Negative Ternary Set-Sharing

Eric Trias}>2** Jorge Navas,Elena S. Ackley, Stephanie Forrestand
M.Hermenegildd?

L University of New Mexico, USA
2 Air Force Institute of Technology, USA
3 Technical U. of Madrid (Spain) and IMDEA-Software

Abstract. The Set-Sharing domain has been widely used to infer at compile-
time interesting properties of logic programs such as occurs-checictied,
automatic parallelization, and finite-tree analysis. However, perfornistract
unification in this domain requires a closure operation that increases thigenu
of sharing groups exponentially. Much attention has been given to mitigiigg
key inefficiency in this otherwise very useful domain. In this paper veesgnt
a novel approach to Set-Sharing: we define a new representationveetdes
the complement (or negative) sharing relationships of the originalrghaet,
without loss of accuracy. Intuitively, given an abstract state over the finite
set of variables of intered?, its negative representation ¢g)) \ shy. Using
this encoding during analysis dramatically reduces the number of elethants
need to be represented in the abstract states and during abstractionifisahe
cardinality of the original set grows towagd"!. To further compress the num-
ber of elements, we express the set-sharing relationships througbfaeetary
strings that compacts the representation by eliminating redundanciegahsn
sharing sets. Our experiments show that our approach can contipeessmber
of relationships, reducing significantly the memory usage and runningaimié
abstract operations, including abstract unification.

1 Introduction

In abstract interpretation [11] of logic prograrsisaringanalysis has received consid-
erable attention. Two or more variables in a logic prograesaid toshareif in some
execution of the program they are bound to terms that cost@iommon variable. A
variable in a logic program is said to lggoundif it is bound to a term that does not
contain free variables in all possible executions of thegpam. Set-Sharings an im-
portant type of combined sharing and groundness analysigsl originally introduced
by Jacobs and Langen [17, 19] and its abstract values arefsetss of variables that
keep track in a compact way of the sharing patterns amonghias.

*The authors gratefully acknowledge the support of the National Seighmundation
(grants CCR-0331580 and CCR-0311686, and DBI-0309147), #maSFe Institute, the
Air Force Institute of Technology, the Prince of Asturias Chair in Infdiora Science
and Technology at UNM, and by EU projects 21548&ube IST-15905MOBIUS Span-

ish projects ITEA2/PROFIT FIT-340005-2007-E5 PASS MEC TIN2005-09207-C03-01
MERIT/COMVERSand Comunidad de Madrid project S-0505/TIC/0AROMESAS

**The views expressed in this article are those of the author and dofettrthe official policy

or position of the United States Air Force, Department of Defense, or te@bvernment.

Example 1 (Set-Sharing abstraction). LBt= { X, X2, X3, X4} be a set of variables.
The abstraction in Set-Sharing of a substitutior= {X; — f(Uy, Us, V1, Vo, W1),
Xo — g(Vl,‘/Q,W1),X3 — g(Wl,Wl),X4 — a} will be {{Xl},{Xl,Xg}, {Xl,
Xo, X3}}. Sharing group{ X; } in the abstraction represents the occurrence of run-
time variabled/; andU, in the concrete substitutiof. X, X>} represent$; and Vs,
and{ X1, Xo, X3} representdV;. Note thatX, does not appear in the sharing groups
becauseX, is ground. Note also that the number of (occurrences of)esham-time
variables is abstracted away.

Set-Sharing has been used to infer several interestingefirep and perform opti-
mization and verification of programs at compile-time, musiably but not limited to:
occurs-check reduction (e.g., [27]), automatic paralon (e.g., [25, 6]), and finite-
tree analysis (e.g., [2]). The accuracy of Set-Sharing leas limproved by extending
it with other kinds of information, the most relevant beifilgenessandlinearity in-
formation [24, 17, 25,9, 15], and also information abtermn structure[25, 18, 3, 23].
Sharing in combination with other abstract domains has laésm studied [8, 14, 10].
The significance of Set-Sharing is that it keeps track ofisjaamong sets of vari-
ables more accurately than other abstract domains sucly.a@2aé-Sharing[27] due
to better groundness propagation and other factors thaebmeant in some of its ap-
plications [5]. In addition, Set-Sharing has attracted mattention [7, 10] because its
algebraic properties allow elegant encodings into othfggieft implementations (e.g.,
ROBDDs[4]). In [25], the first comparatively efficient algorithmsewe presented for
the basic operations needed for set sharing-based analyses

However, Set-Sharing has a key computational disadvantagabstract unifica-
tion (amguy for short) implies potentially exponential growth in thember of sharing
groups due to thep-closure(also calledstar-union) operation which is the heart of
that operation. Considerable attention has been giveneititdrature to reducing the
impact of the complexity of this operation. In [29], Zaffdlaeet al. extended the Set-
Sharing domain for inferring pair-sharing to suppuasiiening Although significant
efficiency gains are achieved, this approach loses precisith respect to the origi-
nal Set-Sharing. A similar approach is followed in [26] bott inferring set-sharing in a
top-downframework. Other relevant work was presented in [21] in \ultiee up-closure
operation was delayed and full sharing information wasverexd lazily. However, this
interesting approach shares some of the disadvantage$fan&ia’s widening. There-
fore, the authors refined the idea in [20] reformulating thiga in terms of thelosure
under unionoperation, collapsing those closures to reduce the totabeu of closures
and applying them to smaller descriptions without loss clsacy. In [10] the authors
show that the Set-Sharing domain is isomorphic to the dughtiee of Pos[1], de-
noted bycoPos. This insight improved the understanding of Set-Sharirgjyesis, and
led to an elegant expression of the combination with groeedrependency analysis
based on the reduced product of Sharing and Pos. In addiisnyork pointed out the
possible implementation @b Pos through ROBDDs leading to more efficient imple-
mentations of Set-Sharing analyses, although this poiatneainvestigated further.

