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Resumen

Las variables de estado y los bucles, entre otras características, se asocian típi-
camente con los lenguajes de programación imperativos y no se encuentran de
forma nativa en los paradigmas de programación declarativa. Por ejemplo, mu-
chos lenguajes basados en lógica dependen exclusivamente de la recursión para
expresar la iteración. Sin embargo, las características imperativas pueden sim-
plificar la implementación de ciertos algoritmos que, de otro modo, serían más
engorrosos de expresar mediante recursión. Como resultado, algunos sistemas
de programación lógica han incorporado diversos constructos imperativos.

Prolog es uno de los principales representantes del paradigma de programación
lógica. Puede soportar notación funcional mediante un enfoque sintáctico, FSyntax,
que aprovecha la sintaxis del lenguaje y las capacidades de expansión de tér-
minos. Hiord es otro enfoque sintáctico que permite la programación de orden
superior en Prolog. Basándose en call/n, introduce características adicionales
como los predicados anónimos. Tanto FSyntax como Hiord se utilizan amplia-
mente en el sistema Ciao Prolog, el cual se basa en la familia de Prolog, aunque
es también un sistema de programación multiparadigma. Ciao Prolog dispone
de un avanzado sistema de módulos que permite implementar fácilmente exten-
siones sintácticas y semánticas potentes.

En este trabajo proponemos un conjunto de constructores de estilo imperativo
que extienden FSyntax y Hiord. Estas extensiones están diseñadas para inte-
grarse de forma natural con la notación funcional básica, las facilidades de or-
den superior y otras extensiones del lenguaje como las restricciones. A difer-
encia de propuestas anteriores, nuestro enfoque ofrece tanto un conjunto de
primitivas como un mecanismo de alto nivel que, en conjunto, permite a los
usuarios extender fácilmente el lenguaje con características como notación de
arrays, variables de estado, bucles, etc.

Ofrecemos una descripción detallada de cómo la compilación de módulos procesa
estos constructores: desde la definición de la sintaxis hasta su traducción com-
pleta en predicados planos de Prolog y llamadas estáticas. Además, describi-
mos el concepto de unificación unidireccional, su representación equivalente en
Prolog y su implementación en el sistema Ciao.

A partir de estas extensiones, desarrollamos un paquete adicional que propor-
ciona notación de acceso indexado a arrays. Este paquete consta de una interfaz
y cuatro implementaciones diferentes, y utiliza variables de estado para realizar
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la modificación del elemento n-ésimo de un array.

Evaluamos nuestro enfoque traduciendo problemas del Proyecto Euler de Picat
a Ciao. Verificamos su corrección comprobando que todas las pruebas se su-
peran, y medimos los tiempos de ejecución para evaluar el rendimiento. Estos
resultados permiten comparaciones con implementaciones en otros lenguajes.
Nuestros experimentos muestran que las extensiones propuestas ofrecen un
rendimiento competitivo.

Finalmente, creemos que incorporar características sintácticas propias de la
programación imperativa puede ayudar mucho al programador y, potencial-
mente, favorecer una adopción más amplia de los lenguajes declarativos. Además,
dependiendo de su semántica, los constructores imperativos como los bucles
pueden ayudar a los analizadores estáticos al proporcionar información im-
plícita, como determinismo, no-fallo, modos, tipos y cotas del número de it-
eraciones de los bucles, lo cual resulta valioso para el análisis de coste y com-
plejidad.
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Abstract

State variables and loops, among other features, are typically associated with
imperative programming languages and are not natively found in declarative
programming paradigms. For example, many logic-based languages rely solely
on recursion to express iteration. However, imperative features can simplify the
implementation of certain algorithms that would otherwise be more cumber-
some to express recursively. As a result, some logic programming systems have
incorporated various imperative constructs.

Prolog is one of the major representatives of the logic programming paradigm. It
can support functional notation through a syntactic approach, FSyntax, which
leverages the language’s syntax and term expansion capabilities. Hiord is an-
other syntactic approach to supporting higher-order programming in Prolog.
Building on call/n, it introduces additional features such as anonymous pred-
icates. Both FSyntax and Hiord are extensively used in the Ciao Prolog system.
Ciao Prolog is a multi-paradigm programming system based on the Prolog fam-
ily. It features an advanced module system that enables easily implementing
powerful syntactic and semantic extensions.

In this work, we propose a set of imperative-style constructs that extend FSyntax
and Hiord. These extensions are designed to integrate smoothly with the basic
functional notation, higher-order facilities, and other language extensions such
as constraints. Unlike previous proposals, our approach offers both a collection
of primitives and a high-level mechanism that together enable users to easily
extend the language with features such as array notation, state variables, and
loop constructs, etc.

We provide a detailed account of how the compilation module processes these
constructs—from syntax definition to their full translation into flat Prolog pred-
icates and static calls. Additionally, we describe the concept of one-sided uni-
fication, its equivalent representation in Prolog, and its implementation in the
Ciao system.

Building on these extensions, we have developed an additional package that pro-
vides indexed array access notation. This package consists of an interface and
four different implementations and uses state variables to support modification
of the nth element of an array.

We evaluate our approach by translating Euler Project problems from Picat to
Ciao. We verify correctness by checking that all tests pass, and we measure
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execution times to assess performance. These benchmarks allow comparison
with implementations in other languages. Our experimental results show that
the proposed extensions offer competitive performance.

Finally, we argue that incorporating syntactic features from imperative pro-
gramming can improve programmer convenience and potentially support wider
adoption of declarative languages. Moreover, depending on their semantics, im-
perative constructs like loops can assist static analyzers by providing implicit
properties such as determinism, non-failure, modes, types, and bounds on loop
iterations, information that is valuable for cost and complexity analyses.
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Chapter 1

Introduction

Declarative programming allows for the efficient development of complex soft-
ware systems while also helping in achieving correctness and safety. Logic pro-
gramming is a declarative programming paradigm based on formal logic. It al-
lows the definition of sets of facts and rules (i.e., logic programs) that are used
to find answers or solutions to queries posed by the user. The logic program
expresses what the problem is (i.e., the logic), independently of how to solve it
(i.e., the control), as the latter is handled to a great extent by the system. The
main representative of this paradigm is the Prolog language. To find all possible
solutions, Prolog relies on a predefined search mechanism based on unification,
SLD-resolution inference, and backtracking.

In contrast, a program in the imperative programming paradigm expresses essen-
tially the control, through sequences of instructions or statements that describe
how the program should execute to achieve specific results. These instructions
modify the state of the program, and include control flow structures such as
loops, which some users find more intuitive or easier to understand [1]. Python
and Java are examples of widely used programming languages that follow this
paradigm.

There has been interest in making Prolog multi-paradigm and some steps have
taken in this direction; some examples are Ciao [2] and Janus [3], or, in the
more general area of logic-based languages, Picat [4, 5]. The motivation is that,
for certain problems, it can sometimes be easier or more convenient for the pro-
grammer to use syntactic constructs and features borrowed from other program-
ming paradigms. For example, FSyntax [6] is a syntactic approach to supporting
functional notation in Prolog systems which is based on the use of the syntax
and term expansion facilities of the language. Hiord [7] is also a syntactic ap-
proach to supporting higher-order in Prolog, building on call/n. Together they
bring in the syntactic convenience of functional and higher-order constructs and
both are used profusely by the Ciao Prolog system [2].
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Chapter 1. Introduction

Figure 1.1: TIOBE index ranking [8].

1.1 Motivation

The TIOBE index serves as an indicator of programming language popularity
[8]. As of March 2025, Prolog ranks as the twenty-second most popular pro-
gramming language. This puts it above the other declarative languages such as
Lisp, Scala, Haskell, etc. However, as shown in Figure 1.1, essentially all the top
languages are imperative in nature. This suggests that most beginners are in-
troduced to programming through imperative languages, familiarizing them only
with imperative paradigms. Consequently, learning Prolog can be challenging,
as its lack of basic imperative structures, such as loops, might feel unfamiliar.

Also, descriptions of algorithms in papers and textbooks are most often pre-
sented using imperative pseudocode, containing loops and other imperative con-
structs. Such algorithms can be implemented in logic languages using recur-
sion, frequently rather elegantly, but this encoding can also in some cases be
awkward and/or blur the correspondence with the original algorithm descrip-
tion. Consider, for example, the Sieve of Eratosthenes for computing primes. It
is a classic example in both functional and logic programming, where it is typ-
ically presented in an elegant recursive form. Figure A.1 in Appendix A shows
a version of this classic encoding, using the FSyntax package in Ciao Prolog.1

The program is relatively simple, and illustrates the elegance of declarative pro-
gramming. Unfortunately, this classic encoding does not implement the algo-
rithm by Eratosthenes, but rather a naïve algorithm known as trial division (see
O’Neill [9]).

If we want to implement the actual algorithm by Eratosthenes, we can perhaps
turn to the Wikipedia[10], which provides a description of the algorithm in im-
perative pseudocode, shown in Figure 1.2.

This algorithm can be coded in standard Prolog (see Figure A.2 in Appendix A),
but the result is not very compact and can feel a bit awkward. A version coded

1We show an eager version for simplicity; the lazy version is essentially as the one used in lazy
functional languages, see the code in Figure A.3 (in Appendix A) and [6].
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1.1. Motivation

� �
input: integer N > 1
output: list of prime numbers from 2 to N

A = array with index from 2 to N with all the values set to True

for i = 2,3, ..., sqrt(N) do
if A[i] == True

for j = i*i, i*i + i, i*i + 2i, ... below or equal to N do
A[j] = False

return list with all k where A[k] is True� �
Figure 1.2: Sieve of Eratosthenes algorithm in pseudocode (based on
Wikipedia [10]).

� �
:- module(_, _, [functional]).
:- use_module(library(logarrays)).

primes(N) := Res :-
complete_sieve(2,floor(sqrt(N)),N,~new_array ,CompleteSieve),
take_primes(2,N,CompleteSieve ,Res).

complete_sieve(Curr,To,N,Sieve) :=
( Curr > To ? Sieve
| aref(Curr,Sieve,_El) ? ~complete_sieve(Curr+1,To,N,Sieve)
| ~complete_sieve(Curr+1,To,N,~set_multiples(Curr**2,Curr,N,Sieve)) ).

set_multiples(Curr,Step,To,Sieve) :=
( Curr > To ? Sieve
| aset(Curr,Sieve,0,Sieve1) ? ~set_multiples(Curr+Step,Step,To,Sieve1) ).

take_primes(Curr,N,Sieve) :=
( Curr > N ? []
| aref(Curr,Sieve,_El) ? ~take_primes(Curr+1,N,Sieve)
| [Curr| ~take_primes(Curr+1,N,Sieve)] ).� �

Figure 1.3: Sieve of Eratosthenes algorithm in Prolog + FSyntax.

again using FSyntax is shown in Figure 1.3. This version is more compact and
elegant, but it still suffers from some of the previously mentioned issues, and in
particular the correspondence with the original pseudocode is not obvious.2

The Python implementation of the algorithm, shown in Figure 1.4, is relatively
simple and close to the algorithm represented by the pseudocode, making it easy
to see their correspondence. Some of the simplicity of the python version comes
from the characteristics also shared by Prolog, such as being a dynamic lan-
guage, the correspondence issue brings us back to the idea that there are cases
where incorporating features from imperative programming can bring program-
mer convenience. In general, this can also potentially also contributes to the
wider adoption of declarative languages.

2In addition, coding the algorithm in a (lazy) functional language is not trivial, as shown also
by O’Neill [9], and suffers from the same drawbacks.
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Chapter 1. Introduction

� �
import math

def primes(n):
# Initialize the array with n+1 values to access until index n
a = [True] * (n+1)

# The loop goes until the square root of n
to = math.floor(math.sqrt(n))

# We cross out the non primes
for i in range(2,to+1):

if a[i]: # If a[i] is prime we cross out its multiples
for j in range(i*i,n+1,i):

a[j] = False

# We take the primes from the sieve and put them into a list
result = []
for k in range(2,n+1):

if a[k]:
result.append(k)

return result� �
Figure 1.4: The Sieve of Eratosthenes algorithm, in Python.

