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Dedicated to the memory of
Andrzej Ciepielewski

1. INTRODUCTION

The technology for sequential implementation of logic programming languages has
evolved considerably in the last two decades. In recent years, it has reached a
notable state of maturity and efficiency. Today, a wide variety of commercial logic
programming systems and excellent public-domain implementations are available
that are being used to develop large, real-life applications. An excellent survey of
the sequential implementation technology that has been developed for Prolog is
presented by [Van Roy 1994].

For years logic programming has been considered well suited for execution on
multiprocessor architectures. Indeed research in parallel logic programming is vast
and dates back to the inception of logic programming itself—one of the earliest
published being Pollard’s Ph.D. Thesis [Pollard 1981]. Kowalski already mentions
the possibility of executing logic programs in parallel in his seminal book “Logic
for Problem Solving” [Kowalski 1979]. There has been a healthy interest in parallel
logic programming ever since, as is obvious from the number of papers that have
been published in conferences and journals devoted to logic programming and par-
allel processing, and the number of advanced tutorials and workshops organized on
this topic in various conferences.

This interest in parallel execution of logic programs arises from two perspectives:

(1) Continuous research in simple, efficient, and practical ways to make parallel
and distributed architectures easily programmable drew the attention to logic
programming, since, at least in principle, parallelism can be exploited implic-
itly from logic programs (i.e., parallelism can be extracted from logic programs
automatically without any user intervention). Logic languages allows the pro-
grammer to expresses the desired algorithm in a way that reflects more directly
the structure of the problem (i.e., staying closer to the specifications). This
makes the parallelism available in the problem more accessible to the compiler
and run-time system. The relatively clean semantics of these languages also
makes it comparatively easy to use formal methods and prove the transforma-
tions performed by the parallelizing compiler or run-time system both correct
(in terms of computed outputs) and efficient (in terms of computational cost).1

At the same time, parallelizing logic programs implies having to deal with chal-
lenges such as highly irregular computations and dynamic control flow (due to
the symbolic nature of many of their applications), the presence of dynamically
allocated, complex data structures containing logical variables, and having to
deal with speculation, all of which lead to non-trivial notions of independence
and interesting scheduling and memory management solutions. However, the
high-level nature of the paradigm also implies that the study of parallelization
issues happens in a better behaved environment. For example, logical variables
are in fact a very “well behaved” version of pointers.

1Functional programming is another paradigm which also facilitates exploitation of parallelism.
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(2) The everlasting myth that logic programming languages have low execution
efficiency. While it is now clear that modern compilers for logic programs
produce executables with very competitive time and memory performance, this
early belief also prompted researchers to use parallelism as an alternative way
of achieving speed. As we shall see, some of the results obtained fortunately
combine well with sequential compilation techniques resulting in real speedups
over even the most competitive sequential systems.

As mentioned, the literature on parallel execution of logic programs is vast and
varied. There are two major (and non-independent) schools of thought. The first
approach, which is the main focus of this survey, relies on implicit exploitation
of parallelism from logic programs. This means that the parallelization of the
execution can (potentially) occur without any input from the programmer. Note
that these models do not prevent programmer intervention, but usually they either
make it optional or they keep it at a very high level.

In contrast, a number of approaches have been developed which target the ex-
traction of parallelism through the use of explicit constructs introduced in the
source language. This can be done by extending a logic programming language
with explicit constructs for concurrency or by modifying the semantics of the logic
programming language in a suitable way.

Finally, a hybrid solution is used in some “implicit” systems, which arguably
offers the advantages of both approaches: a user-accessible concurrent language
exists (which is typically an extension of Prolog) and which allows quite detailed
manual parallelization. This language is also used by the parallelizing compiler
in order to present to the programmer the transformations it performs on the
program during automatic parallelization. This hybrid approach is exemplified
by the &-Prolog system’s [Hermenegildo and Greene 1991] “CGE” language and
other systems which extend &-Prolog, such as ACE [Pontelli et al. 1995; Pontelli
et al. 1996], DASWAM [Shen 1992a], etc.

Approaches which require explicit specification of parallelism from logic programs
can be largely classified into three categories:

(1) Those that add explicit message passing primitives to Prolog, e.g., Delta Prolog
[Pereira et al. 1986] and CS-Prolog [Futó 1993]. Multiple Prolog processes are
run in parallel and they communicate with each other via explicit message
passing or other rendezvous mechanisms.

(2) Those that add blackboard primitives to Prolog, e.g., Shared Prolog [Ciancar-
ini 1990]. These primitives are used by multiple Prolog processes running in
parallel to communicate with each other via the common blackboard.
Some notable recent proposals in this category include:
(a) The Jinni system [Tarau 1998] developed by Tarau, a Java-based logic pro-

gramming system including multi-threading and blackboard-based commu-
nication; this work is a continuation of the previous work by De Bosschere
and Tarau [1996].

(b) The Ciao system [Hermenegildo et al. 1999; Bueno et al. 1997] supports
multi-threading and novel Prolog database operations which allows the
programmer to use the database as a (synchronizing) blackboard [Carro
and Hermenegildo 1999].
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Blackboard primitives are currently supported by a number of other Prolog
systems, including SICStus [Carlsson et al. 1995] and YAP [Santos Costa et al.
1999].

(3) Those based on guards, committed choice, and data-flow synchronization, e.g.,
Parlog, GHC, KL1 (and its portable C-based implementation KLIC [Chikayama
et al. 1994]), and Concurrent Prolog [Clark and Gregory 1986; Ueda 1986;
Shapiro 1987; 1989].

This class includes the class of concurrent constraint languages (e.g., LIFE [Aı̈t-
Kaci 1993] and cc(fd) [Van Hentenryck et al. 1998]) and the class of distributed
constraint languages such as Oz/Mozart [Haridi et al. 1998; Smolka 1996] and
AKL [Haridi and Janson 1990], as well as some extensions of more traditional
logic programming systems for distributed execution (e.g., the &-Prolog/Ciao
system [Hermenegildo 1994; Cabeza and Hermenegildo 1996; Hermenegildo
et al. 1999] and ACE [Gupta and Pontelli 1999a]).

Each of the three approaches above has been explored and there is extensive re-
search literature that can be found. They all involve complex issues of language
extension and design, as well as of implementation. However, in order to keep this
survey focused, we will consider these approaches only marginally or in those cases
where they introduce execution mechanisms which are applicable also in the case
of implicit exploitation of parallelism (e.g., committed choice languages).

In the rest of this work we will focus primarily on the parallel execution of Prolog
programs, although occasional generalizations to logic languages with a different
operational semantics will be considered (e.g., we briefly discuss parallelization in
constraint logic programming languages). This choice is dictated by the wider use
of Prolog w.r.t. other logic languages, and a consequent wider applicability of the
results accomplished. Observe also that parallelization of Prolog raises issues that
are absent from the parallelization of other logic languages (e.g., due to the presence
of extra-logical predicates). Throughout this work we will often use the terms
“logic programs” and “Prolog programs” interchangeably, thus assuming sequential
Prolog semantics as the target operational behavior (a discussion of the differences
between general logic programming and Prolog is presented in Sec. 2). Parallel
execution of other logic-based languages, such as committed choice languages, raises
issues similar to those discussed in this paper, although, interestingly, in some cases
of a “dual” nature [Hermenegildo and CLIP Group 1994].

The objective of this paper is to provide a uniform view of the research in parallel
logic programming. Due to the extensive body of research in this field, we will not
be able to cover every single aspect and model which have been presented in the
literature. Thus, our focus will lie on highlighting the fundamental problems and
the key solutions that have been proposed. This survey expands on the work done
by other researchers in the past in proposing an organized overview of parallel logic
programming. In particular, this work expands on the earlier survey on parallel
logic programming systems by Chassin de Kergommeaux and Codognet [1994], by
covering the research performed in the last 8 years and by providing a more in-depth
analysis of various areas. Other surveys have also appeared in the literature, mostly
covering more limited areas of parallel logic programming or providing a different
focus [Santos Costa 2000; Gupta and Jayaraman 1993a; Kacsuk 1990; Takeuchi
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1992; Delgado-Rannauro 1992a; 1992b; Hermenegildo 2000].
The paper is organized as follows. The next section provides a brief introduction

to logic programming and parallel logic programming, focusing on the distinction
between the different forms of parallelism exploited in logic programming. Sec. 3
illustrates the issues involved in or-parallel execution of Prolog programs. Sec. 4
describes independent and-parallelism and discusses the solutions adopted in the
literature to handle this form of parallelism. Sec. 5 introduces the notion of de-
pendent and-parallelism and describes different techniques adopted to support it
in different systems. The issues arising from the concurrent exploitation of and-
and or-parallelism are presented in Sec. 6, along with the most relevant proposals
to tackle such issues. Sec. 7 describes the techniques adopted in the literature to
exploit data parallelism from logic programs. Sec. 8 presents a brief overview of
parallel constraint logic programming. Sec. 9 covers a variety of issues related to
implementation and efficiency of parallel logic programming (e.g., optimizations,
static analysis, support tools). Sec. 10 gives a brief overview of the types of appli-
cations to which parallel logic programming has been successfully applied. Finally,
Sec. 11 draws some conclusions and gives some insights on current and future re-
search directions in the field.

In the rest of this paper we assume the reader to be familiar with the basic
terminology of logic programming and Prolog [Lloyd 1987; Sterling and Shapiro
1994].

2. LOGIC PROGRAMMING AND PARALLELISM

In this section we present a brief introduction to logic programming and Prolog. A
more detailed presentation of these topics can be found in the papers mentioned
above.

2.1 Logic Programs and Prolog

A logic program is composed by a set of Horn clauses. Using Prolog’s notation,
each clause is a formula of the form:

Head : −B1, B2, . . . , Bn

where Head, B1, . . . , Bn are atomic formulae (atoms) and n ≥ 0.2 Each clause
represents a logical implication of the form:

∀vi(B1 ∧ . . . ∧ Bn → Head)

where vi are all the variables that appear in the clause. A separate type of clauses
are those where Head is the atom false, which are simply written as:

: −B1, . . . , Bn

These types of clauses are called goals (or queries). Each atom in a goal is called
a subgoal.

Each atomic formula is composed by a predicate applied to a number of argu-
ments (terms), and this will be denoted as p(t1, . . . , tn)—where p is the predicate
name, and t1, . . . , tn are the terms used as arguments. Each term can be either a

2If n = 0 then the formula is simply written as Head and called a fact.
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constant (c), a variable (X), or a complex term (f(s1, . . . , sm), where s1, . . . , sm

are themselves terms and f is the functor of the term).
Execution in logic programming typically involves a logic program P and a goal

: −G1, . . . , Gn, and the objective is to verify whether there exists an assignment σ of
terms to the variables in the goal such that (G1∧ . . .∧Gn)σ is a logical consequence
of P .3 σ is called a substitution: a substitution is an assignment of terms to a set
of variables (the domain of the substitution). If a variable X is assigned a term t

by a substitution, then X is said to be bound and t is the (run-time) binding for
the variable X. The process of assigning values to the variables in t according to a
substitution σ is called binding application.

Prolog, as well as many other logic programming systems, make use of SLD-
resolution to carry out the execution of a program. The theoretical view of the
execution of a program P w.r.t. a goal G is a series of transformations of a resolvent
using a sequence of resolution steps.4 Each resolvent represents a conjunction of
subgoals. The initial resolvent corresponds to the goal G. Each resolution step
proceeds as follows:

— Let us assume that : −A1, . . . , Ak is the current resolvent. An element Ai of
the resolvent is selected (selected subgoal) according to a predefined computation
rule. In the case of Prolog, the computation rule selects the leftmost element of the
resolvent.

— If Ai is the selected subgoal, then the program is searched for a renamed
clause (i.e., with “fresh variables”)

Head : −B1, . . . , Bh

whose head successfully unifies with Ai. Unification is the process which determines
the existence of a substitution σ such that Headσ = Aiσ. If there are rules satisfying
this property then one is selected (according to a selection rule) and a new resolvent
is computed by replacing Ai with the body of the rule and properly instantiating
the variables in the resolvent:

: −(A1, . . . , Ai−1, B1, . . . , Bh, Ai+1, . . . , Ak)σ

In the case of Prolog, the clause selected is the first one in the program whose head
unifies with the selected subgoal.

— If no clause satisfies the above property, then a failure occurs. Failures cause
backtracking. Backtracking explores alternative execution paths by reducing one of
the preceding resolvents with a different clause.

— The computation stops either when a solution is determined—i.e., the resol-
vent contains zero subgoals—or when all alternatives have been explored without
any success.

3Following standard practice, the notation eσ denotes the application of the substitution σ to the
expression e—i.e., each variable X in e will be replaced by σ(X).
4In fact, the actual execution, as we will see later, is very similar to that of standard proce-
dural languages, involving a sequence of procedure calls, returns, etc., and stack-based memory

management.
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An intuitive procedural description of this process is represented in Fig. 2. The
operational semantics of a logic based language is determined by the choice of
computation rule (selection of the subgoal in the resolvent—called selectliteral
in Fig. 2) and the choice of selection rule (selection of the clause to compute the
new resolvent—called selectclause). In the case of Prolog, the computation rule
selects the leftmost subgoal in the resolvent, while the selection rule selects the first
clause in the program that successfully unifies with the selected subgoal.

Many logic languages (e.g., Prolog) introduce a number of extra-logical predicates,
used to perform tasks such as:

(1) perform input/output (e.g., read and write files);

(2) add a limited form of control to the execution (e.g., the cut (!) operator, used
to remove some unexplored alternatives from the computation);

(3) perform meta-programming operations; these are used to modify the structure
of the program (e.g., assert and retract, add or remove clauses from the
program), or query the status of the execution (e.g., var and nonvar, used to
test the binding status of a variable).

An important aspect of many of these extra-logical predicates is that their behavior
is order-sensitive, meaning that they can produce a different outcome depending
on when they are executed. In particular, this means that they can potentially
produce a different result if a different selection rule or a different computation rule
is adopted.

In the rest of this work we will focus on execution of Prolog programs (unless
explicitly stated otherwise); this means that we will assume that programs are
executed according to the computation and selection rule of Prolog. We will also
frequently use the term observable semantics to indicate the overall observable
behavior of an execution—i.e., the order in which all visible activities of a program
execution take place (order of input/output, order in which solutions are obtained,
etc.). If a computation respects the observable Prolog semantics, then this means
that the user does not see any difference between such computation and a sequential
Prolog execution of the same program.

2.2 The Warren Abstract Machine

The Warren Abstract Machine (WAM) [Warren 1983; Aı̈t-Kaci 1991] has become a
de-facto standard for sequential implementations of Prolog and Logic Programming
languages. The WAM defines an abstract architecture whose instruction set is
designed to:

(1) allow an easy mapping from Prolog source code to WAM instructions;

(2) be sufficiently low-level to allow an efficient emulation and/or translation to
native machine code.

Most (sequential and parallel) implementations of Prolog currently rely either di-
rectly on the WAM, or on a sufficiently similar architecture.

The WAM is a stack-based architecture, sharing some similarities with impera-
tive languages implementation schemes (e.g., use of call/return instructions, use
of frames for maintaining procedure’s local environment), but extended in order

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD TBD.
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CODE AREA
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Local Stack

Choice Point Stack
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environment
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Top of Stack

Heap Top at Prev. CP

X1

Xk

Temp.
Registers

Fig. 1. Organization of the WAM

to support the features peculiar to Logic Programming, namely unification and
backtracking (and some other variations, like the need to support dynamic type
checking). At any instance, the state of the machine is defined by the content of
its memory areas (illustrated in Fig. 1). The state can be subdivided into internal
and external state.

(1) Internal State: it is described by the content of the machine registers. The
purpose of most of the registers is described in Fig. 1.

(2) External State: it is described by the content of the logical data areas of the
machine:
(a) Heap: data areas in which complex data structures (lists and Prolog’s

compound terms) are allocated.
(b) Local Stack: (also known as Control Stack) it serves the same purpose as the

control stack in the implementation of imperative languages—it contains
control frames, called environments (akin to the activation records used in
implementation of imperative languages), which are created upon entering
a new clause (i.e., a new “procedure”) and are used to store the local
variables of the clause and the control information required for “returning”
from the clause.

(c) Choice Point Stack: choice points encapsulate the execution state for back-
tracking purposes. A choice point is created whenever a call having multiple
possible solution paths (i.e., more than one clause successfully match the
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call) is encountered. Each choice point should contain sufficient information
to restore the status of the execution at the time of creation of the choice
point, and should keep track of the remaining unexplored alternatives.

(d) Trail Stack: during an execution variables can be instantiated (they can
receive bindings). Nevertheless, during backtracking these bindings need
to be undone, to restore the previous state of execution. In order to make
this possible, bindings that can be affected by this operation are registered
in the trail stack. Each choice point records the point of the trail where
the undoing activity needs to stop.

Prolog is a dynamically typed language; hence it requires type information to be
associated with each data object. In the WAM, Prolog terms are represented as
tagged words: each word contains:

(1) a tag describing the type of the term (atom, number, list, compound structure,
unbound variable);

(2) a value whose interpretation depends on the tag of the word; e.g., if the tag
indicates that the word represents a list, then the value field will be a pointer
to the first node of the list.5

Prolog programs are compiled in the WAM into a series of abstract instruc-
tions operating on the previously described memory areas. In a typical execution,
whenever a new subgoal is selected (i.e., a new “procedure call” is performed), the
following steps are taken:

—The arguments of the call are prepared and loaded into the temporary regis-
ters X1, . . . ,Xn—the instruction set contains a family of instructions, the “put”
instructions, for this purpose.

—The clauses matching the subgoal are detected and, if more than one is available,
a choice point is allocated (using the “try” instructions);

—The first clause is started: after creating (if needed) the environment for the
clause (“allocate”), the execution requires head unification—i.e., unification
between the head of the clause and the subgoal to be solved—to be performed
(using “get/unify” instructions). If head unification is successful (and assuming
that the rule contains some user-defined subgoals), then the body of the clause
is executed, otherwise backtracking to the last choice point created takes place.

—Backtracking involves extracting a new alternative from the topmost choice point
(“retry” will extract the next alternative, assuming this is not the last one, while
“trust” will extract the last alternative and remove the exhausted choice point),
restoring the state of execution associated with such choice point (in particular,
the content of the topmost part of the trail stack is used to remove bindings
performed after the creation of the choice point), and restarting the execution
with the new alternative.

The WAM has been designed in order to optimize the use of resources during
execution, improving speed and memory consumption. Optimizations which are
worth mentioning are:

5Lists in Prolog, as in Lisp, are composed of nodes, where each node contains a pointer to an

element of the list (the head) and a pointer to the rest of the list (the tail).
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—Last Call Optimization: [Warren 1980] represents an instance of the well-known
Tail-recursion optimization commonly used in the implementation of many pro-
gramming languages. Last call optimization allows to reuse the environment of
a clause for the execution of the last subgoal of the clause itself;

—Environment Trimming: [Warren 1983; Aı̈t-Kaci 1991] allows a progressive re-
duction of the size of the environment of a clause during the execution of the
clause itself, by removing the local variables that are not needed in the rest of
the computation.

—Shallow Backtracking: [Carlsson 1989] the principle of procrastination [Gupta and
Pontelli 1997]—postponing work until it is strictly required by the computation—
is applied to the allocation of choice points in the WAM: the allocation of a
choice point is delayed until a successful head unification has been detected.
This allows in many occasions to avoid the allocation of the choice point at all—
if no head unification succeed, or if the successful one is the last clause defining
such predicate.

—Indexing: this technique is used to guide the analysis of the possible clauses that
can be used to solve the current subgoal. The values of the arguments can be used
to prune the search space at runtime. The original WAM supplies some instruc-
tions (“switch” instructions) to analyze the functor of the first argument and
select different clusters of clauses depending on its value. Since many programs
cannot profit from first-argument selection, more powerful indexing techniques
have been proposed, taking into account more arguments and generating more
complex decision trees [Hickey and Mudambi 1989; Van Roy and Despain 1992;
Taylor 1991; Ramesh et al. 1990].

2.3 Logic Programming and Parallelism

Parallelization of logic programs can be seen as a direct consequence of Kowalski’s
principle [Kowalski 1979]:

Programs = Logic + Control
This principle separates the control component from the logical specification of the
problem, thus making the control of execution an orthogonal feature, independent
from the specification of the problem. The lack of knowledge about control in
the program implied by the theoretical view of logic programs allows the run-time
systems to adopt different execution strategies without affecting the declarative
meaning of the program (i.e., the set of logical consequences of the program). Not
only does this allow cleaner (declarative) semantics for logic programs, and hence
a better understanding of them by their users, it also permits an evaluator of logic
programs to employ different control strategies for evaluation. That is, at least
in theory, different operations in a logic program can be executed in any order
without affecting the meaning of the program. In particular, these operations can
theoretically be performed by the evaluator in parallel.

Apart from the separation between logic and control, from a programming lan-
guages perspective, logic programming offers three key features which make ex-
ploitation of parallelism more practical than in traditional imperative languages
(see [Hermenegildo 2000] for some comparisons of the techniques used in paralleliz-
ing compilers for logic programs and more traditional programming paradigms):
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while (Query ≠ ∅ ) do
begin
    selectliteral B from Query;
    repeat
        selectclause (H :- Body) from Program;
    until (unify(H, B) or (no clauses left);

    if (no clauses left) then
             FAIL;
    else
        begin
            σ = MostGeneralUnifier(H,B);
            Query = ( Query \ { B } ∪ { Body } )σ
        end
end.

And-Parallelism

Or-Parallelism

Unification Parallelism

Fig. 2. Operational Semantics and Non-determinism

(1) From an operational perspective, and similarly to functional languages, logic
programming languages are single assignment languages: variables are mathe-
matical entities which can be assigned a value at most once during each deriva-
tion. This relieves a parallel system from having to keep track of certain types
of flow dependencies, and offers a situation similar to having applied already
the “single assignment transformation” often used in the parallelization of tra-
ditional programming languages [Zima and Chapman 1991].

(2) In addition, and also similarly to functional languages, logic languages allow
coding in a way which expresses the desired algorithm reflecting more directly
the structure of the problem (i.e., staying closer to the specifications) and less
the control aspects. This makes the parallelism available in the problem more
easily accessible to the compiler.

(3) Finally, the operational semantics of logic programming, in contrast to impera-
tive and functional languages, includes a certain degree of non-determinism—
which can be easily converted into parallelism without radical modifications of
the overall operational semantics. This leads to the possibility of extracting
parallelism directly from the execution model without any modification to the
source program (implicit parallelization).

The typical strategy adopted in the development of parallel logic programming
systems has been based on the translation of one (or more) of the non-deterministic
choices present in the operational semantics (see Fig. 2) into parallel computations.
This leads to the three “classical” forms of parallelism [Conery and Kibler 1981]:

—And-Parallelism, which originates from parallelizing the selection of the next
literal to be solved—thus allowing multiple literals to be solved concurrently.

—Or-Parallelism, which originates from parallelizing the selection of the clause to
be used in the computation of the resolvent—thus allowing multiple clauses to
be tried in parallel.
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—Unification Parallelism, which arises from the parallelization of the unification
process.

The next three subsections elaborate on these three forms of parallelism.

2.3.1 Unification Parallelism. Unification parallelism arises during the unifica-
tion of the arguments of a goal with the arguments of a clause head with the same
name and arity. The different argument terms can be unified in parallel as can
the different subterms in a term [Barklund 1990]. This can be easily illustrated as
follows: a standard unification (à la Robinson) is approximately structured as

unify(Arg1, Arg2):

if (Arg1 is a complex term f(t1,...,tn) and

Arg2 is a complex term g(s1,...,sm)) then

if (f is equal to g and n is equal to m) then

unify(t1,s1), unify(t2,s2), ..., unify(tn,sn)

else

fail

else

....

Thus, unification of two complex terms is broken down in pairwise unification of
the different arguments. For example, the process of unifying two terms

person(birth(day(12),month(1),year(99)),

address(street(hills),number(2),city(cruces)))

person(birth(day(X),month(1),Y), address(Z,W,city(cruces)))

requires the separate unification between the arguments

birth(day(12),month(1),year(99)) = birth(day(X),month(1),Y)

address(street(hills),number(2),city(cruces)) = address(Z,W,city(cruces))

Unification parallelism takes advantage of the sequence of unifications between the
arguments of complex structures, by performing them concurrently:

doall

r1 = unify(t1,s1);

...

rn = unify(tn,sn);

endall

return (r1 and ... and rn);

where doall indicates the parallel execution of all the statements between doall

and endall.
Unification parallelism is typically very fine-grained, which has prompted the

design of specialized CPUs with multiple unification units [Singhal and Patt 1989].
Parallel unification also needs to deal with complex dependency issues [Singhal and
Patt 1989; Barklund 1990], which have been shown to be very similar to those used
in the and-parallelism [Hermenegildo and Carro 1996; Pontelli and Gupta 1995a;
Debray and Jain 1994] (and indeed unification parallelism can be seen as a form of
and-parallelism). Unification parallelism has not been the major focus of research
in parallel logic programming.
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2.3.2 Or-Parallelism. Or-Parallelism originates from the parallelization of the
selectclause phase in Fig. 2. Thus, or-parallelism arises when more than one
rule defines a relation and a subgoal unifies with more than one rule head—the
corresponding rule bodies can then be executed in parallel with each other, giving
rise to or-parallelism. Or-parallelism is thus a way of searching for solutions to the
query faster, by exploring in parallel the search space generated by the presence
of multiple clauses applicable at each resolution step. Observe that each parallel
computation is potentially computing an alternative solution to the original goal.

Note that or-parallelism encompasses not only the actual concurrent execution
of different alternatives, but also the concurrent search for the different alternatives
which are applicable to the selected subgoal. Some researchers have proposed tech-
niques to explicitly parallelize this search process, leading to the so called search
parallelism [Bansal and Potter 1992; Kasif et al. 1983].

Or-parallelism frequently arises in applications that explore a large search space
via backtracking. This is the typical case in application areas such as expert sys-
tems, optimization and relaxation problems, certain types of parsing, natural lan-
guage processing, and scheduling. Or-parallelism also arises in the context of par-
allel execution of deductive database systems [Ganguly et al. 1990; Wolfson and
Silberschatz 1988].

2.3.3 And-Parallelism. And-Parallelism arises from the parallelization of the
selectliteral phase in Fig. 2. Thus, and-parallelism arises when more than one
subgoal is present in the resolvent, and (some of) these goals are executed in parallel.
And-parallelism thus permits exploitation of parallelism within the computation of
a single solution to the original goal.

And-parallelism arises in most applications, but is particularly relevant in di-
vide & conquer applications, list processing applications, various constraint solving
problems and system applications.

In the literature it is common to distinguish two forms of and-parallelism (the
descriptions of these types of parallelism are clarified later on in the paper):

—Independent and-parallelism (IAP) arises when, given two or more subgoals, the
runtime bindings for the variables in these goals prior to their execution are such
that each goal has no influence on the outcome of the other goals. Such goals
are said to be independent and their parallel execution gives rise to independent
and-parallelism. The typical example of independent goals is represented by goals
that, at run-time, do not share any unbound variable—i.e., the intersection of the
sets of variables accessible by each goal is empty. More refined notions of inde-
pendence, e.g., non-strict independence, have also been proposed [Hermenegildo
and Rossi 1995] where the goals may share a variable but “cooperate” in creating
the binding for the common variable.

—Dependent and-parallelism arises when, at runtime, two or more goals in the body
of a clause have a common variable and are executed in parallel, “competing”
in the creation of bindings for the common variable. (or “cooperating”, if the
goals share the task of creating the binding for the common variable). Depen-
dent and-parallelism can be exploited in varying degrees, ranging from models
which faithfully reproduce Prolog’s observable semantics to models which use

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD TBD.



14 · G. Gupta et al.

specialized forms of dependent and-parallelism (e.g., stream parallelism) to sup-
port coroutining and other alternative semantics—as in the various committed
choice languages [Shapiro 1987; Tick 1995].

It has been noted that independent and dependent and-parallelism are simply
the application of the same principle, independence, at different levels of granu-
larity in the computation model [Hermenegildo and CLIP Group 1994]. In fact,
parallelism is always obtained by executing two (or more) operations in parallel if
those two operations do not influence each other in any way (i.e., they are inde-
pendent); otherwise, parallel execution would not be able to guarantee correctness
and/or efficiency. For independent and-parallelism, entire subgoals have to be inde-
pendent of each other to be executed in parallel. On the other hand, in dependent
and-parallelism the steps inside execution of each goal are examined, and steps in
each goal that do not interfere with each other are executed in parallel. Thus, inde-
pendent and-parallelism could be considered as macro level and-parallelism, while
dependent and-parallelism could be considered as micro level and-parallelism. De-
pendent and-parallelism is typically harder to exploit for Prolog—unless adequate
changes to the operational semantics are introduced, as in the case of committed
choice languages [Shapiro 1987].

2.4 Discussion

Or-parallelism and and-parallelism identify opportunities for transforming certain
sequential components of the operational semantics of logic programming into con-
current operations. In the case of or-parallelism, the exploration of the different
alternatives in a choice point is parallelized, while in the case of and-parallelism the
resolution of distinct subgoals is parallelized. In both cases, we expect the system
to provide a number of computing resources which are capable of carrying out the
execution of the different instances of parallel work (i.e., clauses from a choice point
or subgoals from a resolvent). These computing resources can be seen as different
Prolog engines which are cooperating in the parallel execution of the program. We
will often refer to these computing entities as workers [Lusk et al. 1990] or agents
[Hermenegildo and Greene 1991]. The term process has also been frequently used
in the literature to indicate these computing resources—as workers are typically
implemented as separate processes. The complexity and capabilities of each agent
vary across the different models proposed. Certain models view agents as processes
which are created for the specific execution of an instance of parallel work (e.g.,
an agent is created to specifically execute a particular subgoal), while other mod-
els view agents as representing individual processors, which have to be repeatedly
scheduled to execute different instances of parallel work during the execution of the
program. We will return to this distinction in Sec. 9.1.

Intuitively, or-parallelism and and-parallelism are largely orthogonal to each
other, as they parallelize independent points of non-determinism in the opera-
tional semantics of the language. Thus, one would expect that the exploitation
of one form form of parallelism does not affect the exploitation of the other, and it
should be feasible to exploit both of them simultaneously. However, practical ex-
perience has demonstrated that this orthogonality does not easily translate at the
implementation level. For various reasons (e.g., conflicting memory management
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requirements) combined and/or-parallel systems have turned out to be extremely
complicated, and so far no efficient parallel system has been built that achieves
this ideal goal. At the implementation level, there is considerable interaction be-
tween and- and or-parallelism and most proposed systems have been forced into
restrictions on both forms of parallelism (these issues are discussed at length in
Sec. 6).

On the other hand, one of the ultimate aims of researchers in parallel logic pro-
gramming has been to extract the best execution performance from a given logic
program. Reaching this goal of maximum performance entails exploiting multiple
forms of parallelism to achieve best performance on arbitrary applications. Indeed,
various experimental studies (e.g., [Shen and Hermenegildo 1991; 1996b; Pontelli
et al. 1998]) seem to suggest that there are large classes of applications which are
rich in either one of the two forms of parallelism, while others offer modest quanti-
ties of both. In these situations, the ability to concurrently exploit multiple forms
of parallelism in a general-purpose system becomes essential.

It is important to underline that the overall goal of research in parallel logic
programming is the achievement of higher performance through parallelism. Ac-
complishing good speedups may not necessarily translate to an actual improvement
in performance with respect to state-of-the-art sequential systems—e.g., the cost of
managing the exploitation of parallelism can make the performance of the system
on a single processor considerably slower than a standard sequential system. While
many early parallel logic programming systems proposed achieved speedups, only
a few (e.g., &-Prolog, Aurora, MUSE, ACE, DASWAM) have been shown capable
of achieving consistently faster executions than state of the art sequential systems.

In the rest of the paper we discuss or-parallelism, independent and-parallelism
and dependent and-parallelism in greater detail, describing the problems that arise
in exploiting them. We describe the various solutions that have been proposed
for overcoming these problems, followed by description of actual parallel logic pro-
gramming systems that have been built. We discuss the efficiency issues in parallel
logic programming, and current and future research in this area. We assume that
the reader is familiar with the foundations of parallel processing—an excellent ex-
position of the needed concepts can be found in [Almasi and Gottlieb 1994; Zima
and Chapman 1991].

