
Theory and Practice of Logic Programming
http://journals.cambridge.org/TLP

Additional services for Theory and Practice of Logic
Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Resource Usage Analysis of Logic Programs via Abstract
Interpretation Using Sized Types

A. SERRANO, P. LOPEZ-GARCIA and M. V. HERMENEGILDO

Theory and Practice of Logic Programming / Volume 14 / Special Issue 4-5 / July 2014, pp 739 - 754
DOI: 10.1017/S147106841400057X, Published online: 21 July 2014

Link to this article: http://journals.cambridge.org/abstract_S147106841400057X

How to cite this article:
A. SERRANO, P. LOPEZ-GARCIA and M. V. HERMENEGILDO (2014). Resource Usage Analysis
of Logic Programs via Abstract Interpretation Using Sized Types. Theory and Practice of Logic
Programming, 14, pp 739-754 doi:10.1017/S147106841400057X

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/TLP, IP address: 76.113.108.25 on 30 Jul 2014



TLP 14 (4–5): 739–754, 2014. C© Cambridge University Press 2014

doi:10.1017/S147106841400057X

739

Resource Usage Analysis of Logic Programs
via Abstract Interpretation Using Sized Types�

A. SERRANO1†, P. LOPEZ-GARCIA2,3 and M. V. HERMENEGILDO3,4

1Dept. of Information and Computing Sciences, Utrecht University

(e-mail: A.SerranoMena@uu.nl)
2IMDEA Software Institute

(e-mail: pedro.lopez@imdea.org, manuel.hermenegildo@imdea.org)
3Spanish Council for Scientific Research (CSIC)

4Technical University of Madrid (UPM)

(e-mail: herme@fi.upm.es)

submitted February 4, 2014; revised March 18, 2014; accepted May 1, 2014

Abstract

We present a novel general resource analysis for logic programs based on sized types. Sized

types are representations that incorporate structural (shape) information and allow expressing

both lower and upper bounds on the size of a set of terms and their subterms at any position

and depth. They also allow relating the sizes of terms and subterms occurring at different

argument positions in logic predicates. Using these sized types, the resource analysis can infer

both lower and upper bounds on the resources used by all the procedures in a program

as functions on input term (and subterm) sizes, overcoming limitations of existing resource

analyses and enhancing their precision. Our new resource analysis has been developed within

the abstract interpretation framework, as an extension of the sized types abstract domain,

and has been integrated into the Ciao preprocessor, CiaoPP. The abstract domain operations

are integrated with the setting up and solving of recurrence equations for inferring both size

and resource usage functions. We show that the analysis is an improvement over the previous

resource analysis present in CiaoPP and compares well in power to state of the art systems.

1 Introduction

Resource usage analysis infers the aggregation of some numerical properties (named

resources), like memory usage, time spent in computation, or bytes sent over a wire,

throughout the execution of a piece of code. The expressions giving the usage of

resources are usually functions of the sizes of some input arguments to procedures.

Our starting point is the methodology outlined by (Debray et al. 1990; Debray

and Lin 1993; Debray et al. 1997), characterized by the setting up of recurrence

equations. In that methodology, the size analysis is the first of several other analysis

steps that include, e.g., cardinality analysis (that infers lower and upper bounds on

� This research was supported in part by projects EU FP7 318337 ENTRA, Spanish MINECO TIN2012-
39391 StrongSoft and TIN2008-05624 DOVES, and Madrid TIC/1465 PROMETIDOS-CM.

† A. Serrano performed this work during his former affiliation to the IMDEA Software Institute.



740 A. Serrano et al.

the number of solutions computed by a predicate), and which ultimately obtain the

resource usage bounds. One drawback of these proposals, as well as most of their

subsequent derivatives, is that they are able to cope with size information about

subterms in a very limited way. This is an important limitation, which causes the

analysis to infer trivial bounds for a large class of programs. For example, consider

a predicate which computes the factorials of a list:

% listfact (+L, -FL).

listfact ([], []).

listfact ([E|R],[F|FR]) :-

fact(E, F),

listfact(R, FR).

% fact(+N, -F).

fact (0,1).

fact(N,M) :- N1 is N - 1,

fact(N1 , M1),

M is N * M1.

Intuitively, the best bound for the running time of this program for a list L is

c1 +
∑

e∈L
(
c2 + timefact(e)

)
, where c1 and c2 are constants related to unification and

calling costs. But with no further information, the upper bound for the elements

of L must be ∞ to be on the safe side, and then the returned overall time bound

must also be ∞. In a previous paper (Serrano et al. 2013) we focused on a proposal

to improve the size analysis based on sized types. While in that paper we already

hinted at the fact that the application of our sized types in resource analysis

could result in considerable improvement, no description was provided of the actual

resource analysis. This paper is complementary and fills this gap by describing a new

resource usage analysis that can take advantage of the new information contained in

sized types. Furthermore, the resource analysis we propose is based fully on abstract

interpretation (Cousot and Cousot 1992). Previously, the auxiliary analyses used

this technique, but the core resource analysis did not use it directly. Our approach

formulates the resource analysis as an abstract domain that can be integrated within

a standard, parametric abstract interpreter. In particular, we integrate it into the

PLAI abstract interpretation framework (Muthukumar and Hermenegildo 1992;

Puebla and Hermenegildo 1996) of CiaoPP, obtaining features such as multivariance,

efficient fixpoints, and assertion-based verification and user interaction for free. We

also perform an assessment of the accuracy and efficiency of the resulting overall

system.

In Section 2 we give a high-level view of the approach. In the following section

we review the abstract interpretation approach to size analysis using sized types.

