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Abstract. Suspension-based tabling systems have to save and restore
computation states belonging to OR branches. Stack freezing combined
with (forward) trailing is among the better-known implementation ap-
proaches for this purpose. Resuming a goal using this technique reinstalls
the bindings for all the variables in the environment where the goal was
suspended. In this paper we explore an alternative approach where vari-
ables can keep track of several bindings, associated with suspensions.
Resuming a goal boils down to determining which suspension has to
be resumed, in order to select, when dereferencing, the bindings which
were active at the moment of suspending. We present the ideas behind
this approach, highlight several advantages over other suspension-based
implementations, and perform an experimental evaluation. We also re-
call the similarity between OR-parallelism and suspension-based imple-
mentations of tabling, and discuss similarities with the Version Vectors

Method, among others.
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1 Introduction

Tabling [1–3] is a strategy for executing logic programs which memoizes already
processed calls and their answers to improve several of the limitations of the SLD
resolution strategy. It guarantees termination for programs with the bounded
term size property, improves efficiency in programs which repeatedly perform
some computation, and has been successfully applied to deductive databases [4],
program analysis [5, 6], semantic Web reasoning [7], model checking [8], etc.

There are two main approaches for the implementation of tabling: suspension-

based tabling and linear tabling. In suspension-based tabling the computation
state of suspended tabled subgoals has to be preserved to avoid backtracking
over them. This is done either by freezing the stacks, as in XSB [9], by copy-
ing to another area, as in CAT [10], or by using an intermediate solution as in
CHAT [11]. Linear tabling maintains instead a single execution tree without re-
quiring suspension and resumption of sub-computations. The computation of the
(local) fixpoint is performed by failing on branches which loop and reexecuting
them when there is an answer (obtained from some other branch) for the looping
goal, until no more solutions are found. Examples of this method are the linear
tabling of B-Prolog [12, 13] and the DRA scheme [14]. Suspension-based mecha-
nisms achieve very good performance but, in general, they need more memory,



used to freeze consumer states and to save answers to be reused. Linear mecha-
nisms, on the other hand, do not use memory to freeze computations, but their
efficiency is affected by subgoal recomputation.

The most successful suspension-based implementations of tabling are based
on trail management. In these, suspension and resumption operations, which
allow stopping the execution in a part of the search tree and restarting it in a
different node, use the regular trail and/or a forward trail to record the bindings
made in the execution path between two nodes (saved as choicepoints in the
corresponding stack) and to remember which bindings have to be reinstalled.
This technique can perform speculative work if the bindings which are reinstalled
are not used.

In order not to incur in the possible overheads stemming from reinstalling
bindings which are not going to be used, we propose an implementation based
on using variables with multiple bindings (Multi Value Binding variables). A
global flag indicating which consumer is active at each moment is used as a key

to retrieve, from a MVB, the value corresponding to that consumer. Therefore,
switching to a consumer is a constant-time operation, triggered by giving this
global flag the appropriate value. In turn, and in our current implementation,
variable access is not constant-time any more.3 Herein, we present and evaluate
an implementation of this idea.

2 Tabling and Variable Management

We start by providing a brief introduction to tabling. Due to space limitations
several details of the implementation of tabling based on suspension are not
discussed. For a more complete description, the reader is referred to [9, 11, 15].

Tabling Basics: Tabling changes the operational semantics for predicates
marked with the :- table declaration. The compiler and runtime system dis-
tinguish the first occurrence of a goal marked as tabled (the generator) and
subsequent variant calls (the consumers). The generator applies resolution us-
ing the program clauses to derive answers for the goal. When a call identical to a
previous one is found,4 the consumer suspends the current execution path (using
implementation-dependent means) and starts execution on a different branch.

When an alternative branch finally succeeds, the answer generated for the
initial query is inserted in a table associated with the original goal. This makes
it possible to reactivate suspended calls and to continue execution at the point
where they were stopped. Thus, consumers do not use SLD resolution, but ob-
tain instead the answers from the table where they were previously inserted by
the generator. Predicates not marked as tabled are executed according to SLD
resolution, hopefully with minimal overhead due to the availability of tabling.
The overall process can be seen graphically as the ability to suspend execution in

3 We are not taking into account the dereferencing cost here, assuming instead that
it is a constant-time operation which was already present in the system.

