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Abstra
t

We present an overview of the sta
k-based memory management te
hniques that we used

in our non-deterministi
 and-parallel Prolog systems: &-Prolog and DASWAM. We believe

that the problems asso
iated with non-deterministi
 and-parallel systems are more general

than those en
ountered in or-parallel and deterministi
 and-parallel systems, whi
h 
an be

seen as subsets of this more general 
ase. We develop on the previously proposed \marker

s
heme", lifting some of the restri
tions asso
iated with the sele
tion of goals while keeping

(virtual) memory 
onsumption down. We also review some of the other problems asso
i-

ated with the sta
k-based management s
heme, su
h as handling of forward and ba
kward

exe
ution, 
ut, and roll-ba
ks.

Keywords: Parallelism, Logi
 Programming, Memory Management, And-parallelism,

Or-parallelism, Implementation

1 Introdu
tion

The eÆ
ien
y of a sequential Prolog implementation is largely determined by two fa
tors: the

basi
 speed | i.e., the raw speed at whi
h it is able to exe
ute Prolog 
ode; and memory usage

| i.e., the amount of memory the system uses while exe
uting a program.

Memory eÆ
ien
y 
omes into play mainly when large, realisti
 appli
ation-type programs

are exe
uted, rather than in small ben
hmark-type programs. Memory usage is important for

large programs be
ause of the �nite resour
es in any real 
omputer system. In the worst 
ase, a

program will not run on a system that is not memory eÆ
ient, but will run on a more eÆ
ient

�

Some of the resear
h reported in this paper was 
arried out while this author was at the Computer Laboratory,

University of Cambridge, Cambridge UK.
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one. In less extreme 
ases, the extra swapping a memory ineÆ
ient system introdu
es will have

an important negative impa
t on performan
e.

The issue of memory performan
e is of even greater importan
e in a parallel system than in

a sequential system, be
ause a parallel system is likely to 
onsume more total memory than a

sequential system, both be
ause more 
ode is being exe
uted at the same time, and be
ause of

the overhead needed to support parallelism. Moreover, the issue is of even greater importan
e for

a de
larative language su
h as Prolog, whi
h is generally already 
onsidered to be less memory

eÆ
ient than 
onventional imperative languages.

There are other issues that will a�e
t the per
eived performan
e of a parallel Prolog system,

in
luding the eÆ
ien
y of the system in exploiting parallelism, and higher level issues su
h as the

nature and availability of the parallelism. For a 
omplete look at the performan
e of a parallel

Prolog system, all these issues need to be examined. These other issues have been examined in

greater or lesser detail elsewhere, but we feel that issues related to memory management and us-

age are usually not 
onsidered in detail in the parallel Prolog literature, and indeed performan
e

evaluation of systems often 
onsists of ben
hmarking the system with small programs, whi
h do

not stress the memory resour
es of the hardware. We therefore feel that there is a need to look

at memory management in parallel Prolog systems in more detail. This is the purpose of this

paper.

We present an overview of one way of ta
kling the memory usage problem of parallel Prolog

system | that of using multiple sta
ks, 
on
entrating on the methods used in systems we have

implemented | PWAM [6℄ and DASWAM [18℄.

1

We examine these systems for 
on
reteness,

and also, as we shall show, be
ause we feel that our systems represent a 
lass of systems (those

supporting non-deterministi
 and-parallelism) whi
h have to ta
kle more general problems in

memory management than other parallel Prolog systems, su
h as deterministi
 and-parallel and

or-parallel systems.

The rest of the paper is organised as follows: �rst, we introdu
e the multiple sta
k model,

and dis
uss its merits. We then brie
y overview how the model is implemented, and �nally, we

examine some of the extra support me
hanisms that are needed to deal with parallel exe
ution of

full Prolog: dealing with 
uts, ba
kward exe
ution, and propagation of failure. Throughout this

paper we assume that the reader is familiar with Prolog, and parallel Prolog. We also assume

some familiarity with the implementation of parallel Prolog systems.

2 General Approa
h

The most eÆ
ient sequential logi
 programming systems obtain mu
h of their performan
e from

doing their own sta
k-based memory management and through 
ompilation. Storage spa
e is

re
overed automati
ally on ba
ktra
king, redu
ing the need for an expli
it garbage 
olle
tor. In

addition, a 
ompiled system is more memory eÆ
ient than an interpreted system be
ause the


ompilation pro
ess redu
es the amount of information that needs to be repli
ated from one

pro
edure 
all to another. Moreover, in many systems (su
h as the DEC-10 Prolog ma
hine [20℄

and the WAM [21℄), further storage optimisation is obtained by the use of a two sta
k model,

where the storage of variables is divided between two areas | the lo
al and global sta
ks.

This allows storage in the lo
al sta
k to be re
overed as soon as a 
lause has been 
ompleted

without an alternative. Furthermore, through last 
all optimisation, lo
al sta
k frames (the

WAM \environments") 
an be often reused, e�e
tively turning re
ursion into iteration.

