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Abstract. Several models for context-sensitive analysis of modular pro-
grams have been proposed, each with different characteristics and rep-
resenting different trade-offs. The advantage of these context-sensitive
analyses is that they provide information which is potentially more ac-
curate than that provided by context-free analyses. Such information can
then be applied to validating/debugging the program and/or to specializ-
ing the program in order to obtain important performance improvements.
Some very preliminary experimental results have also been reported for
some of these models which provided initial evidence on their potential.
However, further experimentation, which is needed in order to under-
stand the many issues left open and to show that the proposed modes
scale and are usable in the context of large, real-life modular programs,
was left as future work. The aim of this paper is two-fold. On one hand
we provide an empirical comparison of the different models proposed in
previous work, as well as experimental data on the different choices left
open in those designs. On the other hand we explore the scalability of
these models by using larger modular programs as benchmarks. The re-
sults have been obtained from a realistic implementation of the models,
integrated in a production-quality compiler (CiaoPP/Ciao). Our exper-
imental results shed light on the practical implications of the different
design choices and of the models themselves. We also show that context-
sensitive analysis of modular programs is indeed feasible in practice,
and that in certain critical cases it provides better performance results
than those achievable by analyzing the whole program at once, specially
in terms of memory consumption and when reanalyzing after making
changes to a program, as is often the case during program development.

1 Introduction and Motivation

Global analysis of logic programs has received considerable theoretical and prac-
tical attention and as a result it is now possible to infer a wide range of program



properties with a considerable degree of accuracy and for a significant num-
ber of programs. Also, tools have been developed which in addition to inferring
these properties, allow debugging, validating, and specializing programs, achiev-
ing important improvements in both correctness and efficiency. However, most of
these techniques were originally designed to be applied to a complete, monolithic
program. In contrast, real programs invariably have a more complex structure
combining a number of user modules with other modules from system libraries.
This is one of the reasons why most global analysis tools are still prototypes
and, though numerous experiments demonstrate their effectiveness, they have
not yet made their way into existing real-life programming systems.

Performing global analysis on modular programs differs from doing so in a
monolithic setting in several interesting ways and poses non-trivial problems
which must be solved (see, for example, [5] and its references where the main
approaches to separate modular static analysis by abstract interpretation are de-
scribed). Regarding the analysis of modular LP programs, a preliminary study of
the extension of context-sensitive analysis and specialization to the case of mod-
ular logic programs was presented in [12]. A full practical proposal for context-
sensitive analysis of modular logic programs was presented in [3]. In fact, in [3]
a collection of models was proposed, each of them with different characteristics
and representing different trade-offs. Some very preliminary experimental data
was also reported for an implementation of some of these models in the context
of the Ciao system. Also, another implementation of [3] in the context of the
HAL system [7] was reported in [9]. These previous preliminary experimental re-
sults provided initial evidence on the overall potential of the approach, but were
limited in that they studied only a partial implementation. It was left as future
work to perform further experimentation in order to understand the many issues
and trade-offs left open in the design and to show that the proposed models scale
and are usable in the context of large, real-life modular programs.

The aim of this paper is two-fold. On one hand we provide an empirical
comparison of the different models proposed in [3], as well as experimental data
on the different choices left open in those designs. To this end we have completed
a full implementation in CiaoPP of the framework for context-sensitive analysis
described in [11] and its different instances and we have studied experimentally
the behavior of the resulting system. These results have been compared with
traditional, non modular analyses in several parameters.

Our second aim is to explore the scalability of these models and of the imple-
mentation. To this end we have used some larger modular programs as bench-
marks, including some real-life examples such as a working partial evaluator and
parts of the Ciao compiler.

In the following section we present an overview of the general problems in an-
alyzing large modular programs, and the solutions proposed in previous work, in-
cluding the major design trade-offs. Section 3 then describes the tests performed
and analyzes the results obtained. Finally, Section 4 presents our conclusions.
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2 Analysis of modular programs

As mentioned in the previous section, the framework used herein is based on [12,
11], where a detailed description of the issues related to the analysis of modular
programs and the different approaches to it can be found. The following sub-
sections present an overall summary of [11], with special emphasis on the issues
that are most relevant to our experimental study.

