(PRESENTED AT SAS’94, NAMUR, BELGIUM)

Extracting Non-Strict Independent
And-Parallelism Using Sharing and Freeness
Information™

Daniel Cabeza Gras and Manuel Hermenegildo

Facultad de Informética, Universidad Politécnica de Madrid (UPM)
28660-Boadilla del Monte, Madrid - SPAIN

Abstract. Logic programming systems which exploit and-parallelism
among non-deterministic goals rely on notions of independence among
those goals in order to ensure certain efficiency properties. “Non-strict”
independence (NSI) is a more relaxed notion than the traditional notion
of “strict” independence (SI) which still ensures the relevant efficiency
properties and can allow considerable more parallelism than SI. How-
ever, all compilation technology developed to date has been based on
SI, because of the intrinsic complexity of exploiting NSI. This paper fills
this gap by developing a technique for compile-time detection of NSI.
It also proposes algorithms for combined compile-time/run-time detec-
tion, presenting novel run-time checks for this type of parallelism. The
approach is based on the knowledge of certain properties regarding the
run-time instantiations of program variables —sharing and freeness— for
which compile-time technology is available, with new approaches being
currently proposed.

1 Introduction

Several types of parallel logic programming systems and models exploit and-
parallelism [?] among non-deterministic goals. Some examples are ROPM [?],
AO-WAM [?], DDAS/Prometheus [?], systems based on the “Extended” An-
dorra Model [?] such as AKL [?], and &-Prolog [?] (please see their references
for other related systems). All these systems rely on some notion of independence
(or the related notion of “stability” [?]) among non-deterministic goals being run
in and-parallel in order to ensure certain important efficiency properties. Two
basic notions of independence are strict and non-strict independence [?,7].

Strict independence (SI) corresponds to the traditional notion of indepen-
dence among goals [?,7,?]: Two goals g; and go are said to be strictly inde-
pendent for a substitution 6 iff var(g16) N var(gef) = @, where var(g) is the
set of variables that appear in g. Accordingly, n goals g1, ..., g, are said to be
strictly independent for a substitution @ if they are pairwise strictly independent
for #. Parallelization of strictly independent goals has the property of preserving

* The research presented in this paper has been supported in part by ESPRIT projects
“PARFORCE” and “ACCLAIM” and CICYT proyect TIC93-0737-C02-01.

the search space of the goals involved so that correctness and efficiency of the
original program (using a left to right computation rule) are maintained and
a no speed-down condition can be ensured [?]. A convenient characteristic of
strict independence is that it is an “a-priori” condition, i.e. it can be tested at
run-time ahead of the execution of the goals. Furthermore, tests for strict in-
dependence can be expressed directly in terms of groundness and independence
of the variables involved. This allows relatively simple compile-time paralleliza-
tion by introducing run-time tests in the program [?,?]. These tests can then
be partially eliminated at compile-time by direct application of groundness and
sharing (independence) information obtained from global analysis [?,?,7?].

Non-strict independence (NSI) is a relaxation of strict independence defined
as follows [?]:

Consider a collection of goals g1, . . ., g, and a substitution 6. Consider
also the set of shared variables SH = {v | 3i,5,1 < i < j < m,v €
(var(g;0) Nwvar(g;0))}. Let 6; be any answer substitution for g;0. The
given collection of goals is non-strictly independent for 6 if the following
conditions are satisfied:

— Vzx,y € SH, d at most one g;0 such that for a 6; we have that x6; # «
or that x # y and z6; = yb;.
— Vx,y € SH, if 3 g;0 meeting the condition above, then Vg;0,j > 14,

such that {z,y} Nwar(g;0) # 0, g; is a pure goal, and for all 6;

partial answer during the execution of g;0 x8; = x and z0; # y0; if

Intuitively, the first condition of the above definition requires that at most
one goal further instantiate a shared variable or alias a pair of variables. The
second condition requires that any goal to the right of the one modifying the
variables be pure and do not “touch” such variables in its execution. Here pure is
applied to a goal that has no extra-logical builtins which are sensitive to variable
instantiation.