2

Ideally, we would like memory management on parallel systems to a
hieve similar results

1

These are the abstra
t ma
hines for &-Prolog [6℄ and DDAS [16℄, respe
tively.

2

For a detailed des
ription of the WAM, see [1℄.
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to those a
hieved in sequential systems: re
overy of storage spa
e during ba
ktra
king, min-

imisation of the repli
ation of state information, and early re
overy of some additional storage

spa
e. A 
ompiled parallel system is the �rst step to more eÆ
ient memory management, and

we shall des
ribe our approa
h in that 
ontext, although the te
hniques should be appli
able

to interpreted systems as well. Before we introdu
e our spe
i�
 approa
h, we �rst dis
uss some

general properties of the parallel systems we are 
onsidering.

We adopt the subtree-based approa
h to exe
uting Prolog programs in parallel, whi
h is


ommon to many models. In this approa
h parallelism is a
hieved by allowing several entities

{whi
h are often 
alled workers{ to simultaneously explore the sear
h tree of a program. Ea
h

su
h worker explores the sear
h tree in mu
h the same way as sequential Prolog: depth-�rst, left-

to-right. Generally, ea
h worker will be assigned to a di�erent part of the tree. Thus, the sear
h

tree 
an be thought of as being divided into subtrees, ea
h of whi
h is exe
uted sequentially and

referred to as a task. In the 
ase of or-parallelism these subtrees are generally bran
hes of the

tree, while in the 
ase of and-parallelism they are 
ontiguous parts of one or more bran
hes. It

is often the 
ase that the subtrees are not determined a priori but rather as the tree is being

dynami
ally 
onstru
ted: as a worker works on a task, opportunities for parallelism are identi�ed

and thus marked. When a worker �nishes exploring a subtree, it may start exploring another

sub-tree whi
h has been identi�ed for parallel exe
ution { this pro
ess is referred to as stealing

a task. It should be noted that if there are no free workers the tasks or subtrees identi�ed by

a worker will (eventually) be explored by this worker.

The subtree-based approa
h has the advantage that the exe
ution of ea
h task is very similar

to that of sequential Prolog, and thus many of the te
hniques (and advantages) of sequential

Prolog implementations should 
arry over, in
luding those related to memory management.

However, the a
tual way in whi
h the parallel workers are managed, and the a
tual me
hanisms

for memory management remain to be spe
i�ed. For this, we will use a \distributed sta
k"

s
heme as our starting point. Variants of su
h a s
heme (and its restri
ted version, the \
a
tus

sta
k" s
heme) have been used repeatedly in implementations be
ause they o�er the potential

to a
hieve the above mentioned goal of approa
hing sequential memory eÆ
ien
y [2, 8, 22, 23℄.

We assume the program is to be 
ompiled into instru
tions whi
h are quite similar to those

of a Prolog engine, with perhaps some additional instru
tions related to parallelism. Following

[9, 6℄, we view ea
h of the workers as 
omposed of two elements: an agent, whi
h is a pro
essing

element, 
apable of exe
uting su
h instru
tions in mu
h the same way as a sequential Prolog

engine, and a sta
k set, whi
h represents the asso
iated storage, i.e., a set of sta
ks, 
onsisting of

the normal sequential Prolog sta
ks plus perhaps some other areas needed for parallel exe
ution,

and a number of registers, as is shown in Figure 1, whi
h represents a simpli�ed layout with

elements from both PWAM and DASWAM. A 
omplete parallel system then 
onsists of a number

of agents, and the same number or greater of sta
k sets. Agents are free to atta
h to any sta
k

set that does not already have an atta
hed agent, and are also free to move to other sta
k sets.

A sta
k set with an atta
hed agent 
an then be viewed as a worker, and 
an a
tively perform


omputation. EÆ
ient use of the agents, whi
h are really representing the physi
al pro
essors

of the underlying parallel ma
hine, is ne
essary to a
hieve good speedups. EÆ
ient use of the

sta
k sets is ne
essary to keep memory usage reasonable.

Following the subtree-based approa
h, an agent 
an exe
ute a task and use the sta
k set it is

atta
hed to in mu
h the same way as in standard Prolog exe
ution, ex
ept for su
h di�eren
es

as preparing work for and-parallel exe
ution, and when a task is 
ompleted or suspended. When

a task 
ompletes or suspends, then if more tasks are available, a new task 
an be started. In

order to use agents and sta
k sets eÆ
iently, the simplest thing is to use the same agent and

sta
k set to perform the new task by using the spa
e beyond that already used by the older task.

Thus, the 
ontents of a sta
k set 
an be seen as divided into areas, ea
h 
orresponding to a task.
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Figure 1: Possible Layout of One Sta
k Set

Ea
h su
h area is referred to as a sta
k se
tion.