In this paper we introduce a novel approach to Set-Shariegiefine a new repre-
sentation that leverages the complement (or negativeinghaalationships of the orig-
inal sharing set, without loss of accuracy. Intuitivelyyag an abstract statd,,, over
the finite set of variables of intere® its negative representationgg)’) \ shy,. Using

this encoding during analysis dramatically reduces thebmmof elements that need
to be represented in the abstract states and during abstification as the cardinality

of the original set grows towar2l"!. To further compress the number of elements, we
express the set-sharing relationships through a set ainestrings that compacts the
representation by eliminating redundancies among therghaets. It is important to
notice that our work is not based on [10]. Although they deffreedual negated posi-
tive Boolean functions;oPos does not represent the entire complement of the positive
set. Moreover, they do not ugePos as a means of compressing relationships but as
a way of representing Sharing through Boolean functions.al&e represent Sharing
through Boolean functions, but that is where the similagitygls.

2 Set-Sharing Encoded by Binary Strings

The presentation here follows that of [29, 10] since the tiartaused and the abstract
unification operation obtained are rather intuitive, bigated for handling binary strings
rather than sets of sets of variables.

Therefore, unless otherwise stated, here and in the restpegrpwve will represent
the set-sharing domain using a set of strings rather than ef sets of variables. An
algorithm for this conversion and examples are presentf28in

Definition 1 (Binary sharing domain, bSH). Let alphabet’ = {0, 1}, V be a fixed
and finite set of variables of interest in arbitrary orded ai the finite set of all strings
over X with lengthl, 0 < I < |V|. LetbSH! = °(X!) be theproper power sefi.e.,

o(X1) \ {0}) that contains all possible combinations ovemwith lengthi. Then, the

binary sharing domairs defined a$SH = |J bSH'.]
0<I< |V

Let 7 andP be sets of ranked (i.e., with a given arity) functors of iatdr e.g.,
the function symbols and the predicate symbols of a progkewill use T'erm to
denote the set of terms constructed frorandF U P. Although somehow unorthodox,
this will allow us to simply writeg € T'erm whetherg is a term or a predicate atom,
since all our operations apply equally well to both clasdesyntactic objects. We will
denote byt the binary representation of the set of variables af Term according to
a particular order among variables. Sirosill be always used by a bitwise operation
with some string of lengtly, the length off must bel. If not, is adjusted with0’s in
those positions associated with variables representdebistting but not irt.

Definition 2 (Binary relevant sharing rel(bsh, t), irrelevant sharing irrel(bsh, t)).
Givent € Term, the set of binary strings ibish € bSH' of length! that are relevant
with respect ta is obtained by a functionel (bsh, t) : bSH' x Term — bSH' defined

as: rel(bsh,t) = {s|s € bsh, (s \ t) # 0'}

where/\ represents the bitwise AND operation aids the all-zeros string of length
Consequently, the set of binary stringsbish, € bSH' that areirrelevant with respect
to ¢ is a functionirrel(bsh,t) : bSH' x Term — bSH' whereirrel(bsh,t) is the
complement ofel(bsh, t), i.e.,bsh \ rel(bsh,t). m

Definition 3 (Binary cross-union,). Givenbsh1, bshy € bSH', theircross-unioris
afunctiony : bSH' x bSH' — bSH' defined as

bshy Wbshy = {s|s=s1\/ s2,51 € bshy, s3 € bsha}
where\/ represents the bitwise OR operation.]

Definition 4 (Binary up-closure, (.)*). Let] be the length of strings ibsh € bSH?,
then theup-closureof bsh, denotedbsh* is a function(.)* : bSH' — bSH! that
represents the smallest supersebgf such thats; \/ so € bsh* wheneversy, ss €

bsh™: bsh* ={s|In>13t1,...,t, €bsh,s=t1 ...\ tn} .

Definition 5 (Binary abstract unification, amgu). The abstract unification is a func-
tion amgu : V x Term x bSH' — bSH' defined as
amgu(x,t,bsh) = irrel(bsh,x =t) U (rel(bsh,z)wrel(bsh,t))* .

The design of the analysis must be completed by defining tlewimg abstract op-
erations that are required by an analysis enging:(initial abstract stateyquivalence
(between two abstract substitutiongy;n (defined as the union), angoject. In the
interest of brevity, we define only the-oject operation because the other three opera-
tions are trivial. We refer the reader to [28] for the rest pémtions.

Definition 6 (Binary projection, bshl|;). The binary projectionis a functionbsh|;:
bSH! x Term — bSH* (k < I) that removes thé-th positions from all strings (of
lengthi) in bsh € bSH', if and only if thei-th positions off (denoted by[:]) is 0, and

it is defined as bsh|; = {s' | s € bsh,s' = m(s,t)}

wheren (s, t) is the binary string projection defined as

€, if s =¢, the empty string
n(s,t) = 7w(s',t), if s=sa; andit[i] =0
m(s',t)a;, if s =s'a; and tfi] = 1

ands’a; is the concatenation of characteto strings’ at position;.]

