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Abstract

Distributed programming pursues the execution of the subtasks a program can be divided into,

using a set of (possibly heterogeneous) computers. We describe preliminary work on the de-

sign and implementation of a particular case of the more general Distributed Constraint Logic

Programming paradigm, which encompasses a wider range of solving methods and constraint

domains. This work is intended to exploit the disjunctive parallelism contained in Constraint

Logic Programming over finite domains, trying to optimize execution time. The search tree

of the labeling process is split into subtrees, intending to achieve parallelism by distributing

them across the network, among a number of workers. During exploration these subtrees are

processed, and at the same time new work is produced. A dynamic scheduling that fosters a

solidary model of work sharing is, in general, expected to offer more optimal results than static

strategies. The target of this scheduling is to keep all the workers equally busy, in order to

maximize the exploitation of parallelism as well as to minimize communication overhead.

1 Introduction

Current communication lines are becoming quite reliable and of high bandwidth. This is certainly
so in local networks, and it is becoming the norm in wide-area networks and in the whole of

Internet. This opens the practical possibility of using networks as computation farms, and it has

been exploited in efforts such as Mersenne prime search using the Entropia architecture [CCEB03],
which relies on duplicating work in several personal computers in order to overcome possible

wrong answers and computer or network failures, or, more recently, the GRID proposals [FKNT99]
in its various inceptions.

It is to be expected that, as distributed applications appear and become more common, their

internal complexity will grow: from relatively straightforward (although not trivial) hand-coded
load and task distribution decisions to the need of automatic granularity analysis [LGHD96], and

from algorithms which are in principle easy to split into separate, independent sections to al-

gorithms which are irregular in nature. It is also to be expected that the need for higher-level
programming paradigms which arose in sequential programming will be carried on to large-scale

distributed programs in order to solve problems which are both big in terms of size of the data,
and complex in terms of the algorithms.

Studying and assessing distribution policies which can take advantage of a set of machines

connected in a network when executions of irregular algorithms are to be performed turns out to
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be necessary. In particular, we aim at developing and studying platforms for the distributed exe-

cution of constraint logic programs [MS98, JL87], applicable when a natural (or advantageous)
formulation of a problem uses constraint-based programs, and when, at the same time, the size of

the input data makes it necessary to distribute load among different processing units. Constraint

logic languages offer some advantages for distributed (and parallel) execution since its sequential
semantics is relatively easy to reconcile with parallel/distributed execution, and it makes imple-

mentation of automatic analysis tools (for, e.g., independence or granularity) easier than in other

languages.
Among the different possibilities of combination of program control and load distribution

(which are not unlike those already investigated for parallel execution [GPA � 01]) two of them
(and their combinations) have been recognized as the more interesting ones: and-parallelism,

where goals in the body of a clause are executed in parallel, and or-parallelism, where different

clauses (in general, branches of a search process) of a predicate are executed in parallel. In gen-
eral, and-parallelism is more difficult to implement due to the need to ensure that conditions to

avoid speed-down with respect to sequential execution hold. This can always be done at run-

time, and also (but only partially) at compile-time. Besides, implementing a correct and fast
backtracking in an and-parallel systems is a difficult task. Or-parallelism is easier to implement

(as witnessed by the systems offering it since time ago) due to the independence of the different
branches to be explored.

In this piece of work we present a high-level, or-parallel, distributed implementation applied

to the finite domain (FD) constraint system [Van89a, Van89b]. Some parts of the execution mech-
anism of FD (and, in general, of other constraint systems) can be executed in an and-parallel fash-

ion, but solving an FD program usually includes a part (the labeling or enumeration) which can be

executed in an or-parallel way quite easily. The range of high-level comes from using as implemen-
tation basis a sequential implementation of an FD solver in the Ciao Prolog [HBC � 00, HBC � 99]

system which allows seeing the constraints and constraint stores as objects to be communicated
between the processing units participating in an execution.

The initial aim of the implementation is to serve as initial base to develop more efficient im-

plementations, and also to be used as testbed to further develop distribution and granularity
algorithms. We evaluate the efficiency of the implementation and its behavior in a non-distributed

architecture (a parallel machine), but using the same mechanisms that would be used in a dis-

tributed execution. Therefore, and module communication speed failures, which can however be
simulated by introducing artificial delays of arbitrary length in the communication channels, we

expect to obtain a behavior which reflects that of a distributed system.