3

The ordering of the sta
k se
tions on the

worker's sta
k set is the 
hronologi
al order in whi
h the worker exe
uted the tasks asso
iated

with the sta
k se
tions. In order to distinguish and manage su
h se
tions, they are separated

from ea
h other by markers [9℄. Abstra
tly, we 
an 
onsider that markers are pla
ed in all the

sta
ks in a sta
k set, separating the sta
k se
tions in ea
h sta
k. However, in pra
ti
e this is

done by allo
ating markers on to only one sta
k (and the 
hoi
e point (
ontrol) sta
k seems the

most natural one to use), whi
h in turn 
ontain pointers to the 
orresponding boundaries of the

sta
k se
tions in the other sta
ks. In addition, depending on the nature of the se
tion above or

below them, some markers may serve some additional spe
ial fun
tions.

Thus, markers are used in a parti
ular sta
k set to separate di�erent sta
k se
tions, and in

addition, to link the various sta
k se
tions that are distributed to the various sta
k sets logi
ally.

This logi
al link is important be
ause it enables the linked sta
k se
tions to be viewed abstra
tly

as one 
ontinuous sta
k.

The \marker s
heme" [7, 9, 6℄ summarised above 
an be used for both or- and and-parallel

systems. In an or-parallel system, spe
ially marked (\publi
") 
hoi
e points 
an serve as markers

(as is done in e.g., Aurora [12℄), ea
h one 
orresponding to a \fork" in the parallel task tree. If

and-parallelism is restri
ted to \deterministi
" goals, su
h as in PNU-Prolog [13℄ and Andorra-

3

Note that a task may be spread over several sta
k se
tions, be
ause of ba
ktra
king and suspensions.
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I [14℄,

4

then 
hoi
e points 
an also be used as markers, as they mark points where there is

no and-parallelism. However, in (don't know) non-deterministi
 and-parallel systems, where

and-parallelism is allowed among goals whi
h potentially 
an have more than one solution, the

marker fun
tion 
annot be ful�lled by 
hoi
e points only. In addition, and unlike in an or-parallel

system, not only forks but also \joins" have to be performed on the tasks representing sibling

and-goals, and more 
oordination than for or-parallel systems is needed. Thus, additional data

stru
tures have to be provided to serve as several types of markers. Therefore, the marker

s
heme used for \non-deterministi
" and-parallelism 
an be regarded as a generalisation of an

or-parallel and a deterministi
 and-parallel marker s
heme. In this paper we will 
on
entrate

on this s
heme, with the understanding that the solutions proposed and results obtained 
an be

applied to the other forms of parallelism, perhaps with simpli�
ations.

2.1 Overview of the Marker S
heme in PWAM and DASWAM

For 
on
reteness, we now overview the marker s
heme as implemented in PWAM and DASWAM.

Both of these s
hemes developed from the original s
heme presented above, and 
ontain similar

extensions.

5

Both systems implement non-deterministi
 and-parallelism.

6

In these implementations, �ve basi
 types of markers 
an be re
ognised:

Par
all Frame. This marker manages the and-parallel exe
ution of body goals inside a 
lause,

and is allo
ated just before s
heduling a set of body goals whi
h are determined to be

exe
uted in parallel (for 
on
reteness, we will assume that &-Prolog's Conditional Graph

Expressions | CGEs | [7℄, extending DeGroot's Exe
ution Graph Expressions [5℄, are

used for this purpose).

7

Join Marker. This marks the end of an and-parallel exe
ution: after spawning and-parallel

exe
ution for a parti
ular CGE, solutions to the various and-goals being exe
uted in parallel

will be returned at di�erent times, if the and-parallel exe
ution does not fail. Eventually,

solutions would be returned for all the and-goals, and the and-parallel exe
ution has to

be \joined" to allow the exe
ution of goals following the CGE. For this purpose, the last

agent to return a solution allo
ates a join marker on the sta
k set it is atta
hed to, and

then exe
utes the 
ontinuation following the CGE.

8

Suspend Marker. This marks the suspension of a task on the previous sta
k se
tion, and

is allo
ated by an agent on a sta
k set when it wants to use that sta
k set for another

task. The suspended task 
an then (eventually) be 
ontinued at another lo
ation in the

distributed sta
k.

Continuation Marker. This marks the 
ontinuation of a task, and is allo
ated when a task

is resumed after a suspension. This enables the task to 
ontinue exe
ution in a di�erent

lo
ation in the distributed sta
k.

Basi
 Marker. This marks the start of a sta
k se
tion that is not of the above types, e.g.,

when a new task is started. These 
orrespond to both the input goal markers and the

lo
al goal markers des
ribed in [7℄.

4

The term \determinate" is used instead of \deterministi
" in Andorra-I.

5

There are some minor di�eren
es, but these are unimportant for the purposes of this paper.

6

Independent and-parallelism in the 
ase of &-Prolog, dependent and-parallelism (with independent and-

parallelism as a subset), in the 
ase of DASWAM.

7

These frames are allo
ated on the environment sta
k in PWAM and on the 
ontrol sta
k in DASWAM.

8

Note that this is an extension of the original s
heme proposed in [7℄, where the sta
k set that started the

and-parallel exe
ution had to be the one used for the task following the 
ompletion of the CGE.
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W1 W2 W3

foo

b

d

a

c

Figure 2: Sta
k States for a Distributed Sta
k S
heme

Figure 2 illustrates the use of the marker s
heme to represent the following &-Prolog program

fragment:

foo :- (a & b & 
), d.