3 Ternary Set-Sharing

In this section, we introduce a more efficient representdtio the Set-Sharing domain
defined in Sec. 2 to accommodate a larger number of variabteanalysis. We ex-
tend the binary string encoding discussed above to therteafhabet”, = {0, 1, x},
where thex symbol denotes bothand1 bit values. This representation effectively com-
presses the number of elements in the set into fewer striithpwt changing what is
represented (i.e., without loss of accuracy). To handlegheary alphabet, we redefine
the binary operations covered in Sec. 2.

Definition 7 (Ternary Sharing Domain, tSH). Let alphabet”, = {0,1,x}, V be a
fixed and finite set of variables of interest in an arbitramyesras in Def. 1, and’! the
finite set of all strings oveE, with lengthl, 0 <1 < |V|. Then,tSH! = ©°(X!) and

hence, theéernary sharing domaiiis defined asSH = |J tSH'.]
0<i<|V|

Prior to defining how to transform the binary string repréaton into the corre-
sponding ternary string representation, we introduce tere definitions, Def. 8 and
Def. 9, for comparing ternary strings. These operationgasential for the conversion
and set operations. In addition, they are used to elimirgaterrdant strings within a set
and to check for equivalence of two ternary sets containifigrdnt strings.

Definition 8 (Match, M). Given two ternary strings;, y € X', of lengthl, matchis a
functionM : X! x X! — B,suchthati 1 <i <1,

true,if (z[i] = y[i]) Vv (z[i] = %) V (y[i] = *)
o= { L 0= v

Definition 9 (SubsumedBy & and Subsumedin). Given two ternary stringsll,
sy € XL, @: X! x ¥ — Bis afunction such that; &s, if and only if every string
matched by, is also matched by, (s; sy <= Vs € tSH', if s1Ms then soMs).
For convenience, we augment this definition to deal withskttrings. Given a ternary
strings € X! and aternary sharing seth € tSH!, €: X! xtSH' — Bis afunction

such thats &tsh if and only if there exists some elemetite ¢sh such that &s’. g

Figure 1 gives the pseudo code for an algorithm which cosverset of binary
strings into a set of ternary strings. The functi@anvert evaluates each string of the
input and attempts to introdueesymbols usindatternGenerate, while eliminating
redundant strings usinganagedGrowth.

PatternGenerate evaluates the input string bit-by-bit to determine where sth
symbol can be introduced. The numbesaymbols introduced depends on the sharing
set represented arkd the desired minimum number of specified bits, where & <
[(the string length). For a given set of strings of lengtiparameter: controls the
compression of the set. Fé@r = [(all bits specified), there is no compression and
tsh = bsh. For a non-emptysh, k = 1 introduces the maximum numbersofymbols.
For now, we will assume that = 1, and experimental results in Sec. 5 shows the best
overall & value for a giveri. The Specified function returns the number of specified
bits O or 1) in x.

ManagedGrowth checks if the input stringg subsumes other strings frofah. If
no redundant string exists, thgns appended tosh only if y itself is not redundant to
an existing string irtsh. Otherwisey replaces all the redundant strings.

Example 2 (Conversion from bSH to tSH). Assume the following shariegaf binary
stringsbsh = {1000, 1001, 0100, 0101, 0010, 0Q0Then, a ternary string represen-
tation produced by applyinGonvert is tsh ={100*, 0010, 010*, *00}.

Definition 10 (Ternary-or \/ and Ternary-and /). Given two ternary strings;, y €
X! of length(, ternary-or and ternary-andare two bitwise-or functions defined as
VoA 2L x XU — XU such that: = z\/y andw = 2 Ay, Vi 1 < i < I, where:

* !f (z[i] = * A y[i] = *) * ?f (z[i] = = A yli] = *)

z[i] = < 0if (z[i] = 0 A y[i] = 0) Lif (i) =1Ayli] =1) -
1 otherwise wli] = V (z]i] = 1 Ayli] = %)
V (z[i) = x Ayli] = 1)

0 Convert(bsh, k) 15 PatternGenerate(tsh, z, k)
1 tsh—0 16 m «— Specified(z)
2 foreachs € bsh 170
3 y « PatternGenerate(tsh, s, k)| 182" «+ =z
4 tsh — ManagedGrowth(tsh,y)| 191 «— length(x)
5 return tsh 20while m > k andi < [
6 ManagedGrowth(tsh, y) 21 Letb; be the value of’ at position:
7 Sy ={s|sé€tsh, sy} 22 ifb;=00rb; =1then
8 if S, = (0then 23 x’ «— 2’ with positioni replaced by,
9 if y&tshthen 24 if ' € tsh then
10 append, to tsh 25 z’ « 2’ with position: replaced by
1llelse 26 else
12 removeS, fromtsh 27 2’ + ' with positioni replaced by;
13 append;totsh 28 m « Specified(z’)
14return tsh 29 t—i+1
30return z’

Fig. 1. A deterministic algorithm for converting a set of binary strirtgé into a set of ternary
stringstsh, wherek is the desired minimum number of specified bits (rQrtie remain.

Definition 11 (Ternary set intersection,n). Giventshy, tsho € tSH', N : tSH' x
tSH' — tSH'! is defined as

tshy N tsho ={r|r=s1l \ s2,s1Ms2,sl € tshl,s2 € tsh2}

For convenience, we define two binary pattefsnask and1-mask, in order to
simplify further operations. The former takes lalength binary strings and returns a
set with a single string having @wheres[i] = 1 and«’s elsewhereyi 1 < i < [.
The latter also takes akRlength binary strings, but returns a set of strings withla
wheres[i] = 1 and«’s elsewhereyi 1 < ¢ < [. For instanceP-mask(0110) and
1-mask(0110) return{*00«} and{x1 « *, x x 1%}, respectively.