2 Introduction to CLP(
���

)

Constraint Logic Programming is an extension of Logic Programming, usually (but not necessarily)

taking the Prolog language as base, which augments LP semantics with constraint (e.g., equation)
handling capabilities, including the ability to generate constraints dynamically (e.g., at run time)

to represent problem conditions and also to solve them by means of internal, well-tuned, user-

transparent constraint solvers. Constraints can come in very different flavors, depending on the
constraint system supported by the language. Examples of well-known constraint systems are

linear [dis]equations, either over � or over � [JM87], � (equations over the Herbrand domain,
finite trees), �	� ([dis]equations over variables which range over finite sets with a complete order

among their elements, usually represented as integers [Van89a]).
�	� is one of the more widely used constraint domains, since the finiteness of the domain of

the variables allows, in the worst case, a complete traversal of each variable range when searching

for a solution. This gives complete freedom to the type of equations an �
� system can handle.1

Figure 1 shows a toy CLP( �
� ) program, with the same overall structure of other larger CLP( �	� )
programs. Briefly, the declarative reading of the program is that it succeeds for all values of � , �

1Note that many constraint systems do not have a complete solution procedure.
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and � such that

��� ���������
	��� ��� ����������	 ��� �������
	 ��� �����
and fails if no values satisfies all of these constraints. Operationally, and also from the viewpoint

of a programmer, the program first declares initial ranges for variables � , � , and  ,2 then a set of
relationships are set up among them, and finally a search procedure is called to bind the variables

to definite values. The first phase (setting up equations) fires a process called propagation, in

which some values can be removed from the domain of the variables (e.g., from �!� ��� ���������
and �"� �"�#� , the values 4 and 5 can be removed from the domain of � and � ). Usually this

stage does not end with a definite value for each variable, which is sought for in a second search

process, called labeling or enumeration: variables in the problem are assigned values within their
domains until all of them have a unique value satisfying all the equations in the problem. In this

process, if some assignment is inconsistent with the equations, backtracking is performed looking
for a different mapping from variables to values. These two stages are radically different in that

propagation is a deterministic process, while labeling is non-deterministic. In fact, after each

assignment made by the labeling process, a series of propagation steps can take place. In a real
program several propagation / labeling stages can be freely intertwined.

$&%('*)�+ ��,-��,. 0/21435 ��,���,6 87 '*):9<;=;-> ,�?3@� ;BA�;DC0E  F,�HGI� ;-J�A�;  F,K %ML0N K '*)POQ+ 5 ��,-��,4 87R/ ;
Figure 1: A short CLP( �	� ) program

In the example, the initial propagation phase, before the labeling, reduces the domains of the

variables to be: SMTVU
�W�YX*Z[�4\0���=]Q	 ���YX����.�[�4ZP]F	6�H�^X8�M���=]

Different propagation schemes can have different power and yield domains more or less tight.
This is not a correctness / completeness problem, as labeling will eventually remove inconsistent

values. Removing as much values as possible is advantageous, since this will make the search

space smaller, but the computational cost of a more precise domain narrowing has to be balanced
with the savings in the search. The state

SMT
can be taken as the initial root where the search starts

from, as the propagation is deterministic and does not leave branches to explore.
If we assume variables are labeled in lexicographical order, the next search step will generate

three different nodes, resulting from instantiating � to the values in its domain. Each of these

instantiations will in turn start a propagation (and simplification) which will lead to the following
three states: S_T 9 U �`��Za	 �b�#��	6���#�S_T C U �`�@\c	 �b����	6���#�S_T=dVU

�`�I��	 ���^X8�M�.�[�4Z[]F	6���YX����.�=]SMT 9 and
SMT C are completely determined, and are final solutions. If only one solution were

needed, the execution could have finished when �e�fZ was executed. If more solutions are
required, further exploration can be performed starting at

S_T=d
, resulting in the children statesSMT=d 9 , SMT=d C , and

SMT8d=d
, where � is instantiated to the values in its domain:S_T=d 9 U �g����	 �b���Q	��I�I�S_T=d C U �g����	 �b�IZ�	��I�?�

2Large default ranges are automatically selected if this initialization is not present.
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At this point, no more search either propagation is possible, and all the solutions to the con-

straint problem have been found. Note that the combination �`�I�[� ����� leads to an inconsistent
valuation, and is not shown.