A possible parallel exe
ution of this 
lause is shown in Figure 2, where ea
h sta
k set is

represented as a single sta
k for simpli
ity. Markers are represented as thin horizontal boxes,

while the 
ontents of a sta
k se
tion are the larger shaded regions in ea
h sta
k set. The and-task

of 
on
ern is shaded in light grey in the di�erent sta
ks. W1 is the worker that exe
utes foo,

whi
h is pushed onto the top of W1's sta
k. At the CGE, a is exe
uted lo
ally, while b and 


are exe
uted remotely (in parallel with the exe
ution of a) on W2 and W3 respe
tively. When

a, b and 
 have all �nished exe
ution, W2 pi
ks up the goal after the CGE, d, and 
ontinues the

exe
ution, leaving W1 and W2 idling, and thus ready to pi
k up more work. Before exe
uting

b or 
, both W2 and W3 were idling and were therefore able to pi
k up b and 
. Both have

performed some work, and used their sta
k. This \old" work is separated from the 
urrent work

by a marker. Par
all markers are used to mark the start of a CGE (e.g., the one separating foo

from a), and 
ontain pointers to link the sta
k se
tions of the sibling and-goals of the CGE, and

a pointer to the sta
k se
tion following the CGE.

All the markers also 
ontain extra pointers for linking the various sta
k se
tions: markers

on the same sta
k set are doubly linked, to fa
ilitate the movement within a sta
k se
tion,

and markers also 
ontain pointers to link the various sta
k se
tions (whi
h may be on di�erent

sta
k sets) together logi
ally. This is shown in Figure 3, where the lighter shaded sta
k se
tions

represent a task whi
h is split into two sta
k se
tions, with the appropriate linkages in the

markers. These pointers allow the system to ba
ktra
k a
ross di�erent sta
k se
tions in the

logi
ally 
orre
t order by following the links.
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direction of growth

Marker

Marker

Marker

Figure 3: Linking of Markers

One major di�eren
e between a distributed sta
k s
heme and a sequential sta
k s
heme is

that ba
ktra
king 
an o

ur in any of the sta
k se
tions in a sta
k set, so ea
h sta
k set 
an have

multiple points of ba
ktra
king (and potentially multiple points of growth) at the same time.

The pattern of 
ontra
tion and growth is thus a�e
ted by what ea
h sta
k se
tion represents,

and this results in a 
lose relationship between memory management and goal s
heduling. This

leads to the problems of \trapped goals" and \garbage slots" [9℄ (also later referred to as \holes"

in or-parallel systems). In a previous paper [9℄, several solutions were proposed to solve these

problems by pla
ing some 
onstraints on whi
h goals 
ould be exe
uted on a parti
ular sta
k set.

This imposed extra overhead when sele
ting a goal, and either limited parallelism or imposed a

high 
ost on virtual memory 
onsumption, be
ause of the 
reation of potentially large numbers

of sta
k sets. In our a
tual implementations, we extended this previous work by the use of

suspend/
ontinuation markers, whi
h allow the suspension and resumption of a task on di�erent

sta
k sets. Thus, the 
onstraints on whi
h goals 
an be sele
ted are lifted, allowing the use of

more 
exible s
hedulers. Su
h s
hedulers should be able to give better performan
e (speedups),

although they may use more memory.

2.2 Comparison between 
exible and restri
ted s
hedulers

In order to gauge the e�e
tiveness of the more 
exible s
hedulers, two s
hedulers were imple-

mented and 
ompared: the `
exible' and `restri
ted' s
hedulers. The 
exible s
heduler uses an

implementation that in
orporates the suspend/
ontinuation markers, and pla
es no limitations

on whi
h goals may be sele
ted. The restri
ted s
heduler is an implementation of one of the

s
hemes proposed in [9℄, where only `appropriate' goals are allowed to be sele
ted, resulting in

the preservation of the sequential 
hronologi
al ordering the sta
k se
tions in ea
h sta
k set.

Some experiments were performed 
omparing these two s
hedulers, using the DASWAM

simulator. The results, reported in [19℄, will be summarised here:

The 
exible s
heduler gave better speedups in programs in whi
h more than one of the goals

in a CGE 
ontained CGEs, that is, in whi
h re
ursive and-parallelism appeared in more than

one of the goals in a CGE. Depending on the distribution of parallelism, the speedups ranged
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orsim boyer

# workers 
exible restri
ted 
exible restri
ted

10 9.8 8.1 6.6 2.8

20 19.1 16.3 8.7 3.2

30 27.9 23.6 9.3 3.4

Table 1: Comparison of speedups between restri
ted and 
exible s
hedulers


exible restri
ted

total s.d. total s.d.

orsim 964580 �1499 967271 �13546

boyer 1764616 �764 175112 �19079

Table 2: Memory usages of the two s
hedulers

from being slightly to signi�
antly better than those of the restri
ted s
heduler. Table 1 shows

the speedups a
hieved by the two s
hedulers for two programs at 10, 20, and 30 workers. One of

the programs, boyer, a simple theorem prover, showed quite a large di�eren
e between the two

s
hedulers. On the other hand, orsim, a simulator used to study the high-level 
hara
teristi
s

of or- and independent and-parallelism [17℄, showed smaller di�eren
es.