Definition 12 (Ternary relevant sharingrel(tsh,t), irrelevant sharing irrel(tsh, t)).
Givent € Term with lengthl andtsh € tSH' with strings of length, the set of
strings intsh that arerelevantwith respect ta is obtained by a functionel(tsh, t) :
tSH' x Term — tSH' defined as

rel(tsh,t) = tsh N 1-mask(f)

In addition,irrel(tsh,t) is defined as
irrel(tsh,t) = (tsh N 1-mask(#)) N 0-mask() N

Ternary cross-uniony, and ternary up-closurég,)*, operations are as defined in
Def. 3 and in Def. 4, respectively, except the binary versibthe bitwise OR operator
is replaced with its ternary counterpart defined in Def. 10@rder to account for the
x symbol. In addition, the ternary abstract unificatiamfu) is defined exactly as the
binary version, Def.5, using the corresponding ternarynitedns.

Example 3 (Ternary abstract unification). Leth = {100*, 010*, 0010, *00} as in
Example 2. Consider again the analysisxaf = f(Xs, X3), the resultis:

A =rel(tsh, X1) = {100}

B = rel(tsh, f(X2, X3)) = {010%,0010}
AxB = {110%,101x}
(AwB)* = {110%,101%, 111%}
C = irrel(tsh, X1 = f(X2, X3)) = {0001}

amgu(X1, f(X2, X3),tsh) =C U (AyB)* = {0001, 110%, 101x, 111x}

Here briefly, we describe the ternary projection. The othandry operations required
by any analysis framework can be be found in [28]. The termanjection,tsh|,

is defined similarly as binary projection, see Def. 6. Howgtlee projection domain
and range is extended to accommodatestlsymbol. For example, letsh = {100%,
010% 0010, *00%} as in Example 2. Then, the projection &f. over the termt =
f(X1, Xo, X3) istsh|, = {100, 010, 00}. Note that since all zeros is meaningless in
a set-sharing representation, it is not included here.

4 Negative Ternary Set-Sharing

In this section, we extend the use of the ternary representdiscussed in the previous
sectiont In certain cases, a more compact representation of shalaipnships among
variables can be captured equivalently by working with tbmplement (or negative)
set of the original sharing set. A ternary stringan either bén or not inthe settsh €
tSH. This mutual exclusivity together with the finiteness\oéllows for checking's
membership irtsh by asking ift is in tsh, or, equivalently, if is notin its complement,
tsh. The same reasoning is applicable to binary strings (i®H). Given a set of-
bit binary strings, its complement or negative set contalhshe [-bit ternary strings
notin the original set. Therefore, if the cardinality of a segigater than half of the
maximum size (i.e.2!VI=1), then the size of its complement will not be greater than
2/VI-1 Itis this size differential that we exploit. In Set-Shayianalysis, as we consider
programs with larger numbers of variables of interest, htemtial number of sharing
groups grows exponentially towagd"!, whereas the number of sharing groups not in
the sharing set decreases towérd

The idea of a negative set representation and its assoakgedthms extends the
work by Esponda et al. in [12, 13]. In that work, a negativeisefenerated from the
original set in a similar manner to the conversion algorgtshown in Figs. 1 and 2.
However, they produce a negative set with unspecified bisidom positions and with
less emphasis on managing the growth of the resulting settednique was originally
introduced as a means of generating Boolean satisfiab8i#y) formulas where, by
leveraging the difficulty of finding solutions to hard SAT tasces, the contents of
the original set are obscured without using encryption.[12]addition, these hard-
to-reverse negative sets are still able to answer memipecglaries efficiently while
remaining intractable to reverse (i.e., to obtain the castef the original set). In this
paper, we are not interested in this security property, lset the negative approach
simply to address the efficiency issues faced by traditi&e#dSharing domain.

The conversion to the negative set can be accomplished tigngvo algorithms
shown in Figure 2NegConvert uses théDelete operation to remove input strings of
the setsh from U, the set of all-bit stringsi/ = {*'}, and then, thénsert operation

T Note that we could have also used the binary representation described.if But we chose
the ternary encoding in order to achieve more compactness.

NegConvert(sh, k)
tnsh — U

0 NegConvertMissing(bsh, k)
1

2 foreacht € sh

3

4

tnsh «— 0
bnsh «— U \ bsh
foreacht € bnsh
tnsh «— Insert(tnsh, t, k)
return tnsh

tnsh — Delete(tnsh, t, k)
return tnsh

A~ wWNEO

10Delete(tnsh, z, k)

11D, <« Vt € tnsh,xMt

12tnsh’ « tnsh with D, removed
13foreachy € D,

14 foreachunspecified bit positiog; of y

15 if b; (thest™ bit of) is specifiedthen B
16 y’ « y with positiong; replaced by;
17 tnsh’ «— Insert(tnsh’,y’, k)

18return tnsh’

20Insert(tnsh, x, k)

21m < Specified(x)

22if m < k then

23 P « select £ — m) unspecified bit positions in
24 Vp < every possible bit assignment of leng|
25 foreachv € Vp

26 y « x With positionsP replaced by
27 tnsh’ «— ManagedGrowth(tnsh, y)
28else

29 y < PatternGenerate(tnsh, , k)
30 tnsh’ «— ManagedGrowth(tnsh,y)
31lreturn tnsh’

Fig. 2.NegConvert, NegConvertMissing, Delete andInsert algorithms used to transform pos-
itive to negative representatiok;is the desired number of specified bits (non-*'s) to remain.

to returnl{ \ sh which represents all stringsot in the original input. Alternatively,
NegConvertMissing uses thdnsert operation directly to append each strimgssing
from the input set to an empty set resulting in a represeamtatf all stringsnotin the
original input. Although as shown in Table 1 both algorithmase similar complexities,
depending on the size of the original input it may be moreiefficto find all the strings
missing from the input and transform them wittlegConvertMissing, rather than ap-
plying NegConvert to the input directly. Note that the resulting negative sit wge
the same ternary alphabet described in Def. 7. For clariywil denote it byt NS H
suchthat NSH = tSH.