An interesting property of the search in the subtrees is their independence (at this level of

abstraction): exploration in each of the branches does not need to communicate values with the
exploration in other branches. Of course, if different agents are assigned to each branch and only

one solution is needed, signaling when an alternative has found a solution is needed so that no

resources are wasted in the other branches. How different nodes are mapped to each node is a
scheduling problem to be tackled at a higher level. Dashed boxes in Figure 2 reflect a possible

assignment of sets of nodes to agents.

s0

s01 s02 s03

Exploration

s032s031

Figure 2: Search tree for the program in Figure 1

The size (depth and width) of the search depends on the number of variables and the domain

size of each of them. Although propagation prunes search by removing values before they are
assigned by the labeling process (which can in fact reduce greatly the time needed to solve large

combinatorial problems), the combined cost of search and consistency maintenance can be high.

However, each selection of a value from a variable domain generates a different subtree which
can be explored independently from the other subtrees (in an or-parallel fashion), while selecting

variables one after another can be executed in an and-parallel fashion. Both execution mechanisms
are amenable to be distributed, as in [Leu93, YDIK98]. However, the relative independence of

search subtrees should need, in principle, exchanging fewer messages, while at the same time

being more resilient to communication delays and even link failures if only one solution (and no
preference among different solutions) is needed.

3 Architectural Design

We will describe now, from a high level point of view, a design and interaction scheme to solve
CLP( �	� ) problems in a distributed way.

3.1 Worker-Manager Design

We have chosen a client-server architecture (figure 3), where a designated agent acts as Man-

ager, coordinating the search space of the other Worker agents, which perform the actual search.
The workers communicate with each other by message passing using the manager as interme-

diate communication point. Although this may cause the manager to become a communication

bottleneck, experiments presented in section 7 show that this is not the case. Additionally, the
simplicity of the design helps keeping the communication and distribution algorithms simple and

concentrating on the distribution of constraints and search trees.
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Figure 3: Manager-workers relationship

All workers start in an Initial state (corresponding to no activity) and, when work is available,

evolve to one of the busy states (Figure 5). Messages are by default processed in arrival order,
intending to mimic the behavior of a sequential search process.

explore
share

find

stop collect
share

W
share share

M

find

collect

explore

stop

Figure 4: Messages exchanged between workers and manager

3.2 Messages

The overall execution is driven by the manager by means of messages sent to and from the workers.

The direction of these messages is shown in Figure 4, and the meaning of the messages is as
follows:

Explore(Nodes): the manager sends this message to an idle worker requesting the exploration of

the node(s) included in the message.

Find: when the current subtree has been fully explored without finding a solution and the worker
becomes idle, a Find message is sent to the manager requesting for more work. The manager

forwards the request to the non-idle workers.

Share(Nodes): the busy workers send back to the manager one or several of its nodes pending to

be explored.

Explore(Nodes): the manager sends to the requesting worker the work received from some cur-
rently busy worker.

Collect(Solution): when a worker finds a solution it is sent to the manager in a Collect message.

Stop: the manager asks a worker to stop searching (for example, because only one solution was

needed and it has already been found).

Scalability: While in the preliminary experiments the manager did not become a performance
problem, when the number of workers grows the amount of messages and information exchanged

can clearly become and unbearable overhead which slows down the overall process. We plan to
overcome this situation by extending the manager protocol to support hierarchical, tree-shaped

communication networks (Figure 6) which keeps messages (for example, work requests) as local

as possible, and forwarding them to upper levels only when no answer is found within a manager
subtree.
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Figure 5: Worker states
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Figure 6: Scaling the architecture

3.3 Store Communication Strategies

A subtree rooted in a node is defined in terms of the state of the constraint store ��� associated

to that node.When an agent has to start exploring at some node, the computation state can be
transmitted by sending the whole store or by sending a difference between some previous store
��� (possibly the initial one) already known to the receiving node and � � .

