
UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS

A General Framework for Static Resource Analysis
and Profiling of (Parallel) Programs and an

Application to Runtime Checking

PH.D THESIS

Maximiliano Klemen
M.Sc. Software and Systems

Universidad Politécnica de Madrid

Advisor: Dr. Pedro López Garcı́a
Ph.D in Computer Science

Universidad Politécnica de Madrid

2020

Copyright©2020 by Maximiliano Klemen

DEPARTAMENTAMENTO DE LENGUAJES Y SISTEMAS INFORMÁTICOS E
INGENIERIA DE SOFTWARE

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS

A General Framework for Static Resource Analysis
and Profiling of (Parallel) Programs and an

Application to Runtime Checking

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF:
Doctor of Philosophy in Software, Systems and Computing

Author: Maximiliano Klemen
M.Sc. Software and Systems

Universidad Politécnica de Madrid

Advisor: Dr. Pedro López Garcı́a
Ph.D in Computer Science

Universidad Politécnica de Madrid

November 2020

Abstract of the Dissertation

The goal of static cost analysis is to automatically estimate the resources used
by program executions without running the programs with concrete data, as
functions of input data sizes and possibly other (environmental) parameters. In
this thesis we improve and extend state-of-the-art static cost analysis techniques
by developing a novel, general and flexible framework for resource usage analysis
that can be easily instantiated to infer a wide range of resources, notions of
costs, and approximations, which can deal with different programming languages,
platforms and execution models.

For some applications, standard resource analyses, which estimate the total
resource usage of a program, do not provide the information required. For example,
helping developers make resource-related design decisions requires knowing how
such total resource usage is distributed over selected parts of a program. The
novel, general, and flexible framework developed in this thesis solves this problem,
by allowing setting up cost relations that can be instantiated for performing a
wide range of resource usage analyses, including both static profiling and the
standard notion of cost. We show how to instantiate such framework to perform
static profiling of accumulated cost (also parameterized by input data sizes). Such
information identifies the parts of the program that have the greatest impact on
the total program cost.

Moreover, parallel computing has become the dominant paradigm in computer
architecture, and predicting resource usage on such platforms poses a difficult
challenge. We address it by extending and instantiating our general framework
for performing resource usage analysis of parallel (logic) programs. Besides cost
functions, the analysis also infers other useful information to better exploit and
assess the potential and actual parallelism of a system.

We also develop a novel application of our cost analysis framework: inferring
static performance guarantees for programs with run-time checks. Instrumenting
programs for performing run-time checking of properties, such as regular shapes, is

iii

a common and useful technique that helps programmers detect incorrect program
behaviors. However, such run-time checks inevitably introduce run-time overhead
(in execution time, memory, energy, etc.). We propose a method that uses
static analysis to estimate such overhead. This approach can provide guarantees
for all possible execution traces, and allows assessing how the overhead grows
as the size of the input, which is a parameter of the estimated cost functions,
grows. Our method also extends an existing assertion verification framework to
express “admissible” overheads, and statically and automatically checks whether
the instrumented program conforms with such specifications.

The accuracy and applicability of our framework strongly depend on the
capabilities of the component in charge of solving (or safely approximating) the
cost and size recurrence relations generated during the analysis. In this thesis we
propose techniques for solving recurrence relations that extend state-of-the-art
solvers, addressing some of their limitations. In particular, we develop a novel
approach for solving arbitrary, constrained recurrence relations. It is a guess and
check approach that uses well-known machine learning techniques for the guess
stage, and a combination of an SMT-solver and a Computer Algebra System for
the check stage. Additionally, we develop a method for solving cost relations
involving a maximization operator, which appears when representing complex size
and cost relations.

Finally, we report on the implementation of the techniques developed in this
thesis within the CiaoPP system and their experimental evaluation, obtaining
encouraging results.

iv

Resumen de la Tesis Doctoral

El objetivo del análisis estático de coste es estimar automáticamente los recursos
utilizados por los programas sin ejecutarlos con datos concretos, en forma de
funciones de los tamaños de las entradas.

En esta tesis mejoramos y ampliamos las técnicas de análisis estático de coste
actuales, desarrollando un marco novedoso, general y flexible de análisis, que
puede instanciarse para inferir una amplia gama de recursos, nociones de costes
y aproximaciones, aśı como tratar con diferentes lenguajes de programación y
modelos de ejecución.

En algunas aplicaciones, los análisis de coste estándar no proporcionan la
información requerida. Por ejemplo, para ayudar a los desarrolladores a tomar
decisiones de diseño, es necesario saber cómo se distribuye el uso total de recursos
entre determinadas partes de un programa. El marco novedoso, general y flexible
desarrollado en esta tesis resuelve este problema al permitir establecer relaciones
de coste que pueden instanciarse para realizar una amplia gama de análisis,
incluyendo tanto el perfilado estático como el coste estándar. Mostramos cómo
instanciar dicho marco para realizar un perfilado estático del coste acumulado
(también paramétrico respecto a tamaños), que identifica las partes del programa
que tienen mayor impacto en el coste total.

