
Description and Evaluation of a Generic Design
to Integrate CLP and Tabled Execution

Joaquín Arias
IMDEA Software Institute

joaquin.arias@imdea.org

Manuel Carro
IMDEA Software Institute

Technical University of Madrid
manuel.carro@{imdea.org,upm.es}

ABSTRACT
Logic programming systems with tabling and constraints (TCLP,
tabled constraint logic programming) have been shown to be more
expressive and in some cases more efficient than those featur-
ing only either tabling or constraints. Previous implementations
of TCLP systems which use entailment to determine call / an-
swer subsumption did not provide a simple, uniform, and well-
documented interface to facilitate the integration of additional con-
straint solvers in existing tabling systems, which would increase
the application range of TCLP. We present the design and an ex-
perimental evaluation of Mod TCLP, a framework which eases this
integration. Mod TCLP views the constraints solver as a client of
the tabling system. The tabling system is generic w.r.t. the con-
straint solver and only requires a clear, small interface from the lat-
ter. We validate our design by integrating four constraint solvers:
a re-engineered version of a previously existing constraint solver
for difference constraints, written in C; the standard versions of
Holzbauer’s CLP(Q) and CLP(R), written in Prolog; and a new
constraint solver for equations over finite lattices. We evaluate
the performance of our framework in several benchmarks using
the aforementioned constraint solvers. All the development work
and evaluation was done in Ciao Prolog, a robust, mature, next-
generation Prolog system.

Keywords
Constraints, Tabling, Prolog, Interface, Implementation.

1. INTRODUCTION
Constraint Logic Programming (CLP) [12] extends Logic Pro-

gramming (LP) with variables which can belong to arbitrary con-
straint domains and the ability to incrementally solve the equa-
tions involving these variables. CLP brings additional expressive
power to LP, since constraints can very concisely capture complex
relationships between variables. Also, shifting from “generate-
and-test” to “constraint-and-generate” patterns reduces the search
tree and therefore brings additional performance, even if constraint
solving is in general more expensive than unification.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Tabling [23, 26] is an execution strategy for logic programs
which suspends repeated calls which would cause infinite loops.
Answers from other, non-looping branches, are used to resume sus-
pended calls which can in turn generate more answers. Only new
answers are saved, and evaluation finishes when no new answers
can be generated. Tabled evaluation always terminates for calls /
programs with the bounded term depth property and can improve
efficiency for programs which repeat computations, as it automat-
ically implements a variant of dynamic programming. Tabling has
been successfully applied in a variety of contexts, including de-
ductive databases, program analysis, semantic Web reasoning, and
model checking [27, 4, 29, 18].

The combination of CLP and tabling [25, 20, 3, 2] brings several
advantages. It improves termination properties and increases speed
in a range of programs. It has been applied in several areas, includ-
ing constraint databases [15, 25], verification of timed automata
and infinite systems [1], and abstract interpretation [24].

The theoretical basis of TCLP [25] were established in the
framework of bottom-up evaluation of Datalog systems and
presents the basic operations (projection and entailment checking)
that are necessary to ensure completeness w.r.t. the declarative se-
mantics. However, some previous implementations did not fully
include these two operations [20, 3], allegedly due to performance
issues and also to the implementation difficulty.

On the other hand, previous TCLP frameworks featuring a com-
plete treatment of constraint projection and entailment [2] focused
on adapting a tabling algorithm and its implementation to be used
with constraints. As a result, and although being generic frame-
works, they were are not easily extensible. Adding new con-
straint domains to them is a difficult task that requires deep knowl-
edge about the particular tabling implementation and the constraint
solver. The modifications done to the tabling implementation for
one particular constraint solver may very well be difficult to adapt
to another constraint solver; in turn, constraint solvers had to be
modified in order to make then aware of data structures and capabil-
ities of the tabling algorithm. These drawbacks generate a technical
debt that makes using the full potential of TCLP very difficult.

In this work we, on one hand, generalize the design of a tabling
implementation so that it can use the projection and entailment op-
erations provided by a constraint solver1 presented to the tabling
engine as a server. On the other hand, we define a set of opera-
tions that the constraint solver has to provide to the tabling engine.
These operations are natural to the constraint solver, and when they
are not already present, they should be easy to implement.

We have validated our design (termed Mod TCLP) with an im-

1Note that parts of the algorithm, such as the SCC-based comple-
tion detection procedure, remain untouched.



plementation in Ciao Prolog [10]2 where we interfaced four non-
trivial constraint solvers to provide four different TCLP systems.
We have experimentally evaluated these implementations with pro-
grams exploiting TCLP execution on several benchmarks.

2. BACKGROUND AND MOTIVATION
In order to highlight some of the advantages of TCLP versus LP,

tabling, and CLP with respect to declarativeness and logical read-
ing, we will compare the behavior of these paradigms and strate-
gies using different versions of a program to compute distances
between nodes in a graph. Each version will be adapted to a differ-
ent paradigm, but trying to stay as close as possible to the original
code, so that the additional expressiveness can be attributed to the
semantics of the programming language and not to differences in
the code itself. It is worth noting that with enough programming ef-
fort, a program written in Prolog (or any other language) can exhibit
the behavior of a tabled, CLP, or TCLP program, but we precisely
want to avoid having to spend resources in making this costly and
bug-prone adaptation for every program.

d i s t (X, Y, D) :−
d i s t (X, Z, D1) ,
edge(Z, Y, D2) ,
D i s D1 + D2.

d i s t (X, Y, D) :−
edge(X, Y, D) .

:− use package( clpq ) .

d i s t (X, Y, D) :−
D1 #> 0 , D2 #> 0 ,
D #= D1 + D2,
d i s t (X, Z, D1) ,
edge(Z, Y, D2) .

d i s t (X, Y, D) :−
edge(X, Y, D) .

Figure 1: Versions of distance in a graph:
Prolog (left) and CLP (right).

2.1 LP vs. CLP
The initial code in Fig. 1, left is the Prolog version of a pro-

gram to find nodes in a graph within a distance K from each other.3

Fig. 1, right, is the CLP version of the same code where we have
moved the constraint which expresses distance addition to the be-
ginning of the body and added constraints stating that distances
are assumed to be non-negative. In order to find the nodes X
and Y within a distance K from each other we use the queries
?- dist(X,Y,D), D < K. and ?- D #< K, dist(X,Y,D). in Prolog
and CLP, respectively. None of these two queries terminates due to
the left recursion for graphs with or without cycles.

If we convert the program to a right-recursion version by just
swapping the calls to edge/3 and dist/3, the LP execution will
still not terminate in a graph with cycles. This conversion is easy
in this case, but in other cases, such as certain parsing algorithms
or language interpreters, left recursion is much more natural and
the conversion to right recursion requires extra arguments to im-
plement stacks — precisely the kind of program adaptation that
we would like to avoid. The right-recursive version of the CLP
program terminates because the initial distance bound eventually
causes an inconsistency in the constraint store and provokes a fail-
ure in the search. In other words, the nodes explored can be at
most K distance units apart. In order to ensure that this is a real
bound we need a lower bound to the distance between two nodes,
and hence the constraints on D1 and D2. If that constraint were not
there, the possibility of a negative distance would make it impossi-

2Stable versions of Ciao Prolog are available at http://www.
ciao-lang.org. The Ciao Prolog version and benchmarks used in
this paper are available at http://goo.gl/vWRV15.
3This is a typical query for the analysis of social networks [21].

LP CLP TAB TCLP
Left rec. × × X X Without
Right rec. X X X X cycles
Left rec. × × × X With
Right rec. × X × X cycles

Table 1: Comparison of termination properties.

ble to set the aforementioned bounds. This behavior is summarized
in columns “LP” and “CLP” of Table 1.

2.2 LP vs. Tabling
Tabling records the first occurrence of a tabled predicate call (the

generator) and its answers. In variant tabling (the most usual form
of tabling) when a call equal to a previous generator up to variable
renaming is found, its execution is suspended, and it is marked as a
consumer of the generator . When a generator finitely finishes ex-
ploring all of its clauses and its answers are collected, its consumers
are resumed and are fed the generator’s answers. This may make
consumers to produce answers which may resume them again.

Tabling is complete for programs with the bounded term-depth
property (which have a finite model), no matter whether they are
left or right recursive. Therefore, left- or right-recursive reacha-
bility terminates in finite graphs with or without cycles. However,
the program in Fig. 1, left, has an infinite model for cyclic graphs:
every cycle can be traversed an unbound number of times, giving
rise to an unlimited number of answers with a different distance
each. The query ?- dist(X,Y,D), D < K. will therefore not termi-
nate under variant tabling.