We expe
t the di�eren
es between the two s
hedulers to be even more in favour of the


exible s
heduler in a real system, be
ause in our 
omparisons, we did not simulate the 
ost

of maintaining the information ne
essary for the sele
tion of appropriate goals in the restri
ted

s
heduler. This is expe
ted to be either very expensive, or to pla
e even more restri
tion on

parallelism.

One possible problem with the 
exible s
heduler is that it may 
onsume more memory. In

order to quantify this e�e
t, the amount of memory used by the two s
hedulers was also measured

in our experiments. We found that the 
exible s
heduler did not use signi�
antly more memory

than the restri
ted s
heduler, at least in the programs we examined.

Table 2 
ompares the memory usage for orsim and boyer running with 10 workers under the

two s
hedulers. The measurements were taken at one instan
e of simulation `time' just before

the programs �nished exe
uting, when the memory usages for these programs were at their

greatest. Two �gures are given for ea
h s
heduler and program: the total amount of memory

used by all the 10 sta
k sets of the 10 workers, and the standard deviation on the amount of

memory ea
h sta
k set was using. The greater the standard deviation, the greater the variation

of memory usage for ea
h worker.

The results suggest that the 
exible s
heduler does not use more memory than the restri
ted

s
heduler: in fa
t, the usages in both programs seem to be slightly smaller for the 
exible

s
heduler, though this is probably due to the way the data was gathered. In addition, the

memory usage is divided more evenly between the workers for the 
exible s
heduler.

Taken together, these results suggest that the 
exible s
heduler a
hieves better speedups

with reasonable extra 
ost in memory usage.

9

9

Results from the or-parallel PEPSys system [4℄ also support the same 
on
lusion for or-parallel systems.

However, as mentioned before, or-parallel systems do not su�er from the trapped goal problem, so the problem

is less severe than in the more general 
ase of non-deterministi
 and-parallel systems.
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3 Dealing with Exe
uting Full Prolog in Parallel

In order to be able to exe
ute full Prolog in parallel, me
hanisms must be provided to handle

su
h features as 
uts and side-e�e
ts, and also me
hanisms for dealing with failures: the links

in the markers allow ba
ktra
king to take pla
e, but the failure of a task in an and-parallel

exe
ution may a�e
t other tasks as well, as des
ribed in [7, 17℄. Me
hanisms must thus be

provided to 
oordinate the a
tions a
ross di�erent sta
k sets. In this se
tion, we shall examine

the impa
t of these issues on our distributed sta
k.

3.1 Dealing with Side-e�e
ts

In general, side-e�e
ts 
an be dealt with by the suspension of tasks, plus some extra syn
hro-

nisations. These syn
hronisations are independent of the distributed sta
ks, and thus have no

extra impa
t on it, so they will not be dis
ussed further. One ex
eption to this is the a
tion of

the 
ut, whi
h does have an impa
t on the distributed sta
k.

3.2 Dealing with Cuts

In a sequential WAM su
h as SICStus' WAM [3℄, whi
h has separate lo
al and 
ontrol sta
ks,

the exe
ution of a 
ut will be able to remove arbitrarily many 
hoi
e points (up to the 
hoi
e

point representing the parent goal) from the top of the 
ontrol sta
k. This is done by simply

setting the top of the 
ontrol sta
k register to point to the last 
hoi
e point that is outside the

s
ope of the 
ut. However, su
h a simple s
heme is not suÆ
ient for a distributed sta
k, as

the 
hoi
e point to 
ut to may be in a di�erent sta
k se
tion. In fa
t, there 
an be arbitrarily

many sta
k se
tions between the 
urrent sta
k se
tion and the sta
k se
tion that 
hoi
e point is

lo
ated on.

Three general situations 
an be re
ognised when a 
ut is en
ountered:

� The 
ut 
uts to a 
hoi
e point within the 
urrent se
tion. The normal sequential 
ut

me
hanism is used to deal with this.

� The 
ut 
uts to a 
hoi
e point outside the 
urrent se
tion, but still within the same task.

First, the top of 
ontrol sta
k is reset to that of the 
urrent marker, removing any 
hoi
e

points allo
ated sin
e this sta
k se
tion was started. Next, 
hoi
e points have to be removed

from the previous sta
k se
tions, until the 
hoi
e point to 
ut to is rea
hed. This is done

by following the markers in reverse 
hronologi
al order, starting from the 
urrent sta
k

se
tion, and performing the 
ut operations on these previous sta
k se
tions.