Section 4 gets deeper into the resource usage analysis, our main contribution.

Experimental results are shown in Section 5. Finally we review some related work

and discuss future directions.

2 Overview of the Approach

We give now an overview of our approach to resource usage analysis, and present

the main ideas in our proposal using the classical append/3 predicate as a running



Resource Usage Analysis via Abstract Interpretation Using Sized Types 741

example:

append ([], S, S).

append ([E|R], S, [E|T]) :- append(R, S, T).

The process starts by performing the regular type analysis present in the CiaoPP

system (Vaucheret and Bueno 2002). In our example, the system infers that for any

call to the predicate append(X, Y, Z) with X and Y bound to lists of numbers and

Z a free variable, if the call succeeds, then Z also gets bound to a list of numbers.

The set of “list of numbers” is represented by the regular type listnum, defined as

follows:

listnum := [] | [num | listnum ].

From this regular type definition, sized type schemas are derived. The sized type

schema listnum-s is derived from listnum. This schema corresponds to a list whose

length is between α and β, containing numbers between γ and δ.

listnum-s → listnum(α,β)(num(γ,δ))

From now on, in the examples we will use ln and n instead of listnum and num

for the sake of conciseness. The next phase involves relating the sized types of

the different arguments to the append/3 predicate using recurrence (in)equations.

Let sizeX denote the sized type schema for argument X in a call append(X, Y,

Z) (from the regular type inferred by a previous analysis). We have that sizeX
denotes ln(αX ,βX )(n(γX ,δX )). Similarly, the sized type schema for the output argument Z

is ln(αZ ,βZ )(n(γZ ,δZ )), denoted by sizeZ . We are interested in expressing bounds on the

length of the output list Z and the values of its elements as a function of size bounds

for the input lists X and Y (and their elements). For this, we set up a system of

inequations. For instance, the inequations that are set up to express a lower bound on

the length of the output argument Z, denoted αZ , as a function on the size bounds of

the input arguments X and Y, and their subarguments (αX, βX, γX, δX, αY , βY , γY ,

and δY ) are:

αZ

(
αX, βX, γX, δX,

αY , βY , γY , δY

)
�

⎧⎪⎪⎨
⎪⎪⎩
αY if αX = 0

1 + αZ

(
αX − 1, βX − 1, γX, δX,

αY , βY , γY , δY

)
if αX > 0

Note that in the recurrence inequation set up for the second clause of append/3,

the expression αX − 1 (respectively βX − 1) represents the size relationship that a

lower (respectively upper) bound on the length of the list in the first argument of

the recursive call to append/3 is one unit less than the length of the first argument

in the clause head.

As the number of size variables grows, the set of inequations becomes too

large. Thus, we propose a compact representation, which allows us to grasp all the

relations in one view. The first change in our proposal is to write the parameters

to size functions directly as sized types. Now, the parameters to the αZ function are

the sized type schemas corresponding to the arguments X and Y of the append/3



742 A. Serrano et al.

predicate:

αZ

(
ln(αX ,βX )(n(γX ,δX ))

ln(αY ,βY )(n(γY ,δY ))

)
�

⎧⎪⎪⎨
⎪⎪⎩
αY if αX = 0

1 + αZ

(
ln(αX−1,βX−1)(n(γX ,δX ))

ln(αY ,βY )(n(γY ,δY ))

)
if αX > 0

In a second step, we group together all the inequalities of a single sized type. As

we always alternate lower and upper bounds, it is always possible to distinguish

the type of each inequality. We do not write equalities, so that we do not use the

symbol =. However, we always write inequalities of both signs (� and �) for each

size function, since we compute both lower and upper size bounds. Throughout this

paper we use a representation using � for the symbols � and � that are always

paired. For example, the expression ln(αX ,βX )(n(γX ,δX )) � ln(e1 ,e2)(n(e3 ,e4)) represents the

conjunction of the following size constraints: αX � e1, βX � e2, γX � e3, δX � e4.

In the implementation, constraints for each variable are kept apart and solved

separatedly.

After setting up the corresponding system of inequations for the output argument

Z of append/3, and solving it, we obtain the following expression:

sizeZ (sizeX, sizeY ) � ln(αX+αY ,βX+βY )(n(min(γX ,γY ),max(δX ,δY )))

that represents, among others, the relation αz � αX + αY (resp. βz � βX + βY ),

expressing that a lower (resp. upper) bound on the length of the output list Z,

denoted αz (resp. βz), is the addition of the lower (resp. upper) bounds on the lengths

of X and Y. It also represents the relation γZ � min(γX, γY ) (resp. δZ � max(δX, δY )),

which expresses that a lower (resp. upper) bound on the size of the elements of the

list Z, denoted γz (resp. δz), is the minimum (resp. maximum) of the lower (resp.

upper) bounds on the sizes of the elements of the input lists X and Y.

Resource analysis builds upon the sized type analysis and adds recurrence

equations for each resource we want to analyze. Apart from that, when considering

logic programs, we have to take into account that they can fail or have multiple

solutions when executed, so we need an auxiliary cardinality analysis to get correct

results.