Operationally, if local scheduling [5] is used, the tabling engine
tries to find all the answers (maybe infinitely many) before return-
ing them. If batch scheduling [5] is used, some answers may be
returned but the tabling engine will not finitely terminate, as it will
eventually try to unsuccessfully generate new answers under the
distance bound K. Note that ignoring the distance argument for
tabling (which some systems can do [28] makes tabling to keep
the first solution found, but it breaks completeness.

2.3 TCLP vs. Tabling and CLP
Under our TCLP framework, the program in Fig. 1, right, can be

executed with tabling and using constraint entailment to suspend
more particular calls and to store only the more general answers.
These enhance termination properties and speed, as we will see in
Section 4.1. Using constraint entailment in TCLP is related to us-
ing subsumption in regular tabling [21], which was also shown to
enhance termination and performance. The column “TCLP” of Ta-
ble 1 summarizes the termination properties of dist/3 under TCLP,
and shows that a full integration of tabling and CLP makes it possi-
ble to find all the solutions and finitely terminate in all the cases. To
execute the CLP program under TCLP it is only necessary to im-
port the package with the tabled constraint solver interface instead
of the regular constraint solver.

In order to understand why entailment is advantageous, we will
very summarily describe how our implementation works. We as-
sume some knowledge about tabling. Under our implementation,
a generator Gen is identified by a tuple 〈Cgen,Pro jStoregen〉 where
Cgen is the call pattern and Pro jStoregen is the projection of the
current constraint store onto the constrained variables of the call.
A call 〈Ccall ,Pro jStorecall〉 is a consumer of Gen if Ccall is a vari-
ant call of Cgen and the constraint store Pro jStorecall is entailed by
Pro jStoregen. In that case 〈Ccall ,Pro jStorecall〉 can be suspended
because every answer Anscall in its answer set is at least as particu-
lar as an answer in the set of answers Ansgen of the generator:



〈Ccall ,Pro jStorecall〉 v 〈Cgen,Pro jStoregen〉
=⇒ variant(Ccall ,Cgen) ∧ Pro jStorecall v Pro jStoregen

=⇒ Anscall vS Ansgen

where S1 vS S2 iff ∀c1 ∈ S1 ∃ c2 ∈ S2 . c1 v c2

In the Mod TCLP implementation, an answer is identified by a
tuple 〈Sans,Pro jStoreans〉, where Sans is a variable substitution and
Pro jStoreans is the projection of the constraint store onto the set
of variables constrained when the answer is collected. The answer
Ans0 is more particular that the answer Ans1 if:

〈Sans0 ,Pro jStoreans0〉 v 〈Sans1 ,Pro jStoreans1〉
=⇒ variant(Sans0 ,Sans1) ∧ Pro jStoreans0 v Pro jStoreans1

When the consumers are resumed, as in tabling, they are fed with
answers from its generator. Unlike in variant tabling, where these
answers are a substitution which can be directly applied to the con-
sumers (both have variables in the same position), in TCLP with
entailment not all the generator answers are be valid for its con-
sumers, since a consumer could be more particular than its genera-
tor due to the constraints active when it was called.

So in order to check if an answer is valid for a consumer, the
tabling engine first directly applies the variable substitution (they
also have variables in the same position), and then calls the con-
straint solver to calculate the resulting constraint store Storeres once
the projected constraint store of the answer Pro jStoreans is added
to the constraint store of the consumer Storecons

Storeres = Storecons∧Pro jStoreans

If Storeres = ⊥, that answer is not valid since the resulting con-
straint store is not consistent, otherwise the execution continues
with Storeres as the consumer constraint store.

Before an answer Ans produced by the generator Gen is added
to its answer set Ansgen, a double entailment check is executed to
discard Ans if there is a more general answer in Ansgen or to re-
move from Ansgen the answers which are more particular than Ans.
This process takes time, but it brings advantages from saving re-
sumptions: when an answer is added to a generator, consumers are
resumed by that answer. These consumers generate more answers
and cause further resumptions in cascade. Reducing the number of
redundant answers reduces the number of redundant resumptions
and execution time.

2.4 Some Application Fields for TCLP
Facilitating the integration of tabling and constraint solvers

makes it possible to exploit the synergy between them in several
application fields, already mentioned in the literature, of which we
highlight a few:

Abstract interpretation: Tabling can be use not only to reach the
fixpoint [14, 13] but also by implementing the abstract do-
main operations as a constraint system, the entailment will
automatically detect more particular calls and suspend exe-
cution to reuse answers from most general ones. Constraints
can also be used to state preconditions to the analysis results
before the analysis starts. These preconditions can propagate
and solve some verification problems faster. In Section 4.3
we show and evaluate an example.

Reasoning on ontologies: An ontology formalizes types, proper-
ties, and interrelationships of entities. These can be ex-
pressed as a constraint system and with TLCP, evaluation in

store projection(+Vars, -ProjStore) Returns in ProjStore the
projection of the current constraint store onto the list of variables
Vars and extra information needed in the others phases.

call entail(+Vars, +ProjStore, +ProjStoregen) Success if the
projection of current constraint store, ProjStore, is entailed
by the projected store, ProjStoregen, of a previous generator.
Otherwise it fails.

answer compare(+Vars, +ProjStore, +ProjStoreans, -Res)
Returns Res=’≤’ if the projected store of the current answer,
ProjStore, is entailed by the projected store of a previ-
ous answer, ProjStoreans or Res=’>’ if ProjStore entails
ProjStoreans but ProjStore 6= ProjStoreans . Otherwise it fails.

apply answer(+Vars, +ProjStore) Adds the projected constraint
store ProjStore of the answer to the current constraint store and
success if the resulting constraint store is consistent.

current store(+Vars, +ProjStore, -CuSt) Returns in CuSt the
current constraint store.

reinstall store(+Vars, +CuSt) Reinstall the original constraint
store CuSt.

Figure 2: Generic interface specification.

ontologies can benefit from entailment of instances which
are more particular than other entities in a similar fashion to
OWL [9] but in richer domains.

Constraint-based verification: Verification rules can be encoded
as constraint systems, and the tabling engine can use the en-
tailment to guaranty termination and saves execution time.

We note that these application examples may need to use dif-
ferent constraint systems. Even more, for the abstract interpreter
every domain is a different constraint system. Therefore here is
where the power of making it easy to plug-in different constraint
solvers is relevant.

3. THE GENERIC INTERFACE
In this section we describe the interface operations, the pro-

gram transformation, and the implementation which together en-
able tabled execution with constraints. We illustrate them with a
flowchart and a trace of a TCLP execution.

3.1 Design of the Generic Interface
The basic generic interface (Fig. 2) specifies the predicates that a

constraint solver has provide to enable the tabling engine to interact
with it in our framework. Four of these predicates correspond to
three main operation in constraint systems:

Projection The projection of a constraint store CSt onto a set of
variables V ⊆ vars(CSt) is another constraint store PSt in-
volving only variables in V such that any solution of CSt is
also a solution of PSt and a valuation over V which is a so-
lution of PSt is a partial solution of CSt.
The predicate store projection/2 should return an object
representing the projection of the current constraint store
onto the variables in the call plus the information which the
constraint solver will need later to reinstall these constraints.
For example, since the tabling engine will recover this term
with a variable renaming, it is necessary to be able to identify
to which variables in the then-current constraint store corre-
spond the variables in the recovered projection.

Entailment A constraint store St1 is entailed by a constraint store
St2, (St1 v St2), if any solution of St1 is also a solution of
St2. Predicate call entail/3 is used to check if the constraint
store of the current call is entailed by the constraint store



of a previous generator (Call v Gen), and fails otherwise.
Predicate answer compare/4 is used to check entailment in
both directions: it returns≤ in its last argument when Call v
Gen or > when Call = Gen, and fails otherwise.

Add answers apply answers/2 is used to add the projected con-
straint store corresponding to the variables contained in an
answer to the current constraint store. If the resulting con-
straint store is consistent, it will succeed, and fail otherwise.

The last two predicates defined in the interface, current store/3
and reinstall store/2, are necessary in the cases where the tabling
engine (and the underlying Prolog machinery) cannot restore the
constraint store state on backtracking to retrieve the answers to the
generator. This can be the case for constraint solvers provided by
external libraries which can not use memory areas managed by the
tabling engine, and a representation of the external constraint store
needs to be saved and retrieved explicitly (as in the case of D≤, see
Section 4.1). This makes it possible to handle the objects managed
by the solver in a separate, transparent way.

3.2 Implementation Sketch
We describe now the implementation of Mod TCLP, including

the global table where generators, consumers, and answers are
saved, the transformation we perform to the tabled predicates, and
a (simplified) flowchart highlighting how the predicates from the
interface are integrated in the execution of the tabling engine.