2.1 Modular programs

A program is said to be modular when its source code is distributed in several
source units named modules, and they contain language constructions to clearly
define the interface of every module with the rest of the modules in the program.
This interface is composed of two sets of predicates: the set of exported predi-
cates (those accessible from other modules), and the set of imported predicates.
For concreteness, and because of its appropriateness for global analysis, in our
implementation we will use the module system of [4]. This module system is
strict in the sense that procedures external to a module are visible to it only if
they are part of its interface. A predicate defined in a given module can be called
from another module only if it appears in the exported list of its module and in
the imported list of the caller module, i.e., procedures which are not exported
are not visible outside the module in which they are defined.

We note the distinction between global tasks and local tasks. In global tasks
the results of processing a part of the program (say, a procedure or a module)
may be needed in order to process other parts of the program. In contrast, a local
task processes only one procedure or module at a time and, most importantly, all
the information required for performing the task can be obtained by inspecting
that procedure or module. The fundamental issue is that global processing often
requires iterating on the whole program until a fixed-point is reached.

Context-sensitive program analysis is an example of a global task: in a modu-
lar setting, it may well be the case that part of the information needed to perform
the analysis on (a procedure in) module m has to be computed in modules other
than m. We will refer to the information originated in modules different from
m as inter-modular information in contrast to the information originated in m
itself, which we will call intra-modular.

2.2 Flattening a Program Unit vs. Modular Processing

Applying a framework for non-modular programs to a module m which belongs
to a modular program has the difficulty that m may not be self-contained. How-
ever, there should be no problem in applying the framework if m is a leaf module.
Furthermore, given a global process such as program analysis, at least in princi-
ple, it is not obvious that it makes much sense to apply the process to a module m
alone. In fact, it makes sense to apply analysis to the complete program instead,
since it is conceptually self-contained.
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Given a modular program P it is always possible to build a single module
mflat which is equivalent to P and which is a leaf. The process of constructing
such a module mflat usually only amounts to renaming apart identifiers in the
different modules in P so as to avoid name clashes. We will use flatten(P ) =
mflat to denote that the module mflat is the result of renaming apart the code
in each module in P and concatenating its code into a monolithic module mflat.
This points to a simple solution to the problem of processing modular programs
(at least for the case in which all the code is available): to transform P into the
equivalent monolithic program mflat. It is then straightforward to apply any tool
for non-modular programs to the leaf module mflat. In the rest of this work, we
will refer to this approach as the flattened or monolithic approach.

Assuming the existence of an implementation for non-modular analysis, this
approach to analyzing modular programs is often simple to apply. Also, the
flattening approach has theoretical interest: in our case it will be used to compare
the efficiency of different approaches to modular handling of programs w.r.t.
it. However, as a practical way in which to actually perform analysis of large
programs the flattening approach also has important potential drawbacks. The
most important is that the complete program must be loaded into the analyzer,
and thus large programs may make the analyzer run out of memory. Moreover,
as the internal analysis data structures include information for all the program
source code, in the monolithic case, analysis of a given procedure may take more
time than keeping in memory only the module in which it resides. Another,
perhaps more important drawback, is that the program must be self-contained:
this can be a problem if the analyzer is used while developing the program,
when some modules are not yet implemented, or if there are calls to external
procedures, i.e., procedures for which the source code is not available, or which
are implemented in other languages.1

2.3 Analyzing one module at a time

The approach taken in [11] and implemented in CiaoPP is based on the separate
analysis of the modules in a modular program. The analyzer is invoked (possibly
several times) for each module in the program, in order to obtain the analysis
results needed by the analysis of other program modules. We denote the process
of obtaining the answer value AP of any predicate P for a call CP as: P : CP 7→
AP. The analysis results obtained for the exported predicates of every module
are stored in a Global Answer Table (GAT ).

Analyzing a module separately presents the difficulty that, from the point
of view of analysis, the code to be analyzed is incomplete in the sense that the
code for procedures imported from other modules is not available to analysis.
More precisely, during the analysis of a module m there may be calls P : CP such
that the procedure P is not defined in m but instead it is imported from another
module m′. We refer to determining the answer value of P , AP (P : CP 7→ AP) as

1 Several approaches have been proposed for the analysis of incomplete programs (open
programs), for example [2, 1].
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the imported success problem. In addition, in order to obtain analysis information
for m′ which is as accurate as possible we need to somehow propagate the call
P : CP from m to m′ so that the next time m′ is analyzed such a call pattern is
taken into account. We refer to this as the imported calls problem.

