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Abstract. This paper describes a model of persistence in (C)LP lan-
guages and two different ways to implement it in current systems. The
fundamental idea is that persistence is a characteristic of certain dy-
namic predicates which encapsulate state. The main effect of declaring
a predicate persistent is that the dynamic changes made to such predi-
cates survive from one execution to the next one. We propose a syntax
for declaring persistent predicates and then a simple, file-based imple-
mentation is presented. It is then argued that the concept developed
provides the most natural way to interface with relational databases.
Such an interface is then developed as simply one more implementation
alternative to the simple, file-based approach. The abstraction of the
concept of persistence from its implementation allows developing appli-
cations which can store data alternatively on files or databases with only
a few simple changes to a declaration stating the location and modality
used for persistent storage. Performance results comparing the different
implementations, and also with and without information obtained from
static global analysis, is presented.

1 Introduction

State is traditionally implemented in Prolog and other (C)LP systems through
the built-in ability to modify predicate definitions dynamically at runtime.1

Generally, fact-only dynamic predicates are used to store information in a way
that provides global visibility (maybe within a module) and preserves informa-
tion through backtracking. This facility is built on top of the so-called internal
database. The logical view of internal database updates [LO87] confers a sensible
semantics to the effect of database changes in a running Prolog program, and
this internal database, albeit a non-declarative component of Prolog, has many
practical applications from the point of view of the needs of a programming
language.2

However, Prolog internal database implementations associate the lifetime of
the information with that of the process, i.e., they deal only with what happens
when a given program is running and changes its own database. Indeed, the Pro-
log database lacks an important feature present in all database systems: data
persistence. Data persistence means that database modifications will survive

1 These predicates sometimes have to be marked explicitly as dynamic.
2 Examples of recent proposals to extend its applicability include using it to model
reasoning in a changing world [Kow96], and as the basis for communication of con-
current processes and objects [CH99,PB02].
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across program executions, and maybe be accessible to other programs—even
concurrently. This feature, if needed, must be explicitly taken care of by the pro-
grammer in traditional systems, for example by explicitly reading and writing
the state of the database to an external device, be it a file with Prolog facts,
or a true external database. This approach offers a basic solution, but unless
substantial effort is devoted to the task, it will typically lack an updated re-
flection of the Prolog database state in the external device, as synchronization
points may be quite scattered in time. Prolog database accesses can of course
be replaced with sequences of goals which explicitly read / write terms to files
or external databases, but this brings important changes in the program with
respect to the case where no external storage is used. Also, substantial recod-
ing is needed if the external storage medium is to be changed from a file-based
one to a database-based one or the other way around. The same applies to pro-
grams using the internal Prolog database, which have to be adapted to using an
external database.

In this paper we present a conceptual model of persistence, persistent predi-
cates, and a number of implementations thereof. This concept allows associating
an external storage medium to selected (dynamic) predicates, which are then
termed persistent. A persistent predicate is thus a special kind of dynamic, fact-
only predicate that “resides” in some persistent medium (such as a set of files,
a database, etc.) and which is typically external to the program using such
predicates. The main effect is that any changes made to a persistent predicate
“survive” across executions, i.e., if the program is halted and restarted, the new
process sees persistent predicates which are in the same state as they were when
the old process was halted (provided no change was made in the meantime to
the storage by other processes or the user). Notably, persistent predicates ap-
pear to a program as ordinary dynamic predicates: calls to these predicates can
appear in clause bodies in the usual way without any need to wrap or mark
them as database calls, and updates to persistent predicates can be made using
the standard asserta/1, assertz/1, retract/1, etc. used for ordinary dynamic
predicates (which are suitably modified). Updates to persistent predicates are
guaranteed to be atomic and transactional, in the sense that if an update ter-
minates, then the external storage has definitely been modified. This model
provides a high degree of compatibility with previously existing programs which
access only the local database, while bringing at the same time several practical
advantages:

– The state of dynamic predicates is, at all times, reflected in the state of the
external storage device. If the program making the updates is halted just
after one update and then restarted, then the updated state of the predicate
will be seen.

