification (Logic)

system

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 4

A New View of Computing

• If we have an effective mechanical proof method.

 a new view of problem solving and computing is possible:

I First: program once and for all this deduction procedure in the computer,
I Then, for each problem we want to solve:

• Find a suitable representation for the problem.
• Then, to obtain solutions, ask questions and let deduction procedure do rest:

Deduction

Problem

Questions

(Correct) Answers / Results

Representation/specification (Logic)

system

But then,
• No correctness proofs needed?
• Even no programming needed?
• Is this possible?

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 4

Prolog is the Materialization of this Dream!

• If we have an effective mechanical proof method.

 a new view of problem solving and computing is possible:

I First: program once and for all this deduction procedure in the computer,
I Then, for each problem we want to solve:

• Find a suitable representation for the problem.
• Then, to obtain solutions, ask questions and let deduction procedure do rest:

Horn clauses

Problem

(Correct) Answers / Results

Prolog

Questions

SL−Resolution
over

But then,
• No correctness proofs needed?
• Even no programming needed?
• Is this possible?

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 4

Family relations

Susan is the mother of Mary.
Susan is the mother of John.
Mary is the mother of Michael.

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

John is the father of David.

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

One is the grandmother of someone else if one is the
mother of the mother (or father) of that other person.

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

grandmother_of(X,Y) :-
mother_of(X,Z), mother_of(Z,Y).

grandmother_of(X,Y) :-
mother_of(X,Z), father_of(Z,Y).

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

grandmother_of(X,Y) :-
mother_of(X,Z), mother_of(Z,Y).

grandmother_of(X,Y) :-
mother_of(X,Z), father_of(Z,Y).

?- mother_of(susan,Y).

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

grandmother_of(X,Y) :-
mother_of(X,Z), mother_of(Z,Y).

grandmother_of(X,Y) :-
mother_of(X,Z), father_of(Z,Y).

?- mother_of(susan,Y).
Y = mary ? ;

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

grandmother_of(X,Y) :-
mother_of(X,Z), mother_of(Z,Y).

grandmother_of(X,Y) :-
mother_of(X,Z), father_of(Z,Y).

?- mother_of(susan,Y).
Y = mary ? ;
Y = john ? ;
no

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

grandmother_of(X,Y) :-
mother_of(X,Z), mother_of(Z,Y).

grandmother_of(X,Y) :-
mother_of(X,Z), father_of(Z,Y).

?- mother_of(susan,Y).
Y = mary ? ;
Y = john ? ;
no

?- mother_of(X,mary). David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

grandmother_of(X,Y) :-
mother_of(X,Z), mother_of(Z,Y).

grandmother_of(X,Y) :-
mother_of(X,Z), father_of(Z,Y).

?- mother_of(susan,Y).
Y = mary ? ;
Y = john ? ;
no

?- mother_of(X,mary).
X = susan ? ;

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

grandmother_of(X,Y) :-
mother_of(X,Z), mother_of(Z,Y).

grandmother_of(X,Y) :-
mother_of(X,Z), father_of(Z,Y).

?- mother_of(susan,Y).
Y = mary ? ;
Y = john ? ;
no

?- mother_of(X,mary).
X = susan ? ;
no

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

grandmother_of(X,Y) :-
mother_of(X,Z), mother_of(Z,Y).

grandmother_of(X,Y) :-
mother_of(X,Z), father_of(Z,Y).

?- mother_of(susan,Y).
Y = mary ? ;
Y = john ? ;
no

?- mother_of(X,mary).
X = susan ? ;
no

?- grandmother_of(X,Y).

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

grandmother_of(X,Y) :-
mother_of(X,Z), mother_of(Z,Y).

grandmother_of(X,Y) :-
mother_of(X,Z), father_of(Z,Y).

?- mother_of(susan,Y).
Y = mary ? ;
Y = john ? ;
no

?- mother_of(X,mary).
X = susan ? ;
no

?- grandmother_of(X,Y).
X = susan,
Y = michael ? ;

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Family relations

mother_of(susan, mary).
mother_of(susan, john).
mother_of(mary, michael).

father_of(john, david).

grandmother_of(X,Y) :-
mother_of(X,Z), mother_of(Z,Y).

grandmother_of(X,Y) :-
mother_of(X,Z), father_of(Z,Y).

