
Efficient Implementation of General Negation

Using Abstract Interpretation

Susana Muñoz Juan José Moreno Manuel Hermenegildo

Abstract

While negation has been a very active area of research in logic program-
ming, comparatively few papers have been devoted to implementation issues.
Furthermore, the negation-related capabilities of current Prolog systems are
limited. We recently presented a novel method for incorporating negation in
a Prolog compiler which takes a number of existing methods (some modified
and improved) and uses them in a combined fashion. The method makes use
of information provided by a global analysis of the source code. Our pre-
vious work focused on the systematic description of the techniques and the
reasoning about correctness and completeness of the method, but provided no
experimental evidence to evaluate the proposal. In this paper, after proposing
some extensions to the method, we provide experimental data which indicates
that the method is not only feasible but also quite promising from the effi-
ciency point of view. In addition, the tests have provided new insight as to
how to improve the proposal further. Abstract interpretation techniques (in
particular those included in the Ciao Prolog system preprocessor) have had a
significant role in the success of the technique.

Keywords: Negation in Logic Programming, Constraint Logic Program-

ming, Program Analysis, Implementations of Logic Programming, Abstract

Interpretation.

1 Introduction

The fundamental idea behind Logic Programming (LP) is to use a computable subset
of logic as a programming language. Probably, negation is the most significant
aspect of logic that was not included from the start. This is due to the fact that
dealing with negation involves significant additional complexity. However, negation
has an important role for example in knowledge representation, where many of its
uses cannot be simulated by positive programs. Declarative modeling of problem
specifications typically also include negative as well as positive characteristics of the
domain of the problem. Negation is also useful in the management of databases,
program composition, manipulation and transformation, and default reasoning, etc.

Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660
Madrid, Spain, E-mail: susana|jjmoreno|herme@fi.upm.es.

The perceived importance of negation has resulted in significant research and the
proposal of many alternative ways to understand and incorporate negation into LP.
The problems involved start already at the semantic level and the different proposals
(negation as failure, stable models, well founded semantics, explicit negation, etc.)
differ not only in expressivity but also in semantics. Presumably as a result of this,
implementation aspects have received comparatively little attention. A search on the
The Collection of Computer Science Bibliographies [14] with the keyword “negation”
yields nearly 60 papers, but only 2 include implementation in the keywords, and
fewer than 10 treat implementation issues at all.

Perhaps because of this, the negation techniques supported by current Prolog
compilers are rather limited:

• Negation as failure (sound only under some circumstances) is a built-in or
library in most Prolog compilers (Quintus, SICStus, Ciao, BinProlog, etc.).

• The “delay technique” (applying negation as failure only when the variables
of the negated goal become ground, which is sound but incomplete due to the
possibility of floundering) is present in Nu-Prolog, Gödel, and Prolog systems
which implement delays (most of those above).

• Constructive negation was announced in early versions Eclipse, but appears
to have been removed from more recent releases.

Our objective is to design and implement a practical form of negation and incorpo-
rate it into a Prolog compiler. In [21] we studied systematically what we understood
to be the most interesting existing proposals: negation as failure (naf) [8], use of
delays to apply naf in a secure way [18], intensional negation [1, 2], and constructive
negation [6, 7]. We could not find a single technique that offered both completeness
and an efficient implementation. However, we proposed to use a combination of
these techniques and that information from a static analysis of the program could
be used to reduce the cost of selecting among techniques. We provided a coherent
presentation of the techniques, implementation solutions, and a proof of correctness
for the method, but we did not provide any experimental evidence to support the
proposal. This is the purpose of this paper. We also sketch an implementation for
constructive negation, which was missing from [21].

One problem that we face is the lack of a good collection of benchmarks using
negation to be used in the tests. One of the reasons has been discussed before: there
are few papers about implementation of negation. Another fact is that negation is
typically used in small parts of programs and is not one of their main components.
We have however collected a number of examples using negation from logic pro-
gramming textbooks, research papers, and our own experience teaching Prolog.

We have tested these examples with all of our techniques in order to establish
their efficiency. We have also measured the improvement of efficiency thanks to the
use of the static analyzers. We have used the Ciao system [4] that is an efficient
Prolog implementation and incorporates all the needed static analyses. However, it
is important to point out that the techniques used are fairly standard, so they can
be incorporated into almost any Prolog compiler.

2

In both cases the results have been very interesting. The comparison of the
techniques has allowed us to improve the right order in which to apply them. Fur-
thermore, we have learned that the impact of the use of the information from the
analyzers is quite significant.

The rest of the paper is organized as follows. Section 2 presents more details on
our method to handle negation and how it has been included in the Ciao system.
Section 3 presents the evaluation of the techniques and how the results have helped
us reformulate our strategy. The impact of the use of abstract interpretation is
studied in 3.3.

