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Abstract. While there are well-understood methods for detecting loops
whose iterations are independent and parallelizing them, there are com-
paratively fewer proposals that support parallel execution of a sequence
of loops or nested loops in the case where such loops have dependencies
among them. This paper introduces a refined notion of independence,
called eventual independence, that in its simplest form considers two
loops, say loop1 and loop2, and captures the idea that for every i there
exists k such that the i+ 1-th iteration of loop2 is independent from the
j-th iteration of loop1, for all j ≥ k. Eventual independence provides
the foundation of a semantics-preserving program transformation, called
synchronized pipelining, that makes execution of consecutive or nested
loops parallel, relying on a minimal number of synchronization events
to ensure semantics preservation. The practical benefits of synchronized
pipelining are demonstrated through experimental results on common
algorithms such as sorting and Fourier transforms.

1 Introduction

Multi-core processors are becoming ubiquitous: most laptops currently on the
market contain at least two execution units, whereas servers commonly use eight
or more cores. Since the number of on-chip cores is expected to double with
each processor generation, there is a pressing challenge to develop programming
methodologies which exploit the power of multi-core processors without compro-
mising correctness and reliability. One prominent approach is to let programmers
write sequential programs and to build compilers that parallelize these programs
automatically.

Most parallelization techniques rely on some notion of independence, which
ensures that certain fragments of the program only access distinct regions of
memory, and thus execution of one such code fragment has no effect on the exe-
cution of the others. For example, code fragments written in a simple imperative
language are guaranteed to be independent if their reads and writes are disjoint,
in which case their sequential composition can be parallelized without modify-
ing the overall semantics of the program. More refined notions of independence
include the classical notions of absence of flow dependence, anti-dependence, or
output dependence [7].



Well-understood methods exist for detecting loops whose iterations are inde-
pendent (i.e., they do not contain loop-carried dependencies) and parallelizing
them. These techniques have been used to achieve automated/correct paral-
lelization of a number of algorithms for scientific computing such as, e.g., image
processing, data mining, DNA analysis, or cosmological simulation. However,
these parallelization methods do not provide significant speedups for other algo-
rithms which contain sequences or nesting of loops whose iterations are partially
dependent and/or irregular. Examples of such loops appear, for example, in sort-
ing algorithms or Fourier transformations. On the other hand, such algorithms
can be parallelized efficiently by the technique that we propose, synchronized
pipelining, which allows loops with dependencies to be executed in parallel by
making sparse use of synchronization events to ensure that the ahead-of-time
execution of loop iterations does not alter the original semantics.

Our proposal is illustrated in Section 2 with a mergesort algorithm. As a
warm-up to Section 2, let us first consider synchronized pipelining in its simplest
form, when it deals with two consecutive loops manipulating an array structure:

while b1 do c1; while b2 do c2

For simplicity, assume that the data dependence between c1 and c2 is restricted to
the contents of the array structure. The aim is to return code that may start the
execution of some iterations of c2 before completion of the loop with body c1. To
justify such a transformation, we rely on eventual independence, a generalization
of independence which accounts for the possibility of executing the m + 1-th
iteration of a loop ahead of time. Informally, c2 is eventually independent from c1
iff for every n2, there exists n1 such that after n1 iterations of c1 and n2 iterations
of c2, c1 and c2 are independent. Once eventual independence between the two
loops is established, it is possible to define a semantics-preserving transformation
that outputs a program:

while b1 do c′1 || while b2 do c′2

where c′1 is obtained from c1 by adding event announcements to indicate that
part of the computation of c2 can be performed, and c′2 is obtained from c2 by
inserting blocking statements that control the gradual and early computation
of c2; in both cases, the transformation of ci into c′i is guided by the eventual
independence relation.

In the course of the paper, we develop the notions of eventual independence
and synchronized pipelining, starting from the simple case discussed above and
then dealing with sequences of loops and nested loops. In addition, we illus-
trate the benefits of our approach, drawing experimental results from common
cases such as the above mentioned sorting algorithms and Fourier transforms.
We also outline the necessary procedures and tools to automatically generate
this transformation for the case in which we deal with simple data structures
(arrays), and outline future lines of research to extend this approach to more
general problems. In summary, the main contributions of this paper are the
formal definition of eventual independence (Section 4), eventual independence



void mergesort (int* A,int length) {

int i,j,c;

for (i = 1; i < length;i*=2) {

j = 0;

while (j < length) {

c = j; ...

while (c < j + 2*i){

...

a[c] = ... ;

...

c++;

}

j = j + 2*i;

}

}

}

void mergesort (int* A,int length) {

int i,j,c;

i = 1;

j = 0;

while (j < length) {

c = j; ...

while (c < j + 2*i){

...

c++;

}

j = j + 2*i;

}

i = 2;

j = 0;

while (j < length) {

c = j; ...

while (c < j + 2*i){

...

c++;

}

j = j + 2*i;

}

...

i = length/2;

j = 0;

while (j < length) {

c = j; ...

while (c < j + 2*i){

...

c++;

}

j = j + 2*i;

}

}

Fig. 1: Iterative mergesort algorithm

criteria for the particular case of array manipulating loops, and an experimental
evaluation of the benefits of synchronized pipelining (Section 6). Although many
of the concepts and results of the paper only make minimal assumptions on the
programming language, we carry our development in the setting of a parallel
imperative language with events, introduced in Section 3.