Ea
h of these previous sta
k se
tions is bounded by markers both before and after the

sta
k se
tion. To fa
ilitate the 
ut operation, ea
h marker 
ontains a pointer �eld whi
h

points to the last valid 
hoi
e point (if any) on the sta
k se
tion before it. Initially, when

the marker is allo
ated, this �eld is set to point to the top of 
ontrol sta
k. When a


ut operation is performed, this last valid 
hoi
e point pointer is set to point either to the


hoi
e point to 
ut to, if it is in this sta
k se
tion; or to the marker before the sta
k se
tion,

if the 
hoi
e point is outside this sta
k se
tion. In the latter 
ase, the marker before the

sta
k se
tion is used to lo
ate the logi
ally previous sta
k se
tion, and the 
ut operation

is performed re
ursively on that se
tion.

� The 
ut 
uts a
ross sibling and-goals to its left. An example of this is:
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foo :- (true => a & b & (
, !) & d).

This 
ut 
uts away the 
hoi
es of a, b, 
, as well as foo. The main problem is that a and

b are exe
uting in parallel, and may still be exe
uting when the 
ut is en
ountered. The

e�e
t of the 
ut is performed in two stages: the 
hoi
es of 
 are pruned when the 
ut is

en
ountered, using the methods just des
ribed. The slots in the par
all marker asso
iated

with a and b are then marked with a `
ut' 
ag. The pruning of 
hoi
es on a and b then

takes pla
e when all sibling and-goals between them and the 
ut have returned a solution,

i.e., b is pruned when b returns a solution, a is pruned when both a and b have returned

a solution (the �nishing of the task that �nishes later initiates the pruning). However, if

an and-goal to the left of the 
ut fails, then the `
ut' 
ag is reset.

In our 
urrent systems, the spa
e represented by the dis
arded 
hoi
e points on the non-


urrent sta
k se
tions 
annot be immediately re
overed, leaving `garbage slots' in the 
ontrol

sta
k. The markers 
annot simply be removed, be
ause they have to be retained to allow

detrailing of variables during the a
tual ba
ktra
king. Note that this is independent of what

goal sele
tion s
heduling strategy is being used.

The spa
e 
an be re
overed by a garbage 
olle
tor, or, alternatively, if the 
ontrol sta
k is

separated into a 
hoi
e point sta
k for 
hoi
e points only, and a marker sta
k for markers only.

In this 
ase, the markers would not be `blo
king' the spa
e re
overed by the 
ut. Some redesign

of the existing s
heme would be needed, but in prin
iple this would make the re
overy of the

spa
e o

upied by the 
hoi
e points easier.

Note that no parallelism is lost (ex
ept for whatever overhead is needed to perform the


ut) in dealing with 
uts. This is in 
ontrast to dealing with other side-e�e
ts, where the task

performing the side-e�e
t must in general suspend until it is leftmost.

10

3.3 Dealing with Signals

In and-parallel exe
ution, events that take pla
e on one task 
an a�e
t the behaviour of other

tasks. For example, under the \restri
ted" intelligent ba
ktra
king s
heme used for pure goals

in RAP-WAM [10℄, when a goal in a CGE fails, all sibling and-goals are \killed". Even if

no intelligent ba
ktra
king is used, standard ba
ktra
king among parallel and-goals involves


oordination among agents and tasks. In DDAS, there is even more intera
tion between and-

goals be
ause of the dependent and-parallelism [17, 16℄.

Su
h 
ommuni
ation among tasks 
an be implemented by allowing tasks to send signals

to ea
h other.

11

For example, when a task is told to undo its 
omputation (referred to as

\unwinding" or roll-ba
k), a `kill' or `redo' signal is sent to the task. A `kill' signal informs

the task that re
eives the signal that it is to be killed. A `redo' signal means that after undoing

the 
omputation to the previous alternative, the task starts forward exe
ution again. A `kill'

signal does not restart exe
ution of the task. The de
ision of whi
h signal to send is determined

by the exa
t ba
kward exe
ution s
heme used, and will not be dis
ussed further here. Here our

interest is in how memory 
an be re
overed and the signals handled.

10

Note that this does not apply to systems where deterministi
 goals are exe
uted early, and are allowed to

bind variables, su
h as PNU-Prolog and Andorra-I. In su
h systems, the sear
h spa
e explored 
an be di�erent

from Prolog, and for 
orre
t full Prolog behaviour, goals should not be exe
uted in and-parallel a
ross 
uts [15℄.

11

Su
h \signals" are of 
ourse 
on
eptual and do not in general imply using a
tual operating system signals {

more often the a
tion involved is setting a bit in a signal word of an agent or sta
king a value on to a \signal

bu�er."
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Many approa
hes 
an be taken to deal with the 
omplexities that arise from the intera
tions

of signals. A simple approa
h is to delay the killing of a task until it has �nished: the task

�nds out that it has been killed when reporting ba
k su

ess or failure to the par
all marker.