This definition is a generalization of that originally given in [?]. In the case
in which no information is available on the purity of goals the definition of non-
strict independence can be simplified as follows:

Consider a collection of goals ¢1,...,¢g, and a substitution 6. Con-
sider also the set of shared variables SH = {v | 3i,j,1 <i<j <n,v €
(var(g;0) Nwvar(g;0))}. Let 6; be any answer substitution for g;0. The
given collection of goals is non-strictly independent for 6 if Vx,y € SH,
at most the rightmost ¢;0 such that z,y € var(g;0) has an answer sub-
stitution #; for which z0; # z or x # y and x6; = y0;.

That is, only the rightmost goal where a shared variable occurs can further
instantiate it, and only the rightmost goal where two shared variables occur
can alias them. Clearly, this second definition is easier to implement, not only
because no information is needed regarding the purity of the goals, which is in
practice actually relatively easy to obtain, but also because no information is

needed regarding partial answers, which in general is more difficult to obtain
from analyzers. This paper is focused mainly on this second definition, although
some results are offered for the previous, more general, one.

Non-strict independence is clearly a more powerful notion than strict inde-
pendence since strictly independent goals are always non-strictly independent.
Furthermore, it still preserves the same properties as strict independence with
respect to correctness and efficiency. In practice, it has wide application for exam-
ple in the parallelization of programs which use difference lists, and incomplete
structures in general.

Earlier studies [?] have suggested that coupling sharing and groundness anal-
ysis with freeness analysis could be instrumental in the task of non-strict inde-
pendence detection. For concreteness, this paper focuses on a particular way of
expressing sharing and freeness information, the sharing+freeness domain [?].
This allows a high degree of precision in the conditions involved, which are given
in such a way that the implementation is straightforward. However, we believe
that the ideas presented can also be used for related domains, provided that
these domains give information about variable sharing and freeness.

A decision throughout our research has been to concentrate on the indepen-
dence of two goals. This is convenient from a practical point of view because
many parallelization algorithms work by repeatedly considering whether two
goals are independent while, for example, building a dependency graph. The de-
cision has also a sound theoretical foundation. Consider, for the case in which no
information is available on the purity of goals, the following alternative definition
of non-strict independence:

Given two goals g; and g2, where go is to the right of g;, and a
substitution 6, consider the set of shared variables SH = var(g16) N
var(g20). The goals g1 and go are non-strictly independent for 6 if for
any answer substitution 6, of g16 and for all z,y € SH, x6; is a variable
and if x # y, ©0; # yb;.

Based on this definition, the definition involving n goals can be expressed as
follows: g1, ..., g, are non-strictly independent for a substitution 6 if they are
pairwise non-strictly independent for 6. Clearly, this is equivalent to the previous
definition, and thus considering only pairs of goals can be done without loss of
generality.

The rest of the paper proceeds as follows: Section 2 explains the particular
abstract interpretation domain for which the conditions of parallelism are given,
the sharing+freeness domain, and introduces a novel pictorial representation for
the abstract substitutions involved. Section 3 presents the sufficient conditions
proposed for compile-time detection of NSI. Section 4 deals with the combina-
tion of compile-time analyses and run-time checks for detecting NSI, presenting
novel run-time checks for this type of parallelism. It also connects this method
with the previously proposed techniques for the detection of strict independence.
Section 5 gives some experimental results showing the speedups obtained in sev-
eral programs presenting non-strict independence but no strict independence.

Section 6 discusses improvements to the compile-time analysis in order to enrich
the information available for the parallelization. Finally, Sect. 7 gives the con-
clusions and suggests future work. For conciseness, proofs, more details on the
case in which purity of goals is considered, and issues of environment separation
optimization, have been omitted. They can be found in [?].