4 Which would enter an infinite loop in SLD resolution.



a part of the tree which cannot progress (because it enters a loop) and continue
it somewhere else, where a solution for the looping goal can be produced.
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Fig. 1. Sharing trail in CHAT.

Tabling Implementations Based

on Trail Management: We use the
CHAT [11] approach in order to il-
lustrate suspension-based techniques
which try to fully reinstall consumer
environments and show that that can
incur in costs due to speculative work.
We have chosen CHAT because of its
simplicity and because we think that
the improved version of CHAT pre-
sented in [16] is among the most ef-
ficient tabling implementations based
on trail management.

CHAT implements suspension by
freezing (i.e., protecting by updating
pointers) the heap and the local stack
and saving the consumer choice points
to be reinstalled when the consumer
is to restart. Consumers keep track of
their conditional bindings (i.e., those bindings appearing in the part of the trail
between the consumer and its leader generator5) to enable them to be reinstalled
later on when resuming. Using a tree structure as conditional binding storage
(Figure 1), each of these bindings is saved only once, although they are shared
between several consumers: the trail of consumer C1 is composed of segments 1,
2 and 4, but segment 2 is shared with consumer C2 and segment 1 is shared also
with consumer C3. The conclusion is that CHAT, just as SLG-WAM, performs
very well with respect to memory usage because it shares all that can be shared
and no bindings are saved twice (see [16] for a detailed explanation of CHAT
trail management). There is, however, a speculative component of work in CHAT
and in all tabling implementations based on trail management. When a consumer
restarts, all of its conditional bindings are reinstalled in the stacks. However, in
general not all of these bindings will be necessary in the rest of the execution
(some of them might not even be visible at that point). Reinstalling them is,
therefore, wasted work. As an extreme example, consider the case of a consumer
that has a (large) number of conditional bindings, which are reinstalled when
the consumer is restarted. If the consumer fails immediately after that, these
bindings will never be accessed and will instead be immediately untrailed.

5 A leader is the generator which marks the following completion point of a consumer.
Originally, the leader of a consumer is its generator, but it can change to previ-
ous generators if the consumer generator cannot be directly completed because of
dependencies.



3 MVB Tabling

One of the aims of MVB-based tabling is to avoid the speculative work of systems
based on trailing. To this end, we have defined a new kind of variable (assigning
a new tag, MVB, to it), which can keep several bindings at once. Depending
on a global flag, which we will name the sid (from Suspension Identifier), the
correct binding of a variable is accessed. Therefore, dereferencing a variable can,
under this approach, be seen as a function:

Deref : Variable × SuspensionId −→ Value

which can retrieve the value a given variable had when a suspension was per-
formed if we provide the identifier of such a suspension.

We now present more details on how this suspension identifier is managed,
and how the multi-value binding variables are accessed and kept up to date.

The Management of the Suspension Identifier: the value of the sid global
flag associated with a normal SLD execution is zero. Whenever a consumer
appears, a new sid is associated with it by incrementing a global counter, last
sid. When a generator completes, last sid and the sid global flag are reset to
the value they had at the moment in which the generator was created —i.e., a
sort of backtracking is performed on the last sid when completing generators.

With this scheme, resuming a consumer boils down to changing the value
of sid to the identifier of the suspension associated with the consumer. Con-
sequently, the bindings accessed through MVB variables will correspond to the
bindings existing when the consumer was suspended.

Which variables are MVB? The variables which have to maintain different
bindings for each consumer are those appearing in the trail between a consumer
and its leader, because these bindings would otherwise be lost on backtracking.
These bindings are associated with the suspension identifier of the consumer
which suspends. For the zero suspension identifier the corresponding variables
behave as normal WAM variables, and they will be unbound on backtracking.

How is an MVB variable implemented? The implementation of MVB
variables is orthogonal to the idea behind them. In our current implementation,
MVB variables keep their bindings using a list relating sids with variable values.
Traversing this list is necessary in order to determine the value a variable has for
some suspension, which makes accessing the value of a variable a non-constant
time operation. The (faster) alternative of using an array indexed by suspension
identifier may need reserving too much memory in advance. Other possibilities,
such as hash tables, are under consideration (and are discussed further in Sec-
tion 5).

