
Reducing the Overhead of Assertion Run-time Checks
via Static Analysis ∗

Nataliia Stulova1 José F. Morales1 Manuel V. Hermenegildo1,2

1IMDEA Software Institute
{nataliia.stulova,josef.morales,manuel.hermenegildo}

@imdea.org

2School of Computer Science
Technical University of Madrid (UPM)

manuel.hermenegildo@upm.es

Abstract
In order to aid in the process of detecting incorrect program behav-
iors, a number of approaches have been proposed which include a
combination of language-level constructs (such as procedure-level
assertions/contracts, program-point assertions, gradual types, etc.)
and associated tools (such as code analyzers and run-time verifi-
cation frameworks). However, it is often the case that these con-
structs and tools are not used to their full extent in practice due to a
number of limitations such as excessive run-time overhead and/or
limited expressiveness. Verification frameworks that combine static
and dynamic techniques offer the potential to bridge this gap. In
this paper we explore the effectiveness of abstract interpretation in
detecting parts of program specifications that can be statically sim-
plified to true or false, as well as the impact of such analysis in
reducing the cost of the run-time checks required for the remaining
parts of these specifications. Starting with a semantics for programs
with assertion checking, and for assertion simplification based on
static analysis information, we propose and study a number of prac-
tical assertion checking modes, each of which represents a trade-
off between code annotation depth, execution time slowdown, and
program safety. We also propose techniques for taking advantage
of the run-time checking semantics to improve the precision of the
analysis. Finally, we study experimentally the performance of these
techniques. Our experiments illustrate the benefits and costs of each
of the assertion checking modes proposed as well as the benefit of
analysis for these scenarios.

Keywords Abstract Interpretation, Assertions, Run-time Check-
ing, Verification, Logic Programming, Horn Clauses.

∗ This research has been partially funded by EU FP7 agreement 318337
ENTRA, Spanish MINECO project TIN2015-67522-C3-1-R TRACES, and
Madrid Region program M141047003 N-GREENS. We would also like
to thank the anonymous reviewers for providing valuable comments and
suggestions.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Detecting incorrect program behaviors is an important part of
the software development life cycle. It is also a complex and te-
dious one, in which dynamic languages bring special challenges.
A number of techniques have been proposed to aid in the process,
among which we center our attention on the use of language-level
constructs to describe expected program behavior, and of associ-
ated tools to compare actual program behavior against expecta-
tions, such as static code analyzers/verifiers and run-time verifi-
cation frameworks. Approaches that fall into this category are the
assertion-based frameworks used in (Constraint) Logic Program-
ming (Drabent et al. 1988; Puebla et al. 1997; Bueno et al. 1997;
Boye et al. 1997; Hermenegildo et al. 1999; Puebla et al. 2000b; Laı̈
2000; Hermenegildo et al. 2005; Mera et al. 2009), soft/gradual typ-
ing approaches in functional programming (Cartwright and Fagan
1991; Findler and Felleisen 2002; Tobin-Hochstadt and Felleisen
2008; Dimoulas and Felleisen 2011; Rastogi et al. 2015; Takikawa
et al. 2015, 2016), and contract-based extensions in object-oriented
programming (Lamport and Paulson 1999; Leavens et al. 2007;
Fähndrich and Logozzo 2011). These tools are aimed at detecting
violations of the expected behavior or certifying the absence of
any such violations, and often involve a certain degree of run-time
testing, specially for non-trivial properties.

A practical limitation of many of these tools is that they can
incur significant run-time performance overhead, even in the sim-
ple case of performing just type checks between typed and un-
typed parts of programs (Rastogi et al. 2015; Takikawa et al. 2016).
In (Mera et al. 2009) reductions were obtained by limiting the
points at which the tests are performed and the instrumentation,
and by inlining, but some types of tests still incurred significant
costs. Some approaches have opted for limiting the expressive-
ness of the assertion language in order to reduce the overhead
(see (Schiller et al. 2014) for some recent case studies). Recently,
some proposals have been made for reducing the run-time overhead
of assertion checking based on optimizing the run-time checking
mechanisms themselves, at the expense of increased memory con-
sumption (Koukoutos and Kuncak 2014; Stulova et al. 2015): re-
peated checks on immutable recursive data structures are converted
from execution time overhead to increased memory use via caching
and/or tabling techniques.

However, despite these advances, run-time overhead often re-
mains impractically high, specially for complex properties, such
as, for example, deep data structure tests. This reduces the attrac-
tiveness of run-time checking to programmers, which may allow
sporadic checking of very simple conditions, but tend to turn off
run-time checking for more complex properties.

1 2016/8/16

Motivated by this problem, assertion-based frameworks have
been proposed where static analysis is used to minimize the num-
ber and cost of the run-time checks that need to be placed in the
program to detect incorrect program behaviors. This idea was pio-
neered by the Ciao system (Puebla et al. 1997; Bueno et al. 1997;
Hermenegildo et al. 1999; Puebla et al. 2000b; Hermenegildo et al.
2005; Pietrzak et al. 2006; Hermenegildo et al. 2012) where a num-
ber of (abstract interpretation-based) static analyses are combined
in order to verify assertions to the largest extent possible at compile
time, and for simplifying and reducing the number of remaining
properties that that need to be introduced in the program as run-time
checks. Intuitively, this model can offer a more appealing trade-
off of performance vs. safety guarantees. However, while there has
been evidence from use, there has been little systematic experimen-
tal work presented to date verifying this hypothesis, i.e., measuring
the actual impact of analysis on reducing run-time checking over-
head. For example, in (Mera et al. 2009, 2011) the overhead of run-
time checking was studied but without taking into account analysis
information.

In order to bridge this gap, in this work we explore the effec-
tiveness of abstract interpretation-based compile-time analysis in
detecting parts of program specifications that can be simplified be-
fore they are turned into run-time checks. Again, the objective of
such simplification is to achieve a system that can detect the same
(or a larger) set of incorrect behaviors in a program, but with a sig-
nificant reduction in the impact on the running time of the program.

Starting with a semantics for programs with assertion checking
and for assertion simplification based on analysis information ob-
tained via abstract interpretation, we propose and study a number
of practical assertion checking modes, each of which represents a
trade-off between code annotation depth, execution time slowdown,
and program behavior safety guarantees. The proposed modes are
specially tailored to the scenario of annotating and pre-processing
libraries to ensure their correctness prior to their use by client pro-
grams. We also define a transformation-based approach in order to
implement each one of these modes.

We then concentrate on the reduction of the number of run-time
tests via (abstract interpretation-based) program analysis. To this
end we propose a technique that enhances analysis precision by
taking into account that any assertions that cannot be proved stati-
cally will be the subject of run-time testing. We then report on an
implementation of the proposed techniques (within the CiaoPP sys-
tem) and study their impact in practice, by measuring the reduction
in run-time checking overhead achieved.

We develop the discussion in the context of (Horn Clause) Logic
Programs, to take advantage of the availability of mature program
analysis and transformation tools, and a well developed assertion
language and assertion processing framework (in particular, that of
the Ciao system). However, we believe the results are applicable to
other programming paradigms, either directly (to, e.g., other forms
of declarative programming), or, following recent work, to imper-
ative programs, via transformation into Horn Clauses (Méndez-
Lojo et al. 2007; Grebenshchikov et al. 2012; Bjørner et al. 2014;
Gurfinkel et al. 2015). Examples of this include cost analysis of
Java bytecode programs (Navas et al. 2008, 2009), or inferring en-
ergy bounds in binaries from C-style programs (Liqat et al. 2014,
2016).

The rest of the paper is structured as follows: Section 2 presents
the run-time checking part of our approach. After introducing some
notation and the basic semantics in Section 2.1, Section 2.2 presents
the assertion language and Section 2.3 the operational semantics
with run-time checking of such assertions. Section 3 then presents
the run-time assertion checking modes proposed, including a dis-
cussion of the transformations required to implement the different
modes. Section 4 then addresses the issue of optimizing run-time

checks via static analysis. Section 4.1 presents the basic abstract
interpretation-based analysis approach used and the memo table
representation of the analysis results. Section 4.2 describes how
run-time tests are optimized using the information in the analysis
memo table. Section 5 then presents our approach for taking ad-
vantage of the run-time checking semantics to improve the preci-
sion of the analysis. Section 6 describes our experimental harness
and presents our results for the different options (with and without
analysis, with and without improved analysis precision). Section 7
finally presents our conclusions.

2. Run-Time Checking of Assertions

2.1 Basic notation and standard semantics
We revisit here some basic notation and the standard program
semantics, where we use the formalization of (Stulova et al. 2015,
2014; Puebla et al. 2000b).

An atom has the form p(t1, ..., tn) where p is a predicate sym-
bol of arity n and t1, ..., tn are terms. A constraint is a conjunc-
tion of expressions built from predefined predicates (such as term
equations or inequalities over the reals) whose arguments are con-
structed using predefined functions (such as real addition). A literal
is either an atom or a constraint. A goal is a finite sequence of lit-
erals. A rule is of the form H:-B where H , the Head, is an atom
and B, the body, is a possibly empty finite sequence of literals. A
constraint logic program, or program, is a finite set of rules.