?- mother_of(susan,Y).
Y = mary ? ;
Y = john ? ;
no

?- mother_of(X,mary).
X = susan ? ;
no

?- grandmother_of(X,Y).
X = susan,
Y = michael ? ;
X = susan,
Y = david ? ;
no

David

JohnMary

Susan

Michael

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 5

Circuit topology

r1

r2

Power

n3

n5n4

n1

t1

t3

n2

t2

resistor(power,n1).
resistor(power,n2).

transistor(n2,ground,n1).
transistor(n3,n4,n2).
transistor(n5,ground,n4).

inverter(Input,Output) :-
transistor(Input,ground,Output), resistor(power,Output).

nand_gate(Input1,Input2,Output) :-
transistor(Input1,X,Output), transistor(Input2,ground,X),

resistor(power,Output).
and_gate(Input1,Input2,Output) :-
nand_gate(Input1,Input2,X), inverter(X, Output).

?- and_gate(In1,In2,Out) In1=n3, In2=n5, Out=n1

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 6

Circuit topology

r1

r2

Power

n3

n5n4

n1

t1

t3

n2

t2

resistor(power,n1).
resistor(power,n2).

transistor(n2,ground,n1).
transistor(n3,n4,n2).
transistor(n5,ground,n4).

inverter(Input,Output) :-
transistor(Input,ground,Output), resistor(power,Output).

nand_gate(Input1,Input2,Output) :-
transistor(Input1,X,Output), transistor(Input2,ground,X),

resistor(power,Output).
and_gate(Input1,Input2,Output) :-
nand_gate(Input1,Input2,X), inverter(X, Output).

?- and_gate(In1,In2,Out) In1=n3, In2=n5, Out=n1

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 6

Circuit topology

r1

r2

Power

n3

n5n4

n1

t1

t3

n2

t2

resistor(power,n1).
resistor(power,n2).

transistor(n2,ground,n1).
transistor(n3,n4,n2).
transistor(n5,ground,n4).

inverter(Input,Output) :-
transistor(Input,ground,Output), resistor(power,Output).

nand_gate(Input1,Input2,Output) :-
transistor(Input1,X,Output), transistor(Input2,ground,X),

resistor(power,Output).
and_gate(Input1,Input2,Output) :-
nand_gate(Input1,Input2,X), inverter(X, Output).

?- and_gate(In1,In2,Out) In1=n3, In2=n5, Out=n1

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 6

Circuit topology

r1

r2

Power

n3

n5n4

n1

t1

t3

n2

t2

resistor(power,n1).
resistor(power,n2).

transistor(n2,ground,n1).
transistor(n3,n4,n2).
transistor(n5,ground,n4).

inverter(Input,Output) :-
transistor(Input,ground,Output), resistor(power,Output).

nand_gate(Input1,Input2,Output) :-
transistor(Input1,X,Output), transistor(Input2,ground,X),

resistor(power,Output).
and_gate(Input1,Input2,Output) :-
nand_gate(Input1,Input2,X), inverter(X, Output).

?- and_gate(In1,In2,Out) In1=n3, In2=n5, Out=n1

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 6

From specifications to efficient programs

“Max is the maximum element of a set if there is no element in the set
that is larger than it.”

max(L,Max)← Max ∈ L ∧ @E | E ∈ L ∧ E > Max

max(L,Max) :-
member(Max,L),

\+ (member(E,L), E>Max).

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 7

From specifications to efficient programs

“Max is the maximum element of a set if there is no element in the set
that is larger than it.”

max(L,Max)← Max ∈ L ∧ @E | E ∈ L ∧ E > Max

max(L,Max) :-
member(Max,L),

\+ (member(E,L), E>Max).

?- max([3,5,2,8,1],Max).
Max = 8

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 7

From specifications to efficient programs

“Max is the maximum element of a set if there is no element in the set
that is larger than it.”

max(L,Max)← Max ∈ L ∧ @E | E ∈ L ∧ E > Max

max(L,Max) :-
member(Max,L),

\+ (member(E,L), E>Max).

?- max([3,5,2,8,1],Max).
Max = 8

max2([H|T],Max) :-
max_(T,H,Max).

max_([],Max,Max).
max_([H|T],TMax,Max) :-

H > TMax,
max_(T,H,Max).

max_([H|T],TMax,Max) :-
H =< TMax,
max_(T,TMax,Max).

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 7

From specifications to efficient programs

“Max is the maximum element of a set if there is no element in the set
that is larger than it.”

max(L,Max)← Max ∈ L ∧ @E | E ∈ L ∧ E > Max

max(L,Max) :-
member(Max,L),

\+ (member(E,L), E>Max).

?- max([3,5,2,8,1],Max).
Max = 8

max2([H|T],Max) :-
max_(T,H,Max).

max_([],Max,Max).
max_([H|T],TMax,Max) :-

H > TMax,
max_(T,H,Max).

max_([H|T],TMax,Max) :-
H =< TMax,
max_(T,TMax,Max).

