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Abstract

Decompiling low-level code to a high-level intermediate representation facilitates the development of an-
alyzers, model checkers, etc. which reason about properties of the low-level code (e.g., bytecode, .NET).
Interpretive decompilation consists in partially evaluating an interpreter for the low-level language (writ-
ten in the high-level language) w.r.t. the code to be decompiled. There have been proofs-of-concept that
interpretive decompilation is feasible, but there remain open issues when it comes to decompile a real lan-
guage: does the approach scale up? is the quality of decompiled programs comparable to that obtained by
ad-hoc decompilers? do decompiled programs preserve the structure of the original programs? This paper
addresses these issues by presenting, to the best of our knowledge, the first modular scheme to enable inter-
pretive decompilation of low-level code to a high-level representation. The proposed scheme ensures that:
1) each method/block is decompiled just once, and 2) each program point is traversed at most once during
decompilation.

1 Introduction
Decompilation of low-level code (e.g., bytecode) to an intermediate representation

has become a usual practice nowadays within the development of analyzers, verifiers,

model checkers, etc. For instance, in the context of mobile code, as the source code

is not available, decompilation facilitates the reuse of existing analysis and model

checking tools. In general, high-level intermediate representations allow abstracting

away the particular language features and developing the tools on simpler represen-

tations. In particular, rule-based representations used in declarative programming

in general—and in Prolog in particular—provide a convenient formalism to define

such representations. E.g., as it can be seen in [1,18,20,10], the operand stack used

in a low-level language can be represented by means of explicit logic variables and

that its unstructured control flow can be transformed into recursion.

All above cited approaches (except [10]) develop ad-hoc decompilers to carry out

the particular decompilations. An appealing alternative to the development of ded-

icated decompilers is the so-called interpretive decompilation by partial evaluation

(PE) [11]. PE is an automatic program transformation technique which specializes a

program w.r.t. part of its known input data. Interpretive compilation was proposed
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in Futamura’s seminal work [5], whereby compilation of a program P written in

a (source) programming language LS into another (object) programming language

LO is achieved by specializing an interpreter for LS written in LO w.r.t. P . The

advantages of interpretive (de-)compilation w.r.t. dedicated (de-)compilers are well-

known and discussed in the PE literature (see, e.g., [3]). They include: flexibility, it

is easier to modify the interpreter in order to tune the decompilation (e.g., observe

new properties of interest); easier to trust, it is more difficult to prove (or trust)

that ad-hoc decompilers preserve the program semantics; easier to maintain, new

changes in the language semantics can be easily reflected in the interpreter.

There have been several proofs-of-concept of interpretive (de)compilation (e.g.,

[3,10,13]), but there remain interesting open issues when it comes to assess its power

and/or limitations to decompile a real language: (a) does the approach scale? (b) do

(de-)compiled programs preserve the structure of the original ones? (c) is the “qual-

ity” of decompiled programs comparable to that obtained by dedicated decompilers?

This paper answers these questions positively by proposing a modular decompila-

tion scheme which can be steered to control the structure of decompiled code and

ensures quality decompilations which preserve the original program’s structure. Our

main contributions are summarized as follows:

(i) We present the problems of non-modular decompilation and identify the com-

ponents needed to enable a modular scheme. This includes how to write an

interpreter and how to control an online partial evaluator in order to preserve

the structure of the original program w.r.t. method invocations.

(ii) We present a modular decompilation scheme which is correct and complete

for the proposed interpreter. The modular-optimality of the scheme allows

addressing issue (a) by avoiding decompiling the same method more than once,

and (b) by ensuring that the structure of the original program can be preserved.

(iii) We introduce an interpretive decompilation scheme for low-level languages

which answers issue (c) by producing decompiled programs whose quality is

similar to that of dedicated decompilers. This requires a block-level decompi-

lation scheme which avoids code duplication and code re-evaluation.