– The external database can be used as a means to communicate and share
data among programs, which can access it as if it were part of the local
database of each program.

– Since database accesses are viewed as regular accesses to the Prolog database,
analyzers (and related tools) for full Prolog can deal with them in the same
way as with the standard dynamic predicates. Also, since the calls to per-
sistent predicates are standard literals, traditional analysis tools can infer
the types and modes of the arguments which, as we will see, can result in
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optimizations. Using explicit accesses to files or external databases through
low-level library predicates would make this task much more difficult.

– Finally, perhaps the most interesting advantage of the notion of persistent
predicates is that it abstracts away how the predicate is actually stored.

A number of current Prolog systems have features which are related to the
capabilities which our approach offers: Quintus Prolog offers ProDBI (also avail-
able for SICStus under the generic name Prodata), which allows queries (but not
updates) on tables as if they were Prolog predicates; SICStus Prolog also has
an interface to the Berkeley Database system [OBS99]; XSB, and SWI include
PrologSQL, which can compile on demand a conjunction of literals to SQL using
the Draxler compiler [Dra91], but which do not provide transparent persistence.
However, we argue that none of these cases achieve the same level of flexibility
and seamless integration with Prolog achieved in our proposal.

Implementations of this model have been used in several non-trivial tools
such as, for example, the WebDB deductive database engine [GCH98], a generic
database system with a highly customizable html interface. WebDB allows cre-
ating and maintaining Prolog-based databases as well as databases residing in
conventional engines using any standard WWW browser. They have also been
used in real-world applications such as the Amos [Car02] tool, part of a large,
ongoing international project aimed at facilitating the reuse of Open Source code
through the use of a powerful, ontology-based search engine working on a large
database of code information.

2 A Proposal for Persistent Predicates in Prolog

We will now define a syntax for the declaration of persistent predicates. We will
also present briefly two different implementations of persistent predicates which
differ on the storage medium (files of Prolog terms on one case, and an external
relational database on the other one). Both implementations aim at providing a
semantics compatible with that of the Prolog internal database, but enhanced
with persistence over program executions.

2.1 Declaring Persistent Predicates

The syntax that we propose for defining persistent predicates is built upon the
assertion language of Ciao Prolog [PBH00], which allows expressing in a compact,
uniform way, types, modes, and, in general, different (even arbitrary) properties
of predicates.

In order to specify that a predicate is persistent we have to flag it as such,
and also to define where the persistent data is to be stored. Thus, a minimum
declaration is:

:- include(library(persdb)).

:- pred employee/3 + persistent(payroll).
:- pred category/2 + persistent(payroll).
:- persistent_db(payroll, file(’/home/clip/accounting’)).

The first declaration states that the persistent database library is to be used to
process the source code file: the included code loads the persdb library support
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salary(Empl,Sal):-
employee(Empl,Cat,Days),
category(Cat,PerDay),
Sal is Days * PerDay.

one_more_day(Empl):-
retract(employee(Empl,Cat,Days)),
Days1 is Days + 1,
assert(employee(Empl,Cat,Days1)).

Fig. 1. Accessing and updating a persistent predicate

predicate definitions, and defines the local operators and syntactic transforma-
tions that implement the persdb package. The second and third line state that
predicates employee/3 and salary/2 are persistent and that they live in the
database to be referred to as payroll, while the fourth one defines which type
of database the payroll identifier refers to. It is the code in the persdb package
that processes the persistent/1 and persistent_db/2 declarations, and which
provides the code to access the external storage and keeps the information nec-
essary to deal with it. In this particular case, the database is kept on a disk file
under the specified directory. The predicates in Figure 1 use these declarations
to compute the salary of some employee and to increment the number of worked
days.

In this simple case, no further information about the persistent predicates
is needed. However, if the external storage is to be kept in an SQL database,
argument type information is required in order to create the table (if the database
is empty) and also to check that the calls are made with compatible types. It is
also necessary to establish a mapping (views) between the predicate name and
arguments and table name and columns. Suitable declarations to store in an
external database the information related to the employees and categories are:

:- include(library(persdb)).