2 Motivating Example: mergesort

Figure 1 presents the structure of an iterative mergesort algorithm. After un-
rolling some of the for loop iterations from the fragment shown on the right
of the figure, we have a sequence of iterations of the inner loop while(j <
length){. . .} accessing and modifying the array intervals [0, 1], [2, 3], . . ., [length−
1, length] in the first iteration, the intervals [0, 3], [4, 7], . . ., [length−3, length]
in the second iteration, and so on until the last iteration in which the intervals
[0, length/2] and [length/2 + 1, length] are accessed.

One can clearly see that the first and second unrolled iteration cannot be
executed in parallel (without changes) since they read and/or modify overlapping
regions of the array. However, after partial completion of the first iteration, the



while (j < length) {
c = j;

...

while (c < j + 2*i){
...

c++;

}
j = j + 2*i;

}

1

(a) Original

while (j < length) {
c = j;

...

while (c < j + 2*i){
τ(i− 1, c)→
{

...

c++;

}
}
j = j + 2*i;

τ(i, j)!;
}

1

(b) Pipelined

Fig. 2: Illustrative example of pipelined code

second iteration can advance without waiting for the first iteration to finish. For
instance, the second iteration can safely start processing the array interval [0, 3],
right after the first iteration has finished processing the array intervals [0, 1] and
[2, 3]. The parallelization technique we propose allows the second loop iteration to
gradually progress in parallel with the first one (and successive ones), introducing
synchronization primitives in order to preserve the original semantics. To this
end, we rely on a heuristic oracle Ω, defined in terms of the number of steps
already executed by the first and second loop, that determines at which point
of the first loop it is safe to enable a partial execution of the second one.

Figure 2 gives a brief but illustrative scheme of how the code in Figure 1 is to
be annotated with parallelization primitives. In this case we use τ to denote such
device, using a question mark to signify a wait event on a certain subscript (or set
of subscripts) that the current loop is waiting to use, and an exclamation mark
to denote a signaling event which allows other threads to continue execution.

3 Setting

The target language for synchronized pipelining is a simple imperative language
with arrays, extended with parallel composition and synchronization primitives.

The extension includes an empty statement nil, a standard parallel compo-
sition ‖, and event-based synchronization primitives. We assume given a set of
events S used for synchronization. Let τ ∈ S and S ⊆ S represent a synchro-
nization event and a synchronization event set, respectively. The statement S! is
a non-blocking announcement of the events in S, whereas the statement τ → c
waits for the event τ to be announced before proceeding with the execution of
c.

Let Stmt be the set of program statements, Σ be the set of mappings
from program variables to integer values, and S? be the powerset of S. The
program semantics is given by a transition relation between configurations,
where a configuration is either an exceptional configuration abort, resulting, e.g.,
from and array-out-of-bound access, or a normal configuration, i.e., an element



〈S!, σ, ε〉 〈nil, σ, ε ∪ S〉
τ ∈ ε

〈τ → c, σ, ε〉 〈c, σ, ε〉

c ≡ d 〈d, σ, ε〉 〈d′, σ′, ε′〉 d′ ≡ c′

〈c, σ, ε〉 〈c′, σ′, ε′〉
c ≡ d 〈d, σ, ε〉 abort

〈c, σ, ε〉 abort

〈c, σ, ε〉 〈c′, σ′, ε′〉
〈c ‖ d, σ, ε〉 〈c′ ‖ d, σ′, ε′〉

〈c, σ, ε〉 abort

〈c ‖ d, σ, ε〉 abort

i ‖ nil ≡ i i ‖ j ≡ j ‖ i i ‖ (j ‖ k) ≡ (i ‖ j) ‖ k

Fig. 3: Operational semantics (excerpts)

of Stmt × Σ × S?. Formally, the semantics is given by a small-step relation:
 ⊆ (Stmt×Σ × S?)× ((Stmt×Σ × S?) + {abort}).

The transition rules for synchronization and parallel execution are given in
Figure 3, together with the definition of the congruence relation≡⊆ Stmt×Stmt;
all other rules are standard. Note that event announcement is asynchronous and
that event identifiers are never removed from ε. Thus, once an event has been
announced, and until the end of the program execution, every process waiting
for that event is ready to proceed.

Example 1. Consider for example the statement (x := 5; τ !) ‖ τ → x := 1.
Starting from a state where τ has not been announced, the execution terminates
with the variable x holding the value 1, since x := 1 cannot proceed before the
event τ has been announced.

As usual, we can derive from the small-step semantics an evaluation semantics
⇓⊆ (Stmt×Σ × S?)× (Σ + abort), by setting:

〈c, σ, ε〉 ⇓ σ′ iff ∃ε′. 〈c, σ, ε〉 ? 〈nil, σ′, ε′〉
〈c, σ, ε〉 ⇓ abort iff 〈c, σ, ε〉 ? abort

where  ? denotes the reflexive and transitive closure of  . In turn, the evalu-
ation semantics can be used to define a notion of semantic equivalence.

Definition 1 (Semantic Equivalence). Let c1, c2 ∈ Stmt be two statements,
σ ∈ Σ be a state and ε ⊆ S be a set of synchronization events. We say that
c2 simulates c1 w.r.t. σ and ε, written Jc1K ≤(σ,ε) Jc2K, iff for every σ′ ∈ (Σ +
abort), we have 〈c1, σ, ε〉 ⇓ σ′ ⇒ 〈c2, σ, ε〉 ⇓ σ′. We say that c1 and c2 are
semantically equivalent w.r.t. σ and ε, written Jc1K ≡(σ,ε) Jc2K, iff Jc1K ≤(σ,ε) Jc2K
and Jc2K ≤(σ,ε) Jc1K.

4 Eventual Independence

The purpose of this section is to introduce the notion of eventual independence,
and to discuss how eventual independence relations may be inferred. For the
sake of completeness, we start by recalling the semantic notion of independence
between two statements.



