
Global Flow Analysis as a Practical Compilation Tool
M. V. H E R M E N E G I L D O , R. W A R R E N , A N D S. K. D E B R A Y

Abs t r ac t

This paper addresses the issue of the practicality of global flow analysis in logic program compilation,
in terms of speed of the analysis, precisión, and usefulness of the information obtained. To this end,
design and implementation aspects are discussed for two practical abstract interpretation-based flow
analysis systems: MA , the MCC And-parallel Analyzer and Annotator; and Ms, an experimental mode
inference system developed for SB-Prolog. The paper also provides performance data obtained (rom these
implementations and, as an example of an application, a study of the usefulness of the mode information
obtained in reducing run-time checks in independent and-parallelism. Based on the results obtained, it
is concluded that the overhead of global flow analysis is not prohibitive, while the results of analysis can
be quite precise and useful.

1 Introduction

The extensive use of advanced compilation techniques [8, 22, 30, 32, 33, 34], coupled with parallel execu-

tion [5, 10, 15, 20, 35], appears to be a very promising approach to achieving improved performance in

logic programming systems. Existing systems are based largely on local analysis (i.e. clause-level or, at

most, procedure-level, as in the WAM). Such techniques have already brought substantial performance im-

provements to popular Prolog systems [2, 7, 29]. However, global analysis ofiers the potential to at tain

substantially better object code and therefore even higher execution speeds.

The purpose of dataflow analysis is to determine, at compile t ime, properties of the terms that variables

can be bound to, at runtime, at difTerent points in a program. Since most "interesting" properties of programs

are undecidable, the information obtained via such static analyses is typically conservative. Nevertheless it

can be used in many cases to improve the quality of code generated for the program. This has given rise to

a great deal of research in flow analysis-based optimization of logic programs (e.g. see [3, 9, 18, 21, 31, 32,

34, 24]).

Most of the flow analyses that have been proposed for logic programming languages are based on a

technique called abstract mterpretation [6]. The essential idea in this technique is to give a finite description of

the behavior of a program by symbolically executing it over an "abstract domain," which is usually a complete

lattice or cpo of finite height. Elements of the abstract domain and those of the actual computat ional domain

are related via a pair of monotone, adjoint functions referred to as the abstractwn (a) and concretizatwn (7)

functions. In addition, each primitive operation / of the language is abstracted to an operation / ' over the

abstract domain. Soundness of the analysis requires that the concrete operation / and the corresponding

abstract operation abs_f be related as follows: for every x in the concrete computat ional domain, f(x) C

-f(abs_f(a(x))).

Tliough the idea of abstract interpretation has been applied to logic programs by various researchers

[1, 17, 18, 19, 23, 25], relatively few practical implementations appear to have actually been reported in the

literature: at this t ime, the only implemented systems that we are aware of, apart from those described in

this paper, are those of Janssens [18], Mellish [24], Taylor [31], and Van Roy [34]. However, in order that

the analysis and optimization of large programs be practical as a compilation tool, it is necessary that such

analysis algorithms be both precise and efíicient, and that the resulting information be of use for the intended

purpose, be it proving properties of the program or improving execution speed. The question remains then

regarding whether flow analysis can actually be done routinely with useful precisión in a reasonable amount

of t ime, and, if so, what implementation techniques might be used to achieve this goal.

This paper addresses the issue of the practicality and implementability of flow analyses of Prolog pro

grams. It reports on the design, implementation, and performance of two abstract interpretation-based

flow analysis systems: MA , the MCC And-parallel Analyzer and Annotator; and Ms ("Mode system"), an

experimental flow analysis system developed for SB-Prolog. Section 2 deals with implementation issues: it

briefly introduces the concept of "abstract compilation" used in these two systems (Section 2.1) and discusses

various implementation approaches and their tradeofls regarding extensión tables, program transformations,

t reatment of builtins, etc. (Sections 2.2-2.3). Section 3 offers speed and precisión performance figures and a

discussion of these results. Section 4 presents as an example an application of the mode information obtained

in the compilation of logic programs for independent and-parallel execution. Finally, Section 5 summarizes

our conclusions, which indicate that quite good precisión can be attained and at a reasonable cost.

2 Implementat ion Issues

Although abstract interpretation of logic programs has been proposed by various researchers, the paucity

of reported implementations seems to suggest that its implementation may be regarded as computationally

expensive. We argüe that such a perception is not justified, and that if properly implemented, global flow

analysis systems for logic programs need not be overly expensive. In this section, various implementation

issues that are relevant to the efficiency of global dataflow analysis systems are discussed.

2.1 Abstract "Compilat ion"

A naive implementation of a global flow analysis system, based on the technique suggested by the ñame

"abstract interpretation" might proceed by modifying a s tandard meta-circular interpreter to compute over

the abstract domain. An alternative is to specialize such an abstract interpreter to deal with only the

program under consideration. This can be done by making a single pass over the program P to be analyzed

and producing a transformed program P' = T(P) which, when executed, yields precisely the desired flow

information about the original program P (see Figure 1). This transformation can be thought of as a partial

evaluation of the abstract interpreter with respect to the input program P being analyzed[4].

The transformation r is determined by the flow information desired. Abstract interpretation of a program

consists essentially of "simulating" its execution over an abstract domain. This is done by specifying, as part

of the abstract interpretation, an "abstract operation" abs_f for each primitive operation / of the language.