1.2 Objectives

Motivated by this, this project aims to explore and develop imperative extensions
for Ciao-Prolog, and evaluate them through using and benchmarkking them. A
list of more specific objectives are the following:

1. Familiarize ourselves with logic programming systems, and specifically Ciao-
Prolog.

2. Explore single-sided unification, state variables, array index notation, and
loops for those systems.

3. Study and develop an implementation of these imperative constructs in
Ciao-Prolog.

4. Test and benchmark these extensions through a set of examples.

1.3 Structure

The rest of the project is structured as follows: Chapter 2 provides background
and an overview of the state of the art, focusing on the Ciao-Prolog system and
approaches to imperative constructs in logic programming. Then Chapter 3
covers single-sided unification, while Chapter 4 focuses on state variables and
Chapter 5 introduces array index notation. Continuing, Chapter 6 discusses
loops. Chapter 7 contains the study of practical examples and the experimental
results, while Chapter 8 gives an impact analysis. Finally, Chapter 9 ends the
report with conclusions and future research directions. Each of the chapters
devoted to the extensions includes both a description of the extension and an
account of the compilation process for that extension.

4



Chapter 2

Background

A number of multiparadigm programming languages exist that integrate features
from logic-, functional-, constraint-, or imperative programming.

Some of these are entirely new languages rather than extensions of Prolog, in
contrast to our approach. For example, Picat, in addition to state variables,
also incorporates two types of loops and array access notation [5]. MiniZinc [11,
12] is a popular modeling language for combinatorial problems. It provides a
loop construct which can be used to place constraints that depend on the loop
bounds in a natural and regular way.

Returning to approaches based on extending Prolog with new syntactic con-
structs, as in our proposal, apart from the Hiord and fsyntax extensions in
Ciao Prolog, for instance ECLiPSe introduces logical loops as a language exten-
sion [13], and array notation, although it does not include state variable sup-
port. SICStus [14] has traditionally supported setarg/3 and later incorporated
mutables. XSB [15] also supports setarg/3 and has an array facility. SWI [16]
has global variables (also supported by Yap [17]) and some other extensions.
François Fages has developed a mathematical modeling library for Prolog [18],
inspired by MiniZinc. This library brings constraint modeling capabilities to
Prolog with a mathematical focus. It includes the forall loop notation, which,
like MiniZinc, is limited to verifying that a constraint holds across all iterations
and does not support state variables.

We provide more detailed background in the following, organized by different
features, topics, or systems.

2.1 The Ciao Prolog System

Ciao [2] is a multi-paradigm, general-purpose programming language in the
Prolog family. It allows programming with a fully declarative syntax but also
supports extensions that provide different syntaxes and semantics, such as
functional syntax or higher-order logic programming with predicate abstrac-
tions. It also provides constraint extensions that allow setting up constraints
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Chapter 2. Background

over various domains. These extensions are based on its module system, where
modules can coexist and allow different levels of analysis using the Ciao Program
Preprocessor, CiaoPP [19].

2.1.1 The Ciao Module System

Modularity is a basic feature in programming which consists on dividing pro-
grams or systems into several independent modules, each acting as a functional
unit. The Ciao system has been designed to be modular, having a single core
and multiple syntactic and semantic extensions implemented as modules. Con-
cretely these extensions can contain operators definitions to define a syntax,
compilation options or rules among others.

One of the main objectives of this modular system design is enabling modular
compilation, such that only a modified module has to be recompiled and not
the rest of related modules. This constitutes an important feature to increment
efficiency and take advantage of the benefits of CiaoPP. Another key objective is
the ability to locally extend or restrict features or syntax, the point is to be able
to allow specific features in a specific module without automatically propagating
them in other modules.

In Ciao [20], modules are typically contained within a single file and have to be
declared at the beginning of the file with the directive

:- module(Name,Exports,Packages)

where Name is the name of the module, Exports is a list of predicate names to
be exported and Packages are the packages to import. Usually a predicate is
completely defined in a single module but some predicates can be declared as
multifile, which means that the predicates can be defined across multiple mod-
ules. In addition to importing packages, single modules can also be included
using the directive

:- use_module(Module)

These packages can constitute a semantic or syntactic extension which may con-
tain translations, operator definitions or compilation options among other func-
tionalities. A package usually contains several modules, where some contain
code that applies for runt-time and others should be part of the compiler. This
compilation modules act as ‘plug-ins’ for the compiler and are incorporated when
they are declared in :- load_compilation_module/1 directive, so that the code
is used only when required by the module. Furthermore, the package should
specify the type of translation it performs (sentence, term, clause, or goal) and
include a static entry point in the file to carry out the translation during compile
time [21].

Ciao integrates extensions into its compilation model through compilation mod-
ules, which are essentially a set of translation rules [22]. When a module de-
pends on several compilations modules, a specific order must be established for
loading and executing them. This is necessary because the output of a compi-
lation module usually is the input of the next one as we can see in Figure D.1.
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2.1. The Ciao Prolog System

This is important because translation rules might have dependencies on previ-
ous modules, such us the recognition of patterns that are the result of a trans-
lation of the previous modules, specially in compilation processes with multiple
imports.

Figure 2.1: Module order in the compilation process

To address this ordering challenge, Ciao Prolog provides with an incremental
compilation model [22]. This compilation model is complemented with a list
that includes existing translations contained in compilation modules with their
respective priorities, similar to operators definitions. The priority assigned to
each translation determines the sequence in which it is applied if imported.
However, some high-level experimental compilation modules are not included in
this list, and a reserved priority space is allocated for them. An example of this
ordering can be seen in the translations order list in Figure D.1.

2.1.2 Functional Approach in Ciao Prolog

A previous approach of Ciao Prolog was the introduction of functional nota-
tion [6], making a step towards a syntax more alike to imperative programming.
This notation allows the use of functions instead of traditional predicates, which
is a feature not available in standard Prolog. The inclusion of this extension
is relevant to the topic as it shortens the gap between logic and imperative pro-
gramming, highlighting its usefulness in updating a state variable with the result
of a function.

7



Chapter 2. Background

The functional notation extension provides with syntactic sugar that allows the
use of functions. At compile time, it transforms function patterns into predicate
patterns by adding the output argument of the function as the last argument
of the predicate. This transformation, performed the way explained in Sec-
tion 2.1.1, allow the use of any predicate as function and vice versa, just by
changing the position of the last argument.

The function foo(A,B):=Res :-... . and the predicate foo(A,B,Res):-... .
are equivalent, as the functional notation is internally translated into the predi-
cate format during the compilation process. Furthermore, both versions can be
called in the two equivalent ways, using functional syntax R = ~foo(X,Y). or
using the predicate form foo(X,Y,R) . As seen, this extension allows to call a
predicate as if it was a function, ensuring full compatibility of the extension with
previously existing libraries and predicates.

The following example shows how this extension works:� �
:- module(_,_,[fsyntax]).

:- use_module(library(write)).
:- use_module(library(streams)).

increment(A,B,Res) :- Res is A + B.

multiply(A,B) := Res :- Res is A * B.

main :-
increment(1,2,R1), write(r1=R1), nl,

R2 = ~increment(3,7), write(r2=R2), nl,

multiply(2,3,R3), write(r3=R3), nl,

R4 = ~multiply(2,10), write(r4=R4), nl.� �
?- main.

r1=3
r2=10
r3=6
r4=20

yes

As we have mentioned above, FSyntax translates patterns of the form foo(A,B):=Res
into standard predicates of the form foo(A,B,Res) . More specifically, we can de-
fine FSyntax as a package that gives a meaning to terms by translating patterns
into other terms that can be later recognized by the next phases of the com-
piler. Therefore, this functionality has been further extended to recognize other
patterns than functional ones, like the curly brackets that will be explained in
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2.1. The Ciao Prolog System

Section 2.1.3. Specifically, lately it has been generalized or flexibilized into a
package called xsyntax that performs a fine grained control of the extensions.
This control is made through a set of flags that can be easily activated or deacti-
vated. The objective is to be able to use one extension, like higher order negative
closures, without having to use other, like functional notation.

2.1.3 Higher order

The system includes a package, Hiord, which facilitates higher-order untyped
logic programming and combined with hiordx allows the syntax described be-
low. This package supports predicate abstractions, enabling logic programming
translations of lambda expressions commonly used in functional programming
and ensuring its compatibility with functions from the FSyntax package [23]. The
predicate abstractions are anonymous predicates of type:

P = {’’(X) :- X = 1}

Anonymous predicates are predicates which do not have their own name, but
they can be referenced by a variable. In the code above P is the variable referenc-
ing the anonymous predicate, whose limits are defined between curly brackets.
Inside the predicate, the variables inside ’’() are the arguments of the predi-
cate, X in the example and the terms at the right side of the neck are the body,
X = 1 in this case.

This type of predicate can be called using call/n, which is provided by the Hiord
package, as in call(Pred,Arg1, Arg2, ..., Argn). It can also be called by treating
the variable referencing it as a callable entity, like Pred(Arg1, Arg2, ..., Argn). Our
example can be called as call(P,Y) or P(Y) and the result will be Y = 1 .

On a step forward, there is a newer extension called hiordx that provides new
higher-order notation and semantics. We can define closures as predicates or
functions that are able to capture variables from the parent environment. On a
first approach to combine closures and anonymous predicates, all the variables
instantiated outside the definition of the anonymous predicate are shared by
default, except for the arguments of the closure (useful if a variable with the
same name appears outside the closure). Such that if we have foo(Y):- A = 1,
P ={ ’’(X):- X = A }, P(Y). the call foo(Y) would return Y = 1 .

In order to explicitly define which variables are to be shared among the en-
vironment and the predicate abstraction, hiordx provides with positive shar-
ing closures. This type of closures allows define a list of sharing variables
of the form [ ] -> such that if we put foo(Y):- A = 1, P ={ [A]-> ’’(X):- X
= A}, P(Y). , the call would would return Y = 1 . If we put foo(Y):- A = 1,
P = [] -> ’’(X):- X = A, P(Y). , the call will return Y = _ as we did not state
that A should be a shared variable in the list. As we can see, including this
syntax makes that none on the variables found inside the predicate abstraction
are captured from the environment by default and they would only be captured
if they are explicitly included in the list.

9
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Furthermore, hiordx also provides with negative sharing closures, that allows
to explicitly define a list of non sharing variables with the form -[ ] -> where
all the variables are captured by default from the parent environment except
if they are explicitly included in the negative list. If we put foo(X):- A = 1,
P = -[] -> ’’(X):- X = A, P(Y). , the call would return Y = 1 but if we put
foo(X):- A = 1, P = -[A]-> ’’(X):- X = A, P(Y). the call returns Y = _ as A
is not captured from the parent environment.

As we mentioned, the semantics of the notation used above is provided by hiordx
package. This package has introduced both, positive and negative sharing clo-
sures, and the curly brackets notation. More specifically, it is in charge of trans-
forming negative sharing closures into positive sharing closures and transform-
ing both into the internal representation recognized by the hiord package. On
the other hand, the syntax of both types of closures is provided by the xsyntax
package explained in Section 2.1.2, with the flags provided by hiordx.

2.1.4 Notation Predicate

In order to perform high-level translations, the Ciao Prolog system provides the
notation/2 predicate. This predicate defines translations as macros used by
the compiler, specifically by the xsyntax extension. Whenever xsyntax finds
an expression matching a pattern defined in notation, it substitutes it with the
corresponding translation established by the predicate. When it checks if the
expression matches any pattern defined, the search is done from the last to the
first notation instantiations found. The following example shows how it can be
used:� �
:- use_package(fsyntax).
:- use_module(library(between)).
:- use_module(library(aggregates)).

:- op(550, yfx, ..).
:- notation(A .. B, ~range(A,B)).

range(A,B) := Range :-
findall(X,between(A,B,X),Range).

notation_example(X) :- X = 1..10.� �
?- notation_example(X).

X = [1,2,3,4,5,6,7,8,9,10]

We can see that whenever it finds an expression of the type A ..B , it substitutes
it by ~range(A,B) such that the rest of the compilation and the execution just
take into account its translation.

10
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2.2 Imperative Approaches in Logic Programming

In this extension of logic programming it is interesting to introduce new charac-
teristics like loops or state variables, inspired in other programming languages,
to Prolog. Taking steps towards a more imperative syntax and state representa-
tion is relevant in logic with approaches like LPS [24].

Talking about imperative approaches we should mention Picat [5], which high-
lights with its imperative notation, and has been an inspiration for this im-
perative notation extension. Picat is a versatile, logic-based multi-paradigm
programming language designed for general-purpose applications. It integrates
features from logic programming, functional programming and various different
modules. Some of the its most important characteristics are that it works us-
ing single-sided unification instead of standard unification and that most of the
common modules are automatically included in every file.

In order to review the logic programming approaches in imperative notation we
are going to divide the section into some representative concepts of imperative
programming:

2.2.1 Single-sided Unification

Single-sided unification is a type of unification that performs pattern matching.
This is based on the existing predicate subsumes_term/2 , which is part of the In-
ternational Standard for Prolog [25]. The predicate subsumes_term(Term1,Term2)
succeeds if Term2 is an instance of Term1 . Similarly, this type of unification
succeeds if the call is an instantiation of the head of a predicate and fails if it
does not match any clause.