The largest part of the body of research in the field of parallel logic programming
focused on the development of systems on Shared Memory architectures—and in-
deed many of the techniques presented are specifically designed to take advantage
of a single shared storage. Research on execution of logic programs on Distributed
Memory architectures (e.g., [Benjumea and Troya 1993; Kacsuk and Wise 1992])
has been more sparse and perhaps less incisive. Currently, there is renewed inter-
est in distributed memory architectures [Silva and Watson 2000; Araujo and Ruz
1998; Castro et al. 1999; Gupta and Pontelli 1999c; Hermenegildo 1994; Cabeza and
Hermenegildo 1996], thanks to their increased availability at affordable prices and
their scalability. Nevertheless, the focus of this survey is on describing execution
models for shared memory architectures.
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f:- t(X,three),p(Y),q(Y).
p(L):-s(L,M),t(M,L).
p(K):-r(K).
q(one).
q(two).
 

s(two,three).
s(four,five).
t(three,three).
t(three,two).
r(one).
r(three).
?-f.

?-f.

Y:   
X: 

Y:&L 
M: 

t(X,three),p(Y),q(Y)

s(L,M),t(M,L),q(Y)

Y:&K 
 

r(K),q(Y)

[L <- Y]
[K <- Y]

[ L <- two
M <- three]

[K <- one]

q(one)

success

t(three, two),q(two)

q(two)

success

Note: Each node contains
space for variables that
appear in its corresponding
clause. Each node also
contains the goal list,
or list of pending subgoals.
&X denotes pointer to var. X.

fail

q(three)

[K <- three]

fail

[L <- four
M <- five]

t(five,four),q(four)

[X<-three]

p(Y),q(Y)

Fig. 3. An Or-parallel Tree

3. OR-PARALLELISM

Or-parallelism arises when a subgoal can unify with the heads of more than one
clause. In such a case the bodies of these clauses can be executed in parallel with
each other, giving rise to or-parallelism. For example, consider the following simple
logic program:

f :- t(X, three), p(Y), q(Y).

p(L) :- s(L, M), t(M, L).

p(K) :- r(K).

q(one).

q(two).

r(one).

r(three).

s(two, three).

s(four, five).

t(three, three).

t(three, two).

and the query ?- f. The calls to t, p, and q are non-deterministic and lead to
the creation of choice points. In turn, the execution of p leads to the call to the
subgoal s(L,M), which leads to the creation of another choice point. The multiple
alternatives in these choice points can be executed in parallel.
A convenient way to visualize or-parallelism is through the or-parallel search tree.
Informally, an or-parallel search tree (or simply an or-parallel tree or a search tree)
for a query Q and logic program LP is a tree of nodes, each with an associated
goal-list, such that:
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(1) the root node of the tree has Q as its associated goal-list;

(2) each non-root node n is created as a result of successful unification of the first
goal in (the goal-list of) n’s parent node with the head of a clause in LP ,

H:-B1, B2, . . . , Bn

The goal-list of node n is (B1, B2, . . . , Bn, L2, . . . , Lm)θ, if the goal-list of the
parent of n is L1, L2, . . . , Lm and θ = mgu(H,L1).

Fig. 3 shows the or-parallel tree for the simple program presented above. Note that,
since we are considering execution of Prolog programs, the construction of the or-
parallel tree will follow the operational semantics of Prolog—at each node we will
consider clauses applicable to the first subgoal, and the children of a node will be
considered ordered from left to right according to the order of the corresponding
clauses in the program. I.e., during sequential execution the or-parallel tree of Fig. 3
is searched in a depth-first manner. However, if multiple agents are available, then
multiple branches of the tree can be searched simultaneously.

Or-parallelism manifests itself in a number of applications [Kluźniak 1990; Shen
1992b; Shen and Hermenegildo 1996b]. It arises while exercising rules of an ex-
pert systems where multiple rules can be fired simultaneously to achieve a goal.
It also arises in some applications that involve natural language sentence parsing.
In such applications the various grammar rules can be applied in or-parallel to
arrive at a parse tree for a sentence. If the sentence is ambiguous then the mul-
tiple parses would be found in parallel. Or-parallelism also frequently arises in
database applications, where there are large numbers of clauses, and in applica-
tions of generate-and-test nature—the various alternatives can be generated and
tested in or-parallel. This can be seen for example in the following simple program
to solve the 8-queen problem:

queens(Qs) :- queens(Qs, [], [1,2,3,4,5,6,7,8]).

queens([],_,[]).

queens([X|Xs], Placed, Values):-

delete(X, Values, New_values),

noattack(X, Placed),

queens(Xs,[X|Placed],New_values).

delete(X, [X|Xs], Xs).

delete(X, [Y|Ys], [Y|Zs]) :- delete(X, Ys, Zs).

noattack(X, Xs) :- noattack(X, Xs, 1).

noattack(_, [], _).

noattack(X, [Y|Ys], Nb) :-

X =\= Y-Nb,

X =\= Y+Nb,

Nb1 is Nb + 1,

noattack(X,Ys,Nb1).

The call to delete/3 in the second clause of queens/3 acts as a generator of
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bindings for the variable X and creates a number of choice points. The predicate
delete/3 will be called again in the recursive invocations of queens/3, creating
yet more choice points and yet more untried alternatives that can be picked up by
agents for or-parallel processing.

From the theoretical point of view, or-parallelism poses few problems since the
various branches of the or-parallel tree are independent of each other, thus requiring
little communication between agents. This has been shown in the literature in a
number of related theoretical results which state that, for given sets of conditions
(the simplest example being pure programs for which all solutions are requested and
no run-time parallelism-related overheads), or-parallel execution of a logic program
meets the “no-slowdown” condition: i.e., parallel execution will run no slower (and,
logically, often much faster) than its sequential counterpart [Hermenegildo and
Rossi 1995].

3.1 Challenges in the Implementation of Or-parallelism

Despite the theoretical simplicity and results, in practice implementation of or-
parallelism is difficult because keeping the run-time, parallelism-related overheads
small (and, therefore, preserving the “no-slowdown” results) is non-trivial due to
the practical complications which emerge from the sharing of nodes in the or-
parallel tree. That is, given two nodes in two different branches of the or-tree, all
nodes above (and including) the least common ancestor node of these two nodes
are shared between the two branches. A variable created in one of these ancestor
nodes might be bound differently in the two branches. The environments of the
two branches have to be organized in such a fashion that, in spite of the ancestor
nodes being shared, the correct bindings applicable to each of the two branches are
easily discernible.

To understand this problem, consider Fig. 3 where each node of the or-parallel
tree contains the variables found in its corresponding clause, i.e., it holds that
clause’s environment. If the different branches are searched in or-parallel, then the
variable Y receives different bindings in different branches of the tree all of which will
be active at the same time. Storing and later accessing these bindings efficiently
is a problem. In sequential execution the binding of a variable is stored in the
memory location allotted to that variable. Since branches are explored one at a
time, and bindings are untrailed during backtracking, no problems arise. In parallel
execution, multiple bindings exist at the same time, hence they cannot be stored
in a single memory location allotted to the variable. This problem, known as the
multiple environment representation problem, is a major problem in implementing
or-parallelism.

More generally, consider a variable V in node n1, whose binding b has been
created in node n2. If there are no branch points between n1 and n2, then the
variable V will have the binding b in every branch that is created below n2. Such
a binding can be stored in-place in V—i.e., it can be directly stored in the memory
location allocated to V in n1. However, if there are branch points between n1 and n2,
then the binding b cannot be stored in-place, since other branches created between
nodes n1 and n2 may impart different bindings to V. The binding b is applicable
to only those nodes that are below n2. Such a binding is known as a conditional
binding and such a variable as a conditional variable. For example, variable Y
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in Fig. 3 is a conditional variable. A binding that is not conditional, i.e., one
that has no intervening branch points (or choice points) between the node where
this binding was generated and the node containing the corresponding variable,
is termed unconditional. The corresponding variable is called an unconditional
variable (for example, variable X in Fig. 3).

The main problem in implementing or-parallelism is the efficient representation
of the multiple environments that co-exist simultaneously in the or-parallel tree cor-
responding to a program’s execution. Note that the main problem in management
of multiple environments is that of efficiently representing and accessing the condi-
tional bindings; the unconditional bindings can be treated as in normal sequential
execution of logic programs (i.e., they can be stored in-place). The problem of mul-
tiple environment management has to be solved by devising a mechanism where
each branch has some private area where it stores conditional bindings applicable
to itself. There are many ways of accomplishing this effect [Warren 1987b; Gupta
and Jayaraman 1993a]. For example:

—Storing the conditional binding created by a branch in an array or a hash table
private to that branch, from where the binding is accessed whenever it is needed.

—Keeping a separate copy of the environment for each branch of the tree, so that
every time branching occurs at a node the environment of the old branch is copied
or recreated in each new branch.

—Recording conditional bindings in a global data structure and attaching a unique
identifier with each binding which identifies the branch a binding belongs to.

Each approach has its associated cost. This cost is non-constant time and is incurred
either at the time of variable access, or at the time of node creation, or at the time
a worker begins execution of a new branch. In [Gupta and Jayaraman 1993a] three
criteria were derived for an ideal or-parallel system, namely:

(1) The cost of environment creation should be constant-time;

(2) The cost of variable access and binding should be constant-time; and

(3) The cost of task switching6 should be constant-time.

It has been shown that it is impossible to satisfy these three criteria simultaneously
[Gupta and Jayaraman 1993a; Ranjan et al. 1999]. In other words, the non-constant
time costs in managing multiple or-parallel environments cannot be avoided. Al-
though this non-constant cost cannot be avoided in supporting or-parallelism, it
can be significantly reduced by a careful design of the scheduler, whose function
is to assign work to workers (where work in an or-parallel setting will mean an
unexplored branch of the or-parallel tree represented as an untried alternative in a
choice point). The design of the scheduler is very important in an or-parallel sys-
tem, in order to avoid excessive (expensive) task switches and to properly handle
speculative computations. This is discussed in the context of the various execution
models proposed (Sec. 3.5).

6That is, the cost associated with updating the state of a worker when it switches from one node

of the tree to another.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD TBD.



20 · G. Gupta et al.

Task Creation Time

Task Switching Time Task Switching Time

Variable Access
Time

Variable Access
Time

Variable Access
Time

Variable Access
Time

constantnon-constant

constant

no
n-

co
ns

ta
ntconstant

no
n-

co
ns

ta
nt

? e.g., Variable Import e.g., Directory Tree e.g., Time Stamping e.g., Binding Arrays

e.g., Hashing Windows No Methods

no
n-

co
ns

ta
nt constant

constant

constant
no

n-
co

ns
ta

nt

no
n-

co
ns

ta
nt

no
n-

co
ns

ta
nt constant

MODEL
Constant-time

Task
Creation

Constant-time
Task

Switching

Constant-time
Variable
Access

Time Stamping

Directory Tree

Hashing Windows

Favored Bindings

Environment Closing

Binding Arrays

Version Vectors

MUSE

Kabu-Wake

Delphi

XX
X X

X
X X

X X
X X
X X
X X
X X

X X
Shared Tree

Non-Shared
Tree

Fig. 4. Classification of Or-parallel Models

3.2 Or-parallel Execution Models

A number of execution models have been proposed in the literature for exploiting
or-parallelism (a listing of about 20 of them can be found in [Gupta and Jayaraman
1993a]). These models differ in the techniques they employ for solving the problem
of environment representation. The three criteria mentioned in the previous section
allow us to draw a clean classification of the different models proposed—the models
are classified depending on which criteria they meet. This is illustrated in Fig. 4;
the different models will be associated to one of the leafs of the tree, depending
on which criteria they meet and which criteria they violate. Observe that the
rightmost leaf in the tree is necessarily empty, since no model can meet all the
three criteria (this is discussed more formally in Sec. 3.4). The classification of the
models presented in this section is summarized in the table in Fig. 4.

For instance, the following models employ an environment representation tech-
nique that satisfies criteria 1 and 2 above (constant-time task creation and variable
access): Versions Vectors Scheme [Hausman et al. 1987], Binding Arrays Scheme
[Warren 1984; 1987c], Argonne-SRI Model [Warren 1987b], Manchester-Argonne
Model [Warren 1987b], Delphi Model [Clocksin and Alshawi 1988], Randomized
Method [Janakiram et al. 1988], BC-Machine [Ali 1988], MUSE [Ali and Karlsson
1990b] (and its variations, such as stack splitting [Gupta and Pontelli 1999c], SBA
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[Correia et al. 1997], PBA [Gupta et al. 1993; Gupta et al. 1994]), Virtual Memory
Binding Arrays model [Véron et al. 1993] and, Kabu-Wake Model [Masuzawa et al.
1986]; while the following models employs an environment representation technique
that satisfies criteria 2 and 3 above (constant-time variable access and task switch):
Directory Tree Method [Ciepielewski and Haridi 1983], and Environment Closing
Method [Conery 1987a]; and the following models employs an environment repre-
sentation technique that satisfies criteria 1 and 3 above (constant-time task-creation
and task-switch): Hashing Windows Method [Borgwardt 1984], Favored-Bindings
Model [Disz et al. 1987], and Virtual Memory Hashing Windows model [Véron et al.
1993]. Likewise, example of a model that only satisfies criterion 1 (constant time
task-creation) is the Time-Stamping Model [Tinker 1988], while the example of a
model that only satisfies criterion 3 (constant-time task switching) is the Variable
Import Scheme [Lindstrom 1984]. We describe some of these execution models for
or-parallelism in greater detail below. A detailed study and derivation of some
of the or-parallel models has also been done in [Warren 1987b]. Some alternative
models for or-parallelism, such as Sparse Binding Array and Paged Binding Arrays,
are separately described in Sec. 6.3, since their design is mostly motivated by the
desire to integrate exploitation of or- and and-parallelism.

As noted in Fig. 4, we are also imposing an additional classification level, which
separates the models proposed into two classes. The first class contains all those
models in which the different workers explore a unique representation of the com-
putation tree—which is shared between workers. The second class contains those
models in which every worker maintains a separate data structure representing
(part of) the computation tree.

3.2.1 Shared Representation of the Computation Tree.

3.2.1.1 Directory Tree Method. In the directory tree method [Ciepielewski and
Haridi 1983], developed by in the early 80s for the or-parallel Token Machine
[Ciepielewski and Hausman 1986], each branch of the or-tree has an associated
process. A process is created each time a new node in the tree is created, and
the process expires once the creation of the children processes is completed. The
binding environment of a process consists of contexts. A new context is created for
each clause invoked. Each process has a separate binding environment but allows
sharing of some of the contexts in its environment by processes of other branches.
The complete binding environment of a process is described by a directory—thus,
a directory is essentially a “summary” of a branch up to the node representing
the process. A directory of a process is an array of references to contexts. The
environment of the process consists of contexts pointed to by its directory. The ith
location in the directory contains a pointer to the ith context for that process.

When branching occurs, a new directory is created for each child process. For
every context in the parent process which has at least one unbound variable, a
new copy is created, and a pointer to it is placed at the same offset in the child
directory as in the parent directory. Contexts containing no unbound variable
(called committed context) can be shared and a pointer is simply placed in the
corresponding offset of the child’s directory pointing to the committed context.

A conditional variable is denoted by the triple 〈directory address, context off-
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set, variable offset〉 where the directory address is the address of the base of the
directory, context offset is the offset in the directory array and variable offset is the
offset within the context. Notice that in this method all variables are accessed in
constant time, and process switching (i.e., associating one of the processes to an
actual processor) does not involve any state change.

A prototypical implementation of this scheme was developed and some results
concerning memory performance are reported in [Ciepielewski and Hausman 1986].
The cost of directories creation is potentially very high and the method leads to
large memory consumption and poor locality [Crammond 1985].

3.2.1.2 Hashing Windows Method. The hashing windows scheme, proposed by
Borgwardt [1984], maintains separate environments by using hashing windows. The
hashing window is essentially a hash table. Each node in the or-tree has its own
hashing window, where the conditional bindings of that node are stored. The
hash function is applied to the address of the variable to compute the address of
the bucket in which the conditional binding would be stored in the hash window.
Unconditional bindings are not placed in the hash window, rather they are stored
in-place in the nodes. Thus, the hash window of a node records the conditional
bindings generated by that node. During variable access the hash function is applied
to the address of the variable whose binding is needed and the resulting bucket
number is checked in the hash-window of the current node. If no value is found in
this bucket, the hash-window of the parent node is recursively searched until either
a binding is found, or the node where the variable was created is reached. If the
creator node of the variable is reached then the variable is unbound. Hash windows
need not be duplicated on branching since they are shared.

The hashing windows scheme has found implementation in the Argonne Na-
tional Laboratory’s Parallel Prolog [Butler et al. 1986] and in the PEPSys system
[Westphal et al. 1987; Chassin de Kergommeaux and Robert 1990]. The goal of
the PEPSys (Parallel ECRC Prolog System) project was to develop technology for
the concurrent exploitation of and-parallelism and or-parallelism (details on how
and-parallelism and or-parallelism are combined are discussed in Sec. 6.3.1). The
implementation of hashing windows in PEPSys is optimized w.r.t. what mentioned
earlier. Bindings are separated into two classes [Chassin de Kergommeaux and
Robert 1990]:

—Shallow Bindings: these are bindings which are performed by the same process
which created the variables; such bindings are stored in-place (in the environ-
ment). A stamp (called Or-Branch-Level (OBL)) is also stored with the binding.
The OBL keeps track of the number of choice points present in the stack at each
point in time.

—Deep Bindings: these are binding performed to variables which lay outside of the
local computation. Access to such bindings is performed using hashing windows.

Variable lookup makes use of the OBL to determine whether the in-place binding
is valid or not—by comparing the OBL of the binding with the OBL existing at the
choice point which originated the current process. Details of these mechanisms are
presented in [Westphal et al. 1987]. A detailed study of the performance of PEPSys
has been provided in [Chassin de Kergommeaux 1989].
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3.2.1.3 Favored-Bindings Method. The favored binding method [Disz et al. 1987]
proposed by researchers at Argonne National Laboratory is very similar to the
hash-window method. In this method the or-parallel tree is divided into favored,
private, and shared sections. Bindings imparted to conditional variables by favored
section are stored in-place in the node. Bindings imparted by other sections are
stored in a hash table containing a constant number of buckets (32 in the Argonne
implementation). Each bucket contains a pointer to the linked list of bindings which
map to that bucket. When a new binding is inserted, a new entry is created and
inserted at the beginning of the linked list of that bucket as follows: (i) The next
pointer field of the new entry records the old value of the pointer in the bucket.
(ii) The bucket now points to this new entry. At a branch point each new node is
given a new copy of the buckets (but not a new copy of the lists pointed to by the
buckets).

When a favored branch has to lookup the value of a conditional variable it can
find it in-place in the value-cell. However, when a non-favored branch accesses a
variable value it computes the hash value using the address of the variable and
locates the proper bucket in the hash table. It then traverses the linked list until
it finds the correct value. Notice how separate environments are maintained by
sharing the linked list of bindings in the hash tables.

3.2.1.4 Time Stamping Method. The time-stamping method, developed by [Tin-
ker 1988], uses time stamps to distinguish the correct bindings for an environment.
All bindings for a variable are visible to all the workers (which are distinct processes
created when needed). All bindings are stamped with the time at which they were
created. The bindings also record the process-id of the process which created them.
The branch points are also stamped with the time at which they were created.
An ancestor stack, which stores the ancestor-process/binding-time pairs to disam-
biguate variables, is also kept with each process. The ancestor stack records the
binding spans during which different processes worked on a branch. The ancestor
stack is copied when a new process is created for an untried alternative.

To access the value of a variable, a process has to examine all its bindings until
the correct one is found, or none qualify, in which case the variable is unbound
for that process. To check if a particular binding is valid, the id of the process,
say P, which created it and the time stamp are examined. The time stamp is then
checked to see if it falls in the time span of process P in any of its entries in the
ancestor stack. If such a P/binding-span entry is found then the binding is valid,
else the next binding is examined until there are none left in which case the variable
is unbound.

This scheme was provided as part of the design of the BOPLOG system—an
or-parallel Prolog system for BBN’s Butterfly architectures (a distributed memory
machine with global addressing capabilities). The method suggests a potential for
lack of locality of reference, as the global address space is extensively searched in
accessing bindings.

3.2.1.5 Environment Closing Method. The environment closing method was pro-
posed by Conery [1987a] and is primarily designed for distributed memory systems.
The idea behind closing an environment is to make sure that all accesses are only to
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variables owned by search tree nodes that reside locally. A node in the search tree
(Conery refers to nodes as frames) A is closed with respect to another node B by
eliminating all pointers from the environment of node A to the environment of node
B (changing them from node B to node A instead). The process involves traversing
all the structures in node B which can be reached through the environment of node
A. For each unbound variable V in such a structure a new variable V’ is introduced
in A. The unbound variable is made to point to this new variable. The structure
is copied into A, with the variable V in that structure being replaced by the new
variable V’. Note that multiple environments for each clause matching a goal are
represented in this method through explicit copying of all unbound variables that
are accessible from the terms in the goal.

During execution, each new node introduced is closed with respect to its parent
node after the unification is done. After the body of the clause corresponding to the
node is solved the parent node is closed with respect to its child node so that the
child’s sibling can be tried. If the child node corresponds to a unit clause the parent
node is immediately closed with respect to its child after unification. Closing the
child node ensures that no variables in ancestor nodes would be accessed. Closing
the parent node ensures that the variable bindings produced by the execution of
its children are imported back into the parent node’s environment.

This method trades synchronization time required to exchange variable bindings
during parallel computations, with the extra time required to close the environment.
The foundation of this method can be traced back to the Variable Import method
[Lindstrom 1984], where forward unification is used to close the environment of a
new clause and backward unification is used to communicate the results at the end
of a clause. The scheme presented by Conery has also been adopted in the ROPM
system [Kalé et al. 1988].

3.2.1.6 Binding Arrays Method. In the binding arrays method [Warren 1984;
1987c] each worker has an auxiliary data structure called the binding array.7 Each
conditional variable along a branch is numbered sequentially outward from the root.

To perform this numbering, each branch maintains a counter; when branching
occurs each branch gets a copy of the counter. When a conditional variable is
created it is marked as one (by setting a tag), and the value of the counter recorded
in it; this value is known as the offset value of the variable.8 The counter is then
incremented. When a conditional variable gets bound, the binding is stored in the
binding array of the worker at the offset location given by the offset value of that
conditional variable. In addition, the conditional binding together with the address
of the conditional variable is stored in the trail. Thus, the trail is extended to include
bindings as well. If the binding of this variable is needed later, then the offset value
of the variable is used to index into the binding array to obtain the binding. Note
that bindings of all variables, whether conditional or unconditional, are accessible
in constant time. This is illustrated in Fig. 5. Worker P1 is exploring the leftmost

7Note that the description that follows is largely based on [Warren 1987c] rather than on [War-
ren 1984]. The binding arrays technique in [Warren 1984] is not primarily concerned with or-
parallelism but rather with (primarily sequential) non-depth-first search.
8Most systems, e.g., Aurora, initially treat all the variables as conditional, thus placing them in

the binding array.
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Fig. 5. The Binding Arrays Method

branch (with terminal success node labeled n1). The conditional variables X and M

have been allocated offsets 0 and 1 respectively. Thus, the bindings for X and M are
stored in the locations 0 and 1 of the binding array. The entries stored in the trail
in nodes are shown in square brackets in the figure. Suppose the value of variables M
is needed in node n1; M’s offset stored in the memory location allocated to it is then
obtained. This offset is 1, and is used by worker P1 to index into the binding array,
and obtain M’s binding. Observe that the variable L is unconditionally aliased to X,
and for this reason L is made point to X. The unconditional nature of the binding
does not require allocation of an entry in the binding array for L.9

To ensure consistency, when a worker switches from one branch (say bi) of the or-
tree to another (say bj), it has to update its binding array by de-installing bindings
from the trail of the nodes that are in bi and installing the correct bindings from
the trail of the nodes in bj . E.g., suppose worker P1 finishes work along the current
branch and decides to migrate to node n2 to finish work that remains there. To be

9Aurora allocates an entry in the array for each variable, but stores unconditional bindings directly

in the stacks.
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able to do so, it will have to update its binding array so that the state that exists
along the branch from root node to node n2 is reflected in its environment. This is
accomplished by making P1 to travel up along the branch from node n1 towards the
least common ancestor node of n1 and n2, and removing those conditional bindings
from its binding array that it made on the way down. The variables whose bindings
need to be removed are found in the trail entries of intervening nodes. Once the
least common ancestor node is reached, P1 will move towards node n2, this time
installing conditional bindings found in the trail entries of nodes passed along the
way. This can be seen in Fig. 5. In the example, while moving up, worker P1
untrails the bindings for X and M, since the trail contains references to these two
variables. When moving down to node n2, worker P1 will retrieve the new bindings
for X and M from the trail and install them in the binding array.

The binding arrays method has been used in the Aurora or-parallel system, which
is described in more detail in Sec. 3.5. Other systems have also adopted the binding
arrays method (e.g., the Andorra-I system [Santos Costa et al. 1991a]). Further-
more, a number of variations on the idea of binding arrays have been proposed—e.g.,
Paged Binding Arrays, Sparse Binding Arrays—mostly aimed at providing better
support for combined exploitation of and-parallelism and or-parallelism. These are
discussed in Sec. 6.3.6 and 6.3.7.

3.2.1.7 Versions Vectors Method. The versions vectors method [Hausman et al.
1987] is very similar to the binding arrays method except that instead of a con-
ditional variable being allocated space in the binding array each one is associated
with a versions vector. A versions vector stores the vector of bindings for that
variable such that the binding imparted by a worker with processor-id i (processor
ids are numbered from 1 to n, where n is the total number of workers) is stored
at offset i in the vector. The binding is also recorded in the trail, as in the bind-
ing arrays method. Like in the binding arrays method, on switching to another
branch a worker with pid j has to update the jth slots of versions vectors of all
conditional variables that lie in the intervening nodes to reflect the correct bindings
corresponding to the new site.

To our knowledge the method has never been integrated in an actual prototype.
Nevertheless, the model has the potential to provide good performance, including
the ability to support the orthogonality principle required by combined exploitation
of and-parallelism and or-parallelism (see Sec. 6.3.7).

3.2.2 Non-Shared Representation of the Computation Tree.

3.2.2.1 Stack-copying Method. In the Stack-copying method [Ali and Karlsson
1990b; 1990a] a separate environment is maintained by each worker in which it
can write without causing any binding conflicts. In Stack-copying even uncondi-
tional bindings are not shared, as they are in the other methods described above.
When an idle worker P2 picks an untried alternative from a choice point created
by another worker P1, it copies all the stacks of P1. As a result of copying, each
worker can carry out execution exactly like a sequential system, requiring very little
synchronization with other workers.

In order to avoid duplication of work, part of each choice point (e.g., the pointer
to the first unexplored alternative) is moved to a frame created in an area easily
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Fig. 6. Stack Copying and Choice Points

accessible by each worker. This allows the system to maintain a single list of
unexplored alternatives for each choice point, which is accessed in mutual exclusion
by the different workers. A frame is created for each shared choice point and is
used to maintain various scheduling information (e.g., bitmaps keeping track of
workers working below each choice point). This is illustrated in Fig. 6. Each
choice point shared by multiple workers has a corresponding frame in the separate
Shared Space. Access to the unexplored alternatives (which are now located in
these frames) will be performed in mutual exclusion, thus guaranteeing that each
alternative is executed by exactly one worker.

The copying of stacks can be made more efficient through the technique of in-
cremental copying. The idea of incremental copying is based on the fact that the
idle worker could have already traversed a part of the path from the root node of
the or-parallel tree to the least common ancestor node, thus it does not need to
copy this part of stacks. In Fig. 7 this is illustrated in an example. In Fig. 7(i)
we have two workers immediately after a sharing operations which has transferred
three choice points from worker P1 to P2. In Fig. 7(ii) worker P1 has generated two
new (private) choice points while P2 has failed in its alternative. Fig. 7(iii) shows
the resulting situation after another sharing between the two workers; incremental
copying has been applied, leading to the copy of only the two new choice points.

Incremental copying has been proved to have some drawbacks with respect to
management of combined and-parallelism and or-parallelism as well as management
of special types of variables (e.g., attributed variables). Recent schemes, such as
the COWL models (described in Sec. 6.3.5) overcome many of these problems.

This model is an evolution of the work on BC-machine by [Ali 1988]—a model
where different workers concurrently start the computation of the query and auto-
matically select different alternatives when choice points are created. The idea was
already present in the Kabu Wake model [Masuzawa et al. 1986]. In this method,
idle workers request work from busy ones, and work is transmitted by copying en-
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Fig. 7. Incremental Stack Copying

vironments between workers. The main difference w.r.t. the previously described
approach is that the source worker (i.e., the busy worker from where work is taken)
is required to “temporarily” backtrack to the choice point to be split in order to
undo bindings before copying takes place.

Stack copying has found efficient implementation in a variety of systems, such as
MUSE [Ali and Karlsson 1990b] (discussed in more detail in Sec. 3.5.2), ECLiPSe
[Wallace et al. 1997], and YAP [Rocha et al. 1999]. Stack copying has also been
adopted in a number of distributed memory implementations of Prolog, such as
OPERA [Briat et al. 1992] and PALS [Villaverde et al. 2000].

3.2.2.2 Stack Splitting. In the stack-copying technique, each choice point has
to be “shared”—i.e., transferred to a common shared area accessible by all the
workers—to make sure that the selection of its untried alternatives by various con-
current workers is serialized, so that no two workers can pick the same alternative.
The shared choice point is locked while the alternative is selected to achieve this ef-
fect. As discussed in [Gupta and Pontelli 1999c] this method allows the use of very
efficient scheduling mechanisms—such as the scheduling on bottom-most choice
point used by Aurora and MUSE—but may cause excessive lock contention, or ex-
cessive network traffic if realized on a distributed memory system. However, there
are other simple ways of ensuring that no alternative is simultaneously selected by
multiple workers: the untried alternatives of a choice point can be split between
the two copies of the choice point stack. This operation is called Choice Point
Stack-Splitting, or simply Stack-splitting. This will ensure that no two workers pick
the same alternative.

Different schemes for splitting the set of alternatives between the two (or more)
choice points can be envisioned—e.g., each choice point receives half of the alter-
natives, or the partitioning can be guided by additional information regarding the
unexplored computation, such as granularity and likelihood of failure. In addition,
the need for a shared frame, as a critical section to protect the alternatives from
multiple executions, has disappeared, as each stack copy has a choice point, though
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their contents differ in terms of which unexplored alternatives they contain. All
the choice points can be evenly split in this way during the copying operation. The
choice point stack-splitting operation is illustrated in Fig. 8.

The major advantage of stack-splitting is that scheduling on bottom-most can
still be used without incurring huge communication overheads. Essentially, after
splitting the different or-parallel threads become fairly independent of each other,
and hence communication is minimized during execution. This makes the stack-
splitting technique highly suitable for distributed memory machines. The possibil-
ity of parameterizing the splitting of the alternatives based on additional semantic
information (granularity, non-failure, user annotations) can further reduce the like-
lihood of additional communications due to scheduling.

In [Gupta and Pontelli 1999c] results have been reported indicating that for
various benchmarks, stack splitting obtains better speedups than MUSE on shared
memory architectures—thanks to a better locality of computation and reduced
interaction between workers. Preliminary work on implementing stack-splitting on
distributed memory machine has also provided positive results in terms of speedups
and efficiency [Villaverde et al. 2000].

3.2.2.3 Recomputation-based Models. In the stack-copying schemes, idle work-
ers acquire work by copying the data structures associated to a given segment of
computation, in order to recreate the state of the computation from where the new
alternative will start. An alternative approach is to have idle workers recreate such
data-structures by repeating the computation from the root of the or-tree all the
way to the choice point from where an alternative will be taken. Thus, the content
of the stacks of the abstract machine is reconstructed, rather than copied. This
approach is at the base of the Delphi system [Clocksin and Alshawi 1988] and of
the Randomized Parallel Backtracking method [Janakiram et al. 1988].

These recomputation-based methods have the clear advantage of reducing the
interactions between workers during the sharing operations. In Delphi, the exchange
of work between workers boils down to the transfer of an oracle from the busy
worker to the idle one. An oracle contains identifiers which describe the path in
the or-tree that the worker needs to follow to reach the unexplored alternative. A
centralized controller is in charge of allocating oracles to idle agents. The method
has attracted considerable attention, but has provided relatively modest parallel
performances on arbitrary Prolog programs. Variations of this method have been
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effectively used to parallelize specialized types of logic programming computations
(e.g., in the parallelization of Stable Logic Programming computations [Pontelli
and El-Kathib 2001]). The recomputation method has also found applications in
the parallelization of Constraint Logic Programming [Mudambi and Schimpf 1994].