:- pred employee/3 :: string * string * int +
persistent(employee(ident, category, time), payroll).

:- pred category/2 :: string * int +
persistent(category(category, money), payroll).

:- persistent_db(payroll, db(paydb, admin, pwd, ’db.mycomp.org’)).

The db/4 term in persistent_db declaration indicates database name (paydb),
database server (db.mycomp.org), database user (admin) and password (pwd).
This information is processed by the persdb package, and a number of addi-
tional formats can be used. For example, the port for the database server can
be specified (as in ’db.mycomp.org’:2020), the precise database brand can be
noted (as, for example odbc/4 or oracle/4 instead of the generic db/4), etc.
This instructs the persdb package to use different connection types or to gen-
erate queries specialized for particular SQL dialects. In addition, values for the
relevant fields can also be filled in at run time, which is useful for example to
avoid storing sensitive information, such as password and user names, in program
code. This can be done using hook facts or predicates, which can be included in
the source code, or asserted by it, perhaps after consulting the user. These facts
or predicates are then called when needed to provide values for the arguments
whose value is not specified in the declaration. For example, a declaration such
as:

:- persistent_db(payroll,
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db(pay_db, db_user/2, db_passwd/2, ’db.mycomp.org’)).

would call the predicates db_user/2 and db_passwd/2, which are expected to
be defined as

db_user(payroll, User):- ...
db_password(payroll, Password):- ...

Note also that, as mentioned before, the declarations corresponding to
employee/3 and category/2 specify the name of the table in the database
(which can be different from that of the predicate), the name of each of its
columns, and also the type signature. If a table is already created in the database,
then this declaration of types is not strictly needed, since the system can retrieve
the schema from the database. However, it is still useful so that (compile-time
or run-time) checking of calls to persistent predicates can be performed:

– Types are needed when tables are to be automatically created since databases
usually require types to be explicitly provided for every column. In some
cases the type inferencing algorithms (see below) can deduce the types from
those of other predicates in the program.

– The types are also useful so that type errors (i.e., trying to send a record
with a number in a place where a string was expected) can be caught and
reacted to as soon as possible — maybe even at compile time or, if at run
time, before the database implementation raises an error. Note that in a
file-based implementation these type declarations are not needed, but they
are still encouraged in order to ensure type-safeness (and to make it trivial
to migrate the code to the database implementation).

– Lastly, types and modes can be read and inferred by a global analysis tool,
such as, e.g., CiaoPP [HPBLG03,HBPLG99], and used to optimize the gen-
eration of SQL expressions and to remove superfluous runtime checks at
compile time (see Section 2.3).

It is interesting to point out that the predicate code in Figure 1 does not
have to be changed to work with a new placement of the database: database
accessees are taken care of by the library package, and the information about
where the database lives is defined in the declarations.

A dynamic version of the persistent declaration exists, which allows defin-
ing new persistent predicates on the fly, under program control. Also, in or-
der to provide greater flexibility, lower-level operations (of the kind available in
traditional Prolog-SQL interfaces) are also available, which allow establishing
database connections. These are the library operations the above examples are
compiled into. Finally, a persistent predicate can also be made to correspond to
a complex view of several database tables.

2.2 File-Based Implementation

The file-based implementation of persistent predicates provides a lightweight,
simple, and at the same time quite powerful form of database. It has the ad-
vantage of being standalone in the sense that it does not require any external
support other than the file management capabilities provided by the operating
system. This is thanks to the fact that the persistent predicates are stored in one
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(or more) auxiliary files under the direct control of the persistent library. This
implementation is especially useful when building small to medium-sized (C)LP
applications which require persistent storage and which may have to run in an
environment where the existence of an external database manager is not ensured.
Also, it is very useful even while developing applications which will connect to
databases, because it allows working with persistent predicates maintained in
files when developing or modifying the code and then switching to using the
external database for testing or “production” by simply changing a declaration.