Por otra parte, la computación paralela se ha convertido en el paradigma
de arquitectura dominante, y predecir el uso de recursos en dichas plataformas
plantea un dif́ıcil reto. Para abordarlo, extendemos e instanciamos nuestro marco
general para estimar el coste de programas (lógicos) paralelos. Adicionalmente,
el análisis infiere información útil para explotar y evaluar mejor el paralelismo
potencial y real de un sistema.

También desarrollamos una novedosa aplicación de nuestro análisis de coste:
la inferencia estática de garant́ıas de rendimiento para programas que usan la
técnica de comprobación de propiedades en tiempo de ejecución. Dicha técnica
se usa comúnmente para detectar comportamientos incorrectos en los programas.

v

Sin embargo, tales comprobaciones introducen sobrecargas en tiempo de ejecución
(en términos de tiempo, memoria, enerǵıa, etc.). En esta tesis utilizamos nuestro
análisis estático para estimar dichas sobrecargas, proporcionando garant́ıas para
todas las posibles ejecuciones, además de evaluar cómo crece la sobrecarga en
función del tamaño de la entrada. Aśımismo, extendemos un marco de verifi-
cación de aserciones existente para permitir expresar una sobrecarga admisible, y
comprobar estáticamente si el programa instrumentado se ajusta a ella.

La aplicabilidad de nuestras técnicas de análisis depende fuertemente de
las capacidades del componente a cargo de resolver o aproximar relaciones de
recurrencia, el cual presenta algunas limitaciones. En esta tesis abordamos dicho
reto, desarrollando un enfoque novedoso para resolver relaciones arbitrarias de
recurrencia con restricciones, extendiendo los resolutores tradicionales. El nuestro
es un enfoque basado adivinar y comprobar , usando técnicas de aprendizaje
automático para la fase de adivinar , y una combinación de un resolutor SMT y un
sistema de álgebra computacional para la etapa de comprobación. Adicionalmente,
desarrollamos un método para resolver recurrencias que contienen un operador de
maximización, que surgen al representar relaciones complejas de tamaño y coste.

Por último, describimos la implementación de las técnicas desarrolladas en
esta tesis, integradas en el sistema CiaoPP, aśı como su evaluación experimental,
obteniendo resultados prometedores.

vi

A mis padres, Estela y Juan,
y a Yami

Acknowledgments

First and foremost, I would like to thank my advisor Pedro López Garćıa for giving
me the greatest opportunity of my life by allowing me to work with him on such
exciting research topics. His advice, all the fruitful discussions, his continuous
support and guidance were absolutely fundamental for reaching this point. This
thesis would not have been possible without his great value as a researcher and as
a human being.

I would also like to give special thanks to Manuel Hermenegildo for his
humility, selfless support and constant advice, and for transmitting his passion
and enthusiasm in every talk and meeting.

My sincere thanks also to John Gallagher, for welcoming me so generously
and kindly as a visiting student in Roskilde, Denmark. It was an unforgettable
experience to work with him in such beautiful land. I have acquired very valuable
knowledge, useful both for my thesis and my life (for example, the importance of
hygge).

I would also like to thank Miguel Ángel Perpiñán, for generously sharing all
his knowledge and expertise, which have been fundamental for the completion of
this dissertation.

I would like to express my gratitude to the IMDEA Software Institute, its
former Director Manuel Hermenegildo and its current Director Manuel Carro, for
funding my Ph.D. and providing me with such inspiring workplace. Thanks to the
support staff for their permanent help and attention in every detail. Also, thanks
to all the researchers, it has been the most amazing experience to share a work
environment with some of the world top researchers in their respective fields.

Many thanks to all my office mates and members of the CLIP group, both
past and present, for encouraging me, listening to me, sharing their ideas and
enduring my anxiety when deadlines were close: Umer Liaqat, Raúl Nestor Neri
Alborodo, Joaqúın Arias-Herrero, Jesús Domı́nguez, Isabel Garćıa Contreras,
Nataliia Stulova, Bishoksan Kafle, José Francisco Morales, Luthfi Darmawan,

ix

Rémy Haemmerlé. Ignacio de Casso, and Daniel Loscos.
On a more personal note, I would like to thank my friends Marisa and David

for sharing with me, between drinks, food and laughter, their own experiences in
the pursuit of a doctorate in order to encourage me.