?- max2([3,5,2,8,1],Max).
Max = 8

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 7

So, what is Prolog?

Procedure = Horn clause + Top-down reasoning (SL-resolution)

(Algorithm = Logic + Control)

So:

• Computational procedures can be given a logical form.

• Horn clause reasoning can be performed as efficiently as computation.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 8

The birth of Prolog (Sources: Colmerauer, Kowalski)

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 9

Colmerauer
et al 1972.
Prolog!

The birth of Prolog (Sources: Colmerauer, Kowalski)

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 9

Colmerauer

Robinson, 1965
The resolution principle

et al 1972.
Prolog!

The birth of Prolog (Sources: Colmerauer, Kowalski)

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 9

Q−systems

PhD: Precedences,
analyse syntaxtique et
languages de
programmation

Colmerauer

Colmerauer 1970

Robinson, 1965
The resolution principle

et al 1972.
Prolog!

Colmerauer, 1967

The birth of Prolog (Sources: Colmerauer, Kowalski)

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 9

Q−systems

Applicatiom of
Theorem Proving to
Problem Solving

Colmerauer, 1967
PhD: Precedences,
analyse syntaxtique et
languages de
programmation

Colmerauer

Colmerauer 1970

Robinson, 1965
The resolution principle

et al 1972.
Prolog!

Green, 1969

The birth of Prolog (Sources: Colmerauer, Kowalski)

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 9

Q−systems

SL−resolution

Kowalski and

Green, 1969
Applicatiom of
Theorem Proving to
Problem Solving

Colmerauer, 1967
PhD: Precedences,
analyse syntaxtique et
languages de
programmation

Colmerauer

Colmerauer 1970

Robinson, 1965
The resolution principle

et al 1972.
Prolog!

Kuener, 1971.

The birth of Prolog (Sources: Colmerauer, Kowalski)

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 9

Q−systems

SL−resolution

Kowalski and

Logic grammars
Summer 1971

Summer
1972

Green, 1969
Applicatiom of
Theorem Proving to
Problem Solving

Colmerauer, 1967
PhD: Precedences,
analyse syntaxtique et
languages de
programmation

Colmerauer

Colmerauer 1970

Robinson, 1965
The resolution principle

et al 1972.
Prolog!

Kuener, 1971.

The birth of Prolog (Sources: Colmerauer, Kowalski)

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 9

Q−systems

SL−resolution

Kowalski and

Logic grammars
Summer 1971

Kowalski, 1972−1974
Predicate logic as
programming language

Summer
1972

Green, 1969
Applicatiom of
Theorem Proving to
Problem Solving

Colmerauer, 1967
PhD: Precedences,
analyse syntaxtique et
languages de
programmation

Colmerauer

Colmerauer 1970

Robinson, 1965
The resolution principle

et al 1972.
Prolog!

Kuener, 1971.

The birth of Prolog (Sources: Colmerauer, Kowalski)

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 9

Q−systems

SL−resolution

Kowalski and

Logic grammars
Summer 1971

Kowalski, 1972−1974
Predicate logic as
programming language

Summer
1972

Green, 1969
Applicatiom of
Theorem Proving to
Problem Solving

Hewitt, 1969
PLANNER

Foster and Elcock
1969, Absys 1

Hayes, 1971−1973
Computation and
deduction

Winograd, 1972
Understanding
natural language

Colmerauer, 1967
PhD: Precedences,
analyse syntaxtique et
languages de
programmation

Colmerauer

Colmerauer 1970

Robinson, 1965
The resolution principle

et al 1972.
Prolog!

Kuener, 1971.

The birth of Prolog (Sources: Colmerauer, Kowalski)

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 9

Q−systems

SL−resolution

Kowalski and

Logic grammars
Summer 1971

Kowalski, 1972−1974
Predicate logic as
programming language

Summer
1972

Green, 1969
Applicatiom of
Theorem Proving to
Problem Solving

Hewitt, 1969
PLANNER

Foster and Elcock
1969, Absys 1

Hayes, 1971−1973
Computation and
deduction

Winograd, 1972
Understanding
natural language

Colmerauer, 1967
PhD: Precedences,
analyse syntaxtique et
languages de
programmation

DEC10 Prolog
Warren et al 1975

Colmerauer

Colmerauer 1970

Robinson, 1965
The resolution principle

et al 1972.
Prolog!

Kuener, 1971.

The original Prolog

12

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 10

The original Prolog

13

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 11

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

• First Prolog(s): all fundamental characteristics of the language already there!

