Under consideration for publication in Theory and Practimfelogic Programming 1

Parallel Backtracking with Answer Memoing
for Independent And-Parallelism

Pablo Chico de Guzém;}! Amadeo CasasManuel Carrd, and Manuel V. Hermenegildd

1 School of Computer Science, Univ. Petinica de Madrid, Spain.
(e-mail:pchi co@l i p.dia.fi.upmes, {ntarro,herme}@i.upm es)

2 Samsung Research, USA.
(e-mail:amadeo. c@ansung. con

3 IMDEA Software Institute, Spain.
(e-mail:manuel . her mrenegi | do@ ndea. or g)

Abstract

Goal-level Independent and-parallelism (IAP) is exploited by scheglfitinsimultaneous execution
two or more goals which will not interfere with each other at run time. ThistEadone safely even if
such goals can produce multiple answers. The most successful énmantations to date have used
recomputation of answers and sequentially ordered backtracking. Wipkinciple simplifying the
implementation, recomputation can be very inefficient if the granularity@ptrallel goals is large
enough and they produce several answers, while sequentially diogektracking limits parallelism.
And, despite the expected simplification, the implementation of the classimsshgas proved to in-
volve complex engineering, with the consequent difficulty for system tea@mce and expansion, and
still frequently run into the well-known trapped goal and garbage sldilpms. This work presents an
alternative parallel backtracking model for IAP and its implementatior Miodel features parallel
out-of-order backtracking and relies on answer memoization to rexde@nbine answers. When-
ever a parallel goal backtracks, its siblings also perform backtrachirgafter storing the bindings
generated by previous answers. The bindings are then reinstalledoehdrining answers. In order
not to unnecessarily penalize forward execution, non-speculatd4parallel goals which have not
been executed yet take precedence over sibling goals which couldktednked over. We show that
this approach can bring significant performance advantages. Alsanibring some simplification
to the important engineering task involved in implementing the backtrackimtpamésm of previous
approaches.
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1 Introduction

Widely available multicore processors have brought reenerest in languages and tools
to efficiently and transparently exploit parallel execntie- i.e., tools to take care of the
difficult (Karp and Babb 1988) task of automatically uncargrparallelism in sequential
algorithms and in languages to succinctly express thidlpisan. These languages can be
used to both write directly parallel applications and agets for parallelizing compilers.
Declarative languages (and among them, logic programnainguages) have tradition-
ally been considered attractive for both expressing antbam parallelism due to their
clean and simple semantics. A large amount of work has beeea ithothe area of parallel
execution of logic programs (Gupta et al. 2001), where twinnsaurces of parallelism
have been exploited: parallelism between goals of a resb(¥end-Parallelism) and paral-
lelism between the clauses of a predicate (Or-Parallelidmpng the systems to efficiently
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exploit Or-Parallelism we can cite Aurora (Lusk et al. 1988) MUSE (Ali and Karlsson
1990), and among those executing exploiting And-Parattgli&-Prolog (Hermenegildo
and Greene 1991) and DDAS (Shen 1996) are among the best kamagnin particular, &-
Prolog exploitdndependent And-Paralleliswhere goals to be executed in parallel do not
attempt to bind the same variables at run time and are ladrfoliewing a nested fork-join
structure. Other systems such&&8CE (Pontelli et al. 1995), AKL (Janson 1994) and An-
dorra (Santos-Costa 1993) have approached a combinatlmttobr- and and-parallelism.
In this paper, we will focus on independent and-parallelism

While IAP implementations (Hermenegildo and Greene 19913inbd excellent perfor-
mance results and achieved efficient memory managemerigrmepting synchronization
and working around problems suchtezpped goalgSection 5) andyarbage slotsn the
execution stacks required complex engineering: exteagmthe WAM instruction set, new
data structures, special stack frames in the stack set@thacs. For this reason recent ap-
proaches have focused on simplicity, moving core companehthe implementation to
the source-level. In (Casas et al. 2008), a high-level impletation of goal-level IAP was
proposed that showed reasonable speedups despite theaderdided by the high-level of
the implementation. Other recent proposals (Moura et &82Qvith a different focus than
the traditional approaches to parallelism in LP, concéatoa providing machinery to take
advantage of underlying thread-based OS building blocks.

A critical area in the context of IAP that has also receiveccmattention is the imple-
mentation of backtracking. Since in IAP by definition goats ribt affect each other, an
obvious approach is to generate all the solutions for thesésgn parallel independently,
and then combine them (Conery 1987). However, this apprbashseveral drawbacks.
First, copying solutions, at least naively, can imply veigngicant overhead. In addition,
this approach can perform an unbounded amount of unnegessék if, e.g., only some
of the solutions are actually needed, and it can even beeromating if one of the goals
does not fail finitely.

For these reasons the operational semantics typicallyeimghted in IAP systems per-
forms an ordered, right-to-left backtracking. For examfl@xecution backtracks into a
parallel conjunction such as& b & c, the rightmost goald) backtracks first. If it fails, then
b is backtracked over whileis recomputed and so on, until a new solution is found or until
the parallel conjunction fails. The advantage of this apphas that it saves memory (since
no solutions need to be copied) and keeps close to the sémjusrhantics. However, it
also implies that many computations are redone and a largeatnof backtracking work
can be essentially sequential.