For simplicity, we describe onljegConvert sinceNegConvertMissing uses the
same machinery. Assume a transformation figtinto tnsh calling NegConvert with
k = 1. We begin withtnsh = U = {x x xx} (line 1), then incrementallpelete each
element ofbsh from tnsh (line 2-3). Delete removes all strings matched hyfrom
tnsh (line 11-12). If the set of matched string3,., contains unspecified bit values (*
symbols), then all string combinatiom®t matchingxz must be re-inserted back into
tnsh (line 13-17). Each string’ not matchingz is found by setting the unspecified
bit to the opposite bit value found ir[i] (line 16). Then|nsert ensures string’ has
at leastk specified bits (line 22-26). This is done by specifyihg- m unspecified

Transformation Time Complexity Size Complexity

bSH — tSH O(|bsh|al) O([bsh])
bSH/tSH — tNSH|O(Jbsh|a(a2® + 1)) |O(|tnsh|(l —m)2°%)
tNSH — tSH O(Jtnshla(a2® +1)) [O(Jtsh|(I — m)2°)

bSH — tNSH O(B + |bnsh|(a2° + 1))|O(|bnsh|2%)
Table 1. Summary of conversiong:length stringsiy = |Result| - [; if m < kthend =k —m
elseé = 0, wherem = minimum specified bits in entire set, = number of specified bits
desiredpnsh = U \ bsh; 8 = O(2') time to findbnsh.

bits (line 23) and appending each to the result usitagpagedGrowth (line 24-26). If
string x already has at leagt specified bits, then the algorithm attempts to introduce
morex symbols usingPatternGenerate (line 28) and appends it while removing any
redundancy in the resulting set usilignagedGrowth (line 29).

Example 4 (Conversion from bSH to tNSH). Consider the same sharingsét Ex-
ample 2:bsh = {1000, 1001, 0100, 0010, 0101, 0QOA negative ternary string rep-
resentation is generated by applying MegConvert algorithm to obtaif 0000, 11**,
1*1* *11* **11 }. Since a string of all 0’s is meaningless in a set-sharingesgmta-
tion, it is removed from the set. ThuSysh = {11**, 1*1*, *11* **11 }.

NegConvertMissing would return the same result for Example 4, and, in gen-
eral, an equivalent negative representation. Table 1ltilitess the different transfor-
mation functions and their complexities for a given inputafisformationbSH —
tSH can be performed by th@onvert algorithm described in Fig. 1. Transformations
bSH/tSH — tNSH andbSH — tNSH are done byNegConvert andNegCon-
vertMissing, respectively. Both transformations show that we can caragositive
representation into negative with corresponding diffeesim time and memory com-
plexity. Depending on the size of the original input we magfer one transformation
over another. If the input size is relatively small, lessth&% of the maximum size,
then NegConvert is often more efficient thatNegConvertMissing. Otherwise, we
may prefer to insert those strings missing in the input sebur implementation, we
continuously track the size of the relationships to chobsaost efficient transforma-
tion. Finally, transformation NSH — tSH is performed byNegConvert to revert
back to the ternary positive from a negative representation

Consider now the same set of variables and order among thanEaample 4 but
with a slightly different set of sharing groups encoded#s = {1000, 1100, 111p
or tsh = {1*00, 111G. Then, a negative ternary string representation produged b
NegConvert is tnsh ={00**, 01**, 0*1* 0**1, 1**1, *01* }. This example shows
that the number of elements, or size, of the negative resutbe greater than the
positive,|tnsh| = 6 > |bsh| = 3and|tsh| = 2, unlike Example 4 wherfpsh| = 6, and
[tnsh| = 4 < |bsh|. As the size ofbsh| increases, the complement set that the negative
must represent2!V! — |bsh|) decreases. This illustrates how selecting the appropriate
set-sharing representation affects the size of the caweesult. Thus, the size of the
original sharing set at specific program points will be usedhe analysis to produce
the most compact working set. The negative sharing set geptation allows us to
represent more variables of interest enabling larger probhstances to be evaluated.

We now define the negative abstract unification operatidosgawith key ancillary
operations required by our engine to use the negative retiason.

Definition 13 (Negative relevant sharing and irrelevant shang)Givent € Term

andtnsh € tN.SH' with strings of length, the set of strings itnsh that arenegative
relevantwith respect ta is obtained by a functionel(tnsh,t) : tNSH! x Term —

tNSH' defined as:

rel(tnsh,t) = tnsh 0 0- mask (),
In addition,irrel(tnsh, t) is defined as:
irrel(tnsh,t) = tnsh 0 1- mask({).
wheren = U and defined in [13].]

Because the negative representation is the complementadt ionly more compact
for large positive set-sharing instances, but also, andaper more importantly, it en-
ables us to use inverse operations that are more memory-oamglutationally efficient
than in the positive representation. However, the negatipeesentation does have its
limitations. Certain operations that are straightforwiarthe positive representation are
N'P-Hard in the negative representation [12, 13].