Let us focus on cardinality analysis. Let sL and sU denote lower and upper bounds

on the number of solutions for append/3. Following the program structure we can

infer:

sL
(
ln(0,0)(n(γX ,δX )), sizeY

)
� 1

sL
(
ln(αX ,βX )(n(γX ,δX )), sizeY

)
� sL

(
ln(αX−1,βX−1)(n(γX ,δX )), sizeY

)
sU

(
ln(0,0)(n(γX ,δX )), sizeY

)
� 1

sU
(
ln(αX ,βX )(n(γX ,δX )), sizeY

)
� sU

(
ln(αX−1,βX−1)(n(γX ,δX )), sizeY

)
Since sL � sU , the solution to these inequations must be (sL, sU) = (1, 1). Thus, we

have inferred that append/3 has at least (and at most) one solution: it behaves

like a function. When setting up the equations, we use the result of the non-failure



Resource Usage Analysis via Abstract Interpretation Using Sized Types 743

analysis to see that append/3 cannot fail when given lists as arguments. If not, the

lower bound is 0.

Now we move forward to analyzing the number of resolution steps performed by

a call to append/3 (we will only focus on upper bounds, rU , for brevity). For the

first clause, we know that only one resolution step is needed, so:

rU
(
ln(0,0)(n(γX ,δX )), ln(αY ,βY )(n(γY ,δY ))

)
� 1

The second clause performs one resolution step plus all the resolution steps

performed by all possible backtrackings over the call in the body of the clause.

This number can be bounded as a function of the number of solutions. Thus, the

equation reads:

rU
(
ln(αX ,βX )(n(γX ,δX )), sizeY

)
� 1 + sU

(
ln(αX−1,βX−1)(n(γX ,δX )), sizeY

)
× rU

(
ln(αX−1,βX−1)(n(γX ,δX )), sizeY

)
= 1 + rU

(
ln(αX−1,βX−1)(n(γX ,δX )), sizeY

)
Solving these equations we infer that an upper bound on the number of resolution

steps is the (upper bound on) the length of the input list X plus one. This is expressed

as:

rU
(
ln(αX ,βX )(n(γX ,δX )), ln(αY ,βY )(n(γY ,δY ))

)
� βX + 1

3 Sized Types Review

As shown in the append example, the variables that we relate in our inequations

come from sized types, which are ultimately derived from the regular types previously

inferred for the program. Among several representations of regular types used in

the literature, we use one based on regular term grammars, equivalent to (Dart and

Zobel 1992) but with some adaptations. A type term is either a base type ηi (taken

from a finite set), a type symbol τi (taken from an infinite set), or a term of the form

f(φ1, . . . , φn), where f is a n-ary function symbol (taken from an infinite set) and

φ1, . . . , φn are type terms. A type rule has the form τ → φ, where τ is a type symbol

and φ a type term. A regular term grammar Υ is a set of type rules.

To devise the abstract domain we focus specifically on the PLAI (Muthukumar and

Hermenegildo 1989; Muthukumar and Hermenegildo 1992) framework, integrated

within CiaoPP (Hermenegildo et al. 2012) (see the on-line Appendix A), where we

have incorporated our implementation. The PLAI algorithm abstracts execution

and-or trees similarly to (Bruynooghe 1991) but represents the abstract executions

implicitly and computes fixpoints efficiently using memo tables, dependency tracking,

etc. It takes as input a pair (L, λc) representing an entry point (predicate) along with

an abstraction of the call patterns (in the chosen abstract domain) and produces

an abstraction which overapproximates information at all program points (for all

procedure versions).

The formal concept of sized type is an abstraction of a set of Herbrand terms

which are a subset of some regular type τ and meet some lower- and upper-bound

size constraints on the number of type rule applications needed to generate the terms.



744 A. Serrano et al.

A grammar for the new sized types follows:

sized-type::=ηbounds η base type

| τbounds(sized-args) τ recursive type symbol

| τ(sized-args) τ non-recursive type symbol

bounds::=nob | (n, m) n, m ∈ �, m � n

sized-args::=ε | sized-arg, sized-args

sized-arg::=sized-typeposition
position::=ε | 〈f, n〉 f functor, 0 � n � arity of f

However, in our abstract domain we need to refer to sets of sized types which

satisfy certain constraints on their bounds. For that purpose, we introduce sized

type schemas: a schema is just a sized type with variables in bound positions, i.e.,

where n and m in the pair (n, m) defining the symbol bounds in the grammar above

are variables (called bound variables), along with a set of constraints over those

variables. We call such variables bound variables. We will denote sized(τ) the sized

type schema corresponding to a regular type τ where all the bound variables are

fresh.

The full abstract domain is an extension of sized type schemas to several predicate

variables. Each abstract element is a triple 〈t, d, r〉 such that:

1. t is a set of v → (sized(τ), c), where v is a variable, τ its regular type and c is its

classification. Subgoal variables can be classified as output, relevant, or irrelevant.

Variables appearing in the clause body but not in the head are classified as

clausal ;

2. d (the domain) is a set of constraints over the relevant variables;

3. r (the relations) is a set of relations among bound variables.

For example, the final abstract elements corresponding to the clauses of the

listfact example can be found below. The equations have already been normalized

into their simplest form, and the variables refer to the predicate arguments in

normal form. listfact refers implicitly to the solution of the joint equations: it is the

recurrence we need to solve. In order to enhance readability, we have dropped the

position element 〈., 1〉 from ln.

λ′
1 =

〈{
L → (ln(α1 ,β1)(n(γ1 ,δ1)), rel.), FL → (ln(α2 ,β2)(n(γ2 ,δ2)), out.)

}
{α1 = 1, β1 = 1}, {ln(α2 ,β2)(n(γ2 ,δ2)) � ln(1,1)(nnob)}

〉

λ′
2 =

〈
⎧⎨
⎩
L → (ln(α1 ,β1)(n(γ1 ,δ1)), rel.), FL → (ln(α2 ,β2)(n(γ2 ,δ2)), out.),

E → (n(γ3 ,δ3), cl.), R → (ln(α4 ,β4)(n(γ4 ,δ4)), cl.),

F → (n(γ5 ,δ5), cl.), FR → (ln(α6 ,β6)(n(γ6 ,δ6)), cl.)

