
A Generic Model for Persistence

in (C)LP Systems

(and two useful implementations)

J. Correas J. M. Gómez M. Carro D. Cabeza
M. V. Hermenegildo

School of Computer Science
Technical University of Madrid (UPM)

Abstract

This paper describes a model of persistence in (C)LP languages and two different and practi-
cally very useful ways to implement this model in current systems. The fundamental idea is
that persistence is a characteristic of certain dynamic predicates (which encapsulate state).
The main effect of declaring a predicate persistent is that the dynamic changes made to such
predicates persist from one execution to the next one. After proposing a syntax for declar-
ing persistent predicates, a simple, file-based implementation of the concept is presented and
some examples shown. It is then argued that the concept developed provides the most natural
way to interface with databases. Such an interface to a relational database is then developed
as simply one more implementation alternative to the simple, file-based approach. The ab-
straction of the concept of persistence from its implementation allows developing applications
which can store data alternatively on files or databases with only a few simple changes to a dec-
laration stating the location and modality used for persistent storage. The paper presents the
model, the implementation approach in both the cases of using files and relational databases, a
number of optimizations of the process (using information obtained from static global analysis
and goal clustering), and performance results from an implementation of these ideas.

1 Introduction

State is traditionally implemented in Prolog and other (C)LP systems through the built-in ability
to modify predicate definitions dynamically at runtime.1 Generally, fact-only dynamic predicates
are used to store information in a way that provides global visibility (within a module) and
preserves information through backtracking. This facility is built on top of the so-called internal
database. The logical view of internal database updates [LO87] confers a sensible semantics to
the effect of database changes in a running Prolog program. This internal database, albeit a non-
declarative component of Prolog, has many practical applications from the point of view of the
needs of a programming language.2

However, Prolog internal database implementations associate the lifetime of the internal
database with that of the process, i.e., they deal only with what happens when a given pro-
gram is running and changes its private database. Indeed, the Prolog database lacks an important
feature present in all database systems: data persistence. Data persistence means that database
modifications will survive across program executions, and maybe be accessible to other programs
—even concurrently. This feature, if needed, must be explicitly taken care of by the programmer

1These predicates sometimes have to be marked explicitly as dynamic.
2Examples of recent proposals to extend its applicability include using it to model reasoning in a changing

world [Kow96], and as the basis for communication of concurrent processes and objects [CH99, PB02].

1

in traditional systems: it can be achieved for example by explicitly reading and writing the state of
the database to an external device, be it a file with Prolog facts, or a true external database. This
approach offers a basic solution, but unless substantial effort is devoted to the task it will typically
lack an updated reflection of the Prolog database state in the external device, as synchronization
points will be quite scattered in time. Of course Prolog database accesses can be replaced with
sequences of goals which explicitly read / write terms to files or external databases, but this brings
important changes in the program with respect to the case where no external storage is used. Also,
substantial recoding is needed if the external storage medium is to be changed from a file-based
one to a database-based one or the other way around. The same applies to programs using the
internal Prolog database which have to be adapted to using an external database.

In this paper we present a conceptual model of persistence, persistent predicates, and a number
of implementations thereof. This concept allows associating an external storage medium to selected
(dynamic) predicates, which are then termed persistent. A persistent predicate is thus a special
kind of dynamic, data predicate that “resides” in some persistent medium (such as a set of files,
a database, etc.) and which is typically external to the program using such predicates. The
main effect is that any changes made to a persistent predicate from a program “survive” across
executions, i.e., if the program is halted and restarted the predicate that the new process sees
is in precisely the same state as it was when the old process was halted (provided no change
was made in the meantime to the storage by other processes or the user). Notably, persistent
predicates appear to a program as ordinary dynamic predicates: calls to these predicates can
appear in clause bodies in the usual way without any need to wrap or mark them as database
calls, and updates to persistent predicates can be made using the standard asserta/1, assertz/1,
retract/1, etc. predicates used for ordinary dynamic predicates (which are suitably modified).
Updates to persistent predicates are guaranteed to be atomic and transactional, in the sense that if
an update terminates, then the external storage has definitely been modified. This model provides
a high degree of conceptual compatibility with previously existing programs which access only the
local database, while bringing at the same time several practical advantages:

• The state of dynamic predicates is, at all times, reflected in the state of the external storage
device. If the program making the updates is halted just after one update and then restarted,
then the updated state of the predicate will be seen. This provides security against possible
data loss due to, for example, a system crash. Also, thanks to the atomicity of the transac-
tions, persistent predicates allow concurrent updates from several programs to be handled
with only limited effort.

• The external database can be used as a means to communicate and share data easily among
programs, which can access it as if it were part of the local database of each program.

• Since database accesses are viewed as regular accesses to the Prolog database, analyzers
(and related tools) for full Prolog can deal with them in the same way as with the standard
dynamic predicates. Also, since the calls to persistent predicates are standard literals, tra-
ditional analysis tools can infer the types and modes of the arguments which, as we will see,
can result in optimizations. Using explicit accesses to files or external databases through
low-level library predicates would make this task much more difficult.

Finally, perhaps the most interesting advantage of the notion of persistent predicates is that it
abstracts away how the predicate is actually stored. Thus, a program can use persistent predicates
stored in files or in external relational databases interchangeably, and the type of storage used for
a given predicate can be changed without having to modify the program except for replacing a
single declaration in the whole program. It also minimizes impact on the host language, as the
semantics of the access to the database is compatible with that of Prolog.