I would like to express my deepest gratitude to my family and friends from
Argentina, especially to my parents Estela and Juan. They have made a great
sacrifice so that I could get here, always trusting me and encouraging me to strive
for and achieve any goal I set for myself in life.

And last but not least, thanks to Yamila for pushing me forward in those
moments when I wanted to go backward. This whole adventure around the world,
that started in the remote Patagonia Argentina, wouldn’t have been possible nor
enjoyable without her company, support, bravery, and love.

x

Funding Acknowledgments

This research was partially supported by the EU FP7 agreement no 318337,
ENTRA, Spanish MINECO TIN2012-39391 StrongSoft and TIN2015-67522-C3-1-
R TRACES projects, Spanish MICINN PID2019-108528RB-C21 ProCode project
and the Madrid M141047003 N-GREENS and P2018/TCS-4339 BLOQUES-CM
programs.

xi

Contents

1 Introduction 1
1.1 State of the Art . 4

1.1.1 Cost Analysis of Parallel Programs 6
1.1.2 Static Profiling . 7
1.1.3 Analysis of Run-Time Checking Overheads 7

1.2 Thesis Objectives . 8
1.3 Contributions . 8
1.4 Organization . 10

2 The Standard Parametric Cost Relations Framework 11
2.1 Resource Usage Semantics . 12
2.2 The Ciao Assertion Language . 12

2.2.1 Assertion Status . 13
2.2.2 Resource-related Properties 13

2.3 Resource Definition . 14
2.3.1 Assertions for Resource Definitions 14

2.4 Size Analysis . 15
2.5 Inferring Resource Usage Functions 16
2.6 Resource Analysis as an Abstract Domain 18
2.7 Example . 21

3 Static Profiling 23
3.1 Introduction . 23
3.2 Generalizing the Standard Cost Relations Approach 26
3.3 Instantiation for Parametric Accumulated-cost Static Profiling . . 27
3.4 Implementation and Experimental Results 33
3.5 Hot Spots Detection using Static Profiling 35

3.5.1 Hot Spots Identification 36

xiii

3.5.2 Calls and Size Analysis . 37
3.5.3 Interpreting the Results 38
3.5.4 Hot Spots Optimizations 38

3.6 Related Work . 39
3.7 Conclusions . 41

4 Analysis of Parallel Programs 43
4.1 Introduction . 43
4.2 Preliminaries . 45

4.2.1 Cost Metrics for Parallel Programs 45
4.2.2 Overview . 46

4.3 Our Extended Resource Analysis Framework for Parallel Programs 49
4.4 Implementation and Experimental Results 51
4.5 Related Work . 53
4.6 Conclusions . 55

5 Recurrence Solver Extensions 57
5.1 Introduction and Motivation . 57
5.2 Solving Recurrence Relations using Linear Regression 58

5.2.1 Overview of the Approach 58
5.2.2 Preliminaries . 64
5.2.3 Description of the Approach 66
5.2.4 Implementation and Experimental Evaluation 68

5.3 Solving Recurrence Relations Including a Maximization Operator 71
5.4 Conclusions . 74

6 Application: Estimation and Verification of Run-time Checking
Overheads 77
6.1 Introduction and Motivation . 77
6.2 Assertions and Run-time Checking 80

6.2.1 Run-time Check Instrumentation 82
6.3 Specifying, Analyzing, and Verifying Run-time Checking Overhead 85

6.3.1 Computing the Run-time Checking Overhead (Ovhd) . . . 86
6.3.2 Expressing the Admissible Run-time Checking Overhead

(AOvhd) . 88
6.3.3 Verifying the Admissible Run-time Checking Overhead

(AOvhd) . 91
6.3.4 Using the Accumulated Cost for Detecting Hot Spots . . . 92

6.4 Implementation and Experimental Evaluation 94
6.5 Conclusions . 98

7 Conclusions and Future Work 101

8 Bibliography 105

xiv

List of Figures

1.1 Contributions of the thesis. 9

3.1 Comparison of the costs (in resolution steps) between
multi coeff/3 and its optimized version multi coeff opt/3 (for
l = 100). 40

4.1 Resolutions steps performed by the call scalar(5, [1, 2, 3, 4]), con-
sidering different execution models. 47

5.1 Architecture of the modular solver framework. 59
5.2 Control flow diagram of our novel solver based on machine learning. 59
5.3 A program with a nested recursion. 60

6.1 Run-time Checking Overhead Analysis and Verification Framework. 86
6.2 Graphical comparison of the cost functions inferred for the different

versions of nrev/2. 89

xv

List of Tables

3.1 Experimental results (static profiling of accumulated cost). 34

4.1 Description of the benchmarks. 51
4.2 Resource usage inferred for Independent And-Parallel Programs. . 52
4.3 Resource usage inferred for a bounded number of processors. . . . 53