Definition 2 (Independent Statements). Two statements c1, c2 ∈ Stmt are
independent iff Jc1; c2K ≡ Jc1 ‖ c2K.

Eventual independence aims to capture a relation between iterations of two
loop bodies c1 and c2, and thus would be naturally formalized as a relation
between natural numbers. For the clarity of the technical development, it is
however preferable to view eventual independence as a relation between natural
numbers and events, and assume given a function λ : N→ S that assigns to each
natural number m of loop2 the event λ(m) that will release the m-th iteration
of loop2.

Definition 3 (Eventual Independence Relation). Statements c1, c2 ∈ Stmt
are eventually independent w.r.t. a relation Ω ⊆ N×S iff for all m,n ∈ N, ε ⊆ S
s.t. (n, λ(m)) ∈ Ω, σ ∈ Σ and no synchronization variables in ε appear in c1 or
c2:

Jcn1 ; cm−12 ; ck1 ; c2K ≡(σ,ε) Jcn1 ; cm−12 ; (ck1 ‖ c2)K
for all k ∈ N. The expression ci stands for the sequential composition of i in-
stances of the statement c. Given Ω and n ∈ N, we let ω(n) = {s | (n, s) ∈ Ω}.

Example 2. Consider the following program:

while bi do {a[i] :=a[i]+1; i := i∗2}; while bj do {a[j] :=a[j]+1; j := j+1}

The two loop statements are not necessarily independent, but one can define
an eventual independence relation over the loop bodies in order to parallelize
their iterations. In this case, the loop statements are eventually independent
with respect to a relation Ω, if (n, λ(m)) ∈ Ω implies i? ∗ 2n < j? +m, where i?

is the initial value of variable i and j? is the initial value of variable j.
In practice, when considering sequential code, it is sufficient to state the

semantics equivalence in terms of the event set ε = ∅. From the definition of
eventual independence, if λ(m) = s, then the mth execution of c2 shall wait
for the event s to execute. Assuming (n, s) ∈ Ω then it is safe to signal the
event s after executing n times the statement c1, allowing the mth execution of
statement c2 to take place. Indeed, by definition of Ω, it follows from (n, s) ∈ Ω
that after n iterations of c1, any and all subsequent executions of c1 do not
modify a piece of memory on which the mth iteration of c2 depends.

The main reason for defining the Ω relation is to link the iterations of the loop
bodies that are safe to execute in parallel. If we take m = 1 in the definition, then
we see that n is simply the number of iterations of c1 that we need to execute
before we can execute the first iteration of c2 (in parallel with the remaining
iterations of the first loop) without altering the semantics of the original program.
Higher values of m are in relation through Ω with the values n after which it
is safe to execute the mth iteration of the second loop, provided that the m− 1
previous iterations where executed following the guidelines that Ω defines. This
is the basis for the transformation we are aiming at and it is formalized in the
next section.



The set ω(n), which is defined in terms of Ω, is the set of all the events that
are safe to announce after n executions of the statement c1. Since the purpose
of this definition is to have a construct that will allow us to denote the set of
events the first loop can safely announce after each iteration has ended, we will
mainly use ω when defining our transformation.

4.1 Inferring Eventual Independence

The eventual independence relation Ω and the function λ are essential ingredi-
ents of synchronized pipelining, as they will be used to guide the insertion of
synchronization statements in the original program. Therefore, it is important
to be able to infer Ω and λ for a large class of code fragments. We have been
able to infer this data efficiently for the algorithms under consideration, that
manipulate array structures of significant size. Consider the case in which both
c1 and c2 read and modify data from a single array a, iterating over the induc-
tion variables h1 and h2 respectively. By simple code inspection, one can easily
collect the sets of syntactic expressions ~e1 and ~e2 used to read or update the
array a inside the loop body. These array accesses are not always expressed in
terms of the induction variables h1 and h2. However, in general, we have found
that they are expressed in terms of induction variables h′1 and h′2 derived from
h1 and h2. In those cases, induction variable analysis [4] allows one to rewrite
the derived induction variables h′1 and h′2 in terms of the induction variables h1
and h2, i.e. h′1 = f1(h1) and h′2 = f2(h2) for some function expressions f1 and
f2.

Most frequently, when h′i is an induction variable derived from hi, then fi is
a linear function on hi. More complex cases may arise, for instance when fi is de-
fined as a polynomial or geometric function on hi. In those cases, the expressions
~e1(h′1) and ~e2(h′1) are easily rewritten in terms of the inductive variables, i.e., as
~e1(f1(h1)) and ~e2(f2(h2)). By static interval analysis, we can approximate the
regions of data that are read and modified by c1 and c2, in terms of the induction
variables h1 and h2, and the expressions ~e1(f1(h1)) and ~e2(f2(h2)).

Assume [lrw1 , urw1 ] represents the interval of the array a that is written or read
by c1, where lrw1 , urw1 are integer expressions that depend on h1 (and similarly
with c2). Since ~e(f1(h1)) and ~e(f2(h2)) are linear (or polynomial) functions on h1
and h2, one can determine whether they are monotonic (or determine the points
from which they are monotonic). If the l and u expressions are increasing as the h
variables grow (the decreasing case is symmetrical) one can propose an eventual
independence relation Ω. For instance when lrw1 and urw2 are increasing functions,
we determine the pairs (a,b) of values for h1 and h2 such that urw2 < lrw1 , and
then, since the bth iteration of c2 is independent of the ath iteration of c1, we
can have (a, λ(b)) ∈ Ω.