2 Basics of Partial Deduction
We assume familiarity with basic notions of logic programming [17]. Executing a

program P for a call A consists in building an SLD tree for P ∪ {A} and then

extracting the computed answers from every non-failing branch of the tree. PE

in logic programming (see e.g. [6]) builds upon the SLD trees mentioned above.

We now introduce a generic function PE, which is parametric w.r.t. the unfolding

rule, unfold, and the abstraction operator, abstract and captures the essence of most

algorithms for PE of logic programs:

1: function PE (P,A, S0)

2: repeat

3: T pe := unfold(Si, P,A);

4: Si+1 := abstract(Si, leaves(T
pe),A);

5: i := i + 1;

6: until Si = Si−1 % (modulo renaming)

7: return codegen(T pe, unfold);
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Function PE differs from standard ones in the use of the set of annotations A,

whose role is described below. PE starts from a program P , a (possibly empty) set

of annotations A and an initial set of calls S0. At each iteration, the so-called local

control is performed by the unfolding rule unfold (L3), which takes the current set

of terms Si, the program and the annotations and constructs a partial SLD tree for

each call in Si. Trees are partial in the sense that, in order to guarantee termination

of the unfolding process, it must be possible to choose not to further unfold a goal,

and rather allow leaves in the tree with a non-empty, possibly non-failing, goal. The

particular unfold operator determines which call to select from each goal and when

to stop unfolding. The partial evaluator may have to build several SLD-trees to

ensure that all calls left in the leaves are “covered” by the root of some tree. This

is known as the closedness condition of PE [16]. In the global control, those calls in

the leaves which are not covered are added to the new set of terms to be partially

evaluated, by the operator abstract (L4). At the next iteration, an SLD-tree is built

for such call. Thus, basically, the algorithm iteratively (L2-6) constructs partial

SLD trees until all their leaves are covered by the root nodes. An essential point

of the operator abstract is that it has to perform “generalizations” on the calls that

have to be partially evaluated in order to avoid computing partial SLD trees for an

infinite number of calls. A partial evaluation of P w.r.t. S is then systematically

extracted from the resulting set of calls T pe in the final phase, codegen in L7.

Finally, the role of the annotations A (often manually provided) in offline PE

is to give information to the control operators to decide when to stop derivations in

the local control and how to perform generalizations in the global control to ensure

termination. In online PE, all control decisions are taken during the specialization

phase, without the use of annotations. We trivially turn function PE into online by

just ignoring the annotations. In our method, though they are not needed to ensure

termination, we use annotations to improve the quality of decompilation . Hence,

according to the above classification, we will adopt in this work a (hybrid) online

PE algorithm enhanced with some offline annotations (automatically computed).

3 Non-Modular Interpretive Decomp. and Limitations

This section describes the state of the art in interpretive decompilation of low-level

languages to Prolog, including recent work in [10,2,8,3]. We do so by formulating

non-modular decompilation in a generic way and identifying its limitations.

We consider a very simple imperative, stack-based, low-level language with un-

structured control flow, denoted as Lbc. It goes in the spirit of Java Bytecode

but manipulating only integer numbers and without object-oriented features 1 .

A bytecode program Pbc is organized in a set of methods which are the basic

(de)compilation units of Lbc. The code of a method m, denoted code(m), con-

sists of a sequence of bytecode instructions BCm =<pc0 :bc0, . . . , pcnm :bcnm > with

pc0, . . . , pcnm being consecutive natural numbers. The Lbc instruction set is:

BcInst ::= push(x) | load(v) | store(v) | add | sub | mul | div | rem | neg |

if ⋄ (pc) | if0 ⋄ (pc) | goto(pc) | return | invoke(mn)

1 Our implementation supports full Java Bytecode
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main(Method,InArgs,Top) :-
build_s0(Method,InArgs,S0),
execute(S0,Sf),
Sf = st(fr(_,_,[Top|_],_),_)).

execute(S,S) :-
S = st(fr(M,PC,[_Top|_],_),[]),
bytecode(M,PC,return,_).

execute(S1,Sf) :-
S1 = st(fr(M,PC,_,_),_),
bytecode(M,PC,Inst,_),
step(Inst,S1,S2),
execute(S2,Sf).

step(goto(PC),S1,S2) :-
S1 = st(fr(M,_,S,LV),FrS),
S2 = st(fr(M,PC,S,LV),FrS).

step(push(X),S1,S2) :-
S1 = st(fr(M,PC,S,L),FrS),
next(M,PC,PC2),
S2 = st(fr(M,PC2,[X|S],L),FrS).