Global Table.
Tries are the data structure of choice for the call / answer global

table [19]. In variant tabling every generator Cgen is uniquely as-
sociated, modulo variable renaming, to a leaf from where the sub-
stitution for every answer hangs. In TCLP, however, generators are
identified using as well the constraint store at call time — more
precisely, the projection on the variables of the generator. Thus we
represent generators with a tuple 〈Cgen,Pro jStoregen〉, and in every
leaf we have (i) the call pattern Cgen and (ii) a list pointing to the
frames of the generators having Cgen as call pattern. Each frame
identifies: (a) the projected constraint store (ProjStoregen), (b) the
answer table with the answers of this generator, and (c) a list which
maintains the consumers of this generator.

Similarly, answers are not merely a Herbrand substitution, but
also constraints attached to the variables in the answer. Different
answers can have the same substitution but different constraints.
The answer table is then a trie where each leaf identifies a variable
substitution Sans and for each of these substitutions, Sans a list of
the projected constraint stores ProjStoreans of the answer.

Program Transformation.
Fig. 3 shows the transformation of the predicate dist/3 from the

program in Fig. 1 (right). The original entry point to the predicate
is rewritten to call an auxiliary predicate through the tabled call/1
meta-predicate. The auxiliary predicate corresponds to the original
one with a renamed head and with an additional new answer/0 at
the end of the body to collect the answers. We illustrate how the
execution internally proceeds in the next section.

d i s t (A, B, C) :− tab led ca l l ( dist aux (A,B,C)) .

dist aux (X, Y, D) :− D1 #> 0 , D2 #> 0 , D #= D1 + D2,
d i s t (X, Z, D1) , edge(Z, Y, D2) ,
new answer .

dist aux (X, Y, D) :− edge(X, Y, D) ,
new answer .

Figure 3: Transformation of dist/3.

Execution Flow.
Figs. 5 and 6 show the implementations of tabled call/1 and

new answer/0. In our implementation these predicates are writ-
ten in C for performance reasons, but for conciseness and to help
understanding we show a Prolog version. This translation general-
izes previous tabling algorithms to deal with constraints and related
operations. This adaptation is transparent to the constraint solver,
which only has to provide the interface functionality.

Fig. 4 uses a (simplified) flowchart to show how execution of a
tabled call proceeds. We explain below the steps, following each of
the labels in the Figure.

A call to a tabled predicate Call starts the tabled execution in-
voking tabled call/1, which takes the control of the execution and
performs the following steps:

1. lookup table/3 returns in Gen the variant call pattern of Call
and in Vars the list of variables with constraints that appear in
the call.

2. The tabling engine calls store projection/2 in the constraint
solver. It returns the projection of the current constraint store
onto Vars in ProjStore.

3. The tabling engine retrieves, using member/2, a projected con-
straint store from the list of frames of Gen. If it succeeds,
ProjStore G contains the projected constraint store and the ex-
ecution continues in step 6. Otherwise it fails, which happens
because all frames have been retrieved or because Gen is the
first occurrence of this call pattern.

4. If the constraint solver implements current store/3, it returns a
representation of the current constraint store in CuSt.

5. The tabling engine calls save generator/4 to add a frame iden-
tifying a new generator to the list of frames of Gen. In this new
frame, the projected store ProjStore G of the new generator and
the current constraint store CuSt (if available), are also saved.
The answer trie and the consumers list are initialized and the
execution continues in the step 8.

6. The constraint solver checks if the current store ProjStore is
entailed by the retrieved projected constraint store ProjStore G
using call entail/3. If it is the case, Call is suspended in step 7.
Otherwise the tabling engine tries to retrieve another projected
constraint store in the step 3.

7. If the generator is not complete, the tabling engine suspends the
execution of Call with suspend consumer/1 and adds Call to
the list of consumers of the generator <Gen, ProjStore G>.
Execution then continues by backtracking over the youngest
generator. Otherwise Call continues the execution in step 16.
A suspended consumer is resumed when its generator produces
a new answer, and continues the execution in step 16 also.

8. The generator <Gen, ProjStore G> is executed with exe-
cute generator/2 which calls the renamed tabled predicate.
The execution of new answer/0 means that a new answer has
been found and execution continues in step 9.

9. The tabling engine returns the variable substitution of the cur-
rent answer in Ans and the list of (constrained) variables that
appeared in the call and are now/still (constrained) variables in
Vars using lookup table/1.

10. The tabling engine invokes store projection/2. This returns in
ProjStore the projection of the current constraint store onto the
variables in the answer, Vars.

11. The tabling engine retrieves projected constraint stores from the
corresponding list of Ans one at a time using member/2. If
it succeeds the projected constraint store is returned in ProjS-
tore A, and the execution continues in step 13. If it fails the
execution continues in step 12. Failure can happen because all



tabled call

0

lookup table

1

store
projection

2

retrieve
projection

3

current
store

4
save

generator

5

call
entail

6
suspend

consumer

7

execute
generator

8

lookup table

9

store
projection

10

retrieve
projection

11

save
answer

12

answer
compare

13
remove
answer

14

reinstall
store

15

retrieve
answer

16

apply
answer

17

no

yes

no

yes

new answer

no

yes>

≤

fails

resume

complete

yes

no

fails

success

Figure 4: Flowchart of the execution algorithm of Mod TCLP.

tabled cal l (Call ) :−
lookup table(Call , Vars , Gen) ,
store projection (Vars , ProjStore ) ,
(

member(ProjStore G , ∼projstore Gs(Gen)) ,
ca l l enta i l (Vars , ProjStore , ProjStore G) −>
suspend consumer(Call )

;
current store (Vars , ProjStore , CuSt) ,
save generator(Gen, ProjStore G , ProjStore , CuSt) ,
execute generator(Gen, ProjStore G) ,
re ins ta l l s to re (Vars , CuSt)

) ,
member(Ans, ∼answers(Gen, ProjStore G)) ,
member(ProjStore A , ∼projstore As(Ans)) ,
apply answer(Vars , ProjStore A ).

Figure 5: Implementation of tabled call/1.
Note: p(∼q(X)) ≡ q(X,Y), p(Y), with Y a fresh variable.

new answer :−
lookup table(Vars , Ans)
store projection (Vars , ProjStore ) ,
(
member(ProjStore A , ∼projstore As(Ans)) ,
answer compare(Vars , ProjStore , ProjStore A , Res) ,
(

Res == ’=<’
;

Res == ’> ’ ,
remove answer(ProjStore A) , f a i l

) , !
;
save answer(Ans, ProjStore)

) , ! ,
f a i l .

new answer :−
complete .

Figure 6: Implementation of new answer/0.
Note: p(∼q(X)) ≡ q(X,Y), p(Y), with Y a fresh variable.

projected constraint stores were already retrieved from the list or
because Ans is the first occurrence of this variable substitution.

12. The tabling engine adds ProjStore to the list of projected con-
straint stores of Ans with save answer/2, and resumes, one by
one, the consumers of the current generator which were sus-
pended in step 7. Since new answer/0 always fails, the ex-
ecution backtracks to complete the execution of the generator
(step 8).

13. The constraint solver checks if the current store (ProjStore)
is entailed by the retrieved projected constraint store
(ProjStore A) using answer compare/4. If this is the case, it
returns Res = ’=<’, which makes new answer/0 discard the
current answer, and the generator is re-executed in step 8. If
ProjStore entails ProjStore A but they are not equal, it returns
Res = ’>’ and ProjStore A is removed in step 14. Otherwise
it fails and the execution continues in step 11, where the tabling
engine tries to retrieve another projected constraint store.

14. The tabling engine flags the entailed answer as removed using
remove answer/1. Then the execution continues in step 11.

15. Once the generator has exhausted all the answers and does not
have more dependencies, it is marked as complete using com-
plete/0. When the interface implements reinstall store/2, the
constraint solver updates the current constraint store by rein-
stalling CuSt.

16. The tabling engine retrieves answers <Ans, ProjStore A>
from the generator <Gen, ProjStore G> using member/2. If
it succeeds and the answer is not flagged as removed, the answer
will be applied in step 17. Otherwise the execution backtracks
to retrieve another answer.

17. Applying the variable substitution Ans always succeeds, be-
cause the generator and its consumers have the same call pattern.
Then the constraint solver adds the projected constraint store of
the answer to the current constraint store with apply answer/2,
and checks if the resulting constraint store is consistent. If
so, execution continues; otherwise the execution continues to
step 16.