This type of unification is widely used in the logic programming language Picat,
where it is the default unification mechanism. Picat refers to it as pattern
matching rather than unification, arguing that it simplifies indexing of rules
[5]. Other logic programming languages, like SWI-Prolog, provide this feature
as an option or extension [26]. Now, we can see the Picat implementation of
fibonacci predicate that uses single-sided unification:� �
fib(0,F) => F = 0.
fib(1,F) => F = 1.
fib(N,F), N > 1 => fib(N-1,F1), fib(N-2,F2), F = F1+F2.� �

In imperative programming, pattern matching simplifies data filtering and pro-
vides a more readable approach for executing specific instructions based on data
characteristics, although it is more common in functional paradigms. For exam-
ple, in Python, the match statement performs pattern matching, where only the
first matching case is executed. This avoids the use of multiple ‘if-else‘ struc-
tures, which can make the program harder to read . Below, we present the trans-
lation of the previous fibonacci predicate into Python, where the match statement
performs the pattern matching analogous to the single-sided unification feature
in Picat, giving the same results in both languages:

11
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� �
def fib(n):

match n:
case 0:

return 0
case 1:

return 1
case _ if n > 1:

return fib(n-1) + fib(n-2)� �
2.2.2 State Variables

A state variable is a variable which keeps its current state, meaning its value
can change throughout the execution of a program. In imperative programming
languages, like Python, all standard variables are considered state variables as
they allow assignment operations that modify their values and consequently
their state. For example, if we first execute x = 1 the value of x is set to 1. Then,
if we execute x = 4, the value of x will be set to 4, overwritting the previous value
1.

A declarative representation of state can be achieved by using Definite Clause
Grammars (DCGs), which, thanks to their implicit arguments, can be used to
represent both the previous and next state of a variable. For example, DCGs
automatically perform a translation:

foo(X) --> a(X), b(X)
⇓

foo(X,OrigSt,FinSt) :- a(X,OrigSt,MidSt), b(X,MidSt,FinSt)

where the initial and final states of variable OrigSt are kept in variables OrigSt
and FinSt respectively. We can clearly see the representation of state included
as arguments of each predicate call along the foo predicate body.

DCGs can be extended to track multiple variables by encapsulating them in a
single structure, but this can be difficult to manage, as it should be done with
one structure containing all of the variables.

For example, if we had the variables St1 and St2 to change of state a predicate
of the type

foo(X) --> a(X), b(X)
⇓

foo(X,(OrigSt1,OrigSt2),(FinalSt1,FinalSt2)) :-
a(X,(OrigSt1,OrigSt2),(MidSt1,MidSt2)),b(X,(MidSt1,MidSt2),(FinSt1,FinSt2))

such that even if there are more state variables all predicate stay of Arity =
Arguments+2. In this case the arity is 3, as the dcg has just one argument X and
the two arguments created by the translation represent respectively, the original
state and the final state.

12
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To address this limitation, extended DCGs were introduced by Peter Van Roy [27],
which allow simultaneous updates to multiple variables. However, EDGCs are
still a comparatively less intuitive method for state management.

A more direct approach is offered by languages like Picat [5], which uses the
:= operator for updating state variables. Mercury uses the ! notation to denote
state variables and automatically expands variables into two to represent the
state before and after a state change [28].

In addition to state variables, logic programming systems often support some
form of mutable variables and/or the setarg/3 primitive, which allows destruc-
tive updates to term arguments. This is typically used for localized updates to
large data structures, such as array assignments, rather than for tracking the
state of individual variables. However, this kind of destructive assignment is
at odds with the declarative nature of logic programming, as it complicates the
semantics significantly.

2.2.3 Loops

Loops are sets of instructions that execute repeatedly until a specific condition is
met [29]. The most common type of loops, for and while, can be found in impera-
tive programming languages, like Java or Python. There are multiple approaches
to include this notation into other programming paradigms. For example, Oz, a
multi-paradigm programming language, has introduced loop syntax [30].

As already mentioned at the beginning of this chapter, initial approaches to-
wards introducing loop notation into other programming paradigms are provided
by MiniZinc, and, inspired on it, the mathematical modeling library for Prolog
proposed by François Fages.

In logic programming languages, loops have been introduced in various ways.
One way of introducing them is by creating new languages which are not exten-
sions of Prolog, like Picat, which provides a loop syntax that is actually similar
to the one provided by imperative languages, making it intuitive for new users
that come from imperative paradigms. It also allows the use of other iteration
constructs, such as array and list comprehensions, which enable compact no-
tation to perform some of the functionalities of loops [5]. We can see an example
where the predicate uses loops and state variables to count the number of even
elements from 1 to 10, illustrating the syntax allowed below:� �
example =>

Res = 0,
foreach (I in 1 .. 10)

if I mod 2 = 0 then
Res := Res + 1

end
end, println(Res).� �

Picat> example.
5
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Another way of introducing loops into logic programming is by making it from
the point of view of Prolog, as an extension of it. This is made in this way in
order to maintain Prolog and the compatibility to ISO-Prolog. One of the most
important approaches in this way of doing it was done by ECLiPSe, a constraint
logic programming system that has developed logical loops [31]. Logical loops
have the form (IterationSpecifiers do Body), where the type of loop is defined
in IterationSpecifiers. This is a close approach although the syntax may seem
confusing as it does not take the usual loop form from imperative programming
languages.

2.2.4 Array-Like Index Notation

The term array-like refers to objects that have a length N and allow elements
to be accessed using an index, like lists or arrays. When we talk about index
notation, we mean accessing these elements with syntax like Array[I] .

Most imperative programming languages, like Python or Java, use this style for
arrays. Python also applies similar syntax to other data structures, such as dic-
tionaries. In the logic programming paradigm, some languages like Picat [5] or
SWI-Prolog [32] allow this kind of notation. As mentioned in Section 2.2.2, Picat
allows placing an element, referred with array-like index notation, on the left
side of an assignment. This feature enables a notation closer to imperative pro-
gramming where structures, like arrays or lists, change their state by modifying
one of their elements by its index.
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Single-sided Unification

Single-sided unification is a type of unification that modifies the process by
which a call matches the head of a clause. This means that it determines
whether a predicate’s clause can be applied to a specific call. We focus specif-
ically on Picat-style pattern-matching, which implies some a particular set of
rules for a match to succeed.

3.1 Pattern-Matching Rules

In order to explain these rules we consider a predicate whose head is of the type
p(T0, T1, ..., Tn). The head constitutes the pattern that a call must follow to enter
to its body. In particular, the way matching behaves is that a clause will be
entered if:

1. The call and the head of the clause are exactly the same, or

2. The head of the clause can be instantiated to be exactly as the call, which
implies the head of the clause is more generic than the call.

3.2 Syntax

The clauses that perform single-sided unification must be of the type:

Head, Guard => Body

Head, Guard ?=> Body

3.3 Semantics

The predicates which use single-sided unification are composed of clauses whose
Head is of the type p(T0, T1, ..., Tn) where p is the name of the of the predicate, n
is the arity of p, and Ti are the arguments. These clauses also contain a Guard
which acts as a condition that must be satisfied in order enter the clause. The
Guard can be formed by one or more conditions or be empty. The clauses also
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include a Body which contains a sequence of literals that are called if both the
pattern matching and the guard succeed.

Apart from these parts, such clauses use on of two types of neck operators:

• ’=>’: This neck implies that this rule is not backtrackable which acts
as if there was a cut in the neck. In order to compare with Prolog, the
equivalence is:

Head, Guard => Body
≡

Call :- subsumes_term(Head,Call), Head = Call, Guard, !, Body

• ’?=>’: This neck implies that this rule is backtrackable which makes it
more similar to standard Prolog clauses. In order to compare with Prolog,
the equivalence is:

Head, Guard ?=> Body
≡

Call :- subsumes_term(Head,Call), Head = Call, Guard, Body

In the translations we use subsumes_term/2, the ISO-Prolog predicate explained
in Section 2.2.1. If the pattern-matching rules succeed and the Guard is true,
the body of the clause will execute. Otherwise, the system will continue to at-
tempt pattern-matching with the remaining clauses. If none of the heads match,
the call will fail instead of throwing a “no matching head exception.” The fol-
lowing example shows a single-sided unification predicate that succeeds if two
structures are equal:� �
struct_equal(A,B), atomic(A) =>

A == B.
struct_equal([H1|T1],[H2|T2]) =>

struct_equal(H1,H2),
struct_equal(T1,T2).� �

However, if the desired behavior is to throw an exception when the call does not
match any head, this can be achieved as in the following example:� �
struct_equal(A,B), atomic(A) =>

A == B.
struct_equal([H1|T1],[H2|T2]) =>

struct_equal(H1,H2),
struct_equal(T1,T2).

struct_equal(_,_) =>
throw(error(no_matching_head , struct_equal/2)).� �

If we make a call to struct_equal_exc(A,B) in the original implementation, it will
fail because it in not an instantiation of any of the clause heads. In the second
implementation, if a call matches one of the heads above, it will not enter the
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last clause due to the cut shown in the translation, behaving the same as the
original implementation. However, if the call does not match any of the heads, it
will always enter the last clause throwing the exception instead of failing.

The aim of the decision of making such cases fail is to allow backtrackable
single-sided unification predicates to interact with existing predicates, such as
findall/3. For this type of aggregation predicates, it would result in throwing
the exception instead of producing the correct results, as seen in the following
example:� �
my_member(Y,[X|_]) ?=> Y = X.
my_member(Y,[_|L]) => my_member(Y,L).

show_all(A) :- findall(X,my_member(X,[1,2,3,4]),A).� �
?- show_all(X).
{ERROR: No handle found for thrown exception error(no_matching_head,my_member/2)}

3.4 Compilation Rules

When a rule of the type mentioned in Section 3.2 is found, an option would be
compiling it to an equivalent Prolog rule the way it is explained in Section 3.3.
On the other hand, Ciao improves on the efficiency of subsumes_term/2 by trans-
forming it into a series of simple terms and unifications which allow indexing to
work on the rule. This optimization achieves better performance in the execution
of calls but it only works if all the variables are free and new.

In order to visualize the rules and translations explained along all Section 3 we
can see the fibonacci predicate, which returns the nth fibonacci number, written
with the notation described in Section 3.2:� �
fib(0,F) => F = 0.
fib(1,F) => F = 1.
fib(N,F), N > 1 =>

N1 is N - 1,
N2 is N - 2,
fib(N2,F2),
F is F1+F2.� �

Its semantic translation explained in Section 3.3 with subsumes_term/2 is:
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� �
fib(X1,X2) :-

subsumes_term(fib(0,F),fib(X1,X2)),
fib(0,F) = fib(X1,X2),
!,
F = 0.

fib(X1,X2) :-
subsumes_term(fib(1,F),fib(X1,X2)),
fib(1,F) = fib(X1,X2),
!,
F = 1.

fib(X1,X2) :-
subsumes_term(fib(N,F),fib(X1,X2)),
fib(N,F) = fib(X1,X2),
N > 1 ,
!,
N1 is N - 1,
fib(N1,F1),
N2 is N - 2,
fib(N2,F2),
F is F1 + F2.� �

Including the optimization performed by the compiler explained in this section
instead of subsumes_term/2:� �
fib(N,F) :-

nonvar(N),
N = 0,
!,
F = 0.

fib(N,F) :-
nonvar(N),
N = 1,
!,
F = 1.

fib(N,F) :-
true,
N > 1,
!,
N1 is N - 1,
fib(N1,F1),
N2 is N - 2,
fib(N2,F2),
F is F1 + F2.� �
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3.5 Compatibility With Other Modules

One of the most important features of Ciao is that extensions are modules which
can be included only when each of them is needed, as explained in Section 2.1.1.
The extension that implements single-sided unification, which is called pmrule,
is compatible with the rest of the modules and packages of the system.

In this way, using fsyntax, it is possible to use functional notation in predicates
that perform pattern matching. In these cases pmrule does the single-sided
unification and delegates to the fsyntax package for functional part. Continuing
with the fibonacci example, the following example shows this:� �
fib(0) := F => F = 0.
fib(1) := F => F = 1.
fib(N) := F, N > 1 => F = ~fib(N-1) + ~fib(N-2).� �

It is also important to mention that clauses of the type p(T0, T1, ..., Tn) := X will
not be compiled with single-sided unification unless => true. is written after
them, so that the clause has the form p(T0, T1, ..., Tn) := X => true and can thus
be distinguished from normal clauses.