...

step(invoke(M2),S1,S2) :-
S1 = st(fr(M,PC,OS,LV),FrS),
split_OS(M2,OS,Args,OS3),
build_s0(M2,Args,st(fr(M2,PC2,OS2,LV2),_)),
S2 = st(fr(M2,PC2,OS2,LV2),[fr(M,PC,OS3,LV)|FrS]).

step(return,S1,S2) :-
S1 = st(fr(_,_,[RV|_],_),[fr(M,PC,OS,LV)|FrS]),
next(M,PC,PC2),
S2 =st(fr(M,PC2,[RV|OS],LV),FrS).

Fig. 1. Fragment of (small-step) Lbc interpreter

where ⋄ is a comparison operator (eq, le, gt, etc.), v a local variable, x an integer,

pc an instruction index and mn a method name. Instructions push, load and store

transfer values or constants from the local variable array to the stack (and viceversa);

add, sub, mul, div, rem and neg perform the usual arithmetic operations, if, if0 and

goto are the usual branching instructions; return marks the end of methods and

invoke calls a method. A method m is uniquely determined by its name. We

write calls(m) to denote the set of all method names invoked within the code of

method m. We use defs(Pbc) to denote the set of internal method names defined

in Pbc. The remaining methods are external. We say that Pbc is self-contained if

∀m ∈ Pbc, calls(m) ⊆ defs(Pbc), i.e., Pbc does not include calls to external methods.

3.1 Non-modular, Online, Interpretive Decompilation

We rely on the so-called “interpretive approach” to compilation described in Sect. 1,

also known as first Futamura projection [5]. In particular, the decompilation of a

Lbc-bytecode program Pbc to LP (for short LP-decompilation) might be obtained by

specializing (with an LP partial evaluator) a Lbc-interpreter written in LP w.r.t. Pbc.

In Fig. 1 we show a fragment of a (small-step) Lbc interpreter implemented in Prolog,

named IntLbc
. We assume that the code for every method in the bytecode program

Pbc is represented as a set of facts bytecode/3 such that, for every pair pci :bci in the

code for method m, we have a fact bytecode(m,pci,bci). The state carried around

by the interpreter is of the form st(Fr,FrStack) where Fr represents the current

frame (environment) and FrStack the stack of frames (call stack) implemented as

a list. Frames are of the form fr(M,PC,OStack,LocalV), where M represents the

current method, PC the program counter, OStack the operand stack and LocalV

the list of local variables. Predicate main/3, given the method to be interpreted

Method and its input method arguments InArgs, builds the initial state, calling

build s0/3, and then iterates on predicate execute/2 until a return instruction

with the empty stack is reached. The state transition function is modelled by means

of predicate step/3. By using this interpreter, in a purely online setting, we define a

non-modular decompilation scheme in terms of the generic function PE as follows.

Definition 3.1 [decompLbc
] Given a self-contained Lbc-bytecode program Pbc, the

(non-modular) LP-decompilation of Pbc can be obtained as:

decompLbc
(Pbc) = PE(IntLbc

∪ Pbc, ∅, S)

where S is the set of calls {main(m, , ) |m ∈ defs(Pbc)}.