3.3 Support for Full Prolog in Or-Parallelism

Most of the or-parallel models described above consider only pure logic programs
(pure Prolog) for parallel execution. However, to make logic programming practical
many extra-logical, meta-logical, and input/output predicates have been incorpo-
rated in Prolog. Some researchers have taken the view that an or-parallel logic pro-
gramming system should transparently execute Prolog programs in parallel [Lusk
et al. 1990; Hausman et al. 1988].10 That is, the same effect should be seen by a
user during parallel execution of a Prolog program, as far as input/output etc. are
concerned (including printing of the final solutions), as in its sequential execution
with Prolog computation and selection rules. Such a system is said to support
(observable) sequential Prolog semantics. The advantage of such an approach is
that existing Prolog programs can be taken and executed in parallel without any
modifications. Two prominent or-parallel systems that have been built, namely
MUSE and Aurora, do support sequential Prolog semantics by executing an extra-
logical predicates only when the branch containing it becomes the leftmost in the
search tree. Different techniques have been proposed to detect when a branch of
the or-parallel tree becomes the leftmost active branch in the tree [Ali and Karlsson
1990a; Kalé et al. 1988; Sindaha 1993]. Arguably, the techniques used in Aurora
have been the most well researched and successful [Hausman et al. 1988; Hausman
1989]. In this approach, the system maintains for each node n in the search tree a
pointer to one of its ancestor nodes m, called the sub-root node, which represents
the highest ancestor (i.e., closer to the root) such that n lies in the leftmost branch
of the tree rooted at m. If m is equal to the root of the tree, then the node n is
leftmost branch of the search tree.

In addition to this, various or-parallel Prolog systems (e.g., Aurora and MUSE)
provide variants of the different order-sensitive predicates which can be executed
without requiring any form of synchronization—these are typically called cavalier
predicates. The use of cavalier extra-logical predicates leads to an operational
behavior different from that of Prolog—e.g., a cavalier write operation is going to
be executed immediately irrespectively of the execution of the other extra-logical
predicates in the search tree.

An issue that arises in the presence of pruning operators such as cuts and commits
during or-parallel execution is that of speculative work [Hausman 1989; 1990; Ali
and Karlsson 1992b; Beaumont and Warren 1993; Sindaha 1992]. Consider the
following program:
p(X, Y) :- q(X), !, r(Y).

p(X, Y) :- g(X), h(Y).

...

and the goal:

10This view has also been taken in and-parallel systems, as we will see later [Muthukumar and

Hermenegildo 1989; DeGroot 1987b; Chang and Chiang 1989].
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?- p(A, B).

Executing both branches in parallel, corresponding to the two clauses that match
this goal, may result in unnecessary work, because sequential Prolog semantics
entail that if q(X) succeeds then the second clause for p shall never be tried. Thus,
in or-parallel execution, execution of the second clause is speculative, in the sense
that its usefulness depends on the success/failure outcome of goal q.

It is a good idea for a scheduler designed for an or-parallel system that supports
sequential Prolog semantics to take speculative work into account. Essentially, such
a scheduler should bias all the workers to pick work that is within the scope of a cut
from branches to the left in the corresponding subtree rather than from branches
to the right [Ali and Karlsson 1992b; Beaumont 1991; Beaumont and Warren 1993;
Sindaha 1992].

A detailed survey on scheduling and handling of speculative work for or-parallelism
is beyond the scope of this paper, and can be found in [Ciepielewski 1992]. One
must note that the efficiency and the design of the scheduler has the biggest bearing
on the overall efficiency of an or-parallel system (or any parallel system for that
matter). We describe two such systems in Sec. 3.5, where a significant amount of
effort has been invested in designing and fine-tuning the or-parallel system and its
schedulers.

3.4 Problem Abstraction and Complexity

3.4.1 Abstraction of the Problems. In this section we provide a brief overview
of the theoretical abstraction of the problems arising in or-parallel execution of
Prolog programs. Complete details regarding this study can be found elsewhere
[Ranjan et al. 1999]. Execution of a program can be abstracted as building a
(rooted, labeled) tree. For the sake of simplicity, we will assume that the trees
are binary; this assumption does not lead to any loss of generality because, for
a given program, the number of branches at any given node is bounded by some
constant. The process of building the tree can be abstracted through the following
three operations:

(1) create tree(γ) which creates a tree containing only the root, with label γ;

(2) expand(u, γ1, γ2) which, given one leaf u and two labels γ1 and γ2, creates two
new nodes (one for each label) and adds them as children of u (γ1 as left child
and γ2 as right child);

(3) remove(u) which, given a leaf u of the tree, removes it from the tree.

These three operations are assumed to be the only ones available to modify the
“physical structure” of this abstract tree.

The abstraction of an or-parallel execution should account for the various issues
present in or-parallelism—e.g., management of variables and of their bindings, cre-
ation of tasks etc. Variables that arise during execution, whose multiple bindings
have to be correctly maintained, can be modeled as attributes of the nodes in the
tree. Γ denotes a set of M variables. If the computation tree has size N , then it is
possible to assume M = O(N). At each node u, three operations are possible:

• assign a variable X to a node u.
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• dereference a variable X at node u—that is, identify the ancestor v of u (if any)
which has been assigned X.

• alias two variables X1 and X2 at node u; this means that for every node v

ancestor of u, every reference to X1 in v will produce the same result as X2

and vice versa.

The previous abstraction assumed the presence of one variable binding per node.
This restriction can be made without loss of generality—it is always possible to
assume that the number of bindings in the node is bound by a program depen-
dent constant. The problem of supporting these dynamic tree operations has been
referred to as the OP problem [Ranjan et al. 1999].

3.4.2 Complexity on Pointer Machines. In this section we summarize the com-
plexity results that have been developed for the abstraction of or-parallelism de-
scribed in the previous section. The complexity of the problem has been studied
on pointer machines [Ben-Amram 1995]. A pointer machine is a formal model for
describing algorithms, which relies on an elementary machine whose memory is
composed only by records connected via pointers. The interesting aspect of this
model is that it allows a more refined characterization of complexity than the more
traditional RAM model.

Lower Bound for OP: As mentioned earlier, the only previous work that deals
with the complexity of the mechanisms for or-parallelism is [Gupta 1994; Gupta
and Jayaraman 1993a]. This previous work provides an informal argument to show
that a generic OP problem with N variables and M operations has a lower bound
which is strictly worse than Ω(N + M). Intuitively, this means that no matter
how good an implementation model for or-parallelism is, it will incur some costs
during the execution which are dependent on the size of the computation (e.g., the
number of choice points created). This intuitive result has been formally proved to
hold in [Ranjan et al. 1999], showing that on pointer machines, the worst case time
complexity of OP is Ω(lg N) per operation even without aliasing.

The basic idea of the proof is that since there is no direct addressing in the
pointer machines starting from a particular node only a “small” number of nodes
can be accessed in a small number of steps. Thus, if we need to relate variables
and choice points in a very large tree, we need to incur a cost which is dependent
on the size of the tree. Thus, at least one of the operations involved in the OP
problem will take in the worst case an amount of time which is at least as large as
lg N (where N is the number of choice points in the computation tree).

It is also interesting to point out that the result does not depend on the presence
of the alias operation; this means that the presence of aliasing between unbound
conditional variables during an or-parallel execution does not create any serious
concern (note that this is not the case for other forms of parallelism, where aliasing
is a major source of complexity).

The result essentially states that, no matter how smart the implementation
scheme selected is, there will be cases which will lead to a non-constant time cost.
This proof confirms the result conjectured in [Gupta and Jayaraman 1993a]. This
non-constant time nature is also evident in all the implementation schemes pre-
sented in the literature—e.g., the creation of the shared frames and the copying of
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Table I. Worst Case Complexity of Some Or-parallel Schemes (K operations)

Method Complexity

Known Upper Bound Õ(K × N
1

3 )

Stack Copying [Ali and Karlsson 1990a] Õ(K × N)

Directory Tree Method [Ciepielewski and Haridi 1983] Õ(K × N lg N)

Binding Arrays [Lusk et al. 1990] Õ(K × N)

Environment Closing [Conery 1987a] Õ(K × N)

the choice points in MUSE [Ali and Karlsson 1990b], the installation of the bind-
ings in Aurora [Lusk et al. 1990], the management of time-stamps in various other
models [Gupta 1994].

Upper Bound for OP: The relevant research on complexity of the OP problem
has been limited to showing that a constant time cost per operation cannot be
achieved in any implementation scheme. Limited effort has been placed to supply a
tight upper bound to this problem. Most of the implementation schemes proposed in
the literature can be shown to have a worst case complexity of O(N) per operation.
Currently, the best result achieved is that the OP problem with no aliasing can be
solved on a pointer machine with a single operation worst case time complexity of
O( 3

√
N(lg N)k) for a small k.

The lower bound produced, O(lg N) per operation, is a confirmation and refine-
ment of the results proposed by [Gupta and Jayaraman 1993a], and a further proof
that an ideal or-parallel system (where all the basic operations are realized with
constant-time overhead) cannot be realized. The upper bound, Õ( 3

√
N),11 even

if far from the lower bound, is of great importance, as it indicates that (at least
theoretically) there are implementation schemes which have a worst case time com-
plexity better than that of the existing models. Table I compares the worst case
time complexity of performing a sequence of K operations, on an N node tree, for
some of the most well known schemes for or-parallelism [Gupta 1994]. The proof
of the upper bound result indeed provides one of such models—although it is still
an open issue whether the theoretical superiority of such model can be translated
into a practical implementation scheme.

3.5 Experimental Systems

In this section we illustrate in more detail two of the most efficient or-parallel
systems implemented.

3.5.1 The Aurora Or-parallel Prolog System. Aurora is a prototype or-parallel
implementation of the full Prolog language developed for UMA (Uniform Mem-
ory Access) shared-memory multiprocessors such as the Sequent Symmetry and

11The notation Õ(
3
√

N) indicates that the complexity is within lgk
N from

3
√

N , for some small

value of k.
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subsequently ported [Mudambi 1991] to NUMA (Non-Uniform Memory Access) ar-
chitectures such as the BBN TC-2000 (a scalable architecture with Motorola 88000
processors12). Let us remind that UMA architectures are characterized by the
fact that each processor in the system guarantees the same average access time to
any memory location, while NUMA architectures (e.g., clusters of shared memory
machines) may lead to different access time depending on the memory location
considered.

Aurora was developed as part of an informal research collaboration known as the
“Gigalips Project” with research groups at Argonne National Laboratory, the Uni-
versity of Bristol (initially at the University of Manchester), the Swedish Institute
of Computer Science, and IQSOFT SZKI Intelligent Software Co. Ltd., Budapest
as the main implementors.

Aurora is based on the SRI model, as originally described in [Warren 1987c] and
refined in [Lusk et al. 1990]. The SRI-model employs binding arrays for representing
multiple environments. In the SRI model, a group of processing agents called
workers cooperate to explore a Prolog search tree, starting at the root (the topmost
point). A worker has two conceptual components: an engine, which is responsible
for the actual execution of the Prolog code, and a scheduler, which provides the
engine component with work. These components are in fact independent of each
other, and a clean interface between them has been designed [Szeredi et al. 1991;
Carlsson 1990] allowing different schedulers and engines to be plugged in. To date,
Aurora has been run with five different schedulers, and the same interface has been
used to connect one of the schedulers with the Andorra-I engine [Santos Costa et al.
1991a] to support both and- and or-parallelism. The Aurora engine and compiler
[Carlsson 1990] were constructed by adapting SICStus Prolog 0.6 [Carlsson et al.
1995]. Garbage collection for Aurora has been investigated by [Weemeeuw and
Demoen 1990].

In the SRI model, the search tree, defined implicitly by the program, is explicitly
represented by a cactus stack generalizing the stacks of sequential Prolog execu-
tion. Workers that have gone down the same branch share the data on that branch.
Bindings of shared variables must of course be kept private, and are recorded in the
worker’s private binding array. The basic Prolog operations of binding, unbinding,
and dereferencing are performed with an overhead of about 25% relative to sequen-
tial execution (and remain fast, constant-time operations). However, during task
switching the worker has to update its binding array by deinstalling bindings as it
moves up the tree and installing bindings as it moves down another branch. This
overhead incurred, called migration cost (or task-switching cost), is proportional
to the number of bindings that are deinstalled and installed. Aurora divides the
or-parallel search tree into a public region and a private region. The public region
consists of those nodes from which other workers can pick up untried alternatives.
The private region consists of nodes private to a worker that cannot be accessed by
other workers. Execution within the private region is exactly like sequential Prolog
execution. Nodes are transferred from the private region of a worker P to the public
region by the scheduler, which does so when another idle worker Q requests work

12Although the porting did not involve modifications of the system structure to take full advantage

of the architecture’s structure.
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from worker P .
One of the principal goals of Aurora has been the support of the full Prolog lan-

guage. Preserving the semantics of built-in predicates with side effects is achieved
by synchronization: whenever a non-leftmost branch of execution reaches an order-
sensitive predicate, the given branch is suspended until it becomes leftmost [Haus-
man 1990]. This technique ensures that the order-sensitive predicates are executed
in the same left-to-right order as in a sequential implementation, thus preserving
compatibility with these implementations.

It is often the case that this strict form of synchronization is unnecessary, and
slows down parallel execution. Aurora therefore provides non-synchronized variants
for most order-sensitive predicates which come in two flavors: the asynchronous
form respecting the cut pruning operator, and the completely relaxed cavalier form.
Notably, non-synchronized variants are available for the dynamic database update
predicates (assert, retract etc.) [Szeredi 1991].

A systematic treatment of pruning operators (cut and commit) and of speculative
work has proved to be of tremendous importance in or-parallel implementations.
Algorithms for these aspects have been investigated by Hausman [1989; 1990] and
incorporated into the interface and schedulers.

Graphical tracing packages have turned out to be essential for understanding the
behavior of schedulers and parallel programs and finding performance bugs in them
[Disz and Lusk 1987; Herrarte and Lusk 1991].

Several or-parallel applications for Aurora were studied in [Kluźniak 1990] and
[Lusk et al. 1993]. The non-synchronized dynamic database features have been
exploited in the implementation of a general algorithm for solving optimization
problems [Szeredi 1991; 1992].

Three schedulers are currently operational. Two older schedulers were written
[Butler et al. 1988; Brand 1988], but have not been updated to comply with the
scheduler-engine interface:

(1) The Manchester Scheduler. The Manchester scheduler [Calderwood and Sz-
eredi 1989] tries to match workers to available work as well as possible. The match-
ing algorithm relies on global arrays, indexed by worker number. One array indi-
cates the work each worker has available for sharing and its migration cost, and the
other indicates the status of each worker and its migration cost if it is idle. The
Manchester scheduler was not designed for handling speculative work properly. A
detailed performance analysis of the Manchester scheduler was done in [Szeredi
1989].

(2) The Bristol Scheduler. The Bristol scheduler tries to minimize scheduler
overhead by extending the public region eagerly: sequences of nodes are made
public instead of single nodes, and work is taken from the bottommost live node of
a branch. This idea was originally explored in the context of the MUSE system, and
successively integrated in a preliminary version of the Bristol Scheduler [Beaumont
et al. 1991]. The present version of the scheduler [Beaumont and Warren 1993]
addresses the problem of efficiently scheduling speculative work. It actively seeks
the least speculative, selecting a leftmost branch if the work is speculative and a
‘richest’ branch (i.e., branch with most work) if the work is non-speculative.

(3) The Dharma Scheduler. The Dharma scheduler [Sindaha 1993; 1992] is also

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD TBD.



36 · G. Gupta et al.

designed for efficiently scheduling speculative work. It addresses the problem of
quickly finding the leftmost, thus least speculative, available work, by directly link-
ing the tips of each branch.

The speed-ups obtained by all schedulers of Aurora for a diverse set of benchmark
programs have been very encouraging. Some of the benchmark programs contain
significant amount of speculative work, in which speed-ups are measured for finding
the first (leftmost) solution. The degree of speedup obtained for such benchmark
programs depends on where in the Prolog search tree the first solution is, and on the
frequency of workers moving from right to left towards less speculative work. There
are other benchmark programs that have little or no speculative work because they
produce all solutions. The degree of speedup for such benchmark programs depends
on the amount of parallelism present and on the granularity of parallelism.

More on the Aurora system, and a detailed discussion of its performance results,
can be found in [Calderwood and Szeredi 1989; Szeredi 1989; Beaumont et al. 1991;
Beaumont and Warren 1993; Sindaha 1992]. The Binding Array model has also
been adapted for distributed shared memory architectures and implemented in the
Dorpp system [Silva and Watson 2000].

3.5.2 The MUSE Or-parallel Prolog System. The MUSE or-parallel Prolog sys-
tem has been designed and implemented on a number of UMA and NUMA com-
puters (Sequent Symmetry, Sun Galaxy, BBN Butterfly II, etc.) [Ali and Karlsson
1990b; 1990a; 1992a; Ali et al. 1992; Ali and Karlsson 1992b; Karlsson 1992]. It
supports the full Prolog language and programs run on it with almost no user an-
notations. It is based on a simple extension of the state-of-the-art sequential Prolog
implementation (SICStus WAM [Carlsson et al. 1995]).

The MUSE model assumes a number of extended WAMs (called workers, as in
Aurora), each with its own local address space, and some global space shared by
all workers. The model requires copying parts of the WAM stacks when a worker
runs out of work or suspends its current branch. The copying operation is made
efficient by utilizing the stack organization of the WAM. To allow copying of memory
between workers without the need of any pointer relocation operation, MUSE makes
use of a sophisticated memory mapping scheme. The memory is partitioned between
the different workers; each worker is implemented as a separate process, and each
process maps its own local partition to the same range of memory addresses—which
allows for copying without pointer relocations. The partitions belonging to other
processes are instead locally mapped to different address ranges. This is illustrated
in Fig. 9. The partition of worker 1 is mapped at different address ranges in different
workers; the local partition reside at the same address range in each worker.

Workers make a number of choice points sharable, and they get work from those
shared choice points (nodes) by the normal backtracking of Prolog. Like Aurora,
the Muse system has two components: the engine and the scheduler. The engine
performs the actual Prolog work, while the schedulers working together, schedule
the work between engines and support the sequential semantics of Prolog.

The first MUSE engine has been produced by extending the SICStus Prolog
version 0.6 [Carlsson et al. 1995]. Extensions are carefully added to preserve the
high efficiency of SICStus leading to a negligible overhead which is significantly
lower than in other or-parallel models.
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Fig. 9. Memory Organization in MUSE

The MUSE scheduler supports efficient scheduling of speculative work and non-
speculative work [Ali and Karlsson 1992b]. For purposes of scheduling, the Prolog
tree is divided into two sections: the right section contains voluntarily suspended
work and the left section contains active work. Voluntarily suspended work refers
to the work that was suspended because the worker doing it found other work to the
left of the current branch that is less speculative. Active work is work that is non-
speculative and is actively pursued by workers. The available workers concentrate
on the available non-speculative work in the left section. When the amount of work
in the left section is not enough for the workers, some of the leftmost part of the
voluntarily suspended section (i.e., speculative work) will be resumed. A worker
doing speculative work will always suspend its current work and migrate to another
node to its left if that node has less speculative work.

The scheduling strategy for non-speculative work, in general, is based on the
principle that when a worker is idle, its next piece of work will be taken from the
bottommost (i.e., youngest) node in the richest branch (i.e., the branch with maxi-
mum or-parallel work) of a set of active non-speculative branches. When the work
at the youngest node is exhausted, that worker will find more work by backtracking
to the next youngest node. If the idle worker cannot find non-speculative work in
the system, it will resume the leftmost part of the voluntarily suspended section of
the tree.

The MUSE system controls the granularity of jobs at run-time by avoiding sharing
very small tasks. The idea is that when a busy worker reaches a situation at which
it has only one private parallel node, it will make its private load visible to the
other workers only when that node is still alive after a certain number of Prolog
procedure calls. Without such a mechanism the gains due to parallel execution can
be lost as the number of workers is increased.

A clean interface between the MUSE engine and the MUSE scheduler has been
designed and implemented. It has improved the modularity of the system and
preserved its high efficiency.
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Tools for debugging and evaluating the MUSE system have been developed. The
evaluation of the system on Sequent Symmetry and on BBN Butterfly machines
I and II shows very promising results in absolute speed and also in comparison
with results of the other similar systems. The speed-ups obtained are near linear
for programs with large amounts of or-parallelism. For programs that do not have
enough or-parallelism to keep all available workers busy the speed-ups are (near)
linear up to the point where all parallelism is exploited. The speed-up does not
increase or decrease thereafter with increase in number of workers. For programs
with no or very low or-parallelism, the speed-ups obtained are close to 1 due to
very low parallel overheads. More details of the MUSE system and a discussion of
its performance results can be found in references cited earlier [Ali and Karlsson
1992a; Ali et al. 1992; Ali and Karlsson 1992b; Karlsson 1992].

MUSE can be considered one of the first commercial parallel logic programming
systems to ever be developed—MUSE was included for a number of years as part
of the standard distribution of SICStus Prolog [Carlsson et al. 1995].13

4. INDEPENDENT AND-PARALLELISM

Independent and-parallelism refers to the parallel execution of goals which have no
“data dependencies” and thus do not affect each other. To take a simple example,
consider the näıve fibonacci program shown below:

fib(0, 1).

fib(1, 1).

fib(M, N) :- [ M1 is M - 1, fib(M1, N1) ],

[ M2 is M - 2, fib(M2, N2) ],

N is N1 + N2.

Assuming the execution of this program by supplying the first argument as input,
the two lists of goals, each enclosed within square brackets above, have no data de-
pendencies among themselves and hence can be executed independently in parallel
with each other. But the last subgoal N is N1 + N2 depends on the outcomes of
the two and-parallel subgoals, and should start execution only after N1 and N2 get
bound.

Similarly to the case of or-parallelism, development of an and-parallel computa-
tion can be depicted using a tree structure (and-tree). In this case, each node in
the tree is labeled by a conjunction of subgoals and it contains as many children as
subgoals in the conjunction. Fig. 10 illustrates a simple and-tree for the execution
of fib(2,X) w.r.t. the above program. The dashed line in Fig. 10 is used to denote
the fact that it is irrelevant whether the subgoal X is N1+N2 is a child of either of
the two nodes above.

Independent and-parallelism manifests itself in a number of applications—those
in which a given problem can be divided into a number of independent sub-problems.
For example, it appears in divide and conquer algorithms, where the independent
recursive calls can be executed in parallel (e.g., matrix multiplication, quicksort).

13However, MUSE is not supported anymore by SICS.
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fib(2,X)

[M1 is 2-1, fib(M1,N1)]  ,  [M2 is 2-2, fib(M2,N2]

fib(1,N1) fib(0,N2)

X is N1+N2

Fig. 10. An And-tree for And-parallelism

4.1 Problems in Implementing Independent And-parallelism

In this section we examine the problems associated with implementing independent
and-parallelism. We discuss the various phases of an independent and-parallel sys-
tem and examine the problems encountered in each. An independent and-parallel
execution can be divided into three phases [Conery and Kibler 1983]:

(1) Ordering Phase: deals with detection of dependencies among goals.

(2) Forward Execution Phase: deals with the steps needed to select the next subgoal
for execution and initiate its execution.

(3) Backward Execution Phase: deals with steps to be taken when a goal fails, i.e.,
the operation of backtracking.

4.1.1 Ordering Phase: Notions of Independence. The ordering phase in an inde-
pendent and-parallel system is concerned with detecting data dependencies between
subgoals. Once it is determined that two (or more) subgoals do not have any data
dependencies they can be executed in parallel. An interesting issue which has
received much attention in the literature is determining precisely when a data de-
pendency exists. The issues involved in answering this question are, as we shall see,
rather interesting and unique in the case of logic programming. We follow here the
somewhat non-traditional presentation of [Hermenegildo 2000].

The objective of the process is to uncover as much as possible of the available
parallelism, while guaranteeing that the correct results are computed (correctness)
and that other observable characteristics of the program, such as execution time,
are improved (speedup) or, at the minimum, preserved (no-slowdown)—efficiency.
A central issue is, then, under which conditions two goals (“statements”) in a logic
program can be correctly and efficiently parallelized.

For comparison, consider the following segments of programs in (a) a traditional
imperative language, (b) a (strict) functional language, and (d) a logic language (we
will consider case (c) later). We assume that the values of W and Z are initialized
to some value before execution of these statements:
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s1 Y := W+2; (+ (+ W 2) Y = W+2,

s2 X := Y+Z; Z) X = Y+Z,

(a) (b) (c)

(d) main:-

s1 p(X),

s2 q(X),

...

p(X) :- X=a.

q(X) :- X=b, large computation.

q(X) :- X=a.

For simplicity, we will reason about the correctness and efficiency of parallelism
using the instrumental technique of considering reorderings (interleavings). State-
ments s1 and s2 in (a) are generally considered to be dependent because reversing
their order would yield an incorrect result, i.e., it violates the correctness condition
above (this is an example of a flow-dependency).14 A slightly different, but closely
related situation occurs in (b): reversing the order of function application would
result in a run-time error (one of the arguments to a function would be missing).

Interestingly, reversing the order of statements s1 and s2 in (d) does yield the cor-
rect result (X=a). In fact, this is an instance of a more general rule: if no side effects
are involved, reordering statements does not affect correctness in a logic program.
The fact that (at least in pure segments of programs) the order of statements in
logic programming does not affect the result15 led in early models to the proposal
of execution strategies where parallelism was exploited “fully” (i.e., all statements
were eligible for parallelization). However, the problem is that such parallelization
often violates the principle of efficiency: for a finite number of processors, the par-
allelized program can be arbitrarily slower than the sequential program, even under
ideal assumptions regarding run-time overheads. For instance, in the last example,
reversing the order of the calls to p and q in the body of main implies that the
call q(X) (X at this point is free, i.e., a pointer to an empty cell) will first enter
its first alternative, performing the large computation. Upon return of q (with X

pointing to the constant b) the call to p will fail and the system will backtrack to
the second alternative of q, after which p will succeed with X=a. On the other hand
the sequential execution would terminate in two or three steps, without perform-
ing the large computation. The fundamental observation is that, in the sequential
execution, p affects q, in the sense that it prunes (limits) its choices. Executing
q before executing p results in performing speculative choices with respect to the
sequential execution. Note that this is in fact very related to executing condition-
als in parallel (or ahead of time) in traditional languages (note that q above could
also be (loosely) written as “q(X) :- if X=b then large computation else if

X=a then true else fail.”).
Something very similar occurs in case (c) above, which corresponds to a con-

straint logic program: while execution of the two constraints in the original order

14To complete the discussion above, note that output-dependencies do not appear in functional or
logic and constraint programs because single assignment is generally used—we consider this a mi-

nor point of difference since one of the standard techniques for parallelizing imperative programs is
to perform a transformation to a single assignment program before performing the parallelization.
15Note that in practical languages, however, termination characteristics may change, but ter-
mination can actually also be seen as an extreme effect of the other problem to be discussed:

efficiency.
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involves two additions and two assignments (the same set of operations as those of
the imperative or functional programs), executing them in reversed order involves
first adding an equation to the system, corresponding to statement s2, and then
solving it against s1, which is more expensive. The obvious conclusion is that, in
general, even for pure programs, arbitrary parallelization does not guarantee that
the two conditions (correctness and efficiency) are met.16 We will return to the
very interesting issue of what notions of parallelism are appropriate for constraint
logic programming in Sec. 8.

Contrary to early beliefs held in the field, most work in the last decade has con-
sidered that violating the efficiency condition is as much a “sign of dependence”
among goals as violating the correctness condition. As a result, interesting notions
of independence have been developed which capture these two issues of correctness
and efficiency at the same time: independent goals as those whose run-time behav-
ior, if parallelized, produces the same results as their sequential execution and an
increase (or, at least, no decrease) in performance. To separate issues better, we
will discuss the issue under the assumption of ideal run-time conditions, i.e., no task
creation and scheduling overheads (we will deal with overheads later). Note that,
even under these ideal conditions, the goals in (c) and (d) are clearly dependent
using the definition.

A fundamental question then is how to guarantee independence (without having
to actually run the goals, as suggested by the definition given above). A fundamen-
tal result in this context is the fact that, if only the Herbrand constraint system
is used (as in the Prolog language), a goal or procedure call, q, cannot be affected
by another, p, if it does not share logical variables with it at the point in time
just before execution (i.e., in the substitution represented by s1). I.e., in those
cases correctness and efficiency hold and no-slowdown is guaranteed. In practice,
the condition implies that there are no shared free variables (pointers to empty
structure fields) between the run-time data structures passed to q and the data
structures passed to p. This condition is called strict independence [DeGroot 1984;
Hermenegildo and Rossi 1995].17 For example, in the following program:

main :- X=f(K,g(K)),

Y=a,

Z=g(L),

W=h(b,L),

p(X,Y),

q(Y,Z),

r(W).

aY

gZ L

g

W h b

X f K

16In fact, this is similar to the phenomenon which occurs in or-parallelism where arbitrarily
parallelizing branches of the search does not produce incorrect results, but, if looking for only

one solution to a problem (or, more generally, in the presence of pruning operators) results in
speculative computations which can have a negative effect of efficiency.
17To be completely precise, in order to avoid creating speculative parallelism, some non-failure
conditions are also required of the goals executed in parallel, but we knowingly overlook this issue

at this point to simplify the discussion.
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p and q are strictly independent, because, at the point in execution just before
calling p (the situation depicted in the right part of the figure), X and Z point to
data structures which do not point to each other, and, even though Y is a pointer
which is shared between p and q, Y points to a fixed value, which p cannot change
(note again that we are dealing with single assignment languages). As a result, the
execution of p cannot affect q in any way and q can be safely run ahead of time
in parallel with p (and, again assuming no run-time overheads, no-slowdown is
guaranteed). Furthermore, no locking or copying of the intervening data structures
is required (which helps bring the implementation closer to the ideal situation).
Similarly, q and r are not strictly independent, because there is a pointer in common
(L) among the data structures they have access to and thus the execution of q could
affect that of r.

Unfortunately, it is not always easy to determine independence by simply looking
at one procedure, as above. For example, in the program below:

main :- t(X,Y),

p(X),

q(Y).

it is possible to determine that p and q are not (strictly) independent of t, since,
upon entering the body of the procedure, X and Y are free variables which are
shared with t. On the other hand, after execution of t the situation is unknown
since perhaps the structures created by t (and pointed to by X and Y) do not
share variables. Unfortunately, in order to determine this for sure a global (inter-
procedural) analysis of the program (in this case, to determine the behavior of t)
must be performed. Alternatively, a run-time test can be performed just after the
execution of t to detect independence of p and q. This has the undesirable side-
effect that then the no-slowdown property does not automatically hold, because of
the overhead involved in the test, but it is still potentially useful.

A number of approaches have been proposed for addressing the data depen-
dency detection issues discussed above. They range from purely compile-time tech-
niques to purely runtime ones. There is obviously a trade-off between the amount
of and-parallelism exploited and data dependency analysis overhead incurred at
runtime—purely compile time techniques may miss many instances of independent
and-parallelism but incur very little run-time overhead, while purely run time tech-
niques may capture maximal independent and-parallelism at the expense of costly
overhead which prevents the system from achieving the theoretical efficiency re-
sults. However, data dependencies cannot always be detected entirely at compile
time, although compile-time analysis tools can uncover a significant portion of such
dependencies. The various approaches are briefly described below:

i. Input/Output Modes: One way to overcome the data dependency problem is to
require the user to specify the ‘mode’ of the variables, i.e., whether an argument of
a predicate is an input variable or an output variable. Input variables of a subgoal
are known to become bound before the subgoal starts and output variables are
variables that will be bound by the subgoal during its execution.