2 Implementation of a Negation System

In this section we present the techniques from the literature which we have integrated
in a uniform framework. The techniques and the proposed combination share the
following characteristics:

• We are interested in techniques with a single and simple semantics. The sim-
plest alternative is to use the Closed Word Assumption (CWA) [8] by program
completion and Kunen’s 3-valued semantics [12]. These semantics will be the
basis for soundness results.

• Another important issue is that they must be “constructive”, i.e., program
execution should produce adequate goal variable values for making a negated
goal false. Chan’s constructive negation [6, 7] fulfills both objectives. However,
it is difficult to implement and expensive in terms of execution resources. Our
idea is to use the simplest technique for each particular case.

• The formulations need to be uniform in order to allow the mixture of tech-
niques. We also need to establish sufficient correctness conditions to use them.

• We also provide a Prolog implementation of each of the techniques. This allows
combining the implementations as also obtaining a portable implementation
of negation.

2.1 Negation as failure and delays

Clark’s negation as finite failure rule [8] states that ¬Q is a consequence of a program
P if there exists a finitely failed SLD tree for the query Q with respect to P (in short,
if Q finitely fails). Prolog systems typically include the following implementation:

naf(Q) :- Q, !, fail.

naf(Q).
which is unsound unless the free variables of Q are constrained. A correct simpli-
fication is to apply the technique when Q has no free variables. This technique is
adapted to a sound version usually by using delay directives (e.g., when) to ensure
that the call to negation as failure is made only when the variables of the negated
goal are ground. A call to ¬p(X) is replaced by:

..., (delay (X), naf(p(X))), ...

3

2.2 Disequality constraints

An instrumental step in order to manage negation in a more advanced way is to be
able to handle disequalities between terms such as t1 6= t2. Prolog implementations
typically include only the built-in predicate =̄ which can only work with disequalities
if both terms are ground and simply succeedss in the presence of free variables. A
“constructive” behaviour must allow the “binding” of a variable with a disequality,
i.e., the solution to the goal X =̄ t would be the constraint X 6= t. This is exactly an
implementation of CLP(H) (constraints over the Herbrand Universe with equality
and disequality). Several CLP extensions of Prolog (Prolog III for instance) include
this feature but it is not usually available in Prolog compilers. However, it can be
included at a relatively low cost [21].

The starting point is an adequate representation of constraint answers. A dise-
quation c(X, a) 6= c(b, Y) produces a disjunction X 6= b ∨ Y 6= a. So, conjunctions
of disjunctions of disequations are used as normal forms. On the other hand, the
negation of an equation X = t(Y) produces the universal quantification of the free
variables in the equation, unless a more external quantification affects them. The
negation of such an equation is ∀ Y X 6= t(Y). Universally quantified disequations
are allowed in the constraints too. Therefore, the normal form of constraints is:

∧

i

(Xi = ti)

︸ ︷︷ ︸

positive information

∧
∨

j

∀ Z
1

j (Y 1

j 6= s1

j) ∧ . . . ∧
∨

l

∀ Zl
n
(Y n

l 6= sn
l)

︸ ︷︷ ︸

negative information

where each Xi appears only in Xi = ti, none sr
k is Y r

k and the universal quantifica-
tion could be empty (leaving a simple disequality). In [21] details can be found on
how this normal form is computed and preserved by unification, equalities, and dise-
qualities. For the Prolog implementation we use attributed variables [11] (included,
for instance, in SICStus Prolog or Ciao Prolog, and also in Eclipse in the form of
“meta-structures”). Attributed variables are variables with an associated attribute,
which is a term. They behave like ordinary variables, except that the programmer
can supply code for unification, printing facilities and memory management which
is called when such variables are involved. In our case, we will associate to each
variable a data structure containing a normal form constraint. The main task is to
provide new unification code. To this end, once the unification of a variable X with
a term t is triggered, there are three possible cases (up to commutativity):

1. if X is a free variable and t is not a variable with a negative constraint, X is
just bound to t;

2. if X is a free variable or bound to a term t′ and t is a variable Y with a negative
constraint, we need to check if X (or, equivalently, t′) satisfies the constraint
associated with Y ;

3. if X is bound to a term t′ and t is a term (or a variable bound to a term), the
classical unification algorithm can be used.

A predicate =/=, used to check disequalities, is defined in a similar way to explicit
unification (=). The main difference is that it incorporates negative constraints
instead of bindings and the decomposition step can produce disjunctions.

4

The attribute/constraint of a variable is represented as a list of lists of pairs
(variable, term) using a constructor /, i.e., the disequality X 6= 1 is represented as
X/1. The outer list is used to represent a disjunction while the inner lists represent
conjunctions of disequalities. When a universal quantification is used in a disequality
(e.g., ∀Y X 6= c(Y)) the new constructor fA/2 is used (the previous constraint is
represented as fA(Y, X / c(Y)).

