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Abstract

We propose a new framework for the syntax and semantics of Weak Hereditarily Harrop logic
programming with constraints, based on resolution over �-categories: 4nite product categories
with canonical structure.

Constraint information is directly built-in to the notion of signature via categorical syntax.
Many-sorted equational are a special case of the formalism which combines features of uniform
logic programming languages (moduels and hypothetical implication) with those of constraint
logic programming. Using the cannoical structure supplied by �-categories, we de4ne a diagram-
matic generalization of formulas, goals, programs and resolution proofs up to equality (rather
than just up to isomorphism).

We extend the Kowalski-van Emden 4xed point interpretation, a cornerstone of declarative
semantics, to an operational, non-ground, categorical semantics based on indexing over sorts and
programs.

We also introduce a topos-theoretic declarative semantics and show soundness and complete-
ness of resolution proofs and of a sequent calculus over the categorical signature. We conclude
with a discussion of semantic perspectives on uniform logic programming. c© 2002 Published
by Elsevier Science B.V.

1. Introduction

Logic programming is based, in principle if not in practice, on the declarative
paradigm of programming with executable speci(cations, that is to say, withcode
whose text has independent mathematical meaning consistent with its input–output
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behavior. However, the demand for more expressive power and eDciency has led lan-
guage designers to add control features and constructs drawn from other language
paradigms (types [54, 31, 48], partial evaluation [30], constraints [9, 28, 29], logical ex-
tensions [25, 47, 50, 49, 45, 27]). The eGect has been to expand the boundaries of the
subject and of the very notion of declarative content of a program. A more general
syntax and semantics is needed to model these new features and provide criteria for
good language design.

Furthermore, there is a substantial gap between semantic methods in the functional,
imperative and declarative programming communities. It is therefore hard to evaluate
the eGectiveness of proposals to add imported features to logic programming within
an agreed-upon common framework. A categorical foundation for logic programming
seems to be an essential tool in this endeavor. This paper is an eGort to provide such
a foundation.

1.1. Categories and logic programming

Categorical tools in programming syntax and semantics have enjoyed widespread use
for over a decade [55]. Categorical models have been used to give clean, implementa-
tion independent approaches to side eGects and state [46, 61, 67, 51], non-determinism
[52], type disciplines [14, 32] and other logics for computation [6, 62]. The mathemati-
cal treatment of some features, such as parametricity and polymorphism, have required
categorical tools [56, 20].

Logic programming, however, has developed within a diGerent semantic tradition
than that of functional or imperative programming. The divide has narrowed in the
last ten years, with the development of new denotational, operational, and abstract
interpretations for logic programs [10, 13, 30, 37–39]. There has been a growing interest
in a categorical formulation of these ideas, essentially for the same reasons they proved
of interest in other programming paradigms.

Categorical approaches to logic programming features appeared in the mid-1980s in
Rydeheard and Burstall’s categorical treatment of uni4cation [60], also developed inde-
pendently by Goguen. In 1989, Asperti and Martini [3] formalized the syntax of Horn
clause programming over the Herbrand Universe using 4rst-order categorical logic as
developed in e.g. [40] and gave a topos-theoretic semantics. In 1992, Corradini, Asperti
and Montanari gave categorical analyses of logic program transitions [12] and of logic
program structure using indexed monoidal categories [11]. In [53] Panangaden et al.,
gave a categorical formulation of concurrent constraints for logic programming. In 1994
Diaconescu [18] formalized equational constraint Horn Clause programming using cat-
egories and institutions. In 1995 the authors gave a categorical generalization of the
4xed point semantics of logic programs for the Horn case. The following year Power
and Kinoshita [58] gave an indexed category description of Horn Clause resolution,
and more recently, Pym [59] has developed a categorical formulation of Horn clause
program evaluation within a typed, realizability-style metamathematical framework.

Our contribution in this paper is a new categorical syntax with canonical structure
supplied by 4nite product �-categories, a de4nition of resolution over such categories for
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Weak Hereditarily Harrop programs, and give an operational and declarative categorical
semantics, with respect to which resolution and a categorical sequent calculus are shown
sound and complete. Our model theory is a categorical generalization of the Kowalski–
Van Emden 4xed-point semantics based on indexing not just over sorts but programs,
in order to capture program augmentation and state change.

New syntax and a general notion of (4xed point) with respect to resolution and a
categorical sequent calculus operational (as in [58]) We show how indexing of local
logic programming 4bers over a state category places substitution, program augmenta-
tion and state change within a single framework.

1.2. Outline of the paper

The following section is devoted to a description of categorical syntax for logic
programming. We begin with a de4nition of formula diagrams over a categorical sig-
nature that builds-in constraint information. We then de4ne 4nite-product �-categories
and state some of their properties. We de4ne categorical substitution and uni4cation
along the lines already familiar from the literature. In the next sections we give a new
construction for adjoining predicates freely to a categorical signature and de4ne pro-
grams and clauses over generic atomic predicates. The last two sections are devoted to
a treatment of operational (4xed point) interpretations and declarative (topos-theoretic)
semantics. We give soundness and completeness of two notions of proof for both and
conclude with some examples and a discussion of the implications of our work for a
semantics-based notion of the declarative paradigm.

1.3. Notational conventions

The categorical background required in this paper can be found in the 4rst few
chapters of most category theory texts. The reader should know what limits, colimits
and adjoints are. Some notational conventions are taken from [22]. Compositions of
morphisms are given in diagrammatic order. The composition

A
f→ B

g→ C

is denoted fg. Cartesian categories are categories with all 4nite limits. Categories with
all 4nite products (and terminator) are called FP categories. The pullback of a monic

arrow A
t
� B along a co-terminal arrow C

f→ B (to an arrow whose target is C) is
denoted f#(t):

We sometimes denote the source D of the pulled back arrow f#(t) by f#(A).
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A subobject of an object B is the equivalence class of all monics with target B under
the equivalence relation

A t→ B ∼ A′ t′→ B iG there is an iso A i→ A′:

We will introduce the notion of �-categories (fully treated in [22]) in order to obtain
a notion of canonical representatives of subobjects.

The basic notions of indexed categories required here are introduced in the paper.

2. Syntax over a categorical signature

2.1. Categorical signatures and categorical formulae

In order to combine constraint information with proof search in uniform systems,
we wish to generalize the notion of signature to an arbitrary 4nite product category.

We begin by de4ning the notion of a categorical signature and continue with the
notion of categorical formulae.

De�nition 2.1. A categorical signature is a triple (K;D;B) where K is a category with
4nite products, D a family of arrows in K and B a distinguished class of monics in
K satisfying the following property: the pullback of any m in B along any coterminal
arrow in D exists.

Objects in (occurring as sources and targets of) D are sorts, and arrows f : 
→ � of
D are called terms of insort 
 and outsort �. An arrow whose source is the terminal
object and whose target is a sort 
 is called a constant of sort 
. Members of B are
called predicate tokens. The target of a predicate token is its sort.

The maps in D, sometimes called display maps, are a distinguished class of arrows
that we will need to formalize terms of interest. When this class is clear from context,
we may omit its mention. It will also be useful, for 4nite sets of predicate tokens, to
replace B by a speci4c sequence of its members.

Predicate tokens are used to build 4rst-order categorical formulae or formula dia-
grams over the signature.

De�nition 2.2. Let (K;D;B) be a categorical signature. A formula diagram P of sort

 over (K;D;B) is a labelled diagram with a distinguished object 
 of D. For the
purposes of this de4nition, such diagrams will be displayed as a bubble over a distin-
guished sort, as follows:
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to remind the reader that they are not necessarily individual arrows. The class F(K;D;
B) of formula diagrams over (K;D;B) is given by the following inductive
de4nitions:
• For any object 
 in K, the identity arrow 
=== 
 is a formula diagram of sort 
,

called �
.
• The pullback along an arrow 
 t→ � in D of any predicate token of sort � is a formula

diagram of sort 
. It is (a fortiori) monic, and is called an atomic formula diagram.
• If P and Q are formula diagrams of sort 
 (shown on the left), then so is the

labelled diagram P˜Q (shown on the right) below,

where ∗ is either the label ⇒, or ∨ or ∧.

• If P is a formula diagram of sort � and �
f→ 
 is an arrow in D, then the diagrams

are formula diagrams of sort 
, referred to as ∃fP and ∀fP, respectively.

• If P is a formula diagram of sort � and if � t→ � is an arrow in D, then the formal
pullback (t)#(P) is a formula diagram of sort 
, given by the following inductive
de4nition:
1. if A is a predicate token then (t)#(A) is just the normal pullback of A along t in K.
2. (t)#(P˜Q) = (t)#(P)˜ (t)#(Q).
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3. (t)#(∃fP) =∃g((u)#(P)) where the bottom square in the following diagram is a
(labelled) pullback:

In other words, to pull back (along t) a quanti4ed diagram ∃fP, 4rst pull back
the quanti4er arrow f along t, creating the pair of arrows u; g shown, then pull
back the formula P along u, and quantify the resulting formula diagram along g
(by adding the label ∃ to g).
The ∀ de4nition is similar.

The formula diagram (t)#(P) will also be denoted P(t), and called the t-instantiation
of the formula diagram P.

If the quantifying arrow �
f→ 
 in ∀fP or ∃fP is of the form 
× � �→ 
, i.e. a

projection out of a product, then the quanti4er ∀f is often written ∀x:�, as it coincides
with the conventional notion of quanti4cation in logic.

Henceforth, we shall drop the bubble representation of formula diagrams and display
them as monics over a distinguished sort.

De�nition 2.3 (Theories). Let 
 be an object of K. We de4ne a 
-theory to be a set
of formula diagrams of the sort 
.

If � t→ 
 is an arrow in K, and P is a 
-theory, then the formal pullback t#(P) is
the �-theory obtained by taking the pullback along t of each formula diagram in P.

When it is not necessary to name 
 explicitly, we will simply refer to such a set
as a theory. We can think of a 
-theory as a labelled diagram consisting of formula
diagrams of sort 
 all displayed over a single occurrence of the distinguished sort 
 with
commas as labels in between playing the role of an extra top-level binary connective.
As our use of the word set indicates, we do not distinguish between theories displayed
in diGerent order, or those with repetitions of formula diagrams.

Remark 2.4 (sort extension). Any formula diagram P over sort � may be thought of
as a formula diagram (�)#(P) over (the larger) sort �× 
 by taking its formal pullback
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(if it exists) along the projection map �× 
 �→ �. This extension of sort (denoted �#P
or P(�)) which corresponds in logic to the addition of “dummy” variables to a formula,
will be used repeatedly and tacitly in our resolution rules and semantics in order to
guarantee that a program and a goal always have a common sort.

De�nition 2.5. A formula diagram is called ground if its sort is 1, the terminal object.
Otherwise it is called open.

Predicate diagrams are, in a sense, variable-free entities. For example, the formula

diagram P(f) for �
f→ 
 an arrow in K and P a predicate (formula diagram) of

sort 
 corresponds to the formula P(f(x)) in conventional syntactic logic. Only the
sort allows us to distinguish between open and ground formulas. Ground predicates
play no special role in our treatment. This is a fundamental characteristic of cate-
gorical logic, and it leads us in a natural way to a non-ground semantics of logic
programming.

2.2. �-Categories

In developing a categorical notion of syntax, one wishes to interpret sorts and for-
mulas in the category in such a manner as to represent them with particular objects or
arrows of the category. In general, however, categorical constructions are only de4ned
up to isomorphism, so natural proof-theoretic operations, such as instantiation, may
involve arbitrary choices at each step. Such a problem would occur, for example, in
the interpretation of product sorts since n-ary products in a category are de4ned only
up to isomorphism, and so are not strictly associative (the associativity map is only
required to be an isomorphism instead of an identity).

As a solution, one may work in �-categories. �-categories are a special class of
4nite-product categories in which there is a canonical cartesian structure. This canonical
structure allows one to make non-arbitrary choices when interpreting sorts, formulas
and proofs. In such categories, since products are strictly associative, there is a unique,
canonical n-fold product. There is also a unique terminator, as well as a canonical set
of monic arrows which are closed under (canonical) pullbacks.

�-categories are described in detail in [22], but we present here the relevant def-
initions and properties for use in categorical syntax. Note, however, that we depart
slightly from the cited reference in that in this paper, �-categories need only have all
4nite products, not all 4nite limits. The �-structure guarantees that when 4nite limits do
exist they are canonical. Also note that consideration of �-categories is not especially
restrictive since every small (nite limit category is equivalent to a �-category [22],
thus one can always take a 4nite-limit completion of a base category and pass to the
equivalent �-category.

We begin by de4ning the notion of table, which is a certain family of arrows with
a common source. One should think of a table (up to isomorphism) as denoting a
relation. Any table is equivalent to a monic composed with a product diagram.
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De�nition 2.6. A table is an object T together with a monic 4nite sequence of mor-
phisms x1; : : : ; xn with T as a common source. We will denote such a table by 〈T ; x1;
: : : ; xn〉.

Or diagramatically, a table is given by

The following two technical de4nitions are necessary for the de4nition of �-cate-
gories. The 4rst de4nes what it means for an arrow to not contribute to the monic
nature of the table and the second de4nes a composition of tables.

De�nition 2.7. Given a table 〈T ; x1; : : : ; xn〉 we say that xj is a short column if for
every f; g :X →T such that fxj �= gxj there exists i¡j such that fxi �= gxi.

In other words, 〈x1; : : : ; xj−1〉 is as monic as 〈x1; : : : ; xj−1; xj〉. If xj is a short column,
then 〈T ; x1; : : : ; x̂j ; : : : ; xn〉 will denote the table obtained by removing the arrow xj from
the sequence x1; : : : ; xn.

De�nition 2.8. Given tables 〈T ; x1; : : : ; xm〉 and 〈T ′;y1; : : : ; yn〉 where xj :T→T ′, we
de4ne their composition at j as

〈T ; x1; : : : ; xm〉 ◦j 〈T ′;y1; : : : ; yn〉 = 〈T ; x1; : : : ; xj−1; xjy1; : : : ; xjyn; xj+1; : : : ; xm〉:

De�nition 2.9. A �-category is a category with all 4nite products and a distinguished
class of tables, denoted as �, such that
1. Every table is isomorphic to a unique table in �.
2. 〈T ; idT 〉 ∈ �, all T .
3. If 〈T ; x1; : : : ; xm〉 ∈ � and 〈T ′;y1; : : : ; yn〉 ∈ � and xj :T→T ′, then

〈T ; x1; : : : ; xm〉 ◦j 〈T ′;y1; : : : ; yn〉 ∈ �:

4. If 〈T ; x1; : : : ; xn〉 ∈ � and xj is a short column, then 〈T ; x1; : : : ; x̂j ; : : : ; xn〉 ∈ �.

Axiom 1 says that the class � is a set of representatives for each isomorphism
class of tables. It is this property which allows for a canonical choice of limits. We
say that the product diagram 〈A×B; �l; �r〉 is canonical if it is a �-table. Similarly, a



S.E. Finkelstein et al. / Theoretical Computer Science 300 (2003) 91–160 99

pullback diagram

is canonical if 〈P;p1; p2〉 ∈ �. These axioms also imply that the category has a unique
terminal object.

In addition to guaranteeing a canonical choice of limits, these axioms ensure that
those canonical limits satisfy several important properties [22].

Lemma 2.10. 1: Canonical products are strictly associative.
2: The terminator is strictly a two-sided unit.
3: If each square in

is a canonical pullback then so is the rectangle.

The following properties are essential for formalizing syntax in a canonical way in
a �-category.

Lemma 2.11. 1: The canonical pullback of a �-monic along any arrow is a �-monic.
2: The canonical pullback of a left projection from a �-product table along any

arrow is also a left projection from a �-product table.

In other words, the canonical nature of formula diagrams is preserved under canonical
pullbacks.

For the remainder of the paper we assume all syntax is de(ned over a �-category.

2.3. Interpreting conventional logical structure over a category

The notion of categorical signature given in De4nition 2.1, generalizes the conven-
tional notion of a 4rst-order, many-sorted language. By combining this notion with that
of �-categories, or more precisely, by requiring that a categorical signature (K;D;B)
consist of a �-category K and a distinguished class B of �-monics, we may give a
canonical generalization of a language, as well as a strict interpretation of conventional
logic into this �-categorical signature.
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De�nition 2.12. Let (K;D;B) be a �-categorical signature. A pre-interpretation of the
language L into (K;D;B) is a function M : L→K such that:
1. for every sort 
 in L; M (
) is an object of D,
2. for every operation symbol f in L of input sort 
1
2 · · · 
n, and of output sort �,

M (f) : M (
̃) → M (�)

is a morphism in D. Constants are to be thought of as functions of arity 0, and so
for each constant c of sort �; M (c) : 1→M (�) is a morphism in D.

3. M maps each relation symbol R of sort 
 of L to a morphism M (R)�M (
) of B.
M (
̃) denotes the canonical product M (
1)× · · · ×M (
n).

2.3.1. Interpretation of the terms and formulae
Given a (K;D;B)-pre-interpretation M de4ning the symbols of the language L in

the category K, we may then interpret the terms inductively as described below. The
de4nition describes each term as an arrow in K relative to a sequence of distinct
variables containing all of the free variables in the term. M is called an interpretation
if the image of every term lies in the class of display maps D.

Let x̃= (x1; : : : ; xm) be a sequence of distinct variables of sorts �1; �2; : : : ; �m (re-
spectively). In order to remind us which variable sequence is under consideration we
will adopt the convention of denoting by M (̃x) the product M (�1) × · · · ×M (�m) in
K. Thus, we will drop speci4c reference to the sorts of the xi’s unless needed in a
particular instance.