The definition of an atom A in a program, defn(A), is the set
of variable renamings of the program rules s.t. each renaming has
A as a Head and has distinct new local variables. We assume that
all rule Heads are normalized, i.e., H is of the form p(X1, ..., Xn)
where the X1, ..., Xn are distinct free variables. Let ∃Lθ be the
constraint θ restricted to the variables of the syntactic object L. We
denote constraint entailment by |=, so that θ1 |= θ2 denotes that θ1
entails θ2. Then, we say that θ2 is weaker than θ1.

The operational semantics of a program is given in terms of its
derivations, which are sequences of reductions between states. A
state 〈G | θ〉 consists of a goal G and a constraint store (or store
for short) θ. We use :: to denote concatenation of sequences and
we assume for simplicity that the underlying constraint solver is
complete. A state S = 〈L :: G | θ〉 where L is a literal can be
reduced to a state S′ as follows:

1. 〈L :: G | θ〉 〈G | θ ∧ L〉 if L is a constraint and θ ∧ L is
satisfiable.

2. 〈L :: G | θ〉 〈B :: G | θ〉 if L is an atom of the form
p(t1, . . . , tn),
for some rule (L:-B) ∈ defn(L).

We use S S′ to indicate that a reduction can be applied to
state S to obtain state S′. Also, S ∗ S′ indicates that there is a
sequence of reduction steps from state S to state S′. We denote by
D[i] the i-th state of the derivation. As a shorthand, given a non-
empty derivation D, D[−1] denotes the last state. A query is a pair
(L, θ), where L is a literal and θ a store, for which the constraint
logic programming system starts a computation from state 〈L | θ〉.
The set of all derivations from the queryQ is denoted derivs(Q). A
finished derivation from a query (L, θ) is successful if the last state
is of the form 〈� | θ′〉, where � denotes the empty goal sequence.
In that case, the constraint ∃̄Lθ′ is an answer to S. We denote by
answers(Q) the set of answers to a query Q.

2.2 Assertion Language
We assume that program specifications are provided by means of
assertions: linguistic constructions that allow expressing properties

2 2016/8/16

of programs. In particular, we would like to specify certain condi-
tions on the constraint store that must hold at certain points of pro-
gram derivations. For concreteness we will use the pred assertions
of the Ciao assertion language (Puebla et al. 1997; Hermenegildo
et al. 1999; Puebla et al. 2000a,b; Hermenegildo et al. 2012). The
main intent behind the construction of a specification for a pred-
icate using pred-assertions is to define the set of all admissible
preconditions for this prediate, and for each such precondition in
turn specify the respective postcondition. I.e., pred-assertions al-
low stating sets of related preconditions and conditional postcondi-
tions for a given predicate.

These pre- and postconditions are formulas containing literals
corresponding to predicates that are specially labeled as properties.
The design of this language is such that properties and the other
predicates composing the program are written in the same lan-
guage. This approach is motivated by the direct correspondence be-
tween the declarative and operational semantics of constraint logic
programs and it provides a direct link between the properties used
in assertions and the corresponding run-time tests, which constitute
(instrumented) calls to the predicates defining the properties. This
also allows defining specifications that are more general than, e.g.,
the traditional notions of types.

More formally, the set of assertions for a given predicate repre-
sented by Head is composed of all statements of the form:1

:- pred Head : Pre1 => Post1.
. . .
:- pred Head : Pren => Postn.

where Head is the same normalized atom, that denotes the predi-
cate that the assertions apply to, and the Prei and Posti are con-
junctions2 of prop literals that refer to the variables of Head.

A set of assertions as above states that in any execution state
〈Head :: G | θ〉 at least one of the Prei conditions should hold,
and that, given the (Prei, Posti) pair(s) where Prei holds, then,
if Head succeeds, the corresponding Posti should hold upon suc-
cess. More formally, given a predicate represented by a normalized
atomHead, and the corresponding set of assertions isA(Head) =
{A1 . . . An}, withAi = “:- pred Head : Prei => Posti.”
such assertions are normalized into a set of assertion conditions for
that predicate, denoted as AC(Head) = {C0, C1, . . . , Cn} s.t.:

Ci =

{
ci.calls(Head,

∨n
j=1 Prej) i = 0

ci.success(Head, Prei, Posti) i = 1..n

where ci is a unique assertion condition identifier. If there are
no assertions associated with Head then the corresponding set of
assertion conditions is empty. The set of assertion conditions for
a program is the union of the assertion conditions for each of the
predicates in the program.

The calls(Head, . . .) conditions encode the checks that ensure
that the calls to the predicate represented by the Head literal are
within those admissible by the set of assertions, and we thus call
them the calls assertion conditions. The success(Headi, P rei, Posti)
conditions encode the checks for compliance of the successes for
particular sets of calls, and we thus call them the success assertion
conditions.

2.3 Semantics with assertions
We now recall the operational semantics with assertions, which
checks whether assertion conditions hold or not while comput-

1 We follow the more compact formalization of (Stulova et al. 2014), using
only pred assertions. See also (Puebla et al. 2000b) for the original presen-
tation using calls and success assertions. We are also not dealing herein
with comp assertions and properties.
2 In the general case Pre and Post can be DNF formulas of prop literals
but we limit them to conjunctions herein for simplicity of presentation.

ing the derivations from a query. In order to keep track of any
violated assertion conditions, we use the identifiers of the asser-
tion conditions. Given the atom La that is a renaming of some
normalized atom L s.t. La = σ(L) and the corresponding set of
assertion conditionsAC(L), the assertion conditions forLa are ob-
tained as follows: if ∃C ∈ AC(L), C = c.calls(L,Pre) (or C =
c.success(L,Pre, Post)), thenCa = σ(C) = ca.calls(La, σ(Pre))
(or Ca =
ca.success(La, σ(Pre), σ(Post))). We also introduce an ex-
tended program state of the form 〈G | θ | E〉, where E denotes
the set of identifiers for falsified assertion condition instances and
|E| ≤ 1. For the sake of readability, we write labels in negated
form when they appear in the error set. A finished derivation from
a query (L, θ) now is successful if the last state is of the form
〈� | θ′ | ∅〉 (∅ denotes the empty set), and failed if the last state
is of the form 〈L′ | θ′ | {c̄}〉. We also extend the set of literals
with syntactic objects of the form acheck(L, c) where L is a literal
and c is an identifier for an assertion condition instance, which we
call check literals. Thus, a literal is now a constraint, an atom or
a check literal. A literal L succeeds trivially for θ in program P ,
denoted θ ⇒P L, iff ∃θ′ ∈ answers((L, θ)) such that θ |= θ′. We
can now recall the notion of Reductions in Programs with Asser-
tions from (Stulova et al. 2014), which is our starting point: a state
S = 〈L :: G | θ | ∅〉, where L is a literal, can be reduced to a state
S′, denoted S A S′, as follows:

1. If L is a constraint then the new state is S′ = 〈G′ | θ′ | ∅〉
where G′ and θ′ are obtained in a same manner as in 〈L :: G |
θ〉 〈G′ | θ′〉

2. If L is an atom and ∃(L:-B) ∈ defn(L), then the new state S′

is obtained as

S′ =

 〈L | θ | {c̄}〉 if ∃ c.calls(L,Pre) ∈ AC(L)
∧ θ 6⇒P Pre

〈B :: G′ | θ | ∅〉 otherwise

and G′ = acheck(L, c1) :: . . . :: acheck(L, cn) :: G such that
ci.success(L,Prei, Posti) ∈ AC(L) ∧ θ ⇒P Prei.

3. If L is a check literal acheck(L′, c), then S′ is obtained as

S′ =

 〈L
′ | θ | {c̄}〉 if c.success(L′, , Post) ∈ AC(L′)

∧ θ 6⇒P Post
〈G | θ | ∅〉 otherwise

3. Assertion Checking Modes
When a program is being instrumented with run-time checks the
choice of instrumentation strategy is determined by several factors
and considerations. Most of these factors can typically be general-
ized to a compromise between thoroughness of the code annotation
(complexity of the properties, annotation depth) and the resulting
performance penalties (execution time slowdown, code bloat, in-
creases in memory use).

We propose a view on this compromise that differentiates be-
tween various levels of behavioral safety guarantees embodied in
several assertion checking modes. In the following we will ex-
plain these modes for concreteness in a client-library interaction
scenario, and from the perspective of the client. However, the pro-
posed view is not limited to this particular case and can be applied
to other kinds of interaction between program components.

Unsafe Checking Mode This checking mode corresponds to a
scenario where no execution time slowdown is tolerated at run time,
even at the cost of no program behavior safety guarantees. In this
case no run-time checks are generated from the assertions of the
library. Formally, this corresponds to using the standard semantics
of Section 2.1, and thus ignoring the assertions in the program. This
of course eliminates any overhead but at the cost of correctness.