:− active tclp .

store projection (V, (F, St)) :−
clpqr dump constraints(V, F, St ) .

ca l l enta i l (V, , (V, StGen)) :− clpq entailed (StGen) .

answer compare(V, , (V, StAns) , =<) :−
clpq entailed (StAns) , ! .

answer compare( , (F, St) , (F, StAns) , >) :−
clpq meta(StAns) , clpq entailed (St ) .

apply answer(V, (V, St)) :− clpq meta(St ) .

Figure 7: Mod TCLP interface for CLP(Q),
a bridge to existing predicate

3.3 Interface implementation of TCLP(Q)
As an example, Fig. 7 shows the implementation of the TCLP

interface for Holzbauer’s CLP(Q) solver [11]. We will refer to this
code when we explore the step-by-step execution of a program in
Section 3.4. The existing CLP(Q) implementation already provides
most of the functionality required by the tabling engine, so that the
TCLP(Q) interface act mostly as a bridge to existing predicates.

A Mod TCLP constraint interface starts with the declaration
:- active tclp. which makes the compiler check which interface
predicates are available in order to adjust the program transfor-
mation, and instructs the runtime to activate the TCLP framework
when loading the program. The functionality required by the inter-
face is implemented as follows:

Projection the predicate clpqr dump constraints(+V, -F, -St),
provided by the constraint solver, performs projection. It re-
turns in St the current store projected onto the variables in V.
The variables in St are fresh and are contained in the list F,
following the same order as those in V.

Call entailment CLP(Q) provides a predicate clpq entailed(+St)
which checks entailment of St w.r.t. the current constraint
store, with which it has to share variables. In order to check
entailment with a projected constraint store retrieved from
the table, the fresh variables in the retrieved store have to be
unified with the constrained variables in the call V. That is
why store projection/2 returns a structure containing both
the projected store and the variables in this store.

Answer entailment In order to return the entailment direction of
the current constraint store w.r.t. a previous answer StAns,
we wrap it using two clauses. The first one checks in the
same direction as clpq entailed/1, for which we only need
to unify the fresh variables of the retrieved answer with those
in the current environment. To check in the other direction
we make StAns part of the current store by executing the
constraints (which does not interact with the current store,
because all of its variables are fresh) and we check entailment
with the projected current answer, whose variables have been
previously unified with those in the retrieved answer. If there
is no entailment in any direction, the call fails.

Apply answer The predicate clpq meta(+St) executes the con-
straints in St. If they are consistent with the current con-
straint store, execution continues, and fails otherwise. The
variables in St have been previously unified with those in the
pattern of the answer.

With this constraint solver, the predicates current store/1 and
reinstall store/3 are not needed since the CLP(Q) is implemented
in Prolog with attributed variables which restores its past state on
backtracking when necessary.

3.4 Step by Step Execution of dist/3

We will now walk through a step by step execution of the query
?- D #< 150, dist(a,Y,D). under the program in Fig. 1 (right)
and the graph in Fig. 8, where one edge length is defined with con-
straints. We will use TCLP(Q) for this example, which is imported
using :- use package(t clpq).. The directive :- table dist/3. is
used to enable tabled execution.

edge(a , b , 50).
edge(b , a , D) :−

D #>= 25,
D #=< 35.

a

b

50

[25,35]

Figure 8: Graph definition. [25,35] is the
closed interval from 25 to 35.

The query starts the execution adding the constraint D#=<150
to the current store. After dist(a,Y,D) is called, the
tabling engine takes the control of the execution calling
tabled call(dist aux(a,Y,D). Then lookup table/3 initializes and
saves Gen = dist aux(a,A,V1), the first occurrence of the call, and
returns Vars=[D]. Then store projection([D],(F,St)) is executed,
which returns (F,St)=([V0],[V0#=<150]).

The list of projected constraint stores associated to
dist aux(a,A,V1) is empty, so the execution continues in
step 5 because current store/3 is not implemented. The tuple
〈dist aux(a,A,V1), ([V0],[V0#=<150])〉 is saved as a generator
and its execution starts in step 8.

During the evaluation of the first clause of dist aux/3, the con-
straints {D1#>0, D2#>0, D#=D1+D2} are added to the con-
straint store. Then dist(a,Z,D1) is called and the tabling engine
reenters the tabled execution with tabled call(dist aux(a,Z,D1)).
The execution of lookup table(dist aux(a,Z,D1),Vars,Gen) re-
turns Vars=[D1] and returns in Gen the previous variant call
(dist aux(a,A,V1)) because it is a variant of dist aux(a,Z,D1). At
this point the list of projected constraint stores associated to Gen
contains the projected constraint store of the previous call.

The constraint solver executes store projection([D1], Proj-
Store) and returns ProjStore=([V0], [V0#>0, V0#<150]).
For clarification, the projection of the current constraint store
{D=<150, D1>0, D2>0, D=D1+D2} onto D1 is {D1>0,
D1<150}.

Then the tabling engine retrieves the previously projected store
ProjStore G=([V0], [V0#=<150]) and checks if it entails the
current constraint store with clpq entailed([V0#=<150]),4 which
after the unification D1=V0 succeeds because

{D=<150, D1>0, D2>0, D = D1+D2} v {D1=<150}.
The current call dist aux(a,Z,D1) is suspended and the eval-

uation of the generator backtracks to continue executing its sec-
ond clause. This execution starts with the initial constraint store
D#=<150 and edge(a,Y,D) which unifies with edge(a,b,50).
Then new answer/0 (added at the end of the body by the com-
piler) collects the first answer, whose variable substitution is {Y=b,
D=50}. This is stored in the table, and since the list of constrained
variables is empty, store projection/2 returns ([],[]) and the an-
swer 〈{Y=b, D=50}, ([],[])〉 is saved.

The tabling engine then resumes the suspended goal, which con-
sumes this answer. Since the variable substitution (D1=50, after
renaming) is consistent with the constraint store of the consumer
{D1>0, D1<150}, the execution continues. Then edge(b,Y,D2),
{..., D2#=<99} is called, which unifies with edge(b,a,D2),

4Note that TLCP(Q) does not make use of ProjStore since the en-
tailment is checked using the current constraint store.



{D2#>=25, D2#=<35}. The constraint solver adds the con-
straints onto D2 to the current constraint store and since it is con-
sistent, the second answer is collected by new answer/0. Then
lookup table/3 stores the variable substitution {Y=a} and re-
turns [D] as the list of constrained variables. store projection/2
returns ([V0], [V0#>75,V0#<85]) and since the list of pro-
jected stored associated to Y=a is empty, the answer 〈{Y=a},
([V0],[V0#>75,V0#<85])〉 is saved.

The tabling engine resumes for the second time the con-
sumer, which consumes the second answer. apply answer([D1],
([D1],[D1#>75,D1#<85])) succeeds and executions continues.
edge(a,Y,D2), {..., D2#=<64} is then called and unifies with
edge(a,b,50). and new answer/0 collects the third answer.
Then lookup table/3 stores the variable substitution {Y=b} and
store projection/2 returns ([V0], [V0#>125,V0#<135]). Since
the list of projected stores associated to Y=b is empty, the answer
〈{Y=b}, ([V0],[V0#>75,V0#<85])〉 is saved.

For the third time the tabling engine resumes the consumer,
which consumes a new answer. apply answer([D1], ([D1],
[D1#>75,D1#<85])) succeeds and the execution continues.
Then edge(b,Y,D2), {...,D2#=<15} is called and fails. Since
the generator has exhausted all the answers and it does not have
any more dependencies, it is marked as complete with complete/0
and it will consume the three collected answers of the query.

3.5 Implementation Improvements
The design we have presented strives for simplicity. There are

however several improvements that can be done which enhance
this basic design, but which we preferred not to introduce before
in order not to make the presentation more cumbersome. We will
present them now, with the understanding that they do not change
the general ideas we have presented so far.

Two-Step Projection.
Projection (store projection/2 is usually the most costly opera-

tion of the TCLP interface, but it is only mandatory when a call is a
generator, which we know with entailment checking. We have how-
ever placed it before the entailment phase because the constraint
solver can use the projection operation to compute some informa-
tion needed the check entailment, so that instead of repeating that
computation for each previous generator it is done only once, and
because the benefits of avoiding the recomputation of a consumer
can balance the effort of computing its projection.

In our implementation, projection is performed in two steps: an
operation aux projection(Vars, Aux is executed before the entail-
ment phase which returns in Aux the information needed in to
check entailment, and an operation final projection(Vars, Aux,
ProjStore) is executed after the entailment checking when it fails
(which means that the call is a generator), which returns the pro-
jected constraint store in ProjStore using the information in Aux.