5.1 Experimental results: closed-forms obtained with the previous (CF)
and new solver (CFNew). 70

6.1 Description of the benchmarks. 94
6.2 Experimental results (benchmarks for which analysis infers exact

cost functions). 96
6.3 Experimental results (rest of the benchmarks; we show the upper

bounds). 98

xvii

1
Introduction

The execution of software consumes resources, such as time, energy, memory,
or storage space, to name a few. Usually, there are constraints limiting the
amount of such resources used in the environment where the software is deployed,
which need to be considered during development. Every design decision is guided
primarily by the expected functionality of the software, but also by these non-
functional requirements, which are fundamental. If a system does not meet
these non-functional requirements, it will not be considered correct at all. This
becomes crucial, for example, on embedded systems where meeting real-time
constraints is critical. The goal of automatic static resource analysis is to estimate
such non-functional properties without running the program with concrete data,
as functions of input data sizes and possibly other (environmental) parameters.
Typical size metrics are the actual value of a number, the length of a list, the
size or depth of a data structure, etc. [84, 102]. The information inferred by the
analysis is a sound over-approximation of the actual behaviour of the program,
considering all possible execution traces. Using this information, we can statically
verify programs, obtaining guarantees about the absence of resource-related bugs,
unlike testing, which only detects the presence of bugs.

In this work we assume a broad concept of resources as numerical properties
of the execution of a program, such as the ones mentioned before, the classical
number of execution steps, and user-definable resources such as the number of calls
to a procedure, the number of network accesses, the number of transactions in
a database, etc. Estimating in advance the resource usage of computations
is useful for a number of applications; examples include granularity control
in parallel/distributed systems, automatic program optimization, verification
of resource-related specifications and detection of performance bugs, helping
developers make resource-related design decisions, as well as security applications
(e.g., detection of side channels attacks), and more recently, blockchain platforms
(e.g., smart-contract gas analysis and verification).

1

CHAPTER 1. INTRODUCTION

Supporting different programming languages In order to deal with differ-
ent programming languages and paradigms in an uniform way, we use a Horn-clause
based intermediate common representation, i.e., logic programs, which any lan-
guage can be translated into (preserving the resource usage semantics), and making
this intermediate representation analyzable. There is a current trend favoring the
use of Horn-clause programs (i.e., a set of connected code blocks) as intermediate
representations in analysis and verification tools [14, 37, 52]. The main reason for
choosing Horn clauses as the intermediate representation is that it offers a good
number of features that make it very convenient for the analysis [72]. For instance,
it supports naturally Static Single Assignment (SSA) and recursive forms.

Different notions of cost The information inferred by the analyzers is guided
by its final use, i.e., each application, as the ones already mentioned, requires
different types of information. For example, analyzers can infer safe approxima-
tions, namely upper and lower bounds, on the resources used by the program or
parts of it, which are needed for verification. They can also infer probabilistic
information, which is useful for optimisation. Static profiling (and accumulated
cost) determines the distribution of resource usage over the parts of the code.
This can be very useful to the developer, showing which parts of the program are
the most resource-critical, and helping design decision making.

Static profiling and hot-spot identification When the target application
is helping developers make resource-related design decisions, the analysis has to
show which parts of the program are the most resource-consuming, i.e., which
components would bring the highest overall improvement if they were optimized,
so that programming efforts can be focused more productively. The standard cost
information only partially meets these objectives. For example, often procedures
with the highest (standard) cost are not the ones whose optimization is most
profitable, since procedures which have lower costs but which are called more often
may be responsible for a larger part of the overall resource usage. The input data
sizes to such calls are also relevant. Thus, rather than the global costs provided
by standard cost analyses, what is really needed in many such applications is the
results of a static profiling of the program that helps identify the parts responsible
for highest fractions of the cost, or, more generally, how the total resource usage
of the execution of a program is distributed over selected parts of it. By static
profiling we mean the static inference of the kinds of information that are usually
obtained at run-time by profilers. The traditional profiling techniques are dynamic
(i.e., require executing the program on some particular input) and are based either
on code instrumentation, i.e., introducing additional pieces of code in the sections
to be measured, or on running a process that performs the profiling together
with the measured program. In both cases, the dynamic profiler introduces an
overhead in the resource measured that needs to be properly discriminated, which
is non trivial. For example, it may be the case that an instruction in the original

2

Chapter 1. Introduction

program has a very different energy consumption in the presence of code added
by the profiler just before it. In contrast, the static profiling approach we propose
obtains safe upper and lower bounds on resource consumption, because it is based
on the semantics of the program rather than particular executions of it. I.e., the
results are valid for all possible program inputs. For this reason, in this thesis we
are interested in the concept of accumulated cost. Intuitively, accumulated cost
represents how the total resource usage of the execution of a program is distributed
over selected parts of it, called cost centers. Our starting point in this thesis is the
well-developed technique of setting up recurrence relations representing resource
usage functions parameterized by input data sizes [6, 25, 26, 27, 84, 98, 102, 117],
which are then solved to obtain (exact or safely approximated) closed forms of such
functions (i.e., functions that provide upper or lower bounds on resource usage).
Then, we build on this and develop a novel, general, and flexible framework that
allows setting up cost equations/relations which can be instantiated for performing
a wide range of resource usage analyses, including both static profiling and the
inference of the standard notion of cost.