Herein we propose an improved solution to backtracking iA &med at reducing recom-
putation and augmenting parallelism while preserving iefficy. It puts together memoiza-
tion of answers to parallel goals (to avoid recomputationf;of-order backtracking (the
right-to-left rule is not followed) to exploit parallelismn backtracking, and incremental
computation of answers, to reduce memory consumption amid garmination problems.

We present an IAP implementation which incorporates this@gch and we provide ex-
perimental data that shows that the amount of parallelignoérd increases due to the par-
allel backward execution, while keeping competitive parfance for first-answer queries.
Also, super-linear speedups are achievable thanks to nzatiani of previous answers.

For brevity we assume some familiarity with the WAM (Warre983; Ait-Kaci 1991)
and the RAP-WAM (Hermenegildo and Greene 1991).



2 An Overview of AP with Parallel Backtracking

In this section we provide a high-level view of the executidgorithm we propose to intro-
duce some concepts which we will explain in more detail idaections.

The IAP + parallel backtracking model we propose behavesanymespects as clas-
sical IAP approaches, but it has as main difference the uspexfulative computation (if
possible) to generate eagerly additional solutions botfoiward computation and when
backtracking. This brings a number of additional changeiskvhave to be accommodated.

Forward execution:when a parallel conjunction is first reached, its goals aaetesd in
parallel. When a goal in the conjunction fails without refagnany solution, the whole
conjunction fails. When all goals have found a solution, exiea proceeds as in classical
IAP. However, if a solution has been found for some goalsnbtifor all, the agents which
did finish may speculatively look for more solutions for thaats they executed, unless there
is a need for agents to execute work which is not speculdfivis.in turn brings the need to
stash away the generated solutions in order to continuetgagrfor more answers (which
are also saved). When all goals find a solution, those whick g@eculatively executing are
suspended (to preserve the no-slowdown property (Hernildneand Rossi 1995)), their
state is saved to be resumed later, and their first answeniabed.

Backward executionwe only perform backtracking on the goals of a parallel coofion
which are on top of the stacks. If necessary, stack secti@eeardered to move trapped
goals to the top of the stack. In order not to impose a rigig¢ond) we allow backtracking on
these goals to proceed in an arbitrary order (i.e., not saciyg corresponding to the lexical
right-to-left order). This opens the possibility of perfing backtracking in parallel, which
brings some additional issues to take care of:

e When some of the goals executing backtracking in paralledtirthacktracking stops
by suspending the rest of the goals and saving their state.

e The solution found is saved in the memoing area, in order ¢éidaecomputation.

e Every new solution is combined with the previously avaiabblutions. Some of
these will be recovered from the memoization memory andrsthey simply be
available if they are the last solution computed by some gaodlthus the bindings
are active.

e If more solutions are needed, backwards execution is pagdrin parallel again.
Goals which were suspended resume where they suspended.

All this brings the necessity of saving and resuming execusitates, memoing and re-
covering answers quickly, combining previously existirguions with newly found so-
lutions, assigning agents to speculative computationg ibtihere are no non-speculative
computations available, and managing computations wiiehge from speculative to non
speculative. Note that all parallel backtracking is spativé work, because we might need
just one more answer of the rightmost parallel goal, andishighy backwards execution is
given less priority than forward execution. Note also thatrgy point in time we only have
an active value for each variable. While performing pardietktracking we can change
the bindings which will be used in forward execution, butdvefcontinuing with forward
execution, all parallel goals have to suspend to reindtalltindings of the answer being
combined.
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Fig. 1. Execution ofmain/4 with memoization of answers and parallel backtracking.

3 An Execution Example

In this section we present an example illustrating differ@spects of the approach, and
specially how the execution of a parallel program may befrefih memoization of answers
and parallel backtracking.
We will use the following program:
main(X, Y, Z, T) :(— a(X, Y) & b(z, T).
a(X, Y) :— al(X) & az2(Y).
b(X, Y) :— b1(X) & b2(Y).

We will assume thaal(X), a2(Y), b1(X) andb2(Y) have two answers each, which take
1 and 7 seconds, 3 and 13 seconds, 2 and 10 seconds, and 4 auwb8ss respectively.
We will also assume there are no dependencies among thélearia the literals of these
clauses, and that the cost of preparing and starting uplelagalals is negligible. Finally,
we will assume that there are two agents available to exeébase goals at the beginning
of the execution of the predicateain/4. Figure 1 summarizes the evolution of the stack of
each agent throughout the executiomiin/4.

Once the first agent starts the executiomafn/4, a/2 is published for parallel execution
andb/2 is executed locally. The second agent staéspublishes1/1 for parallel execution
and executes2/1 locally, while the first agent marksl/1 as parallel and executeg/1. The
execution state can be seen in Figure 1(a). When the secontfigls then the first answer
for a2/1, it marksa2/1 to be executed in a speculative manner. However, sibdeandb1/1
are still pending, the second agent will start executingafieem instead. We will assume it
starts executing1/1. Once it finds an answedl/1 is marked to be executed speculatively.
Sincea2/1 is also marked as such, then the entire prediaftecan be configured to be
executed speculatively. However, the second agent willexaeuten1/1 since it is pending
and has higher priority than speculative execution (Fidubg).