De�nition 2.13. For a term t of sort �, having all of its free variables among x̃; Mx̃(t)
is de4ned to be a morphism M (̃x)→M (�) in K as follows:
t = xi: Mx̃ (xi) is de4ned to be the (canonical) projection M (̃x)→M (�i).
t = c. For a constant c of sort �;Mx̃ (c) is de4ned as the composition:

M (x̃)
!Mx̃−→ 1

M (c)−→M (�):

t =ft1 · · · tn. If each ti is of sort 
i, then Mx̃ (ft1 · · · tn) is de4ned as the following
composition:

M (x̃)
〈Mx̃(t1);:::; Mx̃(tn)〉−−−−−−−−→M (
̃)

M (f)−→M (�):

De�nition 2.14. Let (K;D;B) be a categorical signature, and M an interpretation of
the language L into (K;D;B). We say M is surjective if every object of K is the
image of a sort in L, full if every arrow in K between images of sorts in L is the
image of some term in L, and faithful if distinct terms are interpreted as distinct
arrows.

The interpretation M also extends to a (partial) mapping from L-formulas to formula
diagrams over (K;D;B).
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De�nition 2.15. Let A be an L-formula of sort 
 with free variables among x̃= (x1;
: : : ; xm). Then Mx̃ (A) is the following diagram in F(K;D;B):
A=B(t) for B a relation symbol in L: Mx̃ (A) is the pullback (t)#(M (B)) provided it
exists.
A=B ∗ C: Mx̃ (A) is the formula diagram Mx̃ (B)˜Mx̃ (C): (∗∈ {∨;∧ ⇒}).
A=∃y:�B: Mx̃ (A) =∃�‘Mx̃·y(B),
A=∀y:�B: Mx̃ (A) =∀�‘Mx̃·y(B),

where · denotes concatenation and �‘ is the left projection

M (
)×M (�) → M (
):

Notice that since M (B) is a member of $, and so a �-monic, Mx̃ (B(t)) will also be
a �-monic by Lemma 2.11.

2.3.2. Notation and shared data
In the preceding section we saw how conventional syntactic formulae are interpreted

into a categorical signature and, in particular, how variables are replaced by projection
arrows. It is important to note therefore how sharing of variables is captured in such
a framework. It is formalized entirely through projections and sort information. If P
is a predicate token, the diagrams P(x) and P(y) are indistinguishable, since they are
both pullbacks of the predicate P along the identity arrow. However, in any context
in which the two formulas appear together, such as their conjunction, sort information
will tell us whether the arguments are shared or distinct. In such a case, if x and y are
distinct, the sorts of P(x) and P(y) must be extended to 
×
 along the left and right
projections into 
 since the sort information must name all the free variables included
in a discussion. If we wish to combine P(x) and P(x) (or P(x) and Q(x) for any
other predicate Q of sort 
) we will retain the original sort 
. The following diagram
illustrates the way the two notions are captured in formula diagrams, where �0 and �1

are the left and right projections along 
 × 
→ 
, respectively.

2.4. Substitution

Let %= {x1 := t1; : : : ; xn := tn} be a substitution for the distinct variables in the se-
quence x̃= (x1; : : : ; xn). In addition, let ỹ= (y1; : : : ; ym) be a sequence of distinct vari-
ables containing all of the free variables of the terms ti.
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Then we may de4ne a categorical substitution &ỹ in K to be the morphism:

M (ỹ)
〈Mỹ(t1);:::;Mỹ(tn)〉−−−−−−−−→M (x̃):

The following lemma illustrates the fact that a categorical substitution may be applied
to the interpretation of a term via ordinary composition of arrows in K.

Lemma 2.16. Assume %; x̃ and ỹ are as described above. Then Mỹ (s%) =Mx̃(s) ◦&ỹ.

The application of a substitution to the interpretation of a formula may now be
de4ned to be the result of taking a (canonical) pullback. As in the de4nition of for-
mulae, this resulting arrow will automatically be a �-monic arrow. This de4nition is
then shown to satisfy an intuitive notion of substitution for formulas. Explicitly, for
atomic formulae, the application of the substitution via pullback should result in the
same arrow as that given by the interpretation of the previously instantiated formula.

De�nition 2.17. Assume % and ỹ are as described above. Given an atomic formula ’,
de4ne Mỹ (’%) to be the arrow q in the following canonical pullback:

Lemma 2.18. For ’ :=Pu1 · · · uk ; Mỹ (’%) =Mỹ (P(u1%) · · · (uk%)).

3. Horn logic programming categories

3.1. Generic predicates and unordered goals

Any distinguished family of predicates (monics) can play the role of predicates in a
logic program, but such a collection should be carefully chosen. If the predicates are
not stable under pullbacks of arrows designated as program terms (the display maps
D) then certain instances may not even exist in the syntax, which is a rather unusual
form of failure for a logic program query.

More importantly, in logic programming, atomic queries A(t) should be true or false
in relation to the ambient program. Unless one wishes to constrain it in advance of its
use in any program a program predicate A should not be true at any instance A(t) in
the syntactic category.

For example, consider the program

conn(X,X).

conn(X,Y) :- edge(X,Z),conn(Z,Y).
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edge(a,b).

edge(a,c).

A category of predicates should supply the syntactic raw material of the program:
predicate tokens B= {conn; edge} of some sort 
× 
, and a subcategory of display

maps containing 1 a→ 
; 1 b→ 
; 1 c→ 
 and closed under products (so that the predicates,
e.g. conn(X; a) may be formed). It should not make any instance (pullback) of the
predicate true (i.e. an isomorphism onto its sort), since no predicate should evaluate
to true a priori, that is to say, prior to execution of the program.

We thus seek a notion of generic or freely adjoined predicate. We will now make
this idea precise, and show how to construct them.

De�nition 3.1 (Generic predicates). Let X be a subobject of some object b in a 4nite
product category C, and let D be a family of arrows in C.

We say X is a generic subobject of b with respect to the (display) maps D if
• For every arrow t in D targeted at b the pullback t#(X ) exists.
• No such pullback is an isomorphism.

De�nition 3.2 (The category C[X1; : : : ; Xn]). Let C be an FP category and b̃= b1; : : : ;
bn a sequence of objects of C. Then C[X1; : : : ; Xn], the category obtained from C by
freely adjoining indeterminate subobjects of b̃, is de4ned as follows:
Objects: pairs 〈A; S〉 where A∈ |C| and S is a sequence S1; : : : ; Sn of 4nite sets Si⊂

HomC(A; bi),

Arrows: triples 〈A; S〉 f→〈B; T 〉 where A
f→B is an arrow in C and fT ⊂ S, that is to

say, for every i; (16i6n) and every t ∈Ti; fti ∈ Si. The arrow f in C is

called the label of 〈A; S〉 f→〈B; T 〉. Composition of arrows is inherited from

C. Two arrows 〈A; S〉 f→〈B; T 〉 and 〈A′; S ′〉 f′
→〈B′; T ′〉 are equal if they have

the same domain and range and if f=f′ in C.
We also call C[X1; : : : ; Xn] the category of generic predicates of sort b̃.

Notice that an arrow in C[X1; : : : ; Xn] may have an identity arrow in C as a label,
and not even be an isomorphism in C[X1; : : : ; Xn]. We will be paying special attention
to a certain class of such arrows.

Theorem 3.3. Let C be a (nite product category. The category C[X1; : : : ; Xn] has
• a terminal object 〈1; ∅̃〉; where ∅̃ is the sequence ∅; : : : ; ∅ of length n;
• products: 〈A; S〉 × 〈B; T 〉= 〈A × B; �1S ∪ �2T 〉 where A �1←A × B �2→B is a product

in C.
Furthermore; the functor C 0→C[X1; : : : ; Xn] given by mapping objects A to 〈A; ∅̃〉 and

arrows A
f→B to 〈A; ∅̃〉 f→〈B; ∅̃〉; is a limit-preserving; full and faithful embedding.

Functoriality, faithfulness and fullness is obvious from the de4nition of morphism,
composition and equality in C[X1; : : : ; Xn]. Limit preservation follows from the fact
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that 0 has a left adjoint, namely the forgetful functor U taking objects 〈A; S〉 to A and
arrows to their labels.

Lemma 3.4. Addition of indeterminate subobjects simultaneously; sequentially; or in
permuted order results in isomorphic categories. More precisely:
1: C[X1; : : : ; Xn] � C[X1] · · · [Xn].
2: Let 
 be a permutation of the (rst n positive integers. Then C[X1; : : : ; Xn] �
C[X
(1); : : : ; X
(n)].

Proof. Straightforward.

De�nition 3.5. In C[X1; : : : ; Xn] de4ne the indeterminate subobjects X1; : : : ; Xn of sorts

b1; : : : ; bn respectively, to be the subobjects 〈bi; J i〉 idbi� 〈b; ∅̃〉, where the J i are the basis
vectors

(J i)k =

{
∅ if i �= k;

{idbi} o:w:

The following theorem says that the Xi are generic with respect to the class of
(images of) arrows from C, which thus comprise a collection of display maps for
C[X1; : : : ; Xn].

Theorem 3.6. The indeterminate subobjects Xi of bi are generic with respect to the
maps in the image of HomC( ; bi) under C 0→C[X1; : : : ; Xn].

Proof. The following diagram is a pullback for any arrow 〈A; ∅̃〉 t→〈bi; ∅̃〉:

so X (t) = 〈A; t J i〉 idA�〈A; ∅̃〉 exists for all appropriate t. This arrow cannot be an isomor-
phism in C[X1; : : : ; Xn]: its inverse, which would have to be labeled with idA, would
have to satisfy idAt ∈∅.

De�nition 3.7. An object 〈A;H 〉 is atomic if H is of the form t J i for a basis vector
J i (see 3:5), and some arrow A→

t

i. That is to say, H is the formula Xi(t).

We will discuss the lifting of �-structure from C to C[X1; : : : ; Xn] below. But 4rst,
there is a more elementary notion of canonical subobject worth identifying in
C[X1; : : : ; Xn].
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De�nition 3.8. If A is an object of C, we say that the monic 〈B; S〉 f
�〈A; ∅̃〉 is a canoni-

cal (representative of a) subobject of 〈A; ∅̃〉 if B is A and the monic f
is idA.

3.1.1. Generic predicate diagrams
A certain family of formulas will play an important role here: the class of canonical

or generic formula diagrams over a base category C, that is to say, those built up from
generic predicates. Spelling it out, we mean the formula diagrams over the signature
(K;D;B) where K is C[X1; : : : ; Xn]; D is the image of the category C in C[X1; : : : ; Xn]
and B is the sequence X1; : : : ; Xn of generic predicate tokens corresponding to some
sort b̃. We simplify notation for this class.

De�nition 3.9. Let C be a 4nite product category and b= b1; : : : ; bn a sequence of
sorts from C. By the b-signature C[X1; : : : ; Xn] or the b-signature C we mean the
signature (C[X1; : : : ; Xn];C; 〈X1; : : : ; Xn〉) of canonical formula diagrams, where each Xi

is a generic predicate token of sort bi. The class of canonical formula diagrams over
the b-signature C[X1; : : : ; Xn] is denoted F(C[X1; : : : ; Xn]).

When b, the sequence of sorts of generic predicate tokens is clear from context its
mention may be omitted.

Observe that every object 〈A; S〉 of C[X1; : : : ; Xn] is the source of a canonical subob-
ject of its “sort object” 〈A; ∅̃〉. This allows us to de4ne a natural strict indexed structure
for C[X1; : : : ; Xn] over C, which we then lift to predicate diagrams.

3.2. Predicates via indexed categories

The dependency of predicates on sorts (and later in this paper on underlying pro-
grams or states) is nicely captured and generalized via indexed category structure.
Indexed categories resolve logic and logic programing structure in a clean way into
a (vertical) basic logical component (the structure in the 4bers) and the (horizontal)
predicate logic and substitution component, which, as we shall soon see, is a special
case of state change in logic programming. Indexed categories are a natural categorical
formalization of the notion of families of sets indexed by another. Predicates of a given
sort 
 from a base category C can be viewed as objects of a category over that sort,
called the (ber over 
. Arrows between sorts (e.g. substitutions) give rise to induced
(co-variant or contravariant) functors between the resulting 4bers (such as pullbacks of
predicates from one sort to another in the preceding section). Logic programming may
be developed in the completely general setting of arbitrary indexed monoidal categories
[2, 69]. We will not have need of this generality here, although it is brieSy discussed
and compared with our approach. It has been treated in [58, 11] for the special case of
a base category of sorts. We will consider speci4c indexed categories over much more
general base categories capturing operational and state information, which has not yet
been considered in the literature.
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We will show that our generic predicate construction is closely related to this general
formulation, however, via the so-called Grothendieck construction.

De�nition 3.10. A strict indexed C-category (or just a C-category) is a functor

C p→CAT:

An indexed functor from one C-category p to another q is just a natural transformation
from p to q.

The category P
 associated to the object 
 of the base category C is called the

(ber at 
. To each arrow 

f→ � between objects in the base category, p associates a

functor pf between the 4bers.

Indexed categories may be covariant or contravariant. The 4gure illustrates a con-
travariant indexed category. Indexed functors may also change the base category, but
we will not have need of this generality here.

If the word strict is dropped, the condition on p is relaxed: it need only be a
pseudo-functor preserving identity and composition up to equivalence rather than on
the nose. Pseudo-functoriality arises naturally in the absence of the kind of canonical
structure imposed in our work, for example with arbitrary pullbacks.

We denote the action of q on objects 
 by q(
), and on arrows 
 t→ �, by qt .

De�nition 3.11. Let C be a category and b= b1; : : : ; bn a sequence of objects of C.
Then

$b: C→CAT;
the indexed cartesian category of generic predicates with sort b, is de4ned as follows.
Each 4ber $b(
) has objects the members of

FinPow(C(
; b1))× · · ·FinPow(C(
; bn));

where FinPow denotes the 4nite power set, i.e. sequences S = S1; : : : ; Sn where each
Si is a 4nite set of arrows from 
 to bi, further endowed with the poset operation of
pointwise containment: S6T iG for all i Si⊆Ti. To indicate the 4ber in question, we
will sometimes write objects as pairs 〈
; S〉. The action of $b on arrows is given by

$b(

f→ �) = f#: $b(�) → $b(
):
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Notice that the pullback operation referred to by f# maps 〈�; S〉 id�−→〈�; ∅̃〉 to

〈
; fS〉 id
−→〈
; ∅̃〉. Thus (fg)# is precisely g#f# on the nose, so the indexed
category is strict.

Finally, observe that each 4ber $b(
) is closed under 4nite unions and intersections,
hence $b is 4nitely complete and co-complete as an indexed category, i.e. in particular,
it is Cartesian, which is all we will need to make use of in this section.

In the preceding section, we saw how to de4ne predicates which are generic, i.e.
whose meaning is not yet constrained (and will subsequently be de4ned by a program).
We now compare this category with a notion of generalized category of predicates
introduced in a related (but somewhat diGerent) form by Hermida [26] and Asperti–
Corradini [11].

3.3. From formula diagrams to generalized formulas

De�nition 3.12. A (generalized) category of predicates over a base category C is any
indexed category q over C. An object in q(
) is called a generalized predicate of sort 
.
We say the category of predicates is [FP, cartesian] if each 4ber is, respectively, a 4nite
product or a cartesian category. Let b= b1; : : : ; bn be a 4nite sequence of objects of C.
Then a q-signature of sort b is a sequence of objects d =d1; : : : ; dn with di ∈ |q(bi)|. A
signature-preserving morphism of predicate categories is just a natural transformation
of indexed categories sending the sequence of distinguished objects in one signature to
the other. We call an object of the form qt(d), where d is a component of d in |q(b)|
and t is an arrow in C with target b, an atomic formula over the q-signature d . We
will always assume here that our categories of predicates are at least FP indexed
categories. This assumption may be replaced by a more general monoidal structure
(cf. [11]).

The generic predicate category $b comes with a canonical signature over b, namely
the sequence of generic objects J 1; : : : ; J n (where each J i is the vector of De4nition 3.5
above) in $b(bi).

Lemma 3.13. Let C be an FP category; q a Cartesian category of predicates; b= b1;
: : : ; bn a (nite sequence of objects of C; and d =d1; : : : ; dn a q-signature of sort b.
Then there is a Cartesian; signature-preserving morphism

$b
’→ q

unique up to isomorphism.

Thus $b is free in the category of Cartesian predicate categories with signatures
over b.

Proof. De4ne ’
(S) = lim{qt(di): t ∈ Si; 16i6n}. See comments in the proof of
Theorem 3.18 below.
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Finally, we observe that our original de4nition of the generic predicate category
C[X1; : : : ; Xn] can be recovered from the indexed formulation $b just given via a well-
known canonical operation: the so-called Grothendieck construction of a 4bration from
an indexed category, presented in e.g. [5], and sketched in the appendix.

Let G(C; $b) be the source of the Grothendieck 4bration induced by the indexed
category $b, i.e. the category with
Objects: pairs 〈
; S〉 with 
∈ |C| and S ∈ |$b(
)| and

Arrows: 〈
; S〉 〈%;f〉→ 〈�; T 〉 for each pair 
 %→ � in C and S
f→$b(%)(T ) an arrow in

$b(
).
Composition of arrows is given by

〈
; S〉 〈%;f〉−→〈�; T 〉 ◦ 〈�; T 〉 〈 ;g〉−→〈6; U 〉 = 〈
; S〉 〈% ;$b(%)(g)〉−−−−−−−→〈6; U 〉:
Since each $b(
) is a poset, and $b(%) is the pullback operation along %, which is
de4ned by left composition with %, this reduces to the following de4nition:

〈
; S〉 〈%;6〉−→〈�; T 〉
is an arrow in t G(C; $b) whenever S6%T .

This is precisely the category C[X1; : : : ; Xn].
We now generalize the notion of formula diagrams, de4ned in Section 2.1, along the

same lines as De4nition 3.12. We will mainly be interested in the sequel in goals and
programs built from formula diagrams, i.e. from the free instance of this de4nition, and
will not make extensive use of this generality here. The interested reader can supply
the appropriate notions of resolution and uni4cation, or read about them in [2, 69].