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

• Dec-10 Prolog: compilation (+ improved syntax, etc.)
 performance (≈ lisp),
 much more widespread use –but portability an issue.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

• In parallel, many further advances in the theoretical underpinnings:

I Kowalski (1974): linear resolution for Horn clauses, no factoring rule.
I Kowalski and vanEmden (1976): minimal model and fixed-point semantics.
I Clark (1978): correctness of NaF w.r.t. program completion.
I Reiter (1978): formalization of “closed world assumption.”

Others: Minker, Gallaire, Cohen, Lassez/Jaffar/Maher, DHD Warren, Sato/Tamaki,

DS Warren, ...

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

• CDL-Prolog, MU-Prolog, ...,
• C-Prolog: portability (but interpreter).

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

• The WAM: portability + speed... and implementation beauty.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

• FGCS MCC ECRC ESPRIT EU research programs, and others.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

• First WAM-based systems: Quintus, SICStus, BIM, ...

I Both commercial and public domain more dissemination.
I Many optimizations, GC, ... more performance.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

• Or- and and-parallelism: Aurora, &-Prolog/Ciao, MUSE, DASWAM, IDIOM,
Andorra, EAM, ...

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

• Or- and and-parallelism: Aurora, &-Prolog/Ciao, MUSE, DASWAM, IDIOM,
Andorra, EAM, ...

• Global analysis (abstract interpretation): Aquarius, &-Prolog/Ciao.
(Independence,modes, types, determinacy, non-failure, cost, ...)

First practical compiler(s) using abstract interpretation?

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)&-Prolog (Ciao)

• Or- and and-parallelism: Aurora, &-Prolog/Ciao, MUSE, DASWAM, IDIOM,
Andorra, EAM, ...

• Global analysis (abstract interpretation): Aquarius, &-Prolog/Ciao.
(Independence,modes, types, determinacy, non-failure, cost, ...)

First practical compiler(s) using abstract interpretation?

 Performance (≈ imperative), auto-parallelization - real parallel speedups.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

• Constraints (Prolog II; CLP scheme and CLP(R))

I Allow many extensions to unification (“domains”), e.g., infinite terms.
I Recover declarativity for Prolog arithmetic (now also reversible!).

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

• Constraints (Prolog II; CLP scheme and CLP(R))

I Allow many extensions to unification (“domains”), e.g., infinite terms.
I Recover declarativity for Prolog arithmetic (now also reversible!).

I Finite domains.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

• Constraints (Prolog II; CLP scheme and CLP(R))

I Allow many extensions to unification (“domains”), e.g., infinite terms.
I Recover declarativity for Prolog arithmetic (now also reversible!).

I Finite domains.

• A good number of other WAM and non-WAM-based Prologs (see later).
• Constraints in standard Prologs: “Opening the box” (attvars,CHR).

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao

• A different form of building the language:

I Pure kernel, all built-ins are in libraries.
 pure subsets of Prolog supported.
 Many extensions: e.g., full higher-order and functional syntax support.

(also λ-Prolog, HiLog, Hiord, ...).

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao

• A different form of building the language:

I Pure kernel, all built-ins are in libraries.
 pure subsets of Prolog supported.
 Many extensions: e.g., full higher-order and functional syntax support.

(also λ-Prolog, HiLog, Hiord, ...).

• Assertions: Types/modes, det, cost verification, automatic. testing.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao
1994

XSB

• Tabling (Early deduction, SLG-resolution, ...):

I Much improved termination (bounded term size).
I Some nice complexity guarantees.
I Support for negation with well-founded semantics.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Some milestones (≈ up to ISO)

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao
1994

XSB

1995

ISO Prolog

• The ISO standard brought much needed standardization; most systems
followed (mostly).

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Fast forward...

1972
Prolog 0

1973
Prolog I

1975
DEC-10
Prolog

1975
CDL
Prolog

1982
C-Prolog,
MU-Prolog

1983

WAM

1985
Quintus

1986 - SICStus

&-Prolog (Ciao)

1982
Prolog II

1986
CLP(R)

1988
CHIP

1993
ECLiPSe

1985
YAP

1986
SWI

1987
SB Prolog

1992

BinProlog

1992

wamcc

1994

B-
Prolog

1995

GNU

1993

Ciao
1994

XSB

1995

ISO Prolog

 Let’s jump forward and take a look at the current state of things!

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 12

Prolog system heritage

Prolog 0 & I

negation as failure

Prolog II

cyclic structures

Prolog III

constraints

Prolog IV

DEC-10 Prolog

compiled, de facto standard
C-Prolog

interpreted, portable

The WAM
compiled, portable

Quintus

commercial, de-facto standard

SICStus
commercial support, JIT

BIM
commercial, native

&-Prolog / Ciao

parallel, assertions

SWI
libraries

YAP
indexing

SB-Prolog

XSB
tabling

GNU
fd/indexicals

. . .