It is important to remark that the suspension identifiers for bindings inserted
in the list associated with an MVB are increasing and consecutive, because they
correspond to consumers which have been created on or after the initial cre-
ation of the variable. Not all (conditional) variables will necessarily be bound



to different values in different suspensions. Additionally, a binding of an MVB
can be seen by several consumers, for the same reason that a segment of trail
can be shared between different consumers in CHAT. Therefore, we actually
compress somewhat the list representation. Instead of a single suspension iden-
tifier per node in the list, each binding is associated with a pair of sids which
represent a range of suspensions for which the variable had the same value.
Thus, each of the elements of the list of an MVB variable is a tuple of the form
<bind,first,last>, where bind is the binding for the variable for the sids
between first and last, both included.

To reduce the impact of non-constant variable access, an MVB variable is
equipped with a cache where the last accessed value and the range of suspen-
sion identifiers for which it is valid are stored. If retrieving from the cache fails
(because the sid looked up is not available), the binding is searched for in the
list and the cache is updated. In addition, the list is kept sorted from the most
recent suspensions, with the highest sid, to older suspensions, with a lower sid.
Whenever a new binding is added to the list, its associated sid is necessarily
greater than all the sids associated with existing bindings, because consumers
are generated in a sequential order, and therefore it just has to be added to the
front of the list. Keeping the list sorted improves the efficiency of lookups (see
later a description of how lookups are done).

If an MVB variable is accessed with a sid which does not appear in the MVB
list, the cache is updated to point to a new free value, which allows considerable
memory savings, since the elements of the list will always be bindings. If that
free variable is bound and a suspension is performed later, those bindings will
generate a new element of the MVB list.

This MVB representation is illustrated in Figure 6. For example, in heap
stack number 5 variable B has created an MVB variable pointing to the cache
(which is a free variable associated with sid zero) and then the value 3 associated
with the 〈2, 2〉 range of sids and the value 2 associated with the 〈1, 1〉 range.

Suspensions Nested Inside Resumptions: Assume that consumer A is
restarted and consumer B appears in this restarted execution. There might be
MVB variables of consumer A which are associated with the sid of consumer

A. If consumer B is restarted, some of these variables could be accessed. The
right binding for consumer B is the same as the binding for consumer A, but
the sid associated with consumer B does not belong to that MVB variable and
a free variable would be returned instead.

To solve this problem the dependence between consumer A and consumer

B has to be remembered. Since a consumer can depend directly on at most
another consumer, it is enough to have a single field per consumer to record this
dependency. This dependency is registered when suspending, and the sid of the
consumer which suspends is made to depend on the sid of the consumer within
whose resumption the new consumer has appeared. A sid can of course depend
on other sids transitively.

As sids are generated in sequential order, a suspension can only depend on
another previous suspension, which would have a smaller sid. Therefore when



Term accessMVB(Ref var) {
int sidAux = sid;
<value, first, last> = cache(var);
if (sidAux in [first,last]) return value;
<value,first,last> = firstElem(var);
do {

if (sidAux in [first,last]) {
if (sid == sidAux) updateCacheMVB(var,<value,first,last>);
else updateCacheMVB(var,<value,sid,sid>);
return value;

}
if (sidAux > last) {

sidAux = getDependence(sidAux)
if (!sidAux) {

updateCacheMVB(var,<free var,sid,sid>);
return free var;

}
}
else <value,first,last> = nextElem(var);

} while (hasMoreElem(var));
}

Fig. 2. Pseudo-code for MVB access.

the MVB list is accessed, if the sid S we are looking for is greater than the last
sid of the element of the MVB list under inspection (which means that it is
not going to appear in that list) we can search for the sid which S depends on,
starting at that point in the list. Thanks to the order of sids in the list and
the ordering between dependencies, the MVB variable is traversed at most once,
even if several dependencies are followed. The code for MVB variable access is
shown in Figure 2. Note that we do not advance to the next element if there is
a sid dependency, because the same element should be inspected again.

When are MVB variables created? MVB variables could be created when
suspending a goal, by examining which variables reachable from that goal are
conditional and have been recorded in the trail. However, this in the end needs
to “simulate” backtracking by traversing the choicepoints and the associated
entries in the trail. Since this is going to be done anyway on backtracking, we
have decided to actually create them when backtracking from the consumer
choicepoints. This saves also work when a binding is shared between several
consumers, because regular variables in the shared part are converted into MVB
variables only by one of them. This is in some sense similar to trail sharing (see
Section 2) in CHAT.