De�nition 3.14. Let C be a 4nite-product category and b= b1; : : : ; bn a 4nite sequence
of objects of C. A generalized 4rst-order category of formulas (FOCF) F over C
with signature d =d1; : : : ; dn of sort b is a predicate category over C with signature
d =d1; : : : ; dn of sort b (see De4nition 3.12) with the following additional structure:
1: Every 4ber F(
) has an object �
.
2: there are C-indexed covariant bi-functors

∨;∧ : F× F→ F

and a bi-functor

⇒ : F× F→ F;

contravariant in its 4rst coordinate and covariant in its second.
3: for every 


f→ �∈C there are functors

∃f;∀f : F(
) → F(�):

We have not imposed the requirement that an FOCF be a hyperdoctrine (that existential
and universal quanti4cation along f be left and right adjoints to Ff satisfying Beck
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and Frobenius conditions, see e.g. [64]) because we want categories of formulas to
be a more primitive structural notion, and let the semantics do the extra work. The
theory could be developed using both sytactic and semantic hyperdoctrines with more
notation but essentially along the same lines. This approach to logic programming is
taken up in [2].

We observe that formula diagrams can be viewed as a discrete FOCF with F(
) the

set of formula diagrams of sort 
; F(
 %→ �) the generalized pullback operation, and
with ∨;∧; ⇒ ;∃f;∀f the operations that form compound formula diagrams from their
components.

Now we de4ne a “canonical intersection” functor for the indexed category $b:

De�nition 3.15. Let ∩ :$b×$b→$b be de4ned by 〈
; S〉 ∩
 〈
; T 〉= 〈
; S ∪T 〉. It is
easy to see that ∩ commutes with pullback, i.e. is a morphism of indexed categories.

The reader can check that indexed canonical intersections of canonical subobjects of
the same sort yield representatives of the ordinary intersection on the subobject lattices.
That is to say 〈
; S〉 ∩
 〈
; T 〉 is a representative of the subobject, in C[X1; : : : ; Xn] of
[〈
; S〉]∩ [〈
; T 〉], where brackets denote the subobject equivalence class, and ∩ the
intersection obtained by pulling back the following diagram:

We now return to the 4bration C[X1; : : : ; Xn] and establish some key properties we will
need when we study semantics.

�-structure.
We have de4ned a notion of canonical subobject for C[X1; : : : ; Xn] that is independent

of any �-structure on C. It is natural to ask if, in the presence of such structure,
C[X1; : : : ; Xn] inherits it, and if it yields the same notion of canonical subobject and
intersection. It does.

Theorem 3.16. C[X1; : : : ; Xn] inherits �-structure from C via the forgetful functor
U :C[X1; : : : ; Xn]→C; adjoint to the full and faithful 0 of Theorem 3:3.

Proof. We may de4ne �C[X1 ;:::; Xn] as the collection of all tables whose image under U
is in �C. It is straightforward to verify that this de4nition satis4es the axioms of a
�-category.

Observe that the image under U of any canonical subobject 〈
; S〉 idA� 〈
; ∅̃〉 is A id===
A, which is in �C by axiom 2 of De4nition 2.9 of �-categories. Thus our canonical
subobjects are �-canonical, and our canonical intersections are �-canonical pullbacks.
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The following theorems make precise the fact that C[X1; : : : ; Xn] is called the category
obtained by freely adjoining the indeterminate subobjects of the sorts b1; : : : ; bn.

Lemma 3.17. Every object 〈
; S〉 is representable as (i.e. equal on the nose to) the
canonical intersection⋂{t#(Xi): t ∈ Si; 16 i 6 n};

where the pullbacks are canonical: t#(Xi) = 〈
; tJ i〉= 〈
; ∅ · · · ∅ {t}︸︷︷︸
i

∅ · · · ∅〉.

Proof. Immediate: Since S =
⋃{{t}: t ∈ S}, the indicated canonical intersection is

precisely 〈
; S〉.

Theorem 3.18 (Universal mapping property). Suppose F :C→D is a limit preserv-
ing functor from the (nite-product category C to the (nitely complete category
D; and that F(bi) =di for 16i6n. Furthermore; let B1; : : : ; Bn be a sequence of
subobjects of d1; : : : ; dn; respectively; in D. Then there is a limit-preserving functor
FB̃ :C[X1; : : : ; Xn]→D; unique up to isomorphism; such that the following diagram
commutes:

FB̃ is called the evaluation functor induced by the Bi.

Proof. De4ne FB̃ on objects by FB̃(〈
; S〉) = lim← {F(t)#(Bi): t ∈ Si; 16i6n}. The uni-

versal mapping property of limits gives us the action on arrows: if 〈
; S〉 f→〈
′; S ′〉 is
an arrow in C[X1; : : : ; Xn] then FB̃(〈
; S〉), the limit of the family of monics {F(t)#(Bi):

t ∈ Si; 16i6n} targeted at FA, is also, by composing with F(A
f→B) and using prop-

erties of pullbacks and of arrows in C[X1; : : : ; Xn], a cone over the family of monics

{F(t)#(Bi): t ∈ S ′i ; 16i6n}. There is therefore a unique induced arrow F〈
; S〉 %→
F〈
′; S ′〉 which is the value of F(〈
; S〉 f→〈
′; S ′〉). The details, and those of the proof
of limit preservation, are left to the perseverant reader.

We are interested in a category D with richer structure, in which case we are able
to sharpen this result a bit.

Corollary 3.19. Assume the category D in the preceding theorem is SetC
o

and that F
is the Yoneda embedding. Choose the sequence of subobjects Bi of Fbi =HomC( ; bi)
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to be canonical; that is to say; pointwise subsets of Fbi; and take limits in SetC
o

to
be given pointwise (not just up to isomorphism; but on the nose). Then the evaluation
functor FB̃ of the preceding theorem is unique.

3.3.1. Unordered goals
The most elementary notion of query, or of logical state in a logic program, is that

of a conjunction of atoms

Xi1 (t1); : : : ; Xin(tn);

where the Xij are program predicate symbols. We call these basic goals.
We will be considering a more general de4nition of goals in this paper, given by

certain formula diagrams. But it is worth noting that an approximate notion is already
present in the category C[X1; : : : ; Xn] whose objects are eGectively unordered goals. By
the representation lemma, above, objects 〈
; S〉 are intersections⋂{t#(Xi): t ∈ Si; 16 i 6 n}:
These intersections are free in the sense that one can recover all components t#(Xi)
from them, i.e. by reading oG the arrows in the Si, and in the sense of Theorem 3.18.
Since the Si are sets, they cannot capture order or repetitions of atoms within goals.
Thus, this category does not have enough structure to give an account of a deterministic
proof theory, or of an operational semantics sensitive to e.g. goal order or selection
rules (such as those studied by [35]), but enough to give a standard interpretation along
the lines of the Kowalski–Van Emden TP-semantics.

De�nition 3.20. Let C be a 4nite product category, and X1; : : : ; Xn a sequence of generic
predicates over C of sorts b1; : : : ; bn. An interpretation is a functor extending the
Yoneda embedding on C, assigning to each Xi some canonical subobject Bi of C( ; bi)
as in Corollary 3.19. In other words; an interpretation is a functor

< =: C[X1; : : : ; Xn] → SetC
o

;

• agreeing with the Yoneda embedding on C, and
• mapping 〈
; S〉 to

⋂{(<t=)#(Bi): t ∈ Si; 16i6n},
where <t= means the Yoneda image of t.

We let IC
X̃

denote the set of interpretations for a given sequence X̃ =X1; : : : ; Xn of

generic predicates. When C or X̃ are clear from context, we will drop the sub- and
super-scripts.

Note that since interpretations always return canonical subobjects, pointwise set-
theoretic containment makes the set of interpretations into a poset 〈IX̃ ; �〉. It is easily
seen that for any two interpretations < = and < =′, we have < =� < =′ if and only if for
each generic predicate <Xi=⊆ <Xi=′.

In a more general formulation of semantics based on Theorem 3.18, with no stipu-
lations about canonical structure, we would obtain such a poset by using the induced
pointwise order on subobjects. The following lemma is immediate.
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Lemma 3.21. The poset of interpretations IC
X̃

is a complete lattice with (general)
meet and join operations given pointwise; and top and bottom elements < =� and < =⊥
given by

<Xi=� = C( ; bi)
id=C( ; bi); (1)

<Xi=⊥ = 0
!
�C( ; bi): (2)

It is straightforward to de4ne (see [19]), given a Horn Clause program P built
from generic predicates described above, a continuous operator on this lattice whose
least-4xed point is a categorical analogue of the least Herbrand model for P. This is
precisely what we will do with weak Hereditarily Harrop formulas below. We brieSy
sketch here the results for the Horn case from [19].

De�nition 3.22. An interpretation < = is a model of a Horn Clause program P if for
every clause tlcl ⇒ hdcl we have <tl= ⊂ <hd=. A goal G of sort � is said to be true in
the interpretation if the image <9(G)=∈SetCo

of the monic

9(G)
id�→(�; ∅)

is an isomorphism.

In the following discussion we refer to the empty goal of sort 
 by 
.

Lemma 3.23 (Soundness). Let < = be a model of program P. Suppose G1 and G2

are goals; of sorts �1; �2 respectively; and there is a resolution proof G1 
%; c· · ·  G2;

where �2
%→ �1 is the computed answer substitution. Then <G2=⊂ <%G1=. In particular;

if G2 is �2 then %G1 is true in the model.

We now de4ne a categorical analogue of the TP operator of Kowalski and Van
Emden, an operator EP on the lattice of interpretations. To motivate our de4nition,
we brieSy review the classical Kowalski–van Emden semantics [37] of Horn Clause
programs, also known as the bottom-up semantics. Associated with a conventional Horn
Clause program P consisting of a 4nite set of 4rst-order clause formulas of the form
cl=Tl⇒ h(t); t a vector of terms, there is an operator TP :˝(BP) → ˝(BP) where
BP is the Herbrand Base, the set of all ground instantiations of predicates over the
signature of P, and ˝( ) is the power-set operator. TP is de4ned as follows:

TP(X ) = {A% : Tl⇒ A is a clause of P and Tl% ∈ X }: (3)

It is easily shown that TP is continuous on 〈˝(BP); ⊆〉 (commutes with unions of
chains) and that its least 4xed point is the least term model MP of P, in which a
goal is true iG it is derivable in classical logic from P iG it is derivable in minimal
intuitionistic logic from P iG it is derivable by SLD-resolution from P. By the Tarski–
Knaster theorem this model is a union of a countable chain of 4nitary approximations



S.E. Finkelstein et al. / Theoretical Computer Science 300 (2003) 91–160 113

Mn
P of the least term model, hence the term bottom-up semantics. Since the de4nition

of the TP operator resembles resolution in reverse it is easy to show that the least-4xed
point of TP (as a singleton model class) is complete with respect to resolution. The
remarkable fact is that it is also sound and complete with respect to all of classical
deduction, which gives a semantic proof of the fact that the restricted proof search
of systems based on resolution (operational proofs in the Miller–Nadathur–Scedrov–
Pfenning terminology [45]) does not omit any theorems for the restricted class of Horn
Theories and existential goals.

This approach to completeness has had a remarkable success in logic programming:
countless extensions of declarative programming to e.g. constraints [29], abstract in-
terpretation [4, 10], Hereditarily Harrop programming [43], higher-order logic [16, 17]
build on a similar completeness proof. We take this semantic de4nition as a foundation
for a categorical treatment of uniform logic programming.

A slight change in the presentation of the Kowalski–van Emden semantics is more
consistent with the spirit of categorical logic. If we de4ne an interpretation < = as an
operator on formulas (determined by its value on predicate symbols or atoms A) whose
value is the set of true instances of its argument, then we may de4ne an operator EP

similar to TP above (3), as an operator on interpretations, thus:

EP(< =)(A) =
⋃{%: <Tl%= = �}

where the union is taken over all clauses Tl⇒B in the program whose heads B unify
via mgu % with atomic goal A, and where � denotes the set of all instances. As was
shown for the Horn case in [19] this admits a simple generalization in categorical logic.

Program P is now assumed to be a set of Horn formula diagrams over C[X1; : : : ; Xn].

De�nition 3.24. Let < = be an interpretation and X1; : : : ; Xn the sequence of generic
predicates in program P. Then

EP(< =)(Xi) =
⋃

tl⇒Xi(t)∈P
Im<t=(<tlcl =): (4)

In [19] it is shown that EP is a continuous operator on the lattice of interpretations,
with a least 4xed point < =∗ (called the Herbrand interpretation for P).

Lemma 3.25. An interpretation < = is a model of program P if and only if it is a
pre-(xed point of EP (that is to say; EP(< =)⊆ < =) and hence; if and only if < =∗⊆ < =.

The following is established in [19].

Theorem 3.26 (Completeness). If P is a program; < =∗ its Herbrand interpretation and

G a goal; <G=∗ is an isomorphism if and only if there is an SLD proof G 
id· · ·  .
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4. Program syntax

We now present the de4nitions of two 4rst-order logic programming languages, Horn
and Weak Hereditarily Harrop (WHH) formulas, in the context of formula diagrams
over a category. We will restrict attention to generic categorical signatures C[X ], i.e.
where C is an arbitrary �-category and X a 4nite set of �-monics freely adjoined to C.
These de4nitions then give rise to two families of programming languages: Horn(C)
and WHH(C), parametrized by the categorical signature.

We recall that uniform programming languages are given by the following data: a
set of program formulas P and a set of goal formulas G recursively interde4ned, as
well as a notion of operational derivation �o of sequents P �o G where P is a 4nite
subset of P and G ∈G. The sets P and G for Horn(C) and WHH(C) are de4ned
below. The proof theory will be discussed in Section 4.3.

In each of the cases, formula will mean formula diagram over the categorical sig-
nature C[X ]. In particular atomic formulas will be of the form A= (u)#(Xi) for some
Xi ∈X: �� will mean the identity �=== � for any object �.

De�nition 4.1.
• Horn(C) program formulae D and goal formulae G over a categorical signature are

given by

G ::=� |A |G ∧ G |G ∨ G;

D ::= A |G ⇒ A |D ∧ D | ∀x:�D:

• WHH(C) program formulae and goal formulae over a categorical signature are given
by

G ::=� |A |G ∧ G |G ∨ G |D⇒ G | ∃x:�D;

D ::= A |G ⇒ A |D ∧ D | ∀x:�D:

De�nition 4.2. A program P is a 4nite theory consisting of program formulae (neces-
sarily of the same sort). A goal is a goal formula G.

4.1. Uniform programming categories

To continue the thread of generalized predicates introduced in Section 3.3, we brieSy
present the natural indexed category generalization of the preceding de4nitions. Once
again take a base category C and de4ne a WHH structure to be a triple of C-indexed
categories

Goal;Atom;Prog : C→ CAT

endowed with the following indexed category morphisms:
• ⇒ : Goal×Atom→ Prog,
• ∧ : Prog× Prog→ Prog;



S.E. Finkelstein et al. / Theoretical Computer Science 300 (2003) 91–160 115

• ∧;∨ : Goal×Goal→Goal;
• → : Prog×Goal→Goal,
satisfying
1: Atom⊆Goal,
2: Atom⊆ Prog.
Furthermore, for each 
 %→ � in C, there are functors
1: ∃% : Goal(
)→Goal(�);
2: ∀% : Prog(
)→ Prog(�)

.
Observe that we can easily de4ne a WHH structure using the canonical formula

diagrams F(C[X1; : : : ; Xn];C; 〈X1; : : : ; Xn〉), by taking the appropriate goal, atom and
program formula diagrams over a given sort for the 4bers, and taking the connectives
∨;∧;⇒ to be the free diagram constructors introduced in the 4rst section, and, e.g. for


 %→ � in C, de4ning ∃% : Goal(
)→Goal(�) by the action

4.2. Programs as sets of formal sequents

In order to recapture the familiar notion of program as a set of clauses or formal
sequents, with a head and tail, we carry out the translation described below. This
translation process yields constituent clauses while cumulatively computing the sort
extension that is taking place as quanti4ers are removed. The eGect of the translation
is to replace outermost conjunctions with (4nite) sets of formulae, and further translate
the formulae by
• removing outer occurrences of universal quanti4cation, and
• replacing atoms A by the equivalent clause �⇒A, where �=�
 has the same sort

as the atom A.
We obtain clausal formulae of the form

tlcl ⇒ hdcl(tmcl)

accompanied by a sort-extending substitution (i.e. a projection).
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De�nition 4.3. We inductively de4ne the translation < by
• <(’; A) = {(’;�⇒A)}; � of the same sort as A.
• <(’;G⇒A) = {(’;G⇒A)}.
• <(’; P1 ∧ P2) = <(’; P1)∪ <(’; P2).
• <(’;∀f:�→9P) = <(f’; P).

It is sometimes convenient to extend < to sets of program formulae via <(’; {Pi: i∈ I})
=

⋃
<(’; Pi).

If P is a program, a clause, cl; of P is the second component of a member
(’; cl)∈ <(P). The pair (’; cl) will be called an annotated clause. We will write <(P)
as abbreviated notation for <(id; P):

Each clause yielded by this translation is of the form G⇒A, where A is an atomic
formula diagram Xi(t) with Xi a predicate token and t an arrow in C. Given a clause
cl, we de4ne the head of the clause, hdcl , to be the token Xi, the tail of the clause,
tlcl , to be the goal formula G and the head term of the clause, tmcl, to be the arrow t.

< is a (non-sort-preserving) mapping from the set of program formulae to the power
set of the class of all formula diagrams. It induces a partial order on programs (and
hence on each sort-indexed 4ber), namely by

P ⊆ P′ iG <(P) ⊆ <(P′):

4.3. Resolution

Program computation is carried out via resolution reduction rules. These rules are
given as transitions between state vectors: vectors of pairs 〈P |A〉 where P is a program,
A a goal.

De�nition 4.4. Let C be a �-category and 
 an object in C: A 
-state is a pair 〈P |A〉

where P is a program over C of sort 
 and A a goal diagram over the same category
and sort. When clear from context, mention of the sort 
 may be omitted.

A state vector is a 4nite sequence 〈P1 |A1〉& · · ·&〈Pi |Ai〉& · · ·&〈Pn |An〉 of state
vectors of the same sort and signature.