Resource usage analysis of parallel programs Regarding execution models,
parallel programming is currently the mainstream technique to improve system
performance. Many chip manufacturers are turning to multi-core processor designs
as a way of increasing performance. However, while resource usage analysis for
sequential programming languages has received considerable attention, in parallel
programming there are comparatively much less results, due in part to the
complexity that this paradigm adds to the problem. Parallel programming is
inherently present in data centers applications, distributed systems and cloud
services. The amount of energy consumed by these kind of architectures, not only
for computation and communication but also for cooling, is impressively high.
Thus, developing effective tools for inferring resource usage of this kind of systems
is an important challenge that can contribute to reduce, for example, the footprint
of energy usage worldwide, while having an important impact on the industry in
terms of economic savings. In this thesis we also further extend and generalize
the resource analysis framework already mentioned to deal, in a uniform and
integrated way, with parallel Horn clause programs, which could be the result
of a translation from a parallel imperative program or be themselves the source
program. The resulting analysis estimates both lower and upper bounds on the
resource usage of a parallel program as functions on input data sizes.

Recurrence relation solving The applicability of our techniques strongly
depends on the capabilities of the component in charge of solving (or safely
approximating) the cost and size recurrence relations generated during the analysis,
which has some limitations. In this thesis we address such a challenge, proposing
a novel approach for solving arbitrary, constrained recurrence relations, which
extends traditional recurrence solvers. It is a guess and check approach that uses

3

CHAPTER 1. INTRODUCTION

well-known machine learning techniques for the guess stage, and a combination of
an SMT-solver and a Computer Algebra System for the check stage. Additionally,
we develop a method for solving cost relations involving a maximization operator,
which arises when setting up size and cost relations for alternative execution paths
and parallel programs.

Run-Time checking overhead estimation and verification Instrumenting
programs for performing run-time checking of properties, such as regular shapes, is
a common and useful technique that helps programmers detect incorrect program
behaviors. This is specially true in dynamic languages such as Prolog. However,
such run-time checks inevitably introduce run-time overhead (in execution time,
memory, energy, etc.). Several approaches have been proposed for reducing
this overhead, such as eliminating the checks that can statically be proved to
always succeed, and/or optimizing the way in which the (remaining) checks are
performed. However, there are cases in which it is not possible to remove all
checks statically (e.g., open libraries which must check their interfaces, complex
properties, unknown code, etc.) and in which, even after optimizations, these
remaining checks may still introduce an unacceptable level of overhead. It is
thus important for programmers to be able to determine the additional cost due
to the run-time checks and compare it to some notion of admissible cost. The
common practice used for estimating run-time checking overhead is profiling,
which is not exhaustive by nature. Instead, we propose a method that uses static
analysis to estimate such overhead, with the advantage that the estimations are
functions parameterized by input data sizes. Unlike profiling, this approach can
provide guarantees for all possible execution traces, and allows assessing how
the overhead grows as the size of the input grows. Our method also extends
an existing assertion verification framework to specify “admissible” overheads,
and statically and automatically checks whether the instrumented program for
run-time checking conforms with such specifications.

1.1 State of the Art

The approach to cost analysis based on setting up and solving recurrence equations
was proposed in [117] and has been developed significantly in subsequent work.
For example, in [98] an automatic upper-bound analysis was presented based on
an abstract interpretation of a step-counting version of a functional program, in
order to infer both execution time and execution steps. However, size measures
could not automatically be inferred and the experimental section showed few
details about the practicality of the analysis. The cost analysis in [113] deals
with recursive, polymorphic and higher-order functional programs. In the context
of Logic Programming, a semi-automatic analysis was presented in [25, 26] that
inferred upper-bounds on the number of execution steps, given as functions on the