To see how this should be done, it is necessary to make the primitive operations of the language - in our

case, application of substitutions and unification - explicit. Let these primitive operations be denoted by

predicates app_.sub.st and unify: app_.sub.st(6,t,t') is true if and only if the substitution 9, applied to the term

t, yields the term t', i.e. t' = 9(t); and unify(6,ti,t2, c) is true if and only if the terms ti and t'¿, unified

in the context of the substitution 9, yield the substitution a, i.e. a = ip o 9, where ip is the most general

unifier of 9(ti) and #(¿2)- Consider the execution of a clause p(To) : — í i (7 i) , . . ., qn(Tn). Initially, each

variable in the clause is uninstantiated. First, the arguments in the head of the clause are unified with those

in the cali to yield a substitution 9o- The first literal in the body is then evaluated in the context of this

substitution; if this succeeds yielding a new substitution 61, the next literal in the body is evaluated in the

context of 61, and so on. Finally, when all the literals in the body have been successfully evaluated, yielding

http://app_.sub.st

Source Program

P
semantics ¡i

Source Meaning

*M

transformation

r

P'

: 'Approximate" program

semantics [i

abstraction

- M '

Simplified Meaning

Figure 1: Analysis, abstraction and "approximate" programs

a substitution

clause.

the "return valué" is obtained by applying 9n to the tupie of arguments in the head of the

This operational behavior can be made explicit by rewriting the clause as follows:

p{Xin, Xout) '•-

umfy(id,Xin,f0,60),

apply.subst(Oo,f\,J\!Ín), qi(fitin,fit0Ut), umfy(60,fitin,fitOUt,6i),

apply.subst(01,f2,f2!in), q2(T2,i„,f2tout), unify{9i, f2¡in, f2¡out, S2),

•i n 1 -*- n.in} i appíy_subst(6n-i

appíy_subst(6n, T0, Xout

/ ; Qn\-'-n,inj -Ln,out)i ^^Vl/y-^n ,T r n.m 7 -1 n,out? un) 7

where X¿„, Xout, TÍÍ„ and T¿)0 t l t, i = í,...,n, are distinct new tupies of variables, and id is the identity

substitution. Each fc-ary predicate—which can be thought of as a predicate that takes one argument that is

a fc-tuple of terms—has been modified to have two arguments: the first, subscripted "¿n", representing the

tupie of arguments at the cali to the predicate, and the second, subscripted aouf, representing the tupie of

arguments at the return from that cali.

It is important that we maintain sepárate sets of "calling" and "return" arguments. One reason for

doing this is to make explicit the operational aspects of a logic program computat ion (since this is what

an abstract interpretation tries to mimic). We contend that it also has declarative virtues, since it makes

explicit the distinction between a term before a substitution is applied to it, and the term that results

after the application of the substitution. The most important reason for this, however, is to anticípate a

technical difficulty in abstract interpretation — certain kinds of static analyses require that the connection

between "calling" and "return" valúes be maintained explicitly during analysis in order to avoid undue loss

of precisión.

The corresponding abstract interpretation computat ion can now be described simply by replacing the

primitive operations app_.sub.st and unify by the corresponding operations over the abstract domain, denoted

by abs_app_subst and abs_umfy respectively:

abs.p{Xin, Xout) :-

ab.s_umfy(a({id}),Xin,f0,A0),

abs.app.subst(Ao,J\,Tl!Ín), abs_qi(fitin,fit0Ut), abs.unify(A0, T\!Ín, fi¡out, Ai),

abs.app.subst(A1,f2,f2!in), abs_q2(f2tin,f2tOUt), abs_umfy(Ai,f2tin,f2tOUt, A2),

• • •;
abs.app.subst(An^1,fn,fn!Ín), abs_qn(fntin,fnt0Ut), ab.s_umfy(An-i,fntin,fnt0Ut,An),

abs.app.subst(An,f0,Xout).

where a({ id}) represents the abstract domain element corresponding to (the singleton set containing) the

identity substitution. The A¡ are "abstract substi tutions", i.e. abstract domain elements representing sets

of substitutions. The resulting program is referred to as the "approximate" program.

While this transformation sufñces to describe the computat ion over the abstract domain, it may not be

suitable for direct evaluation by a top-down interpreter, e.g. Prolog. One reason for this is tha t abstract

interpretation requires that all possible computat ion paths in the program be explored. Moreover, this pro

gram may not terminate if executed directly by a top-down interpreter. Thus, additional machinery is needed

to forcé every computat ion path in the program to be explored and to ensure termination once a fixpoint

has been reached. We address both these issues by evaluating the approximate program using extensión

tables [12]: this involves augmenting the approximate program with code to maintain and manipúlate such

extensión tables.

The practical benefit of this approach is that since the flow information is obtained by executing the

transformed program directly, instead of having the underlying system execute the abstract interpreter

which in turn symbolically executes the original program, one level of interpretation is avoided during the

iterative fixpoint computat ion characteristic of dataflow analyses. Since much of the cost of global flow

analyses is in these iterative fixpoint computations, this results in significantly more efficient analyses. The

technique, which—with tongue firmly in cheek—we refer to as "abstract compilation," was (to the best of our

knowledge) first suggested in [9]. Both the MA and Ms systems use this technique in their implementations.

An important issue from the perspective of efficiency of analysis is not only how the transformation of

the program is performed—since the transformation process obviously represents overhead—but also how

the "approximate" program is incorporated into the Prolog system for execution. The issue of program

transformation will be returned to later, after introducing the techniques for dealing with extensión tables.

The approach taken in order to make the "approximate" program executable will depend greatly on the char-

acteristics of the underlying system. The most immediate alternative is to "assert" the transformed clauses

into the datábase. Global analysis is then performed by simply calling the entry point of the transformed

program. In a system in which asserted code is fully compiled, including indexing, this is a desirable solution

because of its simplicity. In many systems, however, asserted code is actually interpreted and sometimes not

even indexed. In those cases the performance advantage of "abstract compilation" is lost, since although one

level of interpretation is eliminated another may be added. An alternative solution is to make the approxi

mate program fully compiled by storing it in a temporary file and loading it into the Prolog system using the

http://app_.sub.st

System

Quintus 1.6
SB-Prolog 2.3
Sicstus 0.5

unificatwn

1.0
1.0
1.0

assert

544-1477
3038-6075
359-678

accessing asserted code

300-930
103-144
308-639

Table 1: Normalized costs of some operations in representative Prolog systemsf

| Abstracted from the results of a benchmark suite due to Fernando Pereira [28].

s tandard compiler. There is an obvious tradeoff between these two alternatives: program assert overhead

and perhaps slow analysis (dependent on the implementation of a s s e r t) vs. I/O and program compilation

overhead but with a lower analysis t ime.