2 Understanding Sharing-+Freeness Abstract
Substitutions

The sharing-+freeness abstract domain [?] (other related analyses for which our
results may be valid include [?,?,?]) was proposed with the objective of obtaining
at compile-time accurate variable groundness, sharing, and freeness information
for a program, i.e., respectively, information on when a program variable will
be bound to a ground term, when a set of program variables will be bound to
terms with variables in common, and when a program variable will be unbound
or bound only to other variables instead of to a complex term.

The abstract domain approximates this information by combining two com-
ponents (in fact domains per se): the first component provides information on
sharing (aliasing, independence) and groundness [?,?]; the second one provides
information on freeness.

We will denote a sharing+freeness abstract substitution as a pair (sharing,
freeness) as in 0 = (§SH, §FR). To distinguish abstract substitutions from concrete
substitutions abstract substitutions will be represented by greek letters with a
hat, the same greek letter without the hat representing a concrete substitution
approximated by the abstract one. Sets will be denoted with square brackets
in abstract substitutions (to distinguish them and because of the mnemonic
connotations since they are to be represented in Prolog in the analyzer), and with
braces in concrete substitutions (as usual). Following the standard notation, we
will name the abstraction function a and the concretization function ~.

Informally, an abstract substitution in the sharing domain is a set of sets of
program variables (a set of sharing sets), where sharing sets represent all possible
sharing patterns among the program variables.

For example, given the following concrete substitution 6, é\SH is its abstraction
in the sharing domain:

0 ={X/f(1,a), Y/A, Z/f(A,C,t(B)), W/[B,C], V/D}
Osu = [[YZ][ZW][V]]

On the other hand, given the following sharing abstract substitution §SH,
the #; are concrete substitutions approximated by it. The last column in the
following represents the sharing sets “active” in each concrete substitution —we
say that a set L € sy, where sy is a sharing abstract substitution, is active
in a concrete substitution § € y(fgy) iff L is in the abstraction of 6:

Osu = [[X][YZ] [ZW]]
02 ={X/[], Y/A, Z/[BJA], W/t(B)} [[YZ] [ZW]]
05 ={X/t(0,1), Y/atom, Z/A, W/A} [[ZW]]

The component described above is essentially the abstract domain of Jacobs
and Langen [?].

An abstract substitution in the freeness domain is a set of program variables
(those that are known to be free).

It is important to point out that sharing information is not independent
of freeness information, since known freeness of certain variables restricts the
allowable combinations of sharing sets. The possible combinations of sharing
sets a sharing+freeness abstract substitution 6 represents are the subsets of the
sharing component (the S € p(fg)) that have one and only one sharing set
including each variable in the freeness component (Vv € ng JLeSwve L).

The point above regarding sharing+freeness abstract substitutions, which is
of great practical importance, may still be difficult to understand in the terms
given so far. It is hoped that with the aid of the pictorial representation to be
presented in the following section these issues will be greatly clarified.

2.1 Pictorial Representation of Substitutions

We have chosen a pictorial representation of substitutions in order to make it
easier to understand abstract substitutions in the sharing+freeness domain and
to follow the discussions and examples throughout the text. The idea of the
pictures is to make the large amount of information contained in these abstract
substitutions more explicit. Figure 1 illustrates the different types of objects
used in this representation.

X definitely free variable
oY ordinary variable goal

(possible) sharing

Fig. 1. Types of objects in our pictorial representation.

As mentioned before, an abstract sharing+freeness substitution is a compact
representation of a finite number of possible sharing+freeness situations in the
concrete domain. To reflect this a given sharing-+freeness abstract substitution
can be represented with a finite number of figures, each figure having the same
freeness information (which is definite) but representing the different alternative
coverings of free variables by the sharing sets.