2.3 Constructive negation for finite solutions

Constructive negation is generally accepted as the “right” method to handle negation
(when Kunen’s 3-valued semantics are used). It was proposed by Chan in two
steps [6, 7], and later formalized by Stuckey [22] in the context of CLP. The first of
Chan’s papers presented the main idea –in order to obtain the solutions for ¬Q we
proceed as follows:

1. Firstly, the solutions for Q are obtained getting a disjunction: Q ≡ S1 ∨ S2 ∨
...∨ Sn. Each component Si can be understood as a conjunction of equalities:
Si ≡ S1

i ∧ S2

i ∧ . . . ∧ Smi

i

2. Then the formula is negated and a normal form constraint is obtained:

¬Q ≡ ¬(S1 ∨ S2 ∨ . . . ∨ Sn) ≡
¬S1 ∧ ¬S2 ∧ . . . ∧ ¬Sn ≡
¬(S1

1
∧ . . . ∧ Sm1

1) ∧ . . . ∧ ¬(S1

n ∧ . . . ∧ Smn
n) ≡

(¬S1

1
∨ . . . ∨ ¬Sm1

1) ∧ . . . ∧ (¬S1

n ∨ . . . ∨ ¬Smn
n)

The formula can be obtained in different ways depending on how we negate a
solution. It can also be arranged into a disjunction of conjunctions according
to the variables in each Sj

i .

However, this method is not applicable when the negated goal Q has infinitely
many answers. For this reason, this paper was considered “in error” and the second
one, which solves the problem, is typically used as the correct reference. However,
we found this simpler finite version worth exploring because its implementation is
easier than full constructive negation, and it can be used if the number of solutions
can be determined to be finite. To this end, we have implemented a Prolog predicate
cnegf(Q) to implement finite constructive negation, which works as follows:

1. First of all, all variables V of the goal Q are obtained.

2. Then, all Q’s solutions for variables in V are computed using setof/3. Each
solution is a constraint in normal form.

3. Finally, the negation of each solution is computed and combined to obtain the
answers of ¬Q one by one.

The last point is the most important one and several alternatives are possible.
Thanks to our normal form for constraints we designed a method [16, 21] that
simplifies Chan’s one while the search space is smaller. Additionally, for each solu-
tion, each possibility of the negation is combined with one of the others. All these
different solutions are obtained by backtracking.

5

2.4 Intensional negation and universal quantification

Intensional negation is a novel approach to obtain the program completion by trans-
forming the original program into a new one that introduces the “only if” part of the
predicate definitions (i.e., interpreting implications as equivalences). Informally, the
complement of the terms of the heads of the positive clauses are computed and they
are used later as the head of the negated predicate. Given the program (from [1]):

even(0).

even(s(s(X))) :- even(X).

a new predicate not even is generated that succeeds when even fails:

not even(s(0)).

not even(s(s(X))) :- not even(X).

Even with this informal presentation, it is easy to find two problems with this
technique. The first one is related to the presence of new logical variables in the
body of a clause. The new program needs to handle some kind of universal quantifi-
cation construct. Another problem affects the outcomes of the program: while the
new program is semantically equivalent to the completed program, the operational
behavior can differ. When called with free variables in the goal, the new predicate
can generate all the possible values one by one, even when a more general answer
can be given. The predicate p defined by the single clause p(X,X). is negated by:

not p(X, Y) :- not eq(X, Y).

assuming that the program only works with natural numbers with 0 and succ. The
query not p(X,Y), with an obvious solution X 6= Y , will generate infinitely many
answers. An answer like X 6= Y can only be replaced by an infinite number of
equalities.

We reformulate the transformation by using constraints instead of concrete terms
(we assume that disequality constraints are supported using the previously presented
technique). Our transformation, when applied to the previous examples, produces
the following code:

not even(X) :- X =/= 0, fA(Y, X =/= s(s(Y))).

not even(s(s(X))) :- not even(X).

not p(X, Y) :- X =/= Y.

The transformation is fully formalized in [21] and differs from the original one [2]
in some significant points. While the original transformation is limited to a restricted
class of programs (that models all programs applying a second transformation), our
transformation applies to all kinds of programs. Furthermore, it maintains compact
outcomes and is designed to produce efficient code. The key point is the use of a
single constraint to express the complement of a term, instead of a set of terms.

Let us come back to the universal quantification problem. When a program like
this is processed:

has even(L) :- member(X, L), even(X).

the transformed program is the following:

not has even(L) :- forall([X], (not member(X, L); not even(X))).

6

The efficient implementation of universally quantified goals is not an easy task.
In fact it is an undecidable problem. Our implementation is based on two ideas:

1. A universal quantification of the goal Q over a variable X succeeds when Q
succeeds without binding (or constraining) X.

2. A universal quantification of Q over X is true if Q is true for all possible values
for the variable X.

It is not possible to generate all possible values (in the presence of a constructor
of arity greater than 0) but we can generate all the possible skeletons of values, using
new variables. Now, the universal quantification is tested for all this terms, using
the new variables in the quantification.