2.2 Implementat ion of Extensión Tables

An important component of a flow analysis system is the extensión table [12], which is a memo structure that

records dataflow information during analysis. A central issue in the design of the program transformation

system, discussed in the previous section, is the implementation of this table: while the extensión table

module may appear to be a rather small component of the entire flow analysis system, design and implemen

tat ion decisions made for this component can have profound repercussions on the design, implementation and

performance of the remainder of the system. For this reason, the issues and tradeofls involved are discussed

at some length. It is assumed that the flow analysis system is being implemented on top of, rather than as

part of, a conventional Prolog system.2 This means that there are two basic approaches to implementing

the extensión table: (i) as part of the Prolog datábase, with operations on the table effected via side effects,

through a s s e r t and r e t r a c t ; and (n) using Prolog terms as the da ta structures representing the table, with

table operations affected via unification.

There are several advantages to implementing the extensión table as part of the Prolog datábase. The

most important of these is that the program transformation is simplified considerably: firstly, the table

becomes a global structure that does not have to be passed around explicitly; more importantly, all execution

paths in the program can be explored in a relatively straightiorward way. For the analysis of a program

to be sound, it is necessary that every execution path that can be taken at runtime be explored during

analysis. If operations on the table are persistent across backtracking, then this can be effected simply by

adding a f a i l literal at the end of each transformed clause. The effect of this, when the transformed clause

is executed, is tha t after the body has been processed, execution is forced to backtrack into the next possible

execution path. In this manner, every execution path in the program is considered during analysis (cuts

in the source program are discarded during transformation, so they do not pose a problem). Moreover,

once the transformed program has been implemented in this manner, another advantage becomes apparent:

because execution is made to fail back as soon as an execution path has been explored, space used on the

various Prolog stacks during the analysis of that path can be reclaimed relatively efficiently. The MA system

currently uses the Prolog datábase for extensión table implementation. Figure 2 shows a simplified versión

of the program transformation used by the MA system applied to the familiar qsor t example. ' $un i fy '
goals perform the abstract unification, while the ' $f indmode ' goals perform the failure-driven exploration

of execution paths and LUB calculations.

2Note that section 4 presents results from an implementation where the global analyzer is part of a (parallel) Prolog system.
However, in this case the whole compiler, as is often the case, is written in standard Prolog, and the considerations in this
section still apply.

°/o Or ig ina l program

q s o r t ([] , R , R) .
q s o r t ([X | L] , R , R 0) : -

p a r t i t i o n (L , X , L l , L 2) ,

q s o r t (L 2 , R l , R 0) ,
q s o r t (L l , R , [X | R l]) .

7, Transformed program

'compute$MODE'(qsort(A,B,C),Mode,Mode) : -
' $ u n i f y ' (q s o r t ([] , F , F) , q s o r t (A , B , C)) .

'compute$MODE'(qsort(A,B,C),InMode,OutMode) : -

' $ u n i f y ' (q s o r t ([H 1 1] , J , K) , q s o r t (A , B , C)) ,

' $ f indmode ' (par t i t ion(I ,H,L ,M) , InMode ,N) ,
' $ f indmode ' (qsor t (M,0 ,K) ,N ,P) ,

' $ f i n d m o d e ' (q s o r t (L , J , [H | 0]) , P , 0 u t m o d e) .

Figure 2: Approximate program transiormation in MA .

The principal disadvantage in implementing the extensión table as part of the Prolog datábase is that

operations on the table use a s s e r t and r e t r a c t , which are relatively expensive: e.g. in three represen-

tative systems, asserting a unit clause is between two and three orders of magnitude slower than doing a

simple unification, see Table 1. This would be less of a problem if access to asserted clauses was very fast.

Unfortunately, as can be seen from Table 1, accessing asserted code is also relatively expensive in most

current Prolog systems. There is also a hidden cost in the failure-driven exploration of execution paths: this

approach requires that choice points be created at the entrance to predicates with more than one applicable

clause. This can incur a significant cost, since the creation of a choice point is typically relatively expensive.

The tradeoffs here, however, are more complex: for example, it is difBcult to compare the cost incurred in

creating these choice points with the t ime saved in failure-driven space reclamation as compared to garbage

collection.

Another approach is to implement the extensión table as a Prolog term, with operations on the table

effected via unification. The principal advantage of this approach is that a s s e r t and r e t r a c t are not

necessary for manipulat ing the table. Instead, unification—which, as mentioned above, is two to three

orders of magnitude faster—is used. The principal disadvantage of this approach is that because operations

on the table are undone on failure and backtracking, the program transformation must explicitly forcé all

execution paths to be explored. This makes the transformation more complex. The fact that the extensión

table has to be passed around explicitly as a parameter to all relevant predicates also adds to the size of the

transformed program, which in turn increases the t ime and space taken to assert it.

In the Ms analysis system, the extensión table is maintained as a Prolog structure, and the exploration

of every execution path in the program is guaranteed as follows: each transformed clause is given an extra

argument, the clause number. Corresponding to each predicate there is a driver which calis each numbered

clause in turn, collects the results, and returns a summary (in this case, their least upper bound) to the

caller. Thus, the transformed predicates for a predicate p with m clauses have the structure shown in Figure

p$pred (InMode, E x t T b l , OutMode) : -

p $ c l (l , InMode, E x t T b l , OutModei),

p $ c l (m , InMode, E x t T b l , OutModem) ,

l u b ([OutModei, . . . , OutModem] , OutMode).

p $ c l (l , InMode, E x t T b l , OutMode) : - . . .

p $ c l (m , InMode, E x t T b l , OutMode) : - . . .

