
Negative Ternary Set-Sharing∗

Eric Trias,1,2,∗∗ Jorge Navas,1 Elena S. Ackley,1 Stephanie Forrest,1 and
M.Hermenegildo1,3

1 University of New Mexico, USA
2 Air Force Institute of Technology, USA

3 Technical U. of Madrid (Spain) and IMDEA-Software

Abstract. The Set-Sharing domain has been widely used to infer at compile-
time interesting properties of logic programs such as occurs-check reduction,
automatic parallelization, and finite-tree analysis. However, performing abstract
unification in this domain requires a closure operation that increases the number
of sharing groups exponentially. Much attention has been given to mitigatingthis
key inefficiency in this otherwise very useful domain. In this paper we present
a novel approach to Set-Sharing: we define a new representation that leverages
the complement (or negative) sharing relationships of the original sharing set,
without loss of accuracy. Intuitively, given an abstract stateshV over the finite
set of variables of interestV, its negative representation is℘(V) \ shV . Using
this encoding during analysis dramatically reduces the number of elementsthat
need to be represented in the abstract states and during abstract unification as the
cardinality of the original set grows toward2|V|. To further compress the num-
ber of elements, we express the set-sharing relationships through a setof ternary
strings that compacts the representation by eliminating redundancies among the
sharing sets. Our experiments show that our approach can compressthe number
of relationships, reducing significantly the memory usage and running timeof all
abstract operations, including abstract unification.

1 Introduction
In abstract interpretation [11] of logic programssharinganalysis has received consid-
erable attention. Two or more variables in a logic program are said toshareif in some
execution of the program they are bound to terms that containa common variable. A
variable in a logic program is said to beground if it is bound to a term that does not
contain free variables in all possible executions of the program.Set-Sharingis an im-
portant type of combined sharing and groundness analysis. It was originally introduced
by Jacobs and Langen [17, 19] and its abstract values are setsof sets of variables that
keep track in a compact way of the sharing patterns among variables.
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Example 1 (Set-Sharing abstraction). LetV = {X1,X2,X3,X4} be a set of variables.
The abstraction in Set-Sharing of a substitutionθ = {X1 7→ f(U1, U2, V1, V2,W1),
X2 7→ g(V1, V2,W1),X3 7→ g(W1,W1),X4 7→ a} will be {{X1}, {X1,X2}, {X1,
X2,X3}}. Sharing group{X1} in the abstraction represents the occurrence of run-
time variablesU1 andU2 in the concrete substitution,{X1,X2} representsV1 andV2,
and{X1,X2,X3} representsW1. Note thatX4 does not appear in the sharing groups
becauseX4 is ground. Note also that the number of (occurrences of) shared run-time
variables is abstracted away.

Set-Sharing has been used to infer several interesting properties and perform opti-
mization and verification of programs at compile-time, mostnotably but not limited to:
occurs-check reduction (e.g., [27]), automatic parallelization (e.g., [25, 6]), and finite-
tree analysis (e.g., [2]). The accuracy of Set-Sharing has been improved by extending
it with other kinds of information, the most relevant beingfreenessand linearity in-
formation [24, 17, 25, 9, 15], and also information aboutterm structure[25, 18, 3, 23].
Sharing in combination with other abstract domains has alsobeen studied [8, 14, 10].
The significance of Set-Sharing is that it keeps track of sharing among sets of vari-
ables more accurately than other abstract domains such as e.g. Pair-Sharing[27] due
to better groundness propagation and other factors that arerelevant in some of its ap-
plications [5]. In addition, Set-Sharing has attracted much attention [7, 10] because its
algebraic properties allow elegant encodings into other efficient implementations (e.g.,
ROBDDs[4]). In [25], the first comparatively efficient algorithms were presented for
the basic operations needed for set sharing-based analyses.

However, Set-Sharing has a key computational disadvantage: theabstract unifica-
tion (amgu, for short) implies potentially exponential growth in the number of sharing
groups due to theup-closure(also calledstar-union) operation which is the heart of
that operation. Considerable attention has been given in the literature to reducing the
impact of the complexity of this operation. In [29], Zaffanella et al. extended the Set-
Sharing domain for inferring pair-sharing to supportwidening. Although significant
efficiency gains are achieved, this approach loses precision with respect to the origi-
nal Set-Sharing. A similar approach is followed in [26] but for inferring set-sharing in a
top-downframework. Other relevant work was presented in [21] in which the up-closure
operation was delayed and full sharing information was recovered lazily. However, this
interesting approach shares some of the disadvantages of Zaffanella’s widening. There-
fore, the authors refined the idea in [20] reformulating the amgu in terms of theclosure
under unionoperation, collapsing those closures to reduce the total number of closures
and applying them to smaller descriptions without loss of accuracy. In [10] the authors
show that the Set-Sharing domain is isomorphic to the dual negative ofPos [1], de-
noted bycoPos. This insight improved the understanding of Set-Sharing analysis, and
led to an elegant expression of the combination with groundness dependency analysis
based on the reduced product of Sharing and Pos. In addition,this work pointed out the
possible implementation ofcoPos through ROBDDs leading to more efficient imple-
mentations of Set-Sharing analyses, although this point was not investigated further.