Solving the Imported Success Problem The imported success problem is
solved by means of a success policy, or SP for short. The behavior of the analyzer
for predicates defined in m remains exactly as before. SP is needed because given
a call pattern P : CP it will often be the case that an entry of exactly the form
P : CP 7→ AP does not exist in the analysis results stored in the GAT for m′.
In such case, the information already present may be of value in order to obtain
a (temporary) answer pattern AP, and continue the analysis of module m.

In contrast, in many formalizations of non-modular analysis there is no ex-
plicit success policy. This is because if the call pattern P : CP has not been
analyzed yet, the analysis algorithm forces its computation. Thus, the results
of analysis do not depend on any particular success policy: when the analyzer
reaches a fixed-point there is always an entry of the form P : CP 7→ AP for any
call pattern P : CP which appears in the analysis graph. However, in a modular
setting it is often convenient to delay the analysis of predicates defined in other
modules until those modules are revisited. In general, those modules may have
already been analyzed or they may be analyzed in the future. We will simply do
the best possible given the information available in the GAT.

Several success policies can be defined which provide over- or under-approxi-
mations of the exact answer pattern AP= with different degree of accuracy. Note
that this exact value AP= is the one which the flattening approach (that we will
thus denote SP=) would compute. In this work we consider two kinds of success
policies, those which are guaranteed to always provide over-approximations, i.e.
AP= v SP(P : CP, GAT ), and those which provide under-approximations, i.e.,
SP(P : CP, GAT ) v AP=. We will use the superscript + (resp. −) to indicate
that a success policy over-approximates (resp. under-approximates).

In the experiments shown in this work, a very precise over-approximating
success policy has been used, already proposed in [12] and defined as:

SP+
All(P : CP, GAT ) = topmost(CP) uAP′∈app

AP′ where

app = {AP′ | (P : CP′ 7→ AP′) ∈ GAT and CP v CP′}

The function topmost obtains the topmost answer pattern for a call pattern. The
notion of topmost description was already introduced in [2]. Informally, a topmost
description preserves the information on properties which are downwards closed
whereas it loses information for those which are not. Note that taking > as
answer pattern is also a correct over-approximation, but often less accurate than
using topmost substitutions. For example, if a variable is known to be ground in
the call pattern, it will continue being ground in the answer pattern and taking
> as the answer pattern would lose this information. However, the fact that
a variable is free on call does not guarantee that it will keep on being free on
success.
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We refer to this success policy as SP+
all because it uses all entries in GAT

which are applicable to the call pattern in the sense that the call pattern already
computed is more general than the call being analyzed.

The counter-part of SP+
all is the function SP−

all which is defined as:

SP−
All(P : CP, GAT ) = tAP′∈app

AP′ where
app = {AP′ | (P : CP′ 7→ AP′) ∈ GAT and CP′ v CP}

Note the change in the direction of the applicability relation (the call pattern in
the GAT has to be more particular than the one being analyzed) and the use
of the lub operator instead of the glb. Also, note that taking, for example, ⊥ as
an under-approximation is correct but SP−

all is more precise.
As shown in [11] using SP+ policies has the advantage that at any point

during the modular analysis, even when a fixpoint has not been reached yet, the
information obtained for each module is always a correct over-approximation.
The drawback is that when the fixpoint is reached it may not be minimal, i.e.,
information is not as precise as it could be. In contrast, SP− policies obtain the
least fixpoint (most precise information) but only produce correct results when
the fixpoint it reached. SP+ policies can be useful during program development.

Solving the Imported Calls Problem As the analysis is context-sensitive,
the call patterns for imported predicates are only known after the calling module
is analyzed, but they cannot be processed until the imported module is selected
for (re)analysis. These call patterns are therefore stored in another global data
structure, the temporary answer table (TAT for short).2 When the imported
module is scheduled for (re)analysis, all call patterns in the TAT are used as
input for the analyzer.

2.4 Computing an intermodular fixed point

The intermodular fixed-point algorithm of CiaoPP takes one module of the pro-
gram that needs (re)analysis, analyzes it storing the relevant information in GAT
and TAT tables, and looks for another module which needs reanalysis. When
a module is analyzed, it updates the entries in the global tables, and marks
the modules which import it if the analysis results may improve the results of
those modules. An intermodular fixed point has been reached when there are no
modules which need reanalysis.