The implementation attempts to provide at the same time efficiency and
security. Three files are used for each predicate: the data file, which stores a base
state for the predicate; the operations file, which stores the differential between
the base state and the predicate state in the program (i.e., operations pending
to be integrated into the data file); and the backup file, which stores a security
copy of the data file.

When no program is accessing the persistent predicate (because, e.g., no
program updating that particular predicate is running), the data file reflects
exactly the facts in the Prolog internal database. When any insertion or deletion
is performed, the corresponding change is made in the Prolog internal database,
and a record of the operation is appended to the operations file. At this moment
the data file does not reflect the state of the internal Prolog database, but it can
be reconstructed by applying the changes in the operations file to the state in
the data file. This strategy incurs only in a relatively small, constant overhead
per update operation.

When a program using a file-based persistent predicate starts up, the data
file is first copied to a backup file, and all the pending operations are performed
on the data file by loading it into memory, re-executing the updates recorded in
the operations file, and saving a new data file. The order in which the operations
are performed and the concrete O.S. facilities (e.g., file locks) used ensure that
even if the process aborts at any point in its execution, the data saved up to
that point can be completely recovered upon a successful restart. The backup
of the data file is used to prevent data loss if the system crashes during this
operation. For more security, the data file can also be explicitly brought up to
date on demand at any point in the execution of the program.

2.3 External Database Implementation

Another alternative implementation is by using a relational database as the
storage medium. This is clearly useful, for example, when the data already resides
in such a database (where it is perhaps also accessed by other applications) or the
amount of data is very large. We present another implementation of persistent
predicates which keeps the storage in a relational database. A more extensive
description of this interface (including the design of an ODBC mediator) can be
found in [CCG+98,CHGT98].

The architecture of the database interface (Figure 2) has been designed with
two goals in mind: simplifying the communication between the Prolog side and
the relational database server, and providing platform independence, allowing
inter-operation when using different databases.

The interface is built on the Prolog side by stacking several abstraction levels
over the socket and native (C) interfaces. Typically, database servers allow con-
nections using TCP/IP sockets and a particular protocol. Alternatively, linking
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Fig. 2. Architecture of the access to an external database

directly a shared object or a DLL may be needed. In other cases a special-purpose
mediator which acts as a bridge between a socket and a native interface (e.g.,
certain versions of ODBC) has been developed [CCG+98,CHGT98]. Thus, the
low level layer is highly specific for each database implementation (e.g. MySQL,
Postgres, ORACLE, etc.). The mid-level interface (which is similar in level of
abstraction to that present in most current Prolog systems) abstracts away these
details.

The higher-level layer implements persistent predicates so that predicate
calls and updates to them actually act upon relations stored in the database
by means of automatically generated mid-level code. In the base implementa-
tion, at compile-time, a “stub” definition is included in the program containing
one clause whose head has the same predicate name and arity as the persis-
tent predicates and whose body contains the appropriate mid-level code, which
basically implies activating a connection to the database (logging on) if the con-
nection is not active, sending the appropriate SQL code, recovering the solutions
(or the first solution and the DB handle to ask for more solutions), retrieving
additional solutions on backtracking or eventually failing, and closing the con-
nection (logging off the database), therefore freeing the programmer from having
to pay attention to these low-level details.

The SQL code is generated using a Prolog to SQL translator based on the
excellent work of Draxler [Dra91]. Modifications were made to that code so that
the compiler can deal with the different idioms, types, etc. used by different
databases, as well to blend it with the high-level way of declaring persistence,
types, modes, etc. that we have proposed. All conversions of data types are also
automatically handled by the persdb interface.

In principle, the SQL code corresponding to a given persistent predicate,
literal, or group of literals needs to be generated at run-time for every call to
a persistent predicate since the mode of use of the predicate affects the code
to be generated and can change with each run-time call. Clearly, a number of
optimizations are possible. In general, performance can be improved by reducing
run-time overhead on the Prolog side; in our case, by avoiding any task that can
be accomplished at compile-time or which can be done more efficiently by the
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SQL server itself. We study two different optimization techniques based on these
ideas: the use of static analysis information to precompute the SQL expressions
at compile time (which is related to adornment-based query optimization in
deductive databases [RU93]), and the automatic generation of complex SQL
queries based on clustering of Prolog queries. More optimizations are of course
possible (and studied in the realm of relational and deductive databases [RU93]).