Example 3. We show in this paragraph how to determine an eventual indepen-
dence relation for this simple pair of loop statements

while b1 do c1; while b2 do c2



where c1 and c2 are defined as

c1
.
= a[x] := 1; x := x + 1

c2
.
= y := y + a[z]; z := z + 1

First of all, notice that statements c1 and c2 access the array a, so they are not
independent. By examining statements c1 and c2, it is immediate that the in-
dexes of the array accesses are monotonically increasing and the relation between
the initial values of program variables (denoted x? for a variable x) define the
eventual independence relation. In this case, a simple induction variable analysis
will define ~e1 and ~e2, and thus lrw1 ,lrw2 , urw1 and urw2 , as a linear function of the in-
duction variables: lrw1 (h1) = urw1 (h1) = h1+x? and lrw2 (h2) = urw2 (h2) = h2+z?.
Thus, the procedure’s requirements translate into: h2 + z? < h1 + x?. The argu-
ment above allows us to propose an eventual independence relation Ω.

(z? − x? + 1, λ(1)) ∈ Ωc1,c2
∀x. x ≤ z? − x? + 1⇒ (x, λ(1)) 6∈ Ωc1,c2

This Ω relation formalizes the intuition that c1 and c2 can be executed in parallel
as long as every iteration k of c2 executes after the iteration number z?−x?+k of
c1. Furthermore, since the size of the array a (|a|) is bounded, if c1 is executed
more than |a| − x? times, we end up at an exceptional state abort, in which
case any execution of c2 is independent. In conclusion, the following relation Ω
determines the eventual independence between c1 and c2:

x+ x? ≤ |a| ∧ y ≤ x+ z? − x? − 1⇒ (x, λ(y)) ∈ Ωc1,c2
x+ x? > |a| ⇒ (x, λ(y)) ∈ Ωc1,c2

5 Synchronized Pipelining

We now define synchronized pipelining, starting from two consecutive loops, and
then extending the transformation to sequences of loops and nested loops.

Consider a program c of the form while b1 do c1; while b2 do c2, where c1 and
c2 are compound statements that access an array. We assume that the boolean
conditions b1 and b2 are not affected by the execution of c2 and c1, respectively.
Further, we let h1 and h2 be program counters that determine the number of
iterations already performed for the first and second loop respectively. Our aim
is to transform the program so that it executes both loops in parallel. To pre-
serve the program semantics, the transformation must insert code that ensures
a correct synchronization between the two loops, so the resulting program will
be of the form while b1 do c′1 ‖ while b2 do c′2, where c′1 is derived from c1
by adding event announcements and c′2 is derived from c2 by adding synchro-
nization guards. Both transformations are guided by a relation Ω of eventual
independence and by a function λ that are given as input to the transformation.

Definition 4. The synchronized pipelining of c is statement ¯̄c defined as:

¯̄c = (while b1 do c′1);S! ‖ while b2 do c′2



where c′1 = c1;ω(h1)!, c′2 = λ(h2) → c2, and S is the set of all events on which
statement c′2 can wait.

Statement S! is introduced after the execution of c′1 to ensure that all events
are indeed announced, and thus the progress of the original program is preserved.
In order to accomplish that, statement S! simply announces all events, in any
order. Since all events in which statement c′2 is waiting are eventually announced
by S!, statement c′2 cannot block indefinitely. For the same reason, c ≤ ¯̄c. Notice
that the set of events announced by c′1 and S! may be redundant. In practice,
one can reduce program size and synchronization overhead by statically removing
duplicated events. Similarly, c2 may be simplified by removing synchronization
primitives that wait on the same event. We assume, however, the definition given
above for notational simplicity.

The eventual independence condition determined by Ω is enough to show
that the semantics is preserved. That is, every execution state reached by the
final program is also reachable by the original one.

Proposition 1 (Semantics Preservation). For every initial state σ ∈ Σ and
every event set ε disjoint from the fresh synchronization variables introduced by
the transformation, we have that JcK ≡(σ,ε) J¯̄cK.

5.1 Extensions

We first analyze the case of a sequence of loops. Then, we explain how we proceed
in the presence of nested loops.

Loop Sequences. Now suppose the original program is of the form:

while b1 do c1; . . . ; while bn do cn

The idea is to parallelize the whole program by progressively applying the basic
transformation to each pair of interfering loops. Therefore, we must provide for
all i, j such that i < j an eventual independence relation Ωi,j and a function
λi,j : N → S. By definition of eventual independence, we must have for every
(n, λi,j(m)) ∈ Ωi,j and for all state σ and event set ε:

Jcni ; cm−1j ; cki ; cjK ≡(σ,ε) Jcni ; cm−1j ; (cki ‖ cj)K
Since the parallel execution of the ith loop may interfere not only with its

immediately preceding loop, but with every preceding one, we synchronize each
pair of non-independent loops. Thus, the ith loop of the final program becomes:

while bi do
⋃

1≤j<i
λi,j(h)→


ci;

⋃

i<j≤n
ωi,j(h)!


 ;∀i<j≤nSi,j !

where Si,j stands for all the synchronization events used to synchronize execu-
tion between while bi do ci and while bj do cj , for every i < j . From the
expression above, it may seem that excessive synchronization overhead is intro-
duced. However, the actual number of synchronization primitives depends on the
definition of λ and ω, and on the removal of duplicated synchronization events.