Determining the optimal order in which the different modules in the program
unit should be analyzed in order to get to a fixed-point as efficiently as possible
is not trivial. Finding good scheduling strategies for intra-modular analysis is a
topic which has received considerable attention and highly optimized algorithms

2 In fact, GAT and TAT are implemented using the same table, and TAT entries
are marked as needing reanalysis, in order to provide more precise results than
those obtained applying the success policy, as soon as the module is scheduled for
(re)analysis. There are more details in Section 2.4 and [11].
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exist which converge to a fixed-point quickly. Unfortunately, it is not possible to
directly translate the same heuristics used in the intra-modular case to the inter-
modular case. In the inter-modular case we have to take into account the time
required to change from analysis of one module to another since this typically
means reading a new module from disk. Thus, requests to process call patterns
have to be grouped by modules in order to reduce the number of times we change
context.

In the current implementation, two simple strategies have been used, in order
to study the behavior of the analysis of modular programs in clearly different
scenarios. Both strategies take the list of modules in a given order (a top-down
and a bottom-up traversal of the intermodule dependency graph, respectively),3

and traverse the list analyzing the modules which have pending call patterns,
updating the corresponding global tables with the analysis results. This process is
repeated until there are no pending call patterns for any module in the program.

We will refer to this intermodular fixed-point algorithm, scheduling one mod-
ule at a time for analysis as the modular approach.

3 Empirical results

The CiaoPP implementation of the framework summarized above has been
tested by parameterizing it in several ways, in order to study the overall be-
havior of the system. Different trade-offs and characteristics of the analysis of
modular programs have been studied:

Flattened vs. modular First, the flattened approach of Section 2.2 has been
compared to the intermodular fixpoint of Section 2.4. Although it is pre-
dictable that the analysis of a program for the first time in a modular,
separate analysis fashion will be slower than the flattened approach (due to
the overhead in loading/unloading modules, etc.), it is interesting to study
by how much. On the other hand, in some cases the analysis of a whole
program may be unfeasible due to hardware (memory) limitations, but in
the intermodular fixpoint approach this limitation can be overcome.

Intermodular scheduling policies Another aspect to study is related to the
influence of the module selection policy in the efficiency of the analysis. The
scheduling policies used have been already described in Section 2.4. We will
refer to them as naive top down and naive bottom up, respectively.

Success policies Two success policies have been compared in both scheduling
policies: an over-approximating policy, SP+

all, and an under-approximating
one, SP−

all, as described in Section 2.3. Although there may be other success
policies, we estimate that these ones are the most effective policies, as they
bring the closest results to SP=.

Incremental analysis of modular programs Finally, the analysis of a mod-
ular program from scratch using the monolithic approach has been compared

3 All modules which belong to the same cycle in the graph have been considered at
the same depth, and therefore those modules will be selected in any order.
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to the reanalysis of that program after making specific modifications in the
source code. This comparison illustrates the advantages of analyzing only
the module which has changed (and the modules affected by that change)
instead of reanalyzing the whole program from scratch.
Three different kinds of source code modifications have been studied: 1) a
simple change that keeps the same analysis results, 2) a change that results
in the exported predicates producing a more precise answer pattern, and
3) a modification in the source code such that after the change exported
predicates produce more general analysis results.
Note that when there are changes in the source code which do not improve
or invalidate previous analysis results, nor generate new call patterns for
imported modules, i.e., 1) there are clear advantages in using the modular
approach, since only one module must be analyzed at a time. In contrast, in
the monolithic, non-modular analysis the whole program must be analyzed.
Also note that this kind of changes may occur more often if assertions are
used on a regular basis, as they can bring very precise answer patterns,
similar to the results provided during the analysis.
The second kind of change studied represents a change that makes the anal-
ysis results for exported predicates be more precise than the ones obtained
before. This is done by removing all clauses of exported predicates of a mod-
ule except the first non recursive one.4 This will bring in general analysis
results which are more specific than the results previously obtained, mak-
ing them invalid in most cases, and producing the reanalysis of the calling
modules.
The third type of source change corresponds to performing a modification in
an exported predicate which results in this predicate providing more general
analysis results. The change consists in the addition of a clause to all the
exported predicates of a module in which all arguments are pairwise distinct
and free variables.5 This approach then forces the reanalysis of the modules
which call the changed module.

In the following subsections the selected benchmark programs are described,
and the results of the tests are studied in detail. Two modes domains have
been considered: Def [6], a simplified version of the Pos domain, and Sharing-
freeness [8], which gets combined information on variable sharing and freeness.