Recent work in interpretive, online decompilation has focused on ensuring that
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public static int gcd(int x,int y){
int res;
while (y != 0){

res = x%y; x = y; y = res;}
return abs(x);}

public static int abs(int x){
if (x < 0) return -x;
else return x; }

public static int lcm(int x,int y){
int gcd = gcd(x,y);
if (gcd == 0) return 0;
else return x*y/gcd;}

public static int fact(int x){
if (x == 0) return 1;
else return x*fact(x-1);}

Method gcd/2
0:load(1)
1:if0eq(11)
2:load(0)
3:load(1)
4:rem
5:store(2)
6:load(1)
7:store(0)
8:load(2)
9:store(1)
10:goto 0
11:load(0)
12:invoke(abs)
13:return

Method abs/1
0:load(0)
1:if0ge(5)
2:load(0)
3:neg
4:return
5:load(0)
6:return

Method lcm/2
0:load(0)
1:load(1)
2:invoke(gcd)
3:store(2)
4:load(2)
5:if0ne 8
6:push(0)
7:return
8:load(0)
9:load(1)
10:mul
11:load(2)
12:div
13:return

Method fact/1
0:load(0)
1:if0ne(4)
2:push(1)
3:return
4:load(0)
5:load(0)
6:push(1)
7:sub
8:invoke(fact)
9:mul
10:return

Fig. 2. Source code and Lbc-bytecode for working example

the layer of interpretation is completely removed from decompiled programs, i.e.,

effective decompilations are obtained. This requires the use of some advanced con-

trol techniques like: the Type-based homeomorphic embedding (ET ) [2], an unfolding

operator able to safely perform non-leftmost unfolding steps in presence of built-

ins [4] and an abstract operator with an advanced polyvariance control mechanism

[8]. Our starting point is thus a state-of-the-art partial evaluator based on such

advanced techniques which is able to remove the layer of interpretation.

3.2 Limitations of Non-Modular Decompilation
This section illustrates by means of the bytecode example in Fig. 2 that non-modular

decompilation does not ensure a satisfactory handling of issues (a) and (b). In the

examples, we often depict the Java source code for clarity, but the PE works directly

on the bytecode. The program consists of a set of methods that carry out arithmetic

operations. Method gcd computes the greatest-common divisor, abs the absolute

value, lcm the least-common multiple and fact the factorial recursively. The LP-

decompilation obtained by applying Def. 3.1 is shown in Fig. 3. We identify the

following limitations of non-modular decompilation:

(L1) Method invocations from lcm to gcd (index 2) and from gcd to abs (index

12) do not appear in the decompiled code. Instead, such calls have been inlined

within their calling contexts and, as a consequence, the structure of the original

code has been lost. This happens because calls to methods are dealt with in a

small-step fashion within the interpreter.

(L2) As a consequence decompilation might become very inefficient. For in-

stance, if n calls for the same method appear within a code, such method will be

decompiled n times. Even worse, when there is a method invocation inside a loop,

it code might be evaluated unnecessarily various times.

(L3) It does not work incrementally, in the sense that it does not support

separate decompilation of methods but rather has to (re)decompile all method calls.

Thus, decompiling a real language becomes unfeasible, as one needs to consider

system libraries. Limitation L2 together with L3 answer issue (a) negatively.

(L4) The decompiled program does not contain the code corresponding to re-

cursive fact due to space limitations, as the decompiled code contains basically the

whole interpreter. The problem with recursion was first detected in [7] and particu-
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main(lcm,[B,0],A) :-
B>0, C is B*0,
A is C//B.

main(lcm,[0,0],0).
main(lcm,[B,0],A) :-

B<0, D is B*0,
C is -B, A is D//C.

main(lcm,[B,C],A) :-
C\=0, D is B rem C,
execute_1(C,D,B,C,A).

execute_1(A,0,B,C,D) :-
A>0, E is B*C,
D is E//A.

execute_1(0,0,_,_,0).
execute_1(A,0,B,C,D) :-

A<0, E is-A,
F is B*C, D is F//E.

execute_1(A,B,C,D,I) :-
B\=0, K is A rem B,
execute_1(B,K,C,D,I).

main(abs,[A],A) :- A>=0.
main(abs,[B],A) :-

B<0, A is -B.

main(gcd,[A,0],A) :-A>=0.
main(gcd,[B,0],A) :-

B<0, A is-B.
main(gcd,[B,C],A) :-

C\=0, D is B rem C,
execute_2(C,D,A) .

execute_2(A,0,A) :-
A>=0.

execute_2(A,0,C) :-
A<0, C is -A.

execute_2(A,B,G) :-
B\=0,
I is A rem B,
execute_2(B,I,G).