B-Prolog
TOAM

BinProlog

binarization

tuProlog

JVM, interoperability

. . .

Marseille
Prolog line

Prologs

WAM-based

WAM alternatives

White background: currently active/supported systems.
Lower legends: just some highlight(s) (see later).
Arrows: influences and inspiration.

Again, more missing!: microProlog, LPA, ECLiPSe , IBM, LIFE, Andorra-I, Scryer, Tau, ...

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 13

Prolog system heritage

Prolog 0 & I

negation as failure

Prolog II

cyclic structures

Prolog III

constraints

Prolog IV

DEC-10 Prolog

compiled, de facto standard
C-Prolog

interpreted, portable

The WAM
compiled, portable

Quintus

commercial, de-facto standard

SICStus
commercial support, JIT

BIM
commercial, native

&-Prolog / Ciao

parallel, assertions

SWI
libraries

YAP
indexing

SB-Prolog

XSB
tabling

GNU
fd/indexicals

. . .

B-Prolog
TOAM

BinProlog

binarization

tuProlog

JVM, interoperability

. . .

Marseille
Prolog line

Prologs

WAM-based

WAM alternatives

White background: currently active/supported systems.
Lower legends: just some highlight(s) (see later).
Arrows: influences and inspiration.

Again, more missing!: microProlog, LPA, ECLiPSe , IBM, LIFE, Andorra-I, Scryer, Tau, ...

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 13

Some features of current systems - I

System Open Src. Modules Non-Std. Data Types Foreign Language Interfaces
B-Prolog arrays, sets, hashtables C, Java
Ciao 3 3 C, Java, Python, JScrpt
ECLiPSe 3 3 arrays, strings C, Java, Python, PHP
GNU Prolog 3 arrays C, Java, PHP
JIProlog 3 3 Java
SICStus 3 C, Java, .NET, Tcl/Tk
SWI 3 3 dicts, strings C, C++, Java
τProlog 3 3 JavaScript
tuProlog 3 arrays Java, .NET, Android, iOS
XSB 3 3 C, Java, PERL, Python
YAP 3 3 C, Python, R

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 14

Some features of current systems - I

System Open Src. Modules Non-Std. Data Types Foreign Language Interfaces
B-Prolog arrays, sets, hashtables C, Java
Ciao 3 3 C, Java, Python, JScrpt
ECLiPSe 3 3 arrays, strings C, Java, Python, PHP
GNU Prolog 3 arrays C, Java, PHP
JIProlog 3 3 Java
SICStus 3 C, Java, .NET, Tcl/Tk
SWI 3 3 dicts, strings C, C++, Java
τProlog 3 3 JavaScript
tuProlog 3 arrays Java, .NET, Android, iOS
XSB 3 3 C, Java, PERL, Python
YAP 3 3 C, Python, R

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 14

Some features of current systems - I

System Open Src. Modules Non-Std. Data Types Foreign Language Interfaces
B-Prolog arrays, sets, hashtables C, Java
Ciao 3 3 C, Java, Python, JScrpt
ECLiPSe 3 3 arrays, strings C, Java, Python, PHP
GNU Prolog 3 arrays C, Java, PHP
JIProlog 3 3 Java
SICStus 3 C, Java, .NET, Tcl/Tk
SWI 3 3 dicts, strings C, C++, Java
τProlog 3 3 JavaScript
tuProlog 3 arrays Java, .NET, Android, iOS
XSB 3 3 C, Java, PERL, Python
YAP 3 3 C, Python, R

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 14

Some features of current systems - I

System Open Src. Modules Non-Std. Data Types Foreign Language Interfaces
B-Prolog arrays, sets, hashtables C, Java
Ciao 3 3 C, Java, Python, JScrpt
ECLiPSe 3 3 arrays, strings C, Java, Python, PHP
GNU Prolog 3 arrays C, Java, PHP
JIProlog 3 3 Java
SICStus 3 C, Java, .NET, Tcl/Tk
SWI 3 3 dicts, strings C, C++, Java
τProlog 3 3 JavaScript
tuProlog 3 arrays Java, .NET, Android, iOS
XSB 3 3 C, Java, PERL, Python
YAP 3 3 C, Python, R