3.1 Brief description of the benchmarks used

The central focus of this paper is to show how the intermodular analysis frame-
work of CiaoPP behaves with real-life programs. Therefore, the selection of
4 Mutually recursive predicates are also considered. If the exported predicate has only

recursive clauses, they are replaced by a fact with all arguments ground.
5 In the Sharing − Freeness domain this addition might not provide a more general

analysis result, as this kind of clause does not provide a top success substitution.
However, the tests have been performed using the same change also in the case of
Sharing − Freeness to make the tests homogeneous across the different domains.
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benchmark programs must include not only characteristic examples used in the
LP analysis literature, but also other programs which are specially difficult to
analyze in a modular setting (for example, because there are several mutually
recursive predicates which conform intermodular cycles), and real-life programs.
A brief description of the selected benchmarks follows:

ann This is the &-Prolog implementation of the MEL annotator (by K. Muthuku-
mar, F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo). In this case
the code is distributed in 3 modules with no cycles in the intermodular de-
pendency graph.

bid This program computes an opening bid for a bridge hand (by J. Conery).
It is composed of 7 modules, with no cycles in the intermodular dependency
graph.

boyer The boyer benchmark is a reduced version of the Boyer/Moore theorem
prover (by E. Tick). The program has been separated in four modules with
a cycle between two modules.

peephole This program is the SB-Prolog peephole optimizer. In this case, the
program is split in three modules, but there are two cycles in the inter-
modular dependency graph, and there are several intermodular cycles at the
predicate call level.

prolog read corresponds to a simplified version of the code used by the Ciao
compiler for reading terms. It is composed by three modules, having a cycle
between two of them.

unfold is a fragment of the CiaoPP preprocessor which contains the partial
evaluator. It is distributed in 7 modules with no cycles between them, al-
though many other modules of CiaoPP source code, while not analyzed, are
consulted in order to get assertion information.

managing project is a program used by the authors for EU project manage-
ment. It is distributed in 8 modules with no intermodular cycles.

check links is an example program for the Pillow HTML/XML/HTTP con-
nectivity package (by D. Cabeza and M. Hermenegildo) that checks that
links contained in a given URL address are reachable. The whole Pillow
package is analyzed together with the sample program, and it is composed
of 6 modules without intermodular cycles.

It should be noted that for all these programs the number of modules indi-
cated above correspond to the user modules of the benchmark. However, they
are not the only ones processed: any benchmark is likely to use quite a large
number of modules from the system libraries. In particular, in Ciao all builtins
are in system libraries. For efficiency, library modules are pre-analyzed for a rep-
resentative set of call patterns and the analysis results are expressed using the
assertion language described in [10]. Instead of analysing library modules over
and over again, the analysis algorithm computes success information from such
assertions using a SP+ policy.

Performance-wise, in the current implementation we have first focused on
optimizing analysis times. Loading times have not been optimized as much, but
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we are confident that these times can be reduced further by storing assertions
for libraries in a precompiled format.

The benchmarks have been run on a Dell PowerEdge 4600 with two Pentium
processors at 2 Ghz and 4 Gb of memory, and normal workload. Each test has
been run twice, reporting the arithmetic mean of these runs.

3.2 Analysis of a modular program from scratch

Table 1 shows the absolute times in milliseconds spent in analyzing the programs
using the flattening approach. Mod reflects the number of modules comprising
each benchmark (excluding system modules). For every benchmark, the total
analysis time is divided into several categories, represented by the following
columns:

Load This column corresponds to the time spent loading modules into Ciaopp.
This time includes the time used for reading the module to be analyzed and
the time spent in reading the assertions of the imported modules.

Ana. This is the time spent analyzing the program and applying the success
policy for imported predicates together with some preprocessing of the code.

Gen. Corresponds to the task of generating the global information (referred to
before as the GAT and TAT tables). The information generated is related to
the analysis results of all exported and multifile predicates, new call patterns
of imported predicates generated during the analysis of each module, and
the modules that import the module and can improve their analysis results
by reanalysis.

Total Time elapsed since the analyzer is called until it finishes completely. It is
the sum of the previous columns, plus some extra time spent in other tasks,
such as the generation of the intermodular dependency graph, handling the
list of modules to get the next module to be analyzed, etc.

As we have said above, loading times in Table 1 comprise not only the time
spent in loading the user modules which compose each benchmark, but also that
of loading the subset of the libraries which are needed for that particular bench-
mark, and the selection of the relevant assertions from those libray modules.
Optimization of loading time for library modules is subject of ongoing work.