Using static analysis information to precompute SQL expressions
Computation of SQL queries can be sped up by creating skeletons of SQL sen-
tences at compile-time and instantiating them at runtime. In order to create the
corresponding SQL sentence for a/some given goal(s), information regarding the
instantiation state of the goal(s) variables is needed. This information can be
provided with the Ciao assertion language. More interestingly, this information
can typically be obtained automatically by using program analysis.

For example, assume that we have an SQL-based persistent predicate
employee/3 as in Section 2.1 and consider also the program shown in the left side
of Figure 1. The literal employee/3 will be translated by the persistence library
to a mid-level call which will call the pl2sql compiler at run-time to compute an
SQL expression corresponding to employee(Employee,Category,Days) based
on the groundness state of Employee, Category and Days. These expressions
can be precomputed for different combinations of the groundness state of the
arguments (with still some run-time overhead to select among these combina-
tions, which unfortunately can obviously be large if the number of arguments is
large). Furthermore, if the static analyzer can infer that only Employee is ground
when calling employee(Employee,Category,Days), we will be able to build at
compile-time the SQL query for this goal as:

SELECT ident, category, time FROM employee
WHERE ident = ’$Employee$’;

The only task that remains to be performed at run-time, before actually querying
the database, is to replace $Employee$ with the actual value that Employee is
instantiated to and send the expression to the database server.

A side effect of (SQL-)persistent predicates is that they provide useful in-
formation which can improve the analysis results for the rest of the program:
the assertion that declares a predicate as (SQL-)persistent also implies that all
the arguments will be ground on success. This additional groundness informa-
tion can then be propagated to the rest of the program. For instance, in the
definition of salary/2 in Figure 1, if category/2 is also a persistent predicate
stored in an SQL database, we will surely be provided with more groundness
information.

Query clustering Another possible optimization on database queries is query
clustering. A simple implementation approach would deal separately with each
literal calling a persistent predicate, generating a separate SQL query for ev-
ery such literal. Under some circumstances, mainly in the presence of intensive
backtracking, the flow of tuples through the database connection generated by
the Prolog backtracking mechanism will hinder performance.

Complex goals formed by consecutive calls to persistent predicates (separated
only by perhaps some tests or aggregation operations) can be compiled to take
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advantage of the fact that database systems include well-developed techniques
to improve the evaluation of complex SQL queries. The Prolog to SQL compiler
is in fact able to translate complex conjunctions of goals into efficient SQL code.
The compile-time optimization that we propose requires identifying literals in
clause bodies which call SQL-persistent predicates and are contiguous (or can
be safely reordered to be contiguous) so that they can be clustered and, using
also the mode information, compiled into SQL as a single unit.

For example, in the predicate salary/2 of the the program in Figure 1,
and assuming that we have analysis information which ensures that salary/2 is
always called with a ground term in its first argument, a single SQL query will
be generated at compile-time for both persistent predicates:

SELECT ident, category, time, rel2.money
FROM employee, category rel2
WHERE ident = ’$Employee$’ AND rel2.category = category;

3 Empirical results

We will study now, from a performance point of view, the alternative implemen-
tations of persistence presented in previous sections. To this end, both imple-
mentations (file-based and SQL-based) of persistent predicates, as well as the
compile-time optimizations previously described, have been tested in the Ciao
Prolog development system [BCC+02].

3.1 Performance without Compile-time Optimizations

The objective in this case is to check the relative performance of the various
persistence mechanisms and contrast them with the internal Prolog database.
The queries issued involve searching on the database (using both indexed and
non-indexed queries) as well as updating it.