State vectors form a natural indexed monoidal category over C. The program and
formula of a state can be thought of as a combined diagram over a sort 
 (which the
reader can think of as labeled by the “connective” |). The projections occurring in the
goal formula and program indicate which data (variables) are shared, and which are
independent (see Section 2.3.2). Similarly, state vectors are best thought of as diagrams
over a common sort with & as a top-level label.

We de4ne a one-step resolution as a labeled binary relation on state vectors (or,
equivalently, a ternary relation on state vectors× labels× state vectors, where labels
are one of A;∨r ;∨l;∧ or a substitution–clause pair). For the Horn case Corradini and
Montanari have shown how propositional resolution with respect to an ambient pro-
gram P can be formalized categorically via the free indexed monoidal category (whose
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objects are tensors of propositional atoms) induced by the clauses of P as arrows.
Resolutions correspond to reversed arrows in this category. Predicate resolution (with
uni4cation) can then recovered via the Grothendieck construction applied to this in-
dexed category. We do not study the generalization of this approach to Hereditarily
Harrop programming here, as we will not need it for our main results. This approach
is used for an axiomatic presentation of resolution in [2, 69].

For the rest of this section we will restrict our attention to quanti4cation along pro-
jections, which corresponds, in categorical logic, to conventional quanti4cation with
respect to variables. The more general quanti4cation yielded by categorical logic pro-
vides a new logic-based way of programming with certain constraints. We return to
this point at the end of the section.

4.3.1. Resolution reduction rules:

Backchain: 〈P1 |A1〉 & · · · & 〈Pi |Ai〉 & · · · & 〈Pn |An〉
%�;(G⇒A′

i ) 
〈(�#P1)% | (�#A1)%〉 & · · · & 〈(�#Pi)% |G%〉 & · · · & 〈(�#Pn)% | (�#An)%〉
for atomic formula diagrams Ai, clause diagrams (G⇒A′i ) and substitution
arrows %�, where
• (�; G⇒A′i )∈ <(Pi);
• % is a uni4er of the (sort-extended) atomic goal diagram �#Ai and the

head A′i of the selected clause.
This rule extends conventional backchaining to categorical logic. The only signi4cant
novelty is the lack of a canonical choice of uni4ers (such as a most general uni4er) in
the absence of any constraints on the underlying category. All resulting states appear
pulled back along � because the clause G⇒A′i whose head is uni4ed with the selected
goal Ai may result from the peeling oG of universal quanti4ers in the original program,
the eGect of which has been to extend the sort of the whole state vector.
Augment: 〈P1 |A1〉 & · · · & 〈Pi |A⇒B〉 & · · · & 〈Pn |An〉 A

 
〈P1 |A1〉 & · · · & 〈Pi ∧A |B〉 & · · · & 〈Pn |An〉.

Instance: 〈P1 |A1〉 & · · · & 〈Pi | ∃x:�Ai〉 & · · · & 〈Pn |An〉 �
 

〈�#P1 | �#A1〉 & · · · & 〈�#Pi |Ai〉 & · · · & 〈�#Pn | �#An〉,
where � is the projection 
× �→ 
.

This rule eGectively replaces an existentially quanti4ed variable in the selected goal
by a free one which must now be instantiated by subsequent proof search, and which
therefore behaves like a logic variable.

and 〈P1 |A1〉 & · · · & 〈Pi |A∧B〉 & · · · & 〈Pn |An〉 ∧ 
〈P1 |A1〉 & · · · & 〈Pi |A〉 & 〈Pi |B〉 & · · · & 〈Pn |An〉.

or-right 〈P1 |A1〉 & · · · & 〈Pi |A∨B〉 & · · · & 〈Pn |An〉 ∨r 
〈P1 |A1〉 & · · · & 〈Pi |B〉 & · · · & 〈Pn |An〉.

or-left 〈P1 |A1〉 & · · · & 〈Pi |A∨B〉 & · · · & 〈Pn |An〉 ∨l 
〈P1 |A1〉 & · · · & 〈Pi |A〉 & · · · & 〈Pn |An〉.

A null resolution vector is one of the form 〈P1 | �〉 & · · · & 〈Pn | �〉.
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De�nition 4.5. Let P be a program diagram and G a goal diagram over a category
C, that is to say, a categorical signature (C[X1; : : : ; Xn];C; 〈X1; : : : ;Xn〉). Then an SLD
derivation is a sequence of reductions starting with (singleton) state vector 〈P |G〉.

An operational (SLD) proof is a (4nite) sequence of reductions 〈P |G〉 · · ·  
NULL where NULL is a null resolution vector.

De�nition 4.6. A computed answer substitution % is the composition of all the substi-
tutions occurring in the backchain and instance steps of an SLD-proof.

We are now in a position to de4ne operational inference �o based on the notion
of resolution. We must be careful, however, to distinguish between the universal role
played by open formulas (formulas of non-terminator sort, corresponding to those con-
taining free variables) in a sequent and the existential character they have (as formulas
with logic variables) in a resolution sequence

〈P |G〉 % · · · NULL:

The intended meaning of such a derivation is that % has successfully instantiated an
existential query and that any variables remaining free after application of % (i.e. if
the source of % is other than 1) are universal. Thus, for example, the existence of the
derivation above should be equivalent to the assertion P%�o G%.

We now make these observations precise in the following de4nition.

De�nition 4.7. We will say that G is operationally derivable from P and write P �o G
iG there is a program P̃ and a formula G̃ such that 〈P̃ | G̃〉 % · · · NULL, with
computed answer substitution %, P = P̃% and G = G̃%.

In the next three lemmas we establish several important properties of �o including a
characterization (in Lemma 4.9) we will often use: P �o G iG 〈P |G〉 id · · · NULL.

Lemma 4.8. If 〈P(t) |G(t)〉 %  · · · NULL; then 〈P |G〉 (%t) · · · NULL.

Proof. See the appendix.

Lemma 4.9. P �o G iA there is an SLD-proof 〈P |G〉 id · · · NULL with com-
puted answer substitution id.

Proof. See the appendix.

Lemma 4.10. If 〈P |G〉 (%t)  · · · NULL; then 〈P(t) |G(t)〉 %  · · · NULL.

Proof. Suppose 〈P |G〉 (%t)  · · · NULL. By Lemma 4.9 then,

〈P(%t) |G(%t)〉 id · · · NULL
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which may be rewritten as

〈(P(t)) (%) | (G(t)) (%)〉 id · · · NULL:

But then, by Lemma 4.8,

〈P(t) |G(t)〉 % · · · NULL:

Remark 4.11 (Syntactic pullback property). The combination of Lemmas 4.8 and
4.10 then gives us that

〈P(t) |G(t)〉 % · · · NULL iG 〈P |G〉 (%t) · · · NULL:

Categorical quanti�cation. In the de4nition of formula diagrams we have allowed the
formation of quanti4cation along arrows ∃fG where G is a formula diagram of sort 


and 

f→ � is an arrow in C. In conventional logic the meaning of an entailment

>(x) � ∃fG
is that for every x there is a t of the appropriate sort such that

>(x) � G(t) ∧ f(t) = x:

Without introducing equality reasoning directly, we can formalize such a goal using the

diagonal predicate ?
@
� �× � which, e.g. in Set, represents the subset {(r; r) : r ∈ �}.

The identity of f(t) and x is equivalent to the assertion that the pullback ?′ along
f(t)× id� of ? is an isomorphism. It is straightforward to produce a resolution rule
for the goal ∃fG in terms of such a predicate, but subsequent satisfaction of the
predicate requires varying the de4nition of generic predicate to build in this constraint
dynamically during execution. The relevant generic predicate de4nition is taken up in
[41, 36], and will not be further discussed here.

5. Operational semantics

One of our key aims in proposing a categorical semantics is to give a suDciently
general treatment of the Kowalski–van Emden (xed point semantics of logic program-
ming [37, 66] a remarkably robust feature that appears in many variants and extensions
of Prolog, here taken as a cornerstone of a more general treatment of declarative pro-
gramming. The 4xed point approach is also known as bottom-up semantics, since it
assigns approximate meanings

<A=0 ⊆ <A=1 ⊆ · · ·
to goal predicates A in stages, starting with the empty interpretation. Because of the
continuity of the operator used to build these approximations, the 4xed point meaning
of a predicate is the union of these approximations.
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The approximate models produced by the bottom-up semantics do not coincide with
conventional topos (Kripke) models, and are best understood as model-fragments. In
fact the approximate interpretation < =n is a semantic abstraction of the notion of “deriv-
ability in n steps”. As a result, this semantics closely mirrors the resolution process
and gives a nice characterization of SLD resolution in terms of inductive de4nablity
of predicates in the semantics.

Since these models do not give rise, even in the colimit, to a bona 4de topos model
of full 4rst-order logic, they do not really capture the a priori notion of declarative truth
that one associates with the text of a program. For this reason we need to distinguish
between the bottom-up semantics, which we will henceforth call the operational inter-
pretation, and conventional topos semantics, developed in Section (6). In that section
we will reconcile the conventional and operational interpretations, thus justifying the
operational semantics in terms of the declarative meaning of the program.

5.1. The operational interpretation

In [45], Miller et al. proposed uniform proof systems, sequent systems in which
connectives can be given a search-theoretic interpretation, as a fundamental de4ning
characteristic of logic programming systems.

The semantic operator we introduce below captures this uniformity through the in-
terpretation of several of the logical connectives via shifts over a category of states
(in this case program–signature pairs). For example, <A⇒B=P = <B=P∧A de4nes the
meaning of A⇒B over P as the meaning of B over P ∧A. In short, < = incorporates a
search theoretic interpretation of connectives directly into the semantics.

Our operational interpretation extends the Yoneda embedding of the base syntactic
category C to an assignment of predicates in the Yoneda Topos to states (goal–program
pairs of a given sort) in a way that preserves the ordering of states and which satis4es
a number of additional properties.

Let S
 be the set of states of sort 
 over C[X1; : : : ; Xn], that is to say the set of all
triples (G; P; 
), where G is a goal formula diagram and P is a program in K, both
of sort 
. Endow S
 with poset structure as follows:

(G; P; 
) ⊆ (G; P′; 
) iG P ⊆ P′;

where we recall the order on program formula diagrams is induced by the translation
< of de4nition 4.3.

Let A
; A, be the restriction of S
 and S to atomic states (Xi(t); P; 
), where Xi

is a generic subobject in X .
Let S be the strict indexed category C→CAT given by

• S(
) =S
.
• S(� t→ 
) = (t)# :S(
)→S(�)
and let M be the strict indexed category (also over C) given by
• M(
) = Sub(HomC( ; 
)).
• M(� t→ 
) = [HomC( ; t)]# : Sub(HomC( ; 
))→ Sub(HomC( ; �)),
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where Sub(HomC( ; 
)) is the complete Heyting algebra of subobjects in Set(C)o of
the Yoneda image HomC( ; 
) of 
. Then an operational interpretation is a C-indexed
functor

< = : S→M

whose action on triples (U; P; 
) is denoted <U =P;
 (or just <U =P when the sort is clear
from context) and satisfying:
1: triples (G; P; 
)∈S
 are mapped to monics with target HomC( ; 
),
2: <T =P is mapped to the identity arrow on HomC( ; 
).
3: <A∧B=P = <A=P ∩ <B=P ,
4: <A∨B=P = <A=P ∪ <B=P ,
5: <A⇒B=P = <B=P∧A,
6. <∃fA=P = Im<f=<A=P(f),

where Im<f= is the image along f, also denoted ∃<f=.
Observe that, by naturality of < =, for every � t→ 
 in C

in other words, <U (t)=P(t) = [HomC( ; t)]#<U =P .
Letting V be the indexed category of state vectors, < = lifts immediately to

< = : V→M

via

<V1&V2= = <V1= ∩ <V2=:

We note that condition 5 above is what distinguishes operational interpretations from
conventional Topos-theoretic (or Kripke) semantics, as it does not interpret implication
in terms of a semantic implication operator, thus permitting a considerably simpler
notion of model. It eGectively carries over into the semantics the search-theoretic char-
acter of the implication connective. However, it is interesting to note that it can be
built into the very de4nition of indexed category morphism simply by choosing a more
robust base category for indexed structure in which programs play a similar role to
sorts, as we show in the next subsection. In eGect we show that such treatment of the
connective is similar to the treatment of substitution itself as a change-of-4ber, that is
to say, a semantically safe change of logical state.
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5.2. Indexing over state information

Our choice of notation <G=P for the action of < = on pairs (G; P) suggests indexing
over programs (as well as over sorts). We now make this implicit indexed structure
precise.

Let Prog0 :C→CAT be the indexed category given by:
• Prog0(
) = {P: P is a program of sort 
} with arrows generated by the identity

arrows, and for each pair of programs P; A, the right-adjoin arrows

P �A→P ∧ A;

and
• Prog0(


%→ �) = Prog0(�) %#

→ Prog0(
).
Let GP be the category yielded by the Grothendieck construction G(C; Prog0), namely
the category with objects pairs (P; 
) with P a program of sort 
 and arrows

(P; 
)
(�A;%)−→(Q; �);

where 
 %→ � in C and P �A→ %#(Q), whenever %#(Q) =P ∧A.
We now de4ne categories of goals and models indexed over GP:

G‘;M : GP→ CAT

as follows:
• M(P; 
) = Sub(C( ; 
)):

• M[(Q; �)
(�A;%)−→(P; 
)] by pullback along %

and
• G‘(P; 
) = {(G; P; 
): G is a goal over 
}:
• G‘(Q; �)

G‘(�A;%)−→ G‘(P; 
) via (G;Q; �) �→ (A⇒ %#(G); P; 
), where A⇒ %#(G) is an
implicative formula diagram.
Then an operational interpretation may be de4ned as a GP-indexed functor

< = : G‘→M:

satisfying conditions 1; 2; 3; 5 above, since condition 4 is now guaranteed by natural-
ity of < = over the base category GP. If we 4x the sort 
 and vary programs, the
commutativity of

implies <A⇒G=P = <G=P∧A.
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By suitable choice of base category we have eliminated explicit enforcement of a
search-theoretic semantic condition 4 corresponding to a uniform proof step. The only
remaining conditions are preservation of connectives.

5.3. Soundness

There is a natural partial order on interpretations.

De�nition 5.1. < = ⊆ < =′ iG for all goal formulae A and every P ∈K of the same sort,
<A=P ⊆ <A=′P .

It suDces to check the order on atoms.

Lemma 5.2. If <Xi(t)=P ⊆ <Xi(t)=′P for all atoms Xi(t) and all P ∈K of the same sort;
then < =⊆ < =′.

Proof. By a straightforward induction on the structure of goals.

De�nition 5.3. We shall say that an interpretation < = is a model of a program P
of sort 
 if for every program Q of the same sort which extends P and every
clause (�; tlcl⇒Xi(tmcl))∈ <(Q), we have <tlcl=Q(�)⊆ <Xi(tmcl)=Q(�), where we recall

× � �→ 
 is the projection from the sort of the clause to that of P.

Proposition 5.4 (Soundness). If < = is a model of a program P; then for any goal G
and any program Q of the same sort which extends P; if Q �o G then <G=Q is an
isomorphism.

Proof. By induction on length of proof.
Let < = be a model of P, and let G be a goal and Q a program extending P, both

of the same sort, such that Q �o G.
Consider the 4rst resolution rule of the proof of Q �o G, which by Lemma 4.9 may

be assumed to have computed answer substitution the identity:

Backchain: 〈Q |G〉 %1�;(tlcl⇒ G̃)
 〈(�#Q)%1 | tlcl%1〉 · · ·  ’  NULL

By the induction hypothesis then, <(tlcl%1)’=Q is an isomorphism. But,
<(tlcl%1)’=Q ⊆ <(G̃%1)’=Q = <((�#G)%1)’=Q = <G=Q which must then also
be an isomorphism.

Conjunction: 〈Q |A∧B〉 ∧ 〈Q |A〉 & 〈Q |B〉 · · · id NULL.
By the induction hypothesis then we know that <A=Q and <B=Q are iso-
morphisms, as then is <A∧B=Q.

Disjunction: 〈Q |A1 ∧A2〉 ∨ 〈Q |Ai〉 · · · id NULL.
By the induction hypothesis then we know that <Ai=Q is an isomorphism,
as then is <A1 ∨A2=Q.

Augment: 〈Q |A⇒B〉 A
 〈Q∧A |B〉 · · ·  id NULL.

By the induction hypothesis then, we know that <A⇒B=Q = <B=Q∧{A} is
an isomorphism.
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Instance: 〈Q | ∃x:�A〉 �
 〈(�#)Q |A〉 · · · 〈id;%〉 NULL. The form 〈id; %〉 of the

second computed substitution  is dictated by the fact that � must be
id�. By the induction hypothesis then, we know that <(〈id; %〉)#A=Q is an
isomorphism, i.e., <��=⊆ ( <〈id; %〉=)#<A=Q�. Now using the fact that image
is left-adjoint to pullback, we have Im<〈id;%〉=<��=⊆ <A=Q�. Taking the image
along � of both sides, we have <��=⊆ <∃x:
A=Q as we wanted to show.

We now show that the pullback property of operational interpretations extends to
nonatomic goals.

Lemma 5.5 (Pullback lemma). Suppose P is a program and A is a goal. Then

<A(t)=P(t) = (<t=)#(<A=P):

Proof. We argue by induction on the structure of goal diagrams A. The atomic case
follows from naturality of < =. The cases <(A1 ∧A2) (t)=P(t) and <(A1 ∨A2)(t)=P(t) follow
from the fact that pullbacks (which also have left adjoints) commute with intersec-
tions and unions. <(A1⇒A2) (t)=P(t) = <A2(t)=P(t)∧{A1(t)}, which is equal, by induction
hypothesis, to ( <t=)#( <A2=P∧A1 ) = ( <t=)#( <A1⇒A2=P).

For the existential case, observe that (t)#(∃�G), or, equivalently, (∃�G)(t) is
∃�′G(t× id).