This solution is attra
tive in that it 
ompletely avoids the 
omplexities and syn
hronization

overheads, at the 
ost of using more resour
es and performing more (wasted) work. This extra

work is unfortunately potentially in�nite, unless 
are is taken at 
ompilation time to only allow

the parallel exe
ution of goals whi
h 
an be proved to terminate. Sin
e this property 
an

only be approximated, the number of goals whi
h 
an be exe
uted in parallel is restri
ted in

this approa
h. Moreover, even then the system may still perform a large amount of wasted

work. Another approa
h, used in APEX [11℄, is to suspend all forward exe
ution whenever su
h

intera
tion o

urs. This simpli�es the problem, but 
an potentially greatly a�e
t performan
e

as many of the workers may be doing work that would be 
ompletely una�e
ted. It also requires

global syn
hronisation, whi
h is probably undesirable with any signi�
ant number of workers.

A third solution is to ta
kle the 
omplexity head-on. This is 
learly the most 
omplex ap-

proa
h, but it 
an potentially give the best performan
e in resour
es and time. Many variations

on this approa
h are possible, but, for 
on
reteness, we shall des
ribe one of them, namely the

approa
h taken in DASWAM (the approa
h taken in PWAM, although another variation, is

quite similar).

As already dis
ussed, a task is represented in the distributed sta
k by one or more se
tions

that are logi
ally linked by the 
ontinuation markers. The task re
eiving the signal may not

be a
tive, i.e., it may not be a
tively being worked on as some worker's top-most sta
k-se
tion.

Indeed, a task may have started its own and-parallel exe
ution, and thus it would 
omposed of

a number of des
endant and-tasks. Thus, there is no simple representation for a task. However,

the start of a task is well de�ned: a task begins when it pi
ks up an and-goal and starts exe
ution

on it. The start of a task is thus represented by the �rst sta
k se
tion of the task. The par
all

marker 
ontains pointers to the �rst sta
k se
tion of every and-goal that has been exe
uted in

the CGE that it represents. Signals are sent to all the sibling and-tasks in a CGE, or to the

sibling and-tasks to the right of the task that generated the signal, depending on the nature of

the signal. Thus, when a signal is generated, the lo
al par
all marker is used to determine whi
h

and-task the signal needs to be sent to, and the signal is then sent to the sta
k set 
ontaining

the �rst sta
k se
tion of the and-task. This signal is treated by the re
eiving sta
k se
tion as

an interrupt, su
h that if an agent is atta
hed to the sta
k set, the agent stops its 
urrent work

and pro
esses the signal before returning to the original work. If no agent is atta
hed, then if

there are idle agents, one of these is immediately atta
hed to the sta
k set to pro
ess the signal.

Otherwise, the signal would be pro
essed by the agent that was atta
hed to the sta
k set that

sent the signal. Hen
eforth, for simpli
ity, we will assume that an agent is atta
hed to the sta
k

set that re
eives the signal, and simply refer to it as a worker.

On
e a worker re
eives a signal for a task that it started, the signal must be propagated

to the following sta
k se
tions of the task, if the task is split into more than one sta
k se
tion.

This is done by following the pointers in the various markers to the other sta
k se
tions. Note

that this propagation is distributed: on
e the signal is propagated to a new sta
k se
tion, the

pro
essing is handled by the worker to whi
h that sta
k se
tion belongs.

On
e a signal is propagated as far as it 
an go (i.e. to the last sta
k se
tion representing

a task), then the a
tion asso
iated with the signal 
an take pla
e. For both `kill' and `redo'

signals, the work done by the task re
eiving the signal is rolled-ba
k in mu
h the same way as

the undoing of work during ba
ktra
king, ex
ept that alternatives represented by 
hoi
e points

are not tried. The pro
ess of undoing a pie
e of work may lead to more `kill' signals, e.g., if

there are nested CGEs inside one of the tasks being killed. However, in pra
ti
e, many of these

signals apply to the same tasks, and the system 
an �lter out signals that are sent to a task that
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has already re
eived the same signal. The task is rolled-ba
k in semi-
hronologi
al order in that

sta
k se
tions representing later work of a task are undone before those representing the earlier

work. The ex
eption is that work done by sibling and-goals 
an be rolled-ba
k in parallel.

One apparent problem 
omes from the fa
t that the propagation of a signal takes a �nite

amount of time, while the a�e
ted task 
an spawn new tasks before re
eiving the signal. Thus,

in prin
iple, it might be that su
h new tasks are produ
ed qui
ker than the speed of propagation

of the signal, and the overall killing pro
ess does not terminate. Note, however, that the s
heme

presented e�e
tively avoids su
h \ra
e 
onditions" sin
e the propagation is distributed, with

the worker re
eiving the signal performing the pro
essing of the signal. Thus, if a signal a�e
ts

many sta
k se
tions, more and more workers (or more pre
isely, agents) be
ome involved in the

pro
essing of signals, so that in the extreme 
ase, all the workers are involved in pro
essing the

signal, and no forward exe
ution is performed. Be
ause there is a �nite number of agents or

workers, propagation of signals will always be 
ompleted and a
ted upon. Note that the system

gra
efully degrades to the approa
h taken by APEX of stopping all agents at the moment of

pro
essing any signal, but only when su
h drasti
 a
tion is needed. At the same time, as the

signal propagation is a simple and distributed operation, it should o

ur qui
kly, so the amount

of wasteful work performed is kept low, and is never in�nite.