Our approach builds heavily on the well known and close relationship between (Constraint)
Logic Programming and relational databases [Ull90]: for example, operations in the relational
algebra can be easily modeled using Horn clauses (plus negation for some operations), where

2

database tables are seen as fact-only predicates, and every record is seen as a fact. Accesses are
immediate, as they boil down to predicate calls.

A number of current Prolog systems have features which are related to the capabilities which
our approach offers: Quintus Prolog offers ProDBI (also available for SICStus under the generic
name Prodata), which allows queries (but not updates) on tables as if they were Prolog predicates;
SICStus Prolog also has an interface to the Berkeley Database system [OBS99]; XSB, and SWI
include PrologSQL, which can compile on demand a conjunction of literals to SQL using the
Draxler compiler [Dra91], but which do not provide transparent persistence. However, we argue
that none of these cases achieve the same level of flexibility and seamless integration with Prolog
achieved in our proposal.

In summary, the main technical contributions of this paper are as follows:

• We introduce the notion of persistent predicates. This notion implies that for such predicates
the state of the Prolog database is reflected in an external storage facility, thus allowing (this
part of) the program state to survive across executions. The syntax to access the database
facts is the same as for the Prolog database, and only minor modifications, orthogonal to the
program code and to its internal logic, are needed in a given program to achieve persistence.

• We also present two different implementations of the above: one based on storing facts on
files and another one based on an interface to an external SQL database which is completely
transparent to the user.

• We present a performance study, comparing the aforementioned implementations with the
straightforward use of the internal Prolog database, with and without using the proposed
optimizations.

• In the case of the external SQL database, we also analyze how the overhead due to the com-
pilation of SQL queries and their transmission can be improved with compile-time analysis
information and literal clustering.

Implementations of this model have been used in several non-trivial tools such as, for example,
the WebDB deductive database engine [GCH98], a generic database system with a highly customiz-
able html interface. WebDB allows creating and maintaining Prolog-based databases as well as
databases residing in conventional engines using any standard WWW browser. They have also
been used in real-world applications such as the Amos [Car02] tool, part of a large, ongoing inter-
national project aimed at facilitating the reuse of Open Source code through the use of a powerful,
ontology-based search engine working on a large database of code information.

2 A Proposal for Persistent Predicates in Prolog

We will now define a syntax for the declaration of persistent predicates. We will also present briefly
two different implementations of persistent predicates which differ on the storage medium (files of
Prolog terms on one case, and an external relational database on the other). Both implementations
aim at providing a semantics compatible with that of the Prolog internal database, but enhanced
with persistence over program executions.

2.1 Declaring Persistent Predicates

The syntax that we propose for defining persistent predicates is based on the assertion language
of Ciao Prolog [PBH00], which allows expressing in a compact, uniform way, types, modes, and,
in general, different (even arbitrary) properties of predicates.

In order to specify that a predicate is persistent we have to flag it as such, and also to define
where the persistent data is to be stored. Thus, a minimum declaration is:

3

:- include(library(persdb)).

:- pred employee/3 + persistent(payroll).

:- pred category/2 + persistent(payroll).

:- persistent_db(payroll, file(’/home/clip/accounting’)).

The first declaration states that the persistent database library is to be used to process the
source code file: the included code loads the persdb library support predicate definitions, and
defines the local operators and syntactic transformations that implement the persdb package. The
second and third line state that predicates employee/3 and salary/2 are persistent and that
they live in the database to be referred to as payroll, while the fourth one defines which type of
database the payroll identifier refers to (the persistent_db/2 information can also be included
in the argument of persistent, but using persistent_db/2 declarations allows factoring out
information shared by several predicates). It is the code in the persdb package that processes
the persistent/1 and persistent_db/2 declarations, and which provides the code to access the
external storage and keeps the information necessary to deal with it. In this particular case, the
database is kept on a disk file in the directory specified in the directive. The predicates in Figure 1
use these declarations to compute the salary of some employee, and to increment the number of
days worked:

salary(Employee,Salary):-

employee(Employee,Category,Days),

category(Category,PerDay),

Salary is Days * PerDay.

one_more_day(Employee):-

retract(employee(Employee,Cat,Days)),

Days1 is Days + 1,

assert(employee(Employee,Cat,Days1)).

Figure 1: Accessing and updating a persistent predicate

In this simple case, no further information about the persistent predicates is needed. However,
if the external storage is to be kept in an SQL database, argument type information is required
in order to create the table (if the database is empty) and also to check that the calls are made
with compatible types. It is also necessary to establish a mapping (views) between the predicate
functor and arguments and table name and columns. Suitable declarations to store in an external
database the information related to the employees and categories are:

:- include(library(persdb)).

:- pred employee/3 :: string * string * int +

persistent(employee(ident, category, time), payroll).

:- pred category/2 :: string * int +

persistent(category(category, money), payroll).

:- persistent_db(payroll, db(pay_db, admin, ’SurePassword’, ’db.mycomp.org’)).