⎫⎬
⎭

{α1 > 0, β1 > 0},{
ln(α2 ,β2)(n(γ2 ,δ2)) � ln(α′+1,β′+1)(n(min(γ1!,γ

′),max(δ1!,δ
′))

ln(α′ ,β′)(n(γ′ ,δ′)) � listfact
(
ln(α1−1,β1−1)(n(γ1 ,δ1))

) }
〉



Resource Usage Analysis via Abstract Interpretation Using Sized Types 745

4 The Resources Abstract Domain

We take advantage of the added power of sized types to develop a better resource

analysis which infers upper and lower bounds on the amount of resources used by

each predicate as a function of the sized type schemas of the input arguments (which

encode the sizes of the terms and subterms appearing in such input arguments). For

this reason, the novel abstract domain for resource analysis that we have developed

is tightly integrated with the sized types abstract domain. Following (Navas et al.

2007), we account for two places where the resource usage can be abstracted:

• When entering a clause: some resources may be needed during unification of

the call (subgoal) and the clause head, the preparation of entering that clause,

and any work done when all the literals of the clause have been processed.

This cost, dependent on the head h, is called head cost, ϕ(h).

• Before calling a literal q: some resources may be used to prepare a call to

a body literal (e.g., constructing the actual arguments). The amount of these

resources is known as literal cost and is represented by ω(q).

We first consider the case of estimating upper bounds on resource usages. For

simplicity, assume first that we deal with predicates having a behavior that is close to

functional or imperative programs, i.e., that are deterministic and do not fail. Then,

we can bound the resource consumption of a clause C ≡ p(x̄) :− q1(x̄1), . . . , qn(x̄n),

denoted rU,clause:

rU,clause(C) � ϕ(p(x̄)) +
∑n

i=1

(
ω(qi(x̄i)) + rU,pred(qi(x̄i))

)
As in sized type analysis, the sizes of some input arguments may be explicitly

computed, or, otherwise, we express them by using a generic expression, giving rise

(in the case of recursive clauses) to a recurrence equation that we need to solve in

order to find closed form resource usage functions.

The resource usage of a predicate, rU,pred, depending on its input data sizes, is

obtained from the resource usage of the clauses defining it, by taking the maximum

of the equation expressions that meet the constraints on the input data sizes (i.e.,

have the same domain).

In addition, we need to deal with two extra features of logic programming:

• We may execute a literal more than once on backtracking. To bound the

number of times a literal is executed, we need to know the number of solutions

each literal (to its left) can generate. Using the information provided by

cardinality analysis, the number of times a literal is executed is at most the

product of the upper bound on the number of solutions, sU , of all the previous

literals in the clause. We get:

rU,clause (p(x̄) :− q1(x̄1), . . . , qn(x̄n))

� ϕ(p(x̄)) +
∑n

i=1

(∏i−1
j=1 spred(qj(x̄j))

) (
ω(qi(x̄i)) + rU,pred(qi(x̄i))

)
• Also, in logic programming more than one clause may unify with a given

subgoal. In that case it is incorrect to take the maximum of the resource

usages of each clause when setting up the recurrence equations (whereas this



746 A. Serrano et al.

was valid in size analysis). A correct solution is to take the sum of every set of

equations with a common domain, but the bound becomes then very rough.

Finer-grained possibilities can be considered by using different aggregation

procedures per resource.

Lower bounds analysis is similar, but needs to take into account the possibility of

failure, which stops clause execution and forces backtracking. Basically, no resource

usage should be added beyond the point where failure may happen. For this reason,

in our implementation we use the non-failure analysis already present in CiaoPP.

Also, the aggregation of clauses with a common domain must be different to that

used in the upper bounds case. The simplest solution is to just take the minimum of

the clauses. However, this again leads to very rough bounds. We will discuss lower

bound aggregation later.

Cardinality Analysis. We have already discussed why cardinality analysis (which

estimates bounds on the number of solutions) is instrumental in resource analysis

of logic programs. We can consider the number of solutions as another resource,

but, due to its importance, we treat it separately.

An upper bound on the number of solutions of a single clause could be gathered

by multiplying the number of solutions of its body literals:

sU,clause (p(x̄) :− q1(x̄1), . . . , qn(x̄n)) �
∏n

i=1 sU,pred(qi(x̄i))

For aggregation we need to add the equations with a common domain, to get a

recurrence equation system. These equations will be solved later to get a closed form

function giving an upper bound on the number of solutions.

It is important to remark that many improvements can be added to this simple

cardinality analysis to make it more precise. Some of them are discussed in (Debray

and Lin 1993), like maintaining separate bounds for the relation defined by the

predicate and the number of solutions for a particular input, or dealing with

mutually exclusive clauses by performing the max operation, instead of the addition

operation when aggregating. However, our focus here is the definition of an abstract

domain, and see whether a simple definition produces comparable results for the

resource usage analysis.

One of the improvements we decided to include is the use of the determinacy

analysis present in CiaoPP (López-Garcı́a et al. 2010). If such analysis infers that

a predicate is deterministic, we can safely set the upper bound for the number of

solutions to 1.

In the case of lower bounds, we need to know for each clause whether it may

fail or not. For that reason we use the non-failure analysis already present in

CiaoPP (Bueno et al. 2004). In case of a possible failure, the lower bound on

cardinality is set to 0.