These skeletons are generated incrementally. We start with the simplest one: a
variable X. From one skeleton the next one is generated by choosing one term and
one variable Y in this term. Given all the possible constructor skeletons (i.e., all
program constructors applied to fresh variables) t1, . . . , tm a new skeleton is obtained
by replacing the variable Y by each ti. A Cantor’s diagonalization (a method to
implement a breadth first strategy of Cartesian products) is used to ensure that all
skeletons are generated and checked. For the actual implementation, skeletons do
not use variables but new constants that do not appear in the program, i.e., “Skolem
constants”. Notice that the skeletons grow incrementally, so we only need to check
the most recently included terms. The other ones have been checked before and
there is no reason to do it again.

As an example, consider a program which uses only natural numbers: the se-
quence of skeletons for the goal ∀ X,Y, Z p(X,Y, Z) will be the following (where
Sk(i), with i a number, represents the ith Skolem constant).

S1 = [(Sk(1), Sk(2), Sk(3))]
S2 = [(0, Sk(1), Sk(2)), (s(Sk(1)), Sk(2), Sk(3))]

S3 = [(0, 0, Sk(1)), (0, s(Sk(1)), Sk(2)), (s(Sk(1)), Sk(2), Sk(3))]

S4 = [(0, 0, 0), (0, 0, s(Sk(1))), (0, s(Sk(1)), Sk(2)), (s(Sk(1)), Sk(2), Sk(3))]

S5 = [(0, 0, 0), (0, 0, s(0)), (0, 0, s(s(Sk(1)))), (0, s(Sk(1)), Sk(2)),

(s(Sk(1)), Sk(2), Sk(3))]
S6 = . . .

In each step, only two elements need to be checked, those that appear underlined.
The rest are part of the previous skeleton and they do not need to be checked again.

Universal quantification is implemented by means of the predicate for all([X1,

..., Xn], Q, D, S), where X1, . . . , Xn are the universal quantified variables, Q
is the goal or predicate, D is the depth to which we want to generate skeletons,
and S is an output parameter indicating the success of the evaluation. The initial
skeleton S1 = [Sk(1), . . . , Sk(n)] of depth 1 is tried. If the goal Q/S1 is true then
the quantification is true. If it fails for a ground case, the quantification is false.
Otherwise, the next skeleton of depth 2 is generated and we proceed with it, until a
result is obtained or the maximum depth is reached. If the for all/4 predicate is not
able to achieve a solution at this depth, the predicate informs that it is not possible
by binding S to unknown).

A metapredicate call not(P (X), S) is used to call the adequate version of
not P and return the corresponding result in S.

7

The query evaluation process does not ensure completeness. There are some cases
when the generation of skeletons does not find one which is correct or incorrect and
the maximum depth is reached. Nevertheless, this solution fails to work properly
in very particular cases. Remember that we are not interested in giving the user a
universal quantification operator, but just to implement the code coming from the
transformation of a negated predicate.

2.5 General constructive negation

Full constructive negation is needed when all the previous techniques are not appli-
cable. While there are several papers treating theoretical aspects of it, we have not
found papers dealing with its implementation. The original papers by Chan gave
some hints about a possible implementation based on coroutining, but the technique
was just sketched. When we have tried to reconstruct it we have found several prob-
lems including floundering (in fact it seems to be the reason why constructive nega-
tion has been removed from recent Eclipse versions). Thus, we decided to design
an implementation from scratch. Up to now, we have achieved only a very simple
implementation that certainly needs to be improved. We will sketch the main ideas
of the implementation (although this is not the main goal of the paper and we hope
to report the details in a forthcoming paper). Recall that we want to use a standard
Prolog implementation, so we will avoid implementation-level manipulations.

Full constructive negation can be briefly described in the following terms: In
order to compute ¬Q we start an SLD computation for the goal Q. A frontier
of Q is a finite set of nodes of the SLD resolution tree such that every resolution
branch of Q is either a failure or passes through exactly one node in the set. A
frontier can be expressed as {(θ1, Q1), . . . , (θm, Qm)}, where each θi is a substitu-
tion and Qi is a subgoal. Any frontier can be interpreted as the logic formula
(θ1 ∧ Q1) ∨ . . . ∨ (θm ∧ Qm) (viewing substitutions as equalities) that is equiv-
alent to the original goal Q. To obtain the negation of Q is enough to negate the
frontier formula. This is done by negating each component of the disjunction and
combining the results. Most of the elements needed for the implementation of the
method are also needed for the finite constructive negation case. We already have
some code to negate a substitution (that must be reformulated to include predicate
calls that can appear in each Qi), and code to combine the negated solutions.

What is missing is a method to generate the frontier. Up to now we are using
the simplest frontier possible: the frontier of depth 1 obtained by doing all possible
single steps of SLD resolution. Simple inspection of the applicable clauses can do
this. However, we plan to improve it by using abstract interpretation again and
detecting the degree of evaluation of a term that the execution will generate.

Using these ideas we have implemented a predicate cneg for full constructive
negation. Built-in based goals have a special treatment (moving conjunctions into
disjunctions, disjunctions into conjunction, eliminating double negations, etc.)