The results of a number of different tests using these benchmarks can be
found in Table 1. In these tests, a 25.000 record database table is used to check
the basic capabilities and to measure access speed. For every type of database,
Table 1 groups the results in different types of tests based on the two basic data
types (int and string): the first row shows the time spent creating the table by
adding the tuples one by one; the second group of rows tests databases access
for performing different database operations based on indexed or non-indexed
integer columns; finally, the last group of tests shows database access times
for database operations based on indexed or non-indexed string columns. Times
have been taken performing every database operation (except assertz) for 1.000
randomly selected database records. The Prolog code used in the benchmarks is
the same for all the cases; only the storage place of the (persistent) predicates
has been changed.

The timings were taken on a medium-loaded Pentium IV Xeon 2.0Ghz with
two processors, 1Gb of RAM memory, running Red Hat Linux 8.0, and averaging
several runs after eliminating the best and worst values. Ciao Prolog version
1.9#78 and MySQL version 3.23.54 were used. The meaning of the columns is
as follows:

prologdb (data) This column reflects the time taken when accessing directly
the internal (non-persistent, based on assert/retract) database of Prolog.
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prologdb prologdb persdb persdb/sql sql
(data) (concurrent)

assertz (25000 records) 590.5 605.5 5326.4 16718.3 3935.0
numeric queries
non-indexed numeric query 7807.6 13584.8 7883.5 17721.0 17832.5
indexed numeric query 1.1 3.0 1.1 1082.4 181.3
non-indexed numeric retract 7948.3 13254.5 8565.0 19128.5 18470.0
indexed numeric retract 2.0 3.3 978.8 2157.4 466.3
string queries
non-indexed string query 8045.5 12613.3 9457.9 24188.0 23052.5
indexed string query 1.1 3.0 1.5 1107.9 198.8
non-indexed string retract 7648.0 13097.6 11265.0 24764.5 23808.8
indexed string retract 2.0 3.1 1738.1 2191.9 472.5

Table 1. Speed of accessing and updating

prologdb (concurrent) It is the same as the previous one, but dynamic pred-
icates are marked as concurrent, which toggles a variant of the internal
database which allows concurrent access to the Prolog database. Atomic-
ity in the updates is ensured and several threads can access concurrently
the same table and synchronize through facts in the tables [CH99]. This
measurement has been made in order to provide a fairer comparison with a
database implementation, which has the added overhead of having to take
into account concurrent searches/updates, user permissions, etc.3

persdb This corresponds to the file-based implementation (Section 2.2) Thus, in
addition to keeping incore images of the database, changes are automatically
flushed out to an external, file-based transaction record, which also adds the
derived from having to save updates. The implementation ensures atomicity
and also basic transactional behavior.

persdb/sql This is the SQL-based implementation (Section 2.3) No informa-
tion is kept incore, so every database access imposes an overhead on the
execution with respect to the internal database case.4

sql This is, finally, a native implementation in SQL of the benchmark code,
i.e., what a programmer would have written directly in SQL, with no host
language overhead, using the database client included in MySQL. The SQL
sentences have been obtained from the Ciao Prolog interface and then exe-
cuted in batch mode.

Several conclusions can be drawn from Table 1:

3 Note, however, that this is still quite different from a database, apart, obviously, from
the lack of persistence. On one hand databases typically do not support structured
data, and it is not possible for threads to synchronize on access to the database,
as is done with concurrent dynamic predicates. On the other hand, in concurrent
dynamic predicates different processes cannot access the same data structures, which
is possible in SQL databases. However, SQL databases usually use a server process
to handle requests from several clients, and thus there are no low-level concurrent
accesses to actual database files from different processes, but rather from several
threads of a single server process.

4 Clearly, it would be interesting to perform caching of read data, but note that this
is not trivial since given that there can be concurrent updates to the database, an
invalidation protocol must be implemented. This is left as future work.
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Importance of indexing The impact of indexing is noticeable in the tables,
especially for the internal Prolog database and for the file-based persistent
database. The MySQL-based tests do present also an important speedup,
but not as relevant as that in the Prolog-only tests. This behavior is prob-
ably caused by the overhead imposed by the SQL database requirements
(communication with MySQL daemon, concurrency and transaction avail-
ability, more complex index management, integrity constraint handling, etc).
In addition to this, Prolog systems are usually highly optimized to take ad-
vantage of certain types of indexing, while database systems offer a wider
class of indexing possibilities which might not be as efficient as possible in
some cases due to their generality.