In this paper we introduce a novel approach to Set-Sharing: we define a new repre-
sentation that leverages the complement (or negative) sharing relationships of the orig-
inal sharing set, without loss of accuracy. Intuitively, given an abstract stateshV over
the finite set of variables of interestV, its negative representation is℘(V) \ shV . Using



this encoding during analysis dramatically reduces the number of elements that need
to be represented in the abstract states and during abstractunification as the cardinality
of the original set grows toward2|V|. To further compress the number of elements, we
express the set-sharing relationships through a set of ternary strings that compacts the
representation by eliminating redundancies among the sharing sets. It is important to
notice that our work is not based on [10]. Although they definethe dual negated posi-
tive Boolean functions,coPos does not represent the entire complement of the positive
set. Moreover, they do not usecoPos as a means of compressing relationships but as
a way of representing Sharing through Boolean functions. Wealso represent Sharing
through Boolean functions, but that is where the similarityends.

2 Set-Sharing Encoded by Binary Strings
The presentation here follows that of [29, 10] since the notation used and the abstract
unification operation obtained are rather intuitive, but adapted for handling binary strings
rather than sets of sets of variables.

Therefore, unless otherwise stated, here and in the rest of paper we will represent
the set-sharing domain using a set of strings rather than a set of sets of variables. An
algorithm for this conversion and examples are presented in[28].

Definition 1 (Binary sharing domain, bSH). Let alphabetΣ = {0, 1}, V be a fixed
and finite set of variables of interest in arbitrary order, and Σl the finite set of all strings
overΣ with lengthl, 0 ≤ l ≤ |V|. Let bSH l = ℘0(Σl) be theproper power set(i.e.,
℘(Σl) \ {∅} ) that contains all possible combinations overΣ with lengthl. Then, the
binary sharing domainis defined asbSH =

⋃

0≤l≤|V|

bSH l.

Let F andP be sets of ranked (i.e., with a given arity) functors of interest; e.g.,
the function symbols and the predicate symbols of a program.We will useTerm to
denote the set of terms constructed fromV andF ∪P. Although somehow unorthodox,
this will allow us to simply writeg ∈ Term whetherg is a term or a predicate atom,
since all our operations apply equally well to both classes of syntactic objects. We will
denote bŷt the binary representation of the set of variables oft ∈ Term according to
a particular order among variables. Sincet̂ will be always used by a bitwise operation
with some string of lengthl, the length of̂t must bel. If not, t̂ is adjusted with0’s in
those positions associated with variables represented in the string but not int.

Definition 2 (Binary relevant sharing rel(bsh, t), irrelevant sharing irrel(bsh, t)).
Given t ∈ Term, the set of binary strings inbsh ∈ bSH l of lengthl that are relevant
with respect tot is obtained by a functionrel(bsh, t) : bSH l×Term → bSH l defined
as: rel(bsh, t) = {s | s ∈ bsh, (s

∧

t̂) 6= 0l}

where
∧

represents the bitwise AND operation and0l is the all-zeros string of lengthl.
Consequently, the set of binary strings inbsh ∈ bSH l that areirrelevant with respect
to t is a functionirrel(bsh, t) : bSH l × Term → bSH l whereirrel(bsh, t) is the
complement ofrel(bsh, t), i.e.,bsh \ rel(bsh, t).

Definition 3 (Binary cross-union, ×∪). Givenbsh1, bsh2 ∈ bSH l, theircross-unionis
a function×∪ : bSH l × bSH l → bSH l defined as



bsh1×∪bsh2 = {s | s = s1

∨

s2, s1 ∈ bsh1, s2 ∈ bsh2}

where
∨

represents the bitwise OR operation.

Definition 4 (Binary up-closure, (.)∗). Let l be the length of strings inbsh ∈ bSH l,
then theup-closureof bsh, denotedbsh∗ is a function(.)∗ : bSH l → bSH l that
represents the smallest superset ofbsh such thats1

∨

s2 ∈ bsh∗ whenevers1, s2 ∈
bsh∗:

bsh∗ = {s | ∃n ≥ 1 ∃t1, . . . , tn ∈ bsh, s = t1
∨

. . .
∨

tn}

Definition 5 (Binary abstract unification, amgu). The abstract unification is a func-
tion amgu : V × Term × bSH l → bSH l defined as

amgu(x, t, bsh) = irrel(bsh, x = t) ∪ (rel(bsh, x)×∪rel(bsh, t))∗

The design of the analysis must be completed by defining the following abstract op-
erations that are required by an analysis engine:init (initial abstract state),equivalence
(between two abstract substitutions),join (defined as the union), andproject. In the
interest of brevity, we define only theproject operation because the other three opera-
tions are trivial. We refer the reader to [28] for the rest of operations.

Definition 6 (Binary projection, bsh|t). The binary projectionis a functionbsh|t:
bSH l × Term → bSHk (k ≤ l) that removes thei-th positions from all strings (of
lengthl) in bsh ∈ bSH l, if and only if thei-th positions of̂t (denoted bŷt[i]) is 0, and
it is defined as bsh|t = {s′ | s ∈ bsh, s′ = π(s, t)}

whereπ(s, t) is the binary string projection defined as

π(s, t) =







ǫ, if s = ǫ, the empty string
π(s′, t), if s = s′ai and t̂[i] = 0
π(s′, t)ai, if s = s′ai and t̂[i] = 1

ands′ai is the concatenation of charactera to strings′ at positioni.