The db/4 declaration indicates database name (pay_db), database server (db.mycomp.org),
database user (admin) and password (SurePassword). This information is processed by the persdb
package, and a number of additional formats can be used. For example, the port for the database
server can be specified (as in ’db.mycomp.org’:2020), the precise database brand can be noted
(as, for example odbc/4 or oracle/4 instead of the generic db/4), etc. This instructs the persdb
package to use different connection types or to generate queries specialized for particular SQL
dialects. In addition, values for the relevant fields can also be filled in at run time, which is useful
for example to avoid storing sensitive information, such as password and user names, in program
code. This can be done using hook facts or predicates, which can be included in the source code,
or asserted by it, perhaps after consulting the user. These facts or predicates are then called when
needed to provide values for the arguments whose value is not specified in the declaration. For
example, a declaration such as:

4

:- persistent_db(payroll, db(pay_db, _, _, ’db.mycomp.org’)).

would call the hook predicates db_user/2 and db_passwd/2, which are expected to be defined as

db_user(payroll, User):- ...

db_password(payroll, Password):- ...

Note also that, as mentioned before, the declarations corresponding to employee/3 and
category/2 specify the name of the table in the database (which can be different from that
of the predicate) and the name of each of its columns. It may also have a type signature. If a
table is already created in the database, then this declaration of types is not strictly needed, since
the system will retrieve the schema from the database. However, it may still be useful so that
(compile-time or run-time) checking of calls to persistent predicates can be performed:

• The types are needed when tables are to be automatically created in the database since
databases usually need the user to provide explicit types for every column. In some cases
the type inferencing algorithms (see below) can infer the types from those of other predicates
in the program.

• The types are also useful so that type errors (i.e., trying to send a record with a number in
a place where a string was expected) can be caught and reacted to as soon as possible —
maybe even at compile time or, if at run time, before the database implementation raises an
error. Note that in a file-based implementation these type declarations are not needed, but
they are still encouraged in order to ensure type-safeness (and make it trivial to migrate the
code to the database implementation).

• Lastly, types and modes can be read and inferred by a global analysis tool, such as, e.g.,
CiaoPP [HPBLG03, HBPLG99], and used to optimize the generation of SQL expressions
and to remove superfluous runtime checks at compile time (see Section 2.3.1).

It is interesting to point out that the predicate code in Figure 1 does not have to change
to work with a new placement of the database: the way the database is accessed is taken care
of by the library package, and the information about where the database lives is defined in the
declarations. The program always contains standard internal database access and aggregation
predicates, independently of whether it is the internal Prolog database, a file-based one, or an
SQL-based one.

A dynamic version exists of the persistent declaration, which allows defining new persistent
predicates on the fly, under program control. Also, in order to provide greater flexibility, lower-
level operations (of the kind available in traditional Prolog-SQL interfaces) are also available, with
allow establishing database connections. These are the library operations the above examples are
compiled into. Finally, a persistent predicate can also be made to correspond to a complex view
of several database tables.

We will now give a longer code example: the complete source of a program implementing a
simple, persistent queue, and which interacts with the user. The elements of the queue are kept as
records in a database, and the program state can therefore be recovered after it has being stopped
and resumed:

:- module(queue, [main/0]).

:- include(library(persdb)).

:- pred queue/1 + persistent(file(’/tmp/queue’)).

main:-

write(’Action (in(Term). | out. | list. | halt.): ’),

read(A),

(handle_action(A)

-> main

5

; write(’Unknown command.’), nl, main).

handle_action(end_of_file) :- halt.

handle_action(halt) :- halt.

handle_action(in(Term)) :- assertz(queue(Term)).

handle_action(out) :-

(retract(queue(Term))

-> write(’Out ’), write(Term)

; write(’EMPTY!’)), nl.

handle_action(list) :-

findall(T,queue(T),Contents),

write(’Contents: ’), write(Contents), nl.

An example interaction is the following (note that the program is stopped and restarted):

$./queue

Action (in(Term). | out. | list. | halt.): in(first).

Action (in(Term). | out. | list. | halt.): in(second).

Action (in(Term). | out. | list. | halt.): list.

Contents: [first, second]

Action (in(Term). | out. | list. | halt.): halt.

$./queue

Action (in(Term). | out. | list. | halt.): out.

Out first

Action (in(Term). | out. | list. | halt.): list.

Contents: [second]

Action (in(Term). | out. | list. | halt.): out.

Out second

Action (in(Term). | out. | list. | halt.): out.

EMPTY!

Action (in(Term). | out. | list. | halt.): halt.

2.2 File-Based Implementation

The file-based implementation of persistent predicates provides a light-weight, simple, and at the
same time quite powerful form of database. It has the advantage of being standalone in the sense
that it does not require any external support other than the file management capabilities provided
by the operating system. This is thanks to the fact that the persistent predicates are stored in one
(or more) auxiliary files under the direct control of the persistent library. This implementation
is especially useful when building small to medium-sized standalone (C)LP applications which
require persistent storage and which may have to run in an environment where the existence of an
external database manager is not ensured. Also, it is very useful even while developing applications
which will connect to databases, because it allows working with persistent predicates maintained
in files when developing or modifying the code and then switching to using the external database
for testing or “production” by simply changing a declaration.

The database where persistent predicates live in is associated to a directory, under which the
file(s) which keep the state of the predicates is (are) placed. These files are stored in plain ASCII
format and using Prolog syntax. One obvious advantage of this approach is that such files can,
if needed, be edited by hand using any text editor, or even easily read and written by other
applications not necessarily using the persistent database interface or written in Prolog.

The implementation attempts to provide at the same time efficiency and security. Three files
are used for each predicate: the data file, which stores a base state for the predicate; the operations
file, which stores the differential between the base state and the predicate state in the program
(i.e., operations pending to be integrated into the data file); and the backup file, which stores a
security copy of the data file.