Since our approach is based on a CLP( �	� ) implementation which handles constraints at a
high-level, using attributed variables [Hol92] which contain first-order terms, sending the store

can be made simply by term transmission (which can be optimized by marshaling and compres-
sion). Differences can be sent as mere store differences, but this becomes complicated because

of the intermediate store simplifications which may have taken place.3 An approach to overcome

this problem is to encode the difference as the (program) operations which were applied to � � to
yield ��� . These operations are either equation additions (and the associated propagation steps)

and labeling steps. Note that the set of labeling steps to be applied to � � to give ��� is deterministic

and does not need search. This approach, termed recomputation (in contrast with the former,
termed copying) has already been used elsewhere [Sch02, Clo87] both in shared memory and

distributed memory implementations of declarative languages with choices, and is, in principle,
more amenable to distribution, since constraint stores are usually large. However, granularity

considerations can be used both at compile time and at run time to decide which communication

method should be used: recomputing from a distant state can become very costly, even if no search
is actually performed.

4 Search Tree Generation

In the initial stage of exploration, the search tree is composed by a single node containing

the original constraint store. During search, and while there are variables still not enumer-

ated, intermediate nodes can produce new children by (non-deterministically) selecting a vari-
able and (again, non-deterministically) refining its domain. These reductions cause new con-

straint stores which correspond to new nodes. Domain reduction can be made, in its simplest

form, by making assignments of the form Variable � Value, where Value � Domain � Variable � ,
with more constraint addition (e.g., Variable � Mid 	 Variable 
 Mid, where, for example,

Mid ������ ��� Domain � Variable ��� � ������ Domain � Variable ���� � ). In general, choosing this kind of domain

reduction policy helps to keep the tree balanced, which is desirable for a distributed / parallel
computation.

3This is, in some sense, similar to the techniques used, at a lower level, in the Muse or-parallel system [AK90], but
in that case the heap differences are computed traversing the choicepoint stack, and the Herbrand constraints, even after
simplification, have a simpler representation than other domains.

6



According to the scenario described in section 3, exploration can be seen as a two dimensional

process (figure 7), where the first dimension takes place at the manager establishing the basis of
the interaction among workers in terms of scheduling, i.e. splitting the search tree into subtrees,

deciding which worker explores which subtree, and providing a protocol to obtain another subtree

once the current one is exhausted. The other dimension of search is local to each worker and spec-
ifies the way in which the search space currently assigned to the worker is explored. Analogously

to the sequential standard exploration process in CLP systems, in our implementation, by default

though customizable, we have chosen to perform exploration in a width � first manner in the first
dimension and depth � first in the local search dimension.

SCHEDULING

LOCAL SEARCH

W
O

R
K

E
R

MANAGER

− Search subspace assignment

− Work sharing protocol

− Search space partition

Figure 7: Two dimension search

5 Work Sharing

As a matter of fact, not necessarily do search subtrees in which the scheduling process divides the
whole search space have the same size in terms of exploration steps. So, during exploration, when

a worker exhausts search in its local scope, either because all the variables in its store are ground

or because all the branches have already been (unsuccessfully) explored, it requests more work,
which will be provided by another worker in a busy state.

As cooperative entities, whatever decision workers take will always be focused on maximizing

global performance. In this case, the worker that gives in part of its search tree to another worker
has in fact to decide which this part must be so that the whole system will obtain as much benefit

as possible from this transaction. If it is not a good choice, the requesting worker will probably ask
for more work in a short time, hence adding extra message passing time overhead by respawning

the share process each time it goes through its particular search tree. This decision can be:

� Share the most recent node in the search tree

� Share the least recent node

� Share a combination of nodes

The most recent node in a worker’s current search space is by definition, given the depth � first

search policy used by default, the one corresponding to the branch of the local search tree that

has been more explored so far and therefore this node will be due to have the smallest amount of
exploration work left to be done. So, in general it will not be a good practice to share it. In con-

trast, the least recent node will also be the least explored one and, subsequently, the node whose

exploration has more search steps left to be taken. This reasoning matches the expected behavior
in general but there can be exceptions. Therefore, more intelligent work sharing techniques can

be used consisting on drafting, based on a number of heuristics, a combination of new and old
nodes that may optimize behavior.
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The larger amount of information exchange between system entities (workers and manager)

takes place during the process of work sharing. This fact highlights the importance of reducing the
size of messages as much as possible. As messages mainly contain constraint stores representing

nodes of the search tree, it is necessary to minimize the size of the information used to describe

constraints. This is also a good reason to use Recomputing instead of Copying as it is always
cheaper, in terms of bytes transferred, to send a description, in the appropriate representation,

of the operations performed over the original store from a previous snapshot to the present state

than the whole current store.