Fig. 3. Decompiled (non-modular) code for working example

lar details together with a discussion on partial solutions proposed in the literature

can be found in [9]. Limitations L1 and L4 answer issue (b) negatively.

4 An Interpretive Modular Decompilation Scheme

By modular decompilation, we refer to a decompilation technique whose decompi-

lation unit is the method, i.e., we decompile a method at a time. We show that this

approach overcomes the four limitations of non-modular decompilation described in

Sect. 3.2 and answers issues (a) and (b) positively.

4.1 Big-step Interpreter to Enable Modular Decompilation

Traditionally, two different approaches have been considered to define language se-

mantics, big-step semantics and small-step semantics (see, e.g., [12]). Essentially, in

big-step semantics, transitions relate the initial and final states for each statement,

while in small-step semantics transitions define the next step of the execution for

each statement. In the context of bytecode interpreters, most of the statements exe-

cute in a single step, hence making both approaches equivalent for such statements.

This is the case for our Lbc-bytecode interpreter for all statements except for invoke.

The transition for invoke in small-step defines the next step of the computation,

then after performing this step, we do not distinguish anymore between the code of

the caller method and that of the callee. This avoids modularity of decompilation.

In the context of interpretive (de)compilation of imperative languages, small-

step interpreters are commonly used (see e.g. [19,10,3]). We argue that the use of

a big-step interpreter is a necessity to enable modular decompilation which scales

to realistic languages. Now we depict the relevant part of the big-step interpreter

for Lbc-bytecode, named IntbsLbc
.

execute(S,S) :-
S = st(M,PC,[_Top|_],_),
bytecode(M,PC,return,_).

execute(S1,Sf) :-
S1 = st(M,PC,_,_),
bytecode(M,PC,Inst,_),
step(Inst,S1,S2),
execute(S2,Sf).

step(invoke(M2),S1,S2) :-
S1 = st(M,PC,OS,LV),
next(M,PC,PC2),
split_OS(M2,OS,Args,OSRest),
main(M2,Args,RV),
S2 = st(M,PC2,[RV|OSRest],LV).

We can see that the invoke statement calls recursively predicate main/3 in or-

der to execute the callee. Upon return from the method execution, the return

value is pushed on the operand stack of the new state and execution proceeds nor-

mally. Also, we do not need to carry the call-stack explicitly within the state,

but only the information for the current environment. I.e., states are of the form

st(M,PC,OStack,LocalV).

The compositional treatment of methods in IntbsLbc
is not only essential to en-

able modular decompilation (overcome L1, L2 and L3) but also to solve the re-

cursion problem in a simple and elegant way. Indeed, the decompilation based

on the big-step interpreter IntbsLbc
does not present L4. E.g., the decompilation of
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a recursive method m1 starts from the call main(m1, , ) and then reaches a call

main(m1, args, ) where args represents the particular arguments in the recursive

call. This call is flagged as dangerous by local control and the derivation is stopped.

4.2 Guiding Online Partial Evaluation with Annotations

We now present the annotations we use to provide additional control information

to PE. We use the annotation schema: “[Precond] ⇒ Ann Pred” where Precond is

an optional precondition defined as a logic formula, Ann is the kind of annotation

(Ann ∈ {memo, rescall}) and Pred is a predicate descriptor, i.e., a predicate

function and distinct free variables. Such annotations are used by local control

when a call for Pred is found as follows:
• memo: The current call is not further unfolded. Therefore, the call is later

transferred to the global control to carry out its specialization separately.

• rescall: The current call is not further unfolded. Unlike calls marked memo,

the current call is not transferred to the global control.
We adopt the same names for the annotations as in offline PE [15]. However, in

offline PE they are the only means to control termination 2 and rescall annotations

are in principle only used for builtins.