As the sharing+freeness abstract substitutions give information in terms of
program variables, only these variables appear in the figures. Variables in the

freeness component are represented by dots, the rest by circles. The sharing
patterns are represented by lines connecting all the variables of the corresponding
sharing set. If the sharing set has only one variable, and this variable is not in the
freeness component, it is represented as a short line coming out of the variable.
Note that all sharing sets that contain no free variables (including those just
mentioned involving only one variable), may be either active or inactive in a
concrete substitution, since they represent only “possible” sharing. Rather than
having multiple figures for all the cases involved, all such sets are represented
explicitly by lines in a given picture, under the assumption that those lines may
or may not be present. Note also that lines connecting free variables on the other
hand represent necessarily active sharing sets and cannot be removed.

The number of lines coming out of a circle represents the number of sharing
sets containing the corresponding variable. However, multiple lines coming out of
dots (free variables) all correspond to the same sharing set, since free variables
must be in one and only one active sharing set (this is done to simplify the
drawings). If no line comes out of a given dot this represents a sharing set
containing only this variable. Note that a circle connected to one or more lines
can in fact represent a free variable, since the freeness component names only
the variables that are definitely known to be free. On the other hand, an isolated
circle represents always a ground variable, since the variable is not a member of
any sharing set. The resulting pictures are hypergraphs, since the edges connect
an arbitrary number of vertices.

A goal is represented like a set in a Venn Diagram, the variables in the set
being the goal variables. When we represent two goals, the first one (in the Prolog
textual order) is to the left and the second one to the right, and the variables
present in both goals are placed in the “intersection”.

Figure 2 shows several examples representing in one or more pictures abstract
substitutions.

3 Conditions for Non-Strict Independence with Respect
to the Information from Sharing+Freeness Analysis

The definition of non-strict independence that we use (for two goals) is given in
terms of the substitutions before and after the execution of the goal to the left,
i.e. of its call and answer substitutions. Correspondingly, in the abstract domain
we will consider that goal’s abstract call and abstract answer substitutions.

3.1 Conditions Disregarding Purity of Goals

As mentioned in the introduction we will consider the parallelization of pairs of
goals. First let us state the conditions without purity information

Let p and q be two goals, where q is to the right of p. Also let ﬂ and }\b be the
abstract call and answer substitutions for p. So the situation is { 6} p{v¥} ..

Variables —/ L Representation
Abstract substitution
(X,Y,Z,W} / Yoo
([Iv] (X)), [XY)) s
(X,Y,7} / TX
([xv11vz], 1)) —
{X,Y,Z2,W} / XL:W .X—OW
([IxYZ] [XW] [Y] 2], [XY]) Y2 | Y
{X,Y,Z2,W} / %Z §/Z
([(XY2Z] [YZ2W] [W]], [W]) W W
(X,Y,Z,W,V}/ et W Z?Y'W P
([1X] (X Y] [YZ] W] (XY W] [V]], [ywv))| o4 =Y VoSV

Fig. 2. Examples of representation of abstract substitutions

We define the sets:

S(p)={L ¢ B | Lnvar(p) # 0}
SH =S(p)NS(q) = {L € fsu | LN var(p) # 0 A LNvar(q) # 0}

That is, S(p) is the set of all sharing sets of Bsi that contain a variable from
p, and SH is the set of all sharing sets of ,§SH that contain variables from p
and from q (that is, the sharing sets that, if are active, contain run-time shared
variables).

The following are our conditions for non-strict independence between p and q:

Cl VLeSH LNpg #0
C2 -~ (3N,..Ny€S(p) 3L s (L=, N;) A Ni,N, € SH
AY1,j 1<i<j<k N;NN;NPrr =0)

Condition C1 deals with preserving freeness of shared variables!. By checking
that all sharing sets of SH have a free variable in the abstract answer substitution
1), it is ensured that no run-time shared variable is further instantiated. Note
that if there is more than one free variable in a sharing set, and one of them
remains free, the other necessarily remain also free, since all coincide at run-time
when the set is active.

! We would like to thank M. Bruynooghe for suggesting improvements to our first C1.