3 Ternary Set-Sharing
In this section, we introduce a more efficient representation for the Set-Sharing domain
defined in Sec. 2 to accommodate a larger number of variables for analysis. We ex-
tend the binary string encoding discussed above to the ternary alphabetΣ∗ = {0, 1, ∗},
where the∗ symbol denotes both0 and1 bit values. This representation effectively com-
presses the number of elements in the set into fewer strings without changing what is
represented (i.e., without loss of accuracy). To handle theternary alphabet, we redefine
the binary operations covered in Sec. 2.

Definition 7 (Ternary Sharing Domain, tSH). Let alphabetΣ∗ = {0, 1, ∗}, V be a
fixed and finite set of variables of interest in an arbitrary order as in Def. 1, andΣl

∗ the
finite set of all strings overΣ∗ with lengthl, 0 ≤ l ≤ |V|. Then,tSH l = ℘0(Σl

∗) and
hence, theternary sharing domainis defined astSH =

⋃

0≤l≤|V|

tSH l.



Prior to defining how to transform the binary string representation into the corre-
sponding ternary string representation, we introduce two core definitions, Def. 8 and
Def. 9, for comparing ternary strings. These operations areessential for the conversion
and set operations. In addition, they are used to eliminate redundant strings within a set
and to check for equivalence of two ternary sets containing different strings.

Definition 8 (Match, M). Given two ternary strings,x, y ∈ Σl
∗, of lengthl, matchis a

functionM : Σl
∗ × Σl

∗ → B, such that∀i 1 ≤ i ≤ l,

xMy =

{

true, if (x[i] = y[i]) ∨ (x[i] = ∗) ∨ (y[i] = ∗)
false, otherwise

Definition 9 (SubsumedBy ×⊆ and SubsumedIn ×j). Given two ternary stringss1,
s2 ∈ Σl

∗, ×⊆ : Σl
∗ × Σl

∗ → B is a function such thats1
×⊆s2 if and only if every string

matched bys1 is also matched bys2 (s1
×⊆s2 ⇐⇒ ∀s ∈ tSH l, if s1Ms then s2Ms).

For convenience, we augment this definition to deal with setsof strings. Given a ternary
strings ∈ Σl

∗ and a ternary sharing set,tsh ∈ tSH l, ×j : Σl
∗× tSH l → B is a function

such thats ×jtsh if and only if there exists some elements′ ∈ tsh such thats ×⊆s′.

Figure 1 gives the pseudo code for an algorithm which converts a set of binary
strings into a set of ternary strings. The functionConvert evaluates each string of the
input and attempts to introduce∗ symbols usingPatternGenerate, while eliminating
redundant strings usingManagedGrowth.

PatternGenerate evaluates the input string bit-by-bit to determine where the ∗
symbol can be introduced. The number of∗ symbols introduced depends on the sharing
set represented andk, the desired minimum number of specified bits, where0 ≤ k ≤
l (the string length). For a given set of strings of lengthl, parameterk controls the
compression of the set. Fork = l (all bits specified), there is no compression and
tsh = bsh. For a non-emptybsh, k = 1 introduces the maximum number of∗ symbols.
For now, we will assume thatk = 1, and experimental results in Sec. 5 shows the best
overallk value for a givenl. TheSpecified function returns the number of specified
bits (0 or 1) in x.

ManagedGrowth checks if the input stringy subsumes other strings fromtsh. If
no redundant string exists, theny is appended totsh only if y itself is not redundant to
an existing string intsh. Otherwise,y replaces all the redundant strings.

Example 2 (Conversion from bSH to tSH). Assume the following sharing set of binary
stringsbsh = {1000, 1001, 0100, 0101, 0010, 0001}. Then, a ternary string represen-
tation produced by applyingConvert is tsh ={100*, 0010, 010*, *001}.

Definition 10 (Ternary-or
∨

and Ternary-and
∧

). Given two ternary strings,x, y ∈
Σl

∗ of length l, ternary-or and ternary-andare two bitwise-or functions defined as
∨

,
∧

: Σl
∗ × Σl

∗ → Σl
∗ such thatz = x

∨

y andw = x
∧

y, ∀i 1 ≤ i ≤ l, where:

z[i] =







∗ if (x[i] = ∗ ∧ y[i] = ∗)
0 if (x[i] = 0 ∧ y[i] = 0)
1 otherwise w[i] =























∗ if (x[i] = ∗ ∧ y[i] = ∗)
1 if (x[i] = 1 ∧ y[i] = 1)
∨ (x[i] = 1 ∧ y[i] = ∗)
∨ (x[i] = ∗ ∧ y[i] = 1)