8

2.6 Implementing negation

Once we have described the main methods implemented together with their limita-
tions, we introduce our most novel proposal: a method for combining these tech-
niques in order to get a correct, complete, and efficient system to handle negation.
Our strategy tries to use the simplest possible negation technique for each particular
case. Information from global program analysis and some heuristics are used to se-
lect among techniques and to optimize the computations involved in the processing
of negation. We assume that correct and acceptably accurate analyses are available
for the properties of groundness (variables that are bound to a ground term in a
certain point of the program), goal delay (identification of delay literals which will
not delay, possibly after reordering), and finiteness of the number of solutions.

Our first goal is to produce a (pseudo)predicate neg which will compute construc-
tively the negation of any Prolog (sub)goal ¬G(X), selecting the most appropriate
technique. We would also like to generate a specialized version of neg for each
negated literal in the program (each call to neg), using only the simplest technique
required. In this process:

1. Groundness of X is checked before the call to G. On success simple negation
as failure is applied, i.e., it is compiled to naf(G(X)).1

2. Otherwise, a new program replacing the goal by (delay(X), naf(G(X))) is
generated. Then the “elimination of delays” technique is applied to the new
program. If the analysis and the program transformation are able to remove
the delay (perhaps moving the goal) the resulting program is used.2

3. Otherwise, the finiteness analysis is applied to G(X). In case of success, then
finite constructive negation can be used, transforming the negated goal into
cnegf(G(X)).

4. Otherwise, the intensional negation approach is tried by generating the negated
predicates and replacing the goal by call not(G(X), S). During this process
new negated goals can appear and the same compiler strategy is applied to
each of them. If S is bound to success or fail then negation is solved.

5. If everything fails, full constructive negation must be used and the executed
goal is cneg(G(X)).

The strategy is complete and sound with respect to Kunen 3-valued semantics.
This follows from the soundness of the negation techniques, the correctness of the
analysis, and the completeness of constructive negation.

The method can be expressed as a Prolog program scheme (in the sense that
properties of the analyzers and our Prolog predicates are mixed) in the following
way:

neg(Pred):- ground(Pred),!,naf(Pred).

% Ground calls. Negation as failure is used.

1Since floundering is undecidable, the analysis only provides an approximation of the cases
where negation as failure can be applied safely. This means that maybe we are avoiding to use the
technique even in cases that it could work properly.

2Again, the approximation of the analysis could forbid us to apply the methodtar in some cases
in which it might still provide a sound result.

9

neg(Pred):- finite(Pred),!,cnegf(Pred).

% Finite number of solutions. Finite constructive negation.

neg(Pred):- call_not(Pred, S), S==success, !.

% Intensional negation. Checking of adequate result.

neg(Pred):- cneg(Pred).

% Full constructive negation.

Let us illustrate the behavior of the method by using some simple examples. Con-
sider the following program:
less(0, s(Y)).
less(s(X), s(Y)) :- less(X, Y).

p1(X) :- member(X, [0, s(0)]),
neg(less(X, s(0))).

p2(X) :- neg(less(X, s(0))),
member(X, [0, s(0)]).

member(X, [X|L]).
member(X, [Y|L]) :- member(X, L).

p3(X) :- neg(less(X, s(s(0)))).

p4(X) :- neg(less(s(0), X)).

p5(X) :- neg(less(X, s(X))).

Each of the pi predicates requires a different variant. For p1 the groundness test for
variable X succeeds and simple negation as failure can be used, so it behaves as:

p1(X) :- member(X, [0, s(0)]), naf(less(X, s(0))).

?- p1(X).

X = s(0)

Applying the “elimination of delays” analysis to program:

p2(X) :- (delay(X), naf(less(X, s(0)))), member(X, [0, s(0)]).

the delay can be eliminated, reordering the goals as follows:

p2(X) :- member(X, [0, s(0)]), naf(less(X, s(0))).

?- p2(X).

X = s(0)

The case for p3 is solved because the finiteness test can be proved to succeed, so the
program is rewritten as:

p3(X) :- cnegf(less(X, s(s(0)))).

?- p3(X).

X / 0 , X / s(0)

p4 needs intensional negation, so the generated program is:

not__less(W, Z) :- W =/= 0, fA(X, W =/= s(X)), fA(Y, Z =/= s(Y)).

not__less(s(X), s(Y)) :- not__less(X, Y).

p4(X) :- not__less(s(0), X).

?- p4(X).

X = 0 ?;

X = s(0)

Finally, p5 needs full constructive negation because the intensional approach is not
able to give a result:

p5(X) :- cneg(less(X, s(X))).

?- p5(X).

no

10

3 Evaluating the strategy

3.1 Example programs

As mentioned earlier, one problem that we have faced is the lack of a good collection
of benchmarks using negation to be used in the tests. We have however collected
a number of examples using negation from logic programming textbooks, research
papers, and our own experience teaching Prolog:

• disjoint: Simple code to verify that two lists have no common elements.
Negation is used to check that elements of the first list are not in the second
one.