A possible solution is to use a special type of backtracking for the choicepoints
associated with tabled execution. When a consumer suspends, the choicepoints
between that consumer and the generator have to be marked to reflect the initial
suspension they belong to. This is done by scanning the choicepoint stack from
the topmost choicepoint (i.e., the one corresponding to the suspending consumer)
until an already marked choicepoint (which belongs to the execution of another



if (!TrailYounger(trailPointer, top(MVBstateStack)) {
createOrUpdateMVB(trailPointer);
trailPointer = trailPointer − 1;
top(MVBstateStack) = trailPointer;
if (top(MVBstateStack) == pre top(MVBstateStack)) pop(MVBstateStack);

}
else Untrail(trailPointer);

Fig. 3. Pseudo-code for MVB untrail.

suspended consumer) is found. On backtracking, MVB variables would have to
be created and associated with a range of suspensions. The sid range associated
with these variables is the one which goes from the mark associated with the
choicepoint where that variable was trailed to that of the last consumer which
suspended. This is, however, difficult to implement in systems which discard
choicepoints just before the last alternative is taken (this includes our imple-
mentation platform, Ciao [17]): in such cases the bindings of such an alternative
would be wrongly associated with the sid of the previous choicepoint sid mark.
Non-trivial changes to the stack management have to be made to avoid this (i.e.,
not removing a choicepoint when the last alternative is taken), and a memory
optimization will be lost.

Our solution is implemented in the untrail operation, and the idea is to use
an additional stack (the MVBstateStack) which will implement a mechanism
similar to the choicepoint-based one, but where the MVBstateStack keeps track
only of the fields which would otherwise go in the choicepoints. This makes
it possible to make these fields survive choicepoint removal without having to
fiddle around with the choicepoint management and keeping its “last alternative
optimization.”

Each time a consumer suspends, the pointer to the top of the trail is pushed
onto the MVBstateStack, and it is associated with the sid of the consumer
which suspends. When performing untrailing, if the trail pointer is equal to the
value of the topmost element of MVBstateStack, we create an MVB variable (or
insert a new binding in the MVB list if it was already created) and the current
binding is associated with the suspension range from the sid corresponding to
the topmost element of MVBstateStack and the last consumer which suspended,
last sid. The trail pointer stored at the top of the MVBstateStack is then
decremented, and if it is equal to the previous element in MVBstateStack, it
is popped out because the following value to be untrailed is also shared with
previous consumers.

The code of the new untrail operation is shown in Figure 3. This can obviously
be made more efficient, but we are showing a simple version for clarity.

When Are MVB Variables Removed? When a generator is completed,
none of the MVB variables (or, more precisely, none of their bindings) created
within its execution are needed any longer. As we want to interfere as little as
possible with the existing backtracking / untrailing mechanism, each time an
MVB variable is created (or updated) it is recorded in a list associated with the



last generator. On generator completion, the bindings added under the subtree
of that generator are removed. If all of the elements of the MVB list are removed,
the MVB variable is made a regular and free variable again.

Freezing Stacks: The way choice points, the heap, and the local stack are
managed in the MVB approach is just the same as in CHAT with the improve-
ments in [16]. The main difference is the management of the trail. CHAT saves
the values pointed to from the trail of each consumer to reinstall them when
resuming, and MVB tabling uses MVB variables to do that.

Changes to the Prolog Virtual Machine: The changes to be made to a
Prolog engine are a special untrail operation (Figure 3), an additional case for the
dereferencing routine in order to make it understand MVB variables6 (Figure 2),
and the changes needed to freeze stacks à la CHAT. In the case of Ciao, a WAM
instruction also has to be modified: get first local value gives the first value
to a local variable. As it just checks if the local variable was or not initialized
to a stack variable, an MVB variable living there could be overwritten. The
new get first local value instruction checks if the previous value is an MVB
variable to make the assignment without destroying the MVB information. In
that case the assignment is stored in the cache of the MVB variable.

These changes are in our experience quite local and easy to do, which allows
us to conclude that MVB tabling-based implementation is not hard.

4 MVB Tabling Execution

We will try to illustrate the MVB tabling approach presented previously using a
simple tabled program (Figure 4). The tabled execution tree of this program (not
specifically for MVB tabling) is shown in Figure 5, and Figure 6 shows the cre-
ation of MVB variables. Figure 7 shows the management of the MVBstateStack

to create MVB variables to be shared between several consumers.
We start with the query p(X). Execution starts with a global sid of zero.