0 otherwise



0 Convert(bsh, k)
1 tsh← ∅
2 foreachs ∈ bsh
3 y ← PatternGenerate(tsh, s, k)
4 tsh← ManagedGrowth(tsh, y)
5 return tsh
6 ManagedGrowth(tsh, y)
7 Sy = {s | s ∈ tsh, s ×⊆y}
8 if Sy = ∅ then
9 if y ×/jtsh then
10 appendy to tsh
11else
12 removeSy from tsh
13 appendy to tsh
14 return tsh

15PatternGenerate(tsh, x, k)
16m← Specified(x)
17 i← 0
18x′ ← x
19 l← length(x)
20while m > k andi < l
21 Letbi be the value ofx′ at positioni
22 if bi = 0 or bi = 1 then
23 x′ ← x′ with positioni replaced bybi

24 if x′ ×j tsh then
25 x′ ← x′ with positioni replaced by∗
26 else
27 x′ ← x′ with positioni replaced bybi

28 m← Specified(x′)
29 i← i + 1
30 return x′

Fig. 1. A deterministic algorithm for converting a set of binary stringsbsh into a set of ternary
stringstsh, wherek is the desired minimum number of specified bits (non-∗) to remain.

Definition 11 (Ternary set intersection,∩). Giventsh1, tsh2 ∈ tSH l, ∩ : tSH l ×
tSH l → tSH l is defined as

tsh1 ∩ tsh2 = {r | r = s1
∧

s2, s1Ms2, s1 ∈ tsh1, s2 ∈ tsh2}

For convenience, we define two binary patterns,0-mask and1-mask, in order to
simplify further operations. The former takes anl-length binary strings and returns a
set with a single string having a0 wheres[i] = 1 and∗’s elsewhere,∀i 1 ≤ i ≤ l.
The latter also takes anl-length binary strings, but returns a set of strings with a1
wheres[i] = 1 and∗’s elsewhere,∀i 1 ≤ i ≤ l. For instance,0-mask(0110) and
1-mask(0110) return{∗00∗} and{∗1 ∗ ∗, ∗ ∗ 1∗}, respectively.

Definition 12 (Ternary relevant sharingrel(tsh, t), irrelevant sharing irrel(tsh, t)).
Given t ∈ Term with length l and tsh ∈ tSH l with strings of lengthl, the set of
strings intsh that arerelevantwith respect tot is obtained by a functionrel(tsh, t) :
tSH l × Term → tSH l defined as

rel(tsh, t) = tsh ∩ 1-mask(t̂)

In addition,irrel(tsh, t) is defined as

irrel(tsh, t) = (tsh ∩ 1-mask(t̂)) ∩ 0-mask(t̂)

Ternary cross-union,×∪ , and ternary up-closure,(.)∗, operations are as defined in
Def. 3 and in Def. 4, respectively, except the binary versionof the bitwise OR operator
is replaced with its ternary counterpart defined in Def. 10 inorder to account for the
∗ symbol. In addition, the ternary abstract unification (amgu) is defined exactly as the
binary version, Def.5, using the corresponding ternary definitions.

Example 3 (Ternary abstract unification). Lettsh = {100*, 010*, 0010, *001} as in
Example 2. Consider again the analysis ofX1 = f(X2,X3), the result is:



A = rel(tsh, X1) = {100∗}
B = rel(tsh, f(X2, X3)) = {010∗, 0010}
A×∪B = {110∗, 101∗}
(A×∪B)∗ = {110∗, 101∗, 111∗}
C = irrel(tsh, X1 = f(X2, X3)) = {0001}
amgu(X1, f(X2, X3), tsh) = C ∪ (A×∪B)∗ = {0001, 110∗, 101∗, 111∗}

Here briefly, we describe the ternary projection. The other ternary operations required
by any analysis framework can be be found in [28]. The ternaryprojection, tsh|t,
is defined similarly as binary projection, see Def. 6. However, the projection domain
and range is extended to accommodate the∗ symbol. For example, lettsh = {100*,
010*, 0010, *001} as in Example 2. Then, the projection oftsh over the termt =
f(X1,X2,X3) is tsh|t = {100, 010, 001}. Note that since all zeros is meaningless in
a set-sharing representation, it is not included here.

4 Negative Ternary Set-Sharing
In this section, we extend the use of the ternary representation discussed in the previous
section.† In certain cases, a more compact representation of sharing relationships among
variables can be captured equivalently by working with the complement (or negative)
set of the original sharing set. A ternary stringt can either bein or not in the settsh ∈
tSH. This mutual exclusivity together with the finiteness ofV allows for checkingt’s
membership intsh by asking ift is in tsh, or, equivalently, ift is not in its complement,
tsh. The same reasoning is applicable to binary strings (i.e.,bSH). Given a set ofl-
bit binary strings, its complement or negative set containsall the l-bit ternary strings
not in the original set. Therefore, if the cardinality of a set isgreater than half of the
maximum size (i.e.,2|V|−1), then the size of its complement will not be greater than
2|V|−1. It is this size differential that we exploit. In Set-Sharing analysis, as we consider
programs with larger numbers of variables of interest, the potential number of sharing
groups grows exponentially toward2|V|, whereas the number of sharing groups not in
the sharing set decreases toward0.