Figure 3: Approximate program transformation in Ms.

3.

In systems that support indexing on asserted clauses, an índex will be created on the first argument

(corresponding to the clause number) of the transformed predícate p $ c l . This has the advantage that

selection of the different clauses then becomes deterministic, so no choice points need to be created for the

different p $ c l calis. This, in turn, leads to space and time savings. On the other hand, this approach does

not permit failure-driven space reclamation.

2.3 Other Optimizations

Because of the high cost of a s s e r t , and the relatively slow speed of asserted code, it is advantageous to shift

as much work as possible from within asserted code to within compiled code, so as to reduce the amount

of asserting necessary. For example, it is substantially cheaper not to créate and assert the p$pred clause

shown in Figure 3, with m+í literals in the body, directly as given. Instead, we define a compiled predícate

m o d e _ i t e r a t e that takes a témplate of the p $ c l goals and the number of clauses m, invokes each of the

p $ c l goals, collects their individual output modes, computes the least upper bound of these and returns it

as the overall output mode. This reduces the size (and cost) of asserting the p$pred clause significantly.

The p$pred clause that is asserted now looks simply like

p$pred (InMode, E x t T b l , OutMode) : -

m o d e _ i t e r a t e (m, p $ c l (_ , InMode, E x t T b l , _) , OModes),

lub(0Modes , OutMode).

The predícate m o d e _ i t e r a t e , which is defined and compiled as part of the main analysis program, is given

by the following:

m o d e _ i t e r a t e (N , C a l i , OModes) : -

N > 0 ->

(OModes = [OMode I O R e s t] ,

c o p y _ t e r m s (C a l l , Copy) ,

a r g (l , Copy, N) ,

a r g (4 , Copy, OMode),

c a l l (C o p y) ,

NI i s N - 1,

m o d e _ i t e r a t e (N l , C a l i , ORest)

) ;
OModes = [] .

While this makes some ext ia te im copying necessaiy at rantime (m copies of the p$c l témplate have to be

cieated), the oveihead involved is usually moie than offset by the savings in a s s e r t . This is in some ways

similai to the ' $f indmode ' piedicate used by MA . Note that if input and output modes aie always giound

teims, as in the Ms system, then the cali to copy_terms/2 above can be leplaced by two calis to f u n c t o r / 3 .

Anothei optimization that can íesult in significant leductions in the amount of code asseited, and cause

substantial impiovements in the speed of the system, is to eliminate clauses that aie ledundant with íespect

to success pa t te in computat ion. This of couise depends on the gianulaii ty of the abstiact domain. Foi

example, assuming an abstiact domain that lepiesents all giound te ims by a single element of the abstiact

domain, given the set of facts and clauses

p (a , b) .

p (c , [a , b , c]) .

p (X ,X) .

p (e , f) .

p (X , Y) : - g (X) , h (a , Y) .

p (X , Y) : - g (X) , h (f (b) , Y) .

they can be lepiesented by tiansfoiming only the following subset:

p (a , b) .

p (X ,X) .

p (X , Y) : - g (X) , h (a , Y) .

This optimization is especially effective foi "datábase" piedicates, oí tables, which aie defined entiiely by

unit clauses. As an example of the utility of this optimization, considei the benchmaiks piesented in Section

3. SB-Piolog's assembleí, which is used in the asm benchmaik, contains tables defining instiuction ñames,

opcodes, and theii sizes: most of these clauses can be eliminated foi mode infeience puiposes. The peephole

benchmaik, which is SB-Piolog's peephole optimizei, contains laige tables that contain infoimation about

registeis used and defined by difieient instiuctions: many of these can likewise be eliminated. The read

benchmaik, consisting of a Piolog tokenizei and paiseí, contains a table of opeíatois and a table defining

"special chaiacteis", which can also be subjected to this optimization. By eliminating ledundant clauses in

this mannei , two kinds of savings aie lealized: the space and time taken to cieate and asseit the appioximate

p iogiam decieases; and the t ime taken in the fixpoint computat ion also decieases. In oui expeiiments, the

speedups obtained fiom this optimization langed up to a factoi of 2 in some cases.

Anothei inteiesting issue is the t iea tment of builtin piedicates. One simple alteinative is to simply ignoie

such piedicates in the analysis. This is howeveí not desiiable because a gieat deal of infoimation can be

deiived fiom builtin piedicates: fiíst, the output modes of many builtin piedicates aie known and can be

applied to subsequent goals in the path. Second, builtin piedicates often lequiíe pai t iculai entiy modes (foi

example, some aiguments must be giound, otheis may have to be unbound variables) oí otheiwise they fail.

An example of this is the i s / 2 ai i thmetic piedicate which lequiíes its second aigument to be giound (and

an ai i thmetic expiession). If it can be deteimined duiing the analysis that such conditions aie not met then

it can be concluded that the íest of the cunent path will not be executed íesulting in analysis t ime saved

and potentially incieased piecision. In addition, if no infoimation is available legaiding an aigument foi

B u i l t i n

is/2

< / 2

p u t / 2

length/2

var /1

number /1

Input M o d e

?, ground

ground,ground

ground,ground
? ?
• 7 *

?

?

O u t p u t M o d e

ground, ground

ground, ground

ground, ground

?, ground

var

ground

Table 2: Examples of builtin predicates modes.

which a builtin predicate enforces a particular mode, it can be assumed that if execution is to continué after

that predicate, then the argument must have been bound to that mode. Table 2 shows some examples of

modes for builtins in a simple {?, var, ground} domain.