Nested Loops. We now turn our attention to a different but more common
program structure: nested loops. Consider the following program as the target
of the parallelization: while a do (c1; while b do c; c2). In order to be able to
apply our transformation we take the following assumptions:

1. We assume that the number of iterations of the outer loop (or an overap-
proximation) can be computed at runtime. In the rest of this section we let
β stand for the number of iterations that may be computed at runtime and,
for simplicity, we assume that the boolean condition a is of the form l ≤ β,
where l is the induction variable of the outer loop, incremented with step
1 from the initial value 1. In practice, the exact form of a may differ from
this assumption, but we assume that it is possible to evaluate the number of
iterations at runtime based on the current memory state. Intuitively, if we
can determine the exact number of iterations of the outer loop, we can un-
roll it and parallelize the resulting program by applying the transformation
on sequences of loops as explained above. However, assuming that we can
statically determine the exact number of iterations is an unnecessary and
too strong assumption.

2. We assume also that there is no interference between the scalar variables
read and modified in c1 and c. We can reduce the interference between loop
iterations by vectorizing each scalar variable v into an array v̂, with the
cost of extra memory usage. For every statement c and boolean condition
b, we denote ĉ[l] and b̂[l] the result of vectorizing scalar variables in c and
b, respectively. The value of the variable l determines which position of the
vectorized variables is in use. At the end of the transformed program, a
sync operation takes each vectorized variable v̂, and transforms it back into
the original scalar variable v, i.e., executes v = v̂[β]. The reason for this
vectorization is to avoid clashes between the values that are accessed by the
fragments while b̂[i] do ĉ[i], for different values of i.

3. The last hypothesis we make is that the scalar variables initialized by the
statement c1 are not modified by c or c2 after vectorization. This is a rea-
sonable assumption to make, since data structure accesses are in most cases
confined to the inner loop. This allows us to ignore dependencies between
these instructions and the rest of the loop.

As before, for every i, j ∈ N s.t. i < j ≤ β we need a function λi,j : N →
S mapping iterations to synchronization events. In this case, the parametric
relationΩi,j takes into account the last instructions of the outer loop. We require,
if (n, λi,j(m)) ∈ Ωi,j and for every ε ⊆ S and σ ∈ Σ, that:

Jĉ[i]n; ĉ[j]m−1; ĉ[i]k; ĉ2[i]; ĉ[j]K ≡(σ,ε) Jĉ[i]n; ĉ[j]m−1; (ĉ[i]k; ĉ2[i] ‖ ĉ[j])K

The transformation is similar to the one performed for sequences of loops.
Since inner loops are syntactically equal, the value of induction variable l cor-
responding to the outer loop is used to distinguish between different iterations.



The transformation follows, thus, the scheme:

while a do τc,l−1 → (ĉ1[l]; τc1,l!) ;

while b̂[l] do
(⋃

1≤j<l λl,j(h)→
(
ĉ[l];

⋃
l<j≤β ωl,j(h)!; ĉ2[h′]

))
;

sync

Notice that the order in which the instances of ĉ[l] are executed is preserved.

5.2 Motivating Example Revisited

Our motivating example, mergesort, was annotated with synchronization state-
ments that follow the guidelines described in our transformation. If we take two
consecutive iterations of the main loop of the program, we can sketch the con-
structs we have presented in our theoretical model.

Starting from the original code, we need first to vectorize the variables that
parameterize our inner loop. In our example this is variable i. Since we need to
spawn a new procedure in order to launch (possibly) a new thread, we encap-
sulate the inner loop in a function call, which receives i as a parameter. Then,
the stack allocation scheme automatically vectorizes variable i for us, since now
each iteration will possess its own copy of i, independent from the others, and
initialized to the value which each iteration would see in a sequential execution.
The only problem here consists in working with a language which allows function
calls to be made to run in parallel. Later we will explain how we deal with this
issue in practice.

In the original program, the variable c is the expression used for writing in
the array, and furthermore it is the lowest variable which is read or written in
the array. On the other side, the variable r is the highest variable which is read,
this is a consequence of the initial state of the inner loop and is preserved in
the loop body. We can analyze the loop and determine that c is monotonically
increasing. It follows that if we have two consecutive iterations,i and i + 1, of
the loop, the latter cannot proceed unless it can assure that the value of3 ci is
bigger than that of ri+1.

Thus, the following piece of code is added to the original code:

...
while (j < length){

while (c-j<2*i){
event_wait(r);
fromQueue = last(Q);
if (l-j > i){

...
A[c] = dequeue(Q);

}
event_announce(c);
c++;
}

...

3 We use superscripts to denote which loop variables belong to and subscripts to refer
to the value of the variable at a given iteration of its loop.
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Fig. 4: Experimental Results

Our function λ essentially maps m → rm. It becomes apparent now that our Ω
relation must relate every tuple (n,λ(m)) where ci+1

n is larger than rim.
We now need to determine λ and Ω for every other possible combination of

iterations. But since the same loop is repeated, with the same properties, we
require the same condition to advance, namely rim < c

j
n, and thus Ωi,j again

contain pairs (n,λi,j(m)) which meet that condition.

6 Experimental Results

We have experimented with the parallelizing transformation taking as input a
program written in a subset of C and returning a Cilk [5] program. Cilk is an
extension of C for multithreaded parallel programming, that provides a light-
weight thread model based on job stealing.

We proceed by annotating the source program with Cilk statements for
thread creation and synchronization, using Cilk locks and spawn procedures
to implement event signaling and efficient variable synchronization. We encap-
sulate inner loops in spawned procedures, and use the C stack allocation scheme
to efficiently allocate memory for vectorization.

The proposed transformation has been applied to well-known algorithms that
traverse arrays to obtain information as to the applicability and the efficiency of
our approach. In all cases, the transformation yields good results unless the input
size is tiny enough to make the synchronization overhead relatively significant.