Modes have also been introduced in the committed choice languages [Tick 1995;
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Shapiro 1987] to actually control the and-parallel execution (but leading to an
operational semantics different from Prolog’s one).

ii. Static Data Dependency Analysis: In this technique the goal and the program
clauses are globally analyzed at compile time, assuming a worst case for subgoal
dependencies. No checks are done at runtime. This approach was first attempted
in [Chang et al. 1985]. However, the relatively simple compile-time analysis
techniques used, combined with combined with no run-time checking means that
a lot of parallelism may be lost. The advantage is, of course, that no overhead is
incurred at run-time.

iii. Run-time Dependency Graphs: Another approach is to generate the dependency
graph at runtime. This involves examining bindings of relevant variables every
time a subgoal finishes executing. This approach has been adopted, e.g., by
Conery in his AND/OR model [Conery and Kibler 1981; 1983; Conery 1987b].
This approach has prohibitive runtime cost, since variables may be bound to
large structures with embedded variables. The advantage of this scheme is that
maximal independent and-parallelism could be potentially exploited (but after
paying a significant cost at runtime). A simplified version of this idea has also
been used in the APEX system [Lin and Kumar 1988]. In this model a token-
passing scheme is adopted: a token exists for each variable and is made available
to the leftmost subgoal accessing the variable. A subgoal is executable as soon
as it owns the tokens for each variable in its binding environment.

iv. A fourth approach, which is midway between (ii) and (iii), encapsulates the
dependency information in the code generated by the compiler along with the
addition of some extra conditions (tests) on the variables. In this way simple
runtime checks can be done to check for dependency. This technique, called Re-
stricted (or Fork/Join) And-Parallelism (RAP), was first proposed by DeGroot
[1984]. Hermenegildo [1986a] defined a source-level language (Conditional Graph
Expressions—CGEs) in which the conditions and parallel expressions can be ex-
pressed either by the user or by the compiler. The advantage of this approach
is that it makes it possible for the compiler to express the parallelization process
in a user-readable form and for the user to participate in the process. This effec-
tively eliminates the dichotomy between manual and automatic parallelization.
Hermenegildo, Nasr, Rossi, and Garćıa de la Banda formalized and enhanced the
Restricted And-Parallelism model further by providing backtracking semantics, a
formal model, and correctness and efficiency results, showing the conditions un-
der which the “no-slowdown” property (i.e., that parallel execution is no slower
than sequential execution) holds [Hermenegildo 1986a; Hermenegildo and Nasr
1986; Hermenegildo and Rossi 1995; Garćıa de la Banda et al. 2000]. A typical
CGE has the form:

( conditions => goal1 & . . . & goaln )

equivalent to (using Prolog’s if-then-else):
( conditions -> goal1 & . . . & goaln ; goal1, . . ., goaln )

where ‘&’ indicates a parallel conjunction—i.e., subgoals that can be solved con-
currently (while “,” is maintained to represent sequential conjunction, i.e., to
indicate that the subgoals should be solved sequentially). The Restricted And-
Parallelism model is discussed in more detail in Sec. 4.3. Although Restricted
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And-Parallelism may not capture all the instances of independent and-parallelism
present in the program, in practice it can exploit a substantial part of it.

Approach (i) differs from the rest in that the programmer has to explicitly specify
the dependencies, using annotations. Approach (iv) is a nice compromise between
(ii), where extensive compile time analysis is done to get sub-optimal parallelism,
and (iii), where a costly runtime analysis is needed to get maximal parallelism.
The annotations of (iv) can be generated by the compiler [DeGroot 1987a] and the
technique has been shown to be successful when powerful global analysis (generally
based on the technique of abstract interpretation [Cousot and Cousot 1977; 1992]) is
used [Hermenegildo and Warren 1987; Winsborough and Waern 1988; Muthukumar
and Hermenegildo 1990; Giannotti and Hermenegildo 1991; Hermenegildo et al.
1992; Jacobs and Langen 1992; Muthukumar and Hermenegildo 1992a; Bueno et al.
1994; Muthukumar et al. 1999; Bueno et al. 1999; Puebla and Hermenegildo 1999;
1996; Hermenegildo et al. 2000].

4.1.2 Forward Execution Phase. The forward execution phase follows the order-
ing phase. It selects independent goals that can be executed in independent and-
parallel, and initiates their execution. The execution continues like normal se-
quential Prolog execution until either failure occurs, in which case the backward
execution phase is entered, or a solution is found. It is also possible that the order-
ing phase might be entered again during forward execution; for example in the case
of Conery’s scheme when a non-ground term is generated. Implementation of the
forward execution phase is relatively straightforward; the only major problem is
the efficient determination of the goals that are ready for independent and-parallel
execution. Different models have adopted different approaches to tackle this issue,
and they are described in the successive subsections.

Various works have pointed out the importance of good scheduling strategies.
Hermenegildo [1986a] showed the relationship between scheduling and memory
management, and provided ideas on using more sophisticated scheduling techniques
for guaranteeing a better match between the logical organization of the computation
and its physical distribution on the stacks—with the aim of simplifying backtrack-
ing and memory performance. This issue has been studied further in [Shen and
Hermenegildo 1994; 1996a], where flexible related scheduling and memory man-
agement approaches are studied. Related research on scheduling for independent
and-parallel systems has also been proposed by Dutra [1994]. In [Pontelli and Gupta
1995b] a methodology is described which adapts scheduling mechanisms developed
for or-parallel systems to the case of independent and-parallel system. In the same
way in which an or-parallel system tries to schedule first work that is more likely to
succeed, and-parallel systems will gain from scheduling first work that is more likely
to fail. The advantage of doing this comes from the fact that most IAP systems
support intelligent forms of backtracking over and-parallel calls, which allow to
quickly propagate failure of a subgoal to the whole parallel call. Thus, if a parallel
call does not have solutions, the sooner we find a failing subgoal, the sooner back-
tracking can be started. Some experimental results have been provided in [Pontelli
and Gupta 1995b] to support this perspective. This notion is also close to the first-
fail principle widely used in constraint programming [Haralick and Elliot 1980].
The importance of determining goals which will not fail and/or are deterministic
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Fig. 11. Lack of Correspondence between Physical and Logical Computation

was studied also in [Hermenegildo 1986a; Pontelli et al. 1996; Hermenegildo and
Rossi 1995; Garćıa de la Banda et al. 2000], and techniques have been devised for
detecting deterministic and non-failing computations at comple-time [Debray and
Warren 1989; Debray et al. 1997].

4.1.3 Backward Execution Phase. The need for a backward execution phase
arises from the non-deterministic nature of logic programming—a program’s exe-
cution involves choosing at each resolution step one of multiple candidate clauses,
and this choice may potentially lead to distinct solutions. The backward execu-
tion phase ensues when failure occurs, or more solutions to the top-level query are
sought after one is reported. The subgoal to which execution should backtrack is
determined, the machine state is restored, and forward execution of the selected
subgoal is initiated.

As mentioned before, Hermenegildo [1986a] showed that, in presence of IAP,
backtracking becomes considerably more complex, especially if the system strives
to explore the search space in the same order as in a sequential Prolog execution.
In particular:

—IAP leads to the loss of correspondence between logical organization of the com-
putation and its physical layout; this means that logically contiguous subgoals
(i.e., subgoals which are one after the other in the resolvent) may be physically
located in non-contiguous parts of the stack, or in stacks of different workers.
In addition, the order of subgoals in the stacks may not correspond to their
backtracking order.
This is illustrated in the example in Fig. 11. Worker 1 starts with the first
parallel call, making b and c available for remote execution and locally starting
the execution of a. Worker 2 immediately starts and completes the execution
of b. In the meantime, Worker 1 opens a new parallel call, locally executing d

and making e available to other workers. At this point, Worker 2 may choose to
execute e, and then c. The final placement of subgoals in the stacks of the two
workers is illustrated on the right of Fig. 11. As we can see, the physical order
of the subgoals in the stack of Worker 2 does not match the logical order. This
will clearly create an hazard during backtracking, since Prolog semantics require
to explore first the alternatives of b before those of e, while the computation of
b is trapped on the stack below that of e.

—backtracking may need to continue to the (logically) preceding subgoal, which
may still be executing at the time backtracking takes place.
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Fig. 12. Solution Reuse

These problems are complicated by the fact that independent and-parallel sub-
goals may have nested independent and-parallel subgoals currently executing which
have to be terminated or backtracked over.

Considerably different approaches have been adopted in the literature to handle
the backward execution phase. The simplest approach, as adopted in models like
Epilog, ROPM, AO-WAM [Wise 1986; Ramkumar and Kalé 1989], is based on re-
moving the need for actual backtracking over and-parallel goals through the use of
parallelism and solutions reuse. E.g., as shown in Fig. 12, two threads of execution
are assigned to the distinct subgoals, and they will be used to generate (via local
standard backtracking) all solutions to a and b. The backward execution phase
is then replaced by a relatively simpler cross product operation. Although intu-
itively simple, this approach suffers from major drawbacks, including the extreme
complexity of recreating Prolog semantics—i.e., the correct order of execution of
order-sensitive predicates as well as the correct repetition of side-effect predicates
as imposed in the recomputation-oriented Prolog semantics. In this context, by
recomputation-oriented semantics we indicate the fact that a subgoal is completely
recomputed for each alternative of the subgoals on its left; e.g., in a goal such as
?- p,q, the goal q is completely recomputed for each solution of p.

In the context of independent and-parallel systems based on recomputation (such
as those proposed in [Hermenegildo 1986b; Lin and Kumar 1988; Pontelli et al.
1996]), a number of different backtracking algorithms have been proposed. In the
past, backtracking algorithms have been proposed which later turned out to be
incomplete [Woo and Choe 1986].

The earliest and most widely used correct backtracking algorithm for IAP has
been presented by [Hermenegildo and Nasr 1986] and efficiently developed in &-
Prolog [Hermenegildo and Greene 1991] and &ACE/ACE [Pontelli and Gupta 1998].
A relatively similar algorithm has also been used in APEX [Lin and Kumar 1988],
and the algorithm has been extended to handle dependent and-parallelism as well
[Shen 1992a]. Let us consider the following query:

?- b1, b2, (q1 & q2 & q3), a1, a2

and let us consider the possible cases that can arise whenever one of the subgoals
in the query fails.

(1) if either a2 or b2 fails, then standard backtracking is used and backtracking is
continued, respectively, in a1 or b1 (see Case 1 in Fig. 13);

(2) if a1 fails (outside backtracking) then backtracking should continue inside the
parallel call, in the subgoal q3 (see Case 2 in Fig. 13). The fact that a1 was exe-
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Fig. 13. Backtracking on And-parallel Calls

cuting implies that the whole parallel call (and in particular q3) was completed.
In this case the major concern is to identify the location of the computation
q3, which may lie in a different part of the stack (not necessarily immediately
below a1) or in the stack of a different worker. If q3 does not offer alternative
solutions, then, as in standard Prolog, backtracking should propagate to q2 and
eventually to q1. Each one of these subgoals may lie in a different part of the
stack or in the stack of a different worker. If none of the subgoals returns any
alternative solution, then ultimately backtracking should be continued in the
sequential part of the computation which precedes the parallel call (b2). If qi

succeeds and produces a new solution, then some parallelism can be recovered
by allowing parallel recomputation of the subgoals qj for j > i.

(3) if qi (i ∈ {1, 2, 3}) fails (inside backtracking) during its execution, then
(a) the subgoals qj (j > i) should be removed;
(b) as soon as the computation of qi−1 is completed, backtracking should move

to it and search for new alternatives.
This is illustrated in Case 3 of Fig. 13. In practice all these steps can be avoided
relying on the fact that the parallel subgoals are independent—thus failure of
one of the subgoals cannot be cured by backtracking on any of the other parallel
subgoals. Hermenegildo suggested a form of semi-intelligent backtracking, in
which the failure of either one of the qi causes the failure of the whole parallel
conjunction and backtracking to b2.

To see why independent and-parallel systems should support this form of semi-
intelligent backtracking consider the goal:

?- a, b, c, d.

Suppose b and c are independent subgoals and can be executed in independent
and-parallel. Suppose that both b and c are non-determinate and have a number
of solutions. Consider what happens if c fails. In normal sequential execution
we would backtrack to b and try another solution for it. However, since b and c

do not have any data dependencies, retrying b is not going to bind any variables
which would help c to succeed. So if c fails, we should backtrack and retry a.
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This kind of backtracking, based on the knowledge of data dependence, is called
intelligent backtracking [Cox 1984]. As should be obvious, knowledge about data
dependencies is needed for both intelligent backtracking as well as independent
and-parallel execution. Thus, if an independent and-parallel system performs data
dependency analysis for parallel execution, it should take further advantage of it for
intelligently backtracking as well. Note that the intelligent backtracking achieved
may be limited, since, in the example above, a may not be able to cure failure of c.
Execution models for independent and-parallelism that exploit limited intelligent
backtracking [Hermenegildo and Nasr 1986; Pontelli and Gupta 1998] as well as
those that employ fully intelligent backtracking [Lin 1988; Codognet and Codognet
1990; Winsborough 1987] have been proposed and implemented. In particular,
the work by Codognet and Codognet [1990] shows how to use a Dynamic Conflict
Graph (a unification graph recording for each binding the literal responsible for it),
designed to support sequential intelligent backtracking [Codognet et al. 1988] to
support both forward and backward and-parallel execution.

A further distinction has been made in the literature [Pontelli et al. 1996; Shen
and Hermenegildo 1994], regarding how outside backtracking is carried out:

— private backtracking: each worker is allowed to backtrack only on the compu-
tations lying in their own stacks. Thus, if backtracking has to be propagated to a
subgoal lying in the stack of another worker P , then a specific message has be sent
to P , and P will (typically asynchronously) carry out the backtracking activity;

— public backtracking: each worker is allowed to backtrack on any computation,
independently from where it resides—it can also backtrack on computations lying
on the stack of a different workers.

Private backtracking has been adopted in various systems [Hermenegildo and Greene
1991; Shen 1992a]. It has the advantage of allowing each worker to have complete
control of the parts of computation which have been locally executed; in particular,
it facilitates the task of performing garbage collection as well as local optimiza-
tions. On the other hand, backtracking becomes an asynchronous activity, since a
worker may not be ready to immediately serve a backtracking request coming from
another worker. A proper management of these message passing activities (e.g., to
avoid the risk of deadlocks) makes the implementation very complex [Shen 1992b;
Pontelli et al. 1996]. Furthermore, experiments performed in the &ACE system
[Pontelli and Gupta 1998] demonstrated that public backtracking is considerably
more efficient than private backtracking—by allowing synchronous backtracking,
without delays in the propagation of failures. At the implementation level, pub-
lic backtracking is also simpler—just requiring mutual exclusion in the access of
certain memory areas. The disadvantage of public backtracking is the occasional
inability of immediately recovering memory during backtracking—since in general
we cannot allow one worker to recover memory belonging to a different worker.

4.2 Support for Full Prolog in And-Parallelism

Like in the case of or-parallel systems, some researchers have favored supporting
Prolog’s sequential semantics in independent and-parallel systems [DeGroot 1987b;
Muthukumar and Hermenegildo 1989; Chang and Chiang 1989]. This imposes
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some constraints on how backtracking as well as forward execution take place. Es-
sentially, the approach that has been taken is that if two independent goals are
being executed in parallel, both of which lead to an order-sensitive predicate, then
the order-sensitive predicate in the right goal can only be performed after the last
order-sensitive predicate in the goal to the left has been executed. Given that this
property is undecidable in general, it is typically approximated by suspending the
side effect until the branch in which it appears is the leftmost in the computation
tree—i.e., all the branches on the left have completed. It also means that intelligent
backtracking has to be sacrificed, because considering again the previous example,
if c fails and we backtrack directly into a, without backtracking into b first, then
we may miss executing one or more extra-logical predicate (e.g., input/output op-
erations) that would be executed had we backtracked into b. A form of intelligent
backtracking can be maintained and applied to the subgoals lying on the right of the
failing one. In the same way as or-parallel systems, these systems also include useful
“concurrent” versions of order-sensitive predicates, whose semantics do not require
sequencing. Additionally, supporting full Prolog also introduces challenges in other
parts of and-parallel systems, such as, for example, in parallelizing compilers which
perform global analysis [Bueno et al. 1996].

The issue of speculative computation also arises in independent and-parallel sys-
tems [Tebra 1987; Hermenegildo and Rossi 1995; Garćıa de la Banda et al. 2000].
Given two independent goals a(X), b(Y) that are being executed in and-parallel, if
a eventually fails, then work put in for solving b will go wasted (in sequential Prolog
the goal b will not ever get executed). Therefore, not too many resources (workers)
should be invested on goals to the right. Once again, it should be stressed that
the design of the work-scheduler is very important for a parallel logic programming
system. Also, and as pointed before, issues such as non-failure and determinism
analysis can provide important performance gains.

4.3 Independent And-parallel Execution Models

In this section we briefly describe some of the methods that have been proposed
for realizing an independent and-parallel system. These are:

(1) Conery’s abstract parallel implementation [Conery and Kibler 1981; 1983];

(2) The And-Parallel Execution (APEX) Model of [Lin and Kumar 1988]; and,

(3) The Restricted And-parallel (RAP) model, introduced in [DeGroot 1984], and
extended in [Hermenegildo and Nasr 1986; Hermenegildo 1986b] and in [Pontelli
et al. 1995].

4.3.1 Conery’s Model. In this method [Conery and Kibler 1983] a data-flow
graph is constructed during the ordering phase making the producer-consumer re-
lationships between subgoals explicit. If a set of subgoals have an uninstantiated
variable V in common, one of the subgoals is designated as the producer of the
value of V and is solved first. Its solution is expected to instantiate V. When the
producer has been solved, the other subgoals, the consumers, may be scheduled for
evaluation. The execution order of the subgoals is expressed as a data-flow graph,
in which an arc is drawn from the producer of a variable to all its consumers.

Once the data-flow graph is determined, the forward execution phase ensues. In
this phase independent and-parallel execution of subgoals which do not have any
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arcs incident on them in the data-flow graph is initiated. When a subgoal is resolved
away from the body of a clause (i.e., it is successfully solved), the corresponding
node and all of the arcs emanating from it are removed from the data-flow graph.
If a producer creates a non-ground term during execution, the ordering algorithm
must be invoked again to incrementally redraw the data-flow graph.

When execution fails, some previously solved subgoal must be solved again to
yield a different solution. The backward execution phase picks the last parent (as
defined by a linear ordering of subgoals, obtained by a depth first traversal of the
data-flow graph) for the purpose of re-solving.

Note that in this method data dependency analysis for constructing the data-flow
graph has to be carried out every time a non-ground term is generated, making its
cost prohibitive.

4.3.2 APEX Model. The APEX (And Parallel EXecution) model has been
devised by Lin and Kumar [1988]. In this method forward execution is implemented
via a token passing mechanism. A token is created for every new variable that
appears during execution of a clause. A subgoal P is a producer of a variable V

if it holds the token for V. A newly created token for a variable V is given to the
leftmost subgoal P in the clause which contains that variable. A subgoal becomes
executable when it receives tokens for all the uninstantiated variables in its current
binding environment. Parallelism is exploited automatically when there are more
than one executable subgoals in a clause.

The backward execution algorithm performs intelligent backtracking at the clause
level. Each subgoal Pi dynamically maintains a list of subgoals (denoted as B-
list(Pi)) consisting of those subgoals in the clause which may be able to cure the
failure of Pi, if it fails, by producing new solutions. When a subgoal Pi starts
execution, B-list(Pi) consists of those subgoals that have contributed to the bindings
of the variables in the arguments of Pi. When Pi fails, Pj = head(B-list(Pi)) is
selected as the subgoal to backtrack to. The tail of B-list(Pi) is also passed to
Pj and merged into B-list(Pj) so that if Pj is unable to cure the failure of Pi,
backtracking may take place to other subgoals in B-list(Pi).

This method also has significant runtime costs since the B-lists are created,
merged and manipulated at runtime. APEX has been implemented on shared
memory multiprocessors for pure logic programs [Lin and Kumar 1988].

4.3.3 RAP Model. As mentioned before, in the standard version of this model
program clauses are compiled into Conditional Graph Expressions (CGEs) of the
form:

(condition => goal1 & goal2 & . . . & goaln),

meaning that, if condition is true, goals goal1 . . . goaln should be evaluated in
parallel, otherwise they should be evaluated sequentially. The condition is a con-
junction of tests of two types: ground([v1, . . . , vn]) checks whether all of the vari-
ables v1, . . . , vn are bound to ground terms. independent(v1, v2) checks whether
the set of variables reachable from v1 is disjoint from the set of variables reachable
from v2. The condition can also be the constant true, which means the goals can
be unconditionally executed in parallel. The groundness and independence condi-
tions are in principle evaluated at runtime. A simple technique that keeps track
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of groundness and independence properties of variables through tags associated to
the heap locations is presented in [DeGroot 1984]. The method is conservative in
that it may type a term as nonground even when it is ground—one reason why
this method is regarded as “restricted.” Another way in which CGEs are restric-
tive is that they cannot capture all the instances of independent and-parallelism
present in a program, because of their parenthetical nature (the same reason why
parbegin-parend expressions are less powerful than fork-join expressions in exploit-
ing concurrency [Peterson and Silberschatz 1986]). Enhanced parallelism operators
and CGE expressions which eliminate this restriction while preserving backtracking
semantics have been proposed in [Cabeza and Hermenegildo 1996].

Experimental evidence has demonstrated that among all the models the RAP
model comes closest to realizing the criteria mentioned in the previous section.
This model has been formalized and extended by Hermenegildo and Nasr, and has
been efficiently implemented using WAM-like instructions [Hermenegildo 1986b;
Pontelli et al. 1995] as the &-Prolog/Ciao system [Hermenegildo and Greene 1991],
as the &ACE/ACE system [Pontelli et al. 1995; Pontelli et al. 1996], and as part
of the dependent and-parallel DASWAM system [Shen 1992b; 1992a].

A considerable body of work exists on the task of automatically parallelizing
programs at compile time and generating CGEs. Global program analysis (gen-
erally based on the technique of abstract interpretation [Cousot and Cousot 1977;
1992]) has been shown useful at guiding the parallelization process and reducing
the conditions in the CGEs, generating simpler run-time tests or even uncondi-
tional parallelism [Winsborough and Waern 1988; Muthukumar and Hermenegildo
1990; Giannotti and Hermenegildo 1991; Muthukumar and Hermenegildo 1991;
Hermenegildo et al. 1992; Jacobs and Langen 1992; Muthukumar and Hermenegildo
1992a; Bueno et al. 1994; Muthukumar et al. 1999; Bueno et al. 1999; Puebla and
Hermenegildo 1999]. A detailed overview of this automatic parallelization work is
beyond the scope of this paper. See [Hermenegildo 2000] for a tutorial introduction
and pointers to literature.

4.4 Experimental Systems

4.4.1 The &-Prolog AND-Parallel Prolog System. &-Prolog [Hermenegildo 1986a;
1986b; Hermenegildo and Greene 1991] is a prototype Prolog implementation, built
as an extension of SICStus Prolog 0.5 (and, later, 0.6-0.7) and capable of exploiting
independent and-parallelism automatically by means of a parallelizing compiler.
Explicit parallelization of programs by the user is also supported through the &-
Prolog language extensions, and more complex forms of and-parallelism (i.e., not
just independent and-parallelism) can also be expressed and exploited. The same
language is used to make the result of the automatic parallelization visible to the
user if so desired. The parallelizing compiler has been integrated into the Prolog
run-time environment in the standard way so that a familiar user interface with on-
line interpreter and compiler is provided. Normally, users are unaware (except for
the increase in performance) of any difference with respect to a conventional Prolog
system. Compiler switches (implemented as “Prolog flags”) determine whether or
not user code will be parallelized and through which type of analysis. If the user
chooses to parallelize some of the code the compiler still helps by checking the sup-
plied annotations for correctness, and providing the results of global analysis to aid
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in the dependency analysis task.
&-Prolog was originally designed for global addressing space systems and it

has been implemented on a number of shared memory multiprocessors, includ-
ing Sequent Balance, Sequent Symmetry, and Sun Galaxy systems (and it has
been implemented on distributed systems as well [Hermenegildo 1994; Cabeza
and Hermenegildo 1996]). The &-Prolog system comprises a parallelizing compiler
aimed at uncovering the parallelism in the program and an execution model/run-
time system aimed at exploiting such parallelism. There is also an on-line visu-
alization system (based on the X-windows standard) which provides a graphical
representation of the parallel execution and has proven itself quite useful in debug-
ging and performance tuning [Carro et al. 1993]. The first version of the &-Prolog
system was developed collaboratively between The University of Texas and MCC.
Newer versions have been developed at the Technical University of Madrid (UPM).
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&-Prolog Parallelizing Compiler: Input code is processed by several compiler
modules as follows [Hermenegildo and Warren 1987] (Figs. 14–15): The Annotator,
or “parallelizer”, performs a (local) dependency analysis on the input code, using
a conditional graph-based approach. This is illustrated in Fig. 15 representing
the parallelization of “g1(...), g2(...), g3(...)”. The bodies of procedures
are explored looking for statements and procedure calls which are candidates for
parallelization. A dependency graph is first built which in principle reflects the
total ordering of statements and calls given by the sequential semantics. Each
edge in the graph is then labeled with the run-time data conditions (the run-time
check) that would guarantee independence of the statements joined by the edge.
If the appropriate option is selected, the annotator obtains information about the
possible run-time substitutions (“variable bindings”) at all points in the program
as well as other types of information from the Global Analyzer (described below).
This information is used to prove the conditions in the graph statically true or false
(Fig. 15). If a condition is proved to be true, then the corresponding edge in the
dependency graph is eliminated. If proved false, then an unconditional edge (i.e., a
static dependency) is left. Still, in other edges conditions may remain, but possibly
simplified.

The annotator also receives information from the Side-Effect Analyzer on whether
or not each non-builtin predicate and clause of the given program is pure, or contains
a side-effect. This information adds dependencies to correctly sequence such side-
effects [Muthukumar and Hermenegildo 1989].

The annotator then encodes the resulting graph using the & operator produc-
ing an “annotated” (parallelized) &-Prolog program. The techniques proposed
for performing this process depend on many factors including whether arbitrary
parallelism or just fork-join structures are allowed and also whether run-time inde-
pendence tests are allowed or not. As an example, Figure 15 presents two possible
encodings in &-Prolog of the (schematic) dependency graph obtained after analy-
sis. The parallel expressions generated in this case use only fork-join structures, one
with run-time checks and the other one without them. The parallelizer also receives
information from the Granularity Analyzer regarding the size of the computation
associated with a given goal [Debray et al. 1990; Debray et al. 1994; López-Garćıa
et al. 1996; Debray et al. 1997]. This information is used in an additional pass
aimed at introducing granularity control, implemented using dynamic term size
computation techniques [Hermenegildo and López-Garćıa 1995]. The information
from global analysis is also used to eliminate loop invariants and repetitive checks,
using the technique described in [Giannotti and Hermenegildo 1991; Puebla and
Hermenegildo 1999]. A final pass (an extension of the SICStus compiler) produces
code for a specialized WAM engine (called PWAM and described below) from an
already parallelized &-Prolog program.

Some of the techniques and heuristics used in the annotator, including tech-
niques for compilation of conditional non-planar dependency graphs into fork-join
structures, and other, non graph-based techniques, are described in [Muthukumar
and Hermenegildo 1990; Codish et al. 1995; Bueno et al. 1994; Muthukumar et al.
1999; Cabeza and Hermenegildo 1994]. The global analysis mentioned above is
performed by using the technique of “abstract interpretation” [Cousot and Cousot
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1977; 1992] to compute safe approximations of the possible run-time substitutions
at all points in the program. Two generations of analyzers have been implemented,
namely the “MA3” and “PLAI” analyzers. “MA3” [Hermenegildo et al. 1992] uses
the technique of “abstract compilation” and a domain which is currently known as
“depth-K” abstraction. Its successor, PLAI, is a generic framework based on that of
[Bruynooghe 1991] and the specialized fixpoint algorithms described in [Muthuku-
mar and Hermenegildo 1992a; Bueno et al. 1996; Hermenegildo et al. 2000; Puebla
and Hermenegildo 1996]. PLAI also includes a series of abstract domains and
unification algorithms specifically designed for tracking variable dependence infor-
mation. Other concepts and algorithms used in the global analyzer, the rest of the
&-Prolog compiler, and the MA3 and PLAI systems are described in [Muthuku-
mar and Hermenegildo 1991; Hermenegildo et al. 1992; Codish et al. 1995; Bueno
et al. 1999]. Finally, [Hermenegildo et al. 1999] provides an overview of CiaoPP, the
Ciao system preprocessor, which shows other applications of the types of analyses
performed by the PLAI system.

&-Prolog Run-Time System: The &-Prolog run-time system is based on the
Parallel WAM (PWAM) model [Hermenegildo and Greene 1991], an evolution of
RAP-WAM [Hermenegildo 1986a; 1986b; Tick 1991], itself an extension of the
Warren Abstract Machine (WAM) [Warren 1983]. The actual implementation has
been performed by extending the SICStus Prolog abstract machine.

The philosophy behind the PWAM design is to achieve similar efficiency to a
standard WAM for sequential code while minimizing the overhead of running par-
allel code. Each PWAM is similar to a standard WAM. The instruction set includes
all WAM instructions (the behavior of some WAM instructions has to be modified
to meet the needs of the PWAM—e.g., the instructions associated to the man-
agement of choice points) and several additional instructions related to parallel
execution. The storage model includes a complete set of WAM registers and data
areas, called a stack set, with the addition of a goal stack and two new types of stack
frames: parcall frames and markers. While the PWAM uses conventional environ-
ment sharing for sequential goals—i.e., an environment is created for each clause
executed, which maintains the data local to the clause—it uses a combination of
goal stacking and environment sharing for parallel goals: for each parallel goal, a
goal descriptor is created and stored in the goal stack, but their associated storage
is in shared environments in the stack. The goal descriptor contains a pointer to
the environment for the goal, a pointer to the code of the subgoal, and additional
control information. Goals which are ready to be executed in parallel are pushed
on to the goal stack. The goals are then available to be executed on any PWAM
(including the PWAM which pushed them).

Parcall frames are used for coordinating and synchronizing the parallel execu-
tion of the goals inside a parallel call, both during forward execution and during
backtracking. A parcall frame is created as soon as a parallel conjunction is encoun-
tered (e.g., in a CGE with a satisfiable condition part). The parcall frame contains,
among other entries, a slot for each subgoal present in the parallel call. These
slots will be used to keep track of the status of the execution of the corresponding
parallel subgoal.

Markers are used to delimit stack sections (horizontal cuts through the stack set
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Fig. 16. Organization of Computation in PWAM

of a given abstract machine, corresponding to the execution of different parallel
goals) and they implement the storage recovery mechanisms during backtracking of
parallel goals in a similar manner to choice points for sequential goals [Hermenegildo
1986b; Shen and Hermenegildo 1994; 1996a]. As illustrated in Fig. 16, whenever
a PWAM selects a parallel subgoal for execution, it creates an input marker in its
control stack. The marker denotes the beginning of a new subgoal. Similarly, as
soon as the execution of a parallel subgoal is completed, an end marker is created on
the stack. As shown in the figure, the input marker of a subgoal contains a pointer
to the end marker of the subgoal on its left; this is needed to allow backtracking to
propagate from parallel subgoal to parallel subgoal in the correct (Prolog) order.

Fig. 16 illustrates the different phases in the forward execution of a CGE. As
soon as the CGE is encountered, a parcall frame is created by Worker 1. Since the
parallel call contains three subgoals, Worker 1 will keep one for local execution (p1)
while the others will be made available to the other workers. This is accomplished
by creating two new entries (one for p2 and one for p3) in the goal stack. Idle
workers will detect the presence of new work and will extract subgoals from remote
goal stacks. In the example, Worker 2 takes p2 while Worker 3 takes p3. Each
idle worker will start the new execution by creating an input marker to denote the
beginning of a new subgoal. Upon completion of each subgoal, the workers will
create end markers. The last worker completing a subgoal (in the figure Worker 2
is the last one to complete), will create the appropriate links between markers and
proceed with the (sequential) execution of the continuation (p4).

In practice, the stack is divided into a separate control stack (for choice point and
markers) and a separate local stack (for environments, including parcall frames),
for reasons of locality and locking. A goal stack is maintained by each worker and
contains the subgoals which are available for remote execution.

The &-Prolog run-time system architecture comprises a ring of stack sets, a
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collection of agents, and a shared code area (Fig. 17). The agents (Unix processes)
run programs from the code area on the stack sets. All agents are identical (there
is no “master” agent). In general, the system starts allocating only one stack set.
Other stack sets are created dynamically as needed upon appearance of parallel
goals. Also, agents are started and put to “sleep” as needed in order not to overload
the system when no parallel work is available. Several scheduling and memory
management strategies have been studied for the &-Prolog system [Hermenegildo
and Greene 1991; Shen and Hermenegildo 1994].

Performance results: Experimental results for the &-Prolog system are available
in the literature illustrating the performance of both the parallelizing compiler
and the run-time system. The cost and influence of global analysis in terms of
reduction in the number or run-time tests using the “MA3” analyzer was reported in
[Hermenegildo et al. 1992]. The number of CGEs generated, the compiler overhead
incurred due to the global analysis, and the result both in terms of number of
unconditional CGEs and of reduction of the number of checks per CGE were studied
for some benchmark programs. These results suggested that, even for this first
generation system, the overhead incurred in performing global analysis is fairly
reasonable while the figures obtained close to what is possible manually.