Figure 1(c) shows the execution state when the first agers eindnswer faw2/1. In this
case, since there is no other parallel goal to execute, steafjient starts the execution of
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b2/1 speculatively, until the second agent finishes the exetwtio1/1. When that happens,
the first agent suspends the executiom®f and the first answer afain/4 is returned, as
shown in Figure 1(d).

In order to calculate the next answermadin/4, both agents will backtrack ovée/1 and
b1/1, respectively. Note that they would not be able to backt@aak any of the subgoals
in a/2 because they are currently trapped. Once the second ag#sitHmsecond answer of
b1/1, the first agent suspends the executiohst and returns the second answenwiin/4,
combining all the existing answers of its literals.

In order to obtain the next answer wkin/4, the second agent continues with the exe-
cution ofb1/1, and the first agent fails the executionb@i1 and starts computing the next
answer ofal/1, since that goal has now been freed, as shown in Figure 1(egn&vir the
answer ofl/1 is completed, shown in Figure 1(f), the executiom®fl is again suspended
and a set of new answers whin/4 not involving a new answer fai2/1 andb2/1 can be
returned, again as a combination of the already computedeaa®f its subgoals. To obtain
the rest of the answers of predicatain/4, the first agent resumes the executioh®fi and
the second agent starts calculating a new answa®/af(Figure 1(g)). The first agent finds
the answer 0b2/1, suspends the execution of the second agent, and retumewhenswers
of main/4. Finally, Figure 1(h) shows how the second agent continutistie execution of
a2/2 in order to obtain the rest of the answersyafin/4.

Note that in this example memoization of answers avoidsiiggid recompute expensive
answers of parallel goals. Also note that all the answersd#ch parallel literal could have
been found separately and then merged, producing a simikdrexecution time. However,
the computational time for the first answer would have beastdrally increased.

4 Memoization vs. Recomputation

Classic IAP uses recomputation of answers: if we exea(Q{g & b(Y), the first answer of
each goal is generated in parallel. On backtrackiig) generates additional answers (one
by one, sequentially) until it finitely fails. Then, a new arms for goala(X) is computed in
parallel with the recomputation of the first answeb©f). Successive answers are computed
by backtracking again ob(Y), and later ora(X).

However, since(X) andb(Y) are independent, the answers of ge@l) will be the same
in each recomputation. Consequently, it makes sense wittdrindings after every answer
is generated, and combine them with those frgix) to avoid the recomputation afY).
Memoing answers does not require having the bindings farettamswers on the stack; in
fact they should be stashed away and reinstalled when reage3terefore, when a new
answer is computed fa(X) the previously computed and memorized answerb oy are
restored and combined.

4.1 Answer Memoization

In comparison with tabling (Warren 1992; Chen and Warrerb138maki and Sato 1986),
which also saves goal answers, our scheme shows a numbéeoééces: we assume that
we start off with terminating programs (or that if the origiprogram is non-terminating in
sequential Prolog we do not need to terminate), and thergferdo not need to take care of
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the cases tabling has to: detecting repeated tallspending / resuming consumers, main-
taining SCCs, etc. We do not keep stored answers after dgdanall finitely fails: answers
for a(X) & b(Y) are kept for only as long as the new bindings XoandY are reachablé.
Additionally, we restrict the visibility of the stored aneve to the parallel conjunction: if we
havea(X) & b(Y), a(z), the calls toa(z) do not have access to the answers&t). While
this may lead to underusing the saved bindings, it greathpkfies the implementation
and reduces the associated overhead. Therefore we wilbedhe memoization machinery
commonly found in tabling implementations (Ramakrishnial €1995).

Instead, we save a combination of trail and heap terms whagiuce all the bindings
made by the execution of the goal, for which we need two skbhanges: we push a choice-
point before the execution of the parallel goal, so thatialilings to variables which live in
the agent’s stacks are recorded, and we modify the trail tidbvays trail variables which
are not in the agent’s WAM. This ensures that all variablelinigs are recorded on the trail.

Therefore what we need to save is the trail segment correapgto the execution of the
parallel goal (where the bindings to its free variables amorded) and the terms pointed
to by these trail entries, but only if they live in the heapreegt which starts after the
execution of the parallel goal, since if they live below tipaint they existed before the
parallel goal was executed and they are unaffected by leditrg —except for bindings
to free variables, which have already been recorded in #ile iote that bindings to these
variables on the heap which were creatgthin the execution of the parallel goal and which
are not reachable from the argument variables do not have tedorded, as they are not
visible out of the scope of the parallel goal executtd®imilar techniques are used for the
local stack. The information related to the boundaries efgtbal and where the information
related to its answers is kept in a centralized per-conjonctata structure, akin togarcall
frame(Hermenegildo and Greene 1991).

Note that this is at most the same amount of work as that of xbeution of the goal,
because it consists of stashing away the variables bountidogdal plus the structures
createdby the goal.

Reinstalling an answer for a goal boils down to copying bacthe heap the terms that
were previously saved and using the trail entries to makedtiables in the initial call point
to the terms they were bound to when the goal had finished. $bthese variables point
to the terms just copied onto the heap and some will pointtogevhich existed previously
to the goal execution and which were therefore not saved.