Finally, in order to provide a starting point for the abstract analysis a number of "query forms" are

generally given to the analyzer along with the program, corresponding to the possible points at which

execution of the program may be invoked (alternatively, all possible queries to all possible predicates in the

program should be considered, but this will generally severely limit the amount of information that can be

obtained from the analysis). In addition, ideally query forms should also include the set of abstract entry

substitutions for each of these possible entry points. It is interesting to note that in a Prolog system with

modules, such as Quintus Prolog [29], the module entry point information can actually be used as query

forms, since it determines the points at which the program can be accessed from outside. This property is

used in the MA system so that in general the user does not need to provide any additional information to

the global analysis system beyond the normal module declarations, global analysis thus not imposing any

additional burden on the programmer. For example, a Quintus module declaration such as

: - module(foo , [m a i n / 2]) .

which is found at the beginning of a file would instruct the system to perform global analysis of this file,

starting with the ma in /2 predicate. Of course, since no information is available at this point regarding

input abstract substitutions the analysis would start with : - m a i n (? , ?) . The user can of course provide

additional information regarding the input abstract substitutions (for example, in MA via :-imode and

:-omode declarations).

2.4 Effects of Program "Cleanness" on Flow Analysis

While "impure" language features such as v a r / 1 , n o n v a r / 1 , cut, etc., can be handled without any trouble,

a significant problem in reliable flow analysis is the use of features such as c a l l / 1 , n o t / 1 , etc., where the

argument appearing in the program text is a variable. Such goals are difficult and expensive to analyze

correctly, and can affect the precisión and efficiency of analysis significantly. A similar problem arises with

a s s e r t and r e t r a c t . Neither of the two flow analysis systems described here address these problems at this

t ime. Wha t is curious is that in almost every program containing such "dirty" features that we looked at,

their use was not really necessary, and seemed to be a hangover from an imperative programming style. Our

experience indicates that (¿) "clean" programs are desirable not only for their aesthetic and semantic appeal,

but also for the very pragmatic reason that such programs are much more amenable to compiler analysis

and optimization; and (n) "unclean" features can often be avoided with a little effort during coding.

3 Performance

In this section we offer timings and other statistics obtained from the two inference systems presented

in this paper (MA3 and Ms). These fi gures support our claim that global program analysis need not be

computationally overwhelming: the cost fraction corresponding to a flow analysis pass added to a typical

Prolog compiler would seem to be of the order of 30-80%.

Tables 3-4 and 5-6 give two different performance perspectives, efñciency and precisión. The benchmark

programs used were the following:

• asm, the SB-Prolog assembler;

• boyer, from the Gabriel benchmarks, by Evan Tick;

• browse, from the Gabriel benchmarks, by Tep Dobry and Herve Touati;

• func, a functionality inference system written for SB-Prolog;

• projgeom, a program due to William Older;

• peephole, the peephole optimizer used in SB-Prolog;

• preprocess, a source-level preprocessor used in the SB-Prolog compiler;

• queens, a program for the n-queens problem;

• read + rdtok, the public-domain Prolog tokenizer and parser by Richard O'Keefe and D. H. D. Warren;

and

• semalize, by D. H. D. Warren.

They constitute a set of "real" programs representing a wide mix of application áreas, characteristics, and

coding styles.

Tables 3-4 give analysis vs. compile times: as can be seen, flow analysis takes up 27-50% of the total

compilation t ime in the Ms system (actual analysis t ime of a benchmark is compared to the t ime taken by

the SB-Prolog compiler to compile the benchmark), and from 50-82% in the MA system (idem. with respect

to the Quintus compiler). In each case, most of the t ime charged to mode inference is in fact taken up in

asserting the "approximate" program. Thus, all these numbers could be improved by improving the efficiency

of a s s e r t . While MA uses the Prolog datábase to implement the extensión table and Ms passes around

a Prolog term, we would caution against using the figures in Tables 3-4 to draw conclusions regarding the

relative efficiencies of these two approaches, since the speeds of the underlying Prolog systems and compilers

were very different. It is also our intuition that if a combination of the techniques used in both systems (and

described in Section 2.2) is used, substantially better performance could be obtained.

Tables 5-6 a t tempt to characterize the "precisión" of the inference systems (differences in the total number

of argument positions in a program between tables 5 and 6 arise from differences in the set of predicates

considered to be "builtins" by the two mode inference systems). Table 5 gives the precisión of the MA

system, in terms of the percentage of argument positions whose modes were correctly inferred. The valúes

range from 55% to 100%, in most cases lying in the 80%-90% range. Thus, MA proves to be quite precise,

presumably due to the tracking of variable aliasing and structures of terms. Table 6 gives the precisión figures

for Ms. Unlike MA , Ms uses an extremely simple abstract domain "ground," "nonvariable" and "unknown"

and makes no a t tempt to keep track of the structures of terms, relative positions of embedded variables

B e n c h m a r k

asm

boyer

browse

func

peephole

preprocess

projgeom

queens

read

serialize

A n a l y s i s T i m e T\

63.70

26.01

33.32

38.20

23.45

79.84

3.70

2.86

64.23

4.35

Total C o m p i l e T i m e T¿

96.22

45.22

40.32

55.14

40.32

102.17

6.83

5.92

82.67

7.44

Ti/T2

0.66

0

0

0

0

0

0

0

0

0

58

83

69

58

78

54

48

78

58

Table 3: MA Compile vs. Analysis times (secs, using Quintus 2.2, Sun 3/50)