Experimental results regarding the performance of the second generation paral-
lelizing compiler in terms of attainable program speedups were reported in [Codish
et al. 1995; Bueno et al. 1994; 1999] both without global analysis and also with shar-
ing and sharing+freeness analysis running in the PLAI framework [Muthukumar
and Hermenegildo 1992a; Muthukumar et al. 1999]. Speedups were obtained from
the run-time system itself and also using the IDRA system [Fernández et al. 1996],
which collects traces from sequential executions and uses them to simulate an ideal
parallel execution of the same program.18 A much more extensive study covering

18Note that simulations are better than actual executions for evaluating the amount of ideal
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numerous domains and situations, a much larger class of programs, and the effects
of the three annotation algorithms described in [Muthukumar and Hermenegildo
1990] (UDG/MEL/CDG), can be found in [Bueno et al. 1999; Garćıa de la Banda
et al. 1996]. Although work still remains to be done, specially in the area of de-
tecting non-strict independence,19 results compared encouragingly well with those
obtained from studies of theoretical ideal speedups for optimal parallelizations, such
as those given in [Shen and Hermenegildo 1991; 1996b].

Early experimental results regarding the run-time system can be found in [Hermenegildo
and Greene 1991]. Actual speedups obtained on the Sequent Balance and Sym-
metry systems were reported for the parallelized programs for different numbers
of workers. Various benchmarks have been tested, ranging from simple problems
(e.g., matrix multiplication) to (for the time) comparatively large applications (e.g.,
parts of the abstract interpreter). Results were also compared to the performance of
the sequential programs under both &-Prolog, SICStus Prolog, and Quintus Prolog.
Attained performance was substantially higher than that of SICStus for a significant
number of programs, even if running on only two workers. For programs showing
no speedups, the sequential speed was preserved to within 10%. Furthermore, sub-
stantial speedups could even be obtained with respect to commercial systems such
as Quintus, despite the sequential speed handicap of &-Prolog due to the use of a
C-based bytecode interpreter.20

The &-Prolog system (or, more precisely, the abstract machine underlying the
system [Hermenegildo 1986a; 1986b; Hermenegildo and Greene 1991]) is arguably
the earliest proposed complete parallel execution system for logic programs which
was shown to produce consistently speedups over state-of-the-art sequential sys-
tems.

The &-Prolog system has been extended to support full concurrency in the lan-
guage [Cabeza and Hermenegildo 1996; Carro and Hermenegildo 1999], other types
of parallelism (such as non-strict [Cabeza and Hermenegildo 1994] and dependent
and-parallelism [Hermenegildo et al. 1995]), and-parallelism in constraint logic pro-
grams, and distributed execution [Hermenegildo 1994; Cabeza and Hermenegildo
1996]. These extensions are mentioned in the appropriate sections later in the pa-
per. The development of the &-Prolog system continues at present in “Ciao,” a
next-generation logic programming system [Hermenegildo et al. 1999; Bueno et al.
1997].

4.4.2 The &ACE System. The &ACE [Pontelli et al. 1995; Pontelli et al. 1996]
system is an independent and-parallel Prolog system developed at New Mexico
State University as part of the ACE project. &ACE has been designed as a next-
generation independent and-parallel system and is an evolution of the PWAM de-
sign (used in &-Prolog). Like &-Prolog, &ACE relies on the execution of Prolog
programs annotated with Conditional Graph Expressions.

The forward execution phase is articulated in the following steps. As soon as a

parallelism generated by a given annotation, since the effects of the limited numbers of processors
in actual machines can be factored out.
19The notion of non-strict independence is described in Sec. 5.3.3.
20Performance of such systems ranges from about the same as SICStus to to about twice the

speed, depending on the program.
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parallel conjunction is reached, a parcall frame is allocated in a separate stack—
differently from &-Prolog, which allocates parcall frames on the environment stack;
this allows for easier memory management21 (e.g., facilitates the use of last-call op-
timization) and for application of various determinacy-driven optimizations [Pon-
telli et al. 1996] and alternative scheduling mechanisms [Pontelli et al. 1996]. Slots
describing the parallel subgoals are allocated in the Heap and organized in a (dy-
namic) linked list, thus allowing their dynamic manipulation at run-time. Subgoals
in the goal stack (as in the PWAM model) are replaced by a simple frame placed
in the goal stack and pointing to the parcall frame—this has been demonstrated
[Pontelli et al. 1995; Pontelli et al. 1996] to be more effective and flexible than
actual goal stacking. These data structures are described in Fig. 18.

The use of markers to identify segments of the computation has been removed in
&ACE and replaced by a novel technique called stack linearization which allows to
link choice points lying in different stacks in the correct logical order; this allows
to limit to the minimum the changes to the backtracking algorithm, thus making
backtracking over and-parallel goals very efficient. The only marker needed is the
one which indicates the beginning of the continuation of the parallel call. Novel uses
of the trail stack (by trailing status flags in the subgoals slots) allows to integrate
outside backtracking without any explicit change in the backtracking procedure.

Backward execution represents another novelty in &ACE. Although it relies on
the same general backtracking scheme developed in PWAM (the point backtracking
scheme described in Sec. 4.1.3), it introduces the additional concept of backtracking
independence which allows to take full advantage of the semi-intelligent backtrack-
ing phase during inside backtracking. Given a subgoal of the form:

? − b, (g1&g2), a

backtracking independence requires that the bindings to the variables present in
g1, g2 are posted either before the beginning of the parallel call or at its end. This

21&ACE is built on top of the SICStus WAM, that performs on-the-fly computation of the top of
the stack register. The presence of parcall frames on the same stack creates enormous complica-

tions to the correct management of such register.
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allows to kill subgoals and backtrack without having to worry about untrailing
external variables. Backtracking independence is realized through compile-time
analysis and through the use of special run-time representation of global variables
in parallel calls [Pontelli and Gupta 1998]. The use of backtracking independence
allows the system to recover the full power of intelligent backtracking; in [Pontelli
and Gupta 1998] results are presented which shows improvements of up to 400% in
execution time over traditional point-backtracking.

&ACE has been developed by modifying the SICStus WAM and currently runs
on Sparc and Pentium based multiprocessors. The use of the new memory man-
agement scheme, combined with a plethora of optimizations [Gupta and Pontelli
1997; Pontelli et al. 1996], allows &ACE to be very effective in exploiting paral-
lelism, even from rather fine grained applications [Pontelli et al. 1995; Gupta and
Pontelli 1997]. The performance of the system is on average within 5% from the
performance of the original sequential engine, thus denoting a very limited amount
of overhead. The presence of an effective management of backtracking has also lead
to various cases of super-linear speedups [Pontelli and Gupta 1998].

5. DEPENDENT AND-PARALLELISM

Dependent And-Parallelism (DAP) generalizes independent and-parallelism by al-
lowing the concurrent execution of subgoals accessing intersecting sets of variables.
The “classical” example of DAP is represented by a goal of the form ?- p(X) &

q(X)22 where the two subgoals may potentially compete (or cooperate) in the cre-
ation of a binding for the unbound variable X.

Unrestricted parallel execution of the above query (in Prolog) is likely to produce
non-deterministic behavior: the outcome will depend on the order in which the two
subgoals access X. Thus, the first aim of any system exploiting dependent and-
parallelism is to ensure that the operational behavior of dependent and-parallel
execution is consistent with the intended semantics—(sequential) observable Prolog
semantics in this case. This amounts to

—making sure that all the parallel subgoals agree on the values given to the shared
variables;

—guaranteeing that the order in which the bindings are performed does not lead
to any violation of the observable behavior of the program (Prolog semantics).

It is possible to show that the problem of determining the correct moment in time
when a binding can be performed without violating Prolog semantics is in general
undecidable. The different models designed to support DAP differ in the approach
taken to solve this problem, i.e., they differ in how they conservatively approximate
such undecidable property.

The question then arises whether dependent and-parallelism is fruitful at all.
Typically in a query such as above, p will produce a binding for X while q will process
(or consume) it. If this order between production of binding and its consumption is
to be preserved, q will be suspended until execution of p is over. However, this is not
always the case, and execution of p and q can be overlapped in certain situations:

22As for independent and-parallelism, we will use “&” to denote parallel conjunction, while “,”

will be kept to indicate sequential conjunctions.
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(1) q may first perform significant amount of computation before it needs the bind-
ing of X; this computation can be overlapped with computation of p, because
it does not depend on X;

(2) p may first partially instantiate X. In such a case q can start working with the
partially instantiated value, while p is busy computing the rest of the binding
for X.

In the rest of this section we will use the following terminology. Unbound vari-
ables which are accessible by different parallel subgoals are called shared (or de-
pendent) variables. The SLD computation tree generated by Prolog enforces an
ordering between the subgoals which appear in the tree. We will say that a subgoal
A is on the left of B if the subgoal A appears on the left of B in the SLD tree
generated by Prolog.

The scope for exploitation of dependent and-parallelism strongly depends on the
semantics of the logic language considered. E.g., DAP execution of pure Prolog—
where no order-sensitive predicates appear—makes implementation simple and cre-
ates the potential for high speedups. Similarly, the semantics of languages like
Parlog and other committed choice languages is designed to provide a relatively
convenient management of specialized forms of DAP (stream parallelism), simpli-
fying the detection of dependencies. In the context of this paper we will focus on the
DAP execution of Prolog programs—thus, the ultimate goal of the DAP execution
models, as far as this paper is concerned, is to speedup execution of the programs
through parallelism reproducing the same observable behavior as in a sequential
Prolog execution.

5.1 Issues

Supporting DAP requires tackling a number of issues. These include:

(1) detection of parallelism: determination of which subgoals should be considered
for DAP execution.

(2) management of DAP goals: activation and management of parallel subgoals;

(3) management of shared variables: validation and control of shared variables to
guarantee Prolog semantics;

(4) backtracking: management of non-determinism in presence of DAP executions.

In the rest of this section we will deal with all these issues except for issue 2:
management of subgoals does not present any new challenge w.r.t. the management
of parallel subgoals in the context of independent and-parallelism.

5.2 Detection of Parallelism

Annotating a program for fruitful DAP execution resembles in some aspects au-
tomatic parallelization for IAP (as described in Sec. 4.1.1). This should come
as no surprise: it was already mentioned that DAP is nothing else than a finer
grain instance of the general principle of independence, applied to the level of vari-
able bindings. Relatively little work is present in the literature for detecting and
analyzing fruitful DAP. The first work on this specific problem is that by Gia-
cobazzi and Ricci [1990], which attempts a bottom-up abstract interpretation to

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD TBD.



Parallel Execution of Prolog Programs · 61

identify pipelined computations. Some similarities are also shared with the vari-
ous studies on partitioning techniques for declarative concurrent languages [Traub
1989], that aim to identify partitioning of the program components into sequential
threads, and the work on management of parallel tasks in committed choice lan-
guages [Ueda and Morita 1993]. Techniques have also been proposed for detecting
non-strict independent and-parallelism at compile-time [Cabeza and Hermenegildo
1994]. This includes new annotation algorithms which use sharing and freeness
information before and after each literal and new, specialized run-time tests. These
techniques have been implemented in a practical parallelizer for the &-Prolog and
&ACE systems by extending the original &-Prolog/&ACE PLAI parallelizer.

Automatic and semi-automatic detection of potential valid sources of unrestricted
DAP in logic programs has been proposed and implemented in [Pontelli et al.
1997], the implementation also being an extension of the &-Prolog/&ACE PLAI
parallelizer. This proposal generates code annotations which are extensions of the
CGE format (similar to those originally introduced by Shen [1992a] and used also
in Hermenegildo et al. [1995])—they additionally identify and make explicit the
variables that are shared between the goals in the parallel conjunction. Given the
goals . . . G1, . . . , Gn . . ., in which the subgoals G1, . . . , Gn are to be executed in
DAP, the general structure of an extended CGE is the following:

. . . , $mark([X1, . . . , Xm]),

(〈Cond〉 =⇒ $and goal(θ1, G
θ1

1 ) & . . . & $and goal(θn, G
θn
n )), . . .

where:

—X1, . . . ,Xm are the shared variables for subgoals G1, . . . , Gn, i.e., all those vari-
ables for which different subgoals may attempt conflicting bindings;

—if X
j
1 , . . . ,X

j
kj

⊆ {X1, . . . ,Xm} are the shared variables present in the subgoal

Gj , then θj is a renaming substitution for the variables X
j
i (1 ≤ i ≤ kj)—i.e., a

substitution which replace each X
j
i with a brand new variable. This allows each

subgoal in the conjunction to have a fresh and independent access to each shared
variable.
In this framework the mapping is described as a sequence of pairs [Xj

i ,X
new(j)
i ],

where X
new(j)
i is the new variable introduced to replace variable X

j
i .

—Cond is a condition, that will be evaluated at runtime (e.g., for checking ground-
ness, independence, comparing dynamically computed grain-sizes to thresholds).

A DAP annotated version of the recursive clause in the program for naive reverse
will look as follows:

nrev([X|Xs], Y) :- $mark([Z]),

( $and_goal([[Z,Z1]],nrev(Xs, Z1)) &

$and_goal([[Z,Z2]],append(Z2, [X], Y)) ).

The $mark/1 is a simple directive to the compiler to identify shared variables.
The shared variables are given different names in each of the parallel goals. The
shared variable Z is accessed through the variable Z1 in nrev and through the
variable Z2 in the append subgoal. The use of new names for the shared variables
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allows the creation of separate access paths to the shared variables, which in turn
facilitates more advanced run-time schemes to guarantee the correct semantics (such
as the Filtered Binding Model presented later in this section).

The process of annotating a program for exploitation of dependent and-parallelism
described in [Pontelli et al. 1997] operates through successive refinements:

(1) identification of clauses having a structure compatible with the exploitation
of DAP—i.e., they contain at least one group of consecutive non-builtin pred-
icates. Each maximal group of contiguous and non-builtin goals is called a
partition.

(2) use of sharing and freeness [Cabeza and Hermenegildo 1994; Muthukumar et al.
1999] information (determined via abstract interpretation) to identify the set
of shared variables for each partition;

(3) refinement of the partition to improve DAP behavior through the following
transformations:
—collapsing of consecutive subgoals;
—splitting of partitions in subpartitions;
—removal of subgoals lying at the beginning or end of a partition.
The transformations are driven by the following principles:
—parallel subgoals should display a sufficiently large grain size to overcome the

parallelization overhead;
—dependent subgoals within a partition should demonstrate a good degree of

overlapping in their executions.
The first aspect can be dealt with through the use of cost analysis [Debray et al.
1997; López-Garćıa et al. 1996; Tick and Zhong 1993], while the second one
is dealt with in [Pontelli et al. 1997] through the use of instantiation analysis,
based on the estimation of the size of the computation which precedes the
binding of shared variables.

Further improvements have been devised in [Pontelli et al. 1997] through the use
of sharing and freeness to detect at compile-time subgoals that will definitely bind
dependent variables—i.e., automatic detection of definite producers.

5.3 Management of Variables

5.3.1 Introduction. The management of shared variables in a dependent and-
parallel execution requires solving two key issues. The first issue is related to the
need of guaranteeing mutual exclusion during the creation of a binding for a shared
variable. The second, and more important, issue is concerned with the process of
binding validation, i.e., guaranteeing that the outcome of the computation respects
sequential observable Prolog semantics. These two issues are discussed in the next
two subsections.

5.3.2 Mutual Exclusion. The majority of the schemes proposed to handle DAP
rely on a single representation of each shared variable—i.e., all the threads of com-
putation access the same memory area which represents the shared variable. Con-
sidering that we are working in a Prolog-like model, at any time at most one of
these threads will be allowed to actually bind the variable. Nevertheless, the con-
struction of a binding for a variable is not an atomic operation—unless the value
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assigned to the variable is atomic. Furthermore, in the usual WAM, the assignment
of a value can be realized through the use of get instructions, which are charac-
terized by the fact that they proceed top-down in the construction of the term.
This means that first the unbound variable is assigned a template of the term to
be constructed—e.g., through a get structure instruction—and successively the
subterms of the binding are constructed. This makes the binding of the variable
a non-atomic operation. For example, if the two subgoals executing in parallel are
p(X) and q(X), which are respectively defined by the following clauses:

p(X) :- X = f(b,c), .....

q(X) :- X = f(Y,Z), (var(Y) -> ... ; ...).

The WAM code for the clause for p will contain a sequence of instructions of the
type

get_structure f, A1

unify_constant b

unify_constant c

...

An arbitrary interleaving between the computations (at the level of WAM instruc-
tions) can lead q to access the binding for X immediately after the get structure

but before the successive unify constant—leading q to wrongfully succeed in the
var(Y) test. Clearly, as long as we allow consumers to have continuous access to
the bindings produced by the producer, we need to introduce some mechanisms
capable of guaranteeing atomicity of any binding to shared variables.

The problem has been discussed in various works. In the context of the JAM
implementation of Parlog [Crammond 1992] the idea is to have the compiler gener-
ate a different order of instructions for what concerns the construction of complex
terms: the pointer to a structure is not written until the whole structure has been
completely constructed. This approach requires a radical change in the compiler.
Furthermore, the use of this approach requires a special action at the end of the
unification, in order to make the structure “public”—and this overhead will be en-
countered in general for every structure built, independently from whether this will
be assigned to a dependent variable or not.

Another solution has been proposed in Andorra-I [Santos Costa et al. 1996]; in
this system, terms which need to be matched with a compound term (i.e., using
the get structure instruction in the WAM) are locked—i.e., a mutual exclusion
mechanism is associated to it—and a special instruction (last) is added by the
compiler at the end of the term construction to release the lock—i.e., terminate the
critical section.

Another approach, adopted in the DASWAM system [Shen 1992b], consists of
modifying the unify and get instructions in such a way that they always overwrite
the successive location on the heap with a special value. Every access to term will
inspect such successive location to verify whether the binding has been completed
or not. No explicit locks or other mutual exclusion mechanisms are required. On
the other hand:

—while reading the binding for a dependent variable, every location accessed needs
to be checked for validity;
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—an additional operation (pushing an invalid status on the successive free location)
is performed during each operation involved in the construction of a dependent
binding.

—a check needs to be performed during each operation which constructs a term, in
order to understand whether the term has been assigned to a dependent variable
or not—or, alternatively, the operation of pushing the invalid status is performed
indiscriminately during the construction of any term, even if it will not be as-
signed to a dependent variable.

Another solution [Pontelli 1997], which does not suffer from most of the draw-
backs previously described, is to have the compiler generate a different sequence
of instructions to face this kind of situations. The get structure and get list

instructions are modified, by adding a third argument:
get structure 〈functor〉 〈register〉 〈jump label〉

where the 〈jump label〉 is simply an address in the program code. Whenever the
dereferencing of the 〈register〉 leads to an unbound shared variable, instead of en-
tering write mode (as in standard WAM behavior), the abstract machine performs a
jump to the indicated address (〈jump label〉). The address contains a sequence of
instructions which performs the construction of the binding in a bottom-up fashion—
which allows for the correct atomic execution.

5.3.3 Binding Validation. A large number of schemes have been proposed to
handle bindings to dependent variables in such a way that Prolog semantics is
respected. We can classify the different approaches according to two orthogonal
criteria [Pontelli 1997; Pontelli and Gupta 1997a; 1997b]:

(1) Validation time: the existing proposals either
(a) remove inconsistencies on binding shared variables only once a conflict

appears and threatens Prolog semantics (curative schemes)
(b) prevent inconsistencies by appropriately delaying and ordering shared vari-

able bindings (preventive schemes)

(2) Validation resolution: the existing proposals either
(a) perform the validation activity at the level of the parallel subgoals (goal-

level validation)
(b) perform the validation activity at the level of the individual shared variable

(binding-level validation)

Curative Approaches: Curative approaches rely on validation of the bindings to
shared variables after they are performed.

Performed at the goal level (see Fig. 19), this implies that each and-parallel
subgoal develops its computation on local copies of the environments, introducing
an additional “merging” step at the end of the parallel call—to verify consistency
of the values produced by the different computations for the shared variables. This
approach, adopted mainly in some of the older process-based models, like Epilog
[Wise 1986] and ROPM [Ramkumar and Kalé 1992], has the advantage of being
extremely simple, but it suffers some serious drawbacks:

(1) it produces highly speculative computations (due to the lack of communication
between parallel subgoals);
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Fig. 20. Binding Level Curative Approach

(2) it may produce parallel computations that terminate in a time longer than the
corresponding sequential ones;

(3) it makes it extremely difficult to enforce Prolog semantics.

Performed at the binding level (see Fig. 20), validation does not preempt bindings
from taking place (i.e., any goal can bind a shared variable), but special rollback
actions are needed whenever a violation of program semantics is detected. The
two most significant proposals where this strategy is adopted are those made by
Tebra [1987] and by Drakos [1989]. They can be both identified as instances of a
general scheme, named Optimistic Parallelism. In optimistic parallelism, validation
of bindings is performed not at binding time (i.e., the time when the shared variable
is bound to a value), but only when a conflict occurs (i.e., when a producer attempts
to bind a shared variable that had already been bound earlier by a consumer goal.)
In case of a conflict, the lower priority binding (made by the consumer), has to
be undone, and the consumer goal rolled back to the point where it first accessed
the shared variable. These models have various drawbacks, ranging from their
highly speculative nature to the limitations of some of the mechanisms adopted
(e.g., labeling schemes to record binding priorities), and to the high costs of rolling
back computations.

Preventive Approaches: Preventive approaches are characterized by the fact
that bindings to shared variables are prevented unless they are guaranteed to not
threaten Prolog semantics.

Performed at the goal level, preventive schemes delay the execution of the whole
subgoal until its execution will not affect Prolog semantics. Various models have
embraced this solution:

(1) Non-Strict Independent And-Parallelism (NSI) and other extended notions of
independence: the idea of these extensions of the notion of independence is
to greatly extend the scope of independent and-parallelism while still ensuring
correctness and efficiency/“no-slowdown” of the parallelization [Hermenegildo
and Rossi 1995; Cabeza and Hermenegildo 1994]. The simplest concept of non-
strict independence allows execution of subgoals that have variables in common,
provided at most one subgoal can bind each shared variable.23 This kind of inde-

23The condition used in the case of impure goals is that the bindings of a goal will not affect the
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pendence cannot be determined in general a priori (i.e., by inspecting the state
of the computation prior to executing the goals to be parallelized) and thus nec-
essarily requires a global analysis of the program. However, it is very interesting
because it appears often in programs which manipulate “open” data structures,
such as difference lists, dictionaries, etc. An example of this is the following
flatten example, which eliminates nestings in lists ([X|Xs] represents the
list whose head is X and whose tail is Xs and [] represents the empty list):

flatten(Xs,Ys) :-

flatten(Xs,Ys,[]).

flatten([], Xs, Xs).

flatten([X|Xs],Ys,Zs) :-

flatten(X,Ys,Ys1),

flatten(Xs,Ys1,Zs).

flatten(X, [X|Xs], Xs) :-

atomic(X), X = [].

This program unnests a list without copying by creating open-ended lists and
passing a pointer to the end of the list (Ys1) to the recursive call. Since this
pointer is not bound by the first call to flatten/3 in the body of the recursive
clause, the calls to flatten(X,Ys,Ys1) and flatten(Xs,Ys1,Zs) are (non-
strictly) independent and all the recursions can be run in parallel. In fact, it
is possible to detect this automatically [Cabeza and Hermenegildo 1994]. A
number of (also correct and efficient) further generalizations of the concept of
non-strict independence have been proposed, based on notions of equivalence
of search spaces [Hermenegildo and Rossi 1995; Garćıa de la Banda et al. 2000;
Garćıa de la Banda 1994]. These ehancements allow goals to share variables and
bind them, provided the bindings made by these goals are either deterministic
(in a similar way to the “Andorra” models reviewed below) or consistent (in
the constraint logic programming sense). These enhancements have allowed
extending independence to logic programs with delays [Garćıa de la Banda
et al. 1996; 2000] and constraint logic programs [Garćıa de la Banda et al.
2000], as shown in Sec. 8.

(2) The Basic Andorra Model [Haridi 1990; Warren 1987a; Santos Costa et al.
1991a], Parallel NU-Prolog [Naish 1988], Pandora [Bahgat 1993], and P-Prolog
[Yang 1987] are all characterized by the fact that parallel execution is allowed
between dependent subgoals only if there is a guarantee that there exists at
most one single matching clause. In the Basic Andorra Model, subgoals can
be executed ahead of their turn (“turn” in the sense of Prolog’s depth first
search) in parallel if they are determinate, i.e., if at most one clause matches the
subgoal (the determinate phase). These determinate goals can be dependent
on each other. If no determinate goal can be found for execution, a choice
point is created for the leftmost goal in the goal list (the non-determinate
phase) and parallel execution of determinate goals along each alternative of

computation of the remaining subgoals to its right.
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the choice point continues. Dependent and-parallelism is obtained by having
determinate goals execute in parallel. The different alternatives to a goal may
be executed in or-parallel. Executing determinate goals (on which other goals
may be dependent) eagerly also provides a coroutining effect which leads to
the narrowing of the search space of logic programs. A similar approach has
been adopted in Pandora [Bahgat 1993], which represents a combination of the
Basic Andorra Model and the Parlog committed choice approach to execution
[Clark and Gregory 1986]; Pandora introduces non-determinism to an otherwise
committed choice language. In Pandora, clauses are classified as either don’t-
care or don’t-know. Like the Basic Andorra Model, execution alternates between
the and-parallel phase and the deadlock phase. In the and-parallel phase, all
goals in a parallel conjunction are reduced concurrently. A goal for a don’t-
care clause may suspend on input matching if its arguments are insufficiently
instantiated, as in normal Parlog execution. A goal for a don’t-know clause is
reduced if it is determinate, like in the Basic Andorra Model. When none of the
don’t-care goals can proceed further and there are no determinate don’t-know
goals, the deadlock phase is activated (Parlog would have aborted the execution
in such a case) that chooses one of the alternatives for a don’t-know goal and
proceeds. If this alternative were to fail, backtracking would take place and
another alternative will be tried (potentially, the multiple alternatives could be
tried in or-parallel).

Performed at the binding level, preventive schemes allow a greater degree of par-
allelism to be exploited. The large majority of such schemes rely on enforcing a
stronger notion of semantics (Strong Prolog Semantics): bindings to shared vari-
ables are performed in the same order as in a sequential Prolog execution. The
most relevant schemes are:

(1) Committed Choice languages: we will only deal briefly with the notion of com-
mitted choice languages in this paper, since they implement a semantics which
is radically different from Prolog. Committed choice languages [Tick 1995]
disallow (to a large extent) non-determinism by requiring the computation to
commit to the clause selected for resolution. Committed choice languages sup-
port dependent and-parallel execution and handle shared variables via a pre-
ventive scheme based on the notion of producer and consumers. Producer and
consumers are either explicitly identified at the source level (e.g., via mode
declarations) or implicitly through strict rules on binding of variables that are
external to a clause [Shapiro 1987].

(2) Binding-level non-strict independence: The application of the generalized (con-
sistency- and determinacy-based) notions of independence [Hermenegildo and
Rossi 1995; Garćıa de la Banda et al. 2000; Garćıa de la Banda 1994] at the
finest granularity level—the level of individual bindings and even the individual
steps of the constraint solver—has been studied formally in [Bueno et al. 1994;
1998]. This work arguably represents the finest grained and “most parallel”
model for logic- and constraint logic programming capable of preserving cor-
rectness and theoretical efficiency proposed to date. While this model has not
been implemented directly it serves as a theoretical basis for a number of other
schemes.
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(3) DDAS-based schemes: these schemes offer a direct implementation of strong
Prolog semantics through the notion of producer and consumer of shared vari-
ables. At each point of the execution only one subgoal is allowed to bind each
shared variable (producer), and this corresponds to the leftmost active sub-
goal which has access to such variable. All remaining subgoals are restricted
to read-only accesses to the shared variable (consumers); each attempt by a
consumer of binding an unbound shared variable will lead to the suspension of
the subgoal. Each suspended consumer will be resumed as soon as the shared
variable is instantiated. Consumers may also become producers if they become
the leftmost active computations. This can happen if the designated producer
terminates without binding the shared variable [Shen 1992b].

Detecting producer and consumer status is a complex task. Different techniques
have been described in the literature to handle this process. Two major imple-
mentation models have been proposed to handle producer/consumer detection,
DASWAM [Shen 1992b; 1996b] and the Filtered-Binding Model [Pontelli and
Gupta 1997a; 1997b], which are described at the end of this section. An alter-
native implementation model based on Attributed Variables [Le Huitouze 1990]
has been proposed in [Hermenegildo et al. 1995]: each dependent variable X is
split into multiple instances, one for each subgoal belonging to the parallel call.
Explicit procedures are introduced to handle unification and transfer bindings
to the different instances of each shared variable. The idea behind this model
is attractive and it shares some commonalities with the Filtered Binding model
presented in Sec. 5.5.3. Type-based optimizations of the approach have been
proposed in [Lamma et al. 1997].

Classification: As done for or-parallelism in Sec. 3.4, it is possible to propose a
classification of the different models for DAP based on the complexity of the basic
operations. The basic operations required to handle forward execution in DAP are:

—task creation: creation of a parallel conjunction

—task switching: scheduling and execution of a new subgoal

—variable access/binding: access and/or binding of a variable

It is possible to prove, by properly abstracting these operations as operations on
dynamic tree structures, that at least one of them requires a time complexity which
is strictly worse than Ω(1) [Pontelli et al. 1997; Ranjan et al. 2000]. Interestingly
enough, this result ceases to hold if we disallow aliasing of shared variables during
the parallel computation—intuitively, aliasing of shared unbound variables may
create long chains of shared variables bound to each other, and the chain has to be
maintained and traversed to determine whether a binding for the variable is allowed.
A similar restriction is actually present in the DASWAM system, to simplify the
implementation of the variables management scheme. Nevertheless, the Filtered-
binding Model is the only model proposed that succeeds in achieving constant time
complexity in all the operations in absence of shared variables aliasing.

The classification of the different models according to the complexity of the three
key operations is illustrated in Fig. 21. Unrestricted DAP means DAP with possible
aliasing of unbound shared variables.
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5.4 Backtracking

Maintaining Prolog semantics during parallel execution also means supporting non-
deterministic computations, i.e., computations that can potentially produce mul-
tiple solutions. In many approaches DAP has been restricted to only those cases
where p and q are deterministic [Bevemyr et al. 1993; Shapiro 1987; Santos Costa
et al. 1991a]. This is largely due to the complexity of dealing with distributed back-
tracking. Nevertheless, it has been shown [Shen 1992b; 1996b] that imposing this
kind of restriction on DAP execution may severely limit the amount of parallelism
exploited. The goal is to exploit DAP even in non-deterministic goals.

Backtracking in the context of DAP is more complex than in the case of inde-
pendent and-parallelism. While outside backtracking remains unchanged, inside
backtracking—i.e., backtracking within subgoals which are part of a parallel call—
loses its “independent” nature, which guaranteed the semi-intelligent backtracking
described earlier (Sec. 4.1.3). Two major issues emerge. First of all, failure of
a subgoal within a parallel conjunction does not lead to the failure of the whole
conjunction, but requires killing the subgoals on the right and backtracking to be
propagated to the subgoal immediately to the left—an asynchronous activity, since
the subgoal on the left may be still running;

In addition, backtracking within a parallel subgoal may also affect the execution
of other parallel subgoals. In a parallel conjunction like p(X) & q(X), backtracking
within p(X) which leads to a modification of the value of X will require rolling back
the execution of q(X) as well, since q(X) may have consumed the value of X which
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has just been untrailed.
Implementations of this scheme have been proposed in [Shen 1992b; 1992a; Pon-

telli and Gupta 1997a]; optimizations of this scheme have also been described in
[Shen 1994].

5.5 Experimental Systems

In this section we present some representative systems which support dependent
and-parallelism. Some other systems which use dependent and-parallelism in con-
junction with other forms of parallelism (e.g., ROPM) will be described in Sec. 6.
In this section we do not discuss Committed choice languages—their sequential and
parallel execution models have been described in detail in other surveys (e.g., [Tick
1995; Shapiro 1987]).

5.5.1 Andorra-I. The Andorra-I system is an implementation of the Basic An-
dorra Model. Andorra-I exploits determinate dependent and-parallelism together
with or-parallelism. Implementation of or-parallelism is very similar to that in Au-
rora and is based on Binding Arrays [Warren 1984; 1987c]. Due to its similarity to
Aurora as far as or-parallelism is concerned, Andorra-I is able to use the schedulers
built for Aurora. The current version of Andorra-I is compiled [Yang et al. 1993]
and is a descendant of the earlier interpreted version [Santos Costa et al. 1991a].