6 Implementation

The implementation proposed of this high level model for distributed labeling lies on the (still
in development) Ciao Prolog CLP( �
� )library, and a good number of already existing distributed

programming facilities provided by Ciao Prolog as concurrency [CH99] and active modules [BC01]

libraries, as well as some others which are still in development but already offer the required
functionality, as library remote [CH02].

Under a procedural point of view, this implementation consists of three main entities: agencies,

workers, and manager, that interact with one another, as shown in figure 8.

CIAO PROGRAM

...
d_labeling(S, N, LDS),

...

:− use_module(manager).

AGENCY #1

AGENCY #n
...

get_all_agencies

add_address

initialize

W

W

W

W

W

W

W

W
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sockets

sockets
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Figure 8: Process interaction in distributed labeling

� An agency is a standalone executable which gives support for and encapsulates any number

of workers. Thanks to this intermediate level in the implementation design, it is possible

to manipulate workers during execution, i.e. include
�
create new workers into the system,

remove workers from execution and, in general, scale the system.

� Workers kept in an agency use it as a proxy to communicate with the rest of the components,

i.e. the manager or the rest of the workers, participating in the distributed labeling process.

Workers are implemented as Ciao’s threads thanks to the primitives provided in concurrency.

� The manager is implemented as a Ciao module which exports a predicate called���=K %ML0N K '*)PO�� d . This predicate permits to perform distributed labeling on a constraint store

upon invocation in an user program. Its first argument is a list containing the variables to be
labeled, the second is the number of solutions demanded (e.g, one, 100, all) and the third
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one is an LDS parameter specifying the number of search steps allowed to be taken against

the default worker local search heuristic.

Additionally, it has also been necessary to implement a binder, consisting of an active module

that connects agencies with the manager and vice-versa. It is a Ciao service reachable across the

network which stores the IP addresses of the agencies available. Agencies register themselves in
the binder during startup thanks to the predicate % � � � % � � �[N S8S �8C so that, upon user request, the

manager can initialize the execution of distributed labeling. The manager, using the binder as a

proxy, obtains the agencies addresses via the binder service O[N�� � % K=K � %�O[NM)��P'_N S �R9 , provides them
with its IP address, which agencies keep stored, and makes them initialize the local side of search,

i.e. launch the requested workers enabling them to execute the commands sent by the manager.
This implementation offers not only conceptual but also actual physical distribution of execu-

tion over the network. Thanks to Ciao libraries remote and active modules, entities can communi-

cate with one another across the network in a transparent way (applications in grid computing).

7 Empirical results

We will now compare the speedup obtained using an increasing number of workers, including

the relation between the execution time of the distributed scheme with only one worker and the
sequential case, represented with dashed lines in the figures. In these benchmarks we have chosen

recomputing instead of copying as the computation state representation technique, though com-
paring both is definitely an interesting experiment as in [Sch02], given it helps to provide a more

precise vision of the system’s behavior. Copying generally needs a more expensive communication

between manager and workers than recomputing, due to the size and process time of the mes-
sages exchanged (they include the whole constraint store), hence being more sensitive to issues

like communication bandwidth availability, which depends on physical environment factors like

network and CPU speed. Also, the cost of keeping recomputing information per worker is much
lower in time and memory usage than copying.

We have used three different benchmarks to perform a preliminary assessment of the proposed
implementation. The first one is the FD version of the N-queens program, where performance for

searching one and all solutions was measured. The second one is the cryptoarithmetic problem

DONALD + GERALD = ROBERT (DGR), where each letter stands for a different digit and they com-
pose three numbers (DONALD, GERALD and ROBERT) which must meet the previous equation.

Finally, the third benchmark is a program to find magic squares: square grids of side
�

which hold

numbers from 1 to
� �

and which must add up to the same amount in every horizontal, vertical
and (main) diagonal; in this case we found all solutions (for a Z��6Z magic square) and one solu-

tion (for a \	��\ magic square). All benchmarks have been written trying not to use tricks which
would speed up the program for a certain solver; they have all been executed on a 10-processor

Sun SparcCenter machine running Solaris 2.5.