A and B are created as unbound variables in Figure 6 (1), and they are unified
with A = 1 and B = 2 (Figure 6 (2)) before the execution is suspended because
a consumer is found (step 3). The suspension identifier associated with this
consumer is sid = 1, and last sid is updated to be 1.

Figure 7 (1) shows the entries in the trail for A,B and the record to be
inserted in MVBstateStack. Each consumer inserts a pair <trail pointer,

consumer sid> in the MVBstateStack —in this case, it is the pair <2,1>.
Execution fails then and backtracks over the last choice point (2). Since

the trail pointer is equal to the value of the trail stored at the top of the
MVBstateStack, an MVB variable is created and associated with the range from
the sid of the topmost element of MVBstateStack to the last sid variable,
which is 1 (Figure 6 (3)). Besides, the value of the trail pointer in the topmost

6 Which in our case are marked with a special tag.



:− table p/1.

p(X) :−
A = 1,

(B = 2; B = 3),
p(X),
A = B.

p(1).

Fig. 4. Tabled program.

8.− fail.

13.− X = 1

12.− complete
?− p(X).

1.− A = 1, (B = 2; B = 3), p(X), A = B. 5.− p(1).

2.− (B = 2; B = 3), p(X), 1 = B.

3.− p(X), 1 = 2.

suspension

6.− p(1), 1 = 2.

4.− p(X), 1 = 3.

9.− p(1), 1 = 2.

10.− 1 = 2.

11.− fail.

suspension

7.− 1 = 2.

Fig. 5. MVB tabling execution.
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Fig. 6. MVB variables.

element of MVBstateStack is decremented (Figure 7 (2)). Recall that free vari-
ables are created in the cache associated with sid zero. This corresponds to



the (unbound) variable which would have been restored on backtracking. The
previous binding is maintained as an MVB list element.
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Fig. 7. MVB trail management.

After backtracking, B = 3 (step 4) is executed and the cache of the MVB
variable is updated (Figure 6 (4)). A new consumer is found which is associated
with the sid 2, and last sid is updated to be 2. A new element is inserted
in MVBstateStack, <2,2>, which represents the current trail pointer and
the new consumer sid (Figure 7 (3)). Execution fails and backtracks over the
second clause of p/1. When B is untrailed, its MVB variable is updated to the
value B = 3 and it is associated with the sids (2,2) (Figure 6 (5)), inserted in
descending order, as explained in Section 3.

To know the sids that B is associated with, the topmost item of MVBstate-
Stack is used. When the trail value stored there is decremented, it reaches the
same value as the previous element in MVBstateStack, and the top of the stack
is popped out. (Figure 7 (4)). Now, variable A is untrailed, and a new MVB
variable is created (Figure 6 (6)), but it is associated with sids (1,2) because
last sid is 2 and the topmost element of MVBstateStack represents sid 1.

The second clause of p/1 is executed and the first answer, p(1), is found (step
5). It is inserted in an external table (as all tabling implementations do), and
then consumers can be restarted with this answer. In order to do that, the sid

variable is updated to be the sid associated with the consumer being restarted:
for example, when consumer 1 is restarted (step 6) and variable A is accessed, the
cache of its MVB variable is updated with the value associated with sid 1, and
the same for variable B (Figure 6 (7)). When consumer 2 is restarted (step 9),
variable A is accessed in the cache, but the cache of variable B has to be updated
(Figure 6 (8)). Finally, the generator p(X) can be completed (step 12) and all
of the MVB variables created under its execution tree are unbound (Figure 6
(9)). The sid and last sid variables are updated to the value just before the
generator execution (zero, in this case) and the answers found and stored in the
answer table are returned on backtracking (step 13).

5 Performance Evaluation

In the following two sections we will analyze the performance of our MVB scheme
and CHAT, both from a theoretical and an experimental point of view.



5.1 CHAT and MVB — a Conceptual Comparison

In any realization of CHAT and MVB, some essential operations will remain
largely untouched regardless of the implementation details. We will focus on
these to compare CHAT and MVB at a high abstraction level.