It is interesting to note that while memoization certainsha cost, it can also provide
by itself substantial speedups since it avoids recomputstiSince it is performed only on
independengoals, the number of different solutions to keep does novgngponentially
with the number of goals in a conjunction, but rather onlgdirly. This is an interesting
case of synergy between two different concepts (indeperedand memoization), which in

1 Detecting repeated calls requires traversing the argunoérigjoal, which can be arbitrarily more costly than

executing the goal itself: for example, consider taking gdalist and returning just its first element, as in
first ([X|-1, X).

2 In fact, we can discardll stored answers as soon as the parallel conjunction costafter its last answer.

3 Another possible optimization is to share bindings corresia to common parts of the search tree of a parallel
goal: if a new answer is generated by performing backtrackimdor example, the topmost choicepoint and the
rest of the bindings generated by the goal are not changatlysspeaking only these different bindings have
to be saved to save the new answer, and not the whole secticail@nd heap.
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principle are orthogonal, but which happen to have a verytigeanutual feedback when
used together.

4.2 Combining Answers

When the last goal pending to generate an answer in a paraiigirection produces a so-
lution, any sibling goals which were speculatively workitagvards producing additional
solutions in advance have to suspend, reinstall the preljidaund answers, and combine
them to continue with forward execution. A similar behav®necessary when backtrack-
ing is performed over a parallel conjunction and one of trEgwhich are being reexecuted
in parallel finds a new solution.

At this moment, the new answer is combined with all the presianswers of the rest
of the parallel goals. For each parallel goal, if it was napmnded when performing spec-
ulative backtracking, its last answer is already on the @t@c environment ready to be
combined. Otherwise, its first answer is reinstalled on #ephbefore continuing with for-
ward execution.

When there is more than one possible answer combinationybes®dme parallel goals
already found more than one answeryjlestchoice point is created. This choicepoint has
an “artificial” alternative which points to code which talere of retrieving saved answers
and installing the bindings. On backtracking, this codé pribduce the combinations of an-
swers triggered by the newly found answer (i.e., combimataiready produced are not re-
peated). Note that this new answer may have been producad/lgoal in the conjunction,
but we proceed by combining from right to left. The invariaete is that before producing
a new answer, all previous answer combinations have beelped, so we only need to fix
the bindings for the goal which produced the new answerdpand successively installing
the bindings for the saved answers produced by the rest gfdhis.

Thus, we start by installing one by one the answers prewqusiduced by the rightmost
goal, and proceeding with the execution after they have bestalled. When they are ex-
hausted, we move on to the next goal to the left, install ite aaswer, and continue with
the rightmost goal. When all the combinations for these twalgare exhausted, we move
on to the third rightmost one, and so on —but skipping godlecause we only need the
last answer from it.

An additional optimization to this approach is to updatehibap top pointer of thghost
choice point to point to the current heap top after copyimmgefrom the memoization area
to the heap, in order to protect these terms from backtrgdkina possible future answer
combination. Consequently, when the second answer of twndaightmost parallel goal
is combined with all the answers of the rightmost goal, thelisigs of the answers of the
rightmost goal do not need to be copied on the heap again andxt only need to untrail
bindings from the last combined answer and redo bindingh@ahswer being combined.
Finally, once theghostchoice point is eliminated, all these terms that were copiethe
heap are released.

There is one particular race situation to be considered. Vehgarallel goal generates a
new solution, other parallel goals may also find new answefsre being suspended, and
thus some answers may be lost in the answer combination.der ¢o address this, our
implementation maintains a pointer to the last combinedvan®f each parallel goal in
the parcall frame. Therefore, if, e.g., two parallel goal$,andb/1, have computed three
answers each, but only two of them have been combined, ttteghswer o&/1 would be
combined with the first two answers bfl, updating afterward its last combined answer
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Fig. 2. Trapped goal problem with ordered and out-of-order backimg in 1AP.

pointer to its third answer. Once this is done, the fact titathas uncombined answers
is detected before performing backtracking, and the thirslhveer ofb/1 is combined with
all the computed answers afl and, then, the last combined answeh¢¥) is updated to
point to its last answer. Finally, when no goal is left withcombined answers, the answer
combination operation fails.

5 Backtracking Order, Trapped Goals, and Parallel Backtracking

The classical, right-to-left backtracking order for IAPkisown to bring a number of chal-
lenges, among them the possibility tothpped goalsa goal on which backtracking has to
be performed becomésppedby another goal stacked on top of it. Normal backtracking
is therefore impossible. Consider the following example:

m(X,Y,Z) - b(X,Y) & a(Z).

b(X,Y) - a(X) & a(Y).

a(l). a(2).

Figure 2(a) shows a possible state of the execution of pazlio3 by two agents. When
the first agent starts computimg3, b(X, Y) anda(z) are scheduled to be executed in par-
allel. Assume tha#(z) is executed locally by the first agent abgX,Y) is executed by the
second agent. Then, the second agent sched@@sanda(Y) to be executed in parallel,
which results ina(Y) being locally executed by the second agent agx) executed by the
first agent after computing an answer £gz). In order to obtain another answer for3,
right-to-left backtracking requires computing additibaaswers form(2), a(Y), anda(X), in
that order. Howevemr(z) cannot be directly backtracked over sireg) is stacked on top
of it: a(2) is atrapped goal

Several solutions have been proposed for this problem. @ieeooriginal proposals
usescontinuation markergHermenegildo 1986; Shen and Hermenegildo 1996kipover
stacked goals. This is, however, difficult to implement midypand needs to take care of a
large number of cases. It can also leave unused sectionsrbrydgarbage slotswhich
are either only reclaimed when finally backtracking overgheallel goals, or require quite
delicate memory management. A different solution (Casak 2008) is to move the execu-
tion of the trapped goal to the top of the stack. This simiffee implementation somewhat,
but it also leaves garbage slots in the stacks.