For symmetry, a similar mechanism is used with answers:
aux ans projection/2 is performed before the entailment check
for answers and final ans projection/3 after the answer entailment
check.

The TCLP(Q) interface in Fig. 7 takes advantage of this improve-
ment in the call entailment phase because clpq entail/1 does not
need any information from the current constraint store to evaluate
the entailment. Therefore when a call is entailed by a previous
generator, the projection is not needed. However, in the answer
comparison phase the projected constraint store is needed because
entailment can be checked in both directions. The TCLP(Q) imple-
mentation of the projection with these improvements is:

aux projection ( , ) .
f i na l p ro jec t ion (V, , (F, St )) :− clpqr dump constraints (V,F, St ) .

aux ans projection (V, (F, St )) :− clpqr dump constraints (V,F, St ) .
f ina l ans pro ject ion ( , (F, St ) ,(F, St ) ) .

Partial Projections.
The Mod TCLP framework allows to define a constraint solver

interface that instead of the projection of a constraint store executes
a partial projection. This feature is helpful for constraint domains
which have no projection operation (or weak projection only) [17]
and for those that do but have a prohibitive cost.

A partial projection of a constraint store CSt onto a set of vari-
ables V, V ⊆ vars(CSt) is a constraint store PSt with vars(PSt)⊆
V and where some of the constraints in the full projection are omit-
ted. As a result, CSt is entailed by PSt (CSt v PSt), so any solution
of CSt is also a solution of PSt, but not every valuations over V
which is a solution in PSt is also a partial solution of CSt.

In the Mod TCLP framework, a partial projection can be used
to identify the generator 〈Cgen,PartialStgen〉. Answer entailment
can also be checked using the partial projection PartialStans of
the constraint store Storeans of the new call, because if Storeans v
PartialStans and if it is the case that PartialStans v PartialStgen it
is also true that Storeans v PartialStgen.

But it is important to note that to guarantee completeness
the generator should be executed with the partial projected con-
straint store PartialStgen as the current store (without any other
constraint). Because the fact that Storegen v PartialStgen and
Storeans v PartialStgen does not always imply that Storeans v
Storegen. This execution of the generator will produce all the
answers valid for the consumers, thereby ensuring completeness.
However it may also produce some answers not consistent with the
initial constraint store Storegen of the generator call, which would
lead to incorrect solutions. To guarantee correctness, the constraint
solver should be sound and fail when it is requested to add a con-
straint (e.g., one of the answers) inconsistent with Storegen.

The predicates current store/3 and reinstall store/2, which
could be provided by external constraint solvers, can be used
to guarantee the correct use of partial projections. With cur-
rent store(+Vars, +ProjStore, -CuSt) the constraint solver up-
dates the constraint store of the generator to be ProjStore and re-
turns in CuSt the information needed to recover the omitted con-
straints later on. With reinstall store(+Vars, +CuSt), the con-
straint solver restores the state the constraint store had before the
generator started to consume its answers.

Call abstraction [20] is an extreme case of partial projection,
where the constraint store associated to the tabled call is not taken
into account to execute it, losing benefits of the constraints since it
has to compute all the possible results and then filter them through
the call-time constraint store.

Improve Answer Checking with Aggregations.
answer compare/4 is used to discard redundant answers and,

as a result, it may also reduce how many times consumers are
resumed. A variant of answer compare/4 can be used to mod-
ulate what Mod TCLP does when a new answer is received:
when two answers are compared, they can be substituted for
a new one. This feature can be made available with a new
call answer check(+Vars, +ProjStore, +ProjStoreans, -Res,
-ProjStorenew) that can return new in Res and, in that case, the
engine removes ProjStoreans and saves ProjStorenew instead of
ProjStore.

This can be used for a variety of purposes. For example, two
answers A1 and A2 which are points in a lattice can be combined



and A1 t A2 saved instead. This can be used to store abstractions
of answers, which will lose some information, but which may be
acceptable in some applications. The predicate which decides how
the answers should be combined is provided by the programmer in
the TCLP interface, and whether the results this gives are logically
consistent depends ultimately on the programmer.

4. INTEGRATION AND EXPERIMENTAL
EVALUATION

The design we are presenting is likely to bring more flexibility to
a system with tabled constraints at a reasonably price in implemen-
tation effort. We will support this claim with several examples. As
it is usual with these cases, additional flexibility comes also with
a performance price, which we will also evaluate. To perform this
double validation, we have used four solvers with different charac-
teristics in their implementation: a constraint solver for difference
constraints (Section 4.1), ported from [2] and completely written in
C; the well-known attribute-based implementations of CLP(Q) and
CLP(R) [11], used in many Prolog systems (Section 4.2); and a
new solver for a constraint system over finite lattices (Section 4.3).

These use cases and a full Ciao Prolog distribution, including the
libraries and interface presented in this paper, are available at http://
goo.gl/vWRV15. All experiments were done using that distribution
on a Mac OS-X 10.9.5 machine with a 2,66 GHz Intel Core 2 Duo
processor. The run time results are given in milliseconds (ms).

4.1 Difference Constraints
Difference constraints CLP(D≤) is a simple but relatively pow-

erful constraint system whose constraints are of the form X−Y ≤ d
where X ,Y,d ∈ Z, X ,Y are variables, and d is a constant.

A system of difference constraints can modeled with a weighted
graph which is satisfiable if there are no cycles with negative
weight. A solver for this constraint system can be based on shortest
path algorithms [6] where the constraint store is represented as an
n × n matrix A of distances. The implementation uses attributed
variables to relate Prolog variables with their representation in the
matrix by having as attribute its index in the matrix.

The projection onto a set of variables V extracts a sub-matrix
A’ containing all pairs (v1, v2) s.t. v1, v2 ∈ V. To speed up the
projection, it is represented as a vector of length |V| containing
the index of each vi in A. For example, if the indexes in A of the
variables [X,Y,Z,T,W] are [1,2,3,4,5], the projection onto the set
of variables [T,X,Y] is represented with the vector (4,1,2).

The TCLP(D≤) interface uses the triple (Index, Size, Store) to
identify the projected constraint store. Index is the memory address
of the vector with the indexes of the constrained variables of the
call/answer, Size is the length/number of constrained variables, and
Store is the memory address of a copy of the sub-matrix which rep-
resents the projected constraint store. This copy is only needed by
the generators in the entailment phase where the constraint solver
calls call entail( , (I, S, ), ( , , St)):-... to check entailment. At
this point, the projected constraint store of the previous generator
St points to a copy of the submatrix because the main matrix had
presumably been modified during the execution and the indexes of
variables of the generator may correspond to other variables.

Since the copy of the sub-matrix is only needed for the gener-
ators, it is possible to increase performance and reduce memory
footprint using the projection in two steps described in section 3.5
and copying the sub-matrix only when the entailment phase fails.

The solver does not use the memory areas of the tabling en-
gine, and the Prolog machinery cannot restore the current con-
straint stores of the generators on backtracking. Therefore the con-

CLP(D≤) Orig. TCLP(D≤) Mod TCLP(D≤)
truckload(300) 40452 2903 7268
truckload(200) 4179 1015 2239
truckload(100) 145 140 259
step bound(30) - 2657 1469
step bound(20) - 2170 1267
step bound(10) - 917 845

Table 2: Run time (ms) using the difference constraint
solver for truckload/4 and step bound/1.

straint solver uses current store/3 to return a reference to a copy
of the current constraint store (the matrix A) and reinstall store/2
to make a previously saved copy be the current constraint store.

Performance Evaluation.
The original TCLP implementation [2] was done on the same

platform as ours and we are reusing the same solver. Since that im-
plementation was deeply intertwined with the tabling engine and
had a very low overhead, we will use it to compare the costs of
adopting a more modular framework against the original imple-
mentation, we use two benchmarks:

truckload(P, Load, Dest, Time) (from [20]): it solves a ship-
ment problem with a call. We use P = 30, Dest = chicago,
using Load as parameter to vary its complexity. truckload/4
does not need tabling, but it speeds up if tabling is used.

step bound(Init, Dest, Steps, Limit) : a left-recursive graph
reachability program similar to dist/3 which constrains the
total number (Limit) of edge traversals. step bound/4 needs
tabling in the case of graphs with cycles.

Table 2 shows that truckload/4 incurs a nearly three-fold in-
crease in execution time with respect to the initial non-modular
TCLP(D≤) implementation. This is mainly due to the overhead
of the execution control, which in our current implementation goes
from the tabling engine (in C) level to the interface level (in Prolog),
which calls back the constraint solver (in C). In the initial imple-
mentation, communication did not move between levels, and was
directly done from C to C level (which made it nearly impossible
to plug other constraint solvers).

step bound/4 is however less efficient in the initial TCLP(D≤)
implementation than in the current one (and cannot be executed in
CLP(Q) as the graph has cycles). The reason is that our modular
design made it possible to implement more easily non-trivial oper-
ations such as discarding more particular answers already stored
in the table (enabled by the =< and > results returned by an-
swer compare/4), and step bound/1 takes advantage of this opti-
mization, which is not very significative in the case of truckload/4.