The Abstract Elements. Within the PLAI abstract interpretation framework

(Muthukumar and Hermenegildo 1992; Puebla and Hermenegildo 1996) an analysis

is defined by the abstract elements involved in it and a set of operations. We refer

the reader to the on-line Appendix A for an overview of the overall framework.



Resource Usage Analysis via Abstract Interpretation Using Sized Types 747

In our case, the abstract elements are derived from sized type analysis by adding

some extra components. In particular:

1. The current variable for solutions, and current variable for each resource.

2. A boolean element for telling whether we have already found a failing literal.

3. An abstract element from the non-failure domain.

4. An abstract element encoding information about determinacy.

We will denote the abstract elements by 〈(sL, sU), vresources, failed?, d, r, nf, det〉 where

(sL, sU) are the lower and upper bound variables for the number of solutions,

vresources is a set of pairs (rL, rU) giving the lower and upper bound variables for each

resource, failed? is a boolean element (true or false), d and r are defined as in

the sized type abstract domain, and nf and det can take values not fails/fails

and non det/is det respectively, as explained in (López-Garcı́a et al. 2010; Bueno

et al. 2004). The on-line Appendix B gives some more details of the domain.

We assume that we are given the definition of a set of resources, which are fixed

throughout the whole analysis process. We assume that for each resource r we have:

its head cost, ϕr , which takes a clause head as parameter; its literal cost, ωr , which

takes a literal as parameter; its aggregation procedure, Γr , which takes the equations

for each of the clauses and creates a new set of recurrence equations from them;

and the default upper ⊥r,U and lower ⊥r,L bound on resource usage.

To better understand how the domain works, we will continue with the analysis

of listfact that we started in the previous section. We assume that the only

resource to be analyzed is the “number of resolution steps,” which uses the following

parameters:

ϕ = 1, ω = 0, Γr = +, (⊥L,⊥U) = (0, 0)

The �, � Operations and the ⊥ Element. We do not have a decidable definition

for � or �, because there is no general algorithm for checking the inclusion or

union of sets of integers defined by recurrence relations. Instead, for the inequation

components we just check whether one is a subset of another one, up to variable

renaming, or perform a syntactic union of the inequations. The ordering is finished

by taking the product order with the non-failure and determinacy parts. This is

enough for having a correct analysis. For the bottom element, ⊥, we first generate

new variables for each of the resources and the solution. Then, we add relations

between them and the default cost for each resource. For an unknown predicate,

the number of solutions should be [0,∞) and it may fail. For example, the bottom

element for the “number of resolution steps” resource will be:

〈(sL, sU), {(nL, nU)}, true, ∅, {(sL, sU) � (0,∞), (nL, nU) � (0, 0)}, fails, non det〉

where fails and non det are the bottom elements of their respective domains.

The λcall to βentry Operation. In this operation we need to create the initial structures

for handling the bounds on the number of solutions and resources. This implies the

generation of fresh variables for each of them, and setting them to their initial values.

In the case of the number of solutions, the initial value is 1 (which is the number

of solutions generated by a fact). For a resource r, the initial value is exactly ϕr .



748 A. Serrano et al.

We will name new fresh variables by adding an integer subscript. For example, sL,1,1
will be the first fresh variable related to the lower bound on solutions on first clause.

The addition of constraints over sized types when the head arguments are partially

instantiated is inherited from the sized types domain. Finally, for the failed?

component, we should start with value false, as no literal has been executed

yet, so it cannot fail.

In the listfact example, the entry substitutions are:

βentry,1 =

〈
(sL,1,1, sU,1,1), {(nL,1,1, nU,1,1)}, false, {α1 = 0, β1 = 0},

{(sL,1,1, sU,1,1) � (1, 1), (nL,1,1, nU,1,1) � (1, 1)}, not fails, is det

〉

βentry,2 =

〈
(sL,2,1, sU,2,1), {(nL,2,1, nU,2,1)}, false, {α1 > 0, β1 > 0},

{(sL,2,1, sU,2,1) � (1, 1), (nL,2,1, nU,2,1) � (1, 1)}, not fails, is det

〉

The Extend Operation. In the extend operation we get both the current abstract

substitution and the substitution from the literal call. We need to update several

components of the abstract element. First of all, we need to include a call to the

function giving the number of solutions and the resource usage from the called

literal.

Afterwards, we need to generate new variables for the number of solutions and

resources, which will hold the bounds for the clause up to that point. New relations

must be added to the abstract element to give a value to those new variables:

• For the number of solutions, let sU,c be the new upper bound variable, sU,p

the previous variable defining an upper bound on the number of solutions,

and sU,λ an upper bound on the number of solutions for the subgoal. Then

we need to include a constraint: sU,c � sU,p × sU,λ.

In the case of lower bound analysis, there are two phases. First of all, we

check whether the called literal can fail, looking at the output of the non-

failure analysis. If it is possible for it to fail, we update the failed? component

of the abstract element to true. If after this checking the failed? component

is still false (meaning that neither this literal nor any of the previous ones

may fail) we include a relation similar to the one for the upper bound case:

sL,c � sL,p × sL,λ. Otherwise, we include the relation sL,c � 0, because failing

predicates produce no solutions.

• The approach for resources is similar. Let rU,c be the new upper bound

variable, rU,p the previous variable defining an upper bound on that resource

and rU,λ an upper bound on resources from the analysis of the literal. The

relation added in this case is rU,c � rU,p + sU,p ×
(
ω + rU,λ

)
.

For lower bounds, we have already updated the failed? component, so we

only have to work in consequence. If the component is still false, we add a

new relation similar to the one for upper bounds. If it is true, it means that

failure may happen at some point, so we do not have to add that resource

any more. Thus the relation to be included is rL,c � rL,p.