As a result of exploitation of determinate dependent and-parallelism and the
accompanying coroutining, not only Andorra-I can exploit parallelism from logic
programs, but it can also reduce the number of inferences performed to compute a
solution. As mentioned earlier, this is because execution in the Basic Andorra Model
is divided into two phases—determinate and non-determinate—execution of non-
determinate phase is begun only after all “forced choices”—i.e., choices for which
only one alternative is left—have been made in the determinate phase, i.e., after
all determinate goals in the current goal list, irrespective of their order in this list,
have been solved. Any goal that is non-determinate (that is, it has more than one
potentially matching clause) will be suspended in the determinate phase. Solving
determinate goals early constrains the search space much more than using the
standard sequential Prolog execution order (for example, for the 8-queen’s program
the search space is reduced by 44%, for the zebra puzzle by 70%, etc.). Note that
execution of a determinate goal to the right may bind variables which in turn may
make non-determinate goals to their left determinate. The Andorra-I compiler
performs an elaborate determinacy analysis of the program and generates code so
that the determinate status of a goal is determined as early as possible at runtime
[Santos Costa et al. 1996; 1991c].

The Andorra-I system supports full Prolog, in that execution can be performed in
such a way that sequential Prolog semantics is preserved [Santos Costa et al. 1996;
1991c]. This is achieved by analysing the program at compile-time and preventing
early (i.e., out of turn) execution of those determinate goals that may contain
extralogical predicates. These goals will be executed only after all goals to the left
of them have been completely solved.24

24In spite of this, there are cases where Andorra-I and Prolog leads to different behavior; in

particular, there are non-terminating Prolog programs which will terminate in Andorra-I and vice
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The Andorra-I system speeds-up execution in two ways: (i) by reducing the
number of inferences performed at run-time; and, (ii) by exploiting dependent and-
parallelism and or-parallelism from the program. Very good speed-ups have been
obtained by Andorra-I for a variety of benchmark programs. The Andorra-I engine
[Santos Costa et al. 1991b; Yang et al. 1993] combines the implementation tech-
niques used in implementing Parlog, namely the JAM system [Crammond 1992],
and the Aurora system [Lusk et al. 1990]. The Andorra-I system had to overcome
many problems before an efficient implementation of its engine could be realized.
Chief among them was a backtrackable representation of the goal list. Since goals
are solved out of order, they should be inserted back in the goal list if backtrack-
ing were to take place; recall that there is no backtracking in Parlog so this was
not a problem in JAM. The Andorra-I system was the first one to employ the no-
tion of teams of workers, where available workers are divided into teams, and each
team shares all the data structures (except the queue of ready-to-run goals). Or-
parallelism is exploited at the level of teams (i.e., each team behaves like a single
Aurora worker). Determinate dependent and-parallelism is exploited by workers
within a team, i.e., workers within a team will cooperatively solve a goal along the
or-branch that the team has picked up. There are separate schedulers for or-parallel
work and dependent and-parallel work, and overall work balancing is achieved by
a top-scheduler (reconfigurer) [Dutra 1994; 1996]. The notion of teams of work-
ers was also adopted by the ACE [Gupta et al. 1994] and the PBA [Gupta et al.
1994; Gupta et al. 1993] models that combine or-parallelism with independent and-
parallelism while preserving sequential Prolog semantics. A parallel system incor-
porating the Basic Andorra Model has also been implemented by Palmer and Naish
[1991]. Compile-time techniques have been used to allow automatic exploitation of
non-determinate independent and-parallelism in a system implementing the Basic
Andorra Model [Olmedilla et al. 1993]. Work has also been done on implement-
ing (the inference step reduction part of) the Basic Andorra Model by compilation
into a standard Prolog system supporting delay declarations, with promising re-
sults [Bueno et al. 1995; Hermenegildo and CLIP Group 1994].

5.5.2 DASWAM. DASWAM [Shen 1992a; 1992b; 1996b] is an implementation
model for the DDAS execution scheme described in Sec. 5.3.3. DASWAM has
been designed as an extension of the PWAM model used for independent and-
parallelism. Memory management is analogous to PWAM—and relies on the use
of parcall frames to represent parallel conjunctions, and on the use of markers to
delimit segments of stacks associated with the execution of a given subgoal [Shen
and Hermenegildo 1994].

Shared variables are represented as a new type of tagged cell and each shared
variable is uniquely represented—thus all workers access the same representation of
the shared variable. Producer and consumer status is determined via a search oper-
ation, performed at the time of variable binding. Each dependent variable identifies
the parcall frame which introduced the variable (home parcall); a traversal of the
chain of nested parallel calls is needed to determine whether the binding attempt
lies in the leftmost active subgoal. The knowledge of the subgoal is also needed to

versa.
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Fig. 22. DASWAM Implementation

create the necessary suspension record—where information regarding a suspended
consumer is recorded. The process is illustrated in Fig. 22. Each dependent cell
maintains pointers to the parcall frame which introduced that dependent variable.
Additionally, the parcall frames are linked to each other to recreate the nesting re-
lation of the parallel conjunctions. This arrangement implies a complexity which is
linear in the size of the computation tree in order to determine producer/consumer
status and subgoals on which to suspend [Shen 1992b; 1992a].

Efficient implementations of DASWAM on Sequent Symmetry, Sun Enterprise,
and KSR-1 platforms have been developed [Shen 1996b; 1996a]; the performance
of the system has been validated on a large variety of benchmarks. Detailed per-
formance analysis has been proposed in [Shen 1992b].

5.5.3 ACE. The ACE system supports dependent and-parallelism using a method
called Filtered Binding Model. The Filtered Binding Model is an instance of the
class of models which use preventive, binding-level validation. The specific approach
assumes a program statically annotated to identify the promising sources of paral-
lelism. Each subgoal maintains an independent access path to the shared variable.
The idea of the Filtered Binding model is to directly encode in the access path itself
the information (the filter or view) that allows a subgoal to discriminate between
producer and consumer accesses. The different access paths are created via special-
ized WAM instructions, which are introduced via the $mark predicate introduced
by the parallelizing compiler (see Sec. 5.2).

Fig. 23 presents an intuitive schema of this idea. Each subgoal has a local path to
access the shared object (in this case a heap location allocated to hold the value of
the shared variable) and the path contains a filter. In the figure the filter is linked
to information stored in the subgoal descriptor—this common information will be
used to verify when the subgoal is a viable producer (i.e., it is the leftmost active
subgoal in the parallel call).
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Every access to a shared variable by a subgoal will go through the filter corre-
sponding to that subgoal, which will allow it to determine the “type” of the access
(producer or consumer).

By properly organizing the unification process, as long as there is guarantee
that no aliasing between shared variables occurs (unless they are both producer
accesses), it can be proved that at any time a variable access will require traversal of
at most one filter—which means constant-time validation of any access. The setup
of a parallel call and the detection of the continuation also do not require any non
constant-time operation (the cost is always bounded by the number of dependent
variables detected by the compiler in that parallel call25). An additional step is
required when a subgoal terminates: if it is a producer goal, then on termination
it should transfer the producer status to the next active subgoal in the parallel call
by changing its filter. This is also a constant-time operation, as the next goal to
the right can be found by looking at the descriptor of the parallel call.

Thus, the Filtered Binding model is a model that exploits restricted DAP and
performs all operations in constant-time. The restriction is that unbound shared
variables are not allowed to be bound to each other (unless the goal doing the
aliasing is a producer for both). If this restriction is relaxed then a non-constant
overhead will be produced in the variable access operation—in such a case a non-
constant time overhead is unavoidable. The current implementation, realized in
the ACE system [Gupta et al. 1994; Pontelli et al. 1995], represents filters as a
word in the subgoal descriptor, and paths as a pair of words, one pointing to
the actual variable and one pointing to the filter. Local paths related to shared
variables introduced in the same parallel call share the same filter. Consumer

25We are also working under the assumption that the compiler marks goals for DAP execution
conservatively, i.e., during execution if a shared variable X is bound to a structure containing an
unbound variable Y before the parallel conjunction corresponding to X is reached then both X and
Y are marked as shared. Otherwise, for correctness, the structure X is bound to will have to be

traversed to find all unbound variables occurring in it and mark them as shared.
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accesses suspend in presence of unbound variables. Variable suspensions have been
implemented using the traditional suspension lists [Crammond 1992].

The implementation of the Filtered Binding Model in the ACE system [Pontelli
and Gupta 1997a; 1997b] supports both busy-waiting and goal suspension (e.g. re-
lease of suspended computation). The two methods are alternated during execution
depending on the granularity of the computation and on the amount of time the
goal has been suspended.

6. COMBINING OR-PARALLELISM AND AND-PARALLELISM

6.1 Issues

As one can gather, parallel systems that exploit only one form of parallelism from
logic programs have been efficiently implemented and reached a mature stage. A
number of prototypes have been implemented and successfully applied to the de-
velopment and parallelization of very large real-life applications (see also Sec. 10).
Public domain parallel logic programming systems are available (e.g., YapOr [Rocha
et al. 1999], KLIC [Chikayama et al. 1994], Ciao [Bueno et al. 1997], which includes
&-Prolog, DASWAM [Shen 1996b]). For some time, a number of commercial paral-
lel Prolog systems have also appeared on the market, such as SICStus Prolog, which
includes the or-parallel MUSE system, and ECLiPSe, which includes an or-parallel
version of ElipSys. In spite of the fact that these commercial Prolog systems have
progressively dropped their support for parallelism (this is mostly due to commer-
cial reasons—the high cost of maintaining the parallel execution mechanisms), these
systems demonstrate that we possess the technology for developing effective and
efficient Prolog systems exploiting a single form of parallelism.

Although very general models for parallel execution of logic programs (exploiting
multiple forms of parallelism) have been proposed, e.g., the Extended Andorra Model
(EAM) (described later in this section), they have not yet been efficiently realized.
A compromise approach that many researchers have been pursuing, long before
the EAM was conceived, is that of combining techniques that have been effective
in single-parallelism systems to obtain efficient systems that exploit more than
one source of parallelism in logic programs26. The implementation of the Basic
Andorra Model [Haridi 1990; Warren 1987a], namely, Andorra-I [Santos Costa et al.
1991b] can be viewed in that way since it combines (determinate) dependent and-
parallelism, implemented using techniques from JAM [Crammond 1992], with or-
parallelism, implemented using the Binding Arrays technique [Lusk et al. 1990;
Warren 1987c]. Likewise, the PEPSys model [Westphal et al. 1987; Baron et al.
1988], the AO-WAM [Gupta and Jayaraman 1993b], ROPM [Kalé 1985; Ramkumar
and Kalé 1989; 1992], ACE [Gupta et al. 1994; Gupta et al. 1993], the PBA models
[Gupta et al. 1994; Gupta et al. 1993], SBA [Correia et al. 1997], FIRE [Shen
1997], and the COWL models [Santos Costa 1999] have attempted to combine
independent and-parallelism with or-parallelism; these models differ with each other
in the environment representation technique they use for supporting or-parallelism
and in the flavor of and-parallelism they support. One should also note that, in

26Simulations have shown that indeed better speed-ups will be achieved if more than one source

of parallelism are exploited [Shen 1992b; Shen and Hermenegildo 1991; 1996b].
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fact, Conery’s model described earlier is an and-or parallel model [Conery 1987b]
since solutions to goals may be found in or-parallel. Models combining independent
and-parallelism, or-parallelism and (determinate) dependent and-parallelism have
also been proposed [Gupta et al. 1991]. The abstract execution models that these
systems employ (including those that only exploit a single source of parallelism)
can be viewed as subsets of the EAM with some restrictions imposed, although
this is not how they were conceived. In subsequent subsections, we review these
various systems that have been proposed for combining more than one source of
parallelism.

The problems faced in implementing a combined and- and or-parallel system are
unfortunately not only the sum of problems faced in implementing and-parallelism
and or-parallelism individually. In the combined system the problems faced in
one may worsen those faced in the other, especially those regarding control of
execution, representation of environment, and memory management. This should
come as no surprise. The issues which are involved in handling and-parallelism
and or-parallelism impose requirements that are antithetical to each other on the
resulting execution model. For example, or-parallelism focuses on improving the
separation between the parallel computations, by assigning separate environments
to the individual computing agents; and-parallelism relies on the ability of different
computing agents to cooperate and share environments to construct a single solution
to the problem.

An issue that combined systems also have to face is whether they should support
sequential Prolog semantics. The alternatives to supporting Prolog semantics are:

(1) consider only pure Prolog programs for parallel execution; this was the approach
taken by many early proposals, e.g., AO-WAM [Gupta and Jayaraman 1993b]
and ROPM [Kalé 1985]; or,

(2) devise a new language that will allow extra-logical features but in a controlled
way, e.g., PEPSys [Ratcliffe and Syre 1987; Westphal et al. 1987; Chassin de
Kergommeaux and Robert 1990].

The disadvantage with both these approaches is that existing Prolog programs
cannot be immediately parallelized. Various approaches have been proposed that
allow support for Prolog’s sequential semantics even during parallel execution [San-
tos Costa 1999; Correia et al. 1997; Castro et al. 1999; Ranjan et al. 2000; Gupta
et al. 1994; Gupta et al. 1994; Santos Costa et al. 1991c].

Another issue that arises in systems that exploit independent and-parallelism is
whether to recompute solutions of independent goals, or to reuse them. For example,
consider the following program for finding “cousins at the same generation” taken
from [Ullman 1988]:
sg(X, X) :- person(X).

sg(X, Y) :- parent(X, Xp), parent(Y, Yp), sg(Xp, Yp).

In executing a query such as ?- sg(fred, john) under a (typical) purely or-
parallel or a purely independent and-parallel or a sequential implementation, the
goal parent(john, Yp) will be recomputed for every solution to parent(fred,

Xp)27. This is clearly redundant since the two parent goals are independent of

27Respecting Prolog semantics, a purely independent and-parallel system can avoid recomputation
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each other. Theoretically, it would be better to compute their solutions separately,
take a crossproduct (join) of these solutions, and then try the goal sg(Xp, Yp)

for each of the combinations. In general, for two independent goals G1 and G2

with m and n solutions respectively, the cost of the computation can be brought
down from m ∗ n to m + n by computing the solutions separately and combining
them through a crossproduct—assuming the cost of computing the crossproduct is
negligible.28 However, for independent goals with very small granularity, the gain
from solution sharing may be overshadowed by the cost of computing the cross-
product etc., therefore, such goals should either be executed serially, or they should
be recomputed instead of being shared [Gupta et al. 1993]. Independent goals that
contain side-effects and extra-logical predicates should also be treated similarly
[Gupta et al. 1993; Gupta and Santos Costa 1996]. This is because the number
of times, and the order in which, these side-effects will be executed in the solution
sharing approach will be different from that in sequential Prolog execution, altering
the meaning of the logic program. Thus, if we were to support Prolog’s sequential
semantics in such parallel systems, independent goals will have to be recomputed.
This is indeed the approach adopted by systems such as ACE [Gupta et al. 1994]
and the PBA model [Gupta et al. 1993], which are based on an abstraction called
Composition-tree that represents Prolog’s search tree in a way that or-parallelism
and independent and-parallelism become explicitly apparent in the structure of the
tree itself [Gupta et al. 1994; Gupta et al. 1993].

6.2 Scheduling in And/Or-Parallel Systems

The combination of and- and or-parallelism offers additional challenges. During
and-parallel execution, the scheduler is in charge of assigning subgoals to the work-
ers. In presence of or-parallelism, the scheduler is in charge of assigning alternatives
to the different workers. When allowing both kinds of parallelism to be exploited
at the same time, the system needs to deal with an additional level of schedul-
ing, i.e., determining whether an idle worker should perform or-parallel work or
and-parallel work. The problem has been studied in depth by Dutra [1994; 1996].
The solution, which has been integrated in the Andorra-I system [Santos Costa
et al. 1991a], relies on organizing workers into teams, where each team exploits or-
parallelism while each worker within a team exploits and-parallelism. The top-level
scheduler dynamically manages the structure of the teams, allowing migration of
workers from one team to the other—used to perform load-balancing at the level of
and-parallelism—as well as allowing the dynamic creation of new teams—used to
load-balance or-parallelism. Different strategies have been compared to decide how
to reconfigure the teams. For example, in [Dutra 1994] two strategies are compared:

—work-based strategy: in which task sizes are estimated at run-time and used to
decide workers’ allocation;

—efficiency-based strategy: in which allocation of workers is based on their current
efficiency—i.e., the percentage of time they spent doing useful computation.

of independent goals but most existing ones do not.
28This, as practice suggests, will not always be the case.
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The two strategies have been compared in Andorra-I and the results have been
reported in [Dutra 1994; 1996]. The comparison suggests that work-based strategies
works well when the estimate of the task size is sufficiently precise; furthermore, if
the grain size is small the reconfigurer tends to be called too frequently and/or the
scheduler causes excessive task switches. The efficiency-based strategies seems to
scale up better with increasing number of workers, reducing idle time and number
of reconfigurations.

6.3 Models for And/Or-Parallelism

We now briefly describe the systems that combine more than one sources of paral-
lelism in logic programming.

6.3.1 The PEPSys Model. The PEPSys model [Westphal et al. 1987; Baron
et al. 1988; Chassin de Kergommeaux and Robert 1990] combines and- and or-
parallelism using a combination of techniques of time-stamping and hashing win-
dows for maintaining multiple environments. In PEPSys (as already discussed in
Sec. 3.2), each node in the execution tree has a process associated with it. Each
process has its own hash-window. All the bindings of conditional variables gener-
ated by a process are time-stamped and stored in that process’ hash-window. Any
PEPSys process can access the stacks and hash-windows of its ancestor processes.
The time-stamp associated with each binding permits it to distinguish the relevant
binding from the others in the ancestor processes’ stacks and hash-windows.

Independent and-parallel goals have to be explicitly annotated by the program-
mer. The model can handle only two and-parallel subgoals at a time. If more than
two subgoals are to be executed in and-parallel, the subgoals are nested in a right
associative fashion. If or-parallelism is nested within and-parallelism then and-
parallel branches can generate multiple solutions. In this case the cross-product
(join) of the left-hand and right-hand solution sets must be formed. A process
is created for each combination of solutions in the cross-product set. Each such
process can communicate with its two ancestor processes (one corresponding to
the left and-branch and other corresponding to the right and-branch) that created
the corresponding solution. Access to the bindings of these ancestor processes is
handled by join cells. A join cell contains a pointer to the hash-window of the
left and-branch process and to the hash-window of the right and-branch process.
It also contains a pointer to the hash-window that was current at the time of the
and-parallel split (Fig. 24). Looking up a variable binding from a goal after the
and-parallel join works as follows: the linear chain of hash-windows is followed
in the usual way until a join cell is reached. Now a branch becomes necessary.
First the right-hand process is searched by following the join-cell’s right-hand side
hashed window chain. When the least-common-hash-window is encountered control
bounces back to the join-cell and the left branch is searched.

The basic scheme for forming the cross-product, gathering the left-hand solutions
and the right-hand solutions in solution-lists and eagerly pairing them, relies on the
fact that all solutions to each side are computed incrementally and co-exist at the
same time in memory to be paired with newly arriving solutions to the other side.
However, if all solutions to the and-parallel goal on the right have been found and
backtracked over, and there are still more solutions for the and-parallel goal to
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Clause p consists of the AND-parallel goals r and s with
two solutions each. The join cells are marked by double
horizontal bars and their least-common-hash-window.

Fig. 24. Join Cells

the left remaining to be discovered, then the execution of the right goal will be
restarted after discovery of more solutions of the goal to the left (hence PEPSys
uses a combination of goal-reuse and goal-recomputation).

The PEPSys model uses time-stamping and hash windows for environment repre-
sentation. This doesn’t permit constant time access to conditional variables. There-
fore, access to conditional variables is expensive. However, environment creation
is a constant time operation. Also a worker does not need to update any state
when it switches from one node to another since all the information is recorded
with the or-tree. In PEPSys sharing of and-parallel solutions is not complete be-
cause the right hand and-parallel subgoal may have to be recomputed again and
again. Although recomputing leads to economy of space, its combination with cross-
product computation via join cells makes the control algorithm very complex. Due
to this complexity, the actual implementation of PEPSys limited the exploitation of
and-parallelism to the case of deterministic goals [Chassin de Kergommeaux 1989].
PEPSys was later modified and evolved into the ElipSys System [Véron et al. 1993]:
the hashed windows have been replaced with Binding Arrays and it has also been
extended to handle constraints. In turn, ElipSys evolved into the parallel support
for the ECLiPSe constraint logic programming system—where or-parallelism only
is exploited, using a combination of copying and recomputation [Herold 1995].

6.3.2 The ROPM Model. ROPM (Reduce-Or Parallel Model) [Kalé 1991] was
devised by Kalé in his Ph.D. Thesis [Kalé 1985]. The model is based on a modifica-
tion of the And-Or tree, called the Reduce-Or Tree. There are two types of nodes
in the a Reduce-Or tree, the Reduce-nodes and the Or-nodes. The Reduce nodes
are labeled with a query (i.e., a set of goals) and the or-nodes are labeled with a
single literal. To prevent global checking of variable binding conflicts every node
in the tree has a partial solution set (PSS) associated with it. The PSS consists of
a set of substitutions for variables that make the subgoal represented by the node
true. Every node in the tree contains the bindings of all variables that are either
present in the node or are reachable through this node. The Reduce-Or tree is
defined recursively as follows [Kalé 1991]:
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(1) A Reduce node labeled with the top level query and with an empty PSS is a
Reduce-Or tree.

(2) A tree obtained by extending a Reduce-Or tree using one of the rules below is
a Reduce-Or tree:

(a) Let Q be the set of literals in the label of a Reduce node R. Corresponding
to any literal L in Q, one may add an arc from R to a new Or-node O labeled
with an instance of L. The literal must be instantiated with a consistent
composition of the substitutions from the PSS of subgoals preceding L in
Q.

(b) To any Or-node, labeled with a goal G, one may add an arc to a new
REDUCE node corresponding to some clause of the program, say C, whose
head unifies with G. The body of C with appropriate substitutions resulting
from the head unification becomes the label of the new Reduce node (say)
R. If the query is empty, i.e., the clause is a ‘fact’, the PSS associated with
R becomes a singleton set. The substitution that unifies the goal with the
fact becomes the only member of the set.

(c) Any entry from the PSS of the Reduce node can be added to the PSS of
its parent Or-node. A substitution can be added to the PSS of a Reduce
node R representing a composite goal Q if it is a consistent composition of
the substitutions, one for each literal of Q, from the PSS’s of the children
(Or-nodes) of R.

ROPM associates a Reduce Process with every Reduce node and an Or Process
with every Or-node. The program clauses in ROPM are represented as Data Join
Graphs (DJGs), in which each arcs of the graph denotes a literal in the body of the
clause (Fig. 25).

DJGs are a means of expressing and-parallelism and are similar in spirit to Con-
ery’s data-flow graph. A set of variable binding tuples, called a relation (PSS), is
associated with each arc and each node of the DJG. The head of a clause is matched
with a subgoal by an Or process. A reduce process is spawned to execute the body
of the clause. In the reduce process, whenever a binding tuple is available in the
relation of a node k, subgoals corresponding to each of the arcs emanating from
k will be started, which leads to the creation of new Or processes. When a solu-
tion for any subgoal arrives, it is inserted in corresponding arc relation. The node
relation associated with a node n is a join of the arc-relations of all its incoming
arcs. So when a solution tuple is inserted in an arc-relation, it is joined with all
the solution tuples in the arc relations of its parallel arcs that originated from the
same tuple in the lowest common ancestor node of the parallel arcs [Ramkumar
and Kalé 1990]. A solution to the top level query is found, when the PSS of the
root-node becomes non-empty.

In ROPM multiple environments are represented by replicating them at the time
of process creation. Thus each Reduce- or Or-process has its own copy of vari-
able bindings (the Partial Solution Set above) which is given to it at the time
of spawning. Thus process creation is an expensive operation. ROPM is process
based model rather than a stack based one. As a result, there is no backtracking,
and hence no memory reclamation that is normally associated with backtracking.
Computing the join is an expensive operation since the actual bindings of variables
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quicksort(L, Sorted) :- partition(L, L1, L2),
quicksort(L1, Sorted1), quicksort(L2, Sorted2),
append(Sorted1, Sorted2, Sorted).

0 1 2 3
partition(...)

quicksort(L1,...)

quicksort(L2,...)

append(....)

Fig. 25. An Example Data Join Graph

have to be cross-produced to generate the tuple relations of the node (as opposed to
using symbolic addresses to represent solutions, as done in PEPSys [Westphal et al.
1987] and AO-WAM [Gupta and Jayaraman 1993b]), and also since the sets being
cross-produced have many redundant elements. Much effort has been invested in
eliminating unnecessary elements from the constituent sets during join computation
[Ramkumar and Kalé 1990]. However, efficiency of the computation of the join has
been made more efficient by using structure sharing. One advantage of the ROPM
model is that if a process switches from one part of the reduce-or tree to another,
it doesn’t need to update its state at all since the entire state information is stored
in the tree.

ROPM model has been implemented in the ROLOG system on a variety of
platforms. ROLOG is a complete implementation, which includes support for side
effects [Kalé et al. 1988]. However, although ROLOG yields very good speed-
ups, its absolute performance does not compare very well with other parallel logic
programming systems, chiefly because it is a process based model and uses the
expensive mechanism of environment closing [Ramkumar and Kalé 1989; Conery
1987a] for multiple environment representation.

ROLOG is probably the most advanced process-based model proposed to handle
concurrent exploitation of and-parallelism and or-parallelism. Other systems based
on similar models have also been proposed in the literature, e.g., OPAL [Conery
1992]—where execution is governed by a set of And and Or processes: And processes
solve the set of goals in the body of a rule, and Or processes coordinate the solution
of a single goal with multiple matching clauses. And and Or processes communicate
solely via messages.

6.3.3 The AO-WAM model. This model [Gupta and Jayaraman 1993b; Gupta
1994] combines or-parallelism and independent and-parallelism. Independent and-
parallelism is exploited in the same way as in &-Prolog and &ACE, and solutions
to independent goals are reused (and not recomputed). To represent multiple or-
parallel environments in the presence of independent and-parallelism, the AO-WAM
extends the binding arrays technique [Warren 1984; 1987c].

The model works by constructing an Extended And-Or Tree. Execution continues
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like a standard or-parallel system until a CGE is encountered, at which point a
cross-product node that keeps track of the control information for the and-parallel
goals in the CGE is added to the or-parallel tree. New or-parallel sub-trees are
started for each independent and-parallel goal in the CGE. As solutions to goals
are found, they are combined with solutions of other goals to produce their cross-
product. For every tuple in the cross-product set, the continuation goal of the
CGE is executed (i.e., its tree is constructed and placed as a descendant of the
cross-product node).

As far as maintenance of multiple environments is concerned, each worker has
its own binding array. In addition, each worker has a base array. Conditional
variables are bound to a pair of numbers consisting of an offset in the base array
and a relative offset in the binding array. Given a variable bound to the pair <i,

v>, the location binding array[base array[i] + v] will contain the binding for
that variable. For each and-parallel goal in a CGE, a different base-array index is
used. Thus the binding array contains a number of smaller binding arrays, one for
each and-parallel goal, that are accessible through the base array. When a worker
produces a solution for an and-parallel goal and computes its corresponding cross-
product tuples, then before it can continue execution with the continuation goal
of the CGE, it has to load all the conditional bindings made by other goals in the
CGE that are present in the selected tuple (See Fig. 26). Also, on switching nodes,
a worker must update its binding array and base array with the help of the trail,
like in Aurora.

6.3.4 The ACE Model. ACE (And/Or-parallel Copying-based Execution of logic
programs) [Gupta et al. 1994; Pontelli and Gupta 1997b] is another model that has
been proposed for exploiting or- and independent and-parallelism simultaneously.
ACE29 employs stack-copying developed for MUSE to represent multiple environ-
ments. And-parallelism is exploited via CGEs. ACE employs goal recomputation
and thus can support sequential Prolog semantics. ACE can be considered as
subsuming &-Prolog/&ACE and MUSE. The implementation can be envisaged as
multiple copies of &ACE [Pontelli et al. 1995] running in parallel with each other,
where each copy corresponds to a different solution to the top-level query (analogous
to the view of MUSE as multiple sequential Prologs running in or-parallel). When
there is only and-parallelism or or-parallelism, ACE behaves exactly like &ACE and
MUSE respectively. When there is or-parallelism and independent and-parallelism
present together, both are simultaneously exploited.

Multiple environments are maintained by stack-copying as in MUSE. In ACE,
available workers are divided into teams like Andorra-I, where different teams ex-
ecute in or-parallel with each other while different workers within a team execute
in independent and-parallel with each other. A team executes the top level query
in and-parallel like &ACE until a choice point is created, at which point other
teams may steal the untried alternatives from this choice point. Before doing so,
the stealing team has to copy the appropriate stacks from the team from which
the alternative was picked. When the choice point from which the alternative is

29Note that the ACE platform has been used to experiment with both combined and/or-parallelism

as well as dependent and-parallelism, as illustrated in Sec. 5.5.3.
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Fig. 26. Execution in the AO-WAM

picked is not in the scope of any CGE, all the operations are very similar to those in
MUSE. However, the situation is slightly more complex when an alternative from a
choice point in the scope of a CGE is stolen by a team. To illustrate this, consider
the case where a team selects an untried alternative from a choice point created
during execution of a goal gi inside the CGE (true ⇒ g1& . . . &gn). This team will
copy all the stack segments in the branch from the root to the CGE including the
parcall frame.30 It will also have to copy the stack segments corresponding to the
goals g1 . . . gi−1 (i.e., goals to the left). The stack segments up to the CGE need

30As mentioned earlier, the parcall frame [Hermenegildo 1986b] records the control information

for the CGE and its independent and-parallel goals.
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Fig. 27. Execution in ACE

to be copied because each different alternative within gi might produce a different
binding for a variable, X, defined in an ancestor goal of the CGE. The stack seg-
ments corresponding to goals g1 through gi−1 have to be copied because execution
of the goals following the CGE might bind a variable defined in one of the goals
g1 . . . gi−1 differently. The stack segments of the goal gi from the CGE up to the
choice point from where the alternative was taken also need to be copied (note that
because of this, an alternative can be picked up for or-parallel processing from a
choice point that is in the scope of the CGE only if goals to the left, i.e., g1 . . . gi−1,
have finished). The execution of the alternative in gi is begun, and when it finishes,
the goals gi+1 . . . gn are started again so that their solutions can be recomputed.
Because of recomputation of independent goals ACE can support sequential Prolog
semantics [Gupta et al. 1993; Gupta et al. 1994; Gupta and Santos Costa 1996].

This is also illustrated in Fig. 27. The four frames represent four teams working
on the computation. The second team recomputes the goal b, while the third and
fourth teams takes the second alternative of b respectively from the first and second
team.

6.3.5 The COWL Models. The actual development of an or-parallel system
based on stack-copying requires a very careful design of the memory management
mechanisms. As mentioned in Sec. 3.5.2 whenever a copy operation takes place, we
would like to transfer data structures between agents without the need to perform
any pointer-relocation operation. In systems like MUSE and ACE, this has been
achieved by using memory mapping techniques which allow the different workers
to map their stacks at the same virtual addresses. This technique works well for
purely or-parallel systems, but tends to break down when or-parallelism is paired
with concurrent exploitation of independent and-parallelism. Stack-copying takes
advantage of the fact that the data to be transferred are occupying contiguous
memory locations. In a team-based system organization, we need to transfer data
structures which have been created by different team members; such data structures
are likely to be not contiguous in memory, thus requiring a complex search process
to determine the relevant areas to be copied. Furthermore, possible conflicts may
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arise during copying if parts of the address space of a team have been used for
different purposes in different teams.

A simple solution to these issues have been recently proposed by V. Santos Costa
in the Copy-On-Write for Logic Programs (COWL) methods [Santos Costa 1999].
In COWL, each team occupies a different segment of the overall address space (thus,
avoiding conflicts between members of different teams during copying), called team
workspace. Whenever copying is required, one team simply copies the other team’s
space into its own. Copying is performed using operating system support for copy-
on-write—two workers share the same data until one of the tries to write on them;
at that point a copy of the data is made and the two workers go their separate
ways with private copies of such data. Copying only at “write” time makes copies
of data areas (particularly read-only copies) very inexpensive. Thus, in COWL,
when copying is required, the destination team releases its own memory mapping
and maps (as copy-on-write) the source team’s space. Thus, actual data are not
copied immediately, but they are automatically transferred by the operating system
whenever they are needed. The basic COWL scheme (also known as αCOWL) has
been also extended to optimize the copying by avoiding wasting computation locally
performed in the team and reusable after the copying operation (i.e., avoid one team
to copy data structures from its own workspace), leading to a second model, called
βCOWL.