So <(t)#(∃�G)=P(t) = <∃�′G(t× id)=P(t), which, by de4nition is Im<�′=<G(t× id)=P(�′t) =
Im<�′=<G(t× id)=P(t× id�). By the induction hypothesis, this is Im<�′=(( <t× id=)#<G=P(�)).
By the Beck–Frobenius condition in SetC

o
, this is ( <t=)#(Im<�=<G=P(�)), which is precisely

( <t=)#<∃�G=P .

5.4. The semantic operator EP: the WHH case

We now give a categorical analogue of the set-theoretic TP operator for WHH for-
mula diagrams without reference to ground terms and which, depending on the category
K of programs, leads to diGerent generalizations of the Least Herbrand Universe over
arbitrary �-categories. Recall that we are using the notation Imf for the left-adjoint of
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the pullback functor f# : Sub(�)→Sub(
) along any arrow 

f→ �, called the image

along f, and sometimes denoted ∃f in the literature. The fact that it also has a right
adjoint in any topos will be used later.

De�nition 5.6. Let < = be an operational semantics, P a program in K, and Xi(t) an
atomic goal, both of the same sort. We de4ne

E(P; < =; Xi; t) =
⋃

%tmcl=%�t
(�;cl)∈<(P);hdcl=Xi

Im<%�=<%tlcl=P%�

If we restrict attention to closed programs (such as Horn Clause programs), the values
E(P; < =; Xi; t) can be expressed in terms of pullbacks of E(P; < =; Xi), given, in turn, by
the considerably simpler expression (4) of De4nition 3.24. However, in the general
Hereditarily Harrop case, the presence of free variables in programs requires a more
delicate treatment, both in the semantics and the proof theory.

Lemma 5.7. If < =⊆ < =′; then for any indeterminate monic Xi; arrow t targeted at the
sort of Xi; and program P ∈K of the same sort; E(P; < =; Xi; t)⊆E(P; < =′; Xi; t).

Proof. By hypothesis we have that <tlcl=P�⊆ <tlcl=′P� for each pair (�; cl)∈ <(P) such
that hdcl =Xi. Thus for any uni4er % of �t and tmcl, we also have

Im<%�=(<%=)#(<tlcl=P�) ⊆ Im<%�=(<%=)#(<tlcl=′P�):

But now the required containment follows directly from elementary properties of unions.

Proposition 5.8. Let C1
r→C2 and C0

t→C2 be arrows in C. If <t= factors through
Im<r=(F) for some subobject F of <C2= ; then t is an instance of r in C and <t= factors
through F <r=. In particular; there is an arrow C0

’→C1 such that t =’r and <’= factors
through F .

Proof. Consider the diagram
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where eIm<r=(F) is an epi-monic image factorization of F <r= and each <Ci= is a rep-
resentable functor in SetC

o
, and therefore projective. The projectivity of <C0= implies

that the arrow u (which exists by the hypothesis that <t= factors through Im<r=(F))
lifts to an arrow % making the diagram commute. Let f= % F . The source and tar-
get of f are representable, so by the fullness of the Yoneda embedding, f= <’=
for some substitution ’, and <’= <r== <t=. By faithfulness of the Yoneda embedding,
’r = t.

5.5. The approximate interpretations and their properties

De�nition 5.9. The sequence of operational interpretations < =0; < =1; : : : ; < =n; : : : is given
by <Xi(t)=0P = the unique map 0→ <b= and <Xi(t)=n+1

P =E(P; < =n; Xi; t) for indeterminate
monics Xi, where b= sort of Xi(t) and P.

Lemma 5.10. < =n⊆ < =n+1.

Proof. It suDces to show that <Xi(t)=nP ⊆ <Xi(t)=n+1
P for each atomic Xi(t) and program

P which extends Po. In other words, that <Xi(t)=nP ⊆E(P; < =n; Xi; t): We proceed by
induction on n. If n= 0, then <Xi(t)=0P =the unique map 0→ <b=0, where b= sort of
Xi(t). But then by initiality of 0, there is a map 0→ <Xi(t)=1P such that

Now suppose that <Xi(t)=kP ⊆ <Xi(t)=k+1
P , and show that <Xi(t)=k+1

P ⊆ <Xi(t)=k+2
P . Since

by hypothesis, <Xi(t)=kP ⊆ <Xi(t)=k+1
P , we know by Lemma 5.7 that <Xi(t)=k+1

P =E(P; < =k ;
Xi; t)⊆E(P; < =k+1; Xi; t) = <Xi(t)=k+2

P .

We now establish some key properties of the interpretations < =n and give a useful
characterization of the 4xed point operator E in terms of equalizers in the topos Set(C)o .

Lemma 5.11. <Xi(tv)=nP(t) is an isomorphism iA (<t=)#(<Xi(v)=nP) is an isomorphism.

Proof. See the appendix.

Corollary 5.12.

(<t=)#(<Xi(v)=nP) = <Xi(tv)=nP(t):
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Proof. We show that <Xi(tv)=nP(t)(�) = (<t=)#(<Xi(v)=nP)(�) for every object � in C. Let
E be an arrow in C whose source is � and whose target is the source of t.

E ∈ (<t=)#(<Xi(v)=nP)(�) iG (Et) ∈ <Xi(v)=nP(�)

iG (<Et=)#(<Xi(v)=nP) is an isomorphism

iG <Xi(Etv)=nP(Et) = <(Xi(tv))(E)=n(P(t))(E) is an isomorphism

iG (<E=)#(<Xi(tv)=nP(t)) is an isomorphism

iG E ∈ <Xi(tv)=nP(t)(�)

The values of the semantic operator E(P; < =; Xi; t) de4ned above were described in
terms of substitutions from the base syntactic category C. We must consider all unifying
substitutions, since in arbitrary categorical signatures the existence of mgu’s is not
guaranteed. But the Yoneda Topos Set(C)o has equalizers, in terms of which we can
give a characterization of the operator E.

Theorem 5.13.

E(P; < =; Xi; v) =
⋃

(�;cl)∈<(Pi)
hdcl=Xi

{Im<�={Imeq(<�v=;<tmcl=) (eq(<�v=; <tmcl=))#<tlcl=P�}:

In the case where most general uni4ers exist in C, the equalizers in the formula above
are representable.

Proof. See the appendix.

5.6. The Kowalski–van Emden model

We now de4ne a canonical operational interpretation of a logic program, inspired
by the Kowalski–van Emden construction [37, 66] of the least Herbrand model. In
one form or the other, this construction has provided complete operational semantics
for a broad class of logic programming languages [28, 63, 47]. One of the aims of
this paper is to show that, suitably reformulated as a topos interpretation, it gives a
complete semantics for Weak Hereditarily Harrop programs in the full generality of
categorical signatures. After de4ning the canonical interpretation, we establish some
important properties of models and show the interpretation is initial with respect to all
models of a program.

De�nition 5.14. The Kowalski–van Emden model is de4ned by letting

<Xi(t)=∗P = lim→ {<Xi(t)=nP}

where lim→ {<Xi(t)=nP} is the 4ltered colimit in Set(C)o of the following diagram of

inclusions:

<Xi(t)=0P � <Xi(t)=1P � · · ·� <Xi(t)=kP � · · · :
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Lemma 5.15. <A=∗P = lim→ {<A=
n
P} for all formulae A and programs P ∈K of the same

sort.

Proof. Follows by a straightforward induction on formulae.

De�nition 5.16. An operational interpretation < = is said to be a pre-(xed point of E at
program P if for every atomic goal Xi(u) of the same sort as P, and for every program
Q of the same sort as P extending P

E(Q; < =; Xi; u) ⊆ <Xi(u)=Q

and a (xed point of E at P if the containment can be replaced by equality.

Lemma 5.17. If < = is a (xed point of E at P it is a model of P. If it is a model of
P it is a pre-(xed point of E at P.

Proof. Suppose < = is a 4xed point of E at program P of sort 
. Let Q extend P and
suppose B⇒Xi(u) is a clause of Q of sort 
× � (necessarily extending the sort of Q
since it has had any possible quanti4cation removed). Then

<Xi(u)=Q(�) =
⋃

(�′ ;cl)∈<(Q(�))
hdcl=Xi

{Im<%�′=(<%=)#<tlcl=Q(�′�)}:

Consider the expression in the right hand union corresponding to the clause B(�× id)⇒
Xi((�× id)u) of Q(�) with % chosen to be the uni4er 
× �

id
 × @−→ 
× �× � where

� @→ �× � is the diagonal map, as shown in the following diagram:

This expression is

Im<%�′=(<%=)#<B(�× id�)=Q(�′�);

which is equal to

(<%=)#<B(�× id�)=Q((�×id�)�);
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since %(�× id�) = id�×
 = %�′. This yields, using the pullback property,

(<%(�× id�)=)#<B=Q(�)

which is equal to <B=Q(�). This shows <B=Q(�)⊆ <Xi(u)=Q(�). Thus, < = is a model of P.
For the second claim, suppose < = is a model of P. Then

E(Q; < =; Xi; t) =
⋃

(�;cl)∈<(Q)
hdcl=Xi

Im<%�=(<%=)#<tlcl=Q(�)

⊆ ⋃
(�;cl)∈<(Q)

hdcl=Xi

Im<%�=(<%=)#<Xi(tmcl)=Q(�)

where the % range over all uni4ers of Xi(�t) and Xi(tmcl) of clauses in Q for which
hdcl =Xi. But then

(<%=)#<Xi(tmcl)=Q(�) = <Xi(%tmcl)=Q(%�)

= <Xi(%�t)=Q(%�)

= (<%�=)#<Xi(t)=Q:
So every expression in the de4nition of E(Q; < =; Xi; t) is of the form

Im<%�=(<%�=)#<Xi(t)=Q
which, since Imf(f)#(A)⊆A for any f and subobject A, is always a subobject of
<Xi(t)=Q. Thus

E(Q; < =; Xi; t) ⊆ <Xi(t)=Q
as we wanted to show.

Lemma 5.18. The interpretation < =∗ is a model of P.

Proof. We show that, in fact, E is continuous, that is to say, E preserves colimits of
subobject chains

<Xi(t)=∗Q =
⋃

(�;cl)∈<(Q)
hdcl=Xi

{Im<�=Imeq(<tmcl=; <�t=)(eq(<tmcl=; <�t=))#(<tlcl=∗Q�)}

for each atomic formula Xi(t) and each program Q of the same sort extending P. This
shows that < =∗ is a 4xed point of E at P and hence a model of P.

We will let eqcl stand for eq(<tmcl=; <�t=).
First we will show that

<Xi(t)=∗Q ⊆
⋃

(�;cl)∈<(Q)
hdcl=Xi

{Im<�=Imeqcl
(eqcl)

#(<tlcl=∗Q�)}:

It suDces then to show that

<Xi(t)=nQ ⊆
⋃

(�;cl)∈<(Q)
hdcl=Xi

{Im<�=Imeqcl
(eqcl)

#(<tlcl=∗Q�)}:
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By Lemma 5.15, <tlcl=n−1
Q� ⊆ <tlcl=∗Q� and hence

Im<�=Imeqcl
(eqcl)

#(<tlcl=n−1
Q� ) ⊆ Im<�=Imeqcl

(eqcl)
#(<tlcl=∗Q�):

Thus,

<Xi(t)=nQ =
⋃

(�;cl)∈<(Q)
hdcl=Xi

{Im<�=Imeqcl
(eqcl)

#(<tlcl=n−1
Q� )}

⊆ ⋃
(�;cl)∈<(Q)

hdcl=Xi

{Im<�=Imeqcl
(eqcl)

#(<tlcl=∗Q�)}:

Now, for the other direction, it suDces to show that for each pair (�; cl) in <(Q)
such that hdcl =Xi,

Im<�=Imeqcl
(eqcl)

#(<tlcl=∗Q�) ⊆ <Xi(t)=∗Q:

We know by the de4nition of <Xi(t)=k+1
Q that Im<�=Imeqcl

(eqcl)
#<tlcl=kQ�⊆ <Xi(t)=k+1

Q .
So we know that for each k

Imeqcl
<tlcl=kQ(�) ⊆ (eqcl)

#(<�=)#<Xi(t)=k+1
Q

⊆ (eqcl)
#(<�=)#<Xi(t)=∗Q:

And so, since by Lemma 5.15 we know that <tlcl=∗Q� = lim→ {<tlcl=
k
Q�}, we may conclude

that

(eqcl)
#<tlcl=∗Q� = (eqcl)

# lim→ {<tlcl=
k
Q�}

= lim→ {(eqcl)
#<tlcl=kQ�}

⊆ (eqcl)
#(<�=)#<Xi(t)=∗Q:

From which the result follows by elementary properties of adjunctions and unions.

Lemma 5.19. The interpretation < =∗ is an initial model of P.

Proof. We must show that for any model < =′ of P, < =∗⊆ < =′. In particular, it suDces
to show by Lemma 5.2 that for all atomic formula diagrams Xi(t) and programs Q
extending P, <Xi(t)=∗Q ⊆ <Xi(t)=′Q.

We 4rst show by induction on k that for all such Xi(t) and Q both of sort 
,
and for all k; <Xi(t)=kQ ⊆ <Xi(t)=′Q. Since <Xi(t)=0Q =the unique map 0→ <
=; it is clear
that <Xi(t)=0Q ⊆ <Xi(t)=′Q. Now suppose that <Xi(t)=kQ ⊆ <Xi(t)=′Q for all Xi(t) and Q. By
Lemma 5.7 and the fact (Lemma 5.17) that any model of P is a pre-4xed point of E
at P,

<Xi(t)=k+1
Q = E(Q; < =k ; Xi; t) ⊆ E(Q; < =′; Xi; t) ⊆ <Xi(t)=′Q:

It now follows by the de4nition of < =∗ that <Xi(t)=∗Q = lim→ {<Xi(t)=nQ}⊆ <Xi(t)=′Q.
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5.7. Completeness

We now establish completeness of our operational interpretation by showing that
every goal true in the Kowalski–van Emden model of a program is derivable from the
program by resolution. We 4rst show that goals valid in the interpretation are valid in
some 4nite approximation using elementary properties of the Yoneda embedding. We
also show that in the atomic case such goals are admitted, i.e. are an instance of the
head of some clause of the program. Finally we show that goals valid in some 4nite
approximation are derivable by constructing a resolution proof, the 4rst step of which
is provided by admittance.

Lemma 5.20. Let G be a goal formula and P ∈K a program, both of sort 
. If <G=∗P
is an isomorphism; then for some n; <G=nP is an isomorphism.

Proof. We proceed by induction on formulae.
G atomic. Suppose <G=∗P = <Xi(t)=∗P is an isomorphism. Then the identity on <
= fac-

tors through lim→ {<Xi(t)=nP}. By coprimeness of <
= it factors through some

<Xi(t)=nP , which is therefore an isomorphism.
IH. Now suppose that the result holds for every program P and all simpler

formulae.
G =A1 ∧ A2. Suppose <A1 ∧ A2=∗P = <A1=∗P ∩ <A2=∗P is an isomorphism. Then both <A1=∗P

and <A2=∗P are isomorphisms. By the induction hypothesis, there exist some
n and m such that <A1=nP and <A2=mP are isomorphisms. But then by Lemma
5.10, <A1 ∧ A2=max(n;m)

P is an isomorphism.
G =A1 ∨ A2. Suppose <A1 ∨ A2=∗P = <A1=∗P ∪ <A2=∗P is an isomorphism. Then again by

coprimeness of representables in the Yoneda embedding, either <A1=∗P or
<A2=∗P is an isomorphism. But by the induction hypothesis then, there exist
some n such that either <A1=nP or <A2=nP is an isomorphism. In either case
<A1 ∨ A2=nP is an isomorphism.

G =C⇒D. Suppose <C⇒D=∗P = <D=∗P∪{C} is an isomorphism. Then by the induction
hypothesis, there is an n such that <D=nP∪{C}= <C⇒D=nP is an isomor-
phism.

G =∃x:� A. Suppose that <∃x:� A=∗P = Im<�=<A=P(�) is an isomorphism.

In particular, there is an isomorphism Hom(
; �)
f→ <∃x:� A=∗P inverse

to <∃x:� A=∗P ⊆Hom(
; �). Observe that there is an epimorphism
<A=∗P

e→ <∃x:�A=∗P (there is an epi from any subobject m to its image under

Hom( ; 
×�)
<�=→Hom(
; �), which is precisely the 4rst map of the epi-

mono factorization of m<�=). Now we proceed by an argument almost
identical to that of Proposition 5.8. The source of f is representable,

hence projective, so it lifts to an arrow Hom(
; �)
f′
→ <A=∗P . But the com-

position f<A=∗P�Hom( ; 
× �) is an arrow between representables. By

Yoneda it is the image of a substitution 
 %→ 
× �. By construction it is
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left inverse to <�= , i.e. %= 〈id; t〉 for some 
 t→ �. Thus <〈id; t〉= factors
through <A=∗P , so <A(〈id; t〉)=∗P is an isomorphism.
By induction hypothesis, there is an n such that <A(〈id; t〉)=nP is an isomor-
phism, i.e. <�
=n⊆ (<〈id; t〉=)#<A=nP . By the argument at the end of the last
case of the proof of soundness (Lemma 5:4) <�
=n⊆ <∃x:� A=nP so <∃x:� A=nP
is an isomorphism, as we wanted to show.

De�nition 5.21. A clause of a program of the form tlcl⇒Xk(u) is said to admit a
formula Xj(t) if j = k and t is an instance of u.

Lemma 5.22. If an atomic formula A=Xj(t) is valid in all models of the program
P; (i.e. is interpreted as an isomorphism) then some clause of P admits it.

Proof. Consider the model < =′ given by

<Xi(t)=′Q =
⋃

(�;cl)∈<(Q)
hdcl=Xi

{Im<�=Imeq(<�t=;<tmcl=)(eq(<�t=; <tmcl=))#(id<
×�=)}

for any program Q extending P, and where by convention, if Xi �= hdcl for any cl∈ <(Q)
then <Xi(t)=′Q (the empty union) shall be the unique arrow 0→ <
= for 
= sort of Xi(t).

First we show that < =′ is a model of P. We must show that for any clause cl= (tlcl
⇒Xi(v)) of sort 
× 9 in any extension Q of P, <tlcl=′Q(�)⊆ <Xi(v)=′Q(�), where � is the
projection 
× 9→ 
.