To validate this optimization we executed the programs truck-
load/4 and step bound/1 using three different answer manage-
ment strategies:

/0 answer compare/4 does not check answer entailment.
← answer compare/4 only checks if new answers are entailed by

previous answers. If so, the new answer is discarded. This
was already implemented in the original TLCP implementa-
tion.

→ answer compare/4 only checks if new answers entail previous
answers. If so, the previous answer is flagged as removed.

↔ answer compare/4 checks entailment in both directions.

The results in Table 3 confirm that in the examples studied, and
despite the cost of these strategies, the number of answers returned
and the computation time is reduced. In truckload/4 the number
of answers does not change drastically; although in can vary in one



/0 ← → ↔
Time Ans. Time Ans. Time Ans. Time Ans.

truckload(300) 742039 14999 7806 41 7780 30 7268 5
truckload(200) 11785 1520 2314 23 2354 18 2239 5
truckload(100) 300 58 263 6 263 9 259 3
step bound(30) – – 8450 252 – – 1469 25
step bound(20) – – 6859 242 38107 441 1267 25
step bound(10) – – 2846 165 8879 221 845 25

Table 3: Run time (ms) and total # answers returned. ’ /0’, ’←’, ’→’ and ’↔’ define the answer management strategy.

/0 # Sav. # Dis. # Rem. # Ret.
truckload(300) 448538 0 0 14999
truckload(200) 52349 0 0 1520
truckload(100) 2464 0 0 58
← # Sav. # Dis. # Rem. # Ret.
truckload(300) 67503 9971 0 41
truckload(200) 16456 1325 0 23
truckload(100) 1525 52 0 6
step bound(30) 44549 716826 0 252
step bound(20) 37548 599259 0 242
step bound(10) 15625 242351 0 165
→ # Sav. # Dis. # Rem. # Ret.
truckload(300) 75272 0 9460 30
truckload(200) 17568 0 1298 18
truckload(100) 1490 0 49 9
step bound(30) >1145690 0 >1074071 –
step bound(20) 946309 0 891078 441
step bound(10) 294728 0 276867 221
↔ # Sav. # Dis. # Rem. # Ret.
truckload(300) 48524 6596 1740 5
truckload(200) 13550 1046 240 5
truckload(100) 1343 45 10 3
step bound(30) 9697 74528 4571 25
step bound(20) 9352 71658 4371 25
step bound(10) 6650 56935 3019 25

Table 4: # Answers: saved (Sav.), discarded (Dis.) , removed
(Rem.) and returned to the query (Ret.)

order of magnitude, the number of returned solutions is not very
large, which means that the impact in execution time is not very
important. It is notwithstanding interesting to note that there is no
slowdown when using the more complex strategy.

The case of step bound/4 is interesting: the worst strategy is
“→” (up to the point that the execution runs out of memory for the
largest case), followed by “←”, and then by “↔”, which is the best
one, both in terms of execution time and number of solutions.

The internal reasons of these differences can be deduced from
Table 4, where, for each of the benchmark cases and strategies,
we show how many of the generated answers are saved, discarded
before being inserted, or removed after being inserted. Note that
the number of generated answers is not always the same since, as
discussed before, fewer saved answers wake up fewer consumers.
It is clear that the “↔” strategy has the best profile, while “→”
generates many more candidate answers than either of the other
two — in excess on one million for step bound(30). Not using
any entailment strategy (“ /0”) is clearly a very bad option.

As an example of the usefulness of obtaining the most gen-
eral correct answer, Fig. 9 shows a “shortest distance” program
sd/3 [3]. For a query such as ?- sd(a, c, Dist). the system re-
ported in [3] returns as answers a series of constraints Dist #>=
Ck, one of which reflects the smallest distance between a and c, but
we do not know in advance which one.

On the other hand, the↔ strategy only returns one answer (the

LP Tab CLP TCLP
Right rec. 1917 291 200 184 Without
Left rec. – 144 – 45 cycles
Right rec. – – 4261 1027 With
Left rec. – – – 420 cycles

Table 5: Run time (ms) for dist/3. A ’–’ means no termination.

most general one) which corresponds to the tightest bound for the
shortest distance between two nodes. Therefore, we have the fol-
lowing pairs query ; answer: ?- sd(a,c,D). ; D #>= 3.0, ?-
sd(a,b,D). ; D #>= 2.0, and ?- sd(d,a,D). ; D #>= 2.3.

4.2 CLP(Q) and CLP(R)
Holzbauer’s CLP(Q) and CLP(R) [11] is a very well known Pro-

log extension for Constraint Logic Programming over the rationals
and over the reals. The TCLP interface for CLP(R) is similar to
the interface of CLP(Q) presented in Fig. 7. The only difference
is that the CLP(Q) predicates clpq entailed/1 and clpq meta/1
have to be replaced by their CLP(R) counterparts clpr entailed/1
and clpr meta/1. We will therefore evaluate the behavior of the
CLP(R) and CLP(Q) plugins.

Performance Evaluation.
We will first use the CLP program in Fig. 1, with which we

evaluated completeness in Table 1, to evaluate the performance in
the same cases. We will use a graph of 25 nodes without cycles
(with 584 edges) or with cycles (with 785 edges). Table 5 confirms
that TCLP(Q), besides being terminating all cases, as we already
shown, it is also the faster implementation. It also shows, in line
with the common experience in tabling, that left-recursive imple-
mentations are usually faster and preferable for tabled systems.

We have also used the doubly-recursive Fibonacci program
-? fib(N, F). Tabling makes forward evaluation of this program
be linear in time, instead of exponential. We will however run it
backwards — finding the index of some Fibonacci number using
exactly the sme code. When executed with CLP in a non-tabled
systems, this program is also exponential: it deploys a system of
equations which can be solved when there are enough equations to
reach to cover the doubly recursive execution from the base case
to the required Fibonacci number. However, tabling with entail-
ment can make backwards Fibonacci run in linear time, which we
confirm experimentally.

:− table sd/3.

sd(X,Y,D) :−
edge(X,Y,D0) ,
D #>= D0.

sd(X,Y,D) :−
sd(X,Z,D1) ,
edge(Z,Y,D2) ,
D #>= D1+D2.

b

a c

d

3.0 3.0

1.0 2.0

1.0

1.3

Figure 9: sd/3 – “shortest distance” program [3].



version A version B
TCLP(D≤) TCLP(Q) TCLP(R)

fib(P, 832040) 147 58 26
fib(P, 28657) 68 37 16
fib(P, 610) 25 18 8
fib(P, 89) 13 12 5

Table 6: Run time (ms) for the fib/2: version A with difference
constraint and version B with CLP(Q) and CLP(R).

.

.

.
f i b (N1, F1) ,
f i b (N2, F2) ,
F #= F1 + F2.

.

.

.
F #= F1 + F2,
f i b (N1, F1) ,
f i b (N2, F2) .

Figure 10: Two versions of fib/2:
TCLP(D≤) (left) vs. TCLP(Q) and TCLP(R) (right).

We use TCLP(D≤), TCLP(Q), and TCLP(R). In the second and
third case the constraint F #= F1 + F2 appears as early as pos-
sible (Fig. 10, right). However, for TCLP(D≤) we cannot have
three variables in the constraint, and therefore we need to move
the expression to the end of the body (Fig. 10, left). This can be
detrimental to the performance of TCLP(D≤), as value propaga-
tion in the constraints has less effect. The results are in Table 6,
where CLP(R) is the faster version. Although the solver is basi-
cally the same as that for CLP(Q), it obtains advantage because op-
erations with floating point numbers are directly done at the CPU
level, instead of being done by software as it the case for the ra-
tionals. However, there is a drawback: floating point arithmetic
is not precise, and when CLP(R) approximates its results, it can
raise (depending on the particular program) non-termination re-
sults. That is the case of the usual version of Fibonacci, where
queries such as ?- fibo(K, 23416728348467685) terminate cor-
rectly with CLP(Q), but do not return (in under five minutes) with
CLP(R) since lack of accuracy makes a termination condition not
to hold.

This example also highlights that the modularity of TCLP makes
it possible to choose the best constraint solver for the problem at
hand, and that decision should not always be based on the perfor-
mance of the constraint solver, but on its adequacy.