Resource Usage Analysis via Abstract Interpretation Using Sized Types 749

In our example, consider the extension of listfact after performing the analysis

of the fact literal, whose resource components of the abstract element will be:〈
(sL, sU), {(nL, nU)}, false, {α, β � 0}

{(sL, sU) � (1, 1), (nL, nU) � (α, β)}, not fails, is det

〉

This literal is known not to fail, so we do not change the value of failed? in our

abstract element for the second clause. That means that it is still false, so we add

complete calls:

βentry,2 =

〈 (sL,2,2, sU,2,2), {(nL,2,2, nU,2,2)}, false, {. . . }⎧⎨
⎩

. . . ,

(sL,2,2, sU,2,2) � (1 × sL,2,1, 1 × sU,2,1),

(nL,2,2, nU,2,2) � (γ1 + nL,2,1, δ1 + nU,2,1)

⎫⎬
⎭ ,

not fails, is det

〉

The βexit to λ′ Operation. After all the extend operations, the variables appearing in

the number of solutions and resources positions will hold the correct value for their

properties. As we did with sized types, we follow now a normalization step, based

on (Debray and Lin 1993): replace each variable appearing in an expression with

its definition in terms of other variables, in reverse topological order. Following this

process, we should reach the variables in the sized types of the input parameters in

the head.

Going back to listfact, the final substitutions are as follows. s′
L, s

′
U, n

′
L and

n′
U refer to number of solutions and resolution steps from the recursive call to

listfact.

λ′
1 =

〈
(sL,1,1, sU,1,1), {(nL,1,1, nU,1,1)}, false, {α1 = 0, β1 = 0},

{(sL,1,1, sU,1,1) � (1, 1), (nL,1,1, nU,1,1) � (1, 1)}, not fails, is det

〉

λ′
entry,2 =

〈
(sL,2,3, sU,2,3), {(nL,2,3, nU,2,3)}, false, {α1 > 0, β1 > 0},⎧⎪⎪⎨

⎪⎪⎩
sL,2,3 � 1 × s′

L(ln(α1−1,β1−1)(n(γ1 ,δ1))),

sU,2,3 � 1 × s′
U(ln(α1−1,β1−1)(n(γ1 ,δ1))),

nL,2,3 � γ1 + n′
L(ln(α1−1,β1−1)(n(γ1 ,δ1))),

nU,2,3 � δ1 + n′
U(ln(α1−1,β1−1)(n(γ1 ,δ1)))

⎫⎪⎪⎬
⎪⎪⎭ ,

not fails, is det

〉

The Widening Operator ∇ and Closed Forms. As mentioned before, in contrast to

previous cost analyses, at this point we bring in the possibility of different aggregation

operators. Thus, when we have the equations, we need to pass them to each of the

corresponding Γr per each resource r to get the final equations.

This process can be further refined in the case of solution analysis, using the

information from the non-failure and determinacy analyses. If the final output of

the non-failure analysis is fails, we know that the only correct lower bound is 0.

So we can just assign the relation sL � 0 without further relations. Conversely, if

the final output of the determinacy analysis is is det, we can safely set the relation

sU � 1, because at most one solution will be produced in each case. Furthermore, we



750 A. Serrano et al.

can refine the lower bound on the number of solutions with the minimum between

the current bound and 1.

In the example analyzed above there was an implicit assumption while setting up

the relations: that the recursive call in the body of listfact refers to the same

predicate call, so we can set up a recurrence. This fact is implicitly assumed in

Hindley-Milner type systems. But in logic programming it is usual for a predicate

to be called with different patterns (for example, modes). Fortunately, the CiaoPP

framework allows multivariance (support for different call patterns of the same

predicate). For the analysis to handle it, we cannot just add calls with the bare

name of the predicate, because it will conflate all the versions. The solution is to

add a new component to the abstract element: a random name given to the specific

instance of the predicate, and generated in the λcall to βentry . In the widening step,

all different versions of the same predicate are conflated.

Even though the analysis works with relations, these are not as useful as functions

defined without recursion or calls to other functions. First of all, developers will

get a better idea of the sizes presented in such a closed form. Second, functions

are amenable to comparison as outlined in (López-Garcı́a et al. 2010), which is

essential in verification. There are several packages able to get bounds for recurrence

equations: computer algebra systems, such as Mathematica (which has been used

in our experiments) or Maxima; and specialized solvers such as PURRS (Bagnara

et al. 2005) or PUBS (Albert et al. 2011). In our implementation we apply this

overapproximation operator after each widening. For our example, the final abstract

substitution is:

λ′
1∇λ′

2 =

〈
(sL, sU), {(nL, nU)}, false, {α1, β1 � 0},

{(sL, sU) � (1, 1), (nL, nU) � (α1γ1, β1δ1)} , not fails, is det

〉

5 Experimental Results

We have constructed a prototype implementation in Ciao by defining the abstract

operations for sized type and resource analysis that we have described and plugging

them into CiaoPP’s PLAI. Our objective is to assess the gains in precision in resource

analysis.