Condition C2 is needed to preserve independence of shared variables: N ... N
are sharing sets that p can unite (thus they come from S(p)) to derive the sharing
set L of the abstract answer substitution, and at least two sharing sets contain
shared variables (we can always name them N; and Nj). Furthermore, no two
sharing sets N;, N; contain the same free variable, since otherwise they cannot
be both active in one concrete substitution, making the union impossible. This
also ensures, given that the first condition is met, that N; and N, have different
shared variables. Intuitively it can be seen that if C1 and —C2 holds, p can
possibly bind the two independent shared variables.

Figure 3 shows some situations where either C1 or C2 do not hold. The
sharings drawn with thick lines are the faulty ones, i.e. for C1, the Ls that have
no variables in ¥pgr, and for C2, N; and N, in § and L in .

Three examples where C1 fails: run-time shared variables can be further instantiated

f ﬁw)
..'

Three examples where C2 fails: run-time shared variables can alias each other
p q p q p q
(v
I \ 4
p q p q p q
Fig. 3. Situations where the conditions do not hold, and thus the goals are possibly
not NSI

@)

3.2 Conditions Considering Purity Information

This section relies on the assumption that we have purity information, and also
that we can compute the least upper bound of the abstractions of the partial
answers of a goal.

If we examine the conditions stated in the previous section, we can see that
only the behavior of the first goal p is considered. But if we know that q is pure,
the conditions can be further relaxed.

Let us now define our conditions for non-strict independence when q is pure.
Let ﬁ and w be the abstract call and answer substitutions for p, and let (b be
the least upper bound of the abstractions of the partial answers of q when called
with (3 as the abstract call substitution. The following are our conditions for
non-strict independence between p and q in this case:

cr VLES/I\‘I LQJFR#@VLQ&\FR#@
C2" - (I Ny..N, €S(p) IL € vsn (L UZ 1 NY) /\Nl,NQESH
AVi,j1<i<j<k N;NN; NBrr =0 A NiNdrr = No N dpgr = 0)

Condition C1’ differs from C1 in that it allows p to further instantiate a
shared variable, provided that this variable is not touched by q (q does not
further instantiate it under 3, so it does not mind whether the variable is free
or not). Condition C2' now says that the union of Ny and N, is legal if either
of the shared variables in them is not touched by q (note that only if q further
instantiates the two variables it can possibly be affected by these bindings).

4 Run-Time Checks for Non-Strict Independence

In the previous sections we have proposed conditions to be checked at compile-
time in order to decide whether to run two goals in parallel. However, even if
these conditions do not hold, we may yet try to execute them in parallel, provided
that some a priori run-time checks succeed.

The purpose of the run-time checks is to ensure that goals will not be run
in parallel when there is no non-strict independence, while allowing parallel
execution in as many cases as possible when non-strict independence is present.
This fact will be determined from the combination of compile-time analysis and
the success of the run-time checks previous to the execution of the goals. Note
that this is meaningful because the sharing component represents possible, not
definite sharing sets. Thus we may want to generate a test that determines in
which particular case we are, when at least one case allows parallelization, but
the others may not.

Due to the complexity of the special case when the second goal is pure, here
we will only consider the general case (see [?] for conditions for the case in
which purity is taken into account). Let us analyze what to do when each of the
conditions of the general case is violated.

4.1 Condition C1 Violated
[HLégﬁ LQYZFR:@]

In this case we need run-time checks to ensure that the sharing sets L € SH
not obeying C1 (“illegal sharing sets”) are not active. But, if the rest of the

sharing sets in BSH cannot cover all the free variables of BFR without overlapping,
it is impossible for all the illegal sharing sets to be inactive, so the goals are
definitely not NSI. Otherwise, we must try to generate the least number of
checks which covers every illegal sharing set without affecting the legal ones (to
preserve parallelism in valid situations).

There are several checks that can be used to prevent the illegal sharing sets
from being active. The order in what must be tried is the following:

— If there exists a variable X such that it appears only in illegal sharing sets,
then the check ground(X) (“X is bound to a ground term”) covers those
illegal sharing sets containing X.