6.3.6 Paged Binding Array based Model. ACE can be seen as combining &-
Prolog/&ACE with MUSE, while preserving Prolog semantics. In a similar vein,
one can combine &-Prolog/&ACE with Aurora while preserving Prolog semantics.
However, as in the case of AO-WAM, the binding array technique has to be extended
to accommodate independent and-parallelism. The Paged Binding Array (PBA)
based model does this by dividing the binding array into pages and maintaining
a Page Table with a binding array. Like ACE, available workers are divided into
teams, where different teams work in or-parallel with each other, while different
workers within a team work in independent and-parallel. Different and-parallel
computations within an or-parallel computation share the same binding array (thus
the paged binding array and the page table is common to all workers in a team),
however, each one of them will use a different page, requesting a new page when
it runs out of space in the current one. Like AO-WAM, conditional variables are
bound to a pair of numbers where the first element of the pair indicates the page
number in the binding array, and the second element indicates the offset within
this page.

The PBA based model also employs recomputation of independent goals, and
therefore can support Prolog semantics [Gupta et al. 1993; Gupta and Santos Costa
1996]. Thus, when a team steals an alternative from a goal inside a CGE, then it
updates its binding array and page table so that the computation state that exists
at the corresponding choice point is reflected in the stealing team. The team then
restarts the execution of that alternative, and of all the goals to the right of the
goal in the CGE that led to that alternative. In cases, where the alternative stolen
is from a choice point outside the scope of any CGE, the operations involved are
very similar to those in Aurora.

The Paged Binding Array is a very versatile data structure and can also be used
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Fig. 28. The Paged Binding Array

for implementing other forms of and-or parallelism [Gupta et al. 1994].
So far we have only considered models that combine or- and independent and-

parallelism. There are models that combine independent and-parallelism and de-
pendent and-parallelism such as DDAS [Shen 1992a], described earlier, as well as
models that combine or-parallelism and dependent and-parallelism such as Andorra-
I [Santos Costa et al. 1991a]. Other combined independent and- and -or parallel
models have also been proposed [Biswas et al. 1988; Gupta et al. 1991].

6.3.7 The Principle of Orthogonality. One of the overall goals that has been
largely ignored in the design of and-or parallel logic programming systems is the
principle of orthogonality [Correia et al. 1997]. In an orthogonal design, or-parallel
execution should be unaware of and-parallel execution and vice versa. Thus, or-
thogonality allows the separate design of the data structures and execution mecha-
nisms for or-parallelism and and-parallelism. Achieving this goal is very ambitious.
Orthogonality implies that:

(1) each worker should be able to backtrack to a shared choice point and be aware
only of or-parallelism;

(2) whenever a worker enters the public part of the or-tree, the other workers
working in the team should be able to continue unaffected their and-parallel
computations.

Most existing proposals for combined and/or-parallelism do not meet the principle
of orthogonality. Let us consider for example the PBA model and let us consider
the computation as shown in Fig. 29.

Let us assume the following configuration:

(1) workers W1,1 and W1,2 compose the first team which is operating on the
parallel call on the left; worker W1,1 makes use of pages 1 and 3—page 1
used before choice point C1 while page 3 is used after that choice point—while
worker W1,2 makes use of page 2.

(2) worker W2,1 and W2,2 compose team number 2 which is working on the copy
of the parallel call (on the right). The computation originates from stealing
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Fig. 29. Lack of Orthogonality in PBA

one alternative from choice point C1. In this case, worker W2,2 makes use of
both pages 2 and 3.

If worker W2,1 backtracks and asks for a new alternative from the first team (one
of the alternatives of C2), then it will need to use page 3 for installing the bindings
created by the team 1 after the choice point C1. But for team 2 the page 3 is
not available (being used by W2,2 ). Thus worker W2,2 will be “affected” by
backtracking of W2,1 on a shared choice point.

Various solutions are currently under exploration to support orthogonality. Be-
tween the schemes proposed:

—the Shared Paged Binding Array (SPBA) [Gupta et al. 1994] extends the PBA
scheme by requiring the use of a global and shared paged binding array;

—the Sparse Binding Array [Correia et al. 1997] each conditional variable is guar-
anteed to have a binding array index which is unique in the whole computation
tree and relying on operating system techniques to maintain the large address
space that each worker needs to create (each worker needs virtual access to the
address space of each worker in the system);

—the COWL methods presented in Sec. 6.3.5.

A comparison between these three schemes has been presented in [Santos Costa
et al. 2000].

6.3.8 The Extended Andorra Model. The Extended Andorra Model (EAM) [War-
ren 1987a; Haridi and Janson 1990; Gupta and Warren 1992] and the Andorra
Kernel Language (AKL) (later renamed Agent Kernel Language) [Haridi and Jan-
son 1990] combine exploitation of or-parallelism and dependent and-parallelism.
Intuitively, both models rely on the creation of copies of the consumer goal for ev-
ery alternative of the producer and vice versa (akin to computing a join) and letting
the computation proceed in each such combination. Note that the EAM and the
Andorra Kernel Language are very similar in spirit to each other, the major differ-
ence being that while the EAM strives to keep the control as implicit as possible,
AKL gives the programmer complete control over parallel execution through wait
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guards. In the description below we use the term Extended Andorra Model in a
generic sense, to include models such as AKL as well.

The Extended Andorra Model is an extension of the Basic Andorra Model. The
Extended Andorra Model goes a step further and removes the constraint that goals
become determinate before they can execute ahead of their turn. However, goals
which do start computing ahead of their turn must compute only as far as the
(multiple) bindings they produce for the uninstantiated variables in their arguments
are consistent with those produced by the “outside environment.” If such goals
attempt to bind a variable in the outside environment, they suspend. Once a
state is reached where execution cannot proceed, then each suspended goal which
is a producer of bindings for one (or more) of its argument variables “publishes”
these bindings to the outside environment. For each binding published, a copy
of the consumer goal is made and its execution continued. (This operation of
“publication” and creation of copies of the consumer is known as a “non-determinate
promotion” step.) The producer of bindings of a variable is typically the goal
where that variable occurs first. However, if a goal produces only a single binding
(i.e., it is determinate) then it doesn’t need to suspend, it can publish its binding
immediately, thus automatically becoming the producer for that goal irrespective
of whether it contains the left most occurrence of that variable or not (as in Basic
Andorra Model). An alternative way of looking at the EAM is to view it as an
extension of the Basic Andorra model where non-determinate goals are allowed to
execute locally as far as they do not influence the computation going on outside of
them. This amounts to including in the Basic Andorra Model the ability to execute
independent goals in parallel.

There have been different interpretations of the Extended Andorra Model, but the
essential ideas are summarized below. Consider the following very simple program:

p(X, Y) :- X = 2, m(Y).

p(X, Y) :- X = 3, n(Y).

q(X, Y) :- X = 3, t(Y).

q(X, Y) :- X = 3, s(Y).

r(Y) :- Y = 5.

?- p(X, Y), q(X, Y), r(Y).

When the top-level goal begins execution, all three goals will be started concur-
rently. Note that variables X, and Y in the top-level query are considered to be
in the environment “outside” of goals p, q, and r (this is depicted by existential
quantification of X and Y in Fig. 30). Any attempt to bind these variables from
inside these goals will lead to the suspension of these goals. Thus, as soon as these
three goals begin execution, they immediately suspend since they try to constrain
either X or Y. Of these, r is allowed to proceed and constrain Y to value 5, because
it binds Y determinately. Since p will be reckoned the producer goal for the binding
of X, it will continue as well and publish its binding. The goal q will, however,
suspend since it is neither determinate nor the producer of bindings of either X or
Y. To resolve the suspension of q and make it active again, the non-determinate
promotion step will have to be performed. The non-determinate promotion step
will match all alternatives of p with those for q, resulting in only two combination
remaining active (the rest having failed because of non-matching bindings of X).
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Fig. 30. Execution in EAM

These steps are shown in Fig. 30.
The above is a very coarse description of the EAM, a full description of the

model is beyond the scope of this paper. More details can be found elsewhere
[Warren 1987a; Haridi and Janson 1990; Gupta and Warren 1992]. The EAM
is a very general model, more powerful than the Basic Model, since it can nar-
row down the search even further by local searching. It also exploits more paral-
lelism since it exploits all major forms of parallelism present in logic programs: or-,
independent-and, and dependent-and parallelism, including both determinate and
non-determinate dependent-and parallelism. A point to note is that the EAM does
not distinguish between independence and dependence of conjunctive goals: it tries
to execute them in parallel whenever possible. Also note that the EAM subsumes
both the committed choice logic programming (with non-flat as well as flat guards)
and non-deterministic logic programming—i.e., general Prolog.

The generality and the power of the Extended Andorra Model makes its efficient
implementation quite difficult. A sequential implementation of one instance of the
EAM (namely, the Andorra Kernel Language or AKL) has been implemented at
Swedish Institute of Computer Science [Janson and Montelius 1991]. A parallel
implementation has also been undertaken by [Moolenaar and Demoen 1993]. A
very efficient parallel implementation of AKL has been proposed by Montelius in
the Penny system [Montelius 1997; Montelius and Ali 1996]. This implementation
combines techniques from or-parallelism and committed choice languages. Although
AKL includes non-determinism, it differs from Prolog both in syntax and semantics.
However, automatic translators that transform Prolog program into AKL programs
have been constructed [Bueno and Hermenegildo 1992]. The development of AKL
has been discontinued, although many of the ideas explored in the AKL project
have been reused in the development of the concurrent constraint language Oz
[Haridi et al. 1998; Popov 1997].

More faithful models to support the execution of the EAM have been recently de-
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scribed and are currently under implementation—e.g., the BEAM model [Lopes and
Santos Costa 1999]. The literature also contains proposals of extensions of Prolog
that tries to more naturally integrate EAM-style of computations. One example
is represented by the Extended Dynamic Dependent scheme [Gupta and Pontelli
1999a]. This model has been developed as an extension of the Filtered-Binding
model used in the ACE system to support dependent and-parallelism. The model
extends Prolog-like dependent and-parallelism by allowing the deterministic promo-
tion step of EAM. This typically allows improved termination properties, reduced
number of suspensions during parallel execution, and simple forms of coroutining.
These results can be achieved reusing most of the existing (and efficient) technology
developed for pure dependent and-parallelism, thus avoiding dramatic changes in
the language semantics and novel and complex implementation mechanisms.

7. DATA PARALLELISM VS. CONTROL PARALLELISM

Most of the research has focused on exploiting parallelism only on MIMD archi-
tectures, viewing or-parallelism and and-parallelism as forms of control-parallelism.
Intuitively, this means that parallelism is exploited by creating multiple threads
of control, which are concurrently performing different operations. An alternative
view has been to treat specialized forms of or- and and-parallelism as data paral-
lelism. Data parallelism relies on the idea of maintaining a single thread of control,
which concurrently operates on multiple data instances. Similarly to what we have
considered so far, we can talk about data or-parallelism and data and-parallelism.

In both cases, the focus is on the parallelization of repetitive operations which
are simultaneously applied to a large set of data. This pattern of execution is very
frequent in logic programs, as exemplified by frequently used predicates such as the
following (simplified) map predicate:

map([],[]).

map([X|Y],[X1|Y1]) :-

process(X,X1),

map(Y,Y1).

where the computation indicated by process is repeated for each element of the
input list. In this context, data parallelism implies that exploitation of paral-
lelism is driven by the computation data-flow, in contrast with standard and- and
or-parallelism, which relies on the parallelization of the control structure of the
computation (i.e., the construction of the derivation tree).

Exploitation of data parallelism has been shown to lead to good performance on
both SIMD and MIMD architectures; the relatively regular format of the parallelism
exploited allows simpler and more efficient mechanisms, thus leading to reduced
overhead and improved efficiency even on MIMD architectures.

7.1 Data Or-Parallelism

In a data or-parallel system, exemplified by the MultiLog system [Smith 1996], or-
parallelism of a highly regular nature is exploited on a SIMD architecture. There is
one control thread but multiple environments. Data or-parallelism as exploited in
MultiLog is useful in applications of generate-and-test nature, where the generator
binds a variable to different values taken from a set. Consider the following program:
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member(X, [X|T]).

member(X, [Y|T]) :- member(X, T).

?- member(Z, [1,2,..,100]), process(Z).

In a standard Prolog execution the solutions to member/2 are enumerated one by
one via backtracking, and each solution is separately processed by process. The
member goal will be identified as the generator in the MultiLog system. For such
a goal, a subcomputation is begun, and all solutions are collected and turned into
a disjunction of substitutions for variable Z. The process goal is then executed in
data parallel for each binding received by Z. Note that the executions of the various
process goals differ only in the value of the variable Z. Therefore, only one control
thread is needed which operates on data that is different on different workers, with
unification being the only data parallel operation. It is also important to observe
that process/1 is executed once, rather than once per solution of the member/2

predicate.
Multilog provides a single syntactic extension w.r.t. Prolog: the disj annotation

allows the compiler to identify the generator predicate. Thus, for a goal of the form
?- disj generate(X) Multilog will produce a complete description of the set of
solutions (as a disjunction of bindings for X) before proceeding with the rest of the
execution.

For a (restricted) set of applications—e.g., generate and test programs—a data
or-parallel system such as MultiLog has been shown to produce good speed-ups.

Techniques, such as the Last Alternative Optimization [Gupta and Pontelli 1999b],
have been developed to allow traditional or-parallel systems to perform more effi-
ciently in presence of certain instances of data or-parallelism.

7.2 Data And-Parallelism

The idea of data parallel execution can also be also naturally applied to and-parallel
goals: clauses that contain recursive calls can be unfolded and the resulting goals
executed in data parallel. This approach, also known as recursion parallelism, has
been successfully exploited through the notion of Reform Compilation [Millroth
1990]. Consider the following program:

map([],[]).

map([X|Y],[X1|Y1]) :- proc(X,X1), map(Y,Y1).

?- map([1, 2, 3], Z).

Unfolding this goal we obtain:

Z = [X1,X2,X3|Y], proc(1,X1), proc(2,X2), proc(3,X3),map([],Y).

Note that the three proc goals are identical except for the data values and can be
executed in data parallel—i.e., with a single thread of control and multiple data
values. Thus, the answer to the above query can be executed in two data parallel
steps.

In more general terms, given a recursively defined predicate p

p(X̄) : − ∆.

p(X̄) : − Φ, p(X̄ ′),Ψ.

if a goal p(ā) is determined to perform at least n recursive calls to p, then the
second clause can be unfolded as:
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p(X̄) : −Φ1, . . . ,Φn
︸ ︷︷ ︸

(1)

, p(b̄)
︸︷︷︸

(2)

,Ψn, . . . ,Ψ1
︸ ︷︷ ︸

(3)

.

where Φi and Ψi are the instances of goals Φ and Ψ obtained at the ith level
of recursion. This clause can be executed by first running, in parallel, the goals
Φ1, . . . ,Φn, then executing p(b̄) (typically the base case of the recursion), and finally
running the goals Ψn, . . . ,Ψ1 in parallel as well. In practice the unfolded clause is
not actually constructed, instead the head unification for the n levels of recursion
is performed at the same time as the size of the recursion is determined, and the
body of the unfolded clause is compiled into parallel code.

Reform Prolog [Bevemyr et al. 1993] is an implementation of a restricted ver-
sion of the reform compilation approach. In particular only predicates performing
integer-recursion or list-recursion and for which the size of the recursion is known
at the time of the first call are considered for parallel execution.

To achieve efficient execution, Reform Prolog requires the generation of deter-
ministic bindings to the external variables, thus relieving the system from the need
to perform complex backtracking on parallel calls. Compile-time analysis tools have
been proposed to guarantee the conditions necessary for the parallel execution and
to optimize execution [Lindgren 1993]. Reform Prolog has been ported on different
MIMD architectures, such as Sequent [Bevemyr et al. 1993] and KSR-1 [Lindgren
et al. 1995].

Exploitation of data and-parallelism explicitly through bounded quantification
has also been proposed [Barklund and Millroth 1992]. In this case, the language is
extended with constructs used to express bounded forms of universal quantification
(e.g., ∀(X ∈ S)ϕ). Parallelism is exploited by concurrently executing the body
of the quantified formula (e.g., ϕ) for the different values in the domain of the
quantifiers (e.g., the different values in the set S).

Both traditional and-parallelism and data-parallelism offer advantages and dis-
advantages. Traditional and-parallel models offer generality, being able to exploit
parallelism in a large class of programs (including the parallelism exploited by
data parallelism techniques). Data and-parallelism techniques on the other hand
offer increased performance for a restricted class of programs. As a result, var-
ious authors have worked on integrating data and-parallelism into more tradi-
tional and-parallelism schemes [Debray and Jain 1994; Pontelli and Gupta 1995a;
Hermenegildo and Carro 1996]. The basic idea is to identify instances of data
and-parallelism in generic and-parallel programs, and to use of specialized and
more efficient execution mechanisms to handle these cases within the more general
and-parallel systems. These techniques have been shown to allow obtaining the
advantages of both types of parallelism within the same system.

8. PARALLEL CONSTRAINT LOGIC PROGRAMMING

Although the main focus of this survey is parallel execution of Prolog programs, we
would like to briefly overview in this section the most relevant efforts which have
been made towards parallel execution of Constraint Logic Programming (CLP).
This is of interest since on one hand many of the techniques adopted for parallel
execution of CLP are directly derived from those used in the parallelization of
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Prolog computations, and, on the other hand, the study of parallelism in CLP
has led to important generalizations in the concepts and techniques developed for
traditional logic programming.

8.1 Or-Parallel Constraint Logic Programming

A parallel implementation of Chip [Van Hentenryck 1989] has been realized using
the PEPSys or-parallel system. In this implementation, parallelism is exploited
from the choice points generated by the labeling phase introduced during resolu-
tion of finite domain constraints (which is in effect a form of data or-parallelism).
The results reported in [Van Hentenryck 1989] are encouraging, and prove that
or-parallel techniques are also quite suitable in the context of CLP execution. Ex-
periments in the parallelization of ECLiPSe using a recomputation-based approach
have also been presented [Mudambi and Schimpf 1994]. In [Gregory and Yang 1992]
finite domain constraint solving operations are mapped to the parallel execution
mechanisms of Andorra-I.

Firebird [Tong and Leung 1993] is a data parallel extension of flat GHC (a com-
mitted choice language) with finite domain constraints, relying on the data or-
parallel execution obtained from the parallelization of the labeling phase of CLP.
Execution includes non-deterministic steps, leading to the creation of parallel choice
points, and indeterministic steps, based on the usual committed choice execution
behavior. Arguments of the predicates executed during an indeterministic step can
possibly be vectors of values—representing the possible values of a variable—and
are explored in data parallel. The overall design of Firebird resembles the model
described earlier for Multilog. The implementation of Firebird has been developed
on a DECmpp SIMD parallel architecture, and has shown considerable speedups
for selected benchmarks (e.g., about two orders of magnitude of speedup for the
n-queens benchmark using 8,192 processors) [Tong and Leung 1995].

Other recent work studies the direct parallelization of the sources of non-determinism
inherent in the operational semantics of CLP solvers. The work in [Pontelli and
El-Kathib 2001] presents a methodology for exploring in parallel the alternative
elements of a constraint domain, while [Ruiz-Andino et al. 1999] revisits the tech-
niques used to parallelize arc-consistency algorithms (e.g., parallel AC3 [Samal and
Henderson 1987] and AC4 [Nguyen and Deville 1998]) and applies them to the
specific case of indexical constraints in CLP over finite domains. Similar work ex-
ploring interactions between search strategies in constraint logic programming and
parallelism has also been presented [Schulte 2000; Perron 1999].

8.2 And-Parallel Constraint Logic Programming

An interesting issue that appears in the context of and-parallel constraint logic
programming is that the traditional notions of independence do not hold. Consider
for example the parallelization of two procedure calls p(X),q(Z) in the following
two situations:

(a) main :- X > Y, Z > Y, p(X) & q(Z), ...

(b) main :- X > Y, Y > Z, p(X) & q(Z), ...

In case (a) the store contains (X>Y,Z>Y) before calling q and q, whereas in case
(b) the store contains (X>Y,Y>Z). The simple pointer aliasing reasoning implied by
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the definition of strict independence does not apply directly. However, p cannot in
any way affect q in case (a), while this could be possible in case (b), i.e., the two
calls are clearly independent in case (a) while they are (potentially) dependent in
case (b).

Notions of independence which apply to general constraint programming (and can
thus deal with the situation above) have been proposed by [Garćıa de la Banda et al.
2000; Garćıa de la Banda 1994]. For example, two goals p and q are independent
if all constraints posed during the execution of q are consistent with the output
constraints of p.31 The following is a sufficient condition for the previous definition
but which only needs to look at the state of the store prior to the execution of the
calls to be parallelized (for example, using run-time tests which explore the store
c), in the same spirit as the strict-independence condition for the Herbrand case.
Assuming the calls are p(x̄) and q(ȳ) then the condition is:

(x̄ ∩ ȳ ⊆ def(c)) and (∃−x̄c ∧ ∃−ȳc → ∃−ȳ∪x̄c)

where x̄ is the set of arguments of p, def(c) is the set of variables constrained to
a unique value in c, and ∃−x̄ represents the projection of the store on the vari-
ables x̄ (the notion of projection is predefined for each constraint system). The
first condition states that the variables which are shared between the goals in the
program text must be bound at run-time to unique values. The second condition
is perhaps best illustrated through an example. In the two cases above, for (a)
c = {X > Y, Z > Y} we have ∃−{X}c = ∃−{Z}c = ∃−{X,Z}c = true and therefore p and
q are independent. For (b) c = {X > Y, Y > Z} we have ∃−{X}c = ∃−{Z}c = true

while ∃{X,Z}c = X > Z and therefore p and q are not independent. While checking
these conditions accurately and directly can be inefficient in practice, the process
can be approximated at compile-time via analysis or at run-time via simplified
checks on the store. A first and-parallel CLP system, based on an extension of
the &-Prolog/Ciao system, and using the notions of independence presented has
been reported in [Garćıa de la Banda et al. 2000], showing promising performance
results. Also, as mentioned earlier, applying the notions of constraint independence
at the finest granularity level—the level of individual bindings and even the indi-
vidual steps of the constraint solver—has been studied formally in [Bueno et al.
1994; 1998], leading to what is believed to be the “most parallel” model for logic-
and constraint logic programming proposed to date which preserves correctness and
theoretical efficiency.

Another reported proposal is GDCC [Terasaki et al. 1992], an extension of KL1
(running on the PSI architecture) with constraint solving capabilities—constructed
following the cc model proposed by Saraswat [Saraswat 1989]. GDCC provides two
levels in the exploitation of parallelism: (i) the gdcc language is an extension of the
concurrent KL1 language, which includes ask and tell of constraints; this language
can be executed in parallel using the parallel support provided by KL1; (ii) gdcc
has been interfaced to a number of constraint solvers (e.g., algebraic solvers for non-

31As mentioned earlier, this actually implies a better result even for Prolog programs since its
projection on the Herbrand domain is a strict generalization of previous notions of non-strict
independence. E.g., the sequence p(X), q(X) can be parallelized if p is defined for example as

p(a) and q is defined as q(a).
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linear equations), which are themselves capable of solving constraint in parallel.

9. IMPLEMENTATION AND EFFICIENCY ISSUES

Engineering an efficient, practical parallel logic programming system is by no means
an easy task.32 There are numerous issues one has to consider, some of the broad
ones are discussed below:

9.1 Process-based vs. Processor-based

Broadly speaking there are two approaches that have been taken in implementing
parallel logic programming systems which we loosely call the Process-based approach
and the Processor-based approach respectively.

In the process-based approaches, prominent examples of which are Conery’s And-
Or Process Model [Conery 1987b] and the Reduce-Or Process Model [Kalé 1985],
a process is created for every goal encountered during execution. These processes
communicate bindings and control information to each other to finally produce a so-
lution to the top-level query. Process-based approaches have also been used for im-
plementing committed choice languages [Shapiro 1987]. Process-based approaches
are somewhat more suited for implementation on non-shared memory MIMD pro-
cessors,33 at least from a conceptual point of view, since different processes can be
mapped to different processors at runtime quite easily.

In processor-based (or “multi-sequential”) approaches, multiple threads are cre-
ated ahead of time that run in parallel to produce answers to the top level query
by being assigned parts of the computation, and, typically, each thread is a WAM-
like processor. Examples of processor-based systems are &-Prolog, Aurora, MUSE,
Andorra-I, PEPSys, AO-WAM, DDAS, ACE, PBA, etc. Processor-based systems
are more suited for shared memory machines, although techniques like stack-copying
and stack-splitting show a high degree of locality in memory reference behavior and
hence are suited for non-shared memory machines as well [Ali 1988; Ali et al. 1992;
Gupta and Pontelli 1999c]. As has been shown by the ACE model, MUSE’s stack-
copying technique can be applied to and-or parallel systems as well, so one can
envisage implementing a processor-based system on a non-shared memory machine
using stack-copying [Villaverde et al. 2001; Gupta et al. 1992]. Alternatively, one
could employ scalable virtual shared memory architectures that have been proposed
[Warren and Haridi 1988] and built (e.g., KSR, SGI Origin, IBM NUMA-Q).

Ideally, a parallel logic programming system is expected to satisfy the following
two requirements [Hermenegildo 1986b]:

—On a single processor, the performance of the parallel system should be com-
parable to sequential logic programming implementations (i.e., there should be
limited slow-down compared to a sequential system). To this end, the parallel
system should be able to take advantage of the sequential compilation technology
[Warren 1983; Aı̈t-Kaci 1991; Van Roy 1990] that has advanced rapidly in the
last two decades, and thus the basic implementation should be WAM-based.

32For instance, many person-years of efforts have been spent in building some of the existing
systems, such as &-Prolog, Aurora, MUSE, ACE, and Andorra-I.
33Some more process-based proposals for distributed execution of logic programs can be found in

[Kacsuk 1990].
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—Parallel task creation and management should introduce a small overhead (which
implies using a limited number of processes and efficient scheduling algorithms).

Systems such as &-Prolog, Aurora, MUSE, and ACE indeed get very close to
achieving these goals. Experience has shown that process-based system lose out on
both the above counts. Similar accounts have been reported also in the context
of committed choice languages (where the notion of process-based matches well
with the view of each subgoal as an individual process which is enforced by the
concurrent semantics of the language)—indeed the fastest parallel implementation
of committed choice languages (e.g., [Crammond 1992; Rokusawa et al. 1996]) rely
on a processor-based implementation. In the context of Prolog, the presence of
backtracking makes the process model too complex for non-deterministic parallel
logic programming. Further, the process-based approaches typically exploit par-
allelism at a level that is too fine grained, resulting in high parallel overhead and
unpromising absolute performances (but good speed-ups because the large parallel
overhead gets evenly distributed!). Current processor-based systems are not only
highly efficient, they can easily assimilate any future advances that will be made
in the sequential compilation technology. However, it must be pointed out that
increasing the granularity of processes to achieve better absolute performance has
been attempted for process-based models with good results [Ramkumar and Kalé
1992].

9.2 Memory Management

Memory management, or managing the memory space occupied by run-time data
structures such as stacks, heaps, etc., is an issue that needs to be tackled in any
parallel system. In parallel logic programming systems memory management is
further complicated due to the presence of backtracking that may occur on failure
of goals.

In sequential Prolog implementations, memory is efficiently utilized because the
search tree is constructed in a depth-first order, so that at any given moment a
single branch of the tree resides in the stack. The following two rules always hold
in a traditional sequential systems:

(1) If a node n1 in the search tree is in a branch to the right of another branch
containing node n2, then the data structures corresponding to node n2 would
be reclaimed before those of n1 are allocated.

(2) If a node n1 is the ancestor of another node n2 in the search tree, then the data
structures corresponding to n2 would be reclaimed before those of n1.

As a result of these two rules, space is always reclaimed from the top of the
stacks during backtracking in logic programming systems which perform a depth-
first search of the computation tree, as Prolog does.

However, as shown in [Lusk et al. 1990; Ali and Karlsson 1990b; Hermenegildo
1986b], in parallel logic programming systems things are more complicated. First,
these rules may not hold: two branches may be simultaneously active due to or-
parallelism (making rule 1 difficult to enforce), or two conjunctive goals may be
simultaneously active due to and-parallelism (making rule 2 difficult to enforce).
Of course, in a parallel logic system, usually, each worker has its own set of stacks
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(the multiple stacks are referred to as a cactus stack since each stack corresponds to
a part of the branch of the search tree), so it is possible to enforce the two rules in
each stack to ensure that space is reclaimed only from the top of individual stacks.
If this restriction is imposed, then while memory management becomes easier, some
parallelism may be lost since an idle worker may not be able to pick available work
in a node because doing so will violate this restriction. If this restriction is not
imposed, then it becomes necessary to deal with the “garbage slot” problem—
namely, a data structure that has been backtracked over is trapped in the stack
below a goal that is still in use—and the “trapped goal” problem—namely, an active
goal is trapped below another, and there is no space contiguous to this active goal
to expand it further, which results in the LIFO nature of stacks being destroyed.

There are many possible solutions to these problems [Hermenegildo 1986b; Pon-
telli et al. 1995; Shen and Hermenegildo 1994; 1996a]. The approach taken by many
parallel systems (e.g., the ACE and DASWAM and-parallel systems and the Aurora
or-parallel system) is to allow trapped goals and garbage slots in the stacks. Space
needed to expand a trapped goal further is allocated at the top of the stack (result-
ing in “stack-frames”—such as choice points and goals descriptors—corresponding
to a given goal becoming non-contiguous). Garbage slots created are marked as
such, and are reclaimed when everything above them has also turned into garbage.
This technique is also employed in the Aurora, &-Prolog, and Andorra-I systems.
In Aurora the garbage slot is referred to as a ghost node. If garbage slots are al-
lowed, then the system will use up more memory, but work-scheduling becomes
simpler and processing resources are utilized more efficiently.

While considerable effort has been invested in the design of garbage collection
schemes for sequential Prolog implementations (e.g., [Pittomvils et al. 1985; Ap-
pleby et al. 1988; Older and Rummell 1992; Bekkers et al. 1992]), considerably more
limited effort has been placed on adapting these mechanisms to the case of parallel
logic programming systems. Garbage collection is indeed a serious concern, since
parallel logic programming systems tend to consume more memory than sequen-
tial ones (e.g., use of additional data structures, such as parcall frames, to manage
parallel executions). For example, results reported for the Reform Prolog system
indicates that on average 15% of the execution time is spent in garbage collection.
Some early work on parallelization of the garbage collection process (applied mostly
to basic copying garbage collection methods) can be found in the context of parallel
execution of functional languages (e.g., [Halstead 1984]). In the context of parallel
logic programming, two relevant efforts are:

—the proposal by [Ali 1995], which provides a parallel version of a copying garbage
collector, refined to guarantee avoidance of unnecessary copying (e.g., copy the
same data twice) and load balancing between workers during garbage collection;

—the proposal by [Bevemyr 1995], which extends the work by Ali into a genera-
tional copying garbage collector (objects are divided in generations, where newer
generations contains objects more recently created; the new generation is garbage
collected more often then the old one).

Generational garbage collection algorithms have also been proposed in the context
of parallel implementation of committed choice languages (on PIM architectures)
[Ozawa et al. 1990; Xu et al. 1989].
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9.3 Optimizations

A system that builds an and-or tree to solve a problem with non-determinism may
look trivial to implement at first, but experience shows that it is quite a difficult
task. A naive parallel implementation may lead to a slow down, or, may incur a
severe overhead compared to a corresponding sequential system. The parallelism
present in these frameworks is typically very irregular and unpredictable; for this
reason, parallel implementations of non-deterministic languages typically rely on
dynamic scheduling. Thus, most of the work for partitioning and managing parallel
tasks is performed during run-time. These duties are absent from a sequential
execution and represent parallel overhead. Excessive parallel overhead may cause
a naive parallel system to run many times slower on one processor compared to a
similar sequential system.