The Queens Benchmark Finding all of the solutions (724) of a 10-Queens board (Figure 9)
needs a considerable amount of search; therefore, workers are seldom idle and work request

messages (share and find) are scarce. The speedup approaches linearity when the number of

workers is small (2 to 3) and starts to decay, due to the increased numbers of messages exchanged
among the workers.

Asking for just one solution with, in general, chessboards of any size N can be enough to change
completely the behavior of the program (Figure 10). This is due to the large number of solutions

of the problem, scattered along the search tree: the first solution to be found sequentially is close

enough to the start of the search that using more workers does not help to achieve more speed
— this is also partly due to the initial exchange of messages aimed at distributing load among the

workers.
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Figure 9: 10 Queens (all solutions)
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Figure 10: N Queens (1 solution)
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Figure 11: DONALD + GERALD = ROBERT

DONALD + GERALD = ROBERT This problem has only one solution, but a high number of
alternatives to be tried during labeling — i.e., the initial propagation cannot cut off many alter-

natives, and most of the work has to be performed with labeling. The overall situation is similar

to that in the 10-Queens case (Figure 9), where all the solutions were found by backtracking. An
early work sharing among workers allows an almost independent execution (i.e., few messages

are exchanged) and relatively good speedups.

Magic Squares The magic square benchmark for a side of size 3 and all solutions required is
a especially good benchmark to show up to what point it is convenient or not to use a certain

amount of parallelism during execution, as well as the relationship between speedup and the

overhead induced by the work share out process. In this case, all solutions are demanded but
this is quite a low number, only eight. Thus, as depicted in figure 12, there is a point where the

addition of workers does not suppose an increase of speedup anymore but, on the contrary, it
decays. This happens because from five workers and on there is literally no more work amenable

to be shared, it has all been already assigned, and the overhead added by the share protocol can

not be made up for anymore.
Similarly to the case of searching for one solution in the queens problem, the search space of

magic squares has plenty of possible solutions (for example, 7040 for a square of size N = 4). So,

it is almost straightforward for any worker to find one in its portion of the search tree and, as can
be seen in Figure 13, the increase of workers hardly has any impact in the evolution of speedup,

which keeps nearly constant and equal to one, this meaning there is practically no acceleration.
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Figure 12: Magic square, (N=3, all solutions)
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Figure 13: Magic square, (any N, 1 solution)

8 Conclusions and Future Work

During the phase of labeling the search tree of the problem is explored and can be divided into

independent subtrees which are amenable to be explored in parallel. We have implemented an
scheme which executes in a distributed fashion the “or” part of the exploration performed by the

labeling stage of the execution of an CLP( ��� ) program. Subtrees of the search tree are mapped

onto agents which can be physically distributed over a network and cooperatively explored. New
work generated by the agents can be shared, according to a number of different policies, with the

then idle workers. Workers communicate by means of a manager which is sent messages regarding
availability of work and requests of work, and which forwards them to the corresponding workers.

The manager also keeps track of the overall state of the computation, i.e., whether a solution has

been found or not, and whether more solutions are requested.
Work scheduling is a two-layered process which influences the order the tree is explored. Part

of the decisions take place in the manager, which establishes which particular worker is assigned a

certain subtree. In turn, each worker decides which not-yet-explored branches are to be delegated
to other workers. Workers can also decide which search strategy is to be applied to their local tree.

In our experience, recomputing has given us better results than copying in terms of speed and
memory consumption. Besides, taking into account which part of the tree was explored by every

worker allows making smarter decisions regarding which part of the subtree is to be explored.

Finally, benchmarks which are amenable to speed up, due to their granularity and distribution
of solutions, do show a reasonable speedup. This seems to be the case of search trees with few

(or just one) solution: when the time to succeed by one worker is not enough as to perform task

distribution among workers, the distribution does not have any chance to work in parallel. This is
just another incarnation of task granularity problems.

In a future we plan to extend the local search strategy with more possibilities, including dif-

ferent heuristics (e.g., Limited Discrepancy Search [WDH95]). As long as the heuristic do not

infinitely visit the same nodes, completeness is ensured thanks to the finiteness of the search
space.

Research is also being conducted on an and-parallel scheme where both variables and con-

straints are distributed over a set of agents across a network.
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