This extension is also compatible with the higher order extension explained in
Section 2.1.3. Moreover, it also combines nicely with the imperative extensions
explained in the rest of this project as we will see in Chapter 7, where some of
the examples integrate them all and function correctly.
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State Variables

State variables in Ciao Prolog are variables that change their value during the
execution of a program. This implies that the variable mutates from State1,
being the old value, to State2 representing the new value. State variables are
also essential in loops, as they allow changing the values of the variables used to
control them. Also, they allow implementing some common and useful patterns
in loops, like the sum of all the elements of a list where the counter needs
to change value along the iterations. This can of course be done declaratively
by using two variables or other mechanisms, but the advantage of using state
variable notation is that it makes loops more readable, making the system more
attractive for new programmers coming from imperative languages such as Java
or Python, as mentioned in Chapter 1.

To use state variables in a Ciao module, the statevars package must be loaded.
This package:

• establishes the syntax via notation directives,

• loads the xsyntax package, flagging it to identify state variables syntax, and

• loads the xcontrol package.

We will go deeper into the utility of each of these packages along the chapter.

4.1 Syntax

The syntax is provided by a combination of notation directives, applied through
the xsyntax package. The assignment statement is used to update the value of
a variable. The operator used is ‘:=’. The form of assignments is:

X := NewVal

where the left part must be a Variable and the right part can be any term, such
as an atom, another variable, or the result of a call in functional syntax.

When the variable that changes state is included in the head of the clause this
variable must be preceded with a ‘!’, as foo(A,!X) , which indicates that X might
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be subject to a change of state and that X will get the new value. This notation
to represent state variables in the head of a clause or a call was inspired by
Mercury, where the expression !X represented that a variable has a “current”
and a “next” state [28].

If the ‘!’ is not included, and the variable is subject to an assignment, it will
continue having the old value instead of the new value at the end of the predicate
execution.

An example of use of state variables in a predicate is ‘inc(!X):-X :=X+1. ’. If
this predicate is called with ‘X =1 ’, then after the call inc(!X) is ‘X =2 ’. This
predicate can also be called inc(X,X1) and after the call it would be ‘X=1, X1=2
’. This implies that ‘inc(!X):-X :=X+1.’ expands to ‘inc(X,X1):-X1 is X+1.
’ and after a call, the name of variable X will point to the new value X1 .
This approach thus combines imperative notation while remaining declarative
underneath.

4.2 Compilation Rules

As mentioned before, in order to use state variables, the statevars package must
be imported into the module. This package integrates its compilation module
and other system packages that implement specific steps of the compilation
process, as detailed in Section 2.1.1. More specifically, we can identify two
different phases that we will explain below. To illustrate this sequence we are
going to focus on this example:� �

a(!Y) :-
Y := ’a_val_2’.

st_example(!X) :-
X = ’x_initial’,
X := ’x_val_2’,
(X := ’x_cond_val’ ; true),
A = ’a_initial’,
a(!A),
X := A.� �

We can see that this example is specially interesting as it contains different
changes of state through the assignment operator ‘:= ’ and two clauses whose
argument contains ‘! ’. Additionally, we can see that there is a change of state
of variable A through the call to the ‘a’ predicate.

4.2.1 First Phase

This first phase is performed by xsyntax, explained in Section 2.1.2, that iden-
tifies a set of predefined patters and translates them into a normalized internal
representation. This allows the rest of the modules loaded afterwards to identify
them, in a faster and simpler way, and give them the correct treatment. More
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specifically, to compile state variables, the statevars compilation module loads
xsyntax with its own flag, making it perform two translations.

The first translation occurs when xsyntax encounters an expression of the type
foo(!X), where foo is a functor and !X represents an argument where X is
a state variable. This phase translates such an argument into a pair of two
arguments:

• before(X): represents the current state of the variable if it is in a call or the
state of the variable before executing the clause if it is found in the head
of a clause, acting as an input. We will denote before(X) more compactly as
X◦.

• after(X): represents the next state of the variable if it is in a call or the
state of the variable after executing the clause if it is found in the head of
a clause, acting as an output. Along this project we will denote after(X) as
X•.

If the functor has multiple arguments, xsyntax processes each one individually,
applying the same translation. For example, foo(!X, K, !Y) will be converted
to foo(X◦, X•, K, Y◦, Y•). This transformation implies that a term name/A will
be modified to name/A+N , where N represents the number of state variables
within its arguments.

The second translation occurs when xsyntax encounters an expression of the
type ‘X :=Y ’. It normalizes this expression into ‘X• = Y’, but for better un-
derstanding reasons we will notate it through the text as ‘assign(X,Y)’. After
applying these two term transformations, the resulting clauses serve as the in-
put for the next phase of the compilation process.

In summary, the schematic representation of the two translations is:

foo(!X) =⇒ foo(X◦,X•)

X :=Y =⇒ assign(X,Y)

Turning back to our example, after this compilation phase it will be transformed
to:� �
a(Y◦,Y•) :-

assign(Y’a_val_2’).

st_example(X◦,X•) :-
X = ’x_initial’,
assign(X,’x_val_2’),
(assign(X,’x_cond_val’) ; true),
A = ’a_initial’,
a(A◦,A•),
assign(X,A).� �
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4.2.2 Second Phase

In order to apparently change the values of variables in an imperative way, Pro-
log does not provide a mechanism, since the basis of the programming languages
is single assignment through unification (as well as being able to perform back-
tracking, etc.). For that reason, to simulate the imperative behavior we need to
record and keep the track of the state of that variable.

The Ciao Prolog System manages the state at compile time, by generating a
set of simple terms and unifications in order to deal with state variables in a
particular scope. This part of the compilation process is done by xcontrol. In
order to handle state we need to define an environment structure made up pairs
that contain the state variable name and its current value of the form:

Env = Γ[StV ar1 7→ CurrSt1, StV ar2 7→ CurrSt2, ..., StV arN 7→ CurrStN ]

where ‘Γ[. . .]’ represents an environment and ‘X 7→ Y ’ represents that the current
state of X is Y.

Apart from the structure that manages the current state, we need to set two
other structures of the same form:

• EnvIn: contains the initial state of state variables found in the head of the
clause, which is passed as an argument. Each pair is made up of the state
variable and the variable substitution ‘X◦’.

• EnvOut: contains the final state of state variables found in the head of the
clause, which is passed as an argument. Each pair is made up of the state
variable and the variable substitution ‘X•’.

Therefore, the two structures are initialized at the beginning of this compilation
phase where all the arguments of the head of the clause are parsed and treated
in the following way:

• Each ‘X◦’ expression is replaced by by a free variable which will represent
the initial state of X. The pair state variable-initial state is added to EnvIn.

• Each ‘X•’ expression is replaced by a free variable which will represent the
final state of X, containing the result of the assignments made to X through
the body. The pair state variable-final state is added to EnvOut.

In the st_example/2 clause of our example at this point EnvIn, EnvOut and the
head of the predicate will be:

EnvIn = Γ[X 7→ X0]
EnvOut = Γ[X 7→ Xn]

Head = st_example(X0,Xn)

Once two environments have been set, the current environment is initialized.
This is a combination of the parent environment, that for one scope is an empty
list, and EnvIn. If the state variables appear in both environments, the current
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environment will be set to the EnvIn variable. Following our example we will
initialize our current environment as:

Env = Γ[X 7→ X0]

To explain the translation process, it is important to explain first the translation
of control structures, such as conjunctions and disjunctions:

• Conjunctions: when a conjunction appears, for example with the ‘,’ oper-
ator, they are translated by sequentially threading the environments. For
example, if we have the expression TermA, TermB it will process TermA re-
sulting in the environment EnvA that will be the input environment of the
translation of TermB.

• Disjunctions: when a disjunction appears, for example with the ‘;’ opera-
tor, the two branches need to be treated such that the environment, FEnv,
remains consistent after it. Specifically, the translation processes each
branch individually, applying updates based on the environment at the
disjunction point and after translating both branches, their resulting envi-
ronments are unified. The unification process is performed by comparing
the resulting environments of each of the branches and the environment at
the point of disjunction. To illustrate this, assume we have branch A with
environment Γ[St 7→ V alA], branch B with environment Γ[St 7→ V alB], and
the previous environment Γ[St 7→ V al0]. The process will proceed as follows:

– If the value has only changed in one of the branches, branch A, on the
other branch we add the clause ‘ValA = Val0’ such that the environ-
ment after it is ‘EnvF = Γ[St 7→ V alA]’ and both branches leave the last
value of St in ValA.

– If the value changes on both branches it unifies ValA and ValB without
generating extra clauses and the environment after the disjunction is
‘EnvF = Γ[St 7→ V alA]’.

– If a state variable was created in one of the branches it is just added
to FEnv.

Second, the translation of terms or literals, which is performed sequentially, is
as follows:

• Whenever a term of type assign(X,Y) is found, the current state of X is
changed by setting it to a new free variable. In order to make a transition
of state of X variable, ‘=(NewFree,Y)’ is added to the body and the variable
in the current environment is updated to ‘X 7→ NewFree’. If X is not in the
environment, it is added to the environment as ‘X 7→ NewFree’.

• Whenever a term of type ’X◦’ is found, it is replaced by the current state of
X in the environment. If X is not in the environment it is replaced by itself.

• Whenever a term of type ’X•’ is found, it acts as an assignment where the
current state of X is changed in the environment, setting it to a new free
variable, ‘X 7→ NewFree’, and ’X•’ is replaced by the new variable. If X is
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not in the environment, it is added to the environment as a state variable
‘X 7→ NewFree’.

• Whenever other type of clauses are found, the occurrences of state vari-
ables, which are on the environment, are replaced by their current state in
the environment. For example, if ‘=(Y,X)’ appears and X is a state variable
with current state XCS, the term is replaced in the body by ‘=(Y,XCS)’.

To visualize these rules in a more compact and clear way, Table 4.1 presents a
schematic representation of the rules.

Table 4.1: Translation rules for state variables
Term Translation Environment

Term Translation Env0 Env1

assign(X,Y) =⇒ X1 = Y Γ[X 7→ X0] =⇒ Γ[X 7→ X1]
X◦ =⇒ X0 Γ[X 7→ X0] =⇒ Γ[X 7→ X0]
X• =⇒ X1 Γ[X 7→ X0] =⇒ Γ[X 7→ X1]

Other
term

=⇒ Replace state
variables with

their current state

Env =⇒ Env

The execution of these rules over the clauses, taking into account each clause
will be compiled independently as it is a clause translation, will be as summa-
rized in Table 4.2.

Table 4.2: Execution of compiling rules over the example.

Clause Translation Environment

a(Y◦,Y•) a(Y0,Yn) Γ[Y 7→ Y 0]
assign(Y,’a_val_2’) Y1 = ’a_val_2’ Γ[Y 7→ Y 1]

st_example(X◦,X•) st_example(X0,Xn) Γ[X 7→ X0]
X = ’x_initial’ X0 = ’x_initial’ Γ[X 7→ X0]
assign(X,’x_val_2’) X1 = ’x_val_2’ Γ[X 7→ X1]
(assign(X,’x_cond_val’) (X2 = ’x_cond_val’ Γ[X 7→ X2]
; true) ; X2 = X1) Γ[X 7→ X2]
A = ’a_initial’ A = ’a_initial’ Γ[X 7→ X2]
a(A◦,A•) a(A,A1) Γ[X 7→ X2, A 7→ A1]
assign(X,A) X3 = A1 Γ[X 7→ X3, A 7→ A1]

At the end, after parsing the entire scope the translation checks whether state
variables in EnvIn, in the head of the clause, are in the current environment. If
they are, a term is added that unifies, for every variable, the current state and
its final state found in EnvOut. If they are not, they are unified with their variable
in EnvIn.
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The resultant translation of our example after the compilation process finishes
is:� �
a(Y0,Yn) :-

Y1 = ’a_val_2’,
Yn = Y1.

st_example(X0,Xn) :-
X0 = ’x_initial’,
X1 = ’x_val_2’,
(X2 = ’x_cond_val’ ; X2 = X1),
A = ’a_initial’,
a(A,A1),
X3 = A1,
Xn = X3.� �

If we write this translation inside the predicate st_example_tr , any call to the
original st_example(X, X1) or the translated st_example_tr(X, X1) will pro-
duce the same result: X = x_initial, X1 =a_val_2 .
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Chapter 5

Implementation of Array Index
Notation

This chapter describes how we have designed and implemented the array ex-
tension to allow a common notation for different types of arrays and lists. The
goal of this extension is to provide a common syntax for different implementa-
tions of arrays and lists. This notation slightly shortens the gap between logic
and imperative programming as it brings closer the syntax used in both. In this
extension we provide the same syntax for three different types of array imple-
mentations, with different characteristics and efficiency, and one list implemen-
tation.