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 14

Some features of current systems - I

System Open Src. Modules Non-Std. Data Types Foreign Language Interfaces
B-Prolog arrays, sets, hashtables C, Java
Ciao 3 3 C, Java, Python, JScrpt
ECLiPSe 3 3 arrays, strings C, Java, Python, PHP
GNU Prolog 3 arrays C, Java, PHP
JIProlog 3 3 Java
SICStus 3 C, Java, .NET, Tcl/Tk
SWI 3 3 dicts, strings C, C++, Java
τProlog 3 3 JavaScript
tuProlog 3 arrays Java, .NET, Android, iOS
XSB 3 3 C, Java, PERL, Python
YAP 3 3 C, Python, R

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 14

Some features of current systems - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 15

Some features of current systems - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 15

Some features of current systems - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 15

Some features of current systems - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 15

Some features of current systems - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 15

Some features of current systems - II

System CLP CHR Tabling Parallelism Indexing Coroutines
B-Prolog FD, B, Set 3 3 N-FA 3
Ciao FD, Q, R 3 3 3 FA, MA 3
ECLiPSe FD, Q, R, Set 3 3 most suitable 3
GNU Prolog FD, B FA
JIProlog undocumented
SICStus FD, B, Q, R 3 FA 3
SWI FD, B, Q, R 3 3 3 MA, deep, JIT 3
τProlog undocumented
tuProlog 3 FA
XSB R 3 3 3 all, trie 3
YAP FD, Q, R 3 3 FA, MA, JIT

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 15

Some features of current systems - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 16

Some features of current systems - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 16

Some features of current systems - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 16

Some features of current systems - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 16

Some features of current systems - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 16

Some features of current systems - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 16

Some features of current systems - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

• Many other features and extensions:

I Other types of negation, other combinations with ASP.
I Attributed variables, enhanced expansions.
I Functional syntax, lazy execution, higher-order, objects, ...
I Learning (ILP), probabilistic rules, combination with deep learning.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 16

Some features of current systems - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

• Many other features and extensions:

I Other types of negation, other combinations with ASP.
I Attributed variables, enhanced expansions.
I Functional syntax, lazy execution, higher-order, objects, ...
I Learning (ILP), probabilistic rules, combination with deep learning.

I Auto-documentation, (integration with) program development environments.
I Playgrounds, in-browser execution, notebooks, embeddable engines, ...

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 16

Some features of current systems - III

System Debugger Global Vars. Mutables Testing Types/Modes s(CASP)
B-Prolog trace 3
Ciao trace / source 3 3 3 3 3
ECLiPSe trace 3 3
GNU Prolog trace 3 3
JIProlog trace
SICStus trace / source 3 3
SWI trace / graphical 3 3 3 3
τProlog
tuProlog spy
XSB trace 3
YAP trace 3

• Many other features and extensions:

I Other types of negation, other combinations with ASP.
I Attributed variables, enhanced expansions.
I Functional syntax, lazy execution, higher-order, objects, ...
I Learning (ILP), probabilistic rules, combination with deep learning.

I Auto-documentation, (integration with) program development environments.
I Playgrounds, in-browser execution, notebooks, embeddable engines, ...

I Applications of Prolog technology to other languages (analyzers, provers, ...).
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 16

Summary of current state

• Prolog systems have come a very long way!
I As seen, a good number of features available on several systems:

• Indexing, constraints/CHR, multi-threading, tabling, foreign interfaces,
coroutining, global vars, mutables, testing, ...

• An issue is portability:

I ISO standard generally supported (with only minor differences).
I Basic module system pretty compatible.

However,

I Interfaces and details of extensions often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some useful features still present in only a few systems:
e.g., types/modes/verification, functional syntax, s(CASP), ...

→ Work needed to improve portability.

• Also, better community infrastructure would be useful (see at the end).

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 17

Summary of current state

• Prolog systems have come a very long way!
I As seen, a good number of features available on several systems:

• Indexing, constraints/CHR, multi-threading, tabling, foreign interfaces,
coroutining, global vars, mutables, testing, ...

• An issue is portability:

I ISO standard generally supported (with only minor differences).
I Basic module system pretty compatible.

However,

I Interfaces and details of extensions often differ.
Can mostly be bridged (c.f., Paolo Moura’s work), but a real nuisance.

I Some useful features still present in only a few systems:
e.g., types/modes/verification, functional syntax, s(CASP), ...

→ Work needed to improve portability.

• Also, better community infrastructure would be useful (see at the end).

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 17

Prolog influences

• In other languages within LP and its extensions:

I Goedel, Mercury, Turbo-Prolog (static typing)
I λ-Prolog, Curry, Babel, HiLog (FP/HO)
I CP, GHC, Parlog, Erlang (committed choice)
I Datalog, ASP – Co-inductive LP, s(ASP) and s(CASP) (Prolog extensions)
I HyProlog (assumptions and abduction), Flora-2/ErgoAI, ...
I Probabilistic LP, ProbLog, ...
I ProGol, ILP (learning)
I LogTalk (objects), Picat (imperative syntax)
I CHR, CHRG, ...