For our tests we have used a 64bit Intel(R) Core(TM)2 Quad CPU at 2.4
GHz clock speed, 1GB of DIMM 800 MHz memory, running GNU/Linux.

In all cases we have labeled the graphics with S for the sequential (unmod-
ified) algorithm, running on a single processor, and we have labeled Pn for our
modified, pipelined algorithm with n processors.

Figure 4 shows the computing time and the relative performance gain of the
DFT4, FFT5, and MergeSort algorithms run under the different conditions we

4 Discrete Fourier Transform
5 Fast Fourier Transform



have explained. The pipelined version of our DFT program is slightly slower while
running with only one processor, due to the overhead of synchronization variable
allocation and signaling. Once we augment the number of available processors
the amount of time spent computing starts to decrease as the several runs on
the array on which we are working start to (safely) overlap. The efficiency gain
is almost linear, but of course the overhead of signaling and also the thread
creation and manipulation overhead add some extra work to the computation.
The algorithm used is well suited for our transformation since it copies the input
array and then modifies one element at a time incrementally, allowing several
elements to be modified at the same time without interference.

Our experiments with an FFT algorithm also yield good results, though not
as good as with the DFT algorithms. The reason for this is that unlike DFT,
FFT traverses the input array heavily and performs the computation in-place,
so it slowly gives up resources and thus the overlapping of different traversals is
smaller. Nevertheless, some performance gain is indeed achieved in our pipelined
version of the algorithm, roughly a 50% gain with 4 processors. The pipelined
version is still outperformed by the sequential one in the case we have a single
processor available, again due to synchronization overheads.

The last benchmark we present is that of our motivating example, namely
mergesort. This algorithm also traverses an array several times incrementally,
which allows us to obtain greater benefits from our transformation. The bench-
marks were made sorting an array of one million elements. The results show that
our transformation yields a 240% efficiency increase by overlapping the merging
steps that are otherwise run sequentially, for a 4 processor machine.

7 Related Work

Ottoni et al. [13] proposed a technique called Decoupled Software Pipelining
(DSWP) to extract the fine-grained parallelism hidden in most applications.
The process is automatic, and general, since it considers non-scientific applica-
tions in which the loop iterations have heavy data dependencies. It provides a
transformation that is slightly different to typical loop parallelization, in which
each iteration is assigned alternately to each core, with an appropriate synchro-
nization to prevent data races. As a result, no complete iteration is executed
simultaneously with another one, since every iteration has a data dependence
with every other one. Instead of alternating each complete loop iteration on each
core, DSWP splits each loop body before distributing them among the available
cores. This technique improves the locality of reference of standard paralleliza-
tion techniques, and thus reduces the communication latency. It is effective in a
more general set of loop bodies, but it does not take advantage of the eventual
data independence hidden in scientific algorithms.

A recent experimental study [10] analyzes particular cases in which standard
automatic parallelization fails to introduce significant improvements. This is the
case of applications that manipulate complex and mutable data structures, such
as Delauney mesh refinement and agglomerative clustering. The authors propose



a practical framework, the Galois system, that relies on syntactic constructs to
enable programmers to hint to the compiler on parallelization opportunities and
an optimistic parallelization run-time to exploit them. Due to the unpredictabil-
ity of irregular operations on mutable and complex data structures, the Galois
framework is mostly based on runtime decisions and backtracking, and does not
exploit statically inferred data dependence.

Data Parallel Haskell [14] (DPH) provides nested data parallelism to the
existing functional language compiler GHC. Flat parallelism is restricted to the
concurrent execution of sequential operations. Nested parallelism generalizes flat
parallelism by considering the concurrent execution of functions that may be
executed in parallel, and thus provides a more general and flexible approach,
suitable for irregular problems. DPH extends Haskell with parallel primitives,
such as parallel arrays and a set of parallel operations on arrays. The compiler
compiles these parallel constructions by desugaring them into the GHC Core
language, followed by a sequence of Core-to-Core transformations. DPH is a
notable framework for the specification of concurrent programs, but the compiler
is not intended to automatically discover parallel evaluations.

In a different line of work, the Manticore project is developing a parallel pro-
gramming language for heterogeneous multi-core processor systems [3]. A main
feature of the language is the support for both implicit and explicit threading.
Nevertheless, as a design choice, it avoids implicit parallelism (i.e., it requires
the programmer to hint parallelism by providing annotations) since they claim
implicit parallelism to be only effective for dense regular parallel computations.

The goal of the Paraglide project at IBM is to assist the construction of
highly-concurrent algorithms. The Paraglider tool [17] is a linearization-based
framework to systematically construct complex algorithms manipulating concur-
rent data structures, from a sequential implementation. This approach combines
manual guidance with automatic assistance, focusing mainly on fine-grained syn-
chronization.

8 Conclusion

Synchronized pipelining is a parallelization technique that relies on eventual
independence, a new refinement of the established notion of independence, to
successfully transform programs with nested loops. This paper has set the the-
oretical foundations of the transformation, and showed its practical benefits on
representative examples.