— Suppose that there exists a variable X and a list F of free variables from
Orr such that, for the sharing sets containing X, illegal ones do not con-
tain variables of F, and legal ones contain at least one. Then the check
allvars(X,F) (“every variable in X is in the list F”) covers all the ille-
gal sharing sets containing X, and only those. In fact, the check ground (X)
above is a special case of this when F = []. Note that if X € var(p) N var(q)
then we always are in this case, since all sharing sets containing X are in
SH, so the ones that are legal contain free variables that remain free after
executing p, and those that are illegal do not.

— If there exist two variables X and Y such that all sharing sets containing both
are illegal, then the check indep(X,Y) (“X and Y do not share variables”)
covers those illegal sharing sets.

— For each of the remaining illegal sharing sets, we choose two variables X and
Y which are members of it, such that X € var(p) and Y € var(q). Note that
the sharing sets in SH have a variable in both var(p) and var(q) or have
one variable in var(p) and another variable in var(q). And, since the illegal
sharing sets are in S/I\-I, if they cannot be covered by the allvars/2 check
then they are in this case. Furthermore, the legal sharing sets that contain
both X and Y are for this very reason also in SH, so they have free variables
that remain free after executing p. Let F be the set of these free variables.
Then the check sharedvars(X,Y,F) (“every variable shared by X and Y
is in the list of variables F”) covers all the illegal sharing sets containing X
and Y, and only those. Also, the check indep(X,Y) is a special case of this
when F = [].

Figure 4 gives examples showing how the checks restrict the possible sharing
sets.
4.2 Condition C2 Violated

B3NNy €S(p) IL € dsu (L=UL, V) _
A Ni,Ny € SH A Vi, j1<i<j<k N;NN;N Bpg = 0]

Once the checks for C1 have been computed, and taking into account only the
sharing sets not rejected by these checks, the second condition is treated.

10

ground(X) allvars(X,[Y])

— —

p a P a
@

sharedvars(X,Y,[Z])

&

Fig. 4. Example applications of the four checks

indep(X,Y

—

T T kel
e} le] le]
T el
e} Q

N

Now, for each L in the above formula, we compute the different groups of
Ni...Ny that p can unite to give the sharing set L, without taking into account
the number of sharing sets N; that are in SH. The groups that have more than
one sharing set in SH are the “illegal” groups. If there are no legal groups, and
L is necessarily active in ¢ (this is so if L contains free variables that do not
appear in other sharing sets of ﬂ)\SH), then necessarily p binds shared variables,
so the goals are definitely not NSI. Otherwise, we need checks as for the first
condition, now ensuring that at least one sharing set of each illegal group is not
active, without affecting if possible sharing sets of the legal groups.

For example, suppose we are trying to parallelize the goal “p(X,Y,Z,U),
q(X,Y,W,V)” and the abstract call and answer substitutions for p(X,Y,Z,U)
are 3 = ([[X] [XZ] [Y][Z] [ZW] [U] [UW] [WV]], [YUV]) and ¢ = [[X][YU] [UW]
[WV]],[YV]). We have that SH = [[X][XZ][Y][ZW][UW]], and the illegal
sharing sets for the first condition are [X], [XZ], [ZW] and [UW]. The check
ground (X) covers the first two, and the check allvars(w, [V]) the last two
(without affecting other sharing sets). The second condition holds, so we are
ready to parallelize the two goals, the result being:

(ground (X) ,allvars(W, [V]) -> p(X,Y,Z,0)&q(X,Y,W,V);p(X,Y,Z,0),qX,Y,W,V))

where “A -> B; C” is the prolog if-then-else and “&” is the (unconditional)
parallel operator. Figure 5 shows the restriction of the possible sharing sets made
by the checks, and how this restriction make the goals non-strict independent.