• Beyond LP:

I Theorem proving technology
I Erlang
I Java (abstract machine, specification, ...)
I Many embeddings in other languages
I Many others: C++, many compilers, ...
I Many analyzers and verifiers for other languages
I ...

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 18

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Some Prolog strong points

• Powerful programming paradigm, includes most others (e.g. functions are relations).

• Allows going smoothly from executable specifications to efficient implementation.

• Clean, simple syntax and semantics. Easy meta-programming.

• Immutable persistent data structures, with “declarative” pointers (logic variables).

• Safety: garbage collection, no NullPointer exceptions, ...

• Efficiency: very efficient inference, pattern matching, and unification; tail-recursion
and last-call optimization; indexing, efficient tabling.

• Many features (as we saw, but also DCGs, arbitrary precision arithmetic, ...).

• Fast development: interactive top-level, debugging, ...

• Sophisticated tools: analyzers, verifiers, partial evaluators, parallelizers, ...

• Community:
I Both commercial and open-source systems (some very substantive and mature!).
I Active developer community with constant new implementations, features, etc.
I Many books, courses, and learning materials.

• Successful applications, including:
I Analyzers (Abstr. Interp., Set-Based Anal., Datalog, energy, gas, ...), compilers, ...
I Compilers, interpreters, domain-specific languages, ...
I Heterogeneous data integration.
I Computational law.
I Configuration, scheduling, ...
I Natural language processing.
I Efficient inference (expert systems, theorem provers), symbolic AI in general, ...

See the applications sessions today!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 19

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Prolog perceived weaknesses → and how to address them

• Learning curve, beginners can easily write programs that loop or consume a huge
amount of resources → teach it well, use the right tools (see later)

• Lack of (static) typing / data hiding / object orientation. → but notable
exceptions!

• Limited support for embedded or app development → but notable exceptions!

• Syntactically different from “traditional” programming languages, not a mainstream
language → offer alternative syntax?

• IDEs and development tools: much progress but still limitations in some areas (e.g.,
refactoring) → future work?

• Other limitations in portability across systems (e.g., packages) → need to improve.

• UI development (usually conducted in a foreign language via FLI) → exceptions /
need to improve? / actually OK?

Summary: much can be taken from other Prolog systems; also work still needed.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 20

Possible threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Somewhat fragmented community.

• Active developer community with constant new implementations, features.
(Good but possible further fragmentation of Prolog implementations.)

• New programming languages.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. →
cooperative/competitive evolution (vs. unified system and/or libraries).

• In any case, good forum needed for discussion and bringing together
community across systems.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 21

Possible threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Somewhat fragmented community.

• Active developer community with constant new implementations, features.
(Good but possible further fragmentation of Prolog implementations.)

• New programming languages.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. →
cooperative/competitive evolution (vs. unified system and/or libraries).

• In any case, good forum needed for discussion and bringing together
community across systems.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 21

Possible threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Somewhat fragmented community.

• Active developer community with constant new implementations, features.
(Good but possible further fragmentation of Prolog implementations.)

• New programming languages.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. →
cooperative/competitive evolution (vs. unified system and/or libraries).

• In any case, good forum needed for discussion and bringing together
community across systems.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 21

Possible threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Somewhat fragmented community.

• Active developer community with constant new implementations, features.
(Good but possible further fragmentation of Prolog implementations.)

• New programming languages.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. →
cooperative/competitive evolution (vs. unified system and/or libraries).

• In any case, good forum needed for discussion and bringing together
community across systems.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 21

Possible threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Somewhat fragmented community.

• Active developer community with constant new implementations, features.
(Good but possible further fragmentation of Prolog implementations.)

• New programming languages.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. →
cooperative/competitive evolution (vs. unified system and/or libraries).

• In any case, good forum needed for discussion and bringing together
community across systems.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 21

Possible threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Somewhat fragmented community.

• Active developer community with constant new implementations, features.
(Good but possible further fragmentation of Prolog implementations.)

• New programming languages.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. →
cooperative/competitive evolution (vs. unified system and/or libraries).

• In any case, good forum needed for discussion and bringing together
community across systems.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 21

Possible threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Somewhat fragmented community.

• Active developer community with constant new implementations, features.
(Good but possible further fragmentation of Prolog implementations.)

• New programming languages.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. →
cooperative/competitive evolution (vs. unified system and/or libraries).

• In any case, good forum needed for discussion and bringing together
community across systems.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 21

Possible threats to Prolog’s future → and how to address them

• Comparatively small user base.