5.1 Out-of-Order Backtracking

In order to greatly reduce the likelihood of the appeararfceapped goals and garbage
slots we propose to take an alternative approach: relakimgequential backtracking order.
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The key idea is to allow backtracking (and therefore the oofisolutions) to dynamically
adapt to the configuration of the stacks.

The obvious drawback of this approach is that it may alteutsmt order with respect to
sequential execution, and in an unpredictable way. Howewerrgue that in many cases
this may not be a high price to pay, specially if the programisiaware of it and can have a
choice. Programs where solution order matters, typicabalise of efficiency, are likely to
have dependencies between goals which would anyway makertbeamenable for IAP.
For independent goals we argue that allowing out-of-ordektracking represents in some
way a return to a simpler, more declarative semantics thathe advantage of allowing
higher efficiency in the implementation of parallelism. &@n order is also relaxed tradi-
tionally in or-parallel systems, and a similar situatioises in tabling, where solutions are
also generated in an order which does not necessarily ntatbftSLD. In return, termina-
tion is ensured for a large class of interesting programsifmyathe operational semantics
closer to the declarative one) and other, already ternmgatiograms, are greatly sped up.

The alternative we propose herein consists of always bealkitrg over the goal that is
on top of the stack, without taking into account the origigahl execution order. In the
case of backwards execution over predicafe in Figure 2(a), both agents may be able to
backtrack over(X) anda(Y), without having to move the execution afz). Note that even
though the order of the answers for predicate may change with respect to the sequential
execution, the first answer will remain the same.

5.2 First Answer Priority and Trapped goals

Out-of-order backtracking, combined with answer memomagat lose answer combina-
tions, can avoid trapped goals if no kind of priority is giventhe parallel goals, because
there will always be a backtrackable goal on the stack topotdicue the execution of
the program. We can define the following essential priotiigckwards execution of par-
allel goals that have not found any answer has more pridndy tackwards execution of
parallel goals which have already found an answer.

Note that even using this notion of priority, trapped goabsyratill appear as illustrated
in the following example:

m(X,Y) - a(X) & b(Y).
b(Y) - c(Y) & d, e(Y).
a(l). a(2). c(1). c(2). d. e(2)

Figure 2(b) shows a possible state of the execution of paéelhe'3 by two agents. The first
agent starts with the execution of predicat8 and publishes/1 andb/1 to be executed
in parallel. The first agent starts with the executiorbdf and marks botte/1 andd/0 for
parallel execution. The second agent then execttiesvhile the first agent is executing
d/0, and when the execution of1 finishes then it computes an answer &t. Once the
execution of goals/1l andd/0 has finishede/1 is executed. However, this execution will
fail because/1 already gave a different binding to variabfe If the first answer is given
priority, c/1 should be backtracked befoa#l, butc/1 is trapped by the execution af1.
Note that even though this example shows that it is possidhave trapped goals with out
of order backtracking, the frequency will be significantiyer than in the case of ordered
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backtracking’ thus allowing for a simpler solution for this problem withalegrading the
performance of parallel execution.

The approach we have taken is to move trapped goals whichtodsedbacktracked over
to the top of the stack, and slide down the whole section sbriha&empty slots are left
behind. Our solution follows therefore the following steps

1. Copy the trail section corresponding to the trapped gual,its choice points, to an
auxiliary data structure.

2. Choice points that are younger than those of the trappaldage moved down in the

stack. A similar operation is performed on the trail.

. Copy the trail section and choice points of the trapped lgaek on top of the stack.

4. The trail pointers of those choice points that have bettaged in the stacks are
updated to the new trail section.

5. The heap and local stack pointers of trapped goal choirgspare updated to point
to the actual top of global and frame stack, in order to ptdtez execution memory
of the goals that were moved down the stack.

6. The heap and local stack pointers of the oldest choicet ploéth was moved down
the stack need to point to the original values of the oldesioehpoint of the trapped
goal, so the heap and frame memory of the trapped goal issedesdter backtracking
over this choice point.

w

Note that even though this solution requires two memory ogpsrations, we do not
expect it to greatly affect the performance of the parali@caition thanks to the lower
frequency of trapped goals in our scheme.

5.3 Paralld Backtracking

Once we allow backwards execution over any parallel goalhentop of the stacks, we
can perform backtracking over all of them in parallel. Cansmntly, each time we perform
backtracking over a parallel conjunction, each of the pelrgbals of the parallel conjunc-
tion can start speculative backwards execution.

6 The Scheduler for the Parallel Backtracking | AP Engine

As we mentioned earlier, the management of goals (when aigiashilable and can start,
when it has to backtrack, when messages have to be broadtma}pis encoded in Prolog
code which interacts with the internals of the emulator.

Figure 3 shows a simplified version of such a scheduler, whgsets execute (a) when
looking for new work to do and (b) when they have to executeralfgh conjunction.