4.3 Constraints over Finite Lattices
A lattice is a triplet (S, t, u) where S is a set of points and

join (t) and meet (u) are two internal operations that follow the
commutative, associative and absorption laws. (S, v) is a poset
where ∀a,b∈ S . av b if a = aub or b = atb and ∃⊥,>∈ S such
as ∀ a ∈ S . ⊥v av>.

Constraints over finite lattices CLP(L) where the values are el-
ements in a finite lattice. In this example we use this lattice as
the domain of an abstract interpreter, and therefore we assume the
existence of abstract operations between the element of the lattice
which are counterpart of the operations in the concrete domain.
Therefore, the constraints that we deal with in this constraint sys-
tem are, on one hand, those which come from the topological rela-
tionship of the lattice elements and, on the other hand, those which
are induced by the operations in the abstract domain.

The lattice layer provides the constraint Y v X with X,Y ∈ S
and the projection operation which, is performed using Fourier’s
algorithm [17] for variable elimination: the projection of {X v
d, Y v X} onto {Y} is {Y v d}). This layer also provides en-
tailment checking and the operator to apply the answer-projected
constraints.

top

num

±0− 0+

0− +

bottom

var str atom

Figure 11: Signs abstract domain.

The domain layer should define (at least) the operators t and u,
which are used by the lattice layer to define a partial order. The
domain layer can make use of an interface provided by the lattice
layer to define the operations among the points of the lattice. The
operations of the domain execute, upon changes in the domain of
the variables, the propagator of the lattice layer. This propagator
re-executes previous domain operations which involve these vari-
able(s) until no changes in the domain of the variables happen.

Performance Evaluation.
To evaluate the use of CLP(L), we use two versions of a simple

abstract interpreter. This interpreter executes logic programs using
an abstract domain as values for the program variables. The ab-
stract domain we have used by in this example is the signs abstract
domain shown in Fig. 11. The results of the abstract interpreter are
a safe approximation of the runtime values of the variables in the
concrete program. We use two versions of the interpreter:

Tabling This version uses tabling, which guarantees termination
since the abstract domain is finite.

TCLP This version uses the CLP(L) constraint solver to carry the
abstract domain and the constraints over the variables. The
main difference with the Tabling version is that the constraint
solver automatically executes the propagator upon changes in
the domains of the variables and solves the equations posed
by the program.

We used two programs as input to our abstract interpreter:
takeuchi/m is a Prolog implementation of the n-dimensional

generalization of Takeuchi recurrence algorithm [16]. Fig. 12
shows its mathematical definition and its Prolog implementation.
The program is parameterized by the number of input arguments n,
and it returns in its last argument the function result.

sentinel/m (Fig. 13) is a variant of a synthetic program pre-
sented in [8]. It receives as input its first argument (the Sentinel)
and the next n arguments A1, . . .An are a ring-ordered5 series of
numbers. The output are arguments B1, . . . ,Bn, which correspond
to a circular shift of A1, . . . ,An such that on success Bi < Bi+1 for
all i < n and: (i) if Sentinel = 0, the first half of Bi are negative and
the second half are positive; (ii) if Sentinel < 0, Bi < Sentinel for
all i; and (iii) if Sentinel > 0, Bi > Sentinel for all i.

Table 7 shows the results of the execution times for takeuchi/m
parametrized by the dimension of the function, n (m = n+1), and
sentinel/m parametrized by n, the length of the ring (m = 2n+1).

5I.e., there is a j such that A j < A j+1,A j+1 < A j+2, . . . ,An <
A1,A1 < A2, . . . ,A j−2 < A j−1.



t(x1,x2, . . . ,xn) = i f x1 ≤ x2 then x2
e l se t(t(x1−1,x2, . . . ,xn), . . . , t(xn−1,x1, . . . ,xn−1))

takeuchi (X1, X2, . . . Xn, R) :− X1 < X2, R = X2 .
takeuchi (X1, X2, . . . Xn, R) :− X1 =:= X2, R = X2 .
takeuchi (X1, X2, . . .Xn, R) :− X1 > X2,

N1 i s X1 − 1 , takeuchi (N1, X2, . . .Xn, R1 ) ,
N2 i s X2 − 1 , takeuchi (N2, X3, . . .X1, R2 ) ,
. . . ,
Nn i s Xn − 1 , takeuchi (Nn, X1, . . .Xn−1, Rn ) ,
takeuchi (R1, R2, . . .Rn, R) .

Figure 12: n-dimensional Takeuchi function and its Prolog
implementation.

sent ine l ( Sentinel , A1, . . .An, B1, . . .Bn ) :− Sentinel =:= 0 ,
r ing (A1, . . .An, B1, . . .Bn ) ,
B1 < B2, . . . Bn−1 < Bn, Bn/2 < Sentinel , Sentinel < Bn/2+1 .

sent ine l ( Sentinel , A1, . . .An, B1, . . .Bn ) :− Sentinel < 0 ,
r ing (A1, . . .An, B1, . . .Bn ) ,
B1 < B2, . . . Bn−1 < Bn, Bn < Sentinel .

sent ine l ( Sentinel , A1, . . .An, B1, . . .Bn ) :− Sentinel > 0 ,
r ing (A1, . . .An, B1, . . .Bn ) ,
B1 < B2, . . . Bn−1 < Bn, B1 > Sentinel .

r ing (A1, . . .An, B1, . . .Bn ) :− B1 = A1, . . . Bn = An .
r ing (A1, . . .An, B1, . . .Bn ) :− A1 > A2,

r ing (A2, . . .An, A1, B1, . . .Bn ) .
r ing (A1, . . .An, B1, . . .Bn ) :−

r ing (An, A1, . . .An−1, B1, . . .Bn ) .

Figure 13: sentinel/m program.

In both examples the TCLP version of the interpreter is faster than
the tabled interpreter without constraints: the latter has to evaluate
each permutation completely in the recursive predicates, while the
former can suspend and save computation time using results from
a previous, more general, call.

Let us examine an example. For a variable A the representa-
tion Aabs means that A v abs. On one hand in the TCLP in-
terpreter when an initial goal ring(Atop

1 , . . .Atop
n ,Btop

1 , . . .Btop
n )

is interpreted, the first clause of ring/2n produces the first
answer. Then the interpreter continues with the second
clause, interprets the goal A1 > A2 and starts the evalua-
tion of ring(Anum

2 . . .Atop
n ,Anum

1 ,Btop
1 , . . .Btop

n ). Since num
v top, this new call is entailed by the previous one and
TCLP suspends this execution. Then the interpreter con-
tinues with the third clause, which starts the evaluation of
ring(Atop

n ,Atop
1 , . . .An−11top,Btop

1 , . . .Btop
n ), and TCLP also sus-

pends the execution. Since the generator has no more clauses to
evaluate, TCLP resumes the suspended execution with the previ-
ously obtained answer. Each consumer produces a new answer but
since they are at least as particular as the previous one, they are
discarded.

On the other hand in the tabling interpreter when the initial
goal is evaluated with Atop

1 , . . . ,Atop
n ,Btop

1 , . . . ,Btop
n as entry sub-

stitution, also the first answer is produced. Then the interpreter
continues with the second clause, interprets the goal A1 > A2 and
starts the evaluation of the recursive call with the entry substitution
Anum

1 , . . . ,Atop
n ,Bnum

1 , . . . ,Btop
n . However tabling does not suspend

the execution because it is not a variant call of the previous one,
which results in an increase of the computation time.

Table 8 shows the results of interpreting sentinel/m in two dif-
ferent scenarios: without any restrictions in the abstract substitution
of the variables (Sentineltop,Atop

i ,Btop
i ) or adding the restriction

Sentinel+ before the analysis. When the restriction is added before

takeuchi/m (m = n+1) sentinel/m (m = 2n+1)
n=3 n=6 n=8 n=4 n=6 n=8

Tabling 2.42 13.75 31.44 30.99 218.93 1375.13
TCLP 3.12 5.85 8.09 4.56 6.53 9.23

Table 7: Run time (ms) for analyze(takeuchi/m) and for
analyze(sentinel/m)

sentinel/m (m = 2n+1)
n=4 n=6 n=8

Tabling without restrictions 30.99 218.93 1375.13
restrictions before 13.39 98.80 749.38

TCLP without restrictions 4.56 6.53 9.23
restrictions before 2.85 3.31 5.29

Table 8: Run time (ms) for analyze(takeuchi/m) and for
analyze(sentinel/m)

the analysis (as an entry substitution), execution time is reduced in
approximately the same relative amount in both cases.