4

Chapter 1. Introduction

input data sizes. It also proposed techniques to address the additional challenges
posed by the Logic Programming paradigm, as for example, dealing with the
generation of multiple solutions via backtracking. However, a shortcoming of the
approach was its loss in precision in the presence of divide-and-conquer programs
in which the sizes of the output arguments of the “divide” predicates are dependent.
This approach was later fully automated (by integrating it into the CiaoPP system
and automatically providing modes and size measures) and extended to inferring
both upper- and lower-bounds on the number of execution steps (which is non-
trivial because of the possibility of failure) in [27, 48]. In addition, [27] introduced
the setting up of non-deterministic recurrence relations for the class of divide-
and-conquer programs mentioned above, and proposed a technique for computing
approximated closed form bound functions for some of them. Such a technique
was based on bounding the number of terminal and non-terminal nodes in the
set of computation trees corresponding to the evaluation of the non-deterministic
recurrence relations, and bounding the cost of such nodes. Non-deterministic
recurrence relations were also used and further developed in [5, 6] (named Cost
Relations). The approach in [25, 26, 27] was generalized in [84] to infer user-
defined resources (by using an extension of the Ciao assertion language [46]), and
was further improved in [102] by defining the resource analysis itself as an abstract
domain that is integrated into the PLAI abstract interpretation framework [82, 95]
of CiaoPP. The resource usage analysis in [102] is based on sized types [101].
Sized types are types that incorporate information about lower and upper bounds
on the size of the terms they represents, as well as its subterms at any position
and depth. Other approaches to static analysis, based on the transformation of
the analyzed code into an intermediate representation, have been proposed for
analyzing low-level languages [44] and Java (by means of a transformation into
Java bytecode) [7]. In [7], a cost relation system is obtained directly for these
bytecode programs and solve it using a specialized solver, finding upper bounds
for such cost relations. In [83] the bytecode is first transformed into Horn clauses.

The general resource analyzer in [84] was also instantiated in [73] for the
estimation of execution time of logic programs running on a bytecode-based
abstract machine.

In [33] the authors present an amortized complexity analysis based on re-
currence relations, using a novel cost representation called cost structure, which
allows to reduce the inference of complex polynomial expressions to a set of linear
problems that can be solved efficiently.

The size-change abstraction (SCA) is a program abstraction for termination
analysis, successfully applied in tools for functional and logic programs. In [120],
the authors establish that SCA represents also an effective abstract domain for
the bound analysis of imperative programs, showing that SCA captures many of
the essential ideas of previous termination and bound analysis and goes beyond
in a conceptually simpler framework.

In [105] the authors present a scalable bound analysis able to perform amortized

5

CHAPTER 1. INTRODUCTION

complexity analysis. This analysis is not based on general purpose reasoners such
as abstract interpreters, software model checkers or computer algebra tools. Rather,
the approach is based on lossy vector addition systems (VASS). First, the analysis
computes a lexicographic ranking function that proves the termination of a VASS,
and then derives a bound from this ranking function.

Tools for the inference of numeric invariants provide a way to obtain information
about the resource usage of programs, considering the resource to be analyzed
as an extra numeric output. Compositional recurrence analysis (CRA) is a
static-analysis method based on a combination of symbolic analysis and abstract
interpretation. In [57] the authors address the problem of creating a context-
sensitive inter-procedural version of CRA able to handle recursive procedures.

In [19] the authors present a modular automatic complexity analysis, based
on an alternation between finding symbolic time bounds for program parts and
using these to infer size bounds on program variables.

A number of static analyses are also aimed at worst case execution time
(WCET), usually for imperative languages in different application domains (see
e.g., [118] and its references). The worst-case analysis presented in [55], which is
not based on recurrence equation solving, distinguishes instruction-specific (not
proportional to time, but to data) from pipeline-specific (roughly proportional
to time) energy consumption. However, these worst case analysis methods do
not obtain functions on input data sizes as result, but rather absolute maximum
execution times, in general requiring annotations from the user indicating upper
bounds for the numbers of iterations of each loop.

Abstract interpretation is a formal method introduced by Patrick Cousot
and Rhadia Cousot in the late 70s [23]. It is used for analyzing directly and
with very few human intervention the source code of a program on some level
of abstraction. Due to decidability and efficiency issues, these abstractions need
to over-approximate the semantics of programs, resulting in a loss of precision.
Nevertheless, we can obtain a sound and efficient analyzer by applying this
technique properly. This theory was applied successfully for inferring useful
information about programs, such as in [48], and also for run-time error detection
in sequential and concurrent embedded avionic systems [77]. It has also been proved
useful for the implementation of resource consumption analysis on sequential logic
programs [102]. In [77], abstract interpretation is combined with Rely-guarantee
proof methods to implement a thread-modular static analyzer for run-time error
detection on concurrent embedded systems. However, there is very few work done
on static analysis of the resource usage of concurrent programs using abstract
interpretation.