6.1 Looking for Work

Agents initially execute thegent/1 predicate, which callsvork/1 in an endless loop to
search for a parallel goal to execute, via tfied_parallel_goal /1 primitive, which defines
the strategy of the scheduler. Available goals can be in $tates: non-executed parallel
goals necessary for forward execution, backtrackablellphgmals necessary for forward
execution, non-executed parallel goals not necessaryfaraid execution (because they

4 Note that all goals which become trapped under our schemelwalke trapped under classical IAP, but not the
other way around.



parcall_back (LGoals, NGoals) :—
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fork (PF,N,LGoals ,[ Handler |LHandler]) ,

(

goal_not_executed (Handler) —>
call_local_goal (Handler, Goal)

).
look_for_available_goal (LHandler),
join (PF).

true

look_for_available_goal ([]) :(— !, true.

look_for_available_goal ([Handler |LHandler]) :—

(

goal_available (Handler) —
call_local_goal (Handler, Goal)

)

)

look_for_available_goal (LHandler).

true

agent :— work, agent.
agent :— agent.
work :—

find_parallel_goal (Handler) —

goal_not_executed (Handler) —
save_init_execution (Handler),
call_parallel_goal (Handler)

move_execution_top (Handler),
fail

)

suspend,
work .

Fig. 3. Parallel backtracking Prolog code.

were generated by goals performing speculative work), awktbackable parallel goals
not necessary for forward execution. Different schedufinficies are possible in order to
impose preferences among these types of goals (to, e.gdedehich non-necessary goal
can be picked) but studying them is outside the scope of #pgip

Once the agent finds a parallel goal to execute, it is prep@redart execution in a
clean environment. For example, if the goal has to be batkdihover and it is trapped,

a primitive operatiommove_execution_top/1 moves the execution segment of the goal to the
top of the stacks to ensure that the choice point to be bakddaover is always on the top
of the stack (see Section 5). Also, the memoization of thealaswer found is performed at
this time, if the execution of the parallel goal was not susieel.

If find_parallel_goal /1 fails (i.e., no handler is returned), the agent suspendsaame
other agent publishes more workall_parallel_goal /1 saves some registers before starting
the execution of the parallel goal, such as the currentarailheap top, it changes the state
of the handler once the execution has been completed, failedispended, and saves some
registers after the execution of the parallel goal in ordemiainage trapped goals and to
release the execution of the publishing agent.

6.2 Executing Parallel Conjunctions

The parallel conjunction operat@r2 is preprocessed and converted iptocall_back/2,
which is the entry point of the scheduler, and which recetheslist of goals to execute
in parallel (Goals) and the number of goals in the ligtarcall_back/2 invokes firstfork/4,
written in C, which createslaandlerfor each parallel goal in the scope of the parcall frame
containing information related to that goal, makes goatslable for other agents to pick

5 Hopefully a rare case under out-of-order backtracking.
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up, resumes suspended agents which can then steal somenawhevailable goals, and
inserts a new choice point in order to release all the datietstres on failure.

If the first parallel goal has not been executed yet, it is datesl for local execution by
call_local_goal /1, which performs housekeeping similar to that cdil_parallel_goal /1. It
can be already executed because this parallel goal, whadWéys executed locally, can fail
on backtracking, but the rest of the parallel goals coultlsti performing backtracking to
compute more answers. In this case, the choice poifatkf4 will succeed on backtracking
to continue forward execution and to wait for the completairthe remotely executed
parallel goals to produce more answer combinations.

Then, look_for_available_goal /1 executes locally parallel goals which have not already
been taken by another agent. Finajbin/1 waits for the completion of the execution of the
parallel goals, their failure, or their suspension befambining all the answers. After all
answers have been combined, the goals of the parallel attigarare activated to perform
speculative backwards execution.

7 Suspension of Speculative Goals

As we stated before, stopping goals which are eagerly geémgraew solutions may be
necessary for both correctness and performance reasons.

In order to do that, the agent that determines that suspeissiecessary sends a suspen-
sion event to the rest of the agents that stole any of thengilplarallel goals (accessible via
the parcall frame). These events are checked in the WAM laap éme a new predicate
is called, using existing event-checking machinery shari#id attributed-variable handling
(and therefore no additional overhead is added). When theug®ze has to suspend, the
argument registers are saved on the heap, and a new chotéspioiserted onto the stack
to protect the current execution state. This choice pointains only one argument point-
ing saved registers in order to reinstall them on resumpfite alternative to be executed
on failure points to a special WAM instruction which reifigdhe registers and jumps to
the WAM code where the suspension was performed, aftersialgéhe heap section used
to stored the argument registers. Therefore, the resudilifig over this choice point is to
resume the suspended execution at the point where it wasrsiles.

After this choice point is inserted, goal execution needsnp back to the Prolog sched-
uler for parallel execution. In order to jump to the apprat®ipoint in the Prolog scheduler
(after call_parallel_goal /1 or call_local_goal /1), the WAM frame pointer is saved in the
handler of the parallel goal before callingall_parallel_goal /1 or call_local_goal /1. After
suspension takes place, itis reinstalled as the currenefginter, the WAM'qiext instruc-
tion pointer is updated to be the one pointed to by this frame, kisd/¥AM instruction is
dispatched. The result is that the scheduler continuegétsugion as if the parallel goal had
succeeded.