Impact of concurrency support Comparing the Prolog tests, it is worth not-
ing that concurrent predicates bring in a non-insignificant load in database
management (up to 50% slower than simple data predicates in some cases),
in exchange for the locking and synchronization features they provide. In
fact, this slow-down makes the concurrent Prolog internal database show
somewhat lower performance than using the file-based persistent database,
which has its own file locking mechanism to provide inter-process concurrent
accesses (but not from different threads of the same process: in that case
both concurrency and persistence of predicates needs to be used).

Overhead of the Prolog interface Table 1 shows that direct SQL queries
(i.e., typed directly at the database top-level interface) behave somewhat
better than those using the interface from Prolog, as is to be expected. How-
ever, there is a set of cases in which the difference is very significant (assert
and indexed query and retract). This behavior can be explained considering
that a conservative approach which creates a different database connection
for every query and later closes it was used in the implementation of SQL-
based persistence used for the tests. This is useful in practice in order to
limit the number of open connections to the database, which is limited.

Sensitivity to the amount of transferred data Some
preliminary tests have been done about this issue. The benchmarks used
a database table similar to the already describe, but with 2Kb of additional
(and useless) data per record. As can expected, the SQL database bench-
marks always more than double the time elapsed when switching from small
records to large records. The built-in mechanism of Prolog is less sensitive to
the number of columns: asserting is affected very little by it. Queries show
more performance variation, but this variation is smaller than in the case
of socket communication. Finally, the case of the file-based implementation
lies in between the previous ones.

3.2 Performance with Compile-time Optimizations

We have also implemented the two optimizations described in Section 2.3 (us-
ing static analysis information and query clustering) and measured the improve-
ments brought about by them. The tests have been performed on two SQL-based
persistent predicates (p/2 and q/2) with 1.000 records each one and indexed on
the first column, and one SQL-based persistent predicate (r/2) with 100 records
and also indexed on the first column. There are no duplicate tuples nor dupli-
cate values in any column, to avoid overloading due to unexpected backtracking.
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Both p/2 and q/2 contain exactly the same tuples; r/2 contains a randomly
selected subset of p/2.

Table 2 presents the time (in milliseconds) spent for 1.000 repeated queries
in a failure-driven loop. In order to get more stable measures, average times were
calculated for 10 consecutive tests, removing the highest and lowest values. The
first two columns correspond to non-optimized queries, while the third and fourth
columns correspond to optimized ones. Total time refers to the time to complete
the query; Prolog time is the Prolog preprocessing part of the query; Diff is
the difference between them, and represent the communication time plus the
database processing time proper. Prolog time does not appear when irrelevant:
for example, when traversing solutions in the first row, which does not imply a
significant use of the Prolog preprocessing part of the query).

The single queries part of the table corresponds to a simple call to p(X,Z).
The first row represents the time spent in recovering on backtracking all the
solutions to this goal. The second and third rows present the time taken when
performing 1.000 queries to p(X,Z), with no backtracking, i.e., taking only the
first solution and instantiating, respectively, the indexing and non-indexing ar-
gument. The two columns correspond to the non-optimized case in which the
translation to SQL is performed on the fly and to the optimized case in which
the SQL expressions are precomputed at compile-time, using information from
static analysis.

The ‘complex queries : p(X,Z),q(Z,Y)’ section of the table corresponds to
calling this conjunction (the rows have the same meaning as before). Informa-
tion about variable groundness (on the first argument of the first predicate in
the second row and on the second argument of the first predicate in the third
row) obtained from global analysis is used to precompute an SQL query for
the conjunction. Then we compare the cases where the queries for p(X,Z) and
q(Z,Y) are processed separately (and the join is performed in Prolog via back-
tracking) and the cases where the compiler performs clustering optimization and
p(X,Z),q(Z,Y) is executed as a single SQL query.