Thus consider any clause (� : 
× 9→ 
; tlcl⇒Xi(v))∈ <(Q); for any extension Q
of P of sort 
. To elucidate the following argument, some discussion of sorts will be
useful.

Observe that if Q is a program extending P of sort 
, and B⇒Xi(u) a (possibly dif-
ferent) clause of Q of sort, say, 
× �, then the corresponding clause in a sort-adjusted
program Q(�) is B(�× id)⇒Xi((�× id)u), as the following diagram illustrates:
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Now we observe that by the de4nition above, for the particular clause under consider-
ation,

<Xi(v)=′Q(�)

=
⋃

(�′ ;cl)∈<(Q(�))
hdcl=Xi

{Im<�′=Imeq(<�′v=;<(�×id)u=)(eq(<�′v=; <(�× id)u=))#(id<
×9×�=)}:

But one of the expressions in this union is the one corresponding to the clause
cl= (tlcl⇒Xi(v)) itself:

Im<�′=Imeq(<�′v=;<�′v=)(eq(<�′v=; <�′v=))#(id<
×9×9=)

which is just id<
×9=, implying <Xi(v)=′Q(�) is an iso. Hence, trivially, <tlcl=′Q(�)⊆
<Xi(v)=′Q(�). And thus < =′ is a model of P:

Now suppose Xi(t) is any goal valid in all models of P, so in particular in < =′. Then
<Xi(t)=′P is an isomorphism. By coprimeness of representables, one of the expressions
in the union de4ning this monic is also an iso. Let us suppose it is

Im<�′′=Imeq(<u=;<�′′t=)(eq(<u=; <�′′t=))#(id<
×�=);

corresponding to some clause B⇒Xi(u). Since id<
= factors through this expression, by
Proposition 5.8 there is an arrow ’ such that id<
= =’eq(<u=; <�′′t=)<�′′=. But then

<t== ’eq(<u=; <�′′t=) <�′′= <t=
= ’eq(<u=; <�′′t=) <u=:

But ’eq(<u=; <�′′t=) has representable source and target and so, by fullness of the Yoneda
embedding, is of the form <%= for some % in C. By faithfulness of the Yoneda embedding
t = %u which establishes that t is an instance of u.

Lemma 5.23. Let G be any goal formula and P ∈K a program; both of the same
sort 
. If <G=kP is an isomorphism; then P �o G.

Proof. We proceed by induction on the structure of G and on k.
G atomic. If k = 0, G must be the identity goal formula �
, since <Xi(t)=0P = 0→ <
=

cannot be an isomorphism. But the state 〈P | �
〉 is already an SLD de-
duction of G from P.
Now suppose the result holds for all k¡n, and all programs P ∈K:
Suppose G =Xi(t) for some predicate token Xi and term t. Then

<Xi(t)=nP =
⋃

%tmcl=%�t

(�;cl)∈<(P);hdcl=Xi

{Im<�=Im<%=<tlcl%=n−1
P%� }

which is nonempty since by Lemma 5.22 some clause of P admits Xi(t).
Thus by hypothesis, the union on the right hand side is an iso. By co-
primeness of representables in the Yoneda embedding one of the members
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Im <�=Im <%=<tlcl%=n−1
P%� of the union is an iso, corresponding to some clause

cl∈ <(P) such that hdcl =Xi and %tmcl = %�t.
By Proposition 5.8 there is an arrow ’ such that id
 =’%� and <’= factors
through <tlcl%=n−1

P%� . Letting E=’% we have that <tlclE=n−1
PE� is an iso, with

Etmcl = E�t. By the induction hypothesis, there is a reduction sequence

〈PE� | tlclE〉 · · · id NULL:

But then

〈P |Xi(t)〉 E�;(tlcl⇒Xi(tmcl)) 〈PE� | tlclE〉 · · · id NULL

is an SLD proof with computed answer substitution the identity, and so
and P �oXi(t).

G =A1 ∧A2. Then <A1 ∧A2=nP = <A1=nP ∩ <A2=nP is an isomorphism iG both <A1=nP and
<A2=nP are isomorphisms. But then by the induction hypothesis, P �o A1

and P �o A2. Thus there are resolution sequences

〈P |A1〉 · · · id NULL

and

〈P |A2〉 · · · id NULL

which may be combined to give

〈P |A1 ∧ A2〉 〈P |A1〉& 〈P |A2〉 · · · id NULL:

Hence P �o A1 ∧A2.
G =A1 ∨A2. Then <A1 ∨A2=nP = <A1=nP ∪ <A2=nP is an isomorphism iG either <A1=nP or <A2=nP

are isomorphisms. But then by the induction hypothesis, either P �o A1 or
P �o A2. Thus there is a resolution sequence

〈P |Ai〉 · · · id NULL

from which we have

〈P |A1 ∨ A2〉 〈P |Ai〉 · · · id NULL:

And hence P �o A1 ∨A2.
G =C⇒D. Then <C⇒D=nP = <D=nP∪{C} is an isomorphism. But then by the induction

hypothesis, P ∪{C} �o D. Thus there is a resolution sequence

〈P ∪ {C} |D〉 · · · id NULL

from which we have

〈P |C ⇒ D〉 〈P ∪ {C} |D〉 · · · id NULL:

And hence P �o C⇒D.
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G =∃x:�A. Suppose that <∃x:�A=nP = Im <�= <A=nP(�) is entire, i.e. equal to C( ; 
). Then
Im <�= <A=nP(�)(
) =C(
; 
), so id
∈ (Im <�= <A=nP(�))(
)= Imset

<�=(<A=nP(�)(
)).
Thus there is an arrow t in C(
; �) with 〈t; id�〉 ∈ <A=nP(�)(
). It follows
easily that (<〈t; id�〉=)#<A=nP(�), or, equivalently (Lemma 5.5) <A(〈t; id�〉)=nP
is an isomorphism. By the induction hypothesis, there is a resolution proof

〈P |A(〈t; id�〉)〉 · · · id NULL

which means, using Lemma 4.10, that the following is also a resolution
proof:

〈P | ∃x:�A〉 �
 〈P� |A〉 · · · 〈t;id�〉 NULL:

Thus we have P �o ∃x:�A.

Theorem 5.24 (Operational completeness). Let G be a goal formula and P a program
over the signature C[X ]; both of sort 
. Then; for any object � in C

� t→ 
 ∈ <G=∗P(�) iA P(t) �o G(t):

Proof. An immediate consequence of the Yoneda lemma [32, 22] is the equivalence
of the following two conditions: for G a formula diagram of sort 
 and � t→ 
 in C,
1: t ∈ <G=∗P(�).

2: HomC( ; �)
<t=→HomC( ; 
) factors through <G=∗P ,

where, we recall, <t= is the natural transformation HomC( ; t) whose action

<t=(6) : HomC(6; �)→HomC(6; 
)

at each object 6 of C is given by <t=(6)(%) = %t.
Hence t ∈ <G=∗P(�) iG <t= factors through <G=∗P iG <G(t)=∗P(t) is an isomorphism. By

Lemmas 5.20, 5.23 and soundness (Lemmas 5:4, 5:18) this holds iG P(t)�o G(t).

6. Topos semantics

Declarative programming is so called because the text of a program has an inde-
pendent mathematical meaning which coincides, in a suitably de4ned way, with its
operational meaning. The programming languages introduced in this paper consist of
formula diagrams over a 4nite product category. Their operational meaning and reso-
lution proof theory has been the subject of the preceding sections. We now de4ne an
analogue of the (4rst-order, intuitionistic) sequent calculus for such formula diagrams,
and prove it sound and complete for conventional topos semantics. We then show that
in the case of Weak Hereditarily Harrop programs and goals the notions of operational
entailment and topos entailment coincide.

Topoi are categorical generalizations of the category of sets with internal operations
that interpret logical connectives in a manner that generalizes their meaning in set-
theoretic models. We begin by recalling the de4nitions of logical connectives in a
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topos. We then consider a restricted class of topos-theoretic models that generalizes
the notion of Herbrand models, or term models, to models over a category, so as to
give a Henkin-style proof of completeness. For more background on Topos theory and
its logic the reader should consult e.g. [22, 33, 32].

Given some syntactic class of formulas F and a topos E, an E-interpretation {[ ]} :F
→ E maps sorts in F to objects and atomic formulas in F to subobjects (monics) of
the appropriate object in E.

De�nition 6.1. Let A be a 4nite product category, A[X ] a categorical signature and
let E be a topos. A topos interpretation of A-formulas (an A-interpretation) into E is
a Cartesian (pullback and terminator preserving) functor

{[ ]} : A[X ] → E;

whose value {[Xi]} on monics Xi ∈X of sort 
 is a monic whose target is {[
]}.
A topos interpretation extends to formula diagrams over the signature A[X ] via

the conventional topos-theoretic logical operators {∩;∪;⊃} on the subobject Heyting
Algebra as follows:
• {[A(t)]}= ({[t]})#({[A]}),
• {[A1 ∧A2]}= {[A1]}∩ {[A2]},
• {[A1 ∨A2]}= {[A1]}∪ {[A2]},
• {[A1⇒A2]}= {[A1]}⊃{[A2]},
• {[∀x:�A]}=∀�({[A]}),
• {[∃x:�A]}=∃�({[A]}),
where ∀�, ∃� are the right and left adjoints of the pullback functor (�)# : Sub({[
]})→
Sub({[
]}×{[�]}) induced by the projection 
× � �→ 
 in A, and 
 is the sort of the
formulas ∀x:�A and ∃x:�A.

De�nition 6.2. A formula diagram A is true in the interpretation if the subobject {[A]}
is an isomorphism.

We will now introduce a logic for A-interpretations, that is to say a sequent calculus
for 4rst-order minimal intuitionistic logic for formula diagrams over a 4nite-product
category.

6.1. First-order logic over a (nite product category

In this section we de4ne a categorical logic over extensions of a 4nite product �-
category C. By an indeterminate, or a generic constant of sort 
 over C we mean a
new arrow 1→ 
.

We say that a categorical signature D extends C if it is a category C(Y ) obtained
by freely adjoining a possibly in4nite set Y of indeterminates to C. This well-known
construction is covered in e.g. [32].
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6.1.1. Expanding the signature
Given a 4nite product category C, we consider a category of polynomial categories,

or Henkin extensions of C, created by adding fresh constants drawn from a set WC
of witnesses (countably many of each sort) to C. The collection of Henkin extensions
C(Y ) by a 4nite set Y ⊂WC, together with the faithful, 4nite-product preserving func-
tors 01;2 :C(Y1)→C(Y2) obtained from the universal mapping property for polynomial
categories, has as a colimit the category C∗=C(WC) which is the full Henkin ex-
tension. An alternative treatment to Henkin completeness using slice categories to add
generic arrows and using capitalization is given in [22].

De�nition 6.3. Let C be a small 4nite product category, Y a set disjoint from the
collection of arrows in C, each member of which is associated with an object of C,
(which we will call its sort). Then the category C(Y ) is obtained by freely adjoining
generic constants Y to C.

One can easily show that C(Y ) has a terminator, 4nite products, and a �-structure.
The de4nitions and arguments are similar to those given in e.g. [32], where the fol-
lowing is also shown.

Lemma 6.4. Let C and Y be as in the preceding de(nition. Then there is a faith-
ful (nite product functor 0Y :C→C(Y ). Let C F→B be a (nite-product functor and

B= {1 by→Ay: y∈Y} a set of arrows in C in one to one correspondence with Y . Then
there is a unique (nite-product functor HB :C(Y )→B with HB([y]) = by and 0HB =F .

Corollary 6.5. If Y1⊂Y2⊂Y there is a unique faithful (nite product functor C(Y1)
01; 2→

C(Y2).

Proof. We let C F→B be C
0Y2→C(Y2) in the preceding lemma.

De�nition 6.6. Let C be a small 4nite product category. The Henkin set WC for C is
the set {(
; i): 
∈ |C| and i∈N}. The category of (nite generic extensions [C] has,
for
Objects: the categories {C(Y ): Y a 4nite subset of WC}; together with the point at

in4nity C(WC) and

Arrows: the collection {C(Y1)
0Y1 ; Y2−→C(Y2): ∅⊆Y1⊆Y2⊂WC} and the arrows to the

“point at in4nity” {C(Y )
0∗Y→: Y ⊆WC}.

Let X1; : : : ; Xn be a sequence of generic predicate tokens of sorts b= b1; : : : ;
bn from C. Recall that the canonical, or generic formula diagrams F(C[X1; : : : ; Xn]) of
b-signature C (De4nition 3.9) are the formula diagrams built up using generic predicate
tokens of sorts b. We can now de4ne generic formula diagrams for the same generic
predicate tokens over each category in [C], since the maps 0 between objects C1 and
C2 in [C] induce maps 0̂ between the sets of formula diagrams over these objects.
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To see this one 4rst shows that 0 induces a faithful FP functor from C1[X1; : : : ; Xn] to
C2[X1; : : : ; Xn] which sends objects (
; S) to (
; 0S) and arrows between objects (which
live in C) to themselves. This functor lifts naturally to a map between the classes of
formula diagrams built over each.

We adopt the following coercion conventions for speaking about such formula dia-
grams. If A∈F(C(Y1)) and Y1⊂Y2 then we may denote by the same symbol A the
formula diagram 0̂1;2(A) in F(C(Y2)) when the context makes clear that we are over
the category C(Y2). Similarly we will speak of arrows t in C(Y1) as arrows of C(Y2).

De�nition 6.7 (The language of a formula). Suppose A is a formula diagram over C∗.
Then there is a unique minimal Y ⊆WC with some A′ ∈C(Y ) and A= 0∗Y (A′). We refer
to C(Y ) as the signature or language of A.

Let the map I :F(C(WC)[X ])× |C|→C∗ be de4ned, by letting I(A; 
) be the least
(
; i) in C∗ not in the language of A.

The map I will be used to provide fresh generic constants for universally quanti4ed
formulas.

6.1.2. A sequent calculus
We now introduce our sequent calculus for reasoning with formula diagrams over

the categories in [C].

De�nition 6.8. Let C be a 4nite product �-category and X a set of predicate letters
with sorts in C. A (categorical) D-sequent is an ordered triple (D; >; A), where D is
a language extending C, A is a formula diagram over D, and > is a D-theory: a set
of formula diagrams of the same sort over D. Sequents are written D; >!A.

De�nition 6.9. A sequent D; >!A is said to be initial if A∈> and A is an atom.
A D-proof is either a D-initial sequent or a tree with D-initial sequents at its leaves,
built from smaller proofs by the use of the rules of inference in the following table:

D; B; C; >! A
D; B ∧ C; >! A

∧ -L
D; >! B D; >! C

D; >! B ∧ C
∧ -R;

D; >; B! A D; >; C ! A
D; >; B ∨ C ! A

∨ -L
D; >! B

D; >! B ∨ C
∨ -R

D; >! C
D; >! B ∨ C

∨ -R;

D; >! B D; >; C ! A
D; >; B⇒ C ! A

⇒ -L
D; >; B! C
D; >! B⇒ C

⇒ -R;

D; >; P(〈id
; t〉) ! A
D; >;∀x:�P ! A

∀-L D(a); >! P(〈id
; !
a〉)
D; >! ∀x:�P ∀-R∗;

D(a); >; P(〈id; !
a〉) ! A
D; >;∃x:�P ! A

∃-L ∗ D; >! P(〈id
; t〉)
D; >! ∃x:�P ∃-R;
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where (
 t→ �)∈D in ∀-L and ∃-R, and !
a means the composition



!
→ 1 a→ 
:

Rules marked with a ∗ have the side condition that ‘a’ is a Henkin constant which
must not be in the language (see De4nition 6.7) of any formula diagrams in the
conclusion of the rule. The starred rules yield quanti4ed formulas from premisses
involving generic constants. The predicates are instantiated at 〈id
; !
a〉 because the
sorts of the unquanti4ed predicates are product sorts.

We write D; > �c B to mean there is a D-proof whose 4nal sequent is D; >!B.
A closed formula diagram means a diagram of sort 1. A closed theory means a set

of closed formula diagrams. If > is closed, then, in a �-category 〈id; !
a〉= a:

The following facts, which are easily checked, will prove useful:

Lemma 6.10. If the language of the theory > and the formula diagram A is D; and
D′ extends D in [C]; and

D′; > �c A

then

D; > �c A:

Lemma 6.11. Sequents are preserved under pullback: if D; > �c A then D; >(t)�c A(t)
for t of the appropriate sort in D; where >(t) means the set {E(t): E∈>}.

The proof is an easy induction.

Lemma 6.12 (Cut elimination). The cut rule is admissible in the D-sequent calculus
de(ned above: if a sequent is derivable using the rule

D; >! B D; >′; B! A
D; >; >′ ! A

CUT

it has a cut-free proof.

The proof is identical to that for cut elimination in the standard sequent calculus,
see e.g. [24].

Theorem 6.13 (Soundness). If D; > �c A then A is true in every D-interpretation of >
(i.e. in which every formula diagram in > is true).

The proof is identical to the standard proof of soundness of topos semantics for
4rst-order logic.

We will now show these rules are complete for A-interpretations. We will use a
canonical interpretation, a topos-theoretic analogue of the Henkin model familiar from
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logic. To do so, we make use of the following notions and facts from conventional
logic which extend easily to categorical logic.

De�nition 6.14. A set > of formula diagrams over D[X ] is said to be a prime theory
over D (or D-saturated theory) if it has the disjunction and existence properties:

D; > �c A ∨ B⇒ D; > �c A or D; > �c B

D; > �c ∃x:�A⇒ D; > �c A(〈id
; u〉) for some 
 u→ � in D:

Lemma 6.15 (Lindenbaum). If D; >0c A then; for any D′ extending D; there is a
prime theory ? over D′ such that ?⊇> and

D′; ? 0c A;

i.e. every consistent theory has a consistent prime extension.

The proof is the same as the standard one for logic: the prime extension is constructed
in stages. See e.g. [65].