Parallel goals to be suspended may in turn have other neatatlgh calls. Suspension
events are recursively sent following the chain of depeoigsrsaved in the parcall frames,
similarly to thefail messages in &-Prolog (Hermenegildo and Greene 1991): ggatit a
receiving a suspension event for a goal will resend it tonts'ediate descendants, and so
on recursively.

8 A Noteon Deterministic Parallel Goals

The machinery we have presented can be greatly simplifiedhwinening deterministic
goals in parallel: answer memoization and answer comiinae not needed, and the
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scheduler (Section 6) can be simplified. Knowing ahead of@i@n which goals are de-

terministic can be used to statically select the best ei@tstrategy. However, some opti-
mizations can be performed dynamically without compilgysurt (e.g., if it is not available

or imprecise). For example, tmeove_execution_top/1 operation may decide not to memo-
ize the previous answer if there are no choice points adsacia the execution of the

parallel goal, because that means that at most one answérecgenerated. By applying
these dynamic optimizations, we have detected improvesydnip to a factor of two in the

speedups of the execution of some deterministic benchmarks

9 Comparing Performance of |AP Models

In this section, we present a comparison between a previghslével implementation of
IAP (Casas et al. 2008) (which we abbreviatesagback) with our proposed implemen-
tation (parback). Both implementations are similar in nature and have simiverheads
(inherent to a high-level implementation), with the obwdauain difference being the sup-
port for parallel backtracking and answer memoizatiopanback. We will also comment

on the relation with the very efficient IAP implementation(lHermenegildo and Greene
1991) (abbreviated a&-Prolog) for deterministic benchmarks to evaluate the overhead
incurred by having part of the system expressed in Prolog.

We measured the performance results of hmback and segback on deterministic
benchmarks, to determine the possible overhead causedimgable machinery to perform
parallel backtracking and answer memoization, and alscoafse on non-deterministic
benchmarks. The deterministic benchmarks used are thekn@Nn Fibonacci seriegifo),
matrix multiplication (nma) and QuickSortgsord. fibogenerates the 22 Fibonacci num-
ber switching to a sequential implementation from th& ¥imber downwardsnmatuses
50x50 matrices andsortis the version which usesppend/3 sorting a list of 20000 num-
bers. The GC suffix means task granularity contrafez-Garta et al. 1996) is used for
lists of size 300 and smaller.

The selected nondeterministic benchmarks @reckfiles illumination, and gsortnd.
checkfilesreceives a list of files, each of which contains a list of filenes which may
exist or not. These lists are checked in parallel to find ntent files which appear listed
in all the initial files; these are enumerated on backtragkiluminationreceives arv x N
board informing of possible places for lights in a room. i#$rto place a light in each of the
columns, but lights in consecutive columns have to be séiay a minimum distance.
The eligible positions in each column are searched in praiid the distance condition
is checked at the endisortnd is a QuickSort algorithm where the order between the list
elements is a partial oneheckfilesandillumination are synthetic benchmarks which create
8 parallel goals and which exploit memoization heawfsortnd is a more realistic bench-
mark which creates over one thousand parallel goals. Alb#rechmarks were automati-
cally parallelized using CiaoPP (Hermenegildo et al. 2Gi%) the annotation algorithms
described in (Muthukumar et al. 1999; Cabeza 2004; Casds28G¥).

Table 1 shows the speedups obtained. Performance resuligedback and parback
were obtained by averaging ten different runs for each ob#rchmarks in a Sun Ultra-
Sparc T2000 (dNiagara) with 8 4-thread cores. The speedups shown in this tableate c
culated with respect to the sequential execution of theiralgunparallelized benchmark.
Therefore, the column taggédcorresponds to the slowdown coming from executing a par-
allel program on a single processor. BeProlog we used the results in (Hermenegildo and
Greene 1991).
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Number of threads

Benchmark || Approach 1 2 3 ) 5 6 7 g
&-Prolog 0.98 1.93 - 3.70 - 5.65 - 7.34

Fibo seqback 0.95 1.89 2.80 3.70 4.61 5.36 6.23 6.96
parback 0.95 1.88 2.78 3.69 4.60 5.33 6.21 6.94

parback .+ 0.96 1.91 2.83 3.74 4.65 5.41 6.28 7.04

&-Prolog 1.00 1.92 - 3.03 - 3.89 - 4.65

QSort seqback 0.50 0.98 1.38 1.74 2.05 2.27 2.57 2.67
parback 0.49 0.97 1.37 1.74 2.05 2.27 2.58 2.69

parback .+ 0.56 1.10 1.54 1.96 2.31 2.57 2.90 3.02
segbackGC 0.97 1.77 2.42 3.02 3.37 3.77 3.98 4.15
parbackGC 0.97 1.76 2.41 3.00 3.34 3.74 3.94 412
parbackGC .+ 0.97 1.78 2.44 3.04 3.41 3.79 3.99 4.21