A key observation given in [12] is that there is a mapping fiBoolean formulas
to the negative set-sharing domain such that finding whighgst are not represented
is equivalent to finding satisfying assignments to the apoading Boolean formula.
This is known to be avP-Hard problem. As mentioned before, this fact is exploited
in [12] for privacy enhancing applications. In [28] we shdwat negative cross-union,
W, isN'P-Complete.

Due to the interdependent nature of the relationship bettlezelements of a neg-
ative set, it is unclear how a precise negative cross-uraorbe accomplished without
going through a positive representation. Therefore, wemaptish the negative cross-
union by first identifying the represented positive striags then applying cross-union
accordingly. Rather than iterating through all possibléngs in i/ and performing
cross-union on strings not tmsh, we achieve a more efficient negative cross-unign,
by convertingtnsh to tsh first, i.e., usingNegConvert from Table 1 and performing
ternary cross-union on stringse ¢sh. In this way, the ternary representation continues
to provide a compressed representation of the sharing sét. tNat the negative up-
closure operatiort,, suffers the same drawback as cross-union. Thereforehitridled
the same way as negative cross-union.

Definition 14 (Negative union,U). Given two negative sets with same length strings,
tnshy andtnshs, the Negative Uniorreturns a negative set representing the set union
of tnshy U tnshe, and is defined in [13] as:

tnshy Utnshy = {z|(aMy) = z =2 Ay, x € tnshy,y € tnsha}
where\ is the ternary AND operator.]

Definition 15 (Negative abstract unification,amgu). The negative abstract unifica-
tion is a functionamgu : V x Term x tNSH' — tNSH' defined as

amgu(x, t, tnsh) = wrrel(tnsh, z = t) U (rel(tnsh, z) & rel(tnsh,t))",

Example 5 (Negative abstract unification). Letsh = {11**, 1*1*, *11*, **11 } be
the same sharing set as in Example 4. Consider the analyXis of f (X2, X3):

A = rel(tnsh, X1) = {11 %%, 1% Ik, 1Dk, % % 11,0 % sk }

B = rel(tnsh, f(X2, X3)) = {11 %%, 1 % 1, %11%, % 11, x00% }
AYB = {00 % %, 01 * %, 0 % 0%, x00%}
(A®B)” = {01 % *,0 % 1%, 100}

C =irrel(tnsh, X1 = (X2, X3)) = {11 %%, 1% Tk, 1ok, 0k 11, 1 5 sk,

k1 s sk ok L}
= {1 %ok, k1 k%, ok 1x}

amgu(X1, f(X2, X3),tnsh) = CU (A@B); = {01 % x,0 % 1%, 0 * %0, 100+ }

Here, we define the negative projection and refer the read28t for the remaining
operations:

Definition 16 (Negative projection, tnsh|;). The negative projectioris a function
tnsh|g: tNSH' x Term — tNSHF* (k < I) that selects elements ofsh projected
onto the binary representation & Term and is defined as

tnsh|y = T(tnsh,13),

T, = positions wheré[i] = 1, Vil < i < [andNegative Project as defined in [13]g

We find that the resulting negative set will contain stringatthave a bit value
projected in column(s) specified Byif and only if all possible binary combination of
all strings created with the projected column(s) appednémiegative set. For example,
giventnsh = {000, 011, 10*, 11}, theTy=1 2(tnsh) = {10, 11}.

5 Experimental Results

We developed a proof-of-concept implementation to measxperimentally the rela-
tive efficiency in terms of running time and memory usage ioketh with the two new
representations,SH andtNSH. Our first objective is to study the implications of
the conversions in the representation for analysis. Naé dlthough bothtSH and
tNSH do not imply a loss of precision, the sizes of the resultingesentations and
their conversion times can vary significantly from one tothea An essential issue is
to determine experimentally the best ovekaiarameter for the conversion algorithms.
Second, we study the core abstract operation of the traditset-sharingymgu, under
two different metrics. One is the running time to perform #fstract unification. The
other metric expresses the memory usage through the silze oéppresentation in terms
of number of strings during key steps in the unification. Alberiments have been con-
ducted on an Intél Core’™ Duo CPU T2350 at 1.86GHz with 1GB of RAM running
Ubuntu 7.04, and were performed with 12-bit strings sincewesider this value large
enough to show all the relevant features of our approachemeigl, within some upper
bound, the more variables considered the better the expeffteiency.

The first experiment determines the béstalue suitable for the conversion algo-
rithms, shown in Figs. 1 and 2. We submit a set of 12-bit striimgandom order using
differentk values. We evaluate size of the output (see Fig. 3) for a givealue. As
expectedpSH (x = y line) results in no compressiot$ H slowly increases with in-
creasing input size, remaining beld& H (for £ = 7 andk = 10) due to the compres-
sion provided by the symbol and by having little redundanayy S H, the complement
set, starts larger thawt' H but quickly tapers off as the input size increases past
of |U|. Since the: parameter helps determine the minimum number of specifiedrbi

2000

100 =
//
s

000 2000 0
Number of Binary Strings (Input)

k=7 k=10

)

Fig. 3. Compression level after conversions fré$\H to tSH andtNSH fork=1, 4,7 & 10.