If the restriction is added after the analysis, there is no significant
change in the execution time of the tabled interpreter (not shown in
the table). In the case of the tabled, non-constraint interpreter, this
restriction is not propagated to the rest of the variables. However,
in the case of the constraint-based interpreter, this additional re-
striction can be propagated after the interpreter has finished, giving
more precision to the result.

5. RELATED WORK
The initial ideas of tabling and constraints originate in [15],

where a variant of Datalog featuring constraints was proposed. The
time and space problems associated with the bottom-up evaluation
of Datalog were studied in [25], where a top-down evaluation strat-
egy featuring tabling was proposed.

XSB [22] was the first logic programming system which pro-
vided tabled CLP as a generic feature, instead of resorting to ad-
hoc adaptations. This was done by extending XSB with attributed
variables [3], one of the most popular mechanism to implement
constraint solvers in Prolog. However, one of its drawbacks is that
it only uses variant call checking (including for goals with con-
straints), instead of entailment checking of calls / answers. This
makes programs terminate in fewer cases and take longer in other
cases. This is similar to what happens in tabled logic programs with
and without subsumption [21].

A general framework for CHR under tabled evaluation is de-
scribed in [20]. This approach brings the flexibility that CHR pro-
vides for writing constraint solvers, but it also lacks call entail-
ment checking and enforces total call abstraction: all constraints
are removed from calls before executing them, which can result
in non-termination w.r.t. systems which use entailment. Besides,
the need to change the representation between CHR and Herbrand
terms takes a toll in performance.

Failure Tabled CLP [7] implements a verification-oriented sys-
tem which has several points in common with TCLP. Interestingly,
it can learn from failed derivations and uses interpolants instead of
constraint projection to generate conditions for reuse. It will how-
ever not terminate in some cases even with the addition of counter
to implement a mechanism akin to iterative deepening.

Last, the original TCLP proposal [2] features entailment check-
ing for calls and (partially) for answers, executes calls with all the
constraints, and has good performance. However, it did not clearly
state which operations must be present in the constraint solver,
which made it difficult to extend, and is not focused on a modular
design which, for example, made it difficult to implement specific
answer management strategies.



6. CONCLUSIONS
We have presented an approach to include constraint solvers in

logic programming systems with tabling. Our main goal is to make
adding additional constraint solvers easier. In order to achieve this,
we determined the services that a constraint solver should provide
to a tabling engine. The constraint solver has freedom to implement
them as it wishes, and have been designed to cover many possible
implementations. To validate our design we have interfaced one
solver previously written in C (difference constraints), two existing,
classical solvers (CLP(Q/R)), and a new solver (constraints over
finite lattices), and we have found the integration to be easy —
certainly easier than with other designs, given the capabilities that
our system provides.

We evaluate its performance in a series of benchmarks. In some
of them large savings are attained w.r.t. non-tabled/tabled execu-
tions — even taking into account the penalty to pay for the addi-
tional flexibility and modularity. We are in any case confident that
there is still ample space to improve the efficiency of the imple-
mentation, since we are presenting an initial prototype in which we
internally gave more importance to the cleanliness of the code and
the design.

7. REFERENCES
[1] Witold Charatonik, Supratik Mukhopadhyay, and Andreas

Podelski. Constraint-based infinite model checking and
tabulation for stratified clp. In Peter J. Stuckey, editor, ICLP,
volume 2401 of Lecture Notes in Computer Science, pages
115–129. Springer, 2002.

[2] P. Chico de Guzmán, M. Carro, M. Hermenegildo, and
P. Stuckey. A General Implementation Framework for Tabled
CLP. In Tom Schrijvers and Peter Thiemann, editors,
FLOPS’12, number 7294 in LNCS, pages 104–119. Springer
Verlag, May 2012.

[3] Baoqiu Cui and David Scott Warren. A System for Tabled
Constraint Logic Programming. In Computational Logic,
pages 478–492, 2000.

[4] S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical
Program Analysis Using General Purpose Logic
Programming Systems – A Case Study. In Proceedings of the
ACM SIGPLAN’96 Conference on Programming Language
Design and Implementation, pages 117–126, New York,
USA, 1996. ACM Press.

[5] Juliana Freire, Terrance Swift, and David Scott Warren.
Beyond Depth-First Strategies: Improving Tabled Logic
Programs through Alternative Scheduling. Journal of
Functional and Logic Programming, 1998(3), 1998.

[6] Daniele Frigioni, Alberto Marchetti-Spaccamela, and
Umberto Nanni. Fully Dynamic Shortest Paths and Negative
Cycles Detection on Digraphs with Arbitrary Arc Weights.
In ESA, pages 320–331, 1998.

[7] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald
Søndergaard, and Peter J. Stuckey. Failure tabled constraint
logic programming by interpolation. TPLP,
13(4-5):593–607, 2013.

[8] Samir Genaim, Michael Codish, and Jacob Howe.
Worst-Case Groundness Analysis Using Definite Boolean
Functions. TPLP, 1(05):611–615, 2001.

[9] OWL Working Group. Owl web ontology language guide.
http://www.w3.org/TR/owl-guide/. Retrieved on 23 Sep.
2015.

[10] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera,
J.F. Morales, and G. Puebla. An Overview of Ciao and its

Design Philosophy. TPLP, 12(1–2):219–252, 2012.
http://arxiv.org/abs/1102.5497.

[11] C. Holzbaur. OFAI clp(q,r) manual, edition 1.3.3. Technical
Report TR-95-09, Austrian Research Institute for Artificial
Intelligence, Vienna, 1995.

[12] J. Jaffar and M.J. Maher. Constraint LP: A Survey. JLP,
19/20:503–581, 1994.

[13] G. Janssens and K. Sagonas. On the Use of Tabling for
Abstract Interpretation: An Experiment with Abstract
Equation Systems. In TPD, April 1998.

[14] Tadashi Kanamori and Tadashi Kawamura. Abstract
Interpretation Based on OLDT Resolution. Journal of Logic
Programming, 15:1–30, 1993.

[15] Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz.
Constraint Query Languages. J. Comput. Syst. Sci.,
51(1):26–52, 1995.

[16] Donald E Knuth. Textbook examples of recursion. Artificial
Intelligence and Mathematical Theory of Computation:
Papers in Honor of John McCarthy, pages 207–230, 1991.

[17] Kim Marriott and Peter J. Stuckey. Programming with
Constraints: an Introduction. MIT Press, 1998.

[18] Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan,
S.A. Smolka, T. Swift, and D.S. Warren. Efficient Model
Checking Using Tabled Resolution. In CAV, volume 1254 of
LNCS, pages 143–154. Springer Verlag, 1997.

[19] I.V. Ramakrishnan, P. Rao, K.F. Sagonas, T. Swift, and D.S.
Warren. Efficient Tabling Mechanisms for Logic Programs.
In ICLP, pages 697–711, 1995.

[20] Tom Schrijvers, Bart Demoen, and David Scott Warren.
TCHR: a Framework for Tabled CLP. TPLP, 8(4):491–526,
2008.

[21] Terrance Swift and David Scott Warren. Tabling with answer
subsumption: Implementation, applications and
performance. In Tomi Janhunen and Ilkka Niemelä, editors,
JELIA, volume 6341 of Lecture Notes in Computer Science,
pages 300–312. Springer, 2010.

[22] Terrance Swift and David Scott Warren. XSB: Extending
Prolog with Tabled Logic Programming. TPLP,
12(1-2):157–187, 2012.

[23] H. Tamaki and M. Sato. OLD Resol. with Tabulation. In
ICLP, pages 84–98. LNCS, 1986.

[24] David Toman. Constraint Databases and Program Analysis
Using Abstract Interpretation. In CDTA, volume 1191 of
LNCS, pages 246–262, 1997.

[25] David Toman. Memoing Evaluation for Constraint
Extensions of Datalog. Constraints, 2(3/4):337–359, 1997.

[26] D. S. Warren. Memoing for Logic Programs. CACM,
35(3):93–111, 1992.

[27] R. Warren, M. Hermenegildo, and S. K. Debray. On the
Practicality of Global Flow Analysis of Logic Programs. In
JICSLP, pages 684–699. MIT Press, August 1988.

[28] Neng-Fa Zhou, Yoshitaka Kameya, and Taisuke Sato.
Mode-directed tabling for dynamic programming, machine
learning, and constraint solving. In Tools with Artificial
Intelligence (ICTAI), 2010 22nd IEEE International
Conference on, volume 2, pages 213–218. IEEE, 2010.

[29] Youyong Zou, Tim Finin, and Harry Chen. F-OWL: An
Inference Engine for Semantic Web. In Formal Approaches
to Agent-Based Systems, volume 3228 of Lecture Notes in
Computer Science, pages 238–248. Springer Verlag, January
2005.