1.1.1 Cost Analysis of Parallel Programs

With respect to the cost analysis of parallel programs, the most closely-related
work to the approach presented in Chapter 4, is [51], which describes an automatic

6

Chapter 1. Introduction

analysis for deriving bounds on the worst-case evaluation cost of first order
functional programs. The analysis derives bounds under an abstract dual cost
model based on two measures: work and depth, which over-approximate the
sequential and parallel evaluation cost of programs, respectively, considering an
unlimited number of processors. Such an abstract cost model was introduced
by [15] to formally analyze parallel programs. The work is based on type judgments
annotated with a cost metric, which generate a set of inequalities which are then
solved by linear programming techniques. The same approach is followed in [49]
for the analysis of a simple imperative language with explicit parallel loops.

There are other approaches to cost analysis of parallel and distributed systems,
based on different models of computation than the independent and-parallel
model used in this thesis. In [9] the authors present a static analysis which is
able to infer upper bounds on the maximum number of active (i.e., not finished
nor suspended) processes running in parallel, and the total number of processes
created for imperative async-finish parallel programs. The approach described
in [4] uses recurrence (cost) relations to derive upper bounds on the cost of
concurrent object-oriented programs, with shared-memory communication and
future variables. In [10] the authors address the cost of parallel execution of
object-oriented distributed programs.

1.1.2 Static Profiling

Regarding static profiling, the analysis presented in [41] constitutes the starting
point of the work presented in Chapter 3. In [41], the analysis computes a static
profiling of accumulated cost, where the results are also parameterized by input
data sizes. However, the approach is based on a global program transformation.

Static profiling have also been considered in the context of Worst Case Execu-
tion Time (WCET) Analysis of real-time programs. In [18] the authors propose
an approach for estimating the worst-case timing information for all code parts of
a program using a concept called criticality. Similarly, in [16] the authors present
static profiling techniques to estimate the execution likelihood and frequency
of program points in order to assess whether the cost of certain compile-time
optimizations would pay off.

1.1.3 Analysis of Run-Time Checking Overheads

Dealing with excessive run-time checking overhead is a challenging problem.
Proposed approaches addressing this problem include discharging as many checks
as possible via static analysis [20, 31, 42, 47, 93, 94, 108], optimizing the dynamic
checks themselves [60, 88, 97, 107], or limiting run-time checking points [74].

Prior work on using profiling in the context of optimizing the performance
of programs with run-time checks [34, 75, 106] clearly demonstrates the benefits
of this approach. Still, profiling infers information that is valid only for some

7

CHAPTER 1. INTRODUCTION

particular input data values (and their execution traces). I.e, the profiling results
thus obtained may not be valid for other input data values. Since the technique is
by nature not exhaustive, detecting the worst cases can take a long time, and is
impossible in general.

1.2 Thesis Objectives

The general objective of this research is the design and implementation of a novel,
general, and flexible framework for resource usage analysis which can be easily
instantiated to infer a wide range of resources, notions of costs (e.g., standard cost
or accumulated cost), and approximations (e.g., lower or upper bounds), and can
deal with different programming languages and execution models (e.g., sequential,
parallel or distributed execution). In order to contribute to this general objective,
we focus on the following particular objectives:

• Development of general techniques and practical, parametric tools for the
inference of resource consumption information of programs. These tools
will also be able to use such information for detecting early in the software
lifecycle parts of the program with the greatest impact on the total program
cost, and which therefore should be optimized first.

• Extend the current techniques to be able to automatically infer useful
information about the resource usage of parallel programs. This information
can be used to understand the impact of parallelization in terms of a set of
resources, and to apply optimizations either at compile-time or at run-time.

• Extend and generalize the traditional approach for setting up and solving
recurrence equations representing the computational cost of procedures as
well as data sizes.

• Apply the techniques developed for the estimation and verification of the
overhead introduced by run-time checking of properties in a software system.

• The techniques and concepts to be developed will be language and archi-
tecture agnostic by means of a transformation into a common Horn clause
representation (i.e., logic programs), so that they could be applied to the
analysis of a wide range of programming languages (and associated lower
level program representations) and architectures.

1.3 Contributions

Most of the results obtained in this thesis have been published and presented in
international forums that include first class conferences and JCR indexed journals.

8

Chapter 1. Introduction

Such publications are co-authored with other researchers, and in all of them, the
contribution of the candidate has been relevant. The main contributions of the
thesis are enumerated here along with the international forum these have been
presented and published to, where correspond. Figure 1.1 depicts how the different
contributions are related:

Figure 1.1: Contributions of the thesis.

• We have developed a novel, general, and flexible framework for setting up cost
equations/relations which can be instantiated for performing a wide range
of resource usage analyses, including both static profiling (of accumulated
cost) and the standard notion of cost. It is more general than [41], which
is limited to accumulated cost analysis. Our new approach can deal with
non-deterministic/multiple-solution predicates, unlike [41]. This is obviously
a requirement for analyzing logic programs and is also useful for dealing
with certain aspects of imperative programs, such as multiple dispatch.
While our previous approach could conceivably be extended to deal with
such programs, it would certainly result in a more complicated and indirect
solution. The results of this activity have been published in [71].