&-Prolog 1.00 1.99 - 3.98 - 5.96 - 7.93

MMat seqback 0.78 1.55 2.28 2.99 3.67 4.29 491 5.55
parback 0.76 1.52 2.25 2.95 3.60 4.22 4.83 5.45

parback e+ 0.80 1.60 2.38 3.01 3.79 4.55 5.19 5.87
seqbacky;, ¢ 0.99 1.09 1.11 1.12 1.12 1.12 1.13 1.13
CheckFiles segback,; 0.99 1.07 1.09 1.10 1.10 1.11 1.11 1.11
parbacky;, s+ 3917 8612 | 10604 17111 17101 17116] 17134 44222

pb_rels;,s: 1.00 2.20 271 4.37 4.37 4.37 4.37 11.29

parback,, 12915 23409] 30545 45818 46912 46955 46932] 89571

pb_rel.; 1.00 1.81 2.37 3.55 3.63 3.64 3.63 6.94

seqgback ;¢ 0.99 1.13 1.16 1.18 1.19 1.19 1.19 1.19
llumination segback,; 0.99 1.08 1.11 1.12 1.12 1.12 1.12 1.13
parbacky;, ¢ 1120 1725 2223| 3380 3410| 4028| 4120 6910

pb_rels;,s; 1.00 1.54 1.98 3.02 3.04 3.60 3.68 6.17

parback,; 8760 16420 20987 31818 31912 31888 31934 65314

pb_rel.; 1.00 1.87 2.40 3.63 3.64 3.64 3.65 7.46
seqbacky;,s¢ 0.94 1.72 2.36 2.92 3.25 3.59 3.78 3.92

QSortND segback,; 0.91 1.03 1.04 1.04 1.04 1.05 1.05 1.05
parback ;¢ 0.94 1.72 2.35 2.91 3.24 3.57 3.76 3.91

parback,; 4.29 6.27 8.30 9.90 10.5 10.9 111 11.3

pb_rel.;; 1.00 1.46 1.93 2.31 2.45 2.54 2.59 2.64

Table 1. Comparison of speedups for several benchmarks and imptatizers.

For deterministic benchmarksarback,.; refers to the implementation presented in this
paper with improvements based on determinacy informatiztaioed from static analy-
sis (Lopez-Garta et al. 2005). For nondeterministic benchmarks we shownapaoison
of the performance results obtained both to generate thestifstion eqbacky;,.; and
parback;,s;) and all the solutionssggback,;; andparback,,;;). Additionally, for check-
files and illumination, which rely heavily on memoing, we also show speedups velati
to the execution in parallel with memoing in one thread (Whstould be similar to that
which could be obtained by executing in sequentially withhmo@g) in rowspb_rel ¢;,.
andpb_rel,;;.

The speedups obtained in both high-level implementatioavery similar for the case
of deterministic benchmarks. Therefore, the machinergssary to perform parallel back-
tracking does not seem to degrade the performance of detistimprograms, mainly thanks
to the dynamic optimizations aforementioned. Static ofi@tions bring improved perfor-
mance, but it in this case they seem to be residual, parthkthto the granularity control.
When comparing witl&-Prolog we of course suffer from the overhead of executing partly
at the Prolog level (especially mmat andgsort without granularity control), but even in
this case we think that our current implementation is coitipetenough.

For non-deterministic benchmarks, the behavigrarback andseqgback is quite similar
in the case ofjsortnd when only the first answer is computed. When all the solutioas a
requestedsegback exhibited some implementation problems (which we were b
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work around on time) and thus we offer instead results obthinith the simulator described
in (P. Chico de Guzian et al. 2011). This fact must be taken into account of cowfrsn
considering these figures, and we have thus marked them wémahasizedypeface.

In the case otheckfilesandillumination backtracking is needed even to generate the first
answer, and memoing plays an important role. The implentientasing parallel backtrack-
ing is therefore much faster even in a single processor saummputation is avoided. If we
compute the speedup relative with the parallel executioonenprocessor (rowsb_rel ¢,
andpb_rel,;;) the speedups obtained lparback increase in some way closer to the in-
crease in the number of processors —with some superlineadsgpeavhich is normal when
search does not follow, as in our case, the same order asrgidj@gecution. In the case of
seqgback, which performs essentially sequential backtrackingedpps remain constant.

When all the answers are required, speedups grow noticeii/can be traced to the
increased amount of backtracking that is performed in f@rdlhis behavior also appears,
to a lesser extent, igsortnd.

Note that the speedups ofieckfilesandillumination stabilize between 4 and 7 proces-
sors. This is so because they generate exactly 8 paralléd,goad there is one dangling
goal to be finished. In the case dieckfilesve get superlinear speedup because there are 8
lists of files to check. With 8 processors the first answer @aliained without traversing
(on backtracking) any of these lists. This is not the cask Wiprocessors (but it could have
been if backtracking were done in the right order), and scetigeno superlinear behavior
until we hit the 8 processor mark. Finally, the speeduparback is greater when all so-
lutions are required than when only the first one is requedidome extent this depends
on exactly where this first solution appears in the seareh &dditionally, since backtrack-
ing is done in parallel, the way the search tree is explorad {aerefore how fast the first
solution is found) can change between executions.

10 Conclusions

We have developed a high-level parallel backtracking aggitdor independent and-paral-
lelism which is competitive in deterministic benchmarkdheut static analysis. We have
shown great improvements in the execution of non-detestiinparallel calls due to the
avoidance of having to recompute answers and due to thehtgtgbarallel goals can execute
backwards in parallel, which was a limitation in previousiar implementations. This
parallel system may be used in new applications, such as thitls a first-restrict-search-
later structure, in which postponing the restriction teafthe search is finished does not
add significant computation, and a simple code transfoonailows a sequential program
to be executed in parallel.
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