11

ground(X), allvars(W, [V])
RN

)

<)

Fig. 5. Restriction of the possible sharing sets by the checks

4.3 Run-Time Checks and Strict Independence

It is worth pointing out that if no information is obtained from the analysis (or
no analysis is performed), and thus the abstract substitutions are T, the run-time
checks computed by the method presented here exactly correspond to the condi-
tions traditionally generated for strict independence (shared program variables
ground, other program variables independent, see e.g. [?] for more information).
This is correct, since in absence of analysis information only strict independence
is possible, and shows that the method presented is a strict generalization of
the techniques which have been previously proposed for the detection of strict
independence.

It can be easily shown how the tests reduce to those for strict independence:
since there are no free variables in the abstract substitutions, every sharing set
of SH is illegal with respect to the first condition. These sharing sets contain
a shared program variable (and are covered by a ground/1 check on each) or
program variables of both goals (covered by an indep/2 check on every pair).

For example, if we have a goal “p(X,Y)&q(Y,2)” with § = ([[X][Y] [Z] [XY]
[XZ)[YZ][XYZ]],[]) (i.e. T, equivalent to no information), then we have SH =
[[Y] [XY] [XZ] [YZ] [XYZ]]. The check ground(Y) covers all the illegal sharing
sets except [XZ], which is covered in turn by the check indep(X,Z). Figure 6

depicts how the checks restrict the possible sharing sets.

P a
A\
indep(X,Z)
—

Fig. 6. Restriction of the possible sharing sets performed by the checks

12

Also, in the presence of sharing-+freeness abstract information, the tests
made with this method are equivalent or better than the traditional tests sim-
plified with this information, even if only strict independence is present. As
an example, let us study the case of the goal “p(X,V,W)&q(Y,Z)” with § =
([[VIIVX][Y] [XY] [Z] [XZW] [W]], [V]) (see Fig. 7). The traditional test for strict
independence would be indep(V,Y), indep(X,Y), indep(W,Y), indep(V,Z),
indep(X,Z), indep(W,Z) (perhaps written as indep([V,X,W], [Y,Z])). With
the analysis information above, is simple to deduce that the tests indep(V,Y),
indep(W,Y) and indep(V,Z) are not needed. Not so obvious is to deduce that
one of the test indep(X,Z) or indep(W,Z) can also be eliminated. So, in this
latter case we come up with the simplified test indep(X,Y), indep(X,Z), or
indep(X, [Y,Z]).

p q
LY
VA
indep(X, [Y,Z])
—
allvars (X, [V]) P d
J)Y
J)Z

Fig. 7. Restriction of the possible sharing sets performed by either check

On the other hand, applying the method presented here, we have that SH =
[[XY] [XZW]]. Both sharing sets are illegal, since they do not contain free vari-
ables. The legal sharing set that contains X contains also the free variable
V, and the two illegal sharing sets contain X but not this free variable, so
allvars(X, [V]) ensures that the illegal sharing sets are inactive, without af-
fecting any legal sharing set. This test is clearly cheaper than the other, since it
only needs to traverse X, whereas the other needs to traverse also Y and Z (in
the worst case).

5 Some Experimental Results

We have measured the speedups obtained using the techniques presented for a
number of programs that have NSI but no SI. The programs were automatically
parallelized with our parallelizing compiler. This compiler is a modification of the
&-Prolog compiler, which was originally designed to exploit strict independence.
New annotator and dependency analysis modules were added which implement
the techniques presented so far. Only unconditional parallelism was used (i.e.
no run-time checks were generated). The programs where then executed using
from 1 to 10 processors on a Sequent Symmetry on the &-Prolog system [?],

13

an efficient parallel implementation of full Prolog that can exploit independent
and-parallelism among non-deterministic goals.

The results are given in Table 1. Speedups are relative to the sequential ex-
ecution on one processor. The performance of &-Prolog on one processor, even
when running parallelized programs, is about 95% of the performance of the se-
quential system (SICStus Prolog [?]) on which it is based, itself one of the most
popular Prolog systems. Thus, we argue, the speedups obtained are meaning-
ful and useful, and we believe that the results obtained are quite encouraging.
The differences between the sequential execution and the execution of the par-
allelized program on one processor is most due to the environment separation
issue, mentioned in the introduction (see [?]).