3 2016/8/16

� �
1 :- module(_, [p]). % exported predicate p
2

3 :- check pred p : Pre => Post.
4

5 % c0.calls(p, Pre) ∧ status(c0, check)
6 % c1.success(p, Pre, Post) ∧ status(c1, check)
7

8 p :- body.
9

10 q :- p.� �
(a) Initial program fragment.� �

1 :- module(_, [p]).
2

3 % c0.calls(p, Pre) ∧ status(c0, check)
4 % c1.success(p, Pre, Post) ∧ status(c1, check)
5

6 p :- p_inner. % (the link clause)
7

8 p_inner :- body.
9

10 q :- p_inner.� �
(b) The same program fragment after the transformation.

Figure 1. Client-safe program transformation.

However, we still consider it because it represents a baseline and
is in fact used sometimes in practice for production code, in order
to avoid overhead, if, e.g., it is perceived that sufficient testing was
carried out prior to delivery.

Client-safe Checking Mode In this mode the library provides
the client with behavior guarantees on its interface, but does not
check the assertions for the internal procedures. Run-time checks
are thus generated only for the assertion conditions for the exported
predicates of the library. More formally, assuming that the set of
(atoms of) exported predicates is given by Exp:

1. If L is a constraint or L is an atom such that L /∈ Exp, then the
new state S′ = 〈G′ | θ′ | ∅〉 where G′ and θ′ are obtained in a
same manner as in 〈L :: G | θ〉 〈G′ | θ′〉

2. If L is an atom such that L ∈ Exp, and ∃(L:-B) ∈ defn(L),
then the new state S′ is obtained as in step 2 of the semantics
with run-time checks of Section 2.3.

3. If L is a check literal acheck(L′, c), then S′ is obtained as in
step 3 of the semantics with run-time checks of Section 2.3.

The modified semantics above ensures that checks are per-
formed only for the predicates in the library interface. However,
all calls within the library to the exported predicates, including
recursive calls, would also be checked, unnecessarily. In order to
avoid this, and to ensure that the checks are performed only on the
external calls, we assume that the program transformation given
in Fig. 1 is applied to all exported predicates. The transformation
introduces intermediate link predicates for exported predicates so
that the module interface is preserved but all the internal calls are
replaced by calls to the wrapper predicates, for which no checks
are performed. This combination of program transformation and
run-time checking policy allows obtaining safety guarantees at the
library boundaries with minimal run-time checking execution time
overhead.

Safe-RT Execution Mode In this mode the library provides be-
havior guarantees both on its interface and its internals. Run-time
checks are generated for all assertions of the library. This corre-
sponds to using the semantics with assertions of Section 2.3. The
performance penalty here is the largest.

Code

Assertions

Program

Code

Assertion
conditions

Program

Code

Program

Code

Run-time
checks
(exports)

Program

Code

Run-time
checks
(all)

Program

Unsafe Client-safe Safe-RT

Normalizer

RT-checks

Figure 2. Source transformation differences per checking mode.

Transformations The checking modes described above require
different source transformations to be performed on a program dur-
ing compile time (see Fig. 2). Before any such transformations take
place, the assertions are normalized and expanded into assertion
conditions. This allows assuring that no syntactic errors are present
in the assertion conditions and that no undefined properties (i.e.,
properties that are not defined in the program or imported from li-
braries) appear in such conditions.

In the Unsafe mode nothing is done and the assertion conditions
are simply ignored during compilation. In the Safe-RT mode the
source transformation is quite straightforward: all the assertion
conditions for all assertions in the program are turned into run-time
checks directly. In the Client-safe mode, as mentioned before, the
program transformation of Figure 1 is first performed for all the
exported predicates, and then run-time checks are generated only
for the assertion conditions of those exported predicates.

4. Optimizing Run-Time Checks via Static
Analysis

We now return to the issue of optimizing run-time checks via (ab-
stract interpretation-based) static program analysis, in order to re-
duce the number of run-time tests and thus the overhead from run-
time testing, following the Ciao model. To this end, we recall the
basic abstract interpretation-based analysis approach used and the
memo table representation of the analysis results and describe how
run-time tests are optimized using the information in the analysis
memo table. Based on this in the following section we will present
our approach for taking advantage of the run-time checking seman-
tics to improve the precision of the analysis.

Herein we will refer to this combination of static and dynamic
checking as the Safe-CT-RT Checking Mode, i.e., as a variation on
the Safe-RT run-time checking mode, where static verification is
performed in order to eliminate as many of the properties in the
program assertions to be checked at run time as possible. Run-
time checks are still generated for all program assertions but in
contrast to the Safe-RT case the assertions are simplified before the

4 2016/8/16

checks are generated from them. In this mode the run-time checks
for the calls assertion conditions of the exported predicates are left
untouched though, to ensure calls safety in an open context.3

4.1 Abstract Interpretation-based Analysis
For analysis we use the technique of abstract interpretation (Cousot
and Cousot 1977), which simulates the execution of a program
on an abstract domain (Dα) which is simpler than the actual,
concrete domain4 (D). Abstract values and sets of concrete values
are related via a pair of monotonic mappings 〈α, γ〉: abstraction
α : 2D → Dα, and concretization γ : Dα → 2D . The operations
of least upper bound (t) and greatest lower bound (u) over abstract
literals λ mimic those of 2D in a precise sense:

∀λ, λ′ ∈ Dα : λ v λ′ ⇔ γ(λ) ⊆ γ(λ′)
∀λ1, λ2, λ

′ ∈ Dα : λ1 t λ2 = λ′ ⇔ γ(λ1) ∪ γ(λ2) = γ(λ′)
∀λ1, λ2, λ

′ ∈ Dα : λ1 u λ2 = λ′ ⇔ γ(λ1) ∩ γ(λ2) = γ(λ′)

As usual in abstract interpretation,⊥ denotes the abstract constraint
such that γ(⊥) = ∅, whereas > denotes the most general abstract
constraint, i.e., γ(>) = D.

The concrete framework that we will use in the static anal-
ysis component is the Ciao PLAI abstract interpretation sys-
tem (Muthukumar and Hermenegildo 1989, 1990, 1992). Below
we adapt some definitions and notation from (Puebla et al. 2000b)
to illustrate the analysis process implemented by PLAI.

The goal dependent abstract interpretation performed by PLAI
takes as input a program P , an abstract domain Dα, and a descrip-
tion Qα of the possible initial queries to the program given as a
set of abstract queries. An abstract query is a pair (L, λ), where
L is an atom (for one of the exported predicates) and λ ∈ Dα an

3 Although modular analysis can also eliminate the module interface
checks, this is to be consistent with our simple library scenario.
4 In what follows we assume the concrete domains to have a powerset
structure, but the framework is not limited to such domains and can be
applied to domains of arbitrary structure.

Code

Assertions

Program

Code

Assertion
conditions

Program

Code

Assertion
conditions
(reduced)

Program

Code

Program

Code

Run-time
checks
(exports)

Program

Code

Run-time
checks
(all)

Program

Code

Run-time
checks
(reduced)

Program

Unsafe Client-safe Safe-RT Safe-CT-RT

Normalizer

RT-checks

Static
Analysis

Figure 3. Source transformation differences per checking mode,
including compile-time analysis.

Table 1. Assertion status.

Status Source Description
check user The assertion expresses part of the in-

tended semantics. It may or may not
hold in the current version of the pro-
gram. It is the default status that is
assumed for assertions written without
and explicit status.

checked static
checking

The assertion was a check assertion
which has been proved to actually hold
in the current version of the program for
any valid initial call.

false static
checking

Similarly, a check assertion is rewritten
with the status false when it is proved
not to hold for some valid initial query.

true static
analyses
or user

Such an assertion expresses (a part of)
the actual semantics of the program,
normally automatically inferred by anal-
ysis. Can also be provided by the pro-
grammer.

abstract constraint which describes the initial stores for L. A set of
abstract queries Qα represents a set of queries, denoted γ(Qα),
which is defined as γ(Qα) = {(L, θ) | (L, λ) ∈ Qα ∧ θ ∈
γ(λ)}. Such an abstract interpretation computes a set of triples
Analysis(P,Qα, Dα) = {〈Lp, λc, λs〉 | p is a predicate of P},
where λc and λs are abstract constraints that describe calls and
success patterns for p.

The analysis (as the assertion language, to be introduced later)
is designed to discern among the various usages of a predicate.
Thus, multiple usages of a procedure can result in multiple descrip-
tions in the analysis output, i.e., for a given predicate P multiple
〈P, λc, λs〉 triples may be inferred. More precisely, the analysis is
said to be multivariant on calls if more than one triple 〈P, λc1, λs1〉,
. . . , 〈P, λcn, λsn〉 n ≥ 0 with λci 6= λcj for some i, j may be
computed for the same predicate. However, for simplicity of pre-
sentation, we assume that the analysis computes exactly one tuple
〈Lp, λc, λs〉 for each (reachable) predicate p.

4.2 Optimizing Assertions with Analysis Results
The steps of the verification process are represented by associating
a notion of “status” to each assertion:

:- [Status] pred Head : Pre1 => Post1.
. . .
:- [Status] pred Head : Pren => Postn.

This optional Status flag indicates whether the assertion refers to
intended or actual properties, and possibly some additional infor-
mation, as shown in the top part of Table 1 (see also Figure 6).