Tables 2 and 3 give the summary of the weighted arithmetic and geometric
means of the comparative times for the analysis domains Def and Sharing-
freeness respectively. The numbers in these tables are relative to the monolithic
case (shown in Table 1), and correspond to the weighted mean, using the number
of clauses of each program as weight for each benchmark. The naive bottom up
and naive top down global scheduling policies are compared, as well as the SP−

all

and SP+
all success policies. Table columns have the same meaning as before.

The rows labeled “From scratch” in these tables show the overall time
spent in the analysis of the different benchmarks without previous analysis in-
formation. In Table 2 the intermodular analysis from scratch using Def is only
somewhat slower compared to the monolithic analysis, and in particular the
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Def

Bench Mod Load Ana. Gen. Total

ann 3 873 319 140 1518

bid 8 1182 31 136 1645

boyer 4 1076 138 81 1470

peephole 3 1685 313 231 2533

prolog read 3 829 360 304 1668

unfold 7 3325 1357 394 5506

managing project 8 1626 9369 496 11892

check links 6 1792 4757 1249 8235

Sharing-freeness

Bench Mod Load Ana. Gen. Total

ann 3 873 496 196 1743

bid 8 1182 38 146 1647

boyer 4 1076 197 89 1533

peephole 3 1685 562 309 2831

prolog read 3 829 2778 570 4340

unfold 7 3325 548143 635 552514

managing project 8 1626 824 390 3273

check links 6 1792 6080 1340 9623

Table 1. Time spent (in milliseconds) by the monolithic analysis of different benchmark
programs

analysis time is not much larger than the monolithic time in most cases. How-
ever, in simple domains like Def , the analysis time is not the most important
fraction of the total time, and therefore other tasks such as module loading or
results generation can in fact be more relevant than the analysis itself. On the
other hand, more complex domains as Sharing−freeness (Table 3) increase the
difference with respect to the monolithic case. It is important to note that using
SP+

all is clearly not recommended for performing modular analysis from scratch
in the Sharing− freeness domain. The result in this case is biased a great deal
by the results of the analysis of managing project, in which most predicates
have many arguments, resulting in large sharing sets that tend to approximate
to > (which is the powerset of the variables in the clause).

On the other hand, when comparing the global scheduling policies, only a
slight difference in the time taken using the naive top down or the naive bottom up
strategies can be observed. This result seems to reflect that the order of the
modules is not so relevant when analyzing a modular program as was initially
expected.

Memory Consumption when analyzing from scratch. We have also compared the
maximum memory required for the analysis in the flattened and the modular
approaches to the analysis of modular programs from scratch. Table 4 shows the
maximum memory consumption during the analysis of the flattened approach
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Def domain
Global scheduling policy: naive top down

automatic SP+ automatic SP−

Type of test Load Ana. Gen. Total Load Ana. Gen. Total

From scratch - ar.mean 1.72 1.33 0.89 1.21 2.48 1.70 1.55 1.59

From scratch - geo.mean 1.70 1.04 0.77 1.15 2.44 1.32 1.37 1.49

Mod. touch - ar.mean 0.75 0.37 0.18 0.58 0.74 0.38 0.18 0.58

Mod. touch - geo.mean 0.74 0.35 0.15 0.54 0.73 0.36 0.14 0.54

Less general chg. - ar.mean 1.10 0.39 0.34 0.69 1.13 0.38 0.37 0.69

Less general chg. - geo.mean 1.08 0.15 0.26 0.55 1.11 0.14 0.26 0.54

More general chg. - ar.mean 1.10 0.58 0.39 0.76 1.13 0.60 0.41 0.77

More general chg. - geo.mean 1.08 0.49 0.30 0.69 1.11 0.50 0.30 0.70

Global scheduling policy: naive bottom up
automatic SP+ automatic SP−

Type of test Load Ana. Gen. Total Load Ana. Gen. Total

From scratch - ar.mean 1.71 1.28 0.87 1.19 2.49 1.70 1.55 1.58

From scratch - geo.mean 1.69 1.00 0.75 1.14 2.45 1.30 1.36 1.47

Mod. touch - ar.mean 0.76 0.36 0.17 0.59 0.77 0.38 0.17 0.60

Mod. touch - geo.mean 0.74 0.35 0.13 0.54 0.76 0.36 0.14 0.55

Less general chg. - ar.mean 1.08 0.30 0.28 0.64 1.12 0.34 0.33 0.68

Less general chg. - geo.mean 1.06 0.12 0.22 0.51 1.10 0.14 0.24 0.54

More general chg. - ar.mean 1.06 0.51 0.31 0.72 1.11 0.56 0.37 0.76

More general chg. - geo.mean 1.04 0.45 0.25 0.66 1.08 0.48 0.28 0.69

Table 2. Arithmetic and geometric overall results for analysis of modular programs
using different global scheduling algorithms and success policies in the Def domain.