• jugs: There are two jugs, one holding 3 and the other 5 gallons of water, they
are both full at the beginning. Jugs can be filled, emptied, and dumped one
into the other either until the poured-into jug is full or until the poured-out-of
jug is empty. Devise a sequence of actions that will produce 4 gallons of water
in the larger jug. Negation is used to check that the status of the jugs is not
repeated during the process.

• robot: Simulation of the behavior of a robot in an artificial word attending
to external perceptions. Negation is used to check that possible new positions
for the robot are not dangerous.

• trie: Having a list of words and files it finds the list of word-FileList couples
that shows the sublist of files, from an initial list, where each word appears.
Negation is used when reading words to find the first character that is not
alphanumeric.

• numbers9: An implementation of balanced tree structures. Negation is used
to detect impossible cases.

• closure: Transitive closure of a network. Negation is used to avoid infinite
loops (detecting repeated nodes). From [19] page 169. (We have studied two
implementations of this example.)

• union: Union of two lists without repetitions. To check if an element X
appears in both lists L1, L2 a call to neg(member (X, L1)) is used. From [19]
page 154.

• include: include(P,Xs, Y s) is true when Ys is the list of the elements of Xs
such that P (X) is true. Negation is used to detect elements that do not satisfy
the property P (X). From [19] page 227.

• flatten: Flattening a list using difference-lists. Negation is used to consider
lists that are not empty. From [13] Program 915.2, page 241.

• lessNodd: Returns the list of odd natural numbers that are less than a num-
ber N. Negation is used to control that a number is not even.

• friend: Deduces the relation of friendship between two people using the stored
information from a database. Negation is used to restrict the category of
friends of a person to those people that are not ancestors or descendants of
that person. (We have studied two implementations of this example.)

11

programs const. naf/delay ratio fin.const. ratio intens. ratio

disjoint1 7440 780 9.5 2740 2.7 - -

disjoint2 3330 - - 1120 2.9 - -

jugs 8140 859 9.4 2175 3.7 <1 x

robot 4600 1310 3.5 1900 2.4 - -

trie 8950 1850 4.8 2140 4.1 - -

numbers9 286779 - - - - 25230 11.3

closure1a 5100 730 6.9 1450 3.5 140 36.4

closure2a 3520 560 6.2 900 3.9 100 35.2

closure3a 10550 1700 6.2 2700 3.9 280 37.6

closure1b 26350 D2240 11.7 16460 1.6 8570 3.0

closure2b 17400 D1500 11.6 10580 1.6 5420 3.2

closure3b 16700 D4510 3.7 10120 1.6 16070 1.0

union1 1150 300 3.8 320 3.5 189 6.0

union2 20930 - - 9470 2.2 2940 7.1

include1 9020 1270 7.1 2680 3.3 170 53.0

include2 9910 - - 2995 3.3 - -

flatten 32379 8500 3.8 12570 2.5 10 x

lessNodd1 58980 4850 12.1 17550 3.3 1270 46.4

lessNodd2 7750 1490 5.2 2700 2.8 - -

lessNodd3 >3600000 - - - - 1540 x

friend1a 16150 2280 7.0 - - 39500 0.4

friend2a 17630 <1 x - - 10 x

friend3a 447200 D4430 100.9 - - 43200 10.3

friend4a >3600000 D8750 x - - >3600000 x

friend1b 17350 3020 5.74 - - 9 x

friend2b 17650 <1 x - - 10 x

friend3b 92500 D3060 30.2 - - 43200 2.1

friend4b >3600000 D6050 x - - 171290 x

average 13.0 2.9 18.3

Table 1: Comparing different negation techniques

3.2 Experimental results

We have first measured the execution times in milliseconds for the previous examples
when using all the different (applicable) negation techniques that we have discussed,
and also noted which technique is selected by our strategy. All measurements were
made using Ciao Prolog3 1.5 on a Pentium II at 350 Mhz. Small programs were
executed a sufficient number of times to obtain repeatable data. The results are
shown in Table 1, where the meaning of the different columns is the following:

• const. shows the time taken by general constructive negation, i.e., when the
negated goal uses cneg.

3In fact, the negation system is coded as a library module (a Ciao “package”), which includes
the corresponding syntactic and semantic extensions (the latter using Ciao’s attributed variables).
Such extensions apply locally within each module which uses this negation library.

12

• naf/delay uses either naf directly or within a delay directive. A ‘D’ is placed
before the time in the second case.

• fin.const. is the execution time of the finite version of constructive negation,
cnegf.

• intens. uses the not ‘p’ predicate from the intensional negation program
transformation.

• ratio columns measure the speedup of the technique to their left w.r.t. con-
structive negation.

A ‘–’ in a cell means that the technique is not applicable. When the execution
time is presented in boldface it indicates that this is the technique selected by our
strategy.

It is clear that the technique chosen by our strategy is always equal to or bet-
ter than general constructive negation. In many cases, it is also the best possible
technique. We now study each technique separately:

• Using naf instead of general constructive negation results in speed-ups that
range from 3.5 to 30.2. The average is more than 8.