Finally, the ‘complex queries : p(X,Z),r(Z,Y)’ part of the table illustrates the
special case in which the second goal calls a predicate which only has a few tuples
(but matching the variable bindings of the first goal). More concretely, r/2 is
a (persistent) predicate with 100 tuples. All the arguments in the first position
of r/2 appear in the second column of p/2. Thus, in the non-optimized test,
the Prolog execution mechanism will backtrack over the 90% of the solutions
produced by p/2 that will not succeed.

The results in Table 2 for single queries show that the improvement due to
compile-time SQL expression generation is between 10 and 20 percent. These
times include the complete process of a) translating (dynamically or statically)
the literals into SQL and preparing the query (with our without optimizations)
and b) sending the resulting SQL expression to the database and processing the
query in the database. The run-time speedup obtained when comparing dynamic
and static generation of SQL is quite significant when Prolog time is taken into
account.

Looking now at the case of complex goals, we observe that the speedup
obtained due to the clustering optimization is much more significant. Traversing
solutions using non-optimized database queries has the drawback that the second
goal is traversed twice for each solution of the first goal: first to provide a solution
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Single queries: p(X,Y)
on-the-fly precomputed

SQL generation SQL expressions
Total Prolog Diff. Total Prolog Diff.

Traverse solutions 36.6 – – 28.5 – –
Indexed ground query 1010.0 197.5 812.5 834.9 27.6 807.3
Non-indexed ground query 2376.1 195.4 2180.7 2118.1 27.3 2090.8

Complex queries: p(X,Z),q(Z,Y)
on-the-fly precomputed

(non-clustered) (clustered)
Total Prolog Diff. Total Prolog Diff.

Traverse solutions 1039.6 – – 51.6 – –
Indexed ground query 2111.4 406.8 1704.6 885.8 33.3 852.5
Non-indexed ground query 3550.1 395.0 3155.1 2273.8 42.6 2231.2

Complex queries: p(X,Z),r(Z,Y)
on-the-fly precomputed

(non-clustered) (clustered)
Total Total

Asymmetric query 1146.1 25.1

Table 2. Comparison of optimization techniques

(as is explained above, p/2 and q/2 have exactly the same facts, and no failure
happens in the second goal when the first goal provides a solution), and second
to fail on backtracking. Both call and redo imply accessing the database. In
contrast, if the clustering optimization is applied, this part of the job is performed
inside the database, so there is only one database access for each solution (plus
the last access when there are no more solutions). In the second and third rows,
the combined effect of compile-time SQL expression generation and clustering
optimization causes a speedup of around 50% to 135%, depending on the cost of
retrieving data from the database tables: as the cost of data retrieval increases
(e.g., access based on a non-indexed column), the speedup in grouping queries
decreases. Anyway, the speedup of the Prolog preprocessing part in all these
tests is especially relevant.

Finally, the asymmetric complex query (in which the second goal succeeds
for only a fraction of the solutions provided by the first goal) the elimination of
useless backtracking yields the most important speedup, as expected.
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and G. Puebla. The Ciao Prolog System. Reference Manual (v1.8).
The Ciao System Documentation Series–TR CLIP4/2002.1, School
of Computer Science, Technical University of Madrid (UPM), May



64 J. Correas, J. M. Gómez, . . .

2002. System and on-line version of the manual available at
http://clip.dia.fi.upm.es/Software/Ciao/.

[Car02] M. Carro. The Amos project: An Approach to Reusing Open Source Code.
In M. Carro, C. Vaucheret, and K.-K. Lau, editors, Proceedings of the
CBD 2002 / ITCLS 2002 CoLogNet Joint Workshop, pages 59–70, School
of Computer Science, Technical University of Madrid, September 2002.
Facultad de Informática.
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Analysis, Debugging and Optimization Using the Ciao System Preproces-
sor. In 1999 International Conference on Logic Programming, pages 52–66,
Cambridge, MA, November 1999. MIT Press.

[HPBLG03] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program
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