The reasoning about the statuses of assertion conditions is per-
formed in the following terms. Given a literal L and a program P ,
the trivial success set of L in P is TS(L,P) = {∃̄Lθ |θ ⇒P L}.
We also recall here the auxiliary partial functions prestep and step
from (Stulova et al. 2014) which are instrumental in reasoning
about program state reductions:

prestep(La, D) = (θ, σ) ≡D[−1] = 〈L :: G | θ〉 ∧ ∃σ L = σ(La)

step(La, D) = (θ, σ, θ′) ≡D[−1] = 〈G | θ′〉 ∧ ∃σ L = σ(La)

∧ ∃i D[i] = 〈L :: G | θ〉
Given a derivation whose current state is a call to La (normalized
atom), the prestep function returns the substitution σ for La, and
the constraint store θ at the predicate call (i.e., just before the literal
is reduced). Given a derivation whose current state corresponds

5 2016/8/16

exactly to the return from a call to La, the step function returns
the substitution σ for La, the constraint store θ at the call to La,
and the constraint store θ′ at La’s success (i.e., just after all literals
introduced from the body of La have been fully reduced).

An abstract constraint λ−TS(L,P) is an abstract trivial success
subset of L in P iff γ(λ−TS(L,P)) ⊆ TS(L,P). An abstract con-
straint λ+

TS(L,P) is an abstract trivial success superset of L in P iff
γ(λ+

TS(L,P)) ⊇ TS(L,P). Given the program P , the concrete and
abstract sets of queries Q and Qα5 respectively, where γ(Qα) ⊇
Q, and 〈L, λc, λs〉 ∈
Analysis(P,Qα, Dα), the status of an assertion condition C, as-
sociated with it by the mapping status(c, Status) where c is the
corresponding identifier, is determined as follows:

• C = c.calls(L,Precond) ∧ status(c, checked)
if λc v λ−TS(Precond,P).

• C = c.success(L,Pre, Post) ∧ status(c, checked)
if (1) λc u λ+

TS(Pre,P) = ⊥ or (2) λs v λ−TS(Post,P);

• C = c.calls(L,Precond) ∧ status(c, false)
if ∃D ∈ derivs(Q) s.t. prestep(L,D) = (θ, σ) ∧∃Lθ 6= ∅ and
λc u λ+

TS(Precond,P) = ⊥.

• C = c.success(L,Pre, Post) ∧ status(c, false)
if λc u λ−TS(Pre,P) 6= ⊥ and λs u λ+

TS(Post,P) = ⊥ and
∃ θ ∈ γ(λc u λ−TS(Pre,P)) : ∃D ∈ derivs(Q) s.t.
step(L,D) = (θ, σ, θ′) ∧∃Lθ′ 6= ∅.

The compile-time checking process can be seen as a revi-
sion of the assertion statuses where for each predicate literal
L its annotation composed from the respective assertion condi-
tions AusrC (L) = {C | c.C ∈ AC(L) ∧ status(c, S) ∧ S ∈
{check, true}} given the analysis output of the formAanaC (L) =
{C | ∀c.C status(c, true)} is rewritten into {C | c.C ∈
AusrC (L) ∧ status(c, S) ∧ S ∈ {check, checked, false}}.

5. Taking Advantage of the Run-Time Checking
Semantics during Analysis

The standard analysis introduced in Section 4.1 safely approxi-
mates the traditional semantics (i.e., the semantics without asser-
tions or run-time checks).6 However, if we know that run-time
checks will be performed for sure for a certain set of (check) as-
sertions (as, e.g., for all assertions in the Safe-RT execution mode,
or the ones corresponding to interface predicates in the client-safe
mode), it is possible to use this information during analysis to im-
prove precision, i.e., to assume that the calls assertion conditions
hold after the predicate has entered the predicate definition (since,
according to the semantics of Section 2.3 either the checks for these
calls assertion conditions have already succeeded or the program
has exited with error), and to assume the relevant success assertion
conditions after the predicate has exited (since, again, at this point

5 In the implementation of PLAI, Qα is obtained from the calls conditions
of the assertions of exported predicates (or, if no such assertions are present,
a “topmost” abstract state is assumed), or from specific “entry” assertions.
6 Actually, assertions with trust status (which are typically used to provide
information to improve analysis precision), and assertions with true status
are in fact read and applied by the traditional analysis during its fixpoint
calculation. However, in this discussion we refer to incorporating into
the analysis the information present in check assertions, i.e., from the
assertions being checked at compile time or run time. These assertions are
not normally taken into account by the analysis since they may or may
not hold and, in general, run-time tests may or may not be included in the
compiled program.

� �
1 :- module(_,[p/2]). % p/2 is exported
2 :- use_module(foo ,[e/2]). % e/2 is imported
3

4 p(X,Y) :- q(X,Y).
5

6 :- pred q(X,Y) : int(X) => int(Y).
7 q(X,Y) :- r(X,Y).
8

9 :- pred r(X,Y) : int(X) => int(Y).
10 r(X,Y) :- e(X,Y).� �

Figure 4. Example for analysis improvement.

either these success assertion conditions have already succeeded or
the program has exited with error).

As an example, consider the program of Figure 4.7 p/2 is an
exported predicate, q/2 and r/2 are local predicates, and e/2 is
imported. We allow both p/2 and e/2 to be called without any
restriction, and we do not specify any constraints either regarding
their successes. However, we want to enforce (through the two as-
sertions) that q/2 and r/2 always be called with their first argument
X bound to an integer, and that their second argument Y be bound to
an integer upon success. Since any type of call is allowed to p/2,
and without information on the presence of run-time checks, anal-
ysis cannot infer anything about the calls conditions for q/2 and
r/2, or for the success conditions of these two predicates, and will
report warnings for unchecked conditions for all of them (and the
two assertions will remain in check status).

However, note that, assuming we are generating run-time
checks for all assertion conditions, the call to r/2 in the body
of q/2 can only be reached if the calls condition for q/2 holds,
i.e., if X is bound to an integer (since otherwise execution would
have been aborted). Thus, this information can be incorporated into
the analysis and propagated to the call to r/2, and it can be deter-
mined that the calls condition for r/2 (i.e., that its first argument
be also bound to an integer) always holds. Thus, this calls condi-
tion for r/2 gets status checked and no run-time test needs to be
generated for it.

Similarly, the run-time test for the success condition for r/2
ensures that if the call to r/2 in the body of q/2 returns, then its
second argument is guaranteed to be bound to an integer. Thus, the
success condition for 1/2 will also get status checked and no run-
time test needs to be generated for it either.

Transformation A straightforward method to incorporate the in-
formation from successful checks into the analysis, so that it takes
the semantics with run-time checking into account, would be to
analyze the transformed program (i.e., the program including the
code that performs the run-time tests) instead of the original one.
This is the approach implied by the original transformational def-
initions of the assertion language. On the other hand, programs
transformed for run-time testing contain numerous optimizations
and instrumentation that make their analysis less efficient and can
potentially affect precision. An alternative would be to use a very
simple (even if inefficient) run-time checking transformation just
for analysis. Inspired by this idea, we propose herein a different,
even more direct approach, based on introducing additional asser-
tions and link predicates in the program that together capture the
run-time checking semantics and provide the additional informa-
tion source for the analysis, in order to increase precision. This is
performed as a program transformation T that precedes the analysis
and is applied to every annotated predicate in a program:

7 In the examples we use just simple types as properties for conciseness,
but even in this case please note that the use of types is moded, i.e., the
assertions here express states of instantiation.

6 2016/8/16

� �
1 :- check calls q(X,Y) : int(X).
2 :- true success q(X,Y) : int(X) => int(Y).
3 q(X,Y) :- q_inner(X,Y).
4

5 :- true calls q_inner(X,Y) : int(X).
6 :- check success q_inner(X,Y) : int(X) => int(Y).
7 q_inner(X,Y) :- r(X,Y).� �

Figure 5. CTRT program transformation example (output).

T (L) = 〈{L:-Linner} ∪ defn(Linner),AlinkC ∪ AinnerC 〉

where L = p(~X), and the literal Linner = pinner(~X) is obtained
with a new predicate symbol pinner , and:

defn(Linner) = {Linner:-B | L:-B ∈ defn(L)}
C = {c.C ∈ AC(L) | status(c, check)}

AlinkC = {cl.C | c.C ∈ C} and ∀cl.C ∈ AlinkC we extend

the status relation s.t. status(cl, Sl), where:

Sl =

{
check if C = calls(,)
true if C = success(, ,)

AinnerC = {ci.C | c.C ∈ C} and ∀ci.C ∈ AinnerC we extend

the status relation s.t. status(ci, Si), where:

Si =

{
true if C = calls(,)
check if C = success(, ,)

The objective of the transformation is to improve the precision
and reduce the cost of the analysis, while preserving program be-
havior when the check assertion conditions are expanded into run-
time checks. The transformation modifies all predicates with check
assertions. For each such predicate p, the original predicate symbol
is renamed into pinner and a single-clause wrapper predicate for p
(which we will refer to as a link clause), is introduced which calls
the pinner predicate.