the set, there is a direct relationship betweenktiparameter and the size of the output
due to compression by thesymbol. A smallek value, i.e.k = 1, introduces the max-
imum number of« symbols in the set. However, for a given input, a srkalhlue does
not necessarily result in the best compression factor {seel of Fig. 3). This result
may be counter-intuitive, but it is due to the potentiallygler number of unmatched
strings that must be re-inserted back into the set deterhiipall the strings that must
be represented by the converted result, see line 13-17 oRFIg addition, a smalk
value results in a set with more ternary strings than the rurabbinary strings repre-
sented. This occurs when multiple ternary strings, noneti€lvsubsumes any other,
represent the same binary string. This redundancy in timatgrepresentation is not
prevented byManagedGrowth, and is apparent in Fig. 3 whért H| and|t NS H| ex-
ceed the maximum size of binary sharing relationships @096). One way to reduce
the number of redundant strings is to sort the binary inputiagnming distanceefore
conversion. In the subsequent tests, sorting was perfotmethximize compression.
We have found empirically that/asetting near (or slightly larger thah)2 is the best
overall value considering both the result size and time derily. We usek = 7 in
the following experiments. It is interesting to note that &alue oflogs (1) results in
polynomial time conversion of the input (see the Complegdiumn of Table 1) but it
may not result in the maximum compression of the set kseet of Fig. 3). Therefore,
k may be adjusted to produce results based on acceptablerparice level depending
on which parameter is more important to the user, the levebafipression (memory
constraints) or execution time.

Our second experiment shows the comparison in terms of meuosage (Fig. 4,
left) and running time (Fig. 4, right) of the conversion aigfims for transforming an
initial set of binary stringshS H, into its corresponding set of ternary stringSH, or
its complement (negative) N S H. We generated random sets of binary strings (over
30 runs) usingc = 7 and we converted the set of binary strings using @oavert
algorithm described in Fig. 1 farS H, andNegConvertMissing in Fig. 2 fort NSH.
The plot on the left shows that the number of positive terrsripngs|tSH |, used for

o
000 o S0 10 w0 0 200
Number of Binary Strings

1m0 2w 200 o0
Number of Binary Strings

Fig. 4. Memory usage (avg. # of strings) and time normalized for conversidthst = 7.

encoding the input binary strings always remains belegi# |, and this number in-
creases slowly with increasing input size. It importantatice that for large values of
|[bSH]|, tSH compacts worse than expected and the compression factawés. IThe
main cause is the use of the paraméter 7 that implies only the use df or less

x symbols for compression. Conversely, the number of negjatiaring relationships,
[tNSH|, is greater thatbSH| and [tSH| up to betweenl0% and50%, respectively.
However, when the load exceeds those threshdWdSH compresses much better than
its alternatives. For instance, for the maximum number p&kji sharing relationships,
tNSH compresses them to only one negative string. On the othet, iz rightmost
plot shows the average time consumed over 30 runs for bothecsion algorithms.
Again, tNSH scales better than the positive ternary solutidhi/, after a threshold
established arouni0% of the maximum number of binary sharing relationships. Our
proof-of-concept implementation is not really optimizethce our objective is to study
therelative performance between the three representations, and thes &re normal-
ized to the rang€0, 1]. We argue that comparisons that we report between repeesent
tions are fair since the three cases have been implementkdiwiilar efficiency, and
useful since the absolute performance of the base repeadigemis well understood.

Finally, our third experiment shows the efficiency in termhthe memory usage (in
Fig. 5, left) and running time (in Fig. 5, right) when perfang the abstract unification
for k = 7. Several characteristics of the abstract unification imibesthe memory us-
age and its performance. Given an arbitrary set of variatiiésterest) (|V| = 12),
we constructed: € V by selecting one variable artdde Term as a term consisting
of a subset of the remaining variables, i8.)\ {z}. We tested with different values
of ¢. Another important aspect is the input sharing $8tf{. Again, we reduced the
influence of this factor by generating randonly different sets. In the leftmost plot,
the x-axis illustrates the number of input binary stringasidered during theamgu.
In the case of the positive and negative ternanygu, the input binary strings were
first converted to their corresponding compressed reptaisans. The y-axis shows the
number of strings after the unification. The plot shows tixateding a threshold lower
than 500 in the number of input binary sharing relationships, boétH andtNSH
yield a significant smaller number of strings than the bireolution after unification.
Moreover, when the number of the input binary strings is fen&than50% of its max-
imum value,tSH compresses more efficiently thaiv.S H. However, if this value is
exceeded then this trend is reversed: the negative encyiilty a better compression
as the cardinality of the original set grows towaf¥!. The rightmost plot shows the
size of the random binary input sets in the x-axis, and theagestime consumed for

normalized and logscaled)

Fig. 5. Memory usage (avg. # of strings) and time normalized for amgu oveur®withk = 7.

performing the abstract unification in its y-axis, normatizagain from0 to 1. This
graph shows that the execution times behave similarly tortbmory usage during ab-
stract unification. BothS H andt N .S H run much faster thahS H. The differences are
significant (a factor of 10) for most x-values, reaching adaof 1000 for large values
of [bSH|. When the load exceedssa — 60%-threshold{ N .S H scales better thart H
by a factor of 10. The main difference with respect to the mgmeage depicted in the
leftmost plot is that for a smaller loadS H runs as fast asN.SH during unification.
The main reason is that the ternary relevant and irrelevaarirsg operations are less
efficient than their negative counterparts, i.e., inteisads an expensive operation in
the positive whereas negative intersection is very efftdjeositive union).

6 Conclusions

We have presented a novel approach to Set-Sharing thaatmsethe complement (neg-
ative) sharing relationships of the original sharing sethaut any loss of accuracy. In
this work, we based the negative representation on termiangs. We also showed that
the same ternary representation can be used as a positivdiegdo efficiently com-
pact the original binary sharing set. This provides the tiseioption of working with
whichever set sharing representation is more efficient ffiven problem instance.