Table 1 shows the results of the comparison between the new lower (LB) and

upper bound (UB) resource analyses implemented in CiaoPP, which also use the new

size analysis (columns New ), and the previous resource analyses in CiaoPP (Debray

and Lin 1993; Debray et al. 1997; Navas et al. 2007) (columns Prev.). We also

compare (for upper bounds) with RAML (Hoffmann et al. 2012). Although the

new resource analysis and the previous one infer concrete resource usage bound

functions, for the sake of conciseness and to make the comparison with RAML

meaningful, Table 1 only shows the complexity orders of such functions, e.g., if the

analysis infers the resource usage bound function Φ, and Φ ∈ Θ(Ψ), Table 1 shows

Ψ. The parameters of such functions are (lower or upper) bounds on input data

sizes. The symbols used to name such parameters have been chosen assuming that

lists of numbers Li have size ln(αi,βi)(n(γi,δi)), lists of lists of lists of numbers have size



Resource Usage Analysis via Abstract Interpretation Using Sized Types 751

Table 1. Experimental results.

Program Resource A. (LB) Resource A. (UB) A. Times (s)

New Prev. New Prev. RAML New Prev.

append α α = β β = β = 0.999 0.530

appendAll2 a1a2a3 a1 + b1b2b3 ∞ + b1b2b3 = 2.408 0.668

coupled μ 0 + ν ∞ + ν = 1.365 0.644

dyade α1α2 α1α2 = β1β2 β1β2 = β1β2 = 1.658 0.620

erathos α α = β2 β2 = β2 = 2.251 0.772

fib φμ φμ = φν φν = infeasible + 1.064 0.671

hanoi 1 0 + 2ν ∞ + infeasible + 0.819 0.603

isort α2 α2 = β2 β2 = β2 = 1.675 0.617

isortlist a2
1 a2

1 = b2
1b2 ∞ + b2

1b2 = 2.546 0.669

listfact αγ α + βδ ∞ + unknown ? 1.387 0.644

listnum μ μ = ν ν = unknown ? 1.189 0.581

minsort α2 α + β2 β2 = β2 = 1.938 0.671

nub a1 a1 = b2
1b2 ∞ + b2

1b2 = 3.614 0.910

partition α α = β β = β = 1.698 0.647

zip3 min(αi) 0 + min(βi) ∞ + β3 + 2.484 0.570

llln(a1 ,b1)(lln(a2 ,b2)(ln(a3 ,b3)(n(a4 ,b4)))), and numbers have size n(μ,ν). The calling modes are

the usual ones with the last argument as output.

Table 1 includes columns with symbols summarizing whether the new CiaoPP

resource analysis improves on the previous one and RAML’s: + (resp. −) indicates

more (resp. less) precise bounds, and = the same. The new resource analysis improves

on CiaoPP’s previous analysis. Moreover, RAML can only infer polynomial costs,

while our approach is able to infer other types of functions, as shown for the

divide-and-conquer benchmarks hanoi and fib, which represent a common class of

programs. For predicates with polynomial cost, we get equal or better results than

RAML.

The last two columns show the times (in seconds) required by both lower and upper

bound analysis together for the new resource analysis, and for the previous resource

analysis in CiaoPP (Ciao/CiaoPP version 1.15-2124-ga588643, on an Intel Core i7

2.4 GHz, 8 GB 1333 MHz DDR3 memory, running MAC OS X Lion 10.7.5). These

times include also the auxiliary non-determinism and failure analyses. The resulting

times are encouraging, despite the currently relatively inefficient implementation of

the interface with the Mathematica system which is used for solving recurrence

equations.

6 Related Work

Several other analyses for resources have been proposed in the literature. Some of

them just focus on one particular resource (usually execution or heap consump-

tion), but it seems clear that they could be generalized. We already mentioned

RAML (Hoffmann et al. 2012) in Section 5. Their approach differs from ours in the

theoretical framework being used: RAML uses a type and effect system, whereas



752 A. Serrano et al.

we use abstract interpretation. Another difference is the use of polynomials in

RAML, which allows a complete method of resolution but limits the type of closed

forms that can be analyzed. In contrast, we use recurrence equations, which have

no complete decision procedure, but encompass a much larger class of functions.

Type systems are also used to guide inference in (Grobauer 2001) and (Igarashi and

Kobayashi 2002). In (Nielson et al. 2002), the authors use sparsity information to

infer asymptotic complexities, instead of recurrences. (Giesl et al. 2012) uses symbolic

evaluation graphs to derive termination and complexity properties. The recurrence

equation approach was proposed originally by Wegbreit (Wegbreit 1975). Similarly to

CiaoPP’s previous analysis, the approach of (Albert et al. 2011) applies the recurrence

equation method directly (i.e., not within an abstract interpretation framework).

(Rosendahl 1989) shows a complexity analysis based on abstract interpretation

over a step-counting version of functional programs, but which does not generate

closed forms. Types with embedded size information have also been proposed

by (Vasconcelos and Hammond 2003) for functional programs. Our sized type

analysis is based on regular types and abstract interpretation, and deals with the

logic programming features such as unification, non-determinism, and backtracking.

7 Conclusions

We have presented a new formulation of resource analysis as a domain within

abstract interpretation and which uses as input information the sized types that we

developed in (Serrano et al. 2013). Our approach overcomes important limitations

of existing resource analyses and enhances their precision. It also benefits from an

easier implementation and integration within an abstract interpretation framework

such as PLAI/CiaoPP, which brings in useful features such as multivariance for free.

Finally, the results of our experimental assessment regarding accuracy and efficiency

are quite encouraging.

References

Albert, E., Genaim, S., and Masud, A. N. 2011. More Precise yet Widely Applicable Cost

Analysis. In 12th Verification, Model Checking, and Abstract Interpretation (VMCAI’11),

R. Jhala and D. Schmidt, Eds. Lecture Notes in Computer Science, vol. 6538. Springer

Verlag, 38–53.