The set of assertion conditions for the initial predicate p is dupli-
cated for the pinner counterpart, including their original statuses.
However, the statuses of the success assertion conditions for p in
the link clause and the calls assertion conditions of pinner are
set to true. As a result, the calls assertion conditions for p (i.e.,
cl.calls(L,) with status(cl, true)) will still be checked in the ver-
sion with run-time checks, but they will be assumed in pinner (i.e.,
ci.calls(Linner,) with status(ci, true)).

For the success part the assertion conditions will still be
checked for the inner predicate (i.e., ci.success(Linner, ,) with
status(ci, check)) and the information will be assumed upon exit-
ing p (i.e., ci.success(L, ,) with status(ci, true)). The transfor-
mation guarantees that the same run-rime tests will be performed,
that no duplication of checks will occur (since there are no interme-
diate states between the calls to p and pinner and exits from pinner
to p), and that the analysis will gather the right information.

An example of the CTRT transformation for the q/2 predicate
from the program in Fig. 4 is shown in Fig. 5. The true assertions
here correspond to the additional information that can be safely
used in the analysis. Since all predicates with assertions undergo
this transformation, a number of inner calls coming from the link
clauses is added to the program. Yet such calls are relatively in-
expensive and the resulting runtime overhead is negligible. Even
more, should the analysis verify the calls assertion condition of the
link clause or the success assertion condition of the inner clause,
the link clause then becomes unnecessary and can be completely
removed.

Lemma 1 (Correctness of the CTRT Transformation) Let P be
a program and Q = (L, θ) a query to P . Then ∀ D ∈ derivs(Q)
the final state D[−1] is the same in the versions of P with and with-
out the CTRT transformation.

Proof. First, let us prove the correctness of the transformation for
the calls assertion conditions.

Let AC(L) = {C} where C = c.calls(L,Pre) s.t.
status(c, check) and ∃(L:-B) ∈ defn(L). The possible reduc-
tion sequences from the S0 = 〈L :: G | θ | ∅〉 state are:
S0 A 〈B :: G | θ | ∅〉 = Ssucc if θ ⇒P Pre
S0 A 〈L | θ | {c̄}〉 = Serr if θ 6⇒P Pre

Now let us add the link clause for L and rename its other
clauses s.t. defn(L) = {L:-Linner} and ∃Linner:-B ∈
defn(Linner), and let’s add an assertion condition for Linner:
Cinner = ci.calls(Linner, P re) with status(ci, check). The pos-
sible reduction sequences from the S0 state now are:
S0 A 〈Linner :: G | θ | ∅〉 A Ssucc if θ ⇒P Pre
S0 A Serr if θ 6⇒P Pre

The S0 A 〈Linner :: G | θ | ∅〉 A 〈Linner | θ | {c̄i}〉 re-
duction sequence is impossible since it would require θ ⇒P Pre
to hold in the first reduction step and θ 6⇒P Pre to hold in the
second reduction step.

This way in both assertion checking modes D[−1] ∈
{Ssucc, Serr} and run-time checks for the calls assertion condition
Cinner (namely, checks for θ ⇒P Pre after the checks for θ ⇒P

Pre) could be safely removed by setting
status(ci, true).

Next, let’s consider the case of success assertion conditions.
Let AC(L) = {C} where C = c.success(L,Pre, Post) s.t.

status(c, check) and ∃(L:-B) ∈ defn(L). The possible reduc-
tion sequences from the S0 = 〈L :: G | θ | ∅〉 state are:
S0 A 〈B :: acheck(L, c) :: G | θ | ∅〉 ∗A 〈G | θ | ∅〉 = Ssucc

if θ ⇒P Post
S0 A 〈B :: acheck(L, c) :: G | θ | ∅〉 ∗A

〈acheck(L, c) | θ | c̄〉 = Serr
if θ 6⇒P Post

Now let us add the link clause for L and rename its other
clauses s.t. defn(L) = {L:-Linner} and ∃Linner:-B ∈
defn(Linner), and let’s add an assertion condition for Linner:
Cinner = ci.success(Linner, P re, Post) with status(ci, check).
We also now consider C as Clink with its identifier cl. The possi-
ble reduction sequences from the S0 state now are:
S0 A 〈B :: acheck(L, ci) :: acheck(L, cl) :: G | θ | ∅〉 ∗A

〈G | θ | ∅〉 = Ssucc
if θ ⇒P Post

S0 A 〈B :: acheck(L, ci) :: acheck(L, cl) :: G | θ | ∅〉 ∗A
〈acheck(L, cl) | θ | c̄l〉 = Serr

if θ 6⇒P Post
Although the assertion condition identifiers for the two Serr are

different, the checks performed in these states are equal (θ 6⇒P

Post).
This way the run-time checks for the cl assertion condition are

duplicating the checks for ci and could be safely removed by setting
status(cl, true).

6. Experiments
As stated throughout the paper, our objective is to explore the
effectiveness of abstract interpretation in detecting parts of program
specifications that can be statically simplified to true or false, and to
quantify the impact of this application of analysis towards reducing
the cost of the run-time checks. In particular, we have studied
these issues for the different assertion checking modes that we have
defined.

7 2016/8/16

Assertions
(in user
code,
builtins,
libraries)

:- check
:- trust

Code
(user code,
builtins,
libraries)

Assertion
Transfor-
mation

Code
Transfor-
mation

Assertion
Normalizer
& Library
Interface

Static
Analysis

(Fixpoint)
Analysis Info

:- true

Static
Com-

parator

Run-time
Check

Annotator

:- check

:- false

:- checked

Compile-time
error

Verification
warning(s)

Verified
assertion(s)

Code with
(Optimized)
Run-time
Tests

Run-time
error

Preprocessor

Transformations

Program

Figure 6. Adding the transformations to the Ciao Preprocessor.

6.1 Experimental Setup
We have built an experimental harness by extending the Ciao pre-
processor, CiaoPP, which implements our baseline assertion verifi-
cation framework. The architecture of this framework is shown in
Figure 6. In that figure, hexagons represent system tools and com-
ponents and arrows indicate the communication paths among them.
Most of this communication is performed also in terms of asser-
tions.

The input to the verification process is the user program, op-
tionally including a set of assertions; this set always includes any
assertions present for predicates exported by any libraries used. The
check and trust/true assertions are normalized and the program
is expanded to kernel form (simple horn clauses), and they are all
given as input to the static analysis.

We have introduced new front-end passes implementing the
new transformations (marked in Figure 6) which thus support the
defined scenarios, as well as some other minor adaptations and
extensions to the interface to select these different scenarios.

The results of analysis over the different abstract domains se-
lected are provided in the form of true assertions. Then, for every
predicate p in the program the framework performs compile-time
checking of assertions by comparing the check assertions in the
program (their assertion conditions) with the analysis results.

As a possible result of the comparison, assertions may be proved
to hold, in which case they get checked status. As another possible
result, assertions can be proved not to hold, in which case they get
false status and a compile-time error is issued. Finally, if it is not
possible to prove nor to disprove (part of) an assertion, then such
assertion (or the relevant subset) is left as a check assertion, and
the run-time check annotator introduces run-time checking code in
the program for the assertion conditions as required by the scenario.
In particular, the program transformations used in our experiments
are those of (Stulova et al. 2015), with no caching.

6.2 Properties and Analysis Domains
In our experiments we concentrate on two classes of properties. The
first one is the state of variable instantiation, i.e., which variables
are bound to ground terms, or unbound, and, if they are unbound,
the sharing (aliasing) patterns in order to be able to transfer accu-
rately grounding information (“strong update”). These properties
are approximated safely and quite accurately using the sharing and
freeness domain (Muthukumar and Hermenegildo 1991). The sec-

ond class of properties we will be using refers to the shapes of the
data structures constructed by the program in memory. To this end
we use the eterms (Vaucheret and Bueno 2002) abstract domain
which infers safely these shapes as regular trees.8

6.3 Benchmarks
To study the differences in the run-time overhead levels observed
in different assertion checking modes we have selected a set of
benchmarks, listed in Table 2.9 These benchmarks represent simple
yet diverse programs that represent frequently-occurring program-
ming patterns such as performing symbolic or arithmetic compu-
tations, problem solving in fixed domains, processing stream data,
etc. In general, they include recursion, search, irregular/dynamic
data structures, etc. The relative internal complexity despite their
generally small size make them good candidates to answer our main
questions, allowing us to concentrate on the properties of interest
in each case. All the benchmarks have been carefully annotated
with reasonable program assertions that describe the expected be-
haviour. E.g., this is a selection of the fft code:� �

1 :- regtype complex /1. % A complex number
2 complex ((A,B)) :- num(A), num(B).
3

8 Note that these notions are more general and powerful than the traditional
notions of types of modes. Also, comparing to the traditional notion of type
inference in statically-typed languages, not only the types are generalized
to any property supported by an abstract domain, but also the overall
approach is quite different: there all the type definitions must be present
in the program, and the inference problem just amounts to assigning one of
these types to each program element in a single pass. If this assignment
is not possible the program is rejected. In the Ciao approach, no type
definitions are required. The purpose of analysis is precisely to infer, in
a closed form (e.g., regular types) the shapes of the data structures that
are built in memory for the whole program, which is done via a fixpoint
calculation. Also, note that the regular types inferred and checked allow
sub-typing. The situation is similar for the sharing+freeness domain versus,
for example, traditional modes. This is also a strong difference with other
approaches within logic programming, such as Mercury or Gödel, which
also require the type definitions to be provided and that the program be
typeable. See (Hermenegildo et al. 2011) for a further discussion to the
very interesting topic of how to best straddle the dynamic vs. static language
boundaries.
9 Source available at
https://cliplab.org/papers/optchk-ppdp2016/

8 2016/8/16

https://cliplab.org/papers/optchk-ppdp2016/

4 :- pred complex_mul(A, B, C) % Multiplication
5 : complex * complex * term
6 => complex * complex * complex.
7 complex_mul ((Ra,Ia), (Rb,Ib), (Rs ,Is)) :-
8 Rs is Ra*Rb-Ia*Ib ,
9 Is is Ra*Ib+Rb*Ia.� �

Table 3 presents some quantitative characteristics of the bench-
marks, such as lines of code (LOC) and size metrics, and also the
total number of program assertions.