• The delay technique, when applicable, has a considerable impact, speeding
programs even 100 times.

• The finite version of constructive negation is around 3 times faster than the
general version.

• Intensional negation has a more random behavior. Very significant speed-ups
are interleaved with more modest results and even some slow-down (friend1a).

Probably, the most surprising result is the efficiency of intensional negation. The
transformational approach seems the most adequate in those cases provided that we
restrict the use of the technique to the case where there are no universal quantifica-
tions in the resulting program. On the other hand it is possible that the intensional
program may not be able to produce a result (wasting time) and its use is a dynamic
decision. Although these problems do not arise often in practice, they are a serious
risk. Given the results, we decide to modify the strategy to use intensional negation
as the preferable technique, but only when it can be used safely.

As a general conclusion, our strategy clearly produces considerable benefits. It
preserves the completeness of general constructive negation but typically at a frac-
tion of the cost.

3.3 Measuring the impact of abstract interpretation

As mentioned previously, the selection strategy and the program optimizations
performed make use of information from global program analysis. In our experi-
ments, the information has been obtained and the transformations performed us-
ing the analyzers and specializers that are part of the Ciao system’s preprocessor,
CiaoPP [10, 5].

In particular, from the analysis point of view, the groundness analysis has been
performed using the domain and algorithms described in [17]. In order to eliminate

13

delays a technique is used which, given a program with delays, tries to identify
those that are not needed, perhaps after some safe reordering of literals, as described
in [9, 20]. Finally, in order to determine finiteness in the number of solutions, the
upper bounds complexity and execution cost analysis has been used [15]: note that
an upper bound cost that is not infinity implies a finite number of solutions (an
alternative is [3]).

The transformations have been implemented using the specializer in CiaoPP.
The source programs always make calls to a version of the generic predicate similar
to the neg predicate presented in section 2. The specializer creates specialized
versions of the generic predicate for each literal calling neg in which tests and clauses
are eliminated as determined by the information available from the analyzers. For
example, if the groundness test is proven true at compile-time, the specializer will
automatically eliminate the test and the rest of the clauses of neg and eventually
even replace the literal calling neg with a direct call to naf. The nice thing is that
this is done automatically by CiaoPP without having to write any additional code.

In order to estimate the advantages obtained by using this approach we now
present some experimental results comparing the execution time of the programs
that might be generated without the help of the analyzers and the versions produced
automatically by the Ciao preprocessor. In the first case, the calls to neg always
call (a slightly modified version of) the full version of the neg predicate. Thus, for
example, the groundness test is performed at execution time. The clause to check
the finiteness of the goal and then call cnegf is removed since such checking cannot
be made safely at runtime. Moreover, the delay technique is not used because, in
general, it has the risk of floundering. In contrast, the version obtained with the
help of the analyzers can remove the groundness check, use the reordering proposed
by the elimination of delays, and use the information of the finiteness analysis to
call cnegf.

Table 2 presents the results. We have also added for reference columns showing
the execution time of using naf directly and a secure version of naf, i.e., checking
groundness before. Finally, we have also added the time taken by CiaoPP to perform
the analysis and transformation.

The table reveals that the impact of abstract interpretation is significant enough
to justify its use. For those examples where naf is applicable, the analyzer is able
to detect groundness statically in all the cases, so the call to neg is replaced by
naf. It is worth mentioning that the implementation of the dynamic groundness
test in Ciao is quite efficient (it is performed at a very low level, inherited from
its &-Prolog origins). Even so, the speedup can reach a factor of over 8, and the
average is 2.33. The impact of the elimination of delay is even better in general.
Notice that if the delay technique is not used, intensional negation could be used
instead, which in many cases is a very efficient approach. Even with this drawback,
the use of abstract interpretation is helpful. The finiteness analysis avoids usually
the use of full constructive negation, and the speed-ups are greater than 3. Notice
that the difference between the programs after preprocessing and the direct use of
naf is irrelevant. The code produced by the preprocessor is better than the secure
use of naf because of the elimination of groundness tests.

14

program with pp. without pp. ratio naf ratio secure naf ratio prep.