B e n c h m a r k

asm

boyer

browse

func

peephole

preprocess

projgeom

queens

read

serialize

A n a l y s i s T i m e T\

103.76

48.30

18.08

66.00

47.80

94.66

8.40

9.60

68.32

6.90

Total C o m p i l e T i m e T¿

242.84

140.32

66.94

136.94

115.26

194.88

18.90

19.16

155.90

19.12

T1/T2

0.43

0.34

0.27

0.48

0.41

0.49

0.44

0.50

0.44

0.36

Table 4: Ms Compile vs. Analysis times (secs, using SB-Prolog 2.3.2, Sun 3/50)

Benchmark

asm
boyer
browse
func
peephole
preprocess
projgeom
queens
read
serialize

TAP

113
69
47

130
36

139
27
20

141
15

"hits"

92
38
37
81
33

116
23
20

126
13

% hits

81.4
55.0
78.7
62.3
91.6
83.4
85.2

100.0
89.3
86.6

Table 5: Precisión of the MA system

Benchmark

asm
boyer
browse
func
peephole
preprocess
projgeom
queens
read
serialize

TAP

96
61
42

118
34

131
27
21

147
14

IAP

69
35
30
87
21
92
24
17
85

7

"hits"

67
7

21
58
16
46
22
16
51
4

hits /IAP(%)

97.10
20.0
70.0

66.67
76.19

50.0
91.67
94.12

60.0
57.14

hits /TAP(%)

69.79
11.48
50.0

49.15
47.05
35.11
81.48
76.19
34.69
30.77

Table 6: Precisión of the Ms system.

TAP = Total # of argument positions; IAP = # of "interesting" arg. positions.

within a te im, etc. As a result, theie aie two souices of impiecission: (i) the inability to leason about "free"

aiguments; and (n) lack of infoimation about te im structures. In an a t tempt to distinguish between the

loss of piecision due to these two effects, two diffeient measuies of piecision aie used: the relative precisión,

expiessed as the peicentage of "inteiesting," i.e. non-fiee aigument positions, whose modes aie correctly

infened by the system; and the absolute precisión, expiessed as the peicentage of all aigument positions

whose modes aie correctly infened. It can be seen that the relative piecision of the Ms system langes, in

most cases, fiom 70% to oveí 95%; foi p iogiams that pass aiound a lot of paitially instantiated structures,

such as func, preprocess, read and serialize, the lack of infoimation about te im st iuctuie íesults in a diop

in the relative piecision to between 50% and 70%. The boyer p iogiam is something of an anomaly, but the

unusually low piecision of infeience in this case can be tiaced to the infeience system's lack of sufñcient

knowledge about the builtins f u n c t o r / 3 and a r g / 3 . As might be expected in this case, the inability to

lepiesent and leason about fiee variables íesults in lowei absolute piecision figures.

4 An Application: And-parallelism Detection

This section discusses the application of mode infeiencing to the geneíation of Independent/Rest i icted And-

paiallelism [10, 15, 14], an efficient type of paiallelism in which only independent goals aie executed in

paiallel and one of the main applications of the MA system. Note, howeveí, tha t the application of mode

infoimation is in geneial much bioadei , langing fiom othei high-level applications, such as the impiovement

of Piolog's backtiacking behavioi, to low-level applications lelating to details of code geneíation in Piolog

compiléis. Togethei, they undeiscoie the impoitance of mode infoimation at all levéis in optimizing compiléis

foi high-peifoimance logic p iogiamming systems. This application is piesented as a specific example of the

usefulness of the infoimation obtained fiom global flow analysis.

The paiallelization piocess is heiein viewed as a t iansfoimation of the oiiginal Piolog p iogiam into an

&-Piolog [15, 13] p iogiam which contains (possibly conditional) paiallel conjunctions of goals. Although &-

Piolog suppoits seveial types of paiallelizing expiessions the discussion is heiein l imitedfoi conciseness to the

geneíation of Conditional Graph Expressions (CGEs) [15]. CGEs aie a mechanism (deiived fiom DeGioot 's

ECEs [10]) foi the geneíation and contiol of and-paiallelism. CGEs can appeai in the bodies of Hoin clauses

and augment such clauses with conditions which deteimine the independence of goals and piovide contiol

oveí the spawning and synchionization of such independent goals duiing paiallel foiwaid execution and

backtiacking. A CGE is defined as an independence condition i_cond, followed by a conjunction of goals,

i.e.:

(i_cond => goal\ & ¿roa/2 & • • • & goaln) .

i_cond is a sufficient condition (to be checked at lun-time) which when met guaiantees the independence

of the goals in the conjunction. Opeíationally, goal\ thiough goaln can be lun in paiallel if i_cond is met;

otheiwise they aie lun sequentially. Goals in a CGE may themselves be eithei s tandaid Piolog goals 01

othei CGEs so that complex execution giaphs can be encoded. Such execution giaphs and expiessions can

be geneíated by the useí, but a moie desiiable situation is, of couise, tha t they be geneíated automatically

by the compilei. Chang et al. [3], DeGioot [11], Jacobs and Langen [16], and Wanen , Muthukumai , Rossi,

and Heimenegildo [15, 14, 27], among otheis, have addiessed this subject. The two main issues involved in

the CGE geneíation piocess aie how to associate the goals in a clause into gioups foi paiallel execution,

and how to deteimine conditions foi independence foi each gioup. Given a pai t iculai goal giouping, and

consideiing only local analysis (i.e. íestiicting the analysis to a single clause) a sufficient i_cond can be given

by the conjunction [15, 14]:

gro\n\d(list_of^variables), indep(list_of_tuples)

B e n c h .

A V G

a s m

boyer

b r o w s e

m a t r i x

p e e p h o l e

p r o j g e o m

queens

read

serial ize

C G E

N / A

123

10

9

3

27.0

4.0

7

42

3.0

O v h d .