While the effectiveness of our assertion-based approach is not
directly the objective of this paper, it is worth noticing that during
our experiments the analysis on one of the more complex programs,
boyer, has allowed us to spot bugs in the original translation from
LISP that had been around for 30 years.

6.4 Experimental Results
Table 4 shows the compilation time for the benchmarks under the
different assertion checking modes.10 The compilation time for the
benchmarks under the Safe-CT-RT mode includes the total static

10 Times for compilation and analysis assume that the compiler and analyzer
are already loaded in memory and ready to execute. Thus, we removed
the compiler and CiaoPP start-up time. In the current implementation,
the engine needs around 1.4 seconds to load all the necessary bytecode
but can then process different programs (e.g., interactively, from within
the development environment) without having to be restarted. There exist
in any case many solutions to significantly reduce this startup time time
(keeping code in memory, optimizing the bytecode reader, reduced versions
of CiaoPP that contain only the necessary domains, lazy load, etc.).

Table 2. Benchmarks.

boyer a theorem prover implementation based on Lisp
by R. Boyer (nqthm system), performs symbolic
evaluation of a given formula;

boyerx a variant of boyer (using generic term manipula-
tion predicates for formula rewrites);

crypt cryptomultiplication puzzles solver;
deriv a program that performs symbolic differentiation

of a given formula;
exp exponential calculation;

factorial recursive factorial calculation;
fft fast Fourier transformation calculation;
fib a program that finds N -th Fibonacci number;

guardians prison guards game;
hamming a program that generates the sequence of Ham-

ming numbers;
hanoi hanoi towers puzzle solver for N disks that are

moved over three rods;
jugs the water jugs problem;

knights N knights chess problem;
mmatrix matrix multiplication for two matrices with di-

mensions n× n;
nreverse naive list reversal;

poly a program that raises a polynomial (1+x+y+z)
to the 10th power symbolically;

primes a program that computes N first prime numbers;
progeom a program that constructs a perfect difference set

of order N ;
queens the N queens program, the number of the queens

being the input;
qsort the quicksort program;

serialize a palindrome program;
tak a program that computes the tak function;
witt the WITT clustering system implementation;

Table 3. Benchmark metrics.

Benchmarks Assertions
Name LOC Size (KB) total
boyer 853 70 25
boyerx 853 50 23
crypt 76 10 16
deriv 29 8.5 3

exp 28 5.5 5
factorial 13 4.4 3

fft 104 13.2 19
fib 11 4.6 5

guardians 78 9 13
hamming 71 8.7 19
hanoi 44 5.7 4
jugs 132 9.9 9

knights 49 7.5 13
mmatrix 48 5.8 6

nreverse 14 4.8 5
poly 81 12 14

primes 33 6.1 8
progeom 71 8.0 16
qsort 46 6.0 8
queens 47 6.4 10

serialize 81 9.5 9
tak 18 4.6 3
witt 651 50 83

Table 4. Benchmarks: full compilation time.

Compilation time, ms
Benchmark Unsafe Safe

Client RT CT+RT
boyer 215 1413 1222 393869
boyerx 194 1193 1191 25275
crypt 148 753 755 3776
deriv 142 655 702 993
exp 141 691 684 976

factorial 139 650 658 1207
fft 154 835 827 2757
fib 139 574 664 1154

guardians 146 767 775 1323
hamming 162 796 713 1435
hanoi 142 662 700 834
jugs 142 728 748 1277

knights 153 748 724 1347
mmatrix 146 697 514 982

nreverse 139 662 686 882
poly 147 626 788 1755

primes 139 690 696 998
progeom 140 776 606 1492
qsort 136 712 692 985
queens 149 700 554 1143

serialize 145 735 721 1353
tak 140 604 621 751

witt 219 1418 1558 149855

analysis and assertion checking times. The experiments were run
on a MacBook Pro with 2.3GHz Intel Core i7 processor, 16GB
RAM, and under the Mac OS X 10.11.1 operating system.

Table 5 shows the detailed analysis times for the Safe-CT-RT
mode for the benchmarks. The prep columns indicate the time
needed to load and prepare the analysis, and the shfr and eterms
columns the time to perform sharing and freeness and regular type

9 2016/8/16

Table 5. Static analysis time for benchmarks using the Safe-CT-RT checking mode (part of total compilation time).

Benchmark Analysis time, ms Assertion
checkingprep shfr prep eterms

boyer 8.185 56.577 8.469 634.059 521.067
boyerx 5.401 42.5 5.456 467.579 343.906
crypt 1.397 8.1 1.359 35.164 115.782
deriv 0.711 2.426 0.669 13.877 24.63
exp 0.402 1.593 0.373 12.471 42.513

factorial 0.276 0.906 0.193 9.3 11.032
fft 1.544 7.425 1.758 36.885 143.532
fib 0.266 1.083 0.215 11.24 13.475

guardians 1.059 4.455 1.049 19.958 46.498
hamming 1.044 6.46 1.022 21.417 60.509

hanoi 0.496 2.267 0.477 11.629 17.453
jugs 0.837 4.039 0.981 22.661 101.27

knights 0.774 3.483 0.748 22.24 46.713
mmatrix 0.48 2.359 0.449 11.671 23.01
nreverse 0.278 2.673 0.253 2.763 7.489

poly 1.414 41.274 1.419 42.363 79.432
primes 0.571 2.278 0.486 12.547 25.364
progeom 0.933 5.6 0.891 21.057 47.704

qsort 0.526 3.725 0.504 6.562 18.491
queens 0.614 3.448 0.587 15.489 35.767

serialize 1.076 11.775 0.984 17.515 46.347
tak 0.327 1.427 0.271 9.986 19.747
witt 13.622 104625.161 14.43 666.404 1079.152

analyses, respectively. The analysis is actually relatively inexpen-
sive compared to the rest of the compilation passes for most of
the benchmarks. The regular type analysis is expensive in boyer
and boyerx. The analysis of the formula rewrite predicates gen-
erates many large types whose manipulation is expensive. The
witt benchmark, despite having more regular data structures (ta-
bles of sets and matrices), is also expensive to analyze due to a
large number of operations. Note that in any case more efficient
–but less precise– domains are available for these cases, many
within CiaoPP, such as, for example, several widenings for shar-
ing (Navas et al. 2006; Méndez-Lojo et al. 2008), pair sharing do-
mains (Søndergaard 1986; Secci and Spoto 2005), or other type
inference domains (Gallagher and de Waal 1994; Bruynooghe and
Gallagher 2004).

Finally, Table 6 reports on the execution times for each bench-
mark in the different assertion checking modes, together with the
statistics of assertion checking results. For some of the bench-
marks, inputs were varied and this is reflected by the notation
Name(Input). The ‘Checked/Total Assrts’ column reports the
numbers of statically checked assertions (in the Safe-CT-RT check-
ing mode) and total number of assertions for each benchmark. In
the worst case the overhead in the Safe-RT checking mode is two
orders of magnitude higher than in Client-safe, but Safe-CT-RT re-
moves one order of magnitude (boyerx, fft, knights, witt).
This is expected since run-time checks of complex properties like
data shapes cannot be performed in constant time. The checking
changes the complexity of the programs and the overhead increases
as the size of the input grows. Note that the Client-safe mode also
represents the theoretically lowest overhead that we could obtain
(assumming a fixed implementation of the instrumentation), by re-
moving internal checks. Sometimes, due to measurement impreci-
sion, the time in Safe-CT-RT mode is smaller than in Client-safe
mode (crypt, exp, primes). In practice, in many programs Safe-
CT-RT is able to remove most of the checks, except those corre-
sponding to the external predicates. We included in the benchmarks
two versions of boyer. The original translation (which we call here

boyerx) uses functor/3 and arg/3 to implement rewrites of ar-
bitrary terms representing formulas. This makes the domains lose
precision. The boyer version used instead a larger predicate that
explicitly enumerates possible formula terms.

7. Conclusions
We have addressed the problem of run-time overhead reduction
in the context of verification frameworks that combine static and
dynamic verification, i.e., systems that combine compile-time and
run-time checking of user-provided assertions. Our ultimate objec-
tive is to construct an automatic verification system for non-trivial,
structural properties, that can be used routinely in production code.