The idea of a negative set representation and its associatedalgorithms extends the
work by Esponda et al. in [12, 13]. In that work, a negative setis generated from the
original set in a similar manner to the conversion algorithms shown in Figs. 1 and 2.
However, they produce a negative set with unspecified bits inrandom positions and with
less emphasis on managing the growth of the resulting set. The technique was originally
introduced as a means of generating Boolean satisfiability (SAT) formulas where, by
leveraging the difficulty of finding solutions to hard SAT instances, the contents of
the original set are obscured without using encryption [12]. In addition, these hard-
to-reverse negative sets are still able to answer membership queries efficiently while
remaining intractable to reverse (i.e., to obtain the contents of the original set). In this
paper, we are not interested in this security property, but use the negative approach
simply to address the efficiency issues faced by traditionalSet-Sharing domain.

The conversion to the negative set can be accomplished usingthe two algorithms
shown in Figure 2.NegConvert uses theDelete operation to remove input strings of
the setsh from U , the set of alll-bit stringsU = {∗l}, and then, theInsert operation

† Note that we could have also used the binary representation described in Sec. 2 but we chose
the ternary encoding in order to achieve more compactness.



0 NegConvert(sh, k)
1 tnsh← U
2 foreach t ∈ sh
3 tnsh← Delete(tnsh, t, k)
4 return tnsh

0 NegConvertMissing(bsh, k)
1 tnsh← ∅
2 bnsh← U \ bsh
3 foreach t ∈ bnsh
4 tnsh← Insert(tnsh, t, k)
5 return tnsh

10Delete(tnsh, x, k)
11Dx ← ∀t ∈ tnsh, xMt
12 tnsh′ ← tnsh with Dx removed
13 foreachy ∈ Dx

14 foreachunspecified bit positionqi of y

15 if bi (theith bit of x) is specified,then
16 y′ ← y with positionqi replaced bybi

17 tnsh′ ← Insert(tnsh′, y′, k)
18 return tnsh′

20 Insert(tnsh, x, k)
21m← Specified(x)
22 if m < k then
23 P ← select (k −m) unspecified bit positions inx
24 VP ← every possible bit assignment of length|P |
25 foreachv ∈ VP

26 y ← x with positionsP replaced byv
27 tnsh′ ← ManagedGrowth(tnsh, y)
28else
29 y ← PatternGenerate(tnsh, x, k)
30 tnsh′ ← ManagedGrowth(tnsh, y)
31 return tnsh′

Fig. 2.NegConvert, NegConvertMissing, Delete andInsert algorithms used to transform pos-
itive to negative representation;k is the desired number of specified bits (non-*’s) to remain.

to returnU \ sh which represents all stringsnot in the original input. Alternatively,
NegConvertMissing uses theInsert operation directly to append each stringmissing
from the input set to an empty set resulting in a representation of all stringsnot in the
original input. Although as shown in Table 1 both algorithmshave similar complexities,
depending on the size of the original input it may be more efficient to find all the strings
missing from the input and transform them withNegConvertMissing, rather than ap-
plying NegConvert to the input directly. Note that the resulting negative set will use
the same ternary alphabet described in Def. 7. For clarity, we will denote it bytNSH
such thattNSH ≡ tSH.

For simplicity, we describe onlyNegConvert sinceNegConvertMissing uses the
same machinery. Assume a transformation frombsh to tnsh callingNegConvert with
k = 1. We begin withtnsh = U = {∗ ∗ ∗∗} (line 1), then incrementallyDelete each
element ofbsh from tnsh (line 2-3). Delete removes all strings matched byx from
tnsh (line 11-12). If the set of matched strings,Dx, contains unspecified bit values (*
symbols), then all string combinationsnot matchingx must be re-inserted back into
tnsh (line 13-17). Each stringy′ not matchingx is found by setting the unspecified
bit to the opposite bit value found inx[i] (line 16). Then,Insert ensures stringy′ has
at leastk specified bits (line 22-26). This is done by specifyingk − m unspecified



Transformation Time Complexity Size Complexity
bSH → tSH O(|bsh|αl) O(|bsh|)

bSH/tSH → tNSH O(|bsh|α(α2δ + 1)) O(|tnsh|(l −m)2δ)

tNSH → tSH O(|tnsh|α(α2δ + 1)) O(|tsh|(l −m)2δ)

bSH → tNSH O(β + |bnsh|(α2δ + 1)) O(|bnsh|2δ)

Table 1.Summary of conversions:l-length strings;α = |Result| · l; if m < k thenδ = k −m
elseδ = 0, wherem = minimum specified bits in entire set,k = number of specified bits
desired;bnsh = U \ bsh; β = O(2l) time to findbnsh.

bits (line 23) and appending each to the result usingManagedGrowth (line 24-26). If
stringx already has at leastk specified bits, then the algorithm attempts to introduce
more∗ symbols usingPatternGenerate (line 28) and appends it while removing any
redundancy in the resulting set usingManagedGrowth (line 29).

Example 4 (Conversion from bSH to tNSH). Consider the same sharing setas in Ex-
ample 2:bsh = {1000, 1001, 0100, 0010, 0101, 0001}. A negative ternary string rep-
resentation is generated by applying theNegConvert algorithm to obtain{0000, 11**,
1*1*, *11*, **11 }. Since a string of all 0’s is meaningless in a set-sharing representa-
tion, it is removed from the set. Thus,tnsh = {11**, 1*1*, *11*, **11 }.