38.9

33.3

30.1

65.2

38.3

25.6

36.0

30.2

48.1

43.3

% m o d e s
inferred

83.34

81.4

55.0

78.7

82.3

91.6

85.2

100.0

89.3

86.6

U s e f u l n e s s of A b s . Int .

% uncond. cge

w / o ai

9.31

27.6

30.0

0

0

0

0

14.3

11.9

0

w ai

52.2

47.2

60.0

44.4

33.3

70.4

50.0

71.4

59.5

33.3

checks/cge

w / o ai

3.0

1.6

2.3

2.2

4.7

4.2

4.5

2.5

2.2

3.0

w ai

0.74

0

1

0

0

0

1

0

0

0

8

6

5

6

4

0

4

8

6

Table 7: Performance of the abstract interpreter and annotator

where list_of_vamables is the set of all variables which appear in more than one conjunct contained within

the CGE, and list_of_tuples is the minimal set of pairs of non-shared variables which appear in different

conjuncts. The ground check succeeds if every variable in list_of_vamables is instantiated to a ground term

when the test is made at runtime; the "indep" check succeeds if for all pairs in list_of_tuples the two variables

in each pair are bound to terms which do not share variables.

The conditions above are sufficient but not necessary in the majority of cases. Since the "indep" and

"ground" checks can be expensive (e.g. if the checks are performed on deeply nested structures) it is

imperative to reduce them to the minimum. A limited number of checks can be eliminated by additional

local analysis, using knowledge about the modes of builtins and the fact that first occurrences of existential

variables are always unbound [14]. However, local analysis proves to be of relatively limited utility. On the

other hand, our experience with the MA system shows that , given a global analyzer capable of inferring

groundness and independence of variables, CGE checks can be significantly reduced and sometimes eliminated

altogether at compile t ime through partial evaluation with the mode information.

Table 7 summarizes some of our experiments in applying inferred mode information to CGE generation.

The results correspond to the "MEL" annotation algorithm [27], coupled with MA . The table shows for

each benchmark the number of CGEs generated, the fraction (overhead) added by the global analysis t ime

to the actual compilation time, the percentage of modes inferred, the percentage of unconditional CGEs

generated (i.e. for which no run-time checks are needed), and the average number of checks per CGE. A new

benchmark {matrix, a matr ix multiplication program) is also shown in this table. The "Ovhd." figures given

in this table represent actual overhead, i.e. the percentage of t ime added to compilation by global analysis

(as opposed to the fraction of compilation t ime represented by the analysis). The reader may note that these

figures are also lower than those given in the previous section. This is due to the fact that in this section

the global analyzer is measured while embedded within the &-Prolog compiler, while for the measurements

in the previous section the analyzer was extracted from the &-Prolog compiler and run standalone on top of

Quintus Prolog, in order to make comparison with the Ms system more meaningful. The last two columns

are given with and without abstract interpretation for comparison. The number of checks per CGE is

significantly reduced when global analysis is applied and in a good number of cases unconditional CGEs

are generated (i.e. CGEs with no checks), resulting in parallel execution with no independence detection

overhead. It can be seen that only a minor improvement of these results would make it feasible to avoid

run-time checks altogether by simply generating parallel code for unconditional CGEs and sequential code

(rather than a CGE) for the conditional ones (as proposed in the "UDG" annotation method proposed in

[27]). The usefulness of global flow analysis in this application is therefore clear. In fact, the results presented

in Table 7 represent lower bounds on CGE optimization and are expected to improve as our analysis and

parallelization tools, which are not directly the subject of the paper, mature . Most significantly, the results

presented are based on MA inferring term groundness only. Recent results [26, 17] show that it is possible

to infer both groundness and independence information with a high degree of accuracy. This and other

refinements should continué to optimize the parallelization process, further improving runtime performance.

Although we have concentrated on the issue of i_cond determination, the groundness and independence

mode information is also essential in the goal grouping process, mode analysis therefore representing an

important tool for the efñcient implementation of and-parallelism. In addition, the same techniques can be

applied to the generation of other types of (non CGE-based) execution graphs as supported by &-Prolog

and other types of and- and or-parallel execution. For example, the knowledge that variables are ground

(and therefore, read-only) could be used to selectively avoid at compile-time múltiple binding environment

maintenance overheads in OR-parallel systems, thus extending the usefulness of this application of global

flow analysis.

5 Conclusions

Global flow analysis oflers information which can be useful both in optimizing compilers and in the efficient

exploitation of parallelism, the combination of which currently appears to be the best approach towards

achieving increased performance in logic programming systems. Our experiences with the implementation of

two flow analysis systems for Prolog (MA , the MCC And-parallel Analyzer and Annotator and Ms, a flow

analysis system for SB-Prolog), as reported in this paper, show that global dataflow analyses need not be too

expensive computationally to be practical. We have proposed novel implementation techniques, shown an

example of an actual application of the information generated, and discussed some precisión and performance

tradeofls. In addition, we have provided performance da ta obtained from the MA and Ms implementations

analyzing sizeable programs, and showed positive results from applying the information generated by MA

to the problem of avoiding run-time checks in independent and-parallelism. The results showed that these

systems are indeed practical tools: analysis t ime typically increases conventional compilation t ime by about

a factor of 2 to 3, and considerable flow information is obtained which can result in significant speedups in

program execution. Moreover, much of the current overhead is due to having implemented only a particular

subset of the techniques presented herein and to inefficiencies in the underlying Prolog implementations (e.g.

in a s s e r t) which can be improved upon. Our conclusión is therefore that such techniques can be used to

implement global flow analysis systems that are quite precise, yet not overly expensive.

References

[1] M. Bruynooghe. A Framework for the Abstract Interpretation of Logic Programs. Technical Report

CW62, Department of Computer Science, Katholieke Universiteit Leuven, October 1987.

[2] M. Carlsson. Sicstus Prolog User's Manual. Po Box 1263, S-16313 Spanga, Sweden, February 1988.