We have defined four practical assertion checking modes, and
studied the corresponding trade-offs between the level of guaran-
tees provided by each one and the corresponding execution time
slowdown. For these checking modes we have explored the effec-
tiveness of abstract interpretation in detecting the parts of the pro-
gram’s (partial) specifications that can be statically simplified to
true or false, as well as the practical impact of such analysis in re-
ducing the cost of the run-time checks required for the remaining
parts of the specifications.

Our experiments have shown that there is indeed a significant
advantage in using analysis to reduce run-time tests. We argue
that the results are encouraging, supporting the hypothesis that
the combination of run-time checking with analysis can reduce
checking overhead sufficiently to allow providing full safety in
production code, for non-trivial properties. It is worth noticing that
the analysis on more complex code like boyer allowed us to spot
bugs in the original translation from LISP that had been around for
30 years.

We have presented for concreteness our approach in the context
of the Ciao language, but the Ciao approach to combining static and
dynamic analysis is general and system-independent, as well as the
techniques used herein, so we expect the results should carry over
to other (dynamic) declarative or imperative languages.

10 2016/8/16

Table 6. Benchmark execution times under the different modes and checked vs. total assertions.

Execution time, ms Checked/Total Assrts
Benchmark Unsafe Safe CT+RT TotalClient RT CT+RT

boyer 10.404 10.390 2412.197 12.545 25 25
boyerx 15.185 15.511 2284.085 1098.419 21 23
crypt 0.098 0.108 6.196 0.105 15 16
deriv 0.110 0.730 4.640 0.640 2 3
exp 3.838 3.971 63.210 3.899 4 5

factorial 0.008 0.013 0.748 0.013 2 3
fft 23.234 23.972 25879.525 202.655 17 19
fib 0.067 0.073 13.069 0.072 4 5

guardians 2.960 2.980 5805.539 3.221 12 13
hamming 15.259 15.071 7431.143 17.012 18 19
hanoi (2) 0.001 0.011 0.139 0.011
hanoi (4) 0.002 0.012 1.324 0.013 3 4
hanoi (8) 0.054 0.064 106.649 0.078

jugs 0.014 0.022 1.660 0.023 8 9
knights 201.278 192.987 17979.597 202.061 12 13

mmatrix (2) 0.001 0.007 0.127 0.008
mmatrix (3) 0.002 0.010 0.319 0.010 5 6
mmatrix (4) 0.005 0.015 0.662 0.016
nreverse 2.243 2.313 8217.188 3.125 4 5

poly 1.084 1.272 356.360 1.302 13 14
primes 0.027 0.041 8.860 0.036 7 8

progeom (2) 0.002 0.006 0.630 0.005
progeom (4) 0.089 0.093 24.424 0.103 15 16
progeom (8) 5.274 5.268 1890.538 5.934
qsort (8) 0.003 0.006 0.929 0.007
qsort (16) 0.008 0.013 2.396 0.015 7 8
qsort (32) 0.021 0.028 7.477 0.033
queens (4) 0.006 0.009 1.076 0.010
queens (6) 0.122 0.123 20.605 0.139 9 10
queens (8) 2.302 2.281 360.660 2.559

serialize (9) 0.002 0.007 0.803 0.008
serialize (16) 0.005 0.011 2.207 0.012 8 9
serialize (25) 0.010 0.017 5.029 0.019

tak 2.855 2.866 963.481 3.665 2 3
witt 15.886 15.947 1511.059 316.063 69 83

References
N. Bjørner, F. Fioravanti, A. Rybalchenko, and V. Senni, editors. Work-

shop on Horn Clauses for Verification and Synthesis, July 2014. URL
http://vsl2014.at/meetings/HCVS-index.html. To appear in
Electronic Proceedings in Theoretical Computer Science.

J. Boye, W. Drabent, and J. Małuszyński. Declarative Diagnosis of Con-
straint Programs: an assertion-based approach. In Proc. of the 3rd.
Int’l Workshop on Automated Debugging–AADEBUG’97, pages 123–
141, Linköping, Sweden, May 1997. U. of Linköping Press.

M. Bruynooghe and J. Gallagher. Inferring Polymorphic Types from Logic
Programs. In International Symposium on Logic-based Program Syn-
thesis and Transformation (LOPST R’04). Preproceedings, July 2004.

F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo,
J. Maluszynski, and G. Puebla. On the Role of Semantic Approximations
in Validation and Diagnosis of Constraint Logic Programs. In Proc. of
the 3rd. Int’l WS on Automated Debugging–AADEBUG, pages 155–170.
U. Linköping Press, May 1997.

R. Cartwright and M. Fagan. Soft Typing. In PLDI’91, pages 278–292.
SIGPLAN, ACM, 1991.

P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of
Fixpoints. In ACM Symposium on Principles of Programming Lan-
guages (POPL’77). ACM Press, 1977.

C. Dimoulas and M. Felleisen. On contract satisfaction in a higher-order
world. ACM Trans. Program. Lang. Syst., 33(5):16, 2011.

W. Drabent, S. Nadjm-Tehrani, and J. Małuszyński. The Use of Assertions
in Algorithmic Debugging. In Intl. Conf. on Fifth Generation Computer
Systems, pages 573–581, 1988.

M. Fähndrich and F. Logozzo. Static contract checking with abstract
interpretation. In Proceedings of the 2010 International Conference
on Formal Verification of Object-oriented Software, volume 6528 of
FoVeOOS’10, pages 10–30, Berlin, Heidelberg, 2011. Springer-Verlag.
ISBN 3-642-18069-8, 978-3-642-18069-9. URL http://dl.acm.
org/citation.cfm?id=1949303.1949305.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In
M. Wand and S. L. P. Jones, editors, ICFP, pages 48–59. ACM, 2002.
ISBN 1-58113-487-8.

J. Gallagher and D. de Waal. Fast and precise regular approximations
of logic programs. In P. Van Hentenryck, editor, Proc. of the 11th
International Conference on Logic Programming, pages 599–613. MIT
Press, 1994.

S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko.
HSF(C): A Software Verifier Based on Horn Clauses - (Competition
Contribution). In C. Flanagan and B. König, editors, TACAS, volume
7214 of LNCS, pages 549–551. Springer, 2012. ISBN 978-3-642-28755-
8.

11 2016/8/16

http://vsl2014.at/meetings/HCVS-index.html
http://dl.acm.org/citation.cfm?id=1949303.1949305
http://dl.acm.org/citation.cfm?id=1949303.1949305

A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The seahorn
verification framework. In D. Kroening and C. S. Pasareanu, editors,
Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, volume
9206 of Lecture Notes in Computer Science, pages 343–361. Springer,
2015. ISBN 978-3-319-21689-8. doi: 10.1007/978-3-319-21690-4 20.
URL http://dx.doi.org/10.1007/978-3-319-21690-4_20.

M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial
Specifications, and an Extensible Assertion Language for Program Val-
idation and Debugging. In K. R. Apt, V. Marek, M. Truszczynski, and
D. S. Warren, editors, The Logic Programming Paradigm: a 25–Year
Perspective, pages 161–192. Springer-Verlag, July 1999.

M. Hermenegildo, G. Puebla, F. Bueno, and P. L. Garcı́a. Integrated Pro-
gram Debugging, Verification, and Optimization Using Abstract Inter-
pretation (and The Ciao System Preprocessor). Science of Computer
Programming, 58(1–2):115–140, 2005.

M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J. Morales,
and G. Puebla. The Ciao Approach to the Dynamic vs. Static Language
Dilemma. In Proceedings for the International Workshop on Scripts to
Programs, STOP’11, New York, NY, USA, 2011. ACM.

M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. Theory
and Practice of Logic Programming, 12(1–2):219–252, January 2012.
doi: doi:10.1017/S1471068411000457. http://arxiv.org/abs/1102.5497.

E. Koukoutos and V. Kuncak. Checking Data Structure Properties Or-
ders of Magnitude Faster. In B. Bonakdarpour and S. A. Smolka,
editors, Runtime Verification, volume 8734 of Lecture Notes in Com-
puter Science, pages 263–268. Springer International Publishing, 2014.
ISBN 978-3-319-11163-6. doi: 10.1007/978-3-319-11164-3 22. URL
http://dx.doi.org/10.1007/978-3-319-11164-3_22.

C. Laı̈. Assertions with Constraints for CLP Debugging. In P. Deransart,
M. V. Hermenegildo, and J. Maluszynski, editors, Analysis and Visu-
alization Tools for Constraint Programming, volume 1870 of Lecture
Notes in Computer Science, pages 109–120. Springer, 2000. ISBN 3-
540-41137-2.

L. Lamport and L. C. Paulson. Should your specification language be
typed? ACM Transactions on Programming Languages and Systems,
21(3):502–526, May 1999.

G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verifica-
tion challenges for sequential object-oriented programs. Formal Asp.
Comput., 19(2):159–189, 2007.