NegConvertMissing would return the same result for Example 4, and, in gen-
eral, an equivalent negative representation. Table 1 illustrates the different transfor-
mation functions and their complexities for a given input. TransformationbSH →
tSH can be performed by theConvert algorithm described in Fig. 1. Transformations
bSH/tSH → tNSH andbSH → tNSH are done byNegConvert andNegCon-
vertMissing, respectively. Both transformations show that we can convert a positive
representation into negative with corresponding difference in time and memory com-
plexity. Depending on the size of the original input we may prefer one transformation
over another. If the input size is relatively small, less than 50% of the maximum size,
then NegConvert is often more efficient thanNegConvertMissing. Otherwise, we
may prefer to insert those strings missing in the input set. In our implementation, we
continuously track the size of the relationships to choose the most efficient transforma-
tion. Finally, transformationtNSH → tSH is performed byNegConvert to revert
back to the ternary positive from a negative representation.

Consider now the same set of variables and order among them asin Example 4 but
with a slightly different set of sharing groups encoded asbsh = {1000, 1100, 1110}
or tsh = {1*00, 1110}. Then, a negative ternary string representation produced by
NegConvert is tnsh ={00**, 01**, 0*1*, 0**1, 1**1, *01* }. This example shows
that the number of elements, or size, of the negative result can be greater than the
positive,|tnsh| = 6 > |bsh| = 3 and|tsh| = 2, unlike Example 4 where|bsh| = 6, and
|tnsh| = 4 < |bsh|. As the size of|bsh| increases, the complement set that the negative
must represent(2|V| − |bsh|) decreases. This illustrates how selecting the appropriate
set-sharing representation affects the size of the converted result. Thus, the size of the
original sharing set at specific program points will be used by the analysis to produce
the most compact working set. The negative sharing set representation allows us to
represent more variables of interest enabling larger problem instances to be evaluated.

We now define the negative abstract unification operations, along with key ancillary
operations required by our engine to use the negative representation.



Definition 13 (Negative relevant sharing and irrelevant sharing )Given t ∈ Term
andtnsh ∈ tNSH l with strings of lengthl, the set of strings intnsh that arenegative
relevantwith respect tot is obtained by a functionrel(tnsh, t) : tNSH l × Term →
tNSH l defined as:

rel(tnsh, t) = tnsh ∩ 0-mask(t̂),

In addition,irrel(tnsh, t) is defined as:

irrel(tnsh, t) = tnsh ∩ 1-mask(t̂).

where∩ ≡ ∪ and defined in [13].

Because the negative representation is the complement, it is not only more compact
for large positive set-sharing instances, but also, and perhaps more importantly, it en-
ables us to use inverse operations that are more memory- and computationally efficient
than in the positive representation. However, the negativerepresentation does have its
limitations. Certain operations that are straightforwardin the positive representation are
NP-Hard in the negative representation [12, 13].

A key observation given in [12] is that there is a mapping fromBoolean formulas
to the negative set-sharing domain such that finding which strings are not represented
is equivalent to finding satisfying assignments to the corresponding Boolean formula.
This is known to be anNP-Hard problem. As mentioned before, this fact is exploited
in [12] for privacy enhancing applications. In [28] we show that negative cross-union,
×∪, isNP-Complete.

Due to the interdependent nature of the relationship between the elements of a neg-
ative set, it is unclear how a precise negative cross-union can be accomplished without
going through a positive representation. Therefore, we accomplish the negative cross-
union by first identifying the represented positive stringsand then applying cross-union
accordingly. Rather than iterating through all possible strings in U and performing
cross-union on strings not intnsh, we achieve a more efficient negative cross-union,×∪,
by convertingtnsh to tsh first, i.e., usingNegConvert from Table 1 and performing
ternary cross-union on stringst ∈ tsh. In this way, the ternary representation continues
to provide a compressed representation of the sharing set. Note that the negative up-
closure operation,∗, suffers the same drawback as cross-union. Therefore, it ishandled
the same way as negative cross-union.

Definition 14 (Negative union,∪). Given two negative sets with same length strings,
tnsh1 andtnsh2, theNegative Unionreturns a negative set representing the set union
of tnsh1 ∪ tnsh2, and is defined in [13] as:

tnsh1 ∪ tnsh2 = {z|(xMy) ⇒ z = x
∧

y, x ∈ tnsh1, y ∈ tnsh2}

where
∧

is the ternary AND operator.