6

When no program is accessing the persistent predicate (because, e.g., no program updating
that particular predicate is running), the data file reflects exactly the facts in the Prolog internal
database. When any insertion or deletion is performed, the corresponding change is made in the
Prolog internal database, and a record of the operation is appended to the operations file. In this
moment the data file does not reflect the state of the internal Prolog data base, but it can be
reconstructed by applying the changes in the operations file to the state in the data file. This
strategy incurs only in a relatively small, constant overhead per update operation (the alternative
of keeping the data file always up to date would lead to an overhead linear in the number of records
in it).

When a program using a file-based persistent predicate starts up, the data file is first copied
to a backup file, and all the pending operations are performed on the data file by loading it into
memory, re-executing the updates recorded in the operations file, and saving a new data file. The
order in which the operations are performed and the concrete O.S. facilities (e.g., file locks) used
ensure that even if the process aborts at any point in its execution, the data saved up to that
point can be completely recovered upon a successful restart. The backup of the data file is used
to prevent data loss if the system crashes during this operation. For more security, the data file
can also be explicitly brought up to date on demand at any point in the execution of the program.

2.3 External Database Implementation

Another obvious alternative implementation is by using a relational database as the persistent
storage medium. This is clearly useful, for example, when the data already resides in such a
database (where it is perhaps also accessed by other applications) or the amount of data is very
large. We present another implementation of persistent predicates which keeps the storage in a
relational database. A more extensive description of this interface (including the design of an
ODBC mediator) can be found in [CCG+98, CHGT98].

One of the most attractive features of our approach is that this view of external relations as
just another storage medium for persistent predicates provides a very natural and transparent way
to access relational databases from (C)LP programs. As mentioned in 2.1, this implementation
allows reflecting selected columns of a relational table as a persistent predicate. The implemen-
tation also provides facilities for reflecting complex views of the database relations as individual
persistent predicates. Such views can be constructed as conjunctions, disjunctions or projections
of database relations, and may include SQL-like aggregation operations (using where appropriate
the corresponding Prolog primitives, such as findall, bagof, setof, etc.

The architecture of the database interface (Figure 2), has been designed with two goals in
mind: simplifying the communication between the Prolog side and the relational database server,
and providing platform independence, allowing inter-operation when using different databases.

The interface is built on the Prolog side by stacking several abstraction levels over the socket
and native interfaces (Figure 2). Typically, database servers allow connections using TCP/IP
sockets and a particular protocol. Alternatively, linking directly a shared object or a DLL may be
needed. In other cases a special-purpose mediator which acts as a bridge between a socket and a
native interface (e.g., certain versions of ODBC) has been developed [CCG+98, CHGT98]. Thus,
the low level layer is highly specific for each database implementation (e.g. MySQL, Postgres,
ORACLE, etc.). The mid-level interface (which is similar in level of abstraction to that present
in most current Prolog systems) abstracts away these details.

The higher-level layer implements the concept of persistent predicates so that calls and database
updates to persistent predicates actually act upon relations stored in the database by means of
automatically generated mid-level code. In the base implementation, at compile-time, a “stub”
definition is included in the program containing one clause whose head has the same predicate
name and arity as the persistent predicates and whose body contains the appropriate mid-level
code, which basically implies activating a connection to the database (logging on) if the connection
is not active, sending the appropriate SQL code, recovering the solutions (or the first solution and
the DB handle for asking for more solutions), retrieving additional solutions on backtracking
or eventually failing, and closing the connection (logging off the database), therefore freeing the

7

External database server

Socket or native interface

Application program

(persistent predicates)
Source view

library
Persistent predicates

Sockets
library interface

Native external

(compiler)

pl2sqlDB Client
(mid level lib)

Figure 2: Architecture of the access to an external database

programmer from having to pay attention to low-level details (but the mid-level interface is always
available, of course).

The SQL code in particular is generated using a Prolog to SQL translator based on the excellent
work of Draxler [Dra91]. Modifications were made to the code of [Dra91] so that the compiler
can deal with the different idioms used by different databases, the different types supported, etc.
as well as blending with the high-level way of declaring persistence, types, modes, etc. that we
have proposed (and which is in line with the program assertions used throughout in the Ciao
system). All conversions of data types are also automatically handled by the interface, using the
type declarations provided by the user or inferred by the global analyzers.

In principle the SQL code corresponding to a given persistent predicate, literal, or group of
literals needs to be generated dynamically at run-time for every call to a persistent predicate
since the mode of use of the predicate affects the code to be generated and can change with each
run-time call. Clearly, a number of optimizations are possible. In general, a way to improve
performance is by reducing overhead in the run-time part of the Prolog interface by avoiding
any task that can be accomplished at compile-time, or which can be done more efficiently by
the SQL server itself. We study two different optimization techniques based on these ideas: the
use of static analysis information to pre-compute the SQL expressions at compile time (which is
related to adornment-based query optimization in deductive databases [RU93]), and the automatic
generation of complex SQL queries based on Prolog query clustering.

2.3.1 Using static analysis information to pre-compute SQL expressions

As hinted at before, the computation of SQL queries can be certainly sped up by creating skeletons
of SQL sentences at compile-time, and fully instantiating them at run-time. In order to create the
corresponding SQL sentence for a given goal (or set of goals –see below) to a persistent predicate
at compile-time, information regarding the instantiation status of the variables that appear in
the goal is needed. This mode information can be provided by the user using the Ciao assertion
language. More interestingly, this information can typically be obtained automatically by using
program analysis. In the Ciao system this is accomplished by CiaoPP, a powerful program
development tool which includes a static analyzer, based on Abstract Interpretation [HBPLG99].
If the program is run through CiaoPP, and selecting the appropriate options, the output will
contain, at every program point and in the form of true assertions, the abstract substitution
resulting from the analysis using a given domain. Although the essential information here is
argument groundness (we just need to know which database columns must appear in the WHERE

8

part of the SQL expression), we use the sharing/freeness abstract domain because it provides more
accurate groundness information than simple groundness analyses.