4.3 Modular Decompilation

In order to achieve modular decompilation, it is instrumental to allow performing

separate decompilation. In the interpretive approach this requires being able to per-

form separate PE, i.e., to be able to specialize parts of the program independently

and then join the specializations together to form the residual program. Soundness

and completeness of separate decompilation are discussed in [9]. In the follow-

ing we present a modular decompilation scheme which, by combining the big-step

interpreter with the use of rescall annotations, enables separate decompilation.

Definition 4.1 [mod-decompLbc
] Given a Lbc-bytecode program Pbc, a modular

LP-decompilation of Pbc can be obtained as:

mod-decompLbc
(Pbc) =

⋃

∀m∈defs(Pbc)

PE(IntbsLbc
∪ code(m),Amod, Sm)

where the set of annotations Amod = {(m ∈ calls(Pbc)) ⇒ rescall main(m, , )}
and the initial sets of calls Sm = {main(m, , )} for each m ∈ defs(Pbc).

Let us briefly explain the above definition. Now the function PE is executed

once per method defined in Pbc, starting each time from a set of calls, Sm, which

contains a call of the form main(m, , ) for method m. The set Amod contains a rescall

annotation which affects all methods invoked (not necessarily internal) inside Pbc.

When a method invocation is to be decompiled, the call step(invoke(m’), , )

occurs during unfolding. We can see that, by using the big-step interpreter IntbsLbc
,

a subsequent call main(m’, , ) will be generated. As there is a rescall annotation

affecting all methods invoked in the program, such call is not unfolded but rather

remains residual. If m′ is internal, a corresponding decompilation from the call

main(m’, , ) will be, or has already been, performed since function PE is executed

for every method in Pbc. Thus, completeness is ensured for internal predicates.

2 Hybrid approaches like [14] use online techniques to control termination in offline PE.
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Method mbl

pc0 : bc0

...

pci : if ⋄ (pcj)

pci+1 : bci+1

...

pcj−1 : goto(pck)

pcj : bcj

...

pck−1 : bck−1

pck : bck

pcn : return

pcj−1:goto(pck)

. . .

pci+1:bci+1 pcj:bcj

pck−1:bck−1

. . .

pc0:bc0
. . .

pci:if⋄(pcj)

pck:bck

. . .

pcn:return

condi

Block A

Block B

Block D

Block Ccondi

exec(st(mbl, 0, os0, lv0), )

exec(st(mbl, pci, osi, lvi), )

exec(st(mbl, pci+1, . . .)

exec(st(mbl, pcn, osn, lvn), )

true true

exec(st(mbl, pcj, osj, lvj), )

exec(st(mbl, pck, osk, lvk), )exec(st(mbl, pck, osk, lvk), )

exec(st(mbl, pcn, osn, lvn), )

{resD}

{resC}

{res
′

D
}

{resB}

{resA}

main(mbl, , )

condi condi

main(mbl,Args,Out) :- {resA}, condi, {resB}, {resD}.

main(mbl,Args,Out) :- {resA}, condi, {resC}, {res
′

D}.

Fig. 4. Lbc-bytecode, CFG, unfolding tree and decompiled code of mbl method

Example 4.2 By applying function mod-decompLbc
to the Lbc-bytecode program

in Fig. 2 we execute PE once for each of the four methods in the program. In

each execution we specialize the interpreter w.r.t. the calls main(fact, , ), main(gcd, , ),

main(lcm, , ), and main(abs, , ). We obtain the following LP-decompilation:

main(gcd,[B,0],A) :- main(abs,[B],A).
main(gcd,[B,C],A) :- C\=0,

D is B rem C, execute_1(C,D,A).
execute_1(A,0,C) :- main(abs,[A],C).
execute_1(A,B,F) :- B\=0,

H is A rem B, execute_1(B,H,F).

main(lcm,[B,C],A) :-
main(gcd,[B,C],D),
D\=0, E is B*C,
A is E//D.

main(lcm,[A,B],0) :-
main(gcd,[A,B],0).

main(abs,[A],A) :- A>=0.
main(abs,[B],A) :- B<0, A is-B.
main(fact,[B],A) :-

B\=0, C is B-1,
main(fact,[C],D), A is B*D.

main(fact,[0],1).