Future work includes applying this transformation to general recursive pro-
cedures, which is a possibility if the program is first transformed into an iterative
version of itself. This is a widely studied optimization problem [11] which can
significantly improve performance. Other lines of research include applying the
transformation to languages that manipulate the heap. Many concepts developed
in this paper are largely independent of the underlying programming language,
and the main issue is rather to find an analysis to detect independence. Recent
work on the use of shape analysis and separation logic for detecting data de-



pendence and for parallelization provide a good starting point (e.g., [15, 16, 8, 6,
12]).
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Appendix

A Complete mergesort Algorithm

Original algorithm.

void mergesort (int* A,int length){
int i,j,c,l,r,fromQueue;

struct queue Q;

for (i = 1; i < length;i*=2) {
j = 0;

while (j < length) {
c = j;l = c; r = j + i;

while (c < j + 2*i){
fromQueue = last(Q);

if (l >= j + i){
if ((last(Q) < A[r] && last(Q) != -1) || r >= j + 2*i )

A[c] = dequeue(&Q);

else

A[c] = A[r++];

}
else if (r >= j + 2*i)

A[c] = dequeue(&Q);

else{
if (fromQueue < A[l] && fromQueue < A[r] && fromQueue != -1){
enqueue(&Q,A[l++]);

A[c] = dequeue(&Q);

}
else if (A[r] < A[l]){
enqueue(&Q,A[l++]);

A[c] = A[r++];

}
else /* (A[l] < A[r]) */

l++;

}
c++;

}
j = j + 2*i;

}
}

}

Transformed algorithm



for (_forIndex = 0; _forIndex < _A_length;_forIndex++)

event_announce(_A_events[0][_forIndex]);

for (_outerCount = 0; _outerCount < _outerLoopCant;_outerCount++) {
spawn _innerLoop(A,_outerCount,i);

i *= 2;

}
sync;

return;

}

cilk void _innerLoop(int* A,int _outerCount, int i){
int j = 0,c = j,l = j,r = j+i,fromQueue;

int length = _A_length;

struct queue Q;

while (j < length) {
c = j;l = c; r = j + i;

while (c < j + 2*i){
event_wait(_A_events[_outerCount][r]);

fromQueue = last(Q);

if (l >= j + i){
if ((last(Q) < A[r] && last(Q) != -1) || r >= j + 2*i ){
A[c] = dequeue(&Q);

}
else{
A[c] = A[r];r++;

}
}
else if (r > j + 2*i)

A[c] = dequeue(&Q);

else{
if (fromQueue < A[l] && fromQueue < A[r] && fromQueue != -1){
enqueue(&Q,A[l]);l++;

A[c] = dequeue(&Q);

}
else if (A[r] < A[l]){
enqueue(&Q,A[l]);l++;

A[c] = A[r];r++;

}
else /* (A[l] < A[r]) */

l++;

}



event_announce(_A_events[_outerCount+1][c]);

c++;

}
j = j + 2*i;

}
}

B Loop Sequence Transformation Example

We wish to apply our loop sequence transformation to the program in Figure 5a.
From simple observation we can deduce that any starting state under which the
loops will be executed will be such that variables x, y and z have values 1, 2 and
3 respectively. .6 We can also ensure that in Loop1 variables y and z will not be
modified, and neither will variable z in Loop2.

Another property we assume is that array a has only 10 elements, and since
it is the only shared resource, we use one event per array element to synchronize
the different loops.

Taking these properties into account it is easy to establish the Ω functions
by analyzing how the variables are modified by these loops.

The result of a simple analysis on the loops taking into account the initial
conditions yields:7

– Ω(1,2) will relate values (n,λ(m)) such that n > m+ 1.

– Ω(2,3) will relate values (n,λ(m)) such that n > 2 ∗m+ 1.

– Ω(1,3) will relate values (n,λ(m)) such that n > 2 ∗m+ 3.

This relation between loops is unsurprisingly the relation followed by the
index of the accesses accesses made to array a, since it is the only shared resource.
It can be preserved by simply requiring succeeding loops that want to access an
element to wait for the preceding ones to modify it. This is accomplished by
having an array element access wait on an event associated to that element,
and after having done so, announce an event that allows the succeeding loops to
modify or read elements it will no longer touch, in this case the lowest read or
modified index of the iteration, since the indexes are increasing.

The modified program is presented in Figure 5b8.

6 Actually in more complicated programs a more advanced analysis may need to be
run in order to obtain information about the starting state of the loops.

7 The analysis is omitted on account of relevancy.
8 The transformed program is annotated with the necessary synchronization primi-

tives, though we have left out the announcement of the full set of events after a
loop, because the construct is easy enough to analyze in order to determine that to
be redundant.



The idea is to parallelize the whole program by progressively applying the basic
transformation to each pair of interfering loops. Therefore, we must provide for
all i, j such that i < j an eventual independence relation Ωi,j and a function
λi,j : N → S. By definition of eventual independence, we must have for every
(n,λi,j(m)) ∈ Ωi,j and for all states σ:

!cn
i ; cm−1

j ; ck
i ; cj" ≡(σ,∅) !cn

i ; cm−1
j ; (ck

i ‖ cj)"

Since the parallel execution of the ith loop may interfere not only with its
immediately preceding loop, but with every preceding one, we need to synchro-
nize each pair of non-independent loops. Thus, the ith loop of the transformed
program becomes:

while bi do
⋃

1≤j<i

λi,j(h) →


ci;

⋃

i<j≤n

ωi,j,φi
(h)!


 ;∀i<j≤nSi,j !

where Si,j stands for all the synchronization events used to synchronize execution
between while bi do ci and while bj do cj , for every i < j.

Example 3. To clarify this transformation we explore a simple example. Take
the program:

x = 1
y = 2
z = 3
while (x < 10)

a[x] = 3
x = x + 1

while (y < 10)
a[y] = a[y] + a[y-1]
y = y + 1

while (z < 10)
a[z] = 2 * a[z]
z = z + 2

a:
Orig-
i-
nal

[Pipelined]

x = 1
y = 2
z = 3
while (x < 10)

a[x] = 3
x = x + 1
τ 1,2,x!
τ 1,3,x!

while (y < 10)
τ 1,2,y →

a[y] = a[y] + a[y-1]
y = y + 1
τ 2,3,y-1!