disjoint1 1020 1700 1.66 780 0.76 1469 1.44 78

jugs 969 8419 8.68 859 0.88 1690 1.74 227

robot 1960 3100 1.58 1310 0.66 1800 0.91 700

trie 1890 2450 1.29 1850 0.97 1900 1.00 508

union1 300 350 1.16 230 0.76 300 1.00 119

closure1a 730 2600 3.56 730 1.00 900 1.23 257

closure2a 570 1970 3.45 560 0.98 670 1.17 257

closure3a 1710 5050 2.95 1700 0.99 2010 1.17 257

include1 1099 1180 1.07 1080 0.98 1270 1.15 178

flatten 8859 9300 1.04 8500 0.95 8080 0.91 168

lessNodd1 7310 8670 1.18 4850 0.66 6300 0.86 58

lessNodd2 1780 1830 1.02 1490 0.83 1590 0.89 58

friend1b 3220 3360 1.04 3020 0.93 3180 0.98 198

friend1a 2820 2860 1.01 2280 0.80 2840 1.00 198

average 2.33 0.86 1.10

closure1b 610 8610 14.11 - - - - 257

closure2b 570 5700 10.00 - - - - 257

closure3b 1800 16300 9.05 - - - - 257

friend3a 3100 43350 13.98 - - - - 198

friend4a 6210 >3600000 x - - - - 198

friend3b 3100 43400 14.00 - - - - 198

friend4b 6210 171495 27.61 - - - - 198

average 14.79

disjoint2 1125 3700 3.28 - - - - 78

union2 9590 21010 2.19 - - - - 119

include2 3070 10010 3.26 - - - - 178

average 5.65

average 2.37 0.86 1.10

Table 2: Impact of program analysis

Acknowledgments

We are grateful to M. Carro and D. Cabeza for providing example programs and to
them, F. Bueno, and G. Puebla for their support using the Ciao system preprocessor.
This work was funded in part by CICYT project EDIPIA (TIC99-1151).

References

[1] R. Barbuti, D. Mancarella, D. Pedreschi, and F. Turini. Intensional negation of logic
programs. Lecture notes on Computer Science, 250:96–110, 1987.

[2] R. Barbuti, D. Mancarella, D. Pedreschi, and F. Turini. A transformational approach
to negation in logic programming. JLP, 8(3):201–228, 1990.

[3] C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality analysis
of Prolog. In ILPS, pages 457–471. The MIT Press, 1994.

15

[4] F. Bueno. The CIAO Multiparadigm Compiler: A User’s Manual, 1995.

[5] F. Bueno, P. López-Garćıa, G. Puebla, and M. Hermenegildo. The Ciao Prolog
Preprocessor. Technical Report CLIP8/95.0.7.20, Technical University of Madrid
(UPM), Facultad de Informática, 28660 Boadilla del Monte, Madrid, Spain, 1999.

[6] D. Chan. Constructive negation based on the complete database. In Proc. Int.

Conference on LP’88, pages 111–125. The MIT Press, 1988.

[7] D. Chan. An extension of constructive negation and its application in coroutining.
In Proc. NACLP’89, pages 477–493. The MIT Press, 1989.

[8] K. L. Clark. Negation as failure. In J. Minker H. Gallaire, editor, Logic and Data

Bases, pages 293–322, New York, NY, 1978.

[9] M. Garćıa de la Banda, K. Marriott, and P. Stuckey. Efficient analysis of constraint
logic programs with dynamic scheduling. In 1995 ILPS, pages 417–431. The MIT
Press, 1995.

[10] M. Hermenegildo, F. Bueno, G. Puebla, and P. López-Garćıa. Program Analysis,
Debugging and Optimization Using the Ciao System Preprocessor. In 1999 ICLP,
pages 52–66, Cambridge, MA, November 1999. MIT Press.

[11] C. Holzbaur. Metastructures vs. attributed variables in the contex of extensible
unification. Implementation and LP LNC S631, pages 260–268, 1992.

[12] K. Kunen. Negation in logic programming. JLP, 4:289–308, 1987.

[13] E. Shapiro L. Sterling. The Art of Prolog. The MIT Press, 1987.

[14] The Collection of Computer Science Bibliographies.
http://liinwww.ira.uka.de/bibliography/LogicProgramming/index.html.

[15] P. López-Garćıa, M. Hermenegildo, S. Debray, and N. W. Lin. Lower bound cost
estimation for logic programs. In 1997 ILPS. MIT Press, 1997.

[16] J.J. Moreno-Navarro. Default rules: An extension of constructive negation for
narrowing-based languages. In Proc. ICLP’94, pages 535–549. The MIT Press, 1994.

[17] K. Muthukumar and M. Hermenegildo. Compile-time derivation of variable depen-
dency using abstract interpretation. JLP, 13(2/3):315–347, July 1992.

[18] L. Naish. Negation and Control in Prolog. In LNCS, number 238. Springer-Verlag,
1985.

[19] R. A. O’Keefe. The Craft of Prolog. The MIT Press, 1990.

[20] G. Puebla, M. Garćıa de la Banda, K. Marriott, and P. Stuckey. Optimization of
Logic Programs with Dynamic Scheduling. In 1997 International Conference on LP,
pages 93–107, Cambridge, MA, June 1997. MIT Press.

[21] J.J. Moreno S. Muñoz. How to incorporate negation in a prolog compiler. In V. San-
tos Costa E. Pontelli, editor, 2nd International Workshop PADL’2000, volume 1753
of LNCS, pages 124–140, Boston, MA (USA), 2000. Springer.

[22] P. Stuckey. Constructive negation for constraint logic programming. In Proc. IEEE

Symp. on Logic in Computer Science, volume 660. IEEE Comp. Soc. Press, 1991.

16