For example, assume that we have an SQL-based persistent predicate as in Section 1:

:- pred employee/3 :: string * string * int +

persistent(employee(ident, category, time), payroll).

and consider also the program shown in the left side of Figure 1. The literal employee/3 will be
translated by the persistence library to a mid-level call which will at run-time call the pl2sql

compiler to compute an SQL expression corresponding to employee(Employee,Category,Days)

based on the groundness state of Employee, Category and Days. These expressions can be pre-
computed for a number of combinations of the groundness state of the arguments (with still some
run-time overhead to select among these combinations, which unfortunately can obviously be
many if the number of arguments is large). Furthermore, if the static analyzer can infer that
Employee is ground when calling employee(Employee,Category,Days), we will be able to build
at compile-time the SQL query for this goal as:

SELECT ident, category, time FROM employee WHERE ident = ’$Employee$’;

The only task that remains to be performed at run-time, before actually querying the database,
is to replace $Employee$ with the actual value that Employee is instantiated to and send the
expression to the database server.

A side effect of (SQL-)persistent predicates is that they provide useful information which can
improve the analysis results for the rest of the program: the assertion that declares a predicate
(SQL-)persistent also implies that on success all the arguments will be ground. This additional
groundness information can be propagated to the rest of the program. For instance, in the def-
inition of salary/2 in Figure 1 category/2 happens to also be a persistent predicate living in
an SQL database, and we will surely be provided with groundness information for category/2 so
that the corresponding SQL expression will be generated at compile-time as well.

2.3.2 Query clustering

The second possible optimization on database queries is query clustering. A simple implementation
approach would deal separately with each literal calling a persistent predicate, generating an
individual SQL query for every such literal. Under some circumstances, mainly in the presence
of intensive backtracking, the flow of tuples through the database connection generated by the
Prolog backtracking mechanism will produce limited performance.

In the case of complex goals formed by consecutive calls to persistent predicates (separated
only by perhaps some tests or aggregation operations) it is possible to take advantage of the
fact that database systems include a great number of well-developed techniques to improve the
evaluation of complex SQL queries. The Prolog to SQL compiler is in fact able to translate such
complex conjunctions of goals into efficient SQL code. The compile-time optimization that we
propose requires identifying literals in clause bodies which call SQL-persistent predicates and are
contiguous (or can be safely reordered to be contiguous) so that they can be clustered and, using
also the mode information, the SQL expression corresponding to the entire complex goal compiled
as a single unit.

For example, in salary/2 of the the program in Figure 1, if category/2 is defined as:

:- pred category/2 :: string * int +

persistent(category(category, money), payroll).

and assuming that we have analysis information which ensures that salary/2 is always called with
a ground term in its first argument, then a single SQL query will be generated at compile-time
for both persistent predicates, such as:

SELECT ident, category, time, rel2.money FROM employee , category rel2

WHERE ident = ’$Employee$’ AND rel2.category = category;

9

3 Empirical results

We now study from a performance point of view the alternative implementations of persistence
presented in previous sections. To this end, both implementations (file-based and SQL-based) of
persistent predicates, as well as the compile-time optimizations previously described, have been
integrated and tested in the Ciao Prolog development system [BCC+02].

In the following sections we compare the relative performance of the alternative implementa-
tions of persistence: in Section 3.1 we compare different implementations of persistent predicates
with access to the Prolog internal database and with direct access to a MySQL database, and in
Section 3.2 we review the improvements obtained in the SQL-based implementation when using
compile-time optimizations with respect to the non-optimized implementation.

3.1 Performance without Compile-time Optimizations

The objective in this case is to check the relative performance of the various persistence mechanisms
and contrast them with the internal Prolog database. The queries issued involve searching on the
database (using both indexed and non-indexed queries) as well as updating it.

The results of a number of different tests using these benchmarks can be found in Tables 1
and 2. In Table 1, a four-column, 25.000 record database table is used to check the basic capabilities
and to measure access speed. Each one of the four columns has a different measurement-related
purpose: two of them check indexed accesses —using int and string basic data types—, and the
other two check non-indexed accesses. The time taken by queries for the different combinations are
given in the rows non-indexed numeric query, non-indexed string query, indexed numeric query,
and indexed string query (time spent in 1.000 consecutive queries randomly selected). Row assertz
gives the time for creating the 25.000 record table by adding the tuples one by one. Rows non-
indexed numeric retract, non-indexed string retract, indexed numeric retract, and indexed string
retract provide the timings for the deletion of 1.000 randomly selected records by deleting the
tuples one by one.

Table 2 provides the results of the same tests on a 24-column table. This is used to measure
the influence of the cost of data transfer in the different implementations when there is a much
larger amount of data stored in the persistent predicates. The first four columns are identical to
the ones in the four-column table before and are used for accessing the tuples, while the other
20 columns contain additional data which brings the individual record data size to approximately
2Kb.

The timings were taken on a medium-loaded Pentium IV Xeon 2.0Ghz with two processors,
1Gb of RAM memory, running Red Hat Linux 8.0, and averaging several runs and eliminating the
best and worst values. Ciao version 1.9.78 and MySQL version 3.23.54 were used.