Definition 15 (Negative abstract unification,amgu). Thenegative abstract unifica-
tion is a functionamgu : V × Term × tNSH l → tNSH l defined as

amgu(x, t, tnsh) = irrel(tnsh, x = t) ∪ (rel(tnsh, x) ×∪ rel(tnsh, t))
∗

,

Example 5 (Negative abstract unification). Lettnsh = {11**, 1*1*, *11*, **11 } be
the same sharing set as in Example 4. Consider the analysis ofX1 = f(X2,X3):



A = rel(tnsh, X1) = {11 ∗ ∗, 1 ∗ 1∗, ∗11∗, ∗ ∗ 11, 0 ∗ ∗∗}
B = rel(tnsh, f(X2, X3)) = {11 ∗ ∗, 1 ∗ 1∗, ∗11∗, ∗ ∗ 11, ∗00∗}
A×∪B = {00 ∗ ∗, 01 ∗ ∗, 0 ∗ 0∗, ∗00∗}

(A×∪B)
∗

= {01 ∗ ∗, 0 ∗ 1∗, 100∗}
C = irrel(tnsh, X1 = f(X2, X3)) = {11 ∗ ∗, 1 ∗ 1∗, ∗11∗, ∗ ∗ 11, 1 ∗ ∗∗,

∗1 ∗ ∗, ∗ ∗ 1∗}
= {1 ∗ ∗∗, ∗1 ∗ ∗, ∗ ∗ 1∗}

amgu(X1, f(X2, X3), tnsh) = C ∪ (A×∪B)
∗

= {01 ∗ ∗, 0 ∗ 1∗, 0 ∗ ∗0, 100∗}

Here, we define the negative projection and refer the reader to [28] for the remaining
operations:

Definition 16 (Negative projection, tnsh|t). The negative projectionis a function
tnsh|t: tNSH l × Term → tNSHk (k ≤ l) that selects elements oftnsh projected
onto the binary representation oft ∈ Term and is defined as

tnsh|t = π(tnsh, Υt),

Υt = positions wherêt[i] = 1, ∀i1 ≤ i ≤ l andNegative Projectπ as defined in [13].

We find that the resulting negative set will contain strings that have a bit value
projected in column(s) specified byΥ if and only if all possible binary combination of
all strings created with the projected column(s) appear in the negative set. For example,
giventnsh = {000, 011, 10*, 11*}, theπΥ=1,2(tnsh) = {10, 11}.

5 Experimental Results
We developed a proof-of-concept implementation to measureexperimentally the rela-
tive efficiency in terms of running time and memory usage obtained with the two new
representations,tSH and tNSH. Our first objective is to study the implications of
the conversions in the representation for analysis. Note that although bothtSH and
tNSH do not imply a loss of precision, the sizes of the resulting representations and
their conversion times can vary significantly from one to another. An essential issue is
to determine experimentally the best overallk parameter for the conversion algorithms.
Second, we study the core abstract operation of the traditional set-sharing,amgu, under
two different metrics. One is the running time to perform theabstract unification. The
other metric expresses the memory usage through the size of the representation in terms
of number of strings during key steps in the unification. All experiments have been con-
ducted on an IntelR CoreTM Duo CPU T2350 at 1.86GHz with 1GB of RAM running
Ubuntu 7.04, and were performed with 12-bit strings since weconsider this value large
enough to show all the relevant features of our approach. In general, within some upper
bound, the more variables considered the better the expected efficiency.

The first experiment determines the bestk value suitable for the conversion algo-
rithms, shown in Figs. 1 and 2. We submit a set of 12-bit strings in random order using
differentk values. We evaluate size of the output (see Fig. 3) for a givenk value. As
expected,bSH (x = y line) results in no compression;tSH slowly increases with in-
creasing input size, remaining belowbSH (for k = 7 andk = 10) due to the compres-
sion provided by the∗ symbol and by having little redundancy;tNSH, the complement
set, starts larger thanbSH but quickly tapers off as the input size increases past50%
of |U|. Since thek parameter helps determine the minimum number of specified bits in
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Fig. 3.Compression level after conversions frombSH to tSH andtNSH for k = 1, 4, 7 & 10.

the set, there is a direct relationship between thek parameter and the size of the output
due to compression by the∗ symbol. A smallerk value, i.e.,k = 1, introduces the max-
imum number of∗ symbols in the set. However, for a given input, a smallk value does
not necessarily result in the best compression factor (seek = 1 of Fig. 3). This result
may be counter-intuitive, but it is due to the potentially larger number of unmatched
strings that must be re-inserted back into the set determined by all the strings that must
be represented by the converted result, see line 13-17 of Fig. 2. In addition, a smallk
value results in a set with more ternary strings than the number of binary strings repre-
sented. This occurs when multiple ternary strings, none of which subsumes any other,
represent the same binary string. This redundancy in the ternary representation is not
prevented byManagedGrowth, and is apparent in Fig. 3 when|tSH| and|tNSH| ex-
ceed the maximum size of binary sharing relationships (i.e., 4096). One way to reduce
the number of redundant strings is to sort the binary input byHamming distancebefore
conversion. In the subsequent tests, sorting was performedto maximize compression.
We have found empirically that ak setting near (or slightly larger than)l/2 is the best
overall value considering both the result size and time complexity. We usek = 7 in
the following experiments. It is interesting to note that ak value of log2(l) results in
polynomial time conversion of the input (see the Complexitycolumn of Table 1) but it
may not result in the maximum compression of the set (seek = 4 of Fig. 3). Therefore,
k may be adjusted to produce results based on acceptable performance level depending
on which parameter is more important to the user, the level ofcompression (memory
constraints) or execution time.