6.2. Henkin interpretations

Let {Vi: i∈N} be a countable collection of disjoint sets of witnesses (see e.g.
Section 6.1.1) containing countably many new constants of each sort in C. Let Wo =K,
and for n¿1, let Wn =V1 ∪ · · · ∪Vn and W =

⋃
Wn. Assume that for each sort 
, the

(countable) set W
 of constants in W of sort 
 is well ordered, so that for any proper
subset Y of W
 we can speak of the least member of W
 not in Y . Let B be the
collection of polynomial categories C(Wn) or C(W ) extending C by freely adjoining
the constants in Wn or W , as in Section 6.1.1. To simplify notation, we will use the
symbols Bo;B;B′;B′′; : : : to range over the collection of categories in B. Note that
all members of B have the same collection of objects and there are canonical faithful
4nite product preserving functors 0B :B→B′ whenever B′ is an extension of B:

De�nition 6.16. If > is a theory (a set of formula diagrams), we say >′ extends > if
>⊆>′.

Let B be a category in B; and > a closed prime theory over B. J(B; >) is the
poset of signature-theory pairs (B′; >′) extending (B; >):

De�nition 6.17. Let B be a category in B, and > a closed prime theory over B. Then
J(B; >) is the following category:
• objects: triples (�;B′; >′) with � an object in C; and (B′; >′) in J(B; >).
• arrows: (�;B′; >′) t→ (�′;B′′; >′′) where (B′; >′)¿(B′′; >′′) and � t→�′ is in
B′(�; �′).
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De�nition 6.18. Let Bo, be a category in B and >o a prime theory over Bo. A Henkin
Bo-interpretation of >o is a topos interpretation into the Yoneda presheaf topos for
J(Bo; >o) given by a functor

{[ ]}Bo : Bo[X ] → SetJ(Bo ;>o)o

mapping monics Xi(t) to monics, and satisfying

{[
]}Bo (�;B; >) = HomB(�; 
);

{[
]}Bo ((�;B; >) t→(�′;B′; >′))(%) = t(0B′%)

and which, on arrows 
 u→ 
′ in Bo, {[u]}Bo : {[
]}Bo →{[
′]}Bo is given by

{[u]}Bo (�;B; >)(%) = %(0Bou):

In other words {[ ]}Bo behaves similarly to a “varying Yoneda embedding” indexed over
B. We will not take the trouble to formalize the indexed category structure here.

When the ambient signature of Bo is clear from context we will also omit ref-
erence to it, and write {[B]} instead of {[B]}Bo . Note also that a Henkin interpretation
is completely determined by an assignment of monics in SetJ(Bo ; >o)o

with appropriate
targets, to the monics Xi in X .

Remark 6.19. We have de4ned a family of Henkin interpretations, one for each sig-
nature–theory pair (Bo; >o). The reader can check that if (B′; >′) extends (B; >) then
J(B′; >′)⊂J(B; >) and there is an inclusion functor J(B′; >′)⊂ J(B; >) and an in-
duced functor

SetJ(B;>)o �→ SetJ(B
′ ;>′)o

:

Hence, whenever both sides are de4ned, (i.e. A is a formula diagram over a signature
extended by B′ and B′′, and B′′′ extends both of these signatures, and >′′′ extends the
base theory)

{[A]}∗B′(�;B′′′; >′′′) = {[A]}∗B′′(�;B′′′; >′′′):

6.3. The canonical Henkin interpretation

We now give a completeness theorem for the generalized categorical logic (Section
6.1) in the spirit of Aczel’s completeness theorem for intuitionistic logic [65]. We
de4ne canonical Henkin interpretations {[ ]}∗, by letting monic assignments be dictated
by the proof theory.

De�nition 6.20. Let C[X ] be a categorical signature, Bo a Henkin extension in B,
and >o a closed prime theory over Bo. The canonical interpretation {[ ]}∗Bo

for >o is the
Henkin interpretation induced by the following assignment of monics Xi ∈ X of sort

 in the topos SetJ(Bo ;>o)o

:

{[Xi]}∗Bo
(�;B; >) := {t : � t→ 
 ∈ B and B; !�> � Xi(t)}:
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Proposition 6.21 (Completeness of C-logic). Suppose A is a formula diagram of sort

 over Bo[X ], and {[ ]}∗Bo

the canonical Henkin interpretation of the closed prime
theory >o over Bo[X ]. Then; for any object (�;B; >) in J(Bo; >o);

{[A]}∗Bo
(�;B; >) := {t : � t→ 
 ∈ B and B; !�> �c A(t)}:

Proof. We establish this equation by induction on the structure of the formula
diagram A.

The atomic case is true by hypothesis.
A≡A1 ∧A2: {[A1 ∧A2]}∗(�;B; >) = {[A1]}∗(�;B; >)∩{[A2]}∗(�;B; >) which, by induc-

tive hypothesis and the ∧ -R and ∧ -L rules, is {t : � t→ 
 ∈ B and
B; !�> �c (A1 ∧A2)(t)}.

A≡A1 ∨A2: {[A1 ∨A2]}∗(�;B; >) = {[A1]}∗(�;B; >)∪{[A2]}∗(�;B; >) = {� t→ 
 : B; !�>
�c A1(t) or B; !�> �c A2(t)}. Since > satis4es the disjunction property,

the latter set is equal to {� t→ 
 : B; !�> �c A(t)}.
A≡∃x:�B: We begin showing that an easy consequence of the proof rules is the

following derived rule of inference:

B; !�>! B(〈t; w〉)
B; !�>! (∃x:�B)(t)

;

where the quanti4cation in the conclusion is along the projection �× � �′
→ �.

By de4nition (2:2) (∃x:�B)(t) =∃x:�(B(t× id�)) and 〈id�; w〉(t× id�) = 〈t; w〉. Thus, B; !�
>! B(〈t; w〉) iG B; !�>! B(t× id�)(〈id�; w〉) from which, by ∃ -R, we infer B; !�>!
∃x:�(B(t× id�)); which is precisely B; !�>! (∃x:�B)(t).

Now suppose �
uo→ 
 is an arrow in B and

uo ∈ {[∃x:�B]}∗(�;B; >):

Images are evaluated pointwise, so this yields uo ∈∃�({[B]}∗)(�;B; >). Hence, for some
� u1→ � we have 〈uo; u1〉 ∈ {[B]}∗(�;B; >). By induction hypothesis B; !�> �c B(〈uo; u1〉),
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hence we may infer B; !�> �c (∃x:�B)(uo). We have shown

{[∃x:�B]}∗(�;B; >) ⊆ {� t→ 
 : B; !�> �c (∃x:�B)(t)}:

For the other direction, suppose B; !�> �c (∃x:�B)(t), that is to say,

B; !�> �c ∃x:�(B(t × id�)):

Since > is a prime theory, there is a � v→ � such that

B; !�> �c (B(t × id�))(〈id�; v〉):

But (B(t× id�))(〈id�; v〉) =B(〈id�; v〉(t× id�)) =B(〈t; v〉): So, by induction hypothesis
we have 〈t; v〉 ∈ {[B]}∗(�;B; >) whence t ∈ ∃�({[B]}∗)(�;B; >), which establishes the
other containment.
A≡A1⇒A2: Implication of predicates in a topos is not evaluated pointwise. {[A1⇒

A2]}∗(�;B; >) = [{[A1]}∗ ⊃ {[A2]}∗](�;B; >), which equals

{t: for every (L;B′; >′) u→(�;B; >) if u(0Bt) ∈ {[A1]}∗(L;B′; >′) then

u(0Bt) ∈ {[A2]}∗(L;B′; >′)}:

By the induction hypothesis, this is equal to

{t: ∀u; if B′; !>′ �c A1(ut) then B′; !>′ �c A2(ut)}: (5)

We now claim this is, in fact, the set

{t: B; !> �c (A1 ⇒ A2)(t)}: (6)

That (6)⊆ (5) follows immediately from the cut rule.
So, it suDces to show that (5)⊆ (6). If not, for some t in (5), B; !>0c (A1⇒A2)(t):

Then, using cut, the ∀-R rule and Lemma 6.11, we have that B(a); >0c (A1⇒A2)(at)
and so B(a); >; A1(at) 0c A2(at). By Lindenbaum’s Lemma 6.15, some prime extension
B′; >′ of the premise B(a); >; A1(at) exists for which B′; >′ 0c A2(at) despite the fact
that B′; >′ �c A1(at) contradicting the de4nition of t.
A≡∀x:�B: {[∀x:�B]}∗=∀�{[B]}∗. ∀�, the right adjoint of pullback along 
× � �→ 
, is

not evaluated pointwise:

∀�{[B]}∗(�;B; >)

= {t: for every (L;B′; >′) u→(�;B; >); {〈ut; v〉: v ∈ HomB′(L; �)}
⊆ {[B]}∗(L;B′; >′)}:

Suppose B; !�> �c∀x:�(B(t× id�)). Then, using cut and Lemma 6.11, we have, for
every (L;B′; >′) u→(�;B; >) that B′; !L>′ �c (B(ut× id�))〈id; v〉 for all v∈HomB′(L; �):
Hence, by the induction hypothesis, 〈ut; v〉 ∈ {[B]}∗(L;B′; >′), and so by de4nition, t ∈∀�
{[B]}∗(�;B; >).
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Conversely, suppose t ∈∀�{[B]}∗(�;B; >), but B; >0c (∀x:�B)(t). Then for any B′
extending B; and any generic constant c of sort � in B′ but not in B, we have
B′; >0c B(〈t; !c〉).

By Lindenbaum’s lemma, for some B′-prime theory >′ extending > we have B′; >′
0c B(〈t; !c〉). Hence, by the induction hypothesis, (〈t; !c〉) �∈ {[B]}∗(�;B′; >′) so t �∈ ∀�
{[B]}∗(�;B; >).

Corollary 6.22. Suppose A is a formula diagram of sort 
 over Bo[X ]. Then {[A]}∗
is an isomorphism (as a subobject of {[
]}∗Bo

) if and only if Bo; > �c A.

The corollary follows from the fact that Bo; > �c A if and only if the identity mor-
phism is in {[A]}∗(
;Bo; >) if and only if {[A]}∗ is an isomorphism.

To show the equivalence of operational and declarative semantics when applied to
programs and goals, we use the equivalence of the associated logics of SLD- and C-
proofs. The proof of their equivalence is identical to that given in [45] (Theorems 4
and the proof of 6), since the relevant properties, permutability of the left ∧ ;∀; ⇒
rules with the right ∧;∨⇒∀; ∃ rules are easily seen to hold in C-logic as well. A
direct semantic proof of the equivalence of operational and Kripke semantics is given
in [16].

Theorem 6.23. Let Po be a closed program over C; G a goal of sort 
 over C. For
each arrow � t→ 
 in C

t ∈ {[G]}∗(�;C; Po) ⇔ t ∈ {[G]}∗!
Po
(�):

Proof. We make use of the respective completeness theorems (5:24, 6:21) to reduce the
claim to the just cited equivalence of resolution �o and provability in the C-sequent
calculus. Suppose t ∈{[G]}∗(�;C; Po). Then C; !�Po �c G(t), whence !�Po �o G(t), and
thus 0∗t ∈ {[G]}∗!
Po

(�).
To prove the converse, suppose t ∈{[G]}∗!
 Po

(�). Then !�Po �o G(t), so C; !�Po �c G(t).
By Lemma 6.10, this implies C; !�Po �c G(t), whence t ∈ {[G]}∗(�;C; Po).

7. Examples and conclusion

In this paper we have given a categorical treatment of the resolution calculus for
Horn and 4rst-order Weak Hereditarily Harrop (WHH) formulas with categorically
de4ned constraints, sound and complete with respect to operational and declarative
semantics. Our notion of categorical signature formalizes the structure of many con-
straint systems. For example, let L be a 4rst-order language, E an equational
theory over L. We de4ne two 4nite-product categories: H the empty Lawvere al-
gebraic theory for L, and H=E the algebraic theory associated with E, to capture
pure logic programming over the Herbrand universe in the former case, and logic



S.E. Finkelstein et al. / Theoretical Computer Science 300 (2003) 91–160 145

programming over the equational constraints in E in the latter. We give a brief de-
scription here. The reader should consult e.g. [57] for a fuller treatment of algebraic
theories.

De4ne H, the free category associated with L, also known as the empty algebraic
theory for L, to be the small category with objects the natural numbers 0; 1; 2; : : : ; and
arrows the closure under composition of the following:
• For each non-zero pair of objects m; n with m6n all the projection maps

�n
m(i1; : : : ; im) : n→ m;

where i1; : : : ; im is a sequence of m elements from {1; : : : ; n}, and all the diagonal
arrows @ : m→ n. These arrows de4ne precisely the opposite category of the full
subcategory of Set consisting of the Von-Neumann 4nite ordinals

{} ⊂ {0} ⊂ {0; 1} ⊂ · · · :
• In addition, the signature contributes, for each function symbol f of arity n in L

an arrow f : n→ 1.
These arrows satisfy the equations for associativity as well as all usual identities for
projections and diagonal maps.

This category has products (n×m= nm) and �-structure, as the reader can check.
Furthermore there is a one-to-one correspondence between arrows from 0 to 1 in H
and terms in the Herbrand universe over L. The arrows from 0 to m correspond to
m-tuples of terms. If we now give H the canonical interpretation that associates with
each f in L the arrow f and let H [X1; : : : ; Xn] be the category obtained by adjoining
indeterminates for each of the predicate letters in L, with Xi of sort n if the corre-
sponding predicate letter has arity n, then H [X1; : : : ; Xn] captures logic programming in
the sense made precise in the theorem below.

Theorem 7.1. Let P be a Horn (resp. Weak Hereditarily Harrop) program; G a
goal in the corresponding language. Let X be a set of generic monics of appropriate
sort; corresponding to each of the predicate letters in P and G. Then there is a
Horn-SLD (resp. Weak Hereditarily Harrop) proof P �o G over H if and only if
for every topos E and every H-interpretation {[ ]} : H[X ]→ E in which P is true we
have that {[G]} is an isomorphism.

SLD proofs over H are resolution proofs in our sense. All computed answer substi-
tutions can be taken to be compositions of equalizers (mgu’s). Categorical Horn clause
programming over H is essentially the case studied in [3].

Even in the case of Horn clause programs over the Herbrand universe, our operational
interpretation gives non-ground bottom-up semantics, which is more general than the
usual TP-operator.

A straightforward adaptation of the preceding construction gives the corresponding
free category HL for many-sorted logic, by taking sorts as objects, with the obvious
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projections and diagonals. We can further modify the construction to capture equational
constraints. Let L be a language, possibly many-sorted, and E an equational theory
over L. By taking a quotient HL=E of the Herbrand category we obtain the algebraic
theory associated with E, containing the same objects as HL and congruence classes
of arrows induced by E as morphisms.

SLD-resolution over this category corresponds to 4nding a computed answer with
equational constraints from E. Similarly, the following theorem is an immediate con-
sequence of the results in this paper.

Theorem 7.2. Let P be a Horn (resp. WHH) program; G a goal; both over the lan-
guage L. Let X be a set of generic monics of appropriate sort; corresponding to each
of the predicate letters in P and G. Then there is a Horn-SLD (resp. WHH) proof
P �o G over HL=E if and only if for every topos E and every HL=E-interpretation
{[ ]} : HL=E[X ]→ E in which P is true we have that {[G]} is an isomorphism.

The notion of constraint captured in this paper is considerably more general than
these examples: not all cartesian categories are algebraic theories. A precise syntactic
characterization of such constraints requires a study of Cartesian logic [21], which is
the subject of a forthcoming paper.

Beyond generic predicates. The reader may ask how results in this paper are aGected
by the restriction of categorical signatures to those of the form (C[X ]; X ) induced by
generic predicates. McGrail [41] has shown how to modify the notion of generic pred-
icate to build in functional constraint and monad structure, which is also outlined in
[36]. It would be interesting to see how these results could be extended to incor-
porate higher-order constraint information and e.g. objects and inheritance into logic
programming.

7.1. Perspectives on uniform proofs

In our operational semantics, we characterize the predicates de4ned by a logic pro-
gram via a 4xpoint construction using a continuous operator E which induces a map
from interpretations to interpretations, incrementally de4ning the meaning of goal for-
mulae. An essential component of the behavior of the interpretations so de4ned is that
they give a search theoretic interpretation of certain critical connectives. For example,
the meaning of A⇒B is given by <A⇒B=P = <B=P; A, that is to say, by tearing apart
formulae and interpreting them in a shifted semantics, which are only required to give
meaning to basic (in our case atomic, conjunctive and disjunctive) formulas. Thus a
semantic shift or change of state appears to be an essential feature of the uniform
or search-theoretic interpretations of connectives. What guarantees correctness with re-
spect to a “standard” interpretation is the agreement of the limiting operational bracket
with conventional interpretation {[ ]} in a standard model (in our case, a topos). This
suggests a quite general blueprint for analyzing abstract connectives, or even de4ning
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them semantically. One seeks identities of the form

<A ∗ B=B;P = <F(A; B; P;B)=G(A;B;P;B);

where the operator G de4nes the interpretation shift and F yields a formula that is—in
some sense—more basic than A ∗ B. It would be interesting to study which operations
of this kind (over more general semantic categories) correspond to other logics (e.g.
Girard’s LU [23], linear logic programming languages [27, 44, 8]), and which give rise
to useful operations that still agree with some notion of conventional semantics in the
limiting case.

7.2. Directions for future work

This foundation opens the way to a categorical approach to modeling other exten-
sions of logic programming [27, 50, 49, 54, 48], and connecting well-known techniques
for modeling functional evaluation, non-local control, side eGects (e.g. monads, see
[61, 41, 46, 67, 68]), to the declarative and operational semantics of logic programs.

Our operational semantics ignores control issues (such as the selection rule) since it
is de4ned in terms of the declarative text of the program. It would be straightforward
to modify the operator E to take such control into account, giving rise to diGerent,
more computationally oriented semantics. Also, it would be interesting to capture in
a categorical context the structure of other semantics (compositional, open program,
unfolding, etc.), studied by Levi et al. [7, 39, 1, 42].