The capabilities of our negative approach to compressrefpagiationships are or-
thogonal to the use of the ternary representation. Heneedbative relationships may
be encoded using other representations such as BDDs [1i6¢r&tely,Zero-suppressed
BDDs|[16] are particularly interesting because they were desigo represent sets of
combinations (i.e., sets of sets). In addition, ZBDDs maylse applicable to similar
sharing-related analyses in object-oriented languagegs (22]).

Our experimental evaluation has shown that our approachezhrce significantly
the memory usage of the sharing relationships and the rgrimime of the abstract
operations, including the abstract unification. Our experits also show how to set
up key parameters in our algorithms in order to control theirdd compression and
time complexities. We have shown that we can obtain a re&d®rm@mpression in
polynomial time by tuning appropriately those paramefénsis, we believe our results
can contribute to the practical, scalable application ¢fSearing.

References
1. T. Armstrong, K. Marriott, P. Schachte, and H. Sgndergaardleaadunctions for depen-
dency analysis: Algebraic properties and efficient representz®ias. 94
2. R. Bagnara, R. Gori, P. M. Hill, and E. Zaffanella. Finite-tree analfggisonstraint logic-
based languagefnformation and Computatiqri93(2):84-116, 2004.

10.
11.
12.
13.
14.
15.

16.
17.

18.
19.

2(2) X. Li, A. King, and L. Lu. Lazy Set-Sharing AnalysiSLOPS’06
23.
24.
25.
26.
27.
28.

29.

M. Bruynooghe, M. Codish, and A. Mulkers. Abstract unificationdacomposite domain
deriving sharing and freeness properties of program variabesfication and Analysis of
Logic Languagesl1994.

. R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-DOeniDiagrams.

ACM Comput. Sury24(3):293-318, 1992.

. F. Bueno and M. Gara de la Banda. Set-Sharing is not always redundant for Pair-Sharing

FLOPS 2004

. F. Bueno, M. Gaiia de la Banda, and M. Hermenegildo. Effectiveness of Global Analysis

in Strict Independence-Based Automatic Program Parallelizati®84 Intl Symposium on
Logic Programming

. M. Codish, V. Lagoon, and F. Bueno. An algebraic approach tdrghanalysis of logic

programs.Proc. of the Fourth Intl Static Analysis Symposjuri97.

. M. Codish, A. Mulkers, M. Bruynooghe, M. Gaecde la Banda, and M. Hermenegildo.

Improving Abstract Interpretations by Combining DomaiREPM'93

. M. Codish, D. Dams, G. | and M. Bruynooghe. On the design of a correct freeness

analysis for logic programsihe Journal of Logic Programmin@8(3):181-206, 1996.

M. Codish, H. Sgndergaard, and P.J. Stuckey. Sharing anddjiess dependencies in logic
programs. ACM Transactions on Prog Languages and Syste&h¢):948—-976, 1999.

P. Cousot and R. Cousot. Abs Interp: a Unified Lattice Model faicSAaalysis of Programs
by Construction or Approx of Fixpoint$?OPL'77.

F. Esponda, E. S. Ackley, S. Forrest, and P. Helman. On-lingtimeglatabases (with exper-
imental results)Intl Journal of Unconventional Computing(3):201-220, 2005.

F. Esponda, E. D. Trias, E. S. Ackley, and S. Forrest. A reldtialgebra for negative
databases. Technical Report TR-CS-2007-18, University of Newidd, 2007.

C. Fecht. An efficient and precise sharing domain for logic progr&LILP, volume 1140
of Lecture Notes in Computer Scienpages 469-470. Springer, 1996.

P. M. Hill, E. Zaffanella, and R. Bagnara. A correct, precise dficient integration of set-
sharing, freeness and linearity for the analysis of finite and rationdbingeagesTPLP’04
S.Minato. ZBDDs for Set Manipulation in Combinatorial ProbledAC’93.

D. Jacobs and A. Langen. Static Analysis of Logic Programs fdedandent And-
Parallelism.Journal of Logic Programmingl3(2 and 3):291-314, Jul 1992.

A. King and P. Soper. Depth-k Sharing and FreenkisP'94.

A. Langen. Advanced techniques for approximating variable aliasing in Logic Program
PhD thesis, Computer Science Dept., University of Southern CA, 1990.

X. Li, A. King, and L. Lu. Collapsing Closure$CLP’06.

M. Méndez-Lojo and M. Hermenegildo. Precise Set Sharing Analysis ferskgle Pro-
grams.VMCAI'08.

A. Mulkers, W. Simoens, G. Janssens, and M. Bruynooghe. ©Rrdicticality of Abstract
Equation SystemdCLP’95.

K. Muthukumar and M. Hermenegildo. Combined Determination ofiBgand Freeness
of Program Variables Through Abstract Interpretatit®lLP’91.

K. Muthukumar and M. Hermenegildo. Compile-time Derivation ofigtale Dependency
Using Abstract InterpretationlLP, 13(2/3):315-347, 1992.

J. Navas, F. Bueno, and M. Hermenegildo. Efficient top-dovsstsa&ring analysis using
cliques.PADL'06.

H. Sgndergaard. An application of abstract interpretation of logigrams: occur check
reduction.ESOP’86

E. Trias, J. Navas, E. S. Ackley, S. Forrest, and M. Hermeredifficient Representations
for Set-Sharing Analysis. TR-CLIP9/2008.0, Univ. of New Mexic603.

E. Zaffanella, R. Bagnara, and P. M. Hill. Widening ShariRBDP’99.