(column Monolithic), and the use of memory of the modular approach (using
both global scheduling policies described before) relative to the monolithic case
(columns SP+

all and SP−
all for the corresponding success policies). The results

show that the modular approach is clearly better in terms of maximum memory
consumption than the monolithic approach, except for the outlying result of
managing project, as mentioned above, and two of the benchmarks containing
intermodular cycles at the predicate level, peephole and prolog read. However,
given a program split into N modules, the memory used for analysing it in a
modular way might be expected to be M/N , where M is the memory consumed
in a monolithic analysis. This is not true because the complexity of the program
is in general not evenly distributed among its modules. Since Table 4 shows
maximum memory consumption, figures are strongly influenced by the most
complex modules.

3.3 Reanalysis of a modular program after a change in the code

As explained at the beginning of Section 3, we have also studied the incremental
cost of reanalysis of a modular program after a change, for different typical
changes, as explained above. In the first case (“Mod. touch” rows), a simple
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Sharing-freeness domain
Global scheduling policy: naive top down

automatic SP+ automatic SP−

Type of test Load Ana. Gen. Total Load Ana. Gen. Total

From scratch - ar.mean 1.77 202.33 1.32 52.24 2.43 2.51 1.58 2.31

From scratch - geo.mean 1.75 16.08 1.14 8.67 2.37 1.99 1.53 2.13

Mod. touch - ar.mean 0.78 0.48 0.20 0.66 0.75 0.30 0.20 0.61

Mod. touch - geo.mean 0.77 0.35 0.19 0.50 0.75 0.21 0.19 0.46

Less general chg. - ar.mean 1.07 0.30 0.33 0.73 1.00 0.31 0.30 0.69

Less general chg. - geo.mean 1.06 0.17 0.28 0.48 0.97 0.10 0.22 0.45

More general chg. - ar.mean 1.21 0.96 0.52 1.02 1.23 0.75 0.49 0.96

More general chg. - geo.mean 1.19 0.64 0.45 0.72 1.20 0.49 0.44 0.69

Global scheduling policy: naive bottom up
automatic SP+ automatic SP−

Type of test Load Ana. Gen. Total Load Ana. Gen. Total

From scratch - ar.mean 1.78 200.99 1.26 51.91 2.53 2.53 1.59 2.35

From scratch - geo.mean 1.76 16.01 1.07 8.64 2.47 2.05 1.53 2.18

Mod. touch - ar.mean 0.77 0.46 0.19 0.66 0.78 0.30 0.18 0.62

Mod. touch - geo.mean 0.77 0.35 0.18 0.50 0.77 0.21 0.17 0.47

Less general chg. - ar.mean 1.02 0.28 0.27 0.70 0.97 0.30 0.26 0.68

Less general chg. - geo.mean 1.00 0.15 0.24 0.46 0.94 0.09 0.20 0.43

More general chg. - ar.mean 1.21 0.87 0.47 0.97 1.21 0.74 0.48 0.95

More general chg. - geo.mean 1.19 0.60 0.40 0.71 1.19 0.50 0.42 0.69

Table 3. Arithmetic and geometric overall results for analysis of modular programs
using different global scheduling algorithms and success policies in the Sharing-freeness
domain.

change in a module with no implications in the analysis results of that module
has been tested. It has been implemented by “touching” a module, i.e., changing
the modification time without actually modifying its contents, in order to force
CiaoPP to reanalyze it. “Less general change” rows correspond to a source
code modification in which all the clauses of the exported predicates of a given
module have been replaced by the first non-recursive clause of the predicate.
And finally, the third case (“More general change” rows) is implemented by
adding a most general fact to all exported predicates of a given module.

For every benchmark, all these source code modifications have been made for
each module, and the weighted arithmetic and geometric means of the resulting
reanalysis times have been considered. The weight has been measured as the
number of clauses of the module that has been modified.