The structure of the original program w.r.t. method calls is preserved, as the resid-

ual predicate for lcm contains an invocation to gcd, which in turn invokes abs, as it

happens in the original bytecode. Moreover, we now obtain an effective decompila-

tion for the recursive method fact where the interpretive layer has been completely

removed. Thus, L1 and L4 from Sect. 3.2 have been successfully solved.

5 Decompilation of Low-Level Languages
Applying the interpretive approach on a low-level language introduces new chal-

lenges. The main issue is whether it is possible to obtain programs whose quality

is equivalent to that obtained by dedicated decompilers, issue (c) in Sect. 1. We

will show now that, using the most effective unfolding strategies of PE, code for the

same program point can be emitted several times, which degrades both efficiency

and quality of decompilation. In order to obtain results which are comparable to

that of dedicated decompilers, it makes sense to use similar heuristics. Since de-

compilers first build a control flow graph (CFG) for the method, which guides the

decompilation process, we now study how a similar notion can be used for control-

ling PE of the interpreter.

Let us explain block-level decompilation by means of an example. Consider

the method mbl to the left of Fig. 4, where we only show the relevant bytecode

instructions, and its CFG in the center. A divergence point (D point) is a program

point (bytecode index) from which more than one branch originates; likewise, a

convergence point (C point) is a program point where two or more branches merge.

In the CFG of mbl, the only divergence (resp. convergence) point is pci (resp. pck).

By using the decompilation scheme presented so far, we obtain the SLD-tree

shown to the right of Fig. 4, in which all calls are completely unfolded as there is no

termination risk (nor rescall annotation). The decompiled code is shown under the

tree. We use {resX} to refer to the residual code emitted for BlockX and condi to

refer to the condition associated to the branching instruction at pci (condi denotes
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its negation). The quality of the decompiled code is not optimal due to:
D. Decompiled code {resA} for BlockA is duplicated. During PE, this code is

evaluated once but each rule contains the code associated to the whole branch

of the tree. This code duplication brings in two problems: it increases consid-

erably the size of decompiled programs and also makes their execution slower.

E.g., when condi holds, the execution goes unnecessarily through {resA} in

the first rule, fails to prove condi and, then, attempts the second rule.

C. Decompiled code of BlockD is again emitted more than once. Each rule for

the decompiled code contains a different version, {resD} and {res
′

D}, of the

code of BlockD. Unlike above, at PE time, the code of BlockD is actually eval-

uated in the context of {condi, {resB}} and then re-evaluated in the context

of {condi, {resC}}. Convergence points thus might degrade both efficiency

(endangering scalability) and quality of decompilation (larger residual code).
The amount of repeated residual code grows exponentially with the number of C and

D points and the amount of re-evaluated code grows exponentially with the number

of C points. Thus, we now aim for a block-level decompilation that helps overcome

problems D and C above. Intuitively, a block-level decompilation must produce a

residual rule for each block in the CFG. This can be achieved by building SLD-trees

which correspond to each single block, rather than expanding them further. Note

that this idea is against the typical spirit of PE which, in order to maximize the

propagation of static information, tries to build SLD-trees as large as possible.