U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech,
M. Hermenegildo, and K. Eder. Energy Consumption Analysis of Pro-
grams based on XMOS ISA-level Models. In G. Gupta and R. Peña,
editors, Logic-Based Program Synthesis and Transformation, 23rd In-
ternational Symposium, LOPSTR 2013, Revised Selected Papers, vol-
ume 8901 of Lecture Notes in Computer Science, pages 72–90. Springer,
2014. ISBN 978-3-319-14124-4. doi: 10.1007/978-3-319-14125-1 5.
URL http://dx.doi.org/10.1007/978-3-319-14125-1_5.

U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V. Hermenegildo,
J. P. Gallagher, and K. Eder. Inferring Parametric Energy Consumption
Functions at Different Software Levels: ISA vs. LLVM IR. In M. V.
Eekelen and U. D. Lago, editors, Foundational and Practical Aspects
of Resource Analysis. Fourth International Workshop FOPARA 2015,
Revised Selected Papers, Lecture Notes in Computer Science. Springer,
2016. URL http://arxiv.org/abs/1511.01413. In press.

M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based
Approach to the Analysis of Object-Oriented Programs. In 17th Inter-
national Symposium on Logic-based Program Synthesis and Transfor-
mation (LOPSTR 2007), number 4915 in Lecture Notes in Computer
Science, pages 154–168. Springer-Verlag, August 2007.

M. Méndez-Lojo, O. Lhoták, and M. Hermenegildo. Efficient Set Sharing
using ZBDDs. In 21st Int’l. WS on Languages and Compilers for
Parallel Computing (LCPC’08), LNCS. Springer-Verlag, August 2008.

E. Mera, P. López-Garcı́a, and M. Hermenegildo. Integrating Software Test-
ing and Run-Time Checking in an Assertion Verification Framework. In
25th Int’l. Conference on Logic Programming (ICLP’09), number 5649
in LNCS, pages 281–295. Springer-Verlag, July 2009.

E. Mera, T. Trigo, P. López-Garcı́a, and M. Hermenegildo. Profiling for
Run-Time Checking of Computational Properties and Performance De-
bugging. In Practical Aspects of Declarative Languages (PADL’11), vol-
ume 6539 of Lecture Notes in Computer Science, pages 38–53. Springer-
Verlag, January 2011.

K. Muthukumar and M. Hermenegildo. Determination of Variable Depen-
dence Information at Compile-Time Through Abstract Interpretation. In
1989 North American Conference on Logic Programming, pages 166–
189. MIT Press, October 1989.

K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Compu-
tation Algorithm for Top-down Abstract Interpretation of Logic Pro-
grams. Technical Report ACT-DC-153-90, Microelectronics and Com-
puter Technology Corporation (MCC), Austin, TX 78759, April 1990.
URL ftp://cliplab.org/pub/papers/tr153-90.mcc.ps.Z.

K. Muthukumar and M. Hermenegildo. Combined Determination of Shar-
ing and Freeness of Program Variables Through Abstract Interpretation.
In International Conference on Logic Programming (ICLP 1991), pages
49–63. MIT Press, June 1991.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Vari-
able Dependency Using Abstract Interpretation. Journal of Logic Pro-
gramming, 13(2/3):315–347, July 1992.

J. Navas, F. Bueno, and M. Hermenegildo. Efficient top-down set-sharing
analysis using cliques. In Eight International Symposium on Practical
Aspects of Declarative Languages, number 2819 in LNCS, pages 183–
198. Springer-Verlag, January 2006.

J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe Upper-bounds
Inference of Energy Consumption for Java Bytecode Applications. In
The Sixth NASA Langley Formal Methods Workshop (LFM 08), pages
29–32, April 2008. Extended Abstract.

J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable Re-
source Usage Bounds Analysis for Java Bytecode. In Proceedings of
the Workshop on Bytecode Semantics, Verification, Analysis and Trans-
formation (BYTECODE’09), volume 253 of Electronic Notes in Theoret-
ical Computer Science, pages 65–82. Elsevier - North Holland, March
2009.

P. Pietrzak, J. Correas, G. Puebla, and M. Hermenegildo. Context-Sensitive
Multivariant Assertion Checking in Modular Programs. In 13th Interna-
tional Conference on Logic for Programming Artificial Intelligence and
Reasoning (LPAR’06), number 4246 in LNCS, pages 392–406. Springer-
Verlag, November 2006.

G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for
Debugging of Constraint Logic Programs. In ILPS’97 WS on Tools and
Environments for (C)LP, October 1997. ftp://cliplab.org/pub-
/papers/assert lang tr discipldeliv.ps.gz.

G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for
Constraint Logic Programs. In P. Deransart, M. Hermenegildo, and
J. Maluszynski, editors, Analysis and Visualization Tools for Constraint
Programming, number 1870 in LNCS, pages 23–61. Springer-Verlag,
September 2000a.

G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Logic-
based Program Synthesis and Transformation (LOPSTR’99), number
1817 in LNCS, pages 273–292. Springer-Verlag, March 2000b.

A. Rastogi, N. Swamy, C. Fournet, G. M. Bierman, and P. Vekris. Safe &
efficient gradual typing for typescript. In S. K. Rajamani and D. Walker,
editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2015, Mum-
bai, India, January 15-17, 2015, pages 167–180. ACM, 2015. ISBN
978-1-4503-3300-9. doi: 10.1145/2676726.2676971. URL http://
doi.acm.org/10.1145/2676726.2676971.

T. W. Schiller, K. Donohue, F. Coward, and M. D. Ernst. Case studies and
tools for contract specifications. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 596–607, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/
2568225.2568285. URL http://doi.acm.org/10.1145/2568225.
2568285.

12 2016/8/16

http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-319-11164-3_22
http://dx.doi.org/10.1007/978-3-319-14125-1_5
http://arxiv.org/abs/1511.01413
ftp://cliplab.org/pub/papers/tr153-90.mcc.ps.Z
ftp://cliplab.org/pub/papers/assert_lang_tr_discipldeliv.ps.gz
ftp://cliplab.org/pub/papers/assert_lang_tr_discipldeliv.ps.gz
http://doi.acm.org/10.1145/2676726.2676971
http://doi.acm.org/10.1145/2676726.2676971
http://doi.acm.org/10.1145/2568225.2568285
http://doi.acm.org/10.1145/2568225.2568285

S. Secci and F. Spoto. Pair-Sharing Analysis of Object-Oriented Programs.
In 12th International Symposium Static Analysis Symposium (SAS’05),
volume 3672 of Lecture Notes in Computer Science. Springer, 2005.

H. Søndergaard. An application of abstract interpretation of logic programs:
occur check reduction. In European Symposium on Programming, LNCS
123, pages 327–338. Springer-Verlag, 1986.

N. Stulova, J. F. Morales, and M. V. Hermenegildo. Assertion-based De-
bugging of Higher-Order (C)LP Programs. In 16th Int’l. ACM SIG-
PLAN Symposium on Principles and Practice of Declarative Program-
ming (PPDP’14). ACM Press, September 2014.

N. Stulova, J. F. Morales, and M. V. Hermenegildo. Practical Run-time
Checking via Unobtrusive Property Caching. Theory and Practice
of Logic Programming, 31st Int’l. Conference on Logic Programming
(ICLP’15) Special Issue, 15(04-05):726–741, September 2015. ISSN
1471-0684. URL http://arxiv.org/abs/1507.05986.

A. Takikawa, D. Feltey, E. Dean, M. Flatt, R. B. Findler, S. Tobin-
Hochstadt, and M. Felleisen. Towards practical gradual typing. In
J. T. Boyland, editor, 29th European Conference on Object-Oriented
Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Repub-
lic, volume 37 of LIPIcs, pages 4–27. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015. ISBN 978-3-939897-86-6. doi: 10.
4230/LIPIcs.ECOOP.2015.4. URL http://dx.doi.org/10.4230/
LIPIcs.ECOOP.2015.4.

A. Takikawa, D. Feltey, B. Greenman, M. S. New, J. Vitek, and M. Felleisen.
Is sound gradual typing dead? In R. Bodı́k and R. Majumdar, editors,
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, pages 456–468. ACM, 2016. ISBN 978-
1-4503-3549-2. doi: 10.1145/2837614.2837630. URL http://doi.
acm.org/10.1145/2837614.2837630.

S. Tobin-Hochstadt and M. Felleisen. The Design and Implementation of
Typed Scheme. In POPL, pages 395–406. ACM, 2008.

C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for
Logic Programs. In International Static Analysis Symposium, volume
2477 of Lecture Notes in Computer Science, pages 102–116. Springer-
Verlag, September 2002.

13 2016/8/16

http://arxiv.org/abs/1507.05986
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4
http://doi.acm.org/10.1145/2837614.2837630
http://doi.acm.org/10.1145/2837614.2837630

	Introduction
	Run-Time Checking of Assertions
	Basic notation and standard semantics
	Assertion Language
	Semantics with assertions

	Assertion Checking Modes
	Optimizing Run-Time Checks via Static Analysis
	Abstract Interpretation-based Analysis
	Optimizing Assertions with Analysis Results

	Taking Advantage of the Run-Time Checking Semantics during Analysis
	Experiments
	Experimental Setup
	Properties and Analysis Domains
	Benchmarks
	Experimental Results

	Conclusions