A description of the programs used follows: the array2list program is a sub-
routine of the SICStus prolog “arrays.pl” library. It translates an extendable
array into a list of index-element pairs. The input array used to measure the
speedups had 2048 elements. The flatten program is a subroutine that flattens
a list of lists of any complexity into a plain list. The speedups were measured
with an input list of 987 elements with recursive “depth” of seven. The hanoi_dl
program is the well-known benchmark that computes the solution of the towers
of Hanoi problem, but programmed with difference lists. It was run for 13 rings.
The gsort program is the sorting algorithm quicksort using difference lists. The
speedups were measured sorting a list of 300 elements. Finally, the sparse pro-
gram is a subroutine that transforms a binary matrix (in the form of list of lists)
into a list of coordinates of the positive elements, i.e. a sparse representation. It
was run with an input matrix of 32 x 128 elements, with 256 positive elements.

Table 1. Speedups of several programs with NSI

of processors

Bench 1] 2] 3] 4 5[6 7 8 9 10
array?2list||0.78]1.54|2.34(3.09(3.82|4.64|5.41|5.90|6.50|7.22
flatten 0.54[1.07]1.61|2.07|2.52|3.05(3.62|4.14|4.46|4.83
hanoi_dl {|0.56{1.13|1.68(2.25|2.73|3.23(3.70|4.34|4.84|5.25
gsort 0.91]1.65|2.20|2.53(2.75|2.86|3.00|3.14|3.30(3.33
sparse 0.99]1.92|2.79|3.68(4.50|5.06|5.78(6.75|8.10|8.26

6 Towards an Improved Analysis for Non-Strict
Independence

We have so far presented a method for detecting non-strict independence from
the information provided by a straightforward analysis based on the Sharing-+
Freeness domain. In light of this method we were able to understand more clearly
in what way the analysis itself can be improved to increment the amount of
parallelism that can be exploited automatically.

14

A first way to do this is by combining Sharing+Freeness with other analy-
ses that can improve the accuracy of the sharing and freeness information. A
class of such analyses includes those that use linearity, such as the Asub do-
main [?] (among others). In fact, this idea has already been incorporated in
our system by using the techniques described in [?], and the results are used
by the non-strict independence parallelizing compiler by simply focusing only
on the Sharing+Freeness part. However, the improvement that can be obtained
by these means is limited, as long as the sharing and freeness information is
restricted to program variables.

A better improvement could be achieved by gaining access to information
inside the terms to which program variables are bound at run-time, in order to
check the possible instantiations of free variables inside these terms. To achieve
this goal, sharing and freeness could be integrated (by using the techniques of [?]
or [?]) with other analyses, like the depth-k [?] domain, or, even better, “pattern”
[?] or any other recursive type analysis (see [?]), at least for lists. This would
allow dealing, for example, with lists of free variables. These alternatives will
be studied in future work. However, note that the approach presented here is
still valid directly or with very slight modifications for these more sophisticated
types of analyses.

7 Conclusions

We have presented several techniques for achieving the compile-time detection
of non-strict independence. The proposed techniques are based on the availabil-
ity of certain information about run-time instantiations of program variables
—sharing and freeness— for which compile-time technology is available, and for
the inference of which new approaches are being currently proposed. We have
also presented techniques for combined compile-time/run-time detection of NSI,
proposing new kinds of run-time checks for this type of parallelism as well as
the algorithms for implementing such checks. Experimental results showing the
speedups found in some programs presenting NSI have also been given. The
results were obtained by integrating the algorithm that detects non-strict inde-
pendence (and others needed to exploit this kind of independence) in our paral-
lelizing compiler, that already included a sharing+freeness analyzer, obtaining a
complete compile-time parallelizer capable of detecting non-strict independence.
We find that the results are encouraging.

We are also planning on looking, in the light of the techniques developed, to
more sophisticated abstract analyses that may provide more accurate informa-
tion, in order to increment the amount of parallelism exploitable automatically.

References

15