MVB and CHAT freeze the heap and local stacks using the same techniques,
and they store consumer choice points and answers using also a similar approach;
therefore, their memory consumption should be similar as well. Even the cost
of saving the trail of a consumer can be comparable with the cost of creating
the MVB variables of such a consumer. Memory consumption should be in the
same order too: for each trailed value, CHAT uses 2 slots (value and pointer),
and MVB uses 4 slots (value, initial state, last state, and a pointer to the next
list element). In our view, the main differences between both approaches are:

– CHAT reinstalls (speculatively) the conditional bindings of consumers.
– MVB variable access is affected by MVB variable indirection.

Although we are using an MVB cache, sometimes the MVB list has to be
traversed to find the right MVB bindings for the current sid.7 Consequently,
MVB should outperform CHAT when the speculative work of reinstalling the
conditional bindings of a consumer is larger than the cost of the overhead due to
the MVB variable access, which we will experimentally measure in Section 5.2
for a number of common benchmarks.

This means that artificial code can be created where large parts of the trail
are saved in a consumer to be later reinstalled and not really used. Therefore
MVB could be arbitrarily better than CHAT for such an example. On the other
hand, similarly artificial code can also be written where MVB variables have a
large amount of bindings and they continuously suffer from cache misses. In this
case, MVB could perform arbitrarily worse than CHAT. The question therefore
remains: in practice, and assuming similarly involved implementation techniques
for, e.g., CHAT and MVB, how much does MVB variable handling (including
dereferencing), the special untrailing, and the additions to backtracking affect
both tabled and regular (SLD) execution.

5.2 Experimental Evaluation

We have implemented the techniques proposed in this paper as an extension
of the Ciao system [17]. All of the timings and measurements have been made
with Ciao-1.13, using the standard, unoptimized bytecode-based compilation,
and with the MVB extensions loaded. For XSB we have used XSB 3.1. All the
executions were performed using local scheduling and disabling garbage collec-
tion. We used gcc 4.1.1 to compile all the systems, and we executed them on a
machine with Debian Linux 5.0, kernel 2.6.18, and an Intel Xeon DESCHUTES
processor.

7 A more efficient mechanism for accessing variable bindings is possible (Section 6),
but practical experiments make us doubt about its real usefulness (Section 5.2).



Measure sgm atr2 pg kalah gabriel disj cs o cs r peep Avg.

Cache misses 1504 2545 147 100 155 103 33 54 335 —

Cache misses (%) 1% 7% 16.6% 17.8% 9% 9.5% 6.5% 5.3% 5.7% 8.7%

Avg. MVB length 30.6 1 3.5 1.4 1.8 1.3 1.2 1.2 2.1 4.9

Avg. list trav. 15.8 1 11.5 1.3 3.8 2.5 1.8 1.7 5.4 5

Table 1. Some statistics on the dynamic behavior of MVB variables.

Impact of MVB on SLD Execution: A question to ask is to what extent
the changes we have introduced in the Prolog machinery (e.g., special trailing,
extra cases in dereferencing, changes in one WAM instruction) impact the speed
of non-tabled execution. We have measured this using the ECRC set of analyt-
ical benchmarks8 which test different characteristics of Prolog execution using
dedicated benchmarks. In our experiments, enabling or disabling the MVB ex-
tensions did not have any measurable impact on SLD execution speed.

Impact of MVB on Variable Access: We have measured also to what extent
having to traverse a list of bindings (even with the improvement of a cache for the
most recently accessed value —in the case of a cache hit the value is accessed
in constant time) can impact accessing a given value for a consumer. This is
difficult to predict as it depends, for each benchmark and variable, on how many
conditional bindings for that variable are made by the different consumers.

To measure this, we have instrumented our implementation to count the
number of value cache misses, the percentage of cache misses with respect to the
total accesses, the average length of the chain of values, and the average number
of items traversed in this list for each cache miss.9 The statistics are shown in
Table 1. The main conclusions we can draw are: even if the number of consumers
is in principle unknown and can be very large, value chains are usually rather
small, which suggests that an implementation with direct indexing may not in
the end bring large advantages. Moreover, the benchmark with the longest value
chains (sgm) has as well the best cache behavior: only 1% of the accessed values
were not in the cache. The cache behavior is in general reasonable in the rest of
the benchmarks as well.

General Performance Assessment: Table 2 aims at determining how the
proposed implementation of tabling compares with other tabling implementa-
tions. To that end we have implemented CHAT tabling in Ciao, in order to have
a system with a comparable base speed and a similar code maturity. We are
also comparing with XSB, arguably the most successful tabling system based on
trailing. We have used a set of benchmarks which appear in other performance
evaluations of tabling approaches.