The overall results in Tables 2 and 3 indicate that in many cases the reanalysis
time is better than in the monolithic case. It is important to note that the
analysis domain used is very relevant to the efficiency of the modular approach:
the analysis of a complete program in complex domains such as Sharing −
freeness is much more expensive than the reanalysis of a module, while the
difference is smaller (although still significant) in the case of Def . This suggests
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Global scheduling policy: naive top down

Def Sharing-Freeness

Bench Mod Monolithic SP+ SP− Monolithic SP+ SP−

ann 3 3739488 0.91 0.93 4121592 0.92 0.94

bid 8 3462054 0.78 0.72 3456770 0.80 0.74

boyer 4 3424928 0.90 0.80 3579152 0.93 0.87

peephole 3 5278446 0.87 0.95 5738422 0.92 1.25

prolog read 3 3779344 0.92 0.95 5515176 1.28 1.43

unfold 7 8697250 0.95 0.83 15862826 0.64 0.63

managing project 8 6998418 0.63 0.69 6044194 4.22 0.82

check links 6 13535418 0.76 0.72 20727590 0.90 0.89

Weighted Arithm. mean 0.77 0.77 2.10 0.87

Weighted Geom. mean 0.76 0.76 1.54 0.86

Global scheduling policy: naive bottom up

Def Sharing-Freeness

Bench Mod Monolithic SP+ SP− Monolithic SP+ SP−

ann 3 3739488 0.91 0.91 4121592 0.91 0.92

bid 8 3462054 0.78 0.72 3456770 0.80 0.73

boyer 4 3424928 0.90 0.80 3579152 0.93 0.93

peephole 3 5278446 0.87 0.95 5738422 0.92 1.25

prolog read 3 3779344 0.92 0.95 5515176 1.28 1.43

unfold 7 8697250 0.95 0.83 15862826 0.64 0.63

managing project 8 6998418 0.64 0.67 6044194 4.22 0.82

check links 6 13535418 0.74 0.72 20727590 0.87 0.87

Weighted Arithm. mean 0.77 0.76 2.09 0.87

Weighted Geom. mean 0.76 0.75 1.53 0.86

Table 4. Overall memory consumption of Non-modular vs. SP+ and SP− policies.

that modular analysis can make it practical to use domains which are precise but
rather costly. On the other hand, the results in Table 3 for reanalysing after a
more general change are very close to monolithic analysis from scratch, although
still below it. That means that even in the presence of the most agressive change
in a module, modular analysis is not more time-consuming than analyzing from
scratch. Simpler changes provide better results of the modular analysis with
respect to the flattened approach, as is shown in Tables 2 and 3 for other kinds
of changes.

4 Conclusions

We have provided an empirical study of several proposed models for context-
sensitive analysis of modular programs with the objective of providing experi-
mental evidence on the scalability of these models and, specially, on the impact
on performance of the different choices left open in those models.
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Our results shed some light on the different choices available. In the case of
analyzing a modular program from scratch, the modular analysis approach is
expected slower than the flattening approach (i.e., having the complete program
in memory, and analyzing it as a whole), due to the impact of load and unload
code and related analysis information, and the restriction of not being able to
analyze predicates in other modules when a different one is being processed.
Also, this suggests future work on reducing the time spent in loading/unloading
modules and storing analysis results. However, the modular analysis times from
scratch are still reasonable, excluding the case of the Sharing−freeness domain
with SP+

all success policy. On the other hand, it does imply a lower maximum
memory consumption which in some cases may be of advantage since it may
allow analyzing programs of a certain critical size that would not fit in memory
using the flattening approach.

Across the domains we can see that in simple domains SP+
all and a naive

bottom up scheduling policy appears to be the best. It is substantially better
for some experiments (in particular, for more general changes) and not much
worse on most experiments. Another conclusion which can be derived from our
experiments is that, as already mentioned, no important difference has been
observed between the top-down and bottom-up strategies.

We have also considered the case of reanalyzing a previously analyzed pro-
gram, after making changes to it. This is relevant because this is the standard
situation during program development, in which some modules change while
others (and the libraries) remain unchanged. While in this phase the analysis
results may not be needed in order to obtain highly optimized programs, they
are used for static program validation and debugging. In this context the mod-
ular analysis, because of its more incremental nature, shows advantages in both
time and memory consumption over the monolithic approach in some cases.
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