5.1 Design of the Package

This extension is composed of six files: four modules dedicated to implement-
ing the four types of data structures used, and two additional files that integrate
these implementations, enabling their use as a single package. The arrays pack-
age is loaded with the directive:

:- use_package(arrays).

This first file, arrays, defines the operators and notations required to implement
the syntax described in Section 5.2. It also establishes the interface specifi-
cations, which are included in the arrays_itf module. The arrays_itf module
serves as an interface by declaring the predicates for handling array-like ob-
jects as multifile. This interface can be found in Appendix C. The multifile
declaration allows predicates to be defined across multiple modules instead of
being confined to a single one. This approach ensures a unified syntax for vari-
ous array-like objects while enabling a separate and unique implementations for
each type of object, as operations often vary depending on the object.

The use of multifile predicates was chosen to enhance modularity. This de-
sign ensures that modifying one implementation does not affect others, pro-
viding a reliable implementation to support flexibility. Moreover, programmers
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can easily add custom implementations by creating a new module, including
:- include(arrays_itf). to indicate it implements the array interface, and then
defining their custom operations as specified by the interface. This modular de-
sign encourages extensibility without compromising existing implementations.

One of the most important features of this package is that it relies on the state
variables package, specially when changes need to be made in the nth element
of a structure. This shows the power of the extension described previously,
so that just by using the notation directive, new language extensions can be
implemented.

5.2 Syntax

The syntax for all the different implementations is the same and only differs in
the predicate needed to create a new array-like structure, which can be one of
the following:

• new_array_log/1: This predicate creates a new extendable array, with loga-
rithmic access time, and without fixed initial length, which is returned on
the argument.

• new_array_mut/2: This predicate creates a new destructive array of a given
length which is mutable and uses internally setarg/2.

• new_array_fix/2: This predicate creates a new array of a given length.

• In the case of lists, to create a list of a defined length, one can use a call to
the length/2 predicate, which is already defined in the system.

The following syntax is provided by utilizing a high-level translation through the
notation directive, as explained in Section 2.1.4. The expressions using index
notation are identified and translated by the xsyntax package. Specifically, in
order to get the nth element of the data structure the notation is:

Array[Index]

In order to change the nth element of the structure the notation is:

Array[Index] := Element

Where Indexmust be greater or equal to 0 as this implementation starts indexing
the structure at 0. Apart from this syntax, the package also provides as part of
the interface an array_length/2 predicate that returns in its second argument
the length of an array-like structure.

5.3 Semantics

One of the main features of the extension is that xsyntax gives a meaning to the
syntax explained above. But focusing on the assignment syntax, it relies solely
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on the state variables extension, that replaces the whole array with the new one
with the element changed. The specific translation, as defined with the notation
directive, is:

Array[Index] := Element
⇓

replace_elem(Array,Index,Elem,Array1), Array := Array1

The specific translation, also defined with the notation directive, for the syntax
provided to get the nth element of the structure using the FSyntax package,
explained in Section 2.1.2, is the following:

Array[Index]
⇓

get_elem(Array,Index,Elem)

Other of the main aspects of the extension is the fact of being an interface with
various implementations. Each of those implementations is loaded by including
a directive of the type:

:- use_module(library(arrays/arrays_log)).

The following section describes and discusses each of the implementations of
the syntax described above.

5.3.1 Mutable Arrays

This type of arrays are implemented as functors whose arity is one, with a single
argument which is another functor whose arity is the length of the array. More
specifically its representation is array_mut(data(Elements)). This is done to take
advantage of Ciao Prolog’s indexing system. The length of the array is given as
an argument at the moment it is created.

The main feature of this kind of arrays is that the change of the nth element
of the array is made with setarg/3, which performs a destructive assignment
of the nth element. This means that the element is changed without creating a
copy, and this is performed by destroying the old array so that all the times the
term is referred to, it points to the new array. The access to the nth element
is done through the arg/3 built-in predicate, as the structure is a functor with
arguments.� �
destructive :-

new_array_mut(5,Array),
for (I in 1 .. 5) {

Array[I-1] := I
},
ArrayCopy = Array,
Array[2] := 25,
write(copy=ArrayCopy),nl,
write(array=Array),nl.� �
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?- destructive.
copy=array_sa(1,2,25,4,5)
array=array_sa(1,2,25,4,5)

In this code we can appreciate that although we assign ArrayCopy before chang-
ing the third element, when we print it at the end it has also changed. This is
due to the destruction of the old array so that all terms that were pointing to it,
now point to this new version of the array.

5.3.2 Fixed Arrays

This type of arrays are implemented again as functors whose arity is one, with
its single argument a functor whose arity is the length of the array, to take
advantage of Ciao Prolog’s indexing system. The length of the array is given as
an argument at the moment it is created, more specifically its representation is
array_fix(data(Elements)).

The main difference between this type of arrays and those discussed in Sec-
tion 5.3.1 lies in their behavior when an element is modified. In this case,
changing an element results in the creation of a new array that is a copy of
the original one with the changed element, while the old array is not destroyed.
Consequently, this term will reference the new array, whereas the rest will con-
tinue to point to the old array. The access to the nth element is done through
the arg/3 predicate as the structure is a functor with arguments.� �
non_destructive :-

new_array_fix(5,Array),
for (I in 1 .. 5) {

Array[I-1] := I
},
ArrayCopy = Array,
Array[2] := 25,
write(copy=ArrayCopy),nl,
write(array=Array),nl.� �

?- non_destructive.
copy=array_mut(1,2,3,4,5)
array=array_mut(1,2,25,4,5)

In this code we can appreciate that as ArrayCopy is assigned before changing the
third element, when we print it at the end it remains without the change. This
implies that the assignment creates a new structure, and changes made to each
instance do not affect the other one.

5.3.3 Extendable Arrays

Extendable arrays is an implementation which allows using arrays whose length
is not fixed. This means that it is created without a defined maximum length
and it can be extended as much as required during the execution. This makes

32



5.3. Semantics

it suitable for situations were the length required of the array is not known in
the moment of creating it. This extension just provides the syntax as all the
predicates are already implemented in the existing logarrays module of the Ciao
Prolog System, which performs with logarithmic complexity [33]. This implies
that all the operations described can also be performed without using this syntax
if preferred.

This type of arrays are represented with array/2 whose first functor is an struc-
ture that contains the element and whose second functor is Size. The current
number of elements is determined by Size, more specifically it is 2Size. The
structure is represented by the functor $ and implemented as a balanced 4-tree.
In particular it is a balanced tree in which each internal node contains a $/4
structure and each leaf node contains a element of the array or it is empty. This
can be observed in Figure 5.1

Figure 5.1: A tree representing an array of seven elements (from 1 to 7)

This makes it extensible as it allows creating structures dynamically by increas-
ing de depth of the tree as the length of the array increments. It is important
to mention that to access de nth element of the array we have chosen to use
verb.aref/3., which fails if the nth element has not already been set, as it seems
more natural and makes it more similar to the behavior of array-like structures
in imperative languages.

5.3.4 Lists

The array-like structure can also be a list. All the operations described in Sec-
tion 5.2 can be made over arrays except the one for creating the list. In order to
create this type of structure of a defined length, the length/2 predicate must be
used. This predicate can be found in the existing library of lists. It can be used
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for example as in length(L,5) which returns in L a list of length 5 where all its
elements are free variables. The access to the nth element it is necessary to iter-
ate recursively over the list until the element is found. The assignment creates a
new list and iterates through the existing list copying its elements until the nth
element, where it includes the new value in the new list, and then the rest of the
original list is added to the new list.

5.4 Results of the Array Implementations

To test this extension we have implemented four initial predicates. Each of
them creates a different array-like structure of length N. These predicates all call
the same predicate that fills the structure with random unordered values, and
calls another predicate that implements the quicksort sorting algorithm. This
predicates uses all the syntax and functionalities implemented in the package
and the code can be found in the Appendix B.

More specifically, we execute these predicates introducing different lengths of
the array-like structure (N). For these executions we measure the times to be
able to make a comparison between the different implementations. These times
can be found in Table 5.1 in seconds, although the list implementation has not
been measured for N > 100000 as it takes more than 10 hours.

Table 5.1: Results of the quicksort execution in arrays

N Mutable Fixed Extendable Lists

10 0.000042 0.000057 0.000073 0.000062
100 0.000298 0.005191 0.001416 0.007436
1000 0.005336 0.943855 0.031179 1.332778
10000 0.117529 ERROR 0.87232 188.762667
100000 0.818229 ERROR 7.503203 23605.758907
1000000 10.569122 ERROR 108.954372
10000000 121.771078 ERROR 1366.598981

In Table 5.1 we can appreciate that all the implementations work correctly, but
fixed arrays gives an error for N > 1000 and this is because it eventually runs
out of memory due to the multiple copies it has to perform when changing an
element. We can also appreciate lists are significatively slower than the mutable
and extendable arrays. This is because its implementation recursively iterates
the whole list until the nth element. Moreover, we can see the fastest array-
like structures implemented are mutable arrays as its implementation is able
to directly access the nth position and modify it while extendable arrays have
logarithmic complexity.
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Loops

In this section, we will first describe the syntax of loops, then explain how it
connects to the compilation process, and finally cover the compilation process
that enables the use of loops.

To use loops in a Ciao module, the loops package must be loaded. This package:

• establishes the syntax via notation directives,

• loads the statevars package,

• loads the xsyntax package, flagging it to identify loop syntax,

• loads the xcontrol package, and

• loads the hiordx package.

We will explore the role of each component throughout the chapter.

6.1 Syntax

The syntax predefined in the loops package is shown below. However, it is impor-
tant to note that this syntax is only an example of how the compilation process
(described in Section 6.3) can be used. Users can define or redefine the syntax
using the notation directive, as explained in Section 2.1.4.

While loop: It has the following form:

while (Condition) {
Body

}

This loop iterates while the condition is satisfied.

For loop: It has the following form:

for (I1 in Iterable1, I2 in Iterable2, ..., IN in IterableN) {
Body

}
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Each iterable can be:

• A list, e.g., [X1, X2, ..., ZN], written as ’I in list([X1, X2, ...,
ZN])’.

• A range of the form ’First .. Step .. Last’, where Step must be
greater than 0.

• A shorthand range ’First .. Last’, equivalent to ’First .. 1 ..
Last’.

• A term whose arguments will be iterated over.

This loop iterates simultaneously over the N iterables using the appropriate
iterator for each. If the iterables have different lengths, the number of
iterations corresponds to the length of the shortest iterable. The scope of
the iterators I1, I2, ..., IN is local to each iteration, meaning their values
cannot be accessed outside the loop.

In addition to these loops, a conditional statement has been added to improve
code readability and clarity. It is implemented using cuts, so it may prune
solutions if used improperly. The conditional has the following form:

if (Condition) {
IfBody

} else {
ElseBody

}

It can also be used without the else part, or with else if clauses instead of else.

6.2 Loop Definition

In this section, we explain the bridge between syntax and the compilation pro-
cess for loops, as provided by the system. This bridge represents the transfor-
mation of a syntactic construct so that it can later be recognized by the compiler.
By default, this extension provides syntax for the two types of loops mentioned in
Section 6.1, but it can be customized by the user through the use of directives.
To achieve this, we must take into account that every loop can be expressed in
the following general form:

‘$loop’(Vars, Init, Cond, Goal)

Where:

• Vars: the iteration variables, scoped locally to each iteration.

• Init: the initialization of the iteration variables with their starting values.

• Cond: the conditions evaluated at the beginning of each iteration, checking
whether the loop should continue execution.

• Goal: the body of the loop, which also includes the update (i.e., change of
state) of the iteration variables for the next iteration.
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The extension uses ‘:- notation/2’, which is explained in more detail in Sec-
tion 2.1.4, to transform the syntax defined in Section 6.1 into predicate form.
Using ‘:- notation/2’ to assign meaning to loop representations facilitates the
definition of new loop types. However, the challenge lies in finding a suitable
translation into the general form. The interpretation of loops depends on the
type of loop used, as we will explain in the following sections.

6.2.1 While Loop

The definition of a while loop using the notation directive is as follows:

:- notation(while (Cond) { Body },
‘$loop’([], true, Cond, Body)).

In this type of loop, some arguments of the internal loop representation are not
used, specifically Vars and Init, because the loop does not involve iterators.

For example:

while_loop :-
I = 1
while (I < 6) {

write(I),
I := I + 1

}.