8 Available as a Ciao Prolog 1.13 library and also at the URL
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/lang/prolog/code/library/

9 This can be larger than the average list length because value searches can concentrate
on lists with lengths over the average.



Program MVB CHAT XSB

sgm 1806 1905 1649

atr2 339.2 353.4 351.0

pg 13.11 13.20 12.03

kalah 19.23 18.82 16.77

gabriel 19.83 19.39 18.42

disj 15.19 15.12 14.02

cs o 29.18 29.28 25.30

cs r 58.19 57.80 51.03

peep 60.01 59.20 52.10

Table 2. MVB vs. CHAT vs. XSB.

In this table we provide, for sev-
eral benchmarks, the raw time (in mil-
liseconds) taken to execute them us-
ing tabling. Since these benchmarks
do not create large memory struc-
tures, the differences between CHAT
and MVB are not as large as could
be using bigger benchmarks. Expand-
ing this assessment is part of our fu-
ture work. Besides, the code quality
of both implementations (CHAT and
MVB) can still be improved, as well as
that of the consumer scheduler, MVB
representation, etc. However, in general we believe that these two implementa-
tions are at a similar level of maturity and should be comparable in terms of
speed. Of course any improvement in them would bring a competitive advantage
with respect to XSB.

The results are in general quite encouraging: speed results are very similar
both to CHAT and to XSB, which arguably makes the technique competitive.
This provides confidence that an improved implementation (for example, tabling
primitives are not yet compiled into WAM code and still have to traverse the
Prolog-C interface as in [15]), the internal representation for MVB can be im-
proved, and goal scheduling is still simplistic and does not try to favor our tech-
nique by decreasing the probability of cache misses) can make MVB a viable
technique for tabling which does not need very complicated stack management
and which can compete with state-of-the-art systems.

6 Tabling and Implementation Techniques for

Or-Parallelism

The basic problem of Or-parallel systems is “how to represent different bindings
of the same variable corresponding to different branches of the search space” [18].
This is of course a concern shared with suspension-based systems for tabling,
where suspending and resuming a goal basically has to resort to a representation
which makes it possible to save and recover bindings existing at some other part
of the search tree. This has been recognized in early work [19]. The similarity
between Or-Parallel and tabling using complex trail and stack management (e.g.,
implementations of the SRI model [20] and SLG-WAM) and those relying on
copying (e.g., CHAT and the MUSE [21]) have been mentioned elsewhere [11].

However, to the best of our knowledge, variable access has remained largely
untouched in all tabling systems, when, from an abstract point of view, making
a variable access different values depending on the environment (e.g., the sid

global flag) which the variable is seeing is a fundamental operation. This has
been tackled by installing as a “solid block” all the bindings a consumer has to
see, instead of using a switch to change the viewpoint of the consumer. This is



precisely what systems such as Aurora [22] did —in that case by maintaining
variables as indexes on a binding array with different entries for each processor.

This is not radically different from out approach. In both cases the function
in Section 3 is implemented. However, Aurora first discriminates on the second
function argument (to select the worker) and then on the first (to select the
variable). In our case we take first the variable to dereference, and then the
consumer inside whose environment it has to be evaluated; that matches what
the Version Vectors model [23] does. While, as mentioned before, the relation
between Or-Parallelism and tabling has been studied before, we believe that it
is still possible to establish further connections which can bring more imple-
mentation techniques and, e.g., scheduling algorithms developed in the realm
Or-Parallelism to tabled systems, and thus also make new implementations pos-
sible which seamlessly exploit these relationships.

7 Conclusions

We have presented and evaluated an implementation technique for tabling based
on keeping simultaneously several bindings for variables (MVB), corresponding
to the environments of the consumers. From the experiments we can conclude
that, while theoretically MVB can be arbitrarily better or worse than CHAT, in
practice it is a viable way of avoiding some speculative work inherent to trailing-
based implementations of tabling. Although our implementation can still be im-
proved in several directions, the performance we obtain is already acceptable and
comparable with state-of-the-art systems. Finally, we have revisited the similar-
ity between OR-parallelism and suspension-based implementations of tabling,
and conclude that some additional cross-fertilization is probably still possible.
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