The meaning of the columns is as follows:

prologdb (data) Is the time taken when accessing directly the internal (assert/retract) database
of Prolog. Obviously, this database is not persistent, since it is memory-based and its
contents will disappear when the Prolog process exits.

prologdb (concurrent) Is the same, but tables are marked as concurrent. This toggles a variant
of the assert/retract database which allows concurrent access to the Prolog database. Atom-
icity in the updates is ensured and several threads can access concurrently the same table
and synchronize through facts in the tables (see [CH99]). This measurement has been made
in order to provide a fairer comparison with a database implementation, which has the added
overhead of having to take into account concurrent searches/updates, user permissions, etc.3

3Note, however, that this is still quite different from a database, apart, obviously, from the lack of persistence.
On one hand databases typically do not support structured data, and it is not possible for threads to synchronize on
access to the database, as is done with concurrent dynamic predicates. On the other hand, in concurrent dynamic
predicates different processes cannot access the same data structures, which is possible in SQL databases. However,
SQL databases usually use a server process to handle requests from several clients, and thus there are no low-level
concurrent accesses to actual database files from different processes, but rather from several threads of a single
server process.

10

persdb This is the implementation presented in Section 2.2, i.e., the file-based persistent version
of the internal Prolog database. The code is the same as above, but marking the predi-
cates as persistent. Thus, in addition to keeping incore images of the database, changes
are automatically flushed out to an external, file-based transaction record. This record pro-
vides persistence, but also introduces the additional cost of having to save updates. The
implementation ensures atomicity and also basic transactional behavior.

persdb/sql This is the implementation presented in Section 2.3, i.e., where all the database-
related operations are made directly on an external SQL database. The code is the same as
above, but marking the predicates as SQL-persistent. No information is kept incore, so that
every database access imposes an overhead on the execution.4

sql This is, finally, a native implementation in SQL of the benchmark code, i.e., what a pro-
grammer would have written directly in SQL, with no host language overhead. To perform
these tests the database client included in MySQL has been used. The SQL sentences have
been obtained from the Ciao Prolog interface and executed using the MySQL client in batch
mode.

4 column tables
prologdb prologdb persdb persdb/sql sql

(data) (concurrent)

assertz (25000 records) 590.5 605.5 5326.4 16718.3 3935.0

non-indexed numeric query 7807.6 13584.8 7883.5 17721.0 17832.5

non-indexed string query 8045.5 12613.3 9457.9 24188.0 23052.5

indexed numeric query 1.1 3.0 1.1 1082.4 181.3

indexed string query 1.1 3.0 1.5 1107.9 198.8

non-indexed numeric retract 7948.3 13254.5 8565.0 19128.5 18470.0

non-indexed string retract 7648.0 13097.6 11265.0 24764.5 23808.8

indexed numeric retract 2.0 3.3 978.8 2157.4 466.3

indexed string retract 2.0 3.1 1738.1 2191.9 472.5

Table 1: Speed of accessing and updating (4 column tables)

24 column tables
prologdb prologdb persdb persdb/sql sql

(data) (concurrent)

assertz (25000 records) 639.6 701.0 27291.4 35294.8 8230.0

non-indexed numeric query 12559.5 19646.6 13227.5 116986.4 107230.0

non-indexed string query 14528.1 20007.9 14892.5 126473.9 117261.3

indexed numeric query 2.4 3.8 2.0 2441.4 498.8

indexed string query 2.4 4.0 2.0 2240.6 502.5

non-indexed numeric retract 13401.4 18375.0 13733.6 136895.0 115040.0

non-indexed string retract 13727.0 18954.9 17267.5 133811.5 119628.8

indexed numeric retract 3.0 4.0 5406.0 14708.6 933.8

indexed string retract 3.0 4.3 10838.0 15168.1 1056.3

Table 2: Speed of accessing and updating (24 column tables)

Several conclusions can be drawn from Tables 1 and 2:

Sensitivity to the amount of data to be transferred The impact of this factor should ap-
pear mainly in the tests that need to send and receive data to/from an external (database)

4Clearly, it would be interesting to perform caching of read data, but note that this is not trivial since given
that there can be concurrent updates to the database, an invalidation protocol must be implemented. This is left
as future work.

11

process (persdb/sql and sql). This communication is performed using a socket connection,
which is of course sensitive to the size of the data in transit. In fact, these benchmarks
always more than double the time elapsed when moving from using 4 column tables to using
24 column tables (in some cases the time is multiplied by 7).

The built-in mechanism of Prolog is less sensitive to the number of columns: asserting is
affected very little by it. Queries show more performance variation, but this variation is
smaller than in the case of involving socket communication.

Finally, the case of the file-based implementation lies in between the previous ones. All
updates are reflected both in a transaction file and in the incore image of the database.
Therefore queries show a similar behavior to the purely memory-based database operations
of Prolog, while the slow-down of updates, due to the overhead of being recorded, is more
similar (though smaller) than in the case of SQL-based queries.

Incidence of indexing The impact of indexing is readily noticeable in the tables, especially for
the internal Prolog database but also for the file-based persistent database. The MySQL-
based tests do present also an important speedup, but not as relevant as that in the Prolog-
only tests. This behavior is probably caused by the overhead imposed by the SQL database
requirements (communication with MySQL daemon, concurrency and transaction availabil-
ity, much more complex index management, integrity constraint handling, etc). In addition
to this, Prolog systems are usually highly optimized to take advantage of certain types of
indexing, while database systems offer a wider class of indexing possibilities which might not
be as efficient as possible in some determinate cases, due to their generality.