⇓

‘$loop’([], true, I < 6, (write(I), I := I + 1))

6.2.2 For Loop

Considering a for loop:

for (I in Iterable) {
Body

}

Iterable represents an iterable object implemented using a generic iterator. To
support this, a creation predicate must be defined for each specific type of iter-
able. Additionally, a generic iterator interface is provided for iterable objects. It
consists of two predicates whose implementations depend on the specific type of
iterable:

• iter_cond(Curr, X): Checks whether the iteration condition is satisfied. If it
succeeds, it sets the current state of the iterator variable in X; otherwise, it
fails.

• iter_next(Curr, Curr1): Transitions from Curr to Curr1, representing the next
state for the following iteration.

In for loops using generic iteration, their definition with the notation directive is:
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:- notation(for (I in Iter) { Body },
‘$loop’([I],

Curr := Iter,
iter_cond(Curr, I),
(Body, Curr := ~iter_next(Curr)))).

Additionally, the translation of an iterable can be defined directly, instead of
using the generic iterator, by means of the notation directive. This slightly im-
proves efficiency, as the translation is performed directly without the need to
search through the generic iterator mechanism. Specifically, the package pro-
vides direct translations for some of the most commonly used iterables, namely
those explained in Section 6.1.

Table 6.1 presents the syntax and the corresponding transformations for each
of the provided iterables into the arguments of the primitive ‘$loop’/4.

Table 6.1: Iterables substitutions in ‘$loop’/4
Lists Terms Ranges

Form I in list(List) I in args(T) I in A .. Step .. B

Vars I I I

Init Curr := List functor(T,_, N), End = B, Curr := A
Curr := 1

Cond Curr = [I| _] Curr =< N, I = Curr,
arg(Curr,T,I) Curr =< End

Goal Body, Curr = [_I|Xs], Body, Body,
Curr := Xs Curr := Curr + 1 Curr := Curr + Step

Having seen this, the use of the notation directive without relying on the generic
iterator, for a for loop using a list iterator, is as follows:

:- notation(for (I in list(List)) { Body },
‘$loop’([I],

Curr := List,
Curr = [I| \_],
(Body, Curr = [\_I|Xs], Curr := Xs))).

If we use that definition of a loop in an example, the translation into the primitive
‘$loop’/4 term is:
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for_loop :-
for (I in list([1,2,3,4,5])) {

write(I)
}.

⇓

‘$loop’(I, List := [1,2,3,4,5], List = [I|ListS],
(List = [X|Xs], List := Xs, write(I)))

6.3 Compilation Rules

State is a fundamental aspect of loops, as each iteration typically changes the
values of variables, thereby altering the program’s state. To handle this, loops
rely on the compilation of state variables, as described in Section 4.2, by loading
the statevars package.

However, the approach is not exactly the same: it generalizes the concept to
multiple scopes, executing its second compilation phase for each scope, as will
be explained later.

More specifically, the loop compilation process consists of three main phases,
which act as a pipeline: the output of each phase serves as the input for the
next. To illustrate this sequence of steps, we will focus on the following loop
example:� �

loop_example :-
S = 0,
M = 2,
for (I in 1 .. 5, J in list([9,8,7,6,5])) {

A := I + J ,
if (A mod M == 0) {

S := S + 1
} else {

S := S - 1
}

}.� �
Now, we will explain the compilation process up to the point where loops are
fully translated into plain Ciao predicates:

6.3.1 First Phase

This first phase is performed by the xsyntax package, explained in Section 2.1.2,
and it is similar to the parsing process described in Section 4.2.1. It consists of
detecting certain patterns and translating them into normalized internal repre-
sentations that can be processed by subsequent compilation phases.

In the case of loops, several flags are activated to detect multiple patterns.
Specifically, it activates the state variables flag (enabled by the statevars package)
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and the loops flag (enabled by the loops package). The state variables flag is nec-
essary for compiling loops because, even if state variables are not used explicitly,
the control structure of loops implies state changes, as the iterator takes on dif-
ferent values in each iteration.

This phase includes three main translations, explained below.

Two of these translations correspond to the state variables flag and are detailed
in Section 4.2.1. In general terms:

• The first translation replaces any expression of the form !X used as an
argument in a functor with the pair of arguments X◦ and X•.

• The second translation transforms clauses of the form X :=Y into the
normalized clause assign(X, Y).

• The third translation handles the loop syntax described in Section 6.1,
using the loop definitions presented in Section 6.2.

To reach the primitive representation, the loops are processed according to the
definitions established via the notation directive. At this point, all loops must be
translated into the primitive form:

‘$loop’(Vars, Init, Cond, Goal)

Turning back to our example1 after this compilation phase, it would be trans-
formed to:� �
loop_example :-
S = 0,
M = 2,

’$loop’(
(I,J),
(End = 5, assign(C,1), assign(L,[9,8,7,6,5])),
(I = C, C =< End, L = [J|_Rest]),
(Tmp3 is I + J, assign(A,Tmp3),
((Tmp4 is A mod M, Tmp4 == 0) ->

(Tmp5 is S + 1, assign(S,Tmp5))
; (Tmp6 is S - 1, assign(S,Tmp6))

),
Tmp1 is C + 1, Tmp2 is Tmp1, assign(Curr,Tmp2),
L = [_V| LS], assign(L,LS),

)
).� �

1Note that the example uses the specific notation directive for for loops with ranges and lists,
respectively, without using the generic iterator.
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6.3.2 Second Phase

This second phase is performed by the package specifically created for the ex-
tensions explained in this project, called xcontrol. It mainly consists of trans-
forming loops, which already have the form ‘$loop’(Vars, Init, Cond, Goal),
into closures with negative sharing. This process is carried out as follows:

1. First, it parses the entire ‘$loop’/4 structure and generates a list contain-
ing all the state variables found within it. A state variable is considered to
be any variable that appears as the first argument of the assign/2 predicate
or has a representation of its next state as a variable in the form X•

Having generated this list, the structure is transformed from ‘$loop’/4 into
the following type:

‘$shloop’(Vars, StLoopVars, Init, Cond, Goal)

All arguments except StLoopVars are exactly the same as those in the orig-
inal ‘$loop’/4 structure. The StLoopVars argument corresponds to the list
of state variables generated previously. In our example, this will result in:� �
loop_example :-
S = 0,
M = 2,

’$shloop’(
(I,J),
[S,A,L,C],
(End = 5, assign(C,1), assign(L,[9,8,7,6,5])),
(I = C, C =< End, L = [J|_Rest]),
(Tmp3 is I + J, assign(A,Tmp3),
((Tmp4 is A mod M, Tmp4 == 0) ->

(Tmp5 is S + 1, assign(S,Tmp5))
; (Tmp6 is S - 1, assign(S,Tmp6))

),
Tmp1 is C + 1, Tmp2 is Tmp1, assign(C,Tmp2),
L = [_V| LS], assign(L,LS),

)
).� �

2. At this point, we need to transform the ‘$shloop’/5 structure into closures,
as explained in Section 2.1.3, since closures are suitable for defining a spe-
cific scope that can capture variables from the parent scope. The general
schema for loops is:

<<begin>> :- Init, <<body>>.
<<body>> :-
( Cond ->

Goal, <<body>>
; true ).
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Where <<begin>> and <<loop>> are closures that use negative sharing ex-
plained in Section 2.1.3, meaning all variables are captured from the par-
ent environment except for the ones specified in the list ’-[NonShVars] ->’ .
For getting there, we have to introduce intermediate steps to manage state
variables:

2.1. We extend the list StLoopVars, the argument of ’$shloop’/5 that con-
tains all the state variables in the loop, such that each of the elements
extends to the pair that represents state, X◦ and X•. For example,
‘StLoopVars = [X,Y]’ would be extended to [X◦,X•,Y◦,Y•]. This new
list is used as the arguments of the <<begin>> and <<loop>> closures
to be able to bring the resulting state of a iteration or the parent scope
into the next iteration. Additionally, the argument Vars of ‘$shloop’/5,
which contains the list of variables that are local to each iteration of the
loop (iterators), should be included as the list of non sharing variables
on the <<loop>> closure.

In the scheme above we could appreciate <<begin>> is the entry point
of the loop that, after the initialization, calls to <<body>>. The <<body>>
closure contains the condition such that if it accomplished it executes
Goal and calls again <<body>> to execute another iteration. On the
other hand, if the condition does not succeed, the loop ends with the
true directive to continue executing the rest of the clause. Therefore, in
order to start the loop we should add an additional term to the clause
such that it invokes it, using the call/n predicate, specifically:

call(Begin,Arguments)

The schematic representation at this point of the compilation process
is:

Begin = {
’’(!X1, ..., !Xn) :-
Init,
Body = {
-[Vars] -> ’’(!X1, ..., !Xn) :-
( Cond -> Goal, Body(!X1, ..., !Xn) ; true )

},
Body(!X1, ..., !Xn)

},
Begin(!X1, ..., !Xn).
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Our example at this point will be:� �
loop_example :-
S = 0,
M = 2,
Begin = {
% Closure Arguments
’’(S◦,S•,A◦,A•,L◦,L•,C◦,C•) :-
% Init
(End = 5, assign(C,1), assign(L,[9,8,7,6,5])),
Body = {
% Negative sharing
-[I,J] ->
% Closure Arguments
’’(S◦,S•,A◦,A•,L◦,L•,C◦,C•) :-
% Condition
((I = C, C =< End, L = [J|_Rest]) ->

% Goal
(Tmp3 is I + J, assign(A,Tmp3),
((Tmp4 is A mod M, Tmp4 == 0) ->

(Tmp5 is S + 1, assign(S,Tmp5))
; (Tmp6 is S - 1, assign(S,Tmp6))

),
Tmp1 is C + 1, Tmp2 is Tmp1,
assign(C,Tmp2),

L = [_V|LS], assign(L,LS)
),
% Call body for the next iteration
call(Body,S◦,S•,A◦,A•,L◦,L•,C◦,C•)
% If the loop ends
;true

)
},
% Call body for the first iteration
call(Body,S◦,S•,A◦,A•,L◦,L•,C◦,C•)

},
% Initiate the loop
call(Begin,S◦,S•,A◦,A•,L◦,L•,C◦,C•).� �

2.2. After this the whole structures are parsed executing the steps defined
in Section 4.2 to handle state variables or even executing the steps
in Section 6.3 if there are nested loops. In this step we need to take
into account that each of the closures act as a different scope, then
they can be treated as a separate basic blocks or clauses. Therefore
the compilation process explained in Section 4.2 can be applied to it
as a individual clause or scope, except on this case the predicate is
unnamed instead of named. Once done that parsing, it includes the
variables in the arguments of the head of the closures in the list of non
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sharing variables. This ensures that the value of each state variable
in each iteration is taken from the arguments and not from the parent
environment.

At this point, all occurrences of the assign/2 predicate and all arguments
of the form X◦ or X• should have been correctly processed and replaced with
their corresponding terms. After this compilation phase, the translation of
our example is:� �

loop_example :-
S = 0,
M = 2,
Begin = {
% Negative Sharing
- [S0,Sn,A0,An,L0,Ln,C0,Cn] ->
% Closure Arguments
’’(S0,Sn,A0,An,L0,Ln,C0,Cn):-
% Init
(End = 5, C1 = 1, L1 = [9,8,7,6,5]),
Body = {
% Negative Sharing
- [I,J,S_0,S_n,A_0,A_n,L_0,L_n,C_0,C_n] ->
% Closure Arguments
’’(S_0,S_n,A_0,A_n,L_0,L_n,C_0,C_n) :-
% Condition
((I = C_0, C_0 =< End, L_0 = [J|_Rest]) ->

% Goal
(Tmp3 is I + J, A_1 = Tmp3,
((Tmp4 is A_1 mod M, Tmp4 == 0) ->

(Tmp5 is S_0 + 1, S_1 = Tmp5)
; (Tmp6 is S_0 - 1, S_1 = Tmp6) 2

),
Tmp1 is C_0 + 1, Tmp2 is Tmp1, C_1 = Tmp2,
L_0 = [_V| LS], L_1 = LS

),
% Call body for the next iteration
call(Body,S_1,S_n,A_1,A_n,L_1,L_n,C_1,C_n)
% If the loop ends
; (S_n = S_0, A_n = A_0, L_n = L_0, C_n = C_0)

)
},
% Call body for the first iteration
call(Body,S0,Sn,A0,An,L1,Ln,C1,Cn)

},
% Initiate the loop
call(Begin,S,S__n,A__0,A__n,L__0,L__n,C__0,C__n).� �

2Note that there is a disjunction and, as explained in Section 4.2.2, it unifies the environments,
specifically the variable S_1.
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6.3.3 Third Phase

The third phase consists of the correct treatment of the negative sharing clo-
sures, which is performed by the hiordx package and the compiler itself. Al-
though it is already part of another package, as explained in Section 2.1.3, we
are going to go slightly over it to finish in this project the transformation from
loops into plain predicates. This process consists of three main steps:

1. The first part consists on transforming negative sharing closures into pos-
itive sharing closures, which is done done by hiordx package. It takes as
an input the negative sharing clauses from loops, but it can also be used
directly by the user as we mentioned in Section 2.1.3.