Our second experiment shows the comparison in terms of memory usage (Fig. 4,
left) and running time (Fig. 4, right) of the conversion algorithms for transforming an
initial set of binary strings,bSH, into its corresponding set of ternary strings,tSH, or
its complement (negative),tNSH. We generated random sets of binary strings (over
30 runs) usingk = 7 and we converted the set of binary strings using theConvert
algorithm described in Fig. 1 fortSH, andNegConvertMissing in Fig. 2 for tNSH.
The plot on the left shows that the number of positive ternarystrings,|tSH|, used for
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Fig. 4.Memory usage (avg. # of strings) and time normalized for conversionswith k = 7.

encoding the input binary strings always remains below|bSH|, and this number in-
creases slowly with increasing input size. It important to notice that for large values of
|bSH|, tSH compacts worse than expected and the compression factor is lower. The
main cause is the use of the parameterk = 7 that implies only the use of5 or less
∗ symbols for compression. Conversely, the number of negative sharing relationships,
|tNSH|, is greater than|bSH| and|tSH| up to between40% and50%, respectively.
However, when the load exceeds those thresholdstNSH compresses much better than
its alternatives. For instance, for the maximum number of binary sharing relationships,
tNSH compresses them to only one negative string. On the other hand, the rightmost
plot shows the average time consumed over 30 runs for both conversion algorithms.
Again, tNSH scales better than the positive ternary solution,tSH, after a threshold
established around50% of the maximum number of binary sharing relationships. Our
proof-of-concept implementation is not really optimized,since our objective is to study
therelativeperformance between the three representations, and thus times are normal-
ized to the range[0, 1]. We argue that comparisons that we report between representa-
tions are fair since the three cases have been implemented with similar efficiency, and
useful since the absolute performance of the base representation is well understood.

Finally, our third experiment shows the efficiency in terms of the memory usage (in
Fig. 5, left) and running time (in Fig. 5, right) when performing the abstract unification
for k = 7. Several characteristics of the abstract unification influence the memory us-
age and its performance. Given an arbitrary set of variablesof interestV (|V| = 12),
we constructedx ∈ V by selecting one variable andt ∈ Term as a term consisting
of a subset of the remaining variables, i.e.,V \ {x}. We tested with different values
of t. Another important aspect is the input sharing set,bSH. Again, we reduced the
influence of this factor by generating randomly30 different sets. In the leftmost plot,
the x-axis illustrates the number of input binary strings considered during theamgu.
In the case of the positive and negative ternaryamgu, the input binary strings were
first converted to their corresponding compressed representations. The y-axis shows the
number of strings after the unification. The plot shows that exceeding a threshold lower
than500 in the number of input binary sharing relationships, bothtSH and tNSH
yield a significant smaller number of strings than the binarysolution after unification.
Moreover, when the number of the input binary strings is smaller than50% of its max-
imum value,tSH compresses more efficiently thantNSH. However, if this value is
exceeded then this trend is reversed: the negative encodingyields a better compression
as the cardinality of the original set grows toward2|V|. The rightmost plot shows the
size of the random binary input sets in the x-axis, and the average time consumed for
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Fig. 5.Memory usage (avg. # of strings) and time normalized for amgu over 30runs withk = 7.

performing the abstract unification in its y-axis, normalized again from0 to 1. This
graph shows that the execution times behave similarly to thememory usage during ab-
stract unification. BothtSH andtNSH run much faster thanbSH. The differences are
significant (a factor of 10) for most x-values, reaching a factor of 1000 for large values
of |bSH|. When the load exceeds a50−60%-threshold,tNSH scales better thantSH
by a factor of 10. The main difference with respect to the memory usage depicted in the
leftmost plot is that for a smaller load,tSH runs as fast astNSH during unification.
The main reason is that the ternary relevant and irrelevant sharing operations are less
efficient than their negative counterparts, i.e., intersection is an expensive operation in
the positive whereas negative intersection is very efficient (positive union).

6 Conclusions
We have presented a novel approach to Set-Sharing that leverages the complement (neg-
ative) sharing relationships of the original sharing set, without any loss of accuracy. In
this work, we based the negative representation on ternary strings. We also showed that
the same ternary representation can be used as a positive encoding to efficiently com-
pact the original binary sharing set. This provides the userthe option of working with
whichever set sharing representation is more efficient for agiven problem instance.

The capabilities of our negative approach to compress sharing relationships are or-
thogonal to the use of the ternary representation. Hence, the negative relationships may
be encoded using other representations such as BDDs [16]. Concretely,Zero-suppressed
BDDs [16] are particularly interesting because they were designed to represent sets of
combinations (i.e., sets of sets). In addition, ZBDDs may bealso applicable to similar
sharing-related analyses in object-oriented languages (e.g., [22]).

Our experimental evaluation has shown that our approach canreduce significantly
the memory usage of the sharing relationships and the running time of the abstract
operations, including the abstract unification. Our experiments also show how to set
up key parameters in our algorithms in order to control the desired compression and
time complexities. We have shown that we can obtain a reasonable compression in
polynomial time by tuning appropriately those parameters.Thus, we believe our results
can contribute to the practical, scalable application of Set-Sharing.
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