The a
tual me
hanism used 
an best be illustrated by an example. Figure 4 shows an example

sta
k state for a still exe
uting CGE. The lightly shaded sta
k se
tions are all exe
uting the same

and-task: At W1, during the exe
ution of sta
k se
tion \a", a CGE is en
ountered, and two

des
endant and-tasks, exe
uting se
tion \b" (on W1) and \
" (on W2), are started. At some

point, se
tion \b" is 
ompleted, and a new se
tion started on top of it. Se
tion \
" en
ounters

another CGE, spawning se
tions \d" (exe
uted lo
ally on W2) and \e" (exe
uted on W3).

Se
tion \d" is 
ompleted, but no new work is available, so W2 goes into the idle state. Task

\e" is for some reason (e.g., a suspension that has been resumed) split into two se
tions: \e1"

on W3, and \e2" on W4. e1 has been partially ba
ktra
ked, and se
tion \e2" is in the pro
ess

of forward exe
ution. At this point, the task asso
iated with se
tion \a" re
eives a `kill' signal.

The roll-ba
k has to undo the states of se
tions \a" to \e2". A 
hild se
tion is undone before

its parent | i.e., starting from \b", \d" and \e2", and working up the hierar
hy to \a". The

reason for this is that the propagation of the kill signal to des
endant and-tasks is asyn
hronous

and takes a �nite amount of time, so it is quite involved to undo an an
estral sta
k state when

its des
endant may still be running (be
ause they have not yet re
eived the kill signal). For

example, if se
tion \e2" is still running, it might a

ess its an
estral sta
k se
tions \e1", \
" and

\a". Thus the kill signal is propagated to the youngest 
hild se
tions before the killing starts.

In this example, \b", \e2" and \d" are rolled-ba
k, when \e2" has been rolled-ba
k, \e1" is

rolled-ba
k. Se
tion \
" is rolled-ba
k when both its des
endant se
tions (\
" and \e1") are

undone. Again, \a" is not rolled-ba
k until both its 
hildren | \b" and \
" | are rolled-ba
k.

Ea
h worker is responsible for performing the roll-ba
k in its sta
k set. One reason for this is

to keep the roll-ba
k algorithm relatively simple. Another reason is to exploit the opportunities

for parallelism: e.g., se
tions \b", \d" and \e2" 
an be rolled-ba
k in parallel with ea
h other.

The 
ase is simple for se
tions \d" and \e2", as they are the topmost se
tions. The same

applies to se
tion \
", as by the time it is allowed to be roll-ba
k, se
tion \d" would be undone

already, and \
" would have be
ome the topmost se
tion. In the 
ases of \b" and \e1", they

are not the topmost se
tions of their worker's sta
k set during the roll-ba
k. In these 
ases, the

worker has to freeze the 
urrent work it is doing, perform the roll-ba
k, and then go ba
k to its


urrent work.
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W1 W2 W3 W4

Marker

Parcall  frame

Suspend Marker

Key:

a

b

c

d

e1

e2

Figure 4: Example Sta
k State Before Roll-Ba
k

3.4 Multiple Kill/Redo Signals

During a roll-ba
k, a worker may re
eive other `kill' or `redo' signals. Some of these will be to

other parts of the sta
k set, and are independent of the 
urrent roll-ba
k. These are a

umulated

and dealt with one after the other. However, some kill/redo signals would intera
t with the


urrent roll-ba
k, be
ause they a�e
t the and-task being rolled-ba
k. For example, in �gure 4,


onsider the 
ase of se
tion \a" re
eiving a kill signal and se
tion \e1" re
eiving a redo signal

when the roll-ba
k of \a" is being performed. Another possible intera
tion is se
tion \a" �rst

re
eiving a redo, and later a kill signal.

When a signal is sent to a task, the marker representing the start of that task is marked with

a 
ag (saying that the task is `to be killed' or `to be redone'). If a subsequent signal is sent to

the task (either propagated from another signal to an an
estral task, or a dire
t signal to this

task), then a `kill' signal would override any `redo' signal. This simply means setting the 
ag

to `to be killed'. Otherwise the new signal is �ltered out, as the 
orre
t a
tion is already taking

pla
e.

4 Con
lusions

We have overviewed aspe
ts of memory management in the 
ontext of non-deterministi
 and-

parallel systems, whi
h we showed 
an be 
onsidered as a generalisation of memory management

in or- and deterministi
 and-parallel systems. We also dis
ussed how 
uts and roll-ba
ks 
an be

handled in our s
heme. Although we have 
on
entrated on WAM-derived models whi
h preserve

environment sta
king, we believe most of our �ndings should also apply to other sta
k-based
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approa
hes su
h as pure goal sta
king models and, in general, to any system supporting both

and-parallelism and don't know non-determinism.

12

The me
hanisms used for suspension are useful for many other purposes, su
h as implement-

ing 
onstraints, and allowing dynami
 expansions of sta
ks. We are a
tively resear
hing many

of these possibilities that the s
heme has opened up for us.
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