The process consists of parsing the closure scope by scope, annotating for
each variable the line in which it appears. Then for each variable it checks:

• The variable is not part of the excluded variables in negative sharing.

• The variable appears in more than one scope.

If both conditions are met, the variable is included inside the list of sharing
variables across all relevant closures, ensuring it can be accessed from one
occurrence to another. For example, if we have a set of closures ‘Scope 0
{Scope 1 {Scope 2}}’ with negative sharing and a variable ‘A’ that appears
in ‘Scope 0’ and ‘Scope 2’, then the variable ‘A’ would be added to the list of
shared variables of ‘Scope 1’ and ‘Scope 2’.

Turning back to our example, after this compilation step it would be trans-
formed to:� �
loop_example :-
S = 0,
M = 2,
Begin = {
% Positive Sharing
[M] ->
% Closure Arguments
’’(S0,Sn,A0,An,L0,Ln,C0,Cn):-
% Init
(End = 5, C1 = 1, L1 = [9,8,7,6,5]),
Body = {
% Negative Sharing
[End,M,Body] ->
% Closure Arguments
’’(S_0,S_n,A_0,A_n,L_0,L_n,C_0,C_n) :-
% Condition
((I = C_0, C_0 =< End, L_0 = [J|_Rest]) ->

% Goal
(Tmp3 is I + J, A_1 = Tmp3,
((Tmp4 is A_1 mod M, Tmp4 == 0) ->

(Tmp5 is S_0 + 1, S_1 = Tmp5)
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; (Tmp6 is S_0 - 1, S_1 = Tmp6)
),
Tmp1 is C_0 + 1, Tmp2 is Tmp1, C_1 = Tmp2,
L_0 = [_V| LS], L_1 = LS

),
% Call body for the next iteration
call(Body,S_1,S_n,A_1,A_n,L_1,L_n,C_1,C_n)
% If the loop ends
; (S_n = S_0, A_n = A_0, L_n = L_0, C_n =
C_0)

)
},
% Call body for the first iteration
call(Body,S0,Sn,A0,An,L1,Ln,C1,Cn)

},
% Initiate the loop
call(Begin,S,S__n,A__0,A__n,L__0,L__n,C__0,C__n).� �

It is important to highlight that the variable ‘Body’, which is the reference
to the closure that contains the body of the loop, is also included in the list
of shared variables of itself as it has to call itself for the next iteration.

2. At this point we have a set of positive sharing closures nested one inside
an other or consecutively. This leads to a inefficient execution due to the
complexity of executing closures one after another, even for each itera-
tion, without treating them during compile time. To avoid this, we flatten
closures into plain predicates by giving them an internal name to turn un-
named predicates into common plain predicates. This leads to a execution
complexity equivalent to the one of the commonly used recursion in Prolog
and materializes as a better time performance.

More specifically, if we perform the optimization over a simple example of
a closure where none of the variables from the parent scope are shared,
except the ones explicitly included in the list, and it is call from a module:� �
foo(P) :- Y = 2, P = {[Y] -> ’’(X) :- X = 1 + Y}.� �

We take the closure and give it an auxiliary name whose argument are
the shared variables, in this case is Y. However, we can see that the ar-
gument of the unnamed predicate was X and it has to be an argument
as well. Therefore, the arity of the auxiliary predicate created is Arity =
N◦ Shared V ariables + N◦ Closure Arguments. Following the example, the
translation after the optimization is called the same way and would be:� �
foo_tr(P) :- Y = 2, P = foo_tr_aux(Y).
foo_tr_aux(Y,X) :- X = 1 + Y.� �
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Moving back to our example, after this transformation it would be:� �
loop_example :-
S = 0,
M = 2,
Begin = aux_begin(M),
% Initiate the loop
call(Begin,S,S__n,A__0,A__n,L__0,L__n,C__0,C__n).

aux_begin(M,S0,Sn,A0,An,L0,Ln,C0,Cn) :-
% Init
(End = 5, C1 = 1, L1 = [9,8,7,6,5]),
Body = aux_body(End,M,Body),
% Call body for the first iteration
call(Body,S0,Sn,A0,An,L1,Ln,C1,Cn).

aux_body(End,M,Body,S_0,S_n,A_0,A_n,L_0,L_n,C_0,C_n) :-
% Condition
( (I = C_0, C_0 =< End, L_0 = [J|_Rest]) ->

% Goal
(Tmp3 is I + J, A_1 = Tmp3,
((Tmp4 is A_1 mod M, Tmp4 == 0) ->

(Tmp5 is S_0 + 1, S_1 = Tmp5)
; (Tmp6 is S_0 - 1, S_1 = Tmp6)

),
Tmp1 is C_0 + 1, Tmp2 is Tmp1, C_1 = Tmp2,
L_0 = [_V| LS], L_1 = LS

),
% Call body for the next iteration
call(Body,S_1,S_n,A_1,A_n,L_1,L_n,C_1,C_n)
% If the loop ends
; (S_n = S_0, A_n = A_0, L_n = L_0, C_n = C_0)

).� �
It is worth noting that, for clarity in the example, we placed the shared
variables as the first arguments of the internal plain predicates. However,
the compiler actually inserts them at the end. Placing shared variables last
is a design choice aimed at taking advantage of Ciao’s predicate indexing
system, though the ordering could be adjusted based on other criteria.

3. The final step of this compilation phase involves transforming dynamic calls
(using the call/n predicate) into static calls. This is done by removing
the references to Body and Begin, so that the call used for loop iterations
becomes a standard Prolog call to a predicate with arity n. In this step, the
Body variable should also be removed from the arguments of the auxiliary
body predicate, as it is no longer needed for calling.
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In our example, after the entire compilation process, the resulting translation
is 3:� �
loop_example :-
S = 0,
M = 2,
% Initiate the loop
aux_begin(M,S,S__n,A__0,A__n,L__0,L__n,C__0,C__n).

aux_begin(M,S0,Sn,A0,An,L0,Ln,C0,Cn) :-
% Init
(End = 5, C1 = 1, L1 = [9,8,7,6,5]),
% Call body for the first iteration
aux_body(End,M,S0,Sn,A0,An,L1,Ln,C1,Cn).

aux_body(End,M,S_0,S_n,A_0,A_n,L_0,L_n,C_0,C_n) :-
% Condition
( (I = C_0, C_0 =< End, L_0 = [J|_Rest]) ->

% Goal
(Tmp3 is I + J, A_1 = Tmp3,
((Tmp4 is A_1 mod M, Tmp4 == 0) ->

(Tmp5 is S_0 + 1, S_1 = Tmp5)
; (Tmp6 is S_0 - 1, S_1 = Tmp6)

),
Tmp1 is C_0 + 1, Tmp2 is Tmp1, C_1 = Tmp2,
L_0 = [_V| LS], L_1 = LS

),
% Call body for the next iteration
aux_body(End,M,S_1,S_n,A_1,A_n,L_1,L_n,C_1,C_n)
% If the loop ends
; (S_n = S_0, A_n = A_0, L_n = L_0, C_n = C_0)

).� �

3Note that, as with state variables, if this is copied into a module, S will produce the same
result as the original code, since both are equivalent.
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As explained in Chapter 1, the lack of imperative constructs made it difficult
to implement existing algorithms written in pseudocode. Specifically, we high-
lighted the challenges and low readability of implementing the Eratosthenes
Sieve in Ciao, whereas in Python it could be implemented and understood much
more easily. With the imperative constructs introduced throughout this project,
the implementation can now be expressed as follows:

� �
:- module(_, _, [loops,functional ,arrays]).
:- use_module(library(arrays/arrays_log)).

primes_loops(N) := Res :-
new_array_log(A),
for (I in 2 .. N) {

A[I] := ’true’
},

Sqrt is ~floor(~sqrt(N)),
for (I in 2 .. Sqrt) {

if (A[I] == ’true’) {
for (J in I*I .. I .. N) {

A[J] := ’false’
}

}
},

Res = ResTail,
for (K in 2 .. N) {

if (A[K] == ’true’) {
accum(!ResTail,K)

}
},
ResTail = [].

accum(!R, X) :- R = [X|Tail], R := Tail.� �
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6.4 Other Implemented Loop Types

The loop schema used above includes a conditional, the -> operator, which in-
troduces a cut. This means that loops cannot run "backwards," i.e., they do not
perform backtracking on the condition. However, including loops that allow this
behavior can be useful in certain use cases, such as program analysis.

To address this issue, the extension supports the definition of condition pairs,
using the syntax posneg(PosCond, NegCond). These pairs are processed to im-
plement the following loop schema:

<<begin>> :- Init, <<body>>.
<<body>> :-
( NegCond ;
PosCond, Goal, <<body>>

).

Therefore, the compilation process will follow the same steps as explained in
Section 6.3, but it will generate this new schema instead of the one containing
the cut.

50



Chapter 7

Experimental Results

Once all the extensions have been implemented we should test that they work
as expected. In order to achieve this, we have taken a set of examples that
were already coded in Picat, which, as mentioned in Section 2.2, is a language
(different from Prolog) that has loops, state variables, and array index notation.
It is also known to be quite performant, and thus we consider it a very good
point of reference. More specifically, we have chosen to translate the implemen-
tation of most of the first Euler Project problems which could be found in the
Picat official website. These examples are then used to test the of use array-
like structures, state variables, and loops explained in this project, as well as
existing Ciao extensions like clpfd, tabling, and assoc.1

In the following we present the execution results for each problem, grouped in
different tables by the extensions or utilities they use. All these examples run
correctly,2 producing identical results in both languages, and we have chosen to
measure the execution time and the speedup or slowdown of each in Ciao with
respect to Picat. Our objective with this is not to perform an in-depth perfor-
mance comparison, since both the implementation and the problem encodings
can still be improved, but rather to have an estimation of whether the approach
is competitive.

1The examples are too many to include in the appendices but the can be found in this repo:
https://gitlab.software.imdea.org/ciao-lang/ciaoimp-benchmarks

2Except for number 23 that runs out of memory due to the strong use of tabling. Testing it for
smaller input numbers it does return the correct results.
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Table 7.1: Examples that cannot be compared.

File Picat Time (s) Ciao Time (s) Speed-up

p001 0.000 0.000176 -
p002 0.000 0.000085 -
p003 0.000 0.000159 -
p005 0.000 0.000016 -
p006 0.000 0.000018 -
p013 0.000 0.000032 -
p015 0.000 0.001113 -
p028 0.000 0.000329 -
p033 0.000 0.000037 -
p079 0.000 0.000350 -
p100 0.000 0.000013 -

In Table 7.1 we show a first group of examples, whose execution results are
correct, but cannot be compared because the execution times are really too low
to be significant.

Table 7.2: Examples that just use loops.

File Picat Time (s) Ciao Time (s) Speed-up

p004 0.750 0.102908 7.288063
p007 0.299 0.172652 1.731807
p012 11.250 6.975017 1.612899
p016 0.001 0.000163 6.134969
p020 0.001 0.000076 13.157895
p022 0.021 0.021922 0.957942
p025 3.392 2.117667 1.601763
p029 2.353 2.288128 1.028352
p030 1.114 2.220842 0.501612
p034 0.403 0.289445 1.392320
p036 1.250 0.841712 1.485069
p045 0.043 0.030968 1.388530
p046 0.041 0.027016 1.517619
p048 0.826 0.017242 47.906275
p056 0.781 0.210811 3.704740

Table 7.2 presents examples that use only loops, including state variables, with-
out any other extensions. These examples demonstrate that Ciao’s implementa-
tion of state variables and loops is competitive with Picat’s. We observe some
performance differences, which may be due to variations in the virtual machine
implementations.
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Table 7.3: Examples that use loops and tabling.

File Picat Time (s) Ciao Time (s) Speed-up

p021 0.173 0.137526 1.257944
p027 1.823 4.482436 0.406699
p037 3.029 4.278332 0.707986
p041 0.012 0.014385 0.834202
p053 0.041 0.036864 1.112196
p055 0.073 0.070912 1.029445

Table 7.3 presents examples that use tabling, showing similar performance over-
all, with some slight advantage overall for Picat. Comparing this with Table 7.2,
we can infer that the difference is likely to be because of variations in the tabling
implementation.

Table 7.4: Examples that use loops and index notation in lists.