In addition, an interesting follow-up to the work presented here would be a cat-
egorical analysis of the JaGar–Lassez criteria [28] for constraint domains and of the
Lassez–MacAloon [34] constraint calculi. Our categorical study should also be extended
to the case of higher-order logic, L-N, and dependent type theory. It would seem that
a categorical formulation of abstract interpretation [4, 13] would yield some interesting
insights as well.

Appendix A. Proofs of Theorems

Lemma A.1 (Lemma 4:8). If 〈P(t) |G(t)〉  % · · ·  NULL; then 〈P |G〉  (%t) 
· · · NULL.

Proof. We proceed by induction on the length of the SLD-proof. Consider the 4rst
resolution rule.
Backchain: Suppose

〈P(t) |G(t)〉 ’�;(tlcl⇒G′)
 〈P(t)(’�) | tlcl’〉 · · ·   NULL;
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where  ’� = % and (�; tlcl ⇒G′)∈ <(P(t)). Consider the diagram

By the inductive de4nition of the pullback P(t), any (tlcl ⇒G′)∈ <(P(t))
must be of the form H (t× id
)⇒B′(t× id
) where (H⇒B′)∈ <(P): So
the resolution sequence above is equivalent to

〈P(t) |G(t)〉 ’��;(H (t×id
)⇒B′(t×id
))
 

〈(�#
�P)(t × id
)’ |H (t × id
)’〉 · · ·   NULL:

But then

〈P |G〉 ’(t×id
)��;(H (t×id
)⇒B′(t×id
)) 

〈(�#
�P)(t × id
)’ |H (t × id
)’〉 · · ·   NULL

with computed answer substitution  ’(t× id
)�� =  ’��t = %t.
Augment: Suppose 〈P(t) | (A1 ⇒ A2)(t)〉  · · ·  % NULL. By the inductive de4-

nition of pullback then, this is

〈P(t) |A1(t) ⇒ A2(t)〉 〈P(t) ∪ A1(t) |A2(t)〉 · · · % NULL:

By the induction hypothesis, 〈P ∪A1 |A2〉 · · · %t NULL, so

〈P |A1 ⇒ A2〉 〈P ∪ A1 |A2〉 · · · %t NULL:
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Instance: Suppose 〈P(t) | (∃x:
A)(t)〉❀ · · · ❀% ❀ NULL. Then since

the resolution above must be of the form

〈P(t) (∃x:
A)(t)〉 ��
❀〈�#

�(P(t))

= (�#
�P)(t × id
) |A(t × id
)〉❀ · · ·❀〈%;9〉❀ NULL

for some 9. By the induction hypothesis then since

〈�#
�(P(t)) = (�#

�P)(t × id
) |A(t × id
)〉❀ · · ·❀〈%;9〉❀ NULL;

we have

〈�#
�P |A〉❀ · · ·❀〈%;9〉(t×id
)❀ NULL

and so

〈P | ∃x:
A〉 ��
❀〈�#

�P |A〉❀ · · ·❀〈%;9〉(t×id
)❀ NULL

with computed answer substitution 〈%; 9〉(t× id
)(��) = %t.



150 S.E. Finkelstein et al. / Theoretical Computer Science 300 (2003) 91–160

and. Suppose

〈P(t) | (A1(t) ∧ A2(t))〉❀ 〈P(t) |A1(t)〉 & 〈P(t) |A2(t)〉
❀ · · ·❀%❀ NULL:

Then by the induction hypothesis,

〈P |A1〉❀ · · ·❀%t❀ NULL

and

〈P |A2〉❀ · · ·❀%t❀ NULL:

Thus,

〈P | (A1 ∧ A2)〉❀ 〈P |A1〉 & 〈P |A2〉❀ · · ·❀%t❀ NULL:

or-right. Suppose

〈P(t) | (A1(t) ∨ A2(t))〉❀ 〈P(t) |A2(t)〉❀ · · ·❀%❀ NULL:

Then by the induction hypothesis,

〈P |A2〉❀ · · ·❀%t❀ NULL:

Thus

〈P | (A1 ∨ A2)〉❀ 〈P |A2〉❀ · · ·❀%t❀ NULL:

or-left. Similarly.

Lemma A.2 (Lemma 4:9). P �o G iA there is an SLD-proof 〈P |G〉 ❀id❀ · · · ❀

NULL with computed answer substitution id.

Proof. That an SLD-proof of the form 〈P |G〉❀id ❀ · · ·❀NULL implies that P �o G
is immediate by de4nition.

Suppose P �o G. Then there is a program Q and a formula H such that 〈Q |H 〉❀%❀

· · · ❀ NULL; P =Q% and G =H%. We proceed by induction on the length of this
SLD-proof. Consider the 4rst resolution rule.
Backchain: Suppose

〈Q |H ’�;(tlcl⇒H ′)
❀ 〈Q(’�) | tlcl’〉❀ · · ·❀ ❀ NULL;
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where

which implies in particular that  ’= 〈%; f〉 for some f : �→ 
, and where
(tlcl ⇒H ′)∈ <(Q). By the induction hypothesis, we have that

〈(Q(’�)) | (tlcl’) 〉❀ · · ·❀id❀ NULL

and by considering the following diagram:

we have also that (Q(’��)) =Q( ’��) =Q%=P =P(〈id; f〉��) = (�#
�P)

〈id; f〉; as well as (tlcl’) = tlcl( ’) = tlcl〈%; f〉= (tlcl(%× id))〈id; f〉: So

〈(�#
�P)〈id; f〉 | (tlcl(%× id))〈id; f〉〉❀ · · ·❀id❀ NULL

and since (tlcl ⇒H ′)∈ <(Q) also implies by the inductive de4nition of
pullback that (tlcl(%× id)⇒H ′(%× id))∈ <(Q%=P) we have

〈P |G〉 〈id;f〉��=id;tlcl (%×id)⇒H ′(%×id)
❀ 〈(�#

�P)〈id; f〉 | (tlcl(%× id))〈id; f〉〉
❀ · · ·❀id❀ NULL

with computed answer substitution id.
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Augment: Suppose

〈Q |H1 ⇒ H2〉❀ 〈Q ∪ H1 |H2〉❀ · · ·❀%❀ NULL:

Then by the induction hypothesis,

〈P ∪ G1 |G2〉❀ · · ·❀id❀ NULL

and so

〈P |G1 ⇒ G2〉❀ 〈P ∪ G1 |G2〉❀ · · ·❀id❀ NULL

Instance: Suppose

〈Q | ∃x:
H 〉 ��
❀〈(�#Q) |H 〉❀ · · ·❀ ❀ NULL;

where the computed answer substitution is  �� = % (and so  = 〈%; @〉 for
some arrow @ : �→ 
) and

By the induction hypothesis,

〈P |H 〉❀ · · ·❀id❀ NULL:

But since P = (�#P)〈id�; @〉 and H =H 〈%; @〉= (H (%× id
))(〈id�; @〉) =G
〈id�; @〉 this is equivalent to

〈(�#P)〈id�; @〉 |G〈id�; @〉〉❀ · · ·❀id❀ NULL:

Then, by Lemma 4.8 we have

〈P | ∃x:
G〉 ��
❀〈�#

�P |G〉❀ · · ·❀〈id�;@〉❀ NULL:

with computed answer substitution id.
And: Suppose

〈Q |H1 ∧ H2〉❀ 〈Q |H1〉 & 〈Q |H2〉❀ · · ·❀%❀ NULL:
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Then by the induction hypothesis,

〈P |G1〉❀ · · ·❀id❀ NULL

and

〈P |G2〉❀ · · ·❀id❀ NULL:

Thus

〈P |G1 ∧ G2〉❀ 〈P |G1〉 & 〈P |G2〉❀ · · ·❀id❀ NULL:

Or-right: Suppose

〈Q |H1 ∨ H2〉❀ 〈Q |H2〉❀ · · ·❀%❀ NULL:

Then by the induction hypothesis,

〈P |G2〉❀ · · ·❀id❀ NULL

and so

〈P |G1 ∨ G2〉❀ 〈P |G2〉❀ · · ·❀id❀ NULL:

Or-left: Similarly.

Lemma A.3 (Lemma 5.11). <Xi(tv)=nP(t) is an isomorphism iA (<t=)#(<Xi(v)=nP) is an
isomorphism.

Proof. We proceed by induction on n. The case n= 0 is trivial.
First, suppose (<t=)#(<Xi(v)=nP) is an isomorphism, where P is of sort �, Xi of sort 
,

v is an arrow from � to 
 and t is necessarily an arrow whose target is � and whose
source is, say, O (see diagram below).

This means that for some pair (�1; B⇒Xi(u))∈ <(P) and some substitution % such
that %�1v= %u; (<t=)#(Im<%=�1 (<%=)#<B=n−1

P�1
) is an iso. By Proposition 5.8 there is a sub-

stitution ’ such that t =’%�1 and such that <’= factors through (<%=)#<B=n−1
P�1

. Thus
(<’%=)#<B=n−1

P�1
is an iso, and by the induction hypothesis, so is <B(’%)=n−1

P’%�1
.

The reader should note that if P is of sort � and the clause B⇒Xi(u) of sort �× 6
is in <(P) then
• P(t) is of sort O.
• The corresponding clause in <(P(t)) is (‘; B(〈‘t; r〉)⇒Xi(〈‘t; r〉u)) of sort O× 6, as

it is the result of stripping quanti4ers oG of some formula diagram in P(t) along a
projection ‘.

• A uni4er E of the head of this clause and the appropriately extended goal
formula Xi(‘tv) of sort O× 6 must be targeted at O × 6 and satisfy E〈‘t; r〉u=
E〈‘t; r〉�1v
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as shown in the diagram below (where two triangles fail to commute: 〈‘t; r〉 �= ‘’%
and u �= �1v).

Now we consider <Xi(tv)=nP(t) which, by de4nition, is⋃
(‘;B(〈‘t;r〉)⇒Xi(〈‘t;r〉u))∈<(P(t))

E〈‘t;r〉u=E〈‘t;r〉�1v

{Im<‘=Im<E<(<E=)#(<B(〈‘t; r〉)=n−1
P(‘t))}: (7)

One of the members of this union is that for which E is the arrow O
〈idO;’%�0〉−→ O× 6

where O
’%→ �× 6

�0→ 6 since

E〈‘t; r〉= 〈t; ’%�0〉
= 〈’%�1; ’%�0〉
= ’%

and we have shown that %�1v= %u. Also observe that E‘ is the identity idO.
Now recall that we had concluded above (from consideration of the fact that (<t=)#(<X

(v)=nP) is an isomorphism) that <B(’%)=n−1
P(’%�1)

is an iso. Since E〈‘t; r〉=’%, we have that

<BE〈‘t; r〉=n−1
P(E〈‘t; r〉�1)

is an iso. Using the induction hypothesis again, we may conclude

that (<E=)#<B〈‘t; r〉=n−1
P(‘t) is an iso.

But then, since E‘ is the identity idO, we have that

Im<E‘=(<E=)#(<B〈‘t; r〉=n−1
P(‘t))
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is also an iso. This is a member of the union in (7), so the union is an isomorphism,
and thus so is <X (tv)=nP(t).

For the other direction, we refer to the same diagram above. Suppose <X (tv)=nP(t) is
an isomorphism. This means id<O= factors through it, and so through

Im<E‘=(<E=)#(<B〈‘t; r〉=n−1
P(‘t))

for some substitution–clause pair (‘; B(〈‘t; r〉)⇒Xi(〈‘t; r〉u)) in <(P(t)) where E〈‘t; r〉u
= E〈‘t; r〉�1v. Thus by Proposition 5.8, there is a substitution  from O to the source
of E such that
• idO =  E‘, and
• (< E=)#(<B〈‘t; r〉=n−1

P(‘t)) is an iso.
Using the induction hypothesis this yields

<B E〈‘t; r〉=n−1
P( E‘t) is an iso: (8)

Now we wish to show that

(<t=)#(<Xi(v)=nP) =
⋃

%�1v=%u

(�1 ;B⇒Xi(u))∈<(P)

{(<t=)#(Im<�1=Im<%=(<%=)#(<B=n−1
P�1

))} (9)

is an isomorphism. Consider the member of the union corresponding to the clause
B⇒Xi(u) and with the substitution % chosen to be  E〈‘t; r〉 (taking ’ to be the identity
on O in the diagram). We have %�1 =  E‘t, so from (8) we infer that <B%=n−1

P%�1
is an

iso. By the induction hypothesis again we have (<%=)#(<B=n−1
P�1

) is an iso. Furthermore,
since idO =  E‘, we have

Im<�1=Im<%= = Im<%�1=

= Im< E‘t=

= Im<t=:

Thus the member of the union in (9) corresponding to this clause and substitution, i.e.

(<t=)#Im<�1=Im<%=(<%=)#(<B=n−1
P�1

)

reduces to (<t=)#Im<t=(<%=)#(<B=n−1
P�1

). Now, since for any subobject F and (suitably tar-
geted) arrow f; F ⊂ (f)#Imf(F), this member of the union is an isomorphism, and
thus so is (<t=)#(<Xi(v)=nP).

Theorem A.4 (Theorem 5.13).

E(P; < =; Xi; v) =
⋃

(�;cl)∈<(P)

hdcl=Xi

{Im<�=Imeq(<�v=; <tmcl =)(eq(<�v=; <tmcl =))#<tlcl =n−1
P� }:
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Proof. We establish that for any arrows u; t with same source (say 
) and target, and
any subobject F of <
=

Imeq(<u=;<t=)(eq(<u=; <t=))#(F) =
⋃

%u=%t
Im<%=(<%=)#(F) (10)

from which the theorem follows easily.
We will need to be careful with notation here: we let eq(<u=; <t=) denote the equalizer

object, and e the monic eq(<u=; <t=) from the equalizer to the source 
 of the equalized
arrows.

We begin by observing that, as with any object in SetC
o
, eq(<u=; <t=) is the colimit

of a family of representable objects <P�=, each equipped with a map f� into eq(<u=; <t=).

<P�=
f�→ eq(<u=; <t=) e

� 

<u=−→−→
<t=

:

For each �, the composition f�e has representable source and target. Since the Yoneda
embedding is full, each one is the image <%= of some arrow % in C which must be a
uni4er of u and t as the reader can check. We now omit all reference to the objects
<P�= and use the label 0% for the arrows f� from the source of each <%= into eq(<u=; <t=).
This information is displayed in the diagram below, together with the epi-mono image
factorization of <%=

It is straightforward to show, using the universal properties of equalizers, colimits and
unions, that e, whose source is by hypothesis the colimit of the objects that are the
sources of the <%=, is equal, as a subobject of 
, to the union

⋃
j%.

Making use of this fact we have, for any subobject F of 
,

Ime(e)#(F) = Im⋃
j%

(⋃
j%
)#

(F):

Note that if a and b are any subobjects of an object 


a ∩ b = Ima(a)#(b); (11)

so Im⋃
j%(
⋃

j%)#(F) is precisely the intersection(⋃
j%
)
∩ F
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which distributes in the co-complete topos SetC
o

to yield⋃
(j% ∩ F):

Using fact (11) again, we obtain⋃
Imj%(j%)

#(F):

It follows that

Ime(e)#(F) =
⋃

Imj%(j%)
#(F):

Observe, however, that

Im<%=(<%=)#(F) = Imu%j%(u%j%)#(F)

= Imj% Imu%(u%)#(j%)#(F)

= Imj%(j%)
#(F);

the last equation following from the fact that the composition Imu%(u%)# yields identity
since u% is epic. This establishes the identity (10) above.

Now letting F be <tlcl =P� and taking the arrow t to be �v we conclude that

Imeq(<�v=;<u=)(eq(<�v=; <u=))#(<tlcl =P�) =
⋃

%u=%�v
{Im<%=(<%=)#(<tlcl =P)}:

Applying the image functor Im<�= to both sides (and observing that it commutes with
unions), the theorem follows readily.

Appendix B. A Sketch of the Grothendieck Construction

An indexed category I over a base category C is a C-indexed family of categories
(the 4bers), together with a functor If between 4bers I
 and I� associated with

every arrow 

f→ � in the base category. By such a device we resolve logic and logic

programing structure into a (vertical) propositional logical component (the structure in
the 4bers) and the (horizontal) predicate logic and substitution component, which, as it
turns out, is a special case of state change in logic programming. We have seen that the
base category may also capture change of ambient program in the Weak Hereditarily
Harrop case.

But logic program resolutions act on state-goal pairs, or vectors of such. So actual
resolution steps do not correspond to any arrows in the indexed category framework:
they are paths consisting of arrows in the 4bers followed by shifts along reindex-
ing functors. This problem can be remedied by a simple, elegant construction due to
Grothendieck that builds a single category out of an indexed category, indeed, a cate-
gory together with a functor into the base category, called a 4bration (or op-4bration
if the indexed category is covariant). This construction allows us to visualize quite in-
tricate logic programming resolutions in conventional or extended logic programming
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as automatically generated by a simple core of data: program clauses in the 4bers and
state change de4nitions in the base of an indexed category.

In this paper we have also shown how a category C[X ] of freely generated (generic)
predicates over a base category arises as a result of the Grothendieck construction over
basic (propositional) data presented in an indexed category Yb.

De�nition B.1. Given an indexed category I : C→CAT, the category G(C;I) is
de(ned as follows
objects: pairs (
;G) where 
∈ |C| and G∈ |I
|.
arrows: pairs (%; u) : (
;G)→ (�; K) where 
 %→ � is an arrow in the base category C
and I%(K) u→G an arrow in the (ber I(
).

Composition

(
;G)
(%;u)−→ (�; K

(’;v))−→ (�; V )

is given by the pair (%’;I%(v)u), the second component of which is the composition

I%(I’(V ))
I%(v)−→ I%(U ) u→ G:

We refer the reader to the exposition in [5] for a proof of the fact that G(C;I)
is category which, together with projection functor G(C;I)→C yields a split 4bra-
tion, and that this correspondence induces an equivalence of the categories of indexed
categories and split 4brations.
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