The memo annotations presented in Sect. 4.2 facilitate the design of the block-

level interpretive decompilation scheme. In particular, we can easily force the un-

folding process to stop at D points by including a memo annotation for execute/2

calls whose PC corresponds to a D point. In the example, unfolding stops at pci as

desired. Regarding C points, an additional requirement is to partially evaluate the

code on blocks starting at these points at most once. The problem is similar to the

polyvariant vs. monovariant treatment in the decompilation of methods in Sect. 4.3,

by viewing entries to blocks as method calls. Not surprisingly, the solution can be

achieved similarly in our setting by: (1) stopping the derivation at execute/2 calls

whose PC corresponds to C points and (2) passing the call to the global control,

and ensuring that it is evaluated in a sufficiently generalized context which covers

all incoming contexts. The former point is ensured by the use of memo annotations

and the latter by including in the initial set of terms a generalized call of the form

execute(st(mbl, pck, , ), ) for all C points, which forces such generalization. The

next definition presents the block-level decompilation scheme where div points(m)

and conv points(m) denote, resp., the set of D points and C points of a method m.

Definition 5.1 [block-mod-decompLbc
] Given a Lbc-bytecode program Pbc, a

block-level, modular LP-decompilation of Pbc can be obtained as:

block-mod-decompLbc
(Pbc) =

⋃

∀m∈defs(Pbc)

PE(IntbsLbc
∪ code(m),Am, Sm)

Ablocks = {pc ∈ div points(m) ∪ conv points(m) ⇒ memo execute(st(m, pc, , ), )}
Sm = {main(m, , )} ∪ {execute(st(m, pc, , ), ) | pc ∈ conv points(m)}
Am = Amod ∪ Ablocks, for each m ∈ defs(Pbc).

Importantly, both the annotations and the initial set of calls can be computed
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automatically by performing two passes on the bytecode (see, e.g., [1,20]). The

result of performing block-level decompilation on mbl is:

main(mbl,Args,Out) :- {resA}, execute1(. . .). execute1(. . .) :- condi, {resC}, execute2(. . .).

execute1(. . .) :- condi, {resB}, execute2(. . .). execute2(. . .) :- {resD}.

Now, the residual code associated to each block appears once in the decompiled

code. This ensures that block-level decompilation preserves the CFG shape as

dedicated decompilers do. Thus, the quality of our decompiled code is as good as

that obtained by state-of-the-art decompilers like [1,18] but with the advantages of

interpretive decompilation (see Sect. 1).

6 Conclusions

We argue that declarative languages and the technique of partial evaluation have

nowadays a large application field within the development of analysis, verification,

and model checking tools for modern programming languages. On one hand, declar-

ative languages provide a convenient intermediate representation which allows (1)

representing all iterative constructs (loops) as recursion, independently of whether

they originate from iterative loops (conditional and unconditional jumps) or recur-

sive calls, and (2) all variables in the local scope of the methods (formal parameters,

local variables, fields, and stack values in low-level languages) can be represented

uniformly as explicit arguments of a declarative program. On the other hand, the

technique of partial evaluation enables the automatic (de)compilation of a (com-

plicated) modern program to a simple declarative representation by just writing

an interpreter for the modern language in the corresponding declarative language

and using an existing partial evaluator. The resulting intermediate representation

greatly simplifies the development of the above tools for modern languages and,

more interestingly, existing advanced tools developed for declarative programs (al-

ready proven correct and effective) can be directly applied on it. Our work starts off

from the premise that interpretive decompilation is feasible and effective as proved

by previous work and studies further issues which have not been explored before. A

main objective of our work is to investigate, and provide the necessary techniques,

to make interpretive decompilation scale in practice. A further goal is to ensure,

and provide the techniques, that decompiled programs preserve the structure of the

original programs and that its quality is comparable to that obtained by dedicated

decompilers. We believe that the techniques proposed in this paper, together with

their experimental evaluation (see [9]), provide for the first time actual evidence

that the interpretive theory proposed by Futamura in the 70s is indeed an appeal-

ing and feasible alternative to the development of ad-hoc decompilers from modern

languages to intermediate representations.

Acknowledgments

This work was funded in part by the Information Society Technologies program

of the European Commission, Future and Emerging Technologies under the IST-

15905 MOBIUS project, by the Spanish Ministry of Education under the TIN-

2005-09207 MERIT project, and by the Madrid Regional Government under the

S-0505/TIC/0407 PROMESAS project.

10
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