File Picat Time (s) Ciao Time (s) Speed-up

p017 0.011 0.016534 0.665296
p019 0.051 0.050183 1.016280
p024 1.150 8.596679 0.133773
p026 0.074 1.946955 0.038008
p040 0.197 0.161726 1.218110
p042 0.025 0.030145 0.829325
p060 142.493 91.048326 1.565026
p076 0.003 0.057377 0.052286
p077 0.013 0.204024 0.063718

Table 7.4 presents examples that use loops and index notation over lists from
the new array extension, explained in Chapter 5.1. The performance is generally
similar in both languages, with some exceptions such as p024, p026, p077, and
p062. These are likely to be due to the fact that replacing an element in a list is
destructive in Picat but not in Ciao.

Table 7.5: Examples that use loops and index notation in arrays.

File Picat Time (s) Ciao Time (s) Speed-up

p010_log - 9.778831
p010_mut 0.909 0.933479 0.973777
p047_log - 10.553734
p047_mut 0.804 1.184987 0.678488
p050_log 0.282 1.909871 0.147654

Table 7.5 presents examples that use loops and index notation over arrays from
the new array extension, explained in Chapter 5.1. Specifically, they are imple-
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mented in Ciao using both logarithmic and mutable arrays, distinguished by the
last part of the file name. Regarding the results, performance in mutable arrays
is similar to Picat’s, as Picat’s array implementation is also mutable. However,
as expected, in logarithmic arrays Ciao has a logarithmic order of magnitude
higher performance.

Table 7.6: Examples that use loops and other extensions.

File Picat Time (s) Ciao Time (s) Speed-up

assoc

p032 2.398 2.005475 1.195727
p044 1.465 2.458069 0.595996
p062 0.032 0.168411 0.190011

pmrule

p052 0.418 0.538781 0.775825
p049 0.138 0.113220 1.218866

Table 7.6 presents examples that use loops and two different extensions. First,
the examples using assoc, a Ciao extension that implements maps, show that
Picat is generally faster and this is likely because replacing an element in a
map is destructive in Picat but not in Ciao. Second, the examples that include
pmrule, the extension explained in Chapter 3, have similar performance.
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Impact Analysis

Integrating imperative notation into a declarative logic-programming language
shortens the gap with widely used languages like Python. This approach makes
it easier for programmers to adopt the logic-programming paradigm without
abandoning familiar imperative constructs such as loops. Additionally, it allows
developers to implement existing algorithms directly from pseudocode without
having to convert them into recursive versions, which leads to more readable
and debuggable code. Moreover, it simplifies state management by eliminating
the need to rely on predicate arguments to handle current and future states
throughout iterations. Since Ciao is often introduced to university students
with no experience in declarative programming, imperative notation provides a
smoother transition, as they usually have a background in languages like Java.

On the other hand, this approach could have a negative impact, as it might
feel like loosing the declarative essence of Prolog languages. It could discourage
learners from understanding recursion, since they may rely on the new imper-
ative constructs to handle iterations instead. Additionally, it might dilute basic
concepts of declarative programming, such as backtracking or recursive itera-
tion.

Looking into the Agenda 2030, the sustainable development goals which are
more related to the project are Goal 9, in terms of innovation in technology, and
Goal 4, in terms of facilitating education. This projects constitutes an innovation
in the logic-paradigm, extending a Prolog-based language to allow imperative
constructs making more notable its multi-paradigm characteristic. The result
of the project also facilitates learning logic programming, by making it closer to
more popular languages and reducing the learning curve.
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Conclusions and Future Work

Although the logic programming paradigm is quite powerful, it natively lacks
some imperative features that can simplify the implementation of certain algo-
rithms. Moreover, most programmers begin by learning imperative languages
and tend to think in terms of imperative constructs when designing and coding,
which makes them feel more comfortable.

In this work, we have provided a flexible and elegant way to include impera-
tive features in logic programs, such as loops, state variables, and array index
notation. We believe this will potentially contribute to the broader adoption of
declarative languages in general and help close the gap with popular impera-
tive languages, such as Python. In particular, we have proposed a number of
imperative-style constructs that build upon and extend the FSyntax and Hiord
syntactic extensions to Prolog. Furthermore, we also provide a single-sided uni-
fication extension that enables pattern matching.

The proposed extensions have been designed so that they combine well with the
basic functional notation and the higher-order facilities as well as with other
extensions, such as constraints, tabling, etc. In addition, our approach is based
on a set of primitives and a simplified, higher-level expansion mechanism that
together have allowed us to easily introduce the imperative features mentioned
above.

Specifically, we have introduced two new mechanisms in xcontrol:

• Management of state variables through an environment.

• Transformation of loops into negative-sharing closures.

These mechanisms, combined with the notation directive, open up a wide range
of possibilities for extending the language, not only with the syntax proposed in
this project but also with other types of loops and imperative constructs.

We have demonstrated how basic state variable management can serve as a
foundation for additional extensions. In this project, for instance, we imple-
mented array index notation for array-like structures using state variables in
operations that modify specific elements (e.g., the nth element of an array).
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Furthermore, to evaluate the proposed mechanisms, we have implemented the
proposed mechanisms by defining a set of imperative features and exercising
their usefulness by translating idiomatically, in imperative style, a large collec-
tion of small but interesting programs from the Euler Project. Apart from their
intrinsic interest, the choice of these benchmarks was motivated by the fact that
encodings of many of these problems have been done in a number of imperative
languages, and in particular a good number of them are available for the Picat
language, which, as we have argued, is a very good point of reference. We have
also studied the performance of the translated programs.

While some imperative-style constructs were previously available in some form
or another in some Prolog systems, and more comprehensively in non-Prolog
systems like Picat, we argue that our Prolog-based proposal is comprehensive,
coherent, and extensible, as well as offering competitive performance.

Also, we have illustrated that the lack of imperative constructs complicates the
implementation of well-known algorithms described in pseudocode. Specifically,
we highlighted the difficulty and reduced readability involved in implementing
the Sieve of Eratosthenes in Ciao compared to a more straightforward and recog-
nizable implementation in Python. We then presented an implementation using
the proposed extensions, which closely resembles the pseudocode and improves
both readability and understandability.

Overall, the proposed extensions advance the state-of-the-art in the logic pro-
gramming paradigm, particularly in the context of the Ciao multi-paradigm sys-
tem. These enhancements increase its potential for practical use and facilitate
the development of programs that require state representation. Moreover, our
approach achieves this without departing from the core principles of logic pro-
gramming, demonstrating that introducing imperative constructs does not re-
quire a new language.

Future lines of work include:

• Studying the implementation of array index access with improved perfor-
mance and introducing it as a backend implementation for the arrays in-
terface.

• Integrating the extensions developed in this project into the Ciao static an-
alyzer.

• Performing a deeper analysis of the Euler Project problem set to identify
the strengths and limitations of the proposed extensions and improve them
accordingly.

• Comparing the execution times of the Euler Project problems with imple-
mentations in other programming languages beyond Picat.
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Appendix A

Sieve of Eratosthenes:
Implementations in (Ciao) Prolog

� �
:- module(_,_,[functional]).

primes(Limit) := ~sift(~integers(2, Limit)).

integers(Low, High) := ( Low =< High ? [Low | integers(Low+1,High)] | [] ).

sift(L) := ( L=[] ? []
| L=[I|Is] ? [I|sift(~remove(Is,I))]).

remove(L,P) := ( L=[] ? L
| L=[I|Is] ? (I mod P =\= 0 ? [I|remove(Is,P)] | remove(Is,P))).� �

Figure A.1: Classical declarative example for computing primes (using Ciao fsyn-
tax).
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Chapter A. Sieve of Eratosthenes: Implementations in (Ciao) Prolog

� �
:- module(_, _, []).
:- use_module(library(logarrays)).

primes(N,Res) :-
new_array(A), % Initialize an extendable array
To is floor(sqrt(N)), % Just need to go to sq root of n
complete_sieve(2,To,N,A,CompleteSieve), % Complete the sieve
% Create a list with the primes
take_primes(2,N,CompleteSieve ,Res).

complete_sieve(Curr,To,_N,Sieve,RSieve):-
Curr > To, !, RSieve = Sieve.

complete_sieve(Curr,To,N,Sieve,RSieve) :- % If it is marked (0) it is not prime
aref(Curr,Sieve,_El), !,
NewCurr is Curr + 1,
complete_sieve(NewCurr,To,N,Sieve,RSieve).

complete_sieve(Curr,To,N,Sieve,RSieve) :- % Gets here if it is not marked (0)
From is Curr * Curr,
set_multiples(From,Curr,N,Sieve,Sieve1), % Mark with 0 the multiples of a prime
NewCurr is Curr + 1,
complete_sieve(NewCurr,To,N,Sieve1,RSieve).

set_multiples(Curr,_Step,To,Sieve,RSieve) :-
Curr > To, !, RSieve = Sieve.

set_multiples(Curr,Step,To,Sieve,RSieve) :-
aset(Curr,Sieve,0,Sieve1),
NewCurr is Curr + Step,
set_multiples(NewCurr,Step,To,Sieve1,RSieve).

take_primes(Curr,N,_Sieve,Res) :-
Curr > N, !, Res = [].

take_primes(Curr,N,Sieve,Res) :- % If it is marked (0) it is not prime
aref(Curr,Sieve,_El), !,
NewCurr is Curr + 1,
take_primes(NewCurr,N,Sieve,Res).

take_primes(Curr,N,Sieve,Res) :- % Not marked (0): add it to Res
Res = [Curr| Rest],
NewCurr is Curr + 1,
take_primes(NewCurr,N,Sieve,Rest).� �

Figure A.2: The Sieve of Eratosthenes algorithm, direct coding in Prolog

� �
:- module(_, _, [fsyntax, lazy]).

:- use_module(library(lazy/lazy_lib), [take/3, nums_from/2]).

:- lazy fun_eval cut/1.
cut([]) := [].
cut([H | T]) := [H | ~cut(~cut_(T, H))].

:- lazy fun_eval cut_/2.
cut_([], _) := [].
cut_([H2 | T], H1) := R :-

R = ( H2 mod H1 > 0 ? [H2 | ~cut_(T, H1)] | ~cut_(T, H1) ).

:- lazy fun_eval primes/0.
primes := ~cut(~nums_from(2)).

test_primes(N) := ~take(N, ~primes).� �
Figure A.3: Classical example for computing primes (lazy version, Ciao fsyntax).
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Appendix B

Arrays Testing Code

� �
:- module(quicksort ,_,[loops,functional ,arrays]).

% (all implementations)
:- use_module(library(arrays/arrays_fix)).
:- use_module(library(arrays/arrays_mut)).
:- use_module(library(arrays/arrays_log)).
:- use_module(library(arrays/arrays_lists)).

:- use_module(library(lists)).

test_mut(N,Res) :-
new_array_mut(N,Data),
before_quicksort(N,Data,Res).

test_fix(N,Res) :-
new_array_fix(N,Data),
before_quicksort(N,Data,Res).

test_ext(N,Res) :-
new_array_log(Data),
before_quicksort(N,Data,Res).

test_lists(N,Res) :-
length(Data,N),
before_quicksort(N,Data,Res).

before_quicksort(N,Data,Res) :-
A = 1664525,
C = 1013904223,
Seed = 12345,
To is N - 1,
for (I in 0 .. To) {

Seed := (A * Seed + C) /\ 0xffffffff ,
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Data[I] := (Seed mod N) + 1
},
quicksort(Data,0,To,Res).

quicksort(Array,Low,High,FinalArray) :-
if (Low < High) {

partition(Array,Low,High,NewArray,Pi),
quicksort(NewArray,Low,Pi - 1,LeftArray),
quicksort(LeftArray ,Pi + 1, High, FinalArray)

} else {
FinalArray = Array

}.

partition(Array,Low,High,NewArray,Res) :-
Pivot = Array[High],
I = Low - 1,
To = High - 1,
for (J in Low .. To) {

if (Array[J] =< Pivot) {
I := I + 1,
Temp := Array[I],
Array[I] := Array[J],
Array[J] := Temp

}
},

Temp2 := Array[I + 1],
Array[I + 1] := Array[High],
Array[High] := Temp2,
NewArray = Array,
Res = I + 1.� �
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Interface of Arrays Package

� �
% get_elem(+Array,+Index,-Elem)
:- multifile get_elem/3.
% replace_elem(+Array,+Index,+Val,-NewArray)
:- multifile replace_elem/4.
% array_length(+Array,-Length)
:- multifile array_length/2.� �
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Appendix D

Plagiarism Results

The result of submitting the entire project through Turnitin is:

Figure D.1: Screenshot of the originality report of Turnitin.
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