Impact of concurrency support Comparing the Prolog tests, it is worth noting that concur-
rent predicates bring in a non-insignificant load in database management (up to 50% slower
than simple data predicates in some cases), in exchange for the locking and synchronization
features they provide (as mentioned before, the concurrent Prolog internal database allows
concurrent access from different threads of the same Prolog process and a sophisticated form
of process synchronization). In fact, this slow-down makes the concurrent Prolog internal
database show somewhat lower performance than using the file-based persistent database,
which has its own file locking mechanism to provide inter-process concurrent accesses (but
not from different threads of the same process: in that case both concurrency and persistence
of predicates needs to be used).

Incidence of the Prolog interface in SQL characteristics Table 2 shows that direct SQL
queries (i.e., typed directly at the database top-level interface) behave somewhat better
than using the interface from Prolog, as is to be expected. However, there is a set of cases in
which the difference is very significant (assert and indexed query and retract). This behavior
can be explained considering that in the implementation of SQL-based persistence used for
the tests the conservative approach was used of using a different connection to the database
server for every query requested, and closing it when the query has finished (this is useful in
practice in order to limit the number of open connections to the database, on which there is
a limitation). We plan to perform additional tests turning on the more advanced setting in
which the database connection is kept open.

3.2 Performance with Compile-time Optimizations

We have also implemented the two optimizations described in Sections 2.3.1 and 2.3.2 (using
static analysis information and query clustering) and measured the improvements brought about
by these optimizations. The tests have been performed on two SQL-persistent predicates (p/2
and q/2) with 1.000 facts each and indexed on the first column. There are no duplicate tuples nor
duplicates values in any column (simply to avoid overloading due to unexpected backtracking).
Both p/2 and q/2 contain exactly the same tuples.

Table 3 presents the time (in milliseconds) spent performing 1.000 repeated queries in a failure-
driven loop. In order to get more stable measures average times were calculated for 10 consecutive

12

tests, removing the highest and lowest values. The system used to run the tests was the same as
in section 3.1.

The single queries part of the table corresponds to a simple call to p(X,Z). The first row
represents the time spent in recovering on backtracking all the 1.000 solutions to this goal. The
second and third rows present the time taken when performing 1.000 queries to p(X,Z) (with no
backtracking, i.e., taking only the first solution), with, respectively, the indexing and non-indexing
argument being instantiated. The two columns correspond to the non-optimized case in which the
translation to SQL is performed on the fly, and to the optimized case in which the SQL expressions
are pre-computed at compile-time, using information from static analysis.

The ’complex queries :p(X,Z),q(Z,Y)’ part of the table corresponds to calling this conjunction
with the rows having the same meaning as before. Information about variable groundness (on
the first argument of the first predicate in the second row and on the second argument of the
first predicate in the third row) obtained from global analysis is used in both of these rows. The
two columns allow comparing the cases where the queries for p(X,Z) and q(Z,Y) are processed
separately (and the join is performed in Prolog via backtracking) and the case where the compiler
performs the clustering optimization and pre-compiles p(X,Z),q(Z,Y) into a single SQL query.

Finally, the ’complex queries :p(X,Z),r(Z,Y)’ part of the table illustrates the special case in
which the second goal calls a predicate which only has a few tuples (but matching the variable
bindings of the first goal). More concretely, r/2 is a persistent predicate with 100 tuples (10% of
the 1.000 tuples of p/2). All the tuples in r/2 have in the first column a value which appears in
the second column of p/2. Thus, in the non-optimized test, the Prolog execution mechanism will
backtrack over the 90% of the solutions produced by p/2 that will not succeed.

Single queries: p(X,Y)

on-the-fly pre-computed
SQL generation SQL expressions

Traverse solutions 36.6 28.5
Indexed ground query 1010.0 834.9
Non-indexed ground query 2376.1 2118.1

Complex queries: p(X,Z),q(Z,Y)

non-clustered clustered

Traverse solutions 1039.6 51.6
Indexed ground query 2111.4 885.8
Non-indexed ground query 3550.1 2273.8

Complex queries: p(X,Z),r(Z,Y)

non-clustered clustered

Asymmetric query 1146.1 25.1

Table 3: Comparison of optimization techniques

Single queries: p(X,Y)

on-the-fly pre-computed
SQL generation SQL expressions

Indexed ground query 197.5 27.6
Non-indexed ground query 195.4 27.3

Complex queries: p(X,Z),q(Z,Y)

non-clustered pre-computed
on-the-fly clustered queries

Indexed ground query 406.8 33.3
Non-indexed ground query 395.0 42.6

Table 4: Comparison of optimization techniques (Prolog time only)

The results in Table 3 for single queries show that the improvement due to compile-time SQL
expression generation is between 10 and 20 percent. These times include the complete process

13

of a) translating (dynamically or statically) the literals into SQL and preparing the query (with
our without optimizations), and b) sending the resulting SQL expression to the database and
processing the query in the database. Since the optimization only affects the time involved in a),
we measured also the effect of the optimizations when considering only a), i.e., only the time spent
in Prolog. The results are shown in Table 4. In this case the run-time speed-up obtained when
comparing dynamic generation of SQL at run time and static generation at compile time (i.e.,
being able to pre-compute the SQL expressions thanks to static analysis information) is quite
significant. The difference is even greater if complex queries are clustered and translated as a
single SQL expression: the time spent in generating the final SQL expression when clustering is
pre-computed is only a bit greater than in the atomic goal case, while the non-clustered, on-the-fly
SQL generation of two atomic goals needs twice the time of computing a single atomic goal. In
summary, the optimization results in an important speedup on the Prolog side, but the overall
weight of b) in the current implementation is more significant.