Bagnara, R., Pescetti, A., Zaccagnini, A., and Zaffanella, E. 2005. PURRS: Towards

Computer Algebra Support for Fully Automatic Worst-Case Complexity Analysis. Tech.

rep. arXiv:cs/0512056 available from http://arxiv.org/.

Bruynooghe, M. 1991. A practical framework for the abstract interpretation of logic

programs. J. Log. Program. 10, 2, 91–124.

Bueno, F., López-Garcı́a, P., and Hermenegildo, M. 2004. Multivariant Non-Failure

Analysis via Standard Abstract Interpretation. In 7th International Symposium on Functional

and Logic Programming (FLOPS 2004). Number 2998 in LNCS. Springer-Verlag,

Heidelberg, Germany, 100–116.

Cousot, P. and Cousot, R. 1992. Abstract Interpretation and Applications to Logic Programs.

Journal of Logic Programming 13, 2-3, 103–179.



Resource Usage Analysis via Abstract Interpretation Using Sized Types 753

Dart, P. and Zobel, J. 1992. A Regular Type Language for Logic Programs. In Types in

Logic Programming. MIT Press, 157–187.

Debray, S. K. and Lin, N. W. 1993. Cost Analysis of Logic Programs. ACM Transactions on

Programming Languages and Systems 15, 5 (November), 826–875.

Debray, S. K., Lin, N.-W., and Hermenegildo, M. 1990. Task Granularity Analysis in

Logic Programs. In Proc. of the 1990 ACM Conf. on Programming Language Design and

Implementation. ACM Press, 174–188.

Debray, S. K., López-Garcı́a, P., Hermenegildo, M., and Lin, N.-W. 1997. Lower Bound

Cost Estimation for Logic Programs. In 1997 International Logic Programming Symposium.

MIT Press, Cambridge, MA, 291–305.

Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., and Fuhs, C. 2012. Symbolic

evaluation graphs and term rewriting: a general methodology for analyzing logic programs.

In PPDP. ACM, 1–12.

Grobauer, B. 2001. Cost recurrences for DML programs. In International Conference on

Functional Programming. 253–264.

Hermenegildo, M. V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J., and Puebla,

G. 2012. An Overview of Ciao and its Design Philosophy. Theory and Practice of Logic

Programming 12, 1–2 (January), 219–252. http://arxiv.org/abs/1102.5497.

Hoffmann, J., Aehlig, K., and Hofmann, M. 2012. Multivariate amortized resource analysis.

ACM Trans. Program. Lang. Syst. 34, 3, 14.

Igarashi, A. and Kobayashi, N. 2002. Resource usage analysis. In Symposium on Principles

of Programming Languages. 331–342.

López-Garcı́a, P., Bueno, F., and Hermenegildo, M. 2010. Automatic Inference of

Determinacy and Mutual Exclusion for Logic Programs Using Mode and Type Information.

New Generation Computing 28, 2, 117–206.

López-Garcı́a, P., Darmawan, L., and Bueno, F. 2010. A Framework for Verification

and Debugging of Resource Usage Properties. In Technical Communications of the 26th

Int’l. Conference on Logic Programming (ICLP’10), M. Hermenegildo and T. Schaub, Eds.

Leibniz International Proceedings in Informatics (LIPIcs), vol. 7. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 104–113.

Muthukumar, K. and Hermenegildo, M. 1989. Determination of Variable Dependence

Information at Compile-Time Through Abstract Interpretation. In 1989 North American

Conference on Logic Programming. MIT Press, 166–189.

Muthukumar, K. and Hermenegildo, M. 1992. Compile-time Derivation of Variable

Dependency Using Abstract Interpretation. Journal of Logic Programming 13, 2/3 (July),

315–347.

Navas, J., Mera, E., López-Garcı́a, P., and Hermenegildo, M. 2007. User-Definable

Resource Bounds Analysis for Logic Programs. In 23rd International Conference on Logic

Programming (ICLP’07). Lecture Notes in Computer Science, vol. 4670. Springer.

Nielson, F., Nielson, H. R., and Seidl, H. 2002. Automatic complexity analysis. In European

Symposium on Programming. 243–261.

Puebla, G. and Hermenegildo, M. 1996. Optimized Algorithms for the Incremental Analysis

of Logic Programs. In International Static Analysis Symposium (SAS 1996). Number 1145

in LNCS. Springer-Verlag, 270–284.

Rosendahl, M. 1989. Automatic Complexity Analysis. In 4th ACM Conference on Functional

Programming Languages and Computer Architecture (FPCA’89). ACM Press.

Serrano, A., Lopez-Garcia, P., Bueno, F., and Hermenegildo, M. 2013. Sized Type

Analysis for Logic Programs (technical communication). In Theory and Practice of Logic

Programming, 29th Int’l. Conference on Logic Programming (ICLP’13) Special Issue, On-line

Supplement, T. Swift and E. Lamma, Eds. Vol. 13 (4-5). Cambridge U. Press, 1–14.



754 A. Serrano et al.

Vasconcelos, P. B. and Hammond, K. 2003. Inferring cost equations for recursive,

polymorphic and higher-order functional programs. In IFL, P. W. Trinder, G. Michaelson,

and R. Pena, Eds. Lecture Notes in Computer Science, vol. 3145. Springer, 86–101.

Vaucheret, C. and Bueno, F. 2002. More Precise yet Efficient Type Inference for Logic

Programs. In International Static Analysis Symposium. Lecture Notes in Computer Science,

vol. 2477. Springer-Verlag, 102–116.

Wegbreit, B. 1975. Mechanical Program Analysis. Communications of the ACM 18, 9

(September), 528–539.