A large number of optimizations have been proposed in the literature to improve
the performance of individual parallel logic programming systems (e.g., [Ramku-
mar and Kalé 1989; Shen 1994; Pontelli et al. 1996]). Nevertheless, limited effort
has been placed in determining overall principles which can be used to design over-
the-border optimization schemes for entire classes of systems. A proposal in this
direction has been put forward by Gupta and Pontelli [1997; 1996]. The proposal
presents a number of general optimization principles that can be employed by im-
plementors of parallel non-deterministic systems to keep the overhead incurred for
exploiting parallelism low. These principles have been used to design a number of
optimization schemes—such as the Last Parallel Call Optimization [Pontelli et al.
1996] (used for independent and-parallel systems and also sketched in [Hermenegildo
1986a]) and the Last Alternative Optimization [Gupta and Pontelli 1999b] (used for
or-parallel systems).

Parallel execution of a logic programming system can be viewed as the parallel
traversal/construction of an and-or tree. Given the and-or tree for a program, its se-
quential execution amounts to traversing the and-or tree in a pre-determined order.
Parallel execution is realized by having different workers concurrently traversing dif-
ferent parts of the and-or tree in a way consistent with the operational semantics
of the programming language. By operational semantics we mean that data-flow
(e.g., variable bindings) and control-flow (e.g., input/output operations) depen-
dencies are respected during parallel execution (similar to loop parallelization of
Fortran programs, where flow dependencies have to be preserved). Parallelism al-
lows overlapping of exploration of different parts of the and-or tree. Nevertheless,
as mentioned earlier, this does not always translate to an improvement in perfor-
mance. This happens mainly because of the following reasons:

—the tree structure developed during the parallel computation needs to be explic-
itly maintained, in order to allow for proper management of non-determinism and
backtracking—this requires the use of additional data structures, not needed in
sequential execution. Allocation and management of these data structures repre-
sent overhead during parallel computation with respect to sequential execution;

—the tree structure of the computation needs to be repeatedly traversed in order
to search for multiple alternatives and/or cure eventual failure of goals, and such
traversal often requires synchronization between the workers. The tree structure
may be traversed more than once because of backtracking, and because idle
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workers may have to find nodes that have work after a failure takes place or a
solution is reported (dynamic scheduling). This traversal is much simpler in a
sequential computation, where the management of non-determinism is reduced
to a linear and fast scan of the branches in a predetermined order.

Based on this it is possible to identify ways of reducing these overheads.
Traversal of Tree Structure: there are various ways in which the process of traversing
the complex structure of a parallel computation can be made more efficient:

(1) simplification of the computation’s structure: by reducing the complexity of
the structure to be traversed it should be possible to achieve improvement in
performance. This principle has been reified in the already mentioned Last Par-
allel Call Optimization and the Last Alternative Optimization, used to flatten
the computation tree by collapsing contiguous nodes lying on the same branch
if some simple conditions hold.

(2) use of the knowledge about the computation (e.g., determinacy) in order to
guide the traversal of the computation tree: information collected from the
computation may suggest the possibility of avoiding traversing certain parts of
the computation tree.
This has been reified in various optimizations, including the Determinate Pro-
cessor Optimization [Pontelli et al. 1996].

Data Structure Management: since allocating data structures is generally an ex-
pensive operation, the aim should be to reduce the number of new data structures
created. This can be achieved by:

(1) reusing existing data structures whenever possible (as long as this does preserve
the desired execution behavior).
This principle has been implemented, for example, in the Backtracking Families
Optimization [Pontelli et al. 1996].

(2) avoiding allocation of unnecessary structures: most of the new data structures
introduced in a parallel computation serve two purposes: (i) support the man-
agement of the parallel parts of the computation; (ii) support the management
of non-determinism.
This principle has been implemented in various optimizations, including the
shallow backtracking optimization [Carlsson 1989] and the Shallow Parallelism
Optimization [Pontelli et al. 1996].

This suggests possible conditions under which one can avoid creation of additional
data structures: (i) no additional data structures are required for parts of the
computation tree which are potentially parallel but are actually explored by the
same computing agent (i.e., potentially parallel but practically sequential); (ii) no
additional data structures are required for parts of the computation that will not
contribute to the non-deterministic nature of the computation (e.g., deterministic
parts of the computation).

9.4 Work Scheduling

The Work Scheduler, or the software that matches available work with workers,
is a very important component of a parallel system. Parallel logic programming
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systems are no exceptions. If a parallel logic system is to obey Prolog semantics—
including supporting execution of pruning and other order-sensitive operations—
then scheduling becomes even more important, because in such a case, for or-
parallelism, the scheduler should prefer goals in the left branches of the search tree
to those in the branches to the right, while for and-parallelism prefer goals to the
left over those to right. In parallel systems that support cuts, work that is not in
the scope of any cut should be preferred over work that is in the scope of a cut,
because it is likely that the cut may be executed causing a large part of the work
in its scope to go wasted [Ali and Karlsson 1992b; Beaumont and Warren 1993;
Sindaha 1992; Beaumont 1991].

The scheduler is also influenced by how the system manages its memory. For
instance, if the restriction of only reclaiming space from the top of a stack is imposed
and garbage slots/trapped goals are disallowed, then the scheduler has to take this
into account and at any moment schedule only those goals meeting these criteria.

Schedulers in systems that combine more than one form of parallelism have to
figure out how much of the resources should be committed to exploiting a particular
kind of parallelism. For example, in Andorra-I and ACE systems, that divide
available workers into teams, the scheduler has to determine the sizes of the teams,
and decide when to migrate a worker from a team that has no work left to another
that does have work, and so on [Dutra 1994; 1995].

The fact that Aurora, quite a successful or-parallel system, has about five sched-
ulers built for it [Calderwood and Szeredi 1989; Beaumont et al. 1991; Sindaha
1992; Butler et al. 1988], is a testimony to the importance of work-scheduling for
parallel logic programming systems. Design of efficient and flexible schedulers is
still a topic of research [Dutra 1994; 1996; Ueda and Montelius 1996].

9.5 Granularity

The implementation techniques mentioned before for both or- and and-parallelism
have proven sufficient for keeping the overheads of communication, scheduling, and
memory management low and obtaining significant speedups in a wide variety of
applications on shared memory multiprocessors (starting from the early paradig-
matic examples: the Sequent Balance and Symmetry series). However, current
trends point towards larger multiprocessors but with less uniform shared memory
access times. Controlling in some way the granularity (execution time and space) of
the tasks to be executed in parallel can be a useful optimization in such machines,
and is in any case a necessity when parallelizing for machines with slower intercon-
nections. The latter include, for example, networks of workstations or distribution
of work over the Internet. It is desirable to have a large granularity of computa-
tion, so that the scheduling overhead is a small fraction of the total work done by a
worker. The general idea is that if the gain obtained by executing a task in parallel
is less than the overheads required to support the parallel execution, then the task
is better executed sequentially.

The idea of granularity control is to replace parallel execution with sequential
execution or vice versa based on knowledge (actual data, bounds, or estimations)
of task size and overheads. The problem is challenging because, while the basic
communication overhead parameters of a system can be determined experimentally,
the computational cost of the tasks (e.g., procedure calls) being parallelized, as well
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as the amount of data that needs to be transferred before and after a parallel call,
usually depend on dynamic characteristics of the input data. In the following
example, we consider for parallel execution q (which, assuming it is called with X

bound to a list of numbers, adds one to each element of the list):

..., r(X) & q(X,Y), ...

q([],[]).

q([I|Is],[I1|Os]):- I1 is I+1, q(Is,Os).

The computational cost of a call to q (and also the communication overheads) are
obviously proportional to the number of elements in the list. The characterization
of input data required has made the problem difficult to solve (well) completely at
compile-time.

The Aurora and MUSE or-parallel systems keep track of granularity by tracking
the richness of nodes, i.e., the amount of work—measured in terms of number of
untried alternatives in choice points—that is available in the subtree rooted at a
node. Workers will tend to pick work from nodes that have high richness. The
Aurora and MUSE systems also make a distinction between the private and public
parts of the tree to keep granularity high. Essentially, work created by another
worker can only be picked up from the public region. In the private region, the
worker that owns that region is responsible for all the work generated, thereby
keeping the granularity high. In the private region execution is very close to se-
quential execution, resulting in high efficiency. Only when the public region runs
out of work, a part of the private region of some worker is made public. In these
systems, granularity control is completely performed at run-time.

Modern systems [López-Garćıa et al. 1996; Shen et al. 1998; Tick and Zhong 1993]
implement granularity control using the two-phase process proposed in [Debray
et al. 1990; López-Garćıa et al. 1996]:

(1) at compile-time a global analysis tool performs an activity typically called cost
estimation. Cost estimates are parametric formulae expressing lower or upper
bounds to the time complexity of the different (potentially) parallel tasks, as a
function of certain measures of input data.

(2) at run-time the cost estimates are instantiated, before execution of the task
and compared with predetermined thresholds; parallel execution of the task is
allowed only if the cost estimate is above the threshold.

Programs are then transformed at compile-time into semantically equivalent coun-
terparts but which automatically control granularity at run-time based on such
functions, following the scheme:

( cost estimate (n1, . . . , nk) > τ ⇒ goal1 & . . . & goalm)

where the m subgoals will be allowed in a parallel execution only if the result of
the cost estimate is above the threshold τ . The parameters of cost estimate are
those goal input arguments which directly determine the time-complexity of the
parallel subgoals—as identified by the global analysis phase. In the example above,
these tools derive cost functions such as, for example, 2 ∗ length(X) + 1 for q (i.e.,
the unit of cost is in this case a procedure call, where the addition is counted for
simplicity as one procedure call). If we assume that we should parallelize when the
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total computation cost is larger than “100”, then we can transform the parallel call
to p and q above into:

..., Cost=2*length(X)+1, ( Cost>100 -> r(X) & q(X,Y)

; r(X) , q(X,Y) ), ...

(using an if-then-else). Clearly, many issues arise. For example, the cost of per-
forming granularity control can be factored into the decisions. The cost functions
can be simplified and related back to data structure sizes—list length in the case
above, i.e., the call will only be parallelized if the length of the list is larger than a
statically pre-computed value:

..., ( length_greater_than(X,50) -> r(X) & q(X,Y)

; r(X) , q(X,Y) ), ...

This in turn has inspired the development of algorithms for keeping track of data
sizes at run-time [Hermenegildo and López-Garćıa 1995]. As another example, a
modified annotation for the recursive clause of Fibonacci may look as follows:

fib(N,Res) :-

N1 is N-1, N2 is N-2,

( N > 5 -> fib(N1,R1) & fib(N2,R2) ;

fib(N1,R1), fib(N2,R2)

),

R is R1 + R2.

(under the simplistic assumption that for values of N larger than 5 it is deemed
worthwhile to exploit parallelism).

Also, the same techniques used for cost bounding allow deriving upper and lower
bounds on the sizes of the structures being passed as arguments [López-Garćıa et al.
1996]. This information can be factored into parallelization decisions (it affects
the threshold). For example, in the example above, the argument size analysis
(assuming that C is the cost of sending one element of a list, and a distributed
setting where data is sent and returned eagerly) will infer that the communication
cost is 2 ∗ length(X) ∗ C. Interestingly, the Computation > Overhead condition
(2∗length(X)+1 > 2∗length(X)∗C) can be determined statically to be always true
(and parallelize unconditionally) or false (and never parallelize) depending only on
the value of C, which in turn can perhaps be determined experimentally in a simple
way. Performance improvements have been shown to result from the incorporation
of this type of grain size control, specially for systems with medium to large parallel
execution overheads [López-Garćıa et al. 1996].

Clearly, there are many interesting issues involved: techniques for derivation of
data measures, data size functions, and task cost functions, program transforma-
tions, program optimizations, etc. Typically, the techniques are proved correct,
again typically using the notions of approximation and bounding, formalized as ab-
stract interpretations. The key problem is clearly the automatic derivation of the
functions which bound the time-complexity of the given tasks. The first proposals
in this regard are those made by [Debray et al. 1990] and [Tick and Zhong 1993].
Both the schemes are capable of deriving cost estimation which represent upper
bounds for the time-complexity of the selected tasks.
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The use of upper-bounds is sub-optimal in the context of granularity control—the
fact that the upper bound is above a threshold does not guarantee that the actual
time-complexity of the task is going to be above the threshold [Debray et al. 1994].
For this reason more recent efforts have focused on the derivation of lower-bound
estimates [Debray et al. 1997; King et al. 1997]. A very effective implementation
of some of these techniques, both for and- and or-parallelism, have been realized
in the GraCos system [Debray et al. 1990; López-Garćıa et al. 1996]. This system
adds mode and type analysis to the “upper-bounds” CASLOG system [Debray
and Lin 1993] (and modifies it to compute lower-bounds following [Debray et al.
1997]) and has been integrated in the Ciao logic programming system [Hermenegildo
et al. 1999]. Lower bound analysis is considerably more complex than upper-bound
analysis. First of all, it requires the ability of determining properties of tasks with
respect to failure [Debray et al. 1997]. If we focus on the computation of a single
solution, then for a clause C : H : −B1, . . . , Bk one can make use of the relation

CostC(n) ≥
r∑

i=1

CostBi
(φi(n)) + h(n)

where

—n is the representation of the size of the input arguments to the clause C

—φi(n) is the (lower bound) of the relative size of the input arguments to Bi

—Br is the rightmost literal in C which is guaranteed to not fail

—h(n) is the lower bound of the cost of head unification and tests for the clause C

The lower bound Costp for a predicate p is obtained by taking the minimum of the
lower bounds for the clauses defining p.

For the more general case of estimation of lower bound for the computation of
all the solutions, it becomes necessary to estimate the lower bound to the number
of solutions that each literal in the clause will return. In [Debray et al. 1997] the
problem is reduced to the computation of the chromatic polynomial of a graph.

In [King et al. 1997] bottom-up abstract interpretation techniques are used to
evaluate lower-bound inequalities (i.e., inequalities of the type dmin ≤ tmin(l),
where dmin represents the threshold to allow spawning of parallel computations,
while tmin(l) represents the lower bound to the computation time for input of size
l) for large classes of programs.

Metrics different from task complexity have been proposed to support granularity
control. A related effort is the one by [Shen et al. 1998], which makes use of the
amount of work performed between major sources of overheads—called distance
metric—to measure granularity.

9.6 Parallel Execution Visualization

Visualization of execution has been found to be of tremendous help in debugging
and fine-tuning general parallel programs. Parallel execution of logic programs is
no exception. In fact, in spite of the emphasis on implicit exploitation of paral-
lelism, speedups and execution times can be affected by the user through the use
of user annotations (e.g., CGEs) and/or simple program transformations—such as
folding/unfolding of subgoals or modification of the order of subgoals and clauses.
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Fig. 31. Snapshot of Must Fig. 32. Snapshot of VisAndOr

The goal of a visualization tool is to produce a visual representation of certain
observable characteristics of the parallel execution. Each observable characteristic
is denoted by an event ; the parallel execution is thus represented by a collection
of time-annotated events, typically called a trace. Many tools have already been
developed to visualize parallel execution of logic programs. The large majority of
the tools developed so far are post-mortem visualization tools: they work by logging
events during parallel execution, and then using this trace for creating a graphical
representation of the execution.

Different design choices have been considered in the development of the different
tools [Carro et al. 1993; Vaupel et al. 1997]. The existing systems can be distin-
guished according to the following criteria:

—Static vs. Dynamic: static visualization tools produce a static representation
of the observable characteristics of the parallel computation; on the other hand,
dynamic visualization tools produce an animated representation, synchronizing
the development of the representation with the time-stamps of the trace events.

—Global vs. Local: global visualization tools provide a single representation which
captures all the different observable characteristics of the parallel execution; local
visualization tools instead allow the user to focus on specific characteristics.

The first visualization tools for parallel logic programs were developed for the
Argonne Model [Disz and Lusk 1987] and for the ElipSys system [Dorochevsky and
Xu 1991]. The former was subsequently adopted by the Aurora System under the
name Aurora Trace. The MUSE group also developed visualization tools, called
Must, for visualizing or-parallel execution—which is itself based on the Aurora
Trace design. All these visualizers for or-parallel execution are dynamic and show
the dynamically growing or-parallel search tree. Fig. 31 shows a snapshot of Must—
circles denote choice points and the numbers denote the position of the workers in
the computation tree.

Static representation tools have been developed for both or- and and-parallelism.
Notable efforts are represented by VisAndOr [Carro et al. 1993] and ParSee [Kusa-
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Fig. 33. Snapshot of VACE Fig. 34. Snapshot of VisAll

lik and Prestwich 1996]. Both the tools are capable of representing either or- or
and-parallelism—although neither of them can visualize the concurrent exploitation
of the two forms of parallelism34—and they are aimed at producing a static repre-
sentation of the distribution of work between the available workers. Fig. 32 shows a
snapshot of VisAndOr’s execution. VisAndOr’s effort is particularly relevant, since
it is one of the first tools with such characteristics to be developed, and because it
defined a standard in the design of trace format—adopted by various other systems
[Vaupel et al. 1997; Kusalik and Prestwich 1996; Fonseca et al. 1998]. Must and
VisAndOr have been integrated in the ViMust system; a time-line moves on the
VisAndOr representation synchronized with the development of the computation
tree in Must [Carro et al. 1993].

Other visualization tools have also been developed for dependent and-parallelism
in the context of committed choice languages, for example those for visualizing KL1
and GHC execution [Tick 1992; Aikawa et al. 1992].

Tools have also been developed for visualizing combined and/or-parallelism, as
well as to provide a better balance between dynamic and static representations—
e.g., VACE [Vaupel et al. 1997], based on the notion of C-trees [Gupta et al. 1994],
and VisAll [Fonseca et al. 1998]. Fig. 33 shows a snapshot of VACE.

A final note is for the VisAll system [Fonseca et al. 1998]. VisAll provides a
universal visualization tool which subsumes the features offered by most of the ex-
isting ones—including the ability to visualize combined and/or-parallel executions.
VisAll receives as input a trace together with the description of the trace format—
thus allowing it to process different trace formats. Fig. 34 shows a snapshot of
VisAll representing an and-parallel computation.

The importance of visualization tools in the development of a parallel logic pro-
gramming system cannot be stressed enough. They help not only the users in

34Although VisAndOr can depict Andorra-I executions: i.e., or-parallelism and deterministic

dependent and-parallelism.
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debugging and fine-tuning their programs, but also the system implementors who
need to understand execution behavior for fine-tuning their scheduling solutions.

9.7 Compile-time Support

As should be clear at this point, compile-time support is crucial for the efficiency
of parallel logic programming systems. Compile-time analysis tools based on Ab-
stract Interpretation techniques [Cousot and Cousot 1992] have been extensively
used in many parallel logic programming systems. Without attempting to be ex-
haustive, we point out some examples. For instance, &-Prolog, AO-WAM, ACE,
and PBA all rely on sharing and freeness analysis for automatic generation of CGEs
at compile-time [Muthukumar and Hermenegildo 1992a; 1991; Jacobs and Langen
1992]. ACE makes use of abstract interpretation techniques to build extended CGEs
for dependent and-parallelism [Pontelli et al. 1997]. The Andorra-I system relies
on determinacy analysis done at compile-time for detecting determinacy of goals at
runtime [Santos Costa et al. 1991c; Debray and Warren 1989]. Compile-time analy-
sis can hence be used for making many decisions, which would have otherwise been
taken at run-time, at compile-time itself, e.g., detection of determinacy, generation
of CGEs, etc. Compile-time analysis has also been used for transforming Prolog
programs into AKL programs [Bueno and Hermenegildo 1992], and has also been
used for supporting Prolog semantics in parallel systems that contain dependent
and-parallelism, e.g., Andorra-I [Santos Costa et al. 1991c]. Compile-time analysis
has also been employed to estimate granularity of goals, to help the scheduler in
making better decisions as to which goal to pick [Zhong et al. 1992; Debray et al.
1990], to improve independence in and-parallel computations [Pontelli and Gupta
1998], etc.

Compile-time analysis has a number of potential applications in parallel logic
programming, in addition to those already mentioned: for instance, in detecting
speculative and non-speculative regions at compile-time, detecting whether a side-
effect will be ever executed at run-time or not, detecting producer and consumer
instances of variables, detecting whether a variable is conditional or not, etc. Com-
piler support will play a crucial role in future parallel logic programming systems.
However, a great deal of research is still needed in building more powerful compile-
time analysis tools that can infer more properties of the program at compile-time
itself to make parallel execution of logic program more efficient.

9.8 Architectural Influence

As for any parallel system, also in the case of parallel logic programming the char-
acteristics of the underlying architecture have profound impact on the performance
of the system.

A number of experimental works have been conducted to estimate the influence
of different architectural parameters on individual parallel systems:

(1) Hermenegildo and Tick [Tick 1987; Hermenegildo and Tick 1989] proposed
various studies estimating the performance of and-parallel systems on shared
memory machines taking into account different cache coherence algorithms,
cache sizes, bus widths, etc. These early studies allowed predicting, for example,
that &-Prolog would later produce speedups over state of the art sequential
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systems even on quite fine-grained computations on shared-memory machines
that were not commercially available at the time.

(2) Montelius and Haridi [1997] have proposed detailed performance analysis of the
Penny system, mostly using the SIMICS Sparc processor simulator;

(3) Gupta and Pontelli [1999c] have used simulation studies (based on the use of
the SIMICS simulator) to validate the claim that stack-splitting improves the
locality of an or-parallel computation based on stack copying;

(4) Santos Costa et al. [1997] have also analyzed the performance of parallel logic
programming systems (specifically Aurora and Andorra-I) using processor sim-
ulators (specifically a simulator of the MIPS processor). Their extensive work
has been aimed at determining the behavior of parallel logic programming sys-
tems on parallel architectures (with a particular focus on highly scalable archi-
tectures, e.g., distributed shared memory machines). In [Santos Costa et al.
1997] the simulation framework adopted is presented, along with the devel-
opment of a methodology for understanding cache performance. The results
obtained have been used to provide concrete improvements to the implementa-
tion of the Andorra-I system [Santos Costa et al. 2000].

(5) The impact of cache coherence protocols on the performance of parallel Prolog
systems has been studied in more detail in [Dutra et al. 2000; Silva et al. 1999;
Calegario and Dutra 1999].

These works tend to agree on the importance of considering architectural parame-
ters in the design of a parallel logic programming systems. For example, the results
achieved by Costa et al. for the Andorra-I systems indicate that:

—or-parallel Prolog systems provide a very good locality of computation, thus the
system does not seem to require very large cache sizes;

—small cache blocks appear to provide better behavior, especially in presence of
or-parallelism—the experimental work by [Dutra et al. 2000] indicates a high-risk
of false-sharing in presence of blocks larger than 64 bytes;

—in [Dutra et al. 2000] compares the effect of Write Invalidate vs. Write Update as
cache coherence protocols. The study confirms the early results of [Hermenegildo
and Tick 1989; Tick 1987] and extends them underlining the superiority of a
particular version of the Write update algorithm (an hybrid method where each
node independently decides upon receiving an update request whether to update
the local copy of data or simply invalidate it).

Similar results have been reported in [Montelius and Haridi 1997], which underlines
the vital importance of good cache behavior and avoidance of false sharing for
exploitation of fine-grain parallelism in Penny.

10. APPLICATIONS AND APPLICABILITY

One can conclude from the discussion in the previous sections that a large body
of research has been devoted to the design of parallel execution models for Prolog
programs. Unfortunately, relatively modest emphasis has been placed on the study
of the applicability of these techniques to real-life problems.
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A relevant study in this direction has been presented in [Shen and Hermenegildo
1991; 1996b]. This work considered a comparatively large pool of applications
and studied their behavior with respect to the exploitation of or-parallelism, inde-
pendent and-parallelism and dependent and-parallelism. The pool of applications
considered includes traditional toy benchmark programs (e.g., n-queens, matrix
multiplication) as well as larger Prolog applications (e.g., Warren’s WARPLAN
planner, Boyer-Moore’s Theorem Prover, the Chat NLP application). The results
can be summarized as follows:

—Depending on their structure, there are applications that are very rich in either
form of parallelism—i.e., either they offer considerable or-parallelism and almost
no and-parallelism or vice versa.

—Neither of the two forms of parallelism is predominant over the other.

—Many applications offer moderate quantities of both forms of parallelism. In
particular, the real-life applications considered offered limited amounts of both
forms of parallelism. In these cases, experimental results showed that concurrent
exploitation of both forms of parallelism will benefit over exploitation of a single
form of parallelism.

The various implementations of parallel logic programming systems developed have
been effectively applied to speedup execution of various large real-life applications.
These include:

—independent and dependent and-parallelism has been successfully extracted from
Prolog-to-WAM compilers (e.g., the PLM compiler) [Pontelli et al. 1996];

—and-parallelism has been exploited from Static Analyzers for Prolog programs
[Hermenegildo and Greene 1991; Pontelli et al. 1996];

—Natural Language Processing applications have been very successfully parallelized
extracting both or- and and-parallelism—e.g., the Chat system [Santos Costa
et al. 1991a; Shen 1992b], the automatic translator Ultra [Pontelli et al. 1998],
the word-disambiguation application Artwork [Pontelli et al. 1998].

—Computational Biology applications—e.g., Aurora has been used to parallelize
Prolog applications for DNA sequencing [Lusk et al. 1993].

—both Aurora and ACE have been applied to provide parallel and concurrent
backbones for Internet-related applications [Szeredi et al. 1996; Pontelli 2000].

—Andorra-I has been used in the development of advanced traffic management
systems [Hasenberger 1995], used by British Telecom to control traffic flow on
their telephony network. Andorra-I has also been used in a variety of other
telecommunication applications [Crabtree 1991; Santos Costa et al. 1991b].

—Aurora has been used to develop a number of concrete applications. Particularly
important are those developed in the context of the Cubiq project:

(1) the EMRM system, a medical record management system, which supports
collection of medical information following the SOAP medical knowledge
model [Szeredi and Farkas 1996].

(2) The CONSULT credit rating system, which makes use of rule-based specifi-
cation of credit assessment procedures [IQSoft Inc. 1992].
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This body of experimental work indicates that the existing technology for parallel
execution of logic programs is effective when applied to large and complex real-life
Prolog applications. Further push for application of parallelism comes from the
realm of constraint logic programming. Preliminary work on the Chip and ECLiPSe
systems has demonstrated that the techniques described in this paper can be easily
applied to parallelization of the relevant phases of constraint handling. Considering
that most constraint logic programming applications are extremely computation-
intensive, the advantages of parallel execution are evident.

11. CONCLUSIONS AND FUTURE OF PARALLEL LOGIC PROGRAMMING

In this survey article we described the different sources of implicit parallelism
present in logic programming languages and the many challenges encountered in
exploiting them in the context of parallel execution of Prolog programs. Differ-
ent execution models proposed for exploiting these many kinds of parallelism were
surveyed. We also discussed some efficiency issues that arise in parallel logic pro-
gramming and presented a series of theoretical results ranging from formal notions
of independence to limits on implementation efficiency. Parallel logic programming
is a challenging area of research and will continue to be so, until the objective
of efficiently exploiting all sources of parallelism present in logic programs in the
most cost effective way is realized. This objective involves challenges at many lev-
els, from run-time systems and execution models to compile-time technology and
support tools.

From the point of view of run-time systems and execution models it can be
argued that, when compared with work done in other fields, particularly strong
progress has been made in the context of logic programming in abstract machines,
efficient task representation techniques, dynamic scheduling algorithms, and formal
definition of the advanced notions of independence (and guaranteed no-slowdown
conditions) that are needed to deal with the irregularity and speculation occur-
ing in search-based applications. As a result, the current state-of-the-art is that
there are very efficiently engineered systems such as &-Prolog and &ACE for in-
dependent and-parallelism, Aurora, MUSE, YAP, and ElipSys for or-parallelism,
DASWAM and ACE for dependent and-parallelism (and some efficient implemen-
tations of committed choice languages [Shapiro 1987; Hirata et al. 1992]) which have
been proved successful at achieving speedups over the state of the art sequential
implementations available at the time of their development.

The systems mentioned above exploit a single form of parallelism. A few systems
exist that efficiently exploit more than one source of parallelism (e.g., Andorra-I)
although new, promising ones are currently being designed and built [Gupta et al.
1994; Correia et al. 1997; Santos Costa 1999]. However, no system exists that
efficiently exploits all sources of parallelism present in logic programs. Efforts are
already under way to remedy this [Montelius 1997; Santos Costa 1999; Gupta et al.
1994; Pontelli and Gupta 1997b; Correia et al. 1997; Castro et al. 1999], and we
believe that this is one of the areas in which much of the research in parallel logic
programming may lie in the future. One approach to achieving this goal, inspired
by the duality [Pontelli and Gupta 1995b] and orthogonality [Correia et al. 1997]
principles and by views such as those argued in [Hermenegildo and CLIP Group
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1994], would be to configure an ideal parallel logic programming system as a true
“plug-and-play” system, where a basic Prolog kernel engine can be incrementally
extended with different modules implementing different parallelization strategies,
scheduling strategies, etc. (as well as other functionality not related to parallelism,
of course) depending on the needs of the user. We hope that with enough research
effort this ideal can be achieved.

From the point of view of compile-time technology, the result of the work out-
lined in previous sections is that quite robust parallelizing compilers exist for various
generalizations of independent and dependent and-parallelism, which automatically
exploit parallelism in complex applications. The accuracy, speed, and robustness
of these compilers has also been instrumental in demonstrating that abstract in-
terpretation provides a very adequate framework for developing provably correct,
powerful, and efficient global analyzers and, consequently, parallelizers. It can be
argued that, when compared with work done in other fields, particularly strong
progress has been made in the context of logic programming in developing tech-
niques for inter-procedural analysis and parallelization of programs with dynamic
data structures and pointers, in parallelization using conditional dependency graphs
(combining compile-time optimization with run-time independence tests), and in
domains for the abstraction of the advanced notions of independence that are needed
in the presence of speculative computations. More recently, independence notions,
analysis techniques, and practical tools have also been developed for the paral-
lelization of constraint logic programs and logic programs with dynamic execution
reordering (“delays”) [Garćıa de la Banda et al. 2000].

The current evolutionary trend in the design of parallel computer systems is
towards building heterogeneous architectures that consist of a large number of rela-
tively small-sized shared memory machines connected through fast interconnection
networks. Taking full advantage of the computational power of such architectures is
known to be a very difficult problem [Bader and JaJa 1997]. Parallel Logic program-
ming systems can potentially constitute a viable solution to this problem. However,
considerable research in the design and implementation of parallel logic program-
ming systems on distributed memory multiprocessors is still needed before compet-
itive speedups can be obtained routinely. Distributed implementation of parallel
logic programming systems is another direction where we feel future research effort
should be invested. There are many challenges in the efficient implementation of
distributed unification and maintaining program coordinated execution state and
data economically in a non-centralized way, as well as in the development of ade-
quate compilation technology (e.g., for granularity control). Fortunately, this is an
area where logic programming has already produced results clearly ahead of those
in other areas. As we have overviewed, interesting techniques have been proposed
for the effective management of computations in a distributed setting, for intelligent
scheduling of different forms of parallelism, as well as for static inference of task
cost functions and their application to static and dynamic control of the granularity
of tasks. Nevertheless, much work still remains to be done.

Further research is still needed also in other aspects of parallel logic program-
ming. For example, in finding out how best to support sequential Prolog semantics
on parallel logic programming systems of the future, building better and smarter
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schedulers, finding better memory management strategies, and building better tools
for visualizing parallel execution. It should be noted that while most of these prob-
lems arise in any parallel system, in the case of parallel logic programming systems
they are tackled in a complex context due to the nature of the computations, which
are typically symbolic (implying high irregularity, dynamically allocated data struc-
tures, etc.) and involving search (implying speculativeness).

Finally, the techniques developed developed in the context parallel execution of
Prolog has progressively expanded and found application in the parallelization of
other logic-based paradigms and/or in the parallelization of alternative strategies
for execution of Prolog programs. This includes:

—combination of parallelism and tabled execution of Prolog programs [Guo and
Gupta 2000; Guo 2000; Freire et al. 1995; Rocha et al. 1999], which opens the
doors to parallelization of applications in a number of interesting application
areas, such as model checking and database cleaning.

—parallelization of the computation of models of a theory in the context of non-
monotonic reasoning [Pontelli and El-Kathib 2001; Finkel et al. 2001].

—use of parallelism in the execution of inductive logic programs [Page 2000; Ohwada
et al. 2000].

We also believe there are good opportunities for transference of many of the tech-
niques developed in the context parallel execution of Prolog programs and their
automatic parallelization to other programming paradigms [Hermenegildo 2000].
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Debray, S., López-Garćıa, P., Hermenegildo, M., and Lin, N.-W. 1994. Estimating the
Computational Cost of Logic Programs. In Static Analysis Symposium, SAS’94. Number 864

in LNCS. Springer-Verlag, Namur, Belgium, 255–265.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD TBD.



Parallel Execution of Prolog Programs · 115
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