Returning to the results in Table 3, but looking now at the complex goals case, we observe
that the speed-up obtained due to the clustering optimization is much more significant. Traversing
solutions using non-optimized database queries has the drawback that the second goal is traversed
twice for each solution of the first goal: first to provide a solution (as is explained above, p/2 and
q/2 have exactly the same facts, and no failure happens in the second goal when the first goal
provides a solution), and secondly to fail on backtracking. Both call and redo imply accessing the
database. In contrast, if the clustering optimization is applied, this part of the job is performed
inside the database, so there is only one database access for each solution (plus the last access when
there are no more solutions). In the second and third rows, the combined effect of compile-time
SQL expression generation and clustering optimization causes a speed-up of around 50% to 135%,
depending on the cost of retrieving data from the database tables: as the cost of data retrieval
increases (e.g., access based on a non-indexed column), the speed-up in grouping queries decreases.

Finally, the asymmetric complex query (in which the second goal succeeds for only a fraction
of the solutions provided by the first goal) the elimination of useless backtracking yields the most
important speed-up, as expected.

4 Acknowledgments

This work has been supported in part by the European Union IST program under contract IST-
2001-34717 “Amos.” The authors would like to thank Ignacio Caballero, José Francisco Morales,
Samir Genaim, and Cohavit Taboch for their collaboration with some implementation aspects and
for feedback and discussions on the system.

References

[BCC+02] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla.
The Ciao Prolog System. Reference Manual (v1.8). The Ciao System Documenta-
tion Series–TR CLIP4/2002.1, School of Computer Science, Technical University of
Madrid (UPM), May 2002. System and on-line version of the manual available at
http://clip.dia.fi.upm.es/Software/Ciao/.

[Car02] M. Carro. The Amos project: An Approach to Reusing Open Source Code. In
M. Carro, C. Vaucheret, and K.-K. Lau, editors, Proceedings of the CBD 2002 /
ITCLS 2002 CoLogNet Joint Workshop, pages 59–70, School of Computer Science,
Technical University of Madrid, September 2002. Facultad de Informática.

[CCG+98] I. Caballero, D. Cabeza, S. Genaim, J.M. Gomez, and M. Hermenegildo. persdb˙sql:
SQL Persistent Database Interface. Technical Report CLIP10/98.0, December 1998.

14

[CH99] M. Carro and M. Hermenegildo. Concurrency in Prolog Using Threads and a Shared
Database. In 1999 International Conference on Logic Programming, pages 320–334.
MIT Press, Cambridge, MA, USA, November 1999.

[CHGT98] D. Cabeza, M. Hermenegildo, S. Genaim, and C. Taboch. Design of a Generic,
Homogeneous Interface to Relational Databases. Technical Report D3.1.M1-A1,
CLIP7/98.0, RADIOWEB Project, September 1998.

[Dra91] Christoph Draxler. Accessing Relational and Higher Databases through Database Set
Predicates in Logic Programming Languages. PhD thesis, Zurich University, Depart-
ment of Computer Science, 1991.

[GCH98] J.M. Gomez, D. Cabeza, and M. Hermenegildo. WebDB: A Database WWW Inter-
face. Technical Report CLIP11/98.0, December 1998.

[HBPLG99] M. Hermenegildo, F. Bueno, G. Puebla, and P. López-Garćıa. Program Analysis,
Debugging and Optimization Using the Ciao System Preprocessor. In 1999 Interna-
tional Conference on Logic Programming, pages 52–66, Cambridge, MA, November
1999. MIT Press.

[HPBLG03] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Development
Using Abstract Interpretation (and The Ciao System Preprocessor). In 10th Inter-
national Static Analysis Symposium (SAS’03), LNCS. Springer-Verlag, June 2003.

[Kow96] R. A. Kowalski. Logic Programming with Integrity Constraints. In Proceedings of
JELIA, pages 301–302, 1996.

[LO87] Timothy G. Lindholm and Richard A. O’Keefe. Efficient Implementation of a De-
fensible Semantics for Dynamic Prolog Code. In Jean-Louis Lassez, editor, Logic
Programming: Proceedings of the Fourth International Conference and Symposium,
pages 21–39. The MIT Press, 1987.

[OBS99] Michael Olson, Keith Bostic, , and Margo Seltzer. Berkeley DB. In 1999 Summer
Usenix Technical Conference, June 1999.

[PB02] A. Pineda and F. Bueno. The O’Ciao Approach to Object Oriented Logic Pro-
gramming. In Colloquium on Implementation of Constraint and LOgic Programming
Systems (ICLP associated workshop), Copenhagen, July 2002.

[PBH00] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,
Analysis and Visualization Tools for Constraint Programming, number 1870 in LNCS,
pages 23–61. Springer-Verlag, September 2000.

[RU93] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of research on deductive
database systems. Journal of Logic Programming, 23(2):125–149, 1993.

[Ull90] J. D. Ullman. Database and Knowledge-Base Systems, Vol. 1 and 2. Computer
Science Press, Maryland, 1990.

15