• Somewhat fragmented community.

• Active developer community with constant new implementations, features.
(Good but possible further fragmentation of Prolog implementations.)

• New programming languages.

• The perception that it is an “old” language.

• Wrong image due to “shallow” teaching of the language.

→

• Many weaknesses already addressed by different systems. →
cooperative/competitive evolution (vs. unified system and/or libraries).

• In any case, good forum needed for discussion and bringing together
community across systems.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 21

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 22

Opportunities for Prolog

• New application areas, addressing societal challenges:

I Neuro-Symbolic AI.
I Explainable AI, verifiable AI.
I Big Data.

• New features and developments:

I Probabilistic reasoning.
I Embedding ASP and SAT or SMT solving, s(CASP) applications.
I Opportunity still for performance gains (and we have the technology):

• Full-fledged JIT compiler.
• Global optimization, partial evaluation (’provably correct refactoring’).
• Parallelism.

I ...

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 22

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

On teaching Prolog (specially for CS students and programmers)

• Should Prolog/LP/CLP be taught in CS programs?
Yes!: CS grads simply not complete without. But... has to be done right.
I Typical ’programming paradigms’ course can be counter-productive.
I But what to do if, as frequently, that is the only slot available?

• Modern Prologs address well most of the shortcomings of early systems via
tabling, constraints, multiple search rules, etc. — take advantage of this!

• Discuss the “dream” (Green), logics and deduction procedures Horn clauses
& SLD-resolution (effectiveness/semi-decidability) classical LP (Kowalski/Colmerauer).

• Important to show the beauty and multiple facets of the language:
I Show with examples how you can go from problem representations and

executable specifications to efficient algorithms, gradually, as needed.

• Students will find non-termination early on: help them understand it.
I A fact of life in programming languages (halting problem) or proof systems.
I Start running programs breadth-first (or iterative deepening, tabling, etc.): all

solutions in finite time (explain with picture of tree); discus the trade-offs.

• Arithmetic: Peano (beautiful/slow), constraints, is/2. Discuss trade-offs.
• Occur check: unify with occurs check/2, cyclic terms. Discuss trade-offs.

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 23

Characterization of the search tree

solution

solution

fail

fail

solution
fail

infinite failure

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 24

Depth-First Search

solution

solution

fail

fail

solution
fail

infinite failure

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 25

Breadth-First Search

solution

fail

fail

solution
fail

infinite failure

solution

Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 26

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

On teaching Prolog (specially for CS students and programmers)

Specially relevant to teaching students that have already been exposed to other programming
languages (imperative/OO, sometimes functional) and have some notions of PL implementation:

• Discuss Prolog as a traditional programming language but with “much more”
I “Normal” if used in one mode and there is only one definition per procedure.
I But it can also have several definitions, search, run “backwards,” etc.
I As any language, Prolog has a stack of forward continuations, to know where

to return when a procedure ends (succeeds)... but also a stack of backwards
continuations to go if there is a failure (previous choice point).

• Use predicates to define types and properties; to do dynamic checking or “run
backwards” to generate the “inhabitants”; property-based testing for free!

• Show examples of great applications (e.g., from 2022 census). TIOBE index?

• Types of system for teaching:
I Advanced students: classical installation.

Show serious, competitive language; ready for “real” use.
I Beginners/tutorials: playgrounds, notebooks.

(E.g., Ciao Playgrounds/Active Documents, SWISH, τ -Prolog).

• An ideal system should allow covering: pure LP (w/several search rules, tabling),

ISO-Prolog, constraints, higher-order (and functional prog.), ASP/s(CASP), etc.
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 27

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

Final thoughts

• The classical characteristics of Prolog are still unique and demanded.

• It is still one of the most interesting computing paradigms.

• Plus, it is also not ’your grandparents’s Prolog’ any more.

• Many (most?) of the initial shortcomings of the language have been
addressed, even if sometimes by different systems.

• More relevant than ever at a time in need for explainable AI.

• Needs to be taught, and to be taught well. (ACM curriculum!)

• Regarding system coordination: despite the intense evolution, differences
between systems are not fundamental. To progress:
I Forum (e.g., a web platform) to discuss proposals and solutions, in order to

reach consensus on the most important extensions of current implementations.
I A structured workflow for tracking proposals.
I Taking advantage of / build on existing mechanisms such as the ISO standard

or (an updated version of) the Prolog Commons.
I Involving implementors and users.
I Under the wings of ALP.

 See the “Online Prolog Community” presentation at the end of the day!
Manuel Hermenegildo – 50 Years of Prolog and Beyond (The Prolog Year – Prolog Day Symposium, Nov. 10, 2022) 28

	