(a) Original

element to wait for the preceeding ones to modify it. This is accomplished by
having an array element access wait on an event associated to that element,
and after having done so, announce an event that allows the succeeding loops to
modify or read elements it will no longer touch, in this case the lowest read or
modified index of the iteration, since the indexes are increasing.

The modified program is presented in Figure 6b6.

x = 1
y = 2
z = 3
while (x < 10)

a[x] = 3
x = x + 1

while (y < 10)
a[y] = a[y] + a[y-1]
y = y + 1

while (z < 10)
a[z] = 2 * a[z]
z = z + 2

x = 1
y = 2
z = 3
( while (x < 10)

a[x] = 3
x = x + 1
τ1,2,x!
τ1,3,x!

‖while (y < 10)
τ1,2,y →
a[y] = a[y] + a[y-1]
y = y + 1
τ2,3,y−1!

‖while (z < 10)
τ1,3,z & τ2,3,z →
a[z] = 2 * a[z]
z = z + 2

)

C Semantics Preservation Proof (sketch)

The main idea is to prove semantics preservation inductively, relying on the
definition of eventual independence and the restrictions it imposes on event
signaling. If we execute the transformed statement, both loops of the original
statement c (Loop1 and Loop2) will be launched in parallel, but since the second
one has to wait for signaling, only Loop1 is able to proceed initially.

We assume that iteration n of Loop1 is the first one to announce the event
the λ(1), namely the event the first iteration of Loop2 waits on.

Once this happens, we need to check if the definition of our dependence
relation indeed preserves the semantics if the first iteration of Loop2 is executed.

Thus, we have that

6 The transformed program is annotated with the necessary synchronization primi-
tives, though we have left out the announcement of the full set of events after a
loop, because the construct is easy enough to analyse in order to determine that to
be redundant.

(b) Pipelined

Fig. 5: Loop sequence example code

C Semantics Preservation Proof (sketch)

The main idea is to prove semantics preservation inductively, relying on the
definition of eventual independence and the restrictions it imposes on event
signaling. If we execute the transformed statement, both loops of the original
statement c (Loop1 and Loop2) will be launched in parallel, but since the second
one has to wait for signaling, only Loop1 is able to proceed initially.

We assume that iteration n of Loop1 is the first one to announce the event
the λ(1), namely the event the first iteration of Loop2 waits on.

Once this happens, we need to check if the definition of our dependence
relation indeed preserves the semantics if the first iteration of Loop2 is executed.

Thus, we have that

(n, λ(1)) ∈ Ω(i,j)

and thus, by the definition of our eventual independence relation we have that
execution the first iteration ahead of time preserves our semantics for every
ε ⊂ S, since the synchronization variables in our transformation are chosen to
be fresh:

Jcn1 ; ck1 ; c2K ≡(σ,ε) Jcn1 ; (ck1 ‖ c2)K ≡(σ,ε) Jcn1 ; c2; ck1K
For the sake of simplicity we assume an ascending order in Ω, meaning that

(n1,m2), (n2,m2) ∈ Ω ∧ m2 > m1 ⇒ n1 ≥ n2. This avoids having to use
maximum values between values of n for the proof, but it is otherwise equivalent.

The proof for m = 2 will give an insight at what we are trying to prove. We
have:

Jck1 ; c2; c2K ≡(σ,ε) Jcn1
1 ; ck−n1−n2

1 ; cn2
1 ; c2; c2K ≡(σ,ε) Jcn1

1 ; c2; cn2−n1
1 ; (c2 ‖ ck−n2

1 )K ≡(σ,ε)



≡(σ,ε) Jcn1
1 ; (c2 ‖ cn2−n1

1 ); (c2 ‖ ck−n2
1 )K

The last expression is equivalent to the result of applying the transformation
to the first expression and executing the c2 statements as early as possible. We
want to prove that we can interleave the execution of the c2 statements guided
by Ω in a safe way for an arbitrary m. We take as our inductive hypothesis:

Jck1 ; cm2 ; K ≡(σ,ε) Jcn1
1 ; (c2 ‖ cn2−n1

1 ); (c2 ‖ ck−n2
1 ); . . . ; (c2 ‖ cnm−nm−1

1 ); (c2 ‖ ck−nm
1 )K

Our inductive step is then:

Jck1 ; cm+1
2 K ≡(σ,ε) Jck1 ; cm2 ; c2K ≡(σ,ε)

≡(σ,ε) Jcn1
1 ; (c2 ‖ cn2−n1

1 ); (c2 ‖ ck−n2
1 ); . . . ; (c2 ‖ cnm−nm−1

1 ); (c2 ‖ ck−nm
1 ); c2K ≡(σ,ε)

≡(σ,ε) Jcn1
1 ; (c2 ‖ cn2−n1

1 ); (c2 ‖ ck−n2
1 ); . . . ; (c2 ‖ cnm−nm−1

1 ); (c2 ‖ ck−nm+1−nm

1 ); c
k−nm+1

1 ; c2K ≡(σ,ε)

≡(σ,ε) Jcn1
1 ; (c2 ‖ cn2−n1

1 ); (c2 ‖ ck−n2
1 ); . . . ; (c2 ‖ cnm−nm−1

1 ); (c2 ‖ ck−nm+1−nm

1 ); (c2 ‖ ck−nm+1

1 )K
The last step is possible due to the fact that we can “push” the first m c2

statements to the right in order to use the definition of the Ω function for the
proof.