[3] J.-H. Chang and Alvin M. Despain. Semi-Intelligent Backtracking of Prolog Based on Static Data

Dependency Analysis. In International Symposium on Logic Programming, pages 10-22. IEEE Computer

Society, July 1985.

[4] M. Codish. Personal communication, July 1986.

[5] J. S. Conery. Parallel Execution of Logic Programs. Kluwer Academic Publishers, Norwell, Ma 02061,

1987.

[6] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints. In Conf. Rec. \th Acm Symp. on Prin. of

Programming Languages, pages 238-252, 1977.

[7] S. Debray. The SB-Prolog System, Versión 2.3.2: A User's Manual. Technical Report 87-15, Dept. of

Computer Science, University of Arizona, March 1988.

[8] S. K. Debray. A Simple Code Improvement Scheme for Prolog. In Sixth International Conference on

Logic Programming, pages 17-32. MIT Press, June 1989.

[9] S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog Programs. Journal of Logic

Programming, pages 207-229, September 1988.

[10] D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth Generation Computer

Systems, pages 471-478. Tokyo, November 1984.

[11] D. DeGroot. A Technique for Compiling Execution Graph Expressions for Restricted AND-parallelism

in Logic Programs. In Proc. of the 1987 Int'l Supercomputmg Conf., pages 80-89, Athens, 1987. Springer

Verlag.

[12] S. W. Dietrich. Extensión Tables: Memo Relations in Logic Programming. In Fourth IEEE Symposium

on Logic Programming, pages 264-272, September 1987.

[13] M. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting Independent And-

Parallelism. In 1990 International Conference on Logic Programming. MIT Press, June 1990.

[14] M. Hermenegildo and F. Rossi. On the Correctness and Efficiency of Independent And-Parallelism

in Logic Programs. In 1989 North American Conference on Logic Programming, pages 369-390. MIT

Press, October 1989.

[15] M. V. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architecture Design

and Efficient Implementation of Logic Programs in Parallel. PhD thesis, Dept. of Electrical and Com

puter Engineering (Dept. of Computer Science TR-86-20), University of Texas at Austin, Austin, Texas

78712, August 1986.

[16] D. Jacobs and A. Langen. Compilation of Logic Programs for Restricted And-Parallelism. In European

Symposium on Programming, pages 284-297, 1988.

[17] D. Jacobs and A. Langen. Accurate and Efficient Approximation of Variable Aliasing in Logic Programs.

In 1989 North American Conference on Logic Programming. MIT Press, October 1989.

[18] G. Janssens. Derwmg Run-time Properties of Logic Programs by means of Abstract Interpretation. PhD

thesis, Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium, March 1990.

[19] N. Jones and H. Sondergaard. A semantics-based framework for the abstract interpretation of prolog.

In Abstract Interpretation of Declaratwe Languages, chapter 6, pages 124-142. Ellis-Horwood, 1987.

[20] L. Kale. Parallel Execution of Logic Programs: the REDUCE-OR Process Model. In Fourth Interna

tional Conference on Logic Programming, pages 616-632. Melbourne, Australia, May 1987.

[21] H. Mannila and E. Ukkonen. Flow Analaysis of Prolog Programs. In \th IEEE Symposium on Logic

Programming. IEEE Computer Society, September 1987.

[22] A. Marien, G. Janssens, A. Mulkers, and M. Bruynooghe. The impact of abstract interpretation: an

experiment in code generation. In Sixth International Conference on Logic Programming, pages 33-47.

MIT Press, June 1989.

[23] K. Marriott and H. S0ndergaard. Semantics-based dataflow analysis of logic programs. Information

Processing, pages 601-606, April 1989.

[24] C. S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of Logic Programming, 2(1),

April 1985.

[25] C.S. Mellish. Abstract Interpretation of Prolog Programs. In Third International Conference on Logic

Programming, number 225 in Lecture Notes in Computer Science, pages 463-475. Imperial College,

Springer-Verlag, July 1986.

[26] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence Information at Compile-

Time Through Abstract Interpretation. In 1989 North American Conference on Logic Programming.

MIT Press, October 1989.

[27] K. Muthukumar and M. Hermenegildo. The DCG, UDG, and MEL Methods for Automatic Compile-

time Parallelization of Logic Programs for Independent And-parallelism. In 1990 International Confer

ence on Logic Programming, pages 221-237. MIT Press, June 1990.

[28] F. Pereira. Prolog Benchmarks. Prolog Electronic Digest, 5(56), August 1987.

[29] Qumtus Prolog User's Cuide and Reference Manual—Versión 6, April 1986.

[30] J.-C. Tan. Prolog Optimization by Removal of Redundant Trailings. Technical report, Dept. of Com

puter Science, National Taiwan University, Taipei, April 1989.

[31] A. Taylor. Removal of dereferencing and trailing in prolog compilation. In Sixth International Conference

on Logic Programming, pages 48-60. MIT Press, June 1989.

[32] A. Taylor. LIPS on a MIPS: Results from a prolog compiler for a RISC. Technical report, Association

for Logic Programming, June 1990.

[33] A. K. Turk. Compiler Optimizations for the WAM. In Third International Conference on Logic Program

ming, number 225 in Lecture Notes in Computer Science, pages 657-662. Imperial College, Springer-

Verlag, July 1986.

[34] P. Van Roy and A. M. Despain. The Benefits of Global Dataflow Analysis for an Optimizing Prolog

Compiler. In Proceedings of the North American Conference on Logic Programming, pages 501-515.

MIT Press, October 1990.

[35] D. H. D. Warren. OR-Parallel Execution Models of Prolog. In Proceedmgs of TAPSOFT '87, Lecture

Notes in Computer Science. Springer-Verlag, March 1987.