• We have further generalized and extended our cost analysis framework for
dealing with parallel programs. In particular, we have proposed a novel,
general, and flexible framework for setting up cost equations/relations that
can be instantiated for performing resource usage analysis of both sequential
and parallel (logic) programs for a wide range of resources, platforms and
execution models. These results have been published in [58].

9

CHAPTER 1. INTRODUCTION

• We have developed a method for solving recurrence relations involving
a maximization operator, and provided correctness proofs. This class of
recurrences frequently arises in size analysis, expressing sizes of inner terms of
data structures. The maximization operator can also be used for expressing
upper bounds for conditionals. Finally, it also arises in the analysis of
parallel programs.

• We have developed a novel method, as an alternative to traditional recurrence
solvers, which follows a guess and check approach, using well-known machine
learning techniques for the guess stage, and a combination of an SMT-solver
and a Computer Algebra System for the check step. We illustrate with a set
of examples how this approach is useful for improving the scalability and
applicability of our static cost analysis approach based on setting up and
solving recurrences.

• Finally, we have used our parametric cost analysis framework in a novel
application: static estimation and verification of the overhead introduced
by run-time checking. It includes the extension of an assertion verification
framework to express admissible overheads. The common practice used
for estimating the run-time checking overhead is profiling, which is not
exhaustive by nature. Instead, we propose a method that uses static analysis
to estimate such overhead, with the advantage that the estimations are
functions parameterized by input data sizes. Unlike profiling, this approach
can provide guarantees for all possible execution traces, and allows assessing
how the overhead grows as the size of the input grows.

The results of this work have been published in [59]

1.4 Organization

The rest of the thesis is organized as follows. In Chapter 2 we describe the
standard parametric cost relations framework present in the CiaoPP system,
which constitutes our starting point for most of our contributions. In Chapter 3
we propose a generalization of the aforementioned framework to deal with different
notions of cost, including both static profiling and the inference of standard cost.
In Chapter 4 we describe further extensions of the framework to analyze the
resource usage of parallel (logic) programs. In Chapter 5 we describe our novel
approach to recurrence solving, and extensions to the existing solver. In Chapter
6 we show a novel application of our cost analysis framework to the estimation
and verification of the impact in performance of run-time checking. Finally, in
Chapter 7, we draw some conclusions and discuss some directions for future work.

10

2
The Standard Parametric Cost Relations

Framework

In this chapter we describe the starting point of our work, which is the standard
general framework described in [25], and extended in [27, 84], for setting up
parametric relations representing the resource usage (and size relations) of logic
programs.1 The analysis infers size relations for each predicate in a program:
arithmetic functions that express the size of output arguments of a predicate as a
function of its input data sizes. It also infers size relations for each clause, which
give the input data sizes of the body literals as functions of the input data sizes of
the clause head. Such size relations are instrumental for setting up cost relations.
The framework is doubly parametric: first, the costs inferred are functions of
input data sizes, and second, the framework itself is parametric with respect to
the type of approximation made (upper or lower bounds), and to the resource
analyzed. The framework is implemented in CiaoPP [48], the preprocessor of
the Ciao programming environment [46]. CiaoPP provides a rich set of static
analyses whose information is also used for size and resource analysis. The rest
of the chapter is organized as follows: in Section 2.1 we describe the resource
usage semantics. In Section 2.2 we briefly expose the Ciao Assertion Language.
In Section 2.3 we explain how a resource can be defined in the framework using
user-provided assertions. In Section 2.4 we show how the size relation analysis
is performed. In Section 2.5 we show in general terms how the parametric cost
relations are obtained. Finally, in Section 2.6 we describe an implementation of
the framework as an abstract interpretation domain, which uses regular sized
types as a general size metric.

1 We give equivalent but simpler descriptions than in [84], which are allowed by assuming
that programs are the result of a normalization process that makes all unifications explicit in
the clause body, so that the arguments of the clause head and the body literals are all unique
variables. We also change some notation for readability and illustrative purposes.

11

CHAPTER 2. THE STANDARD PARAMETRIC COST RELATIONS
FRAMEWORK

2.1 Resource Usage Semantics

Consider a program P , a predicate p ∈ P of arity k, and the function Cp : Π→ R∞,
where Π is the set of k-tuples of calling data to p. We extend such a function
to the powerset of Π, i.e., Ĉp : 2Π → 2R∞ , where Ĉp(E) = {Cp(ē) | ē ∈ E}. Our

goal is to abstract (safely approximate, as accurately as possible) Ĉp of p (note

that Cp(ē) = Ĉp({ē})). The goal of the analysis is to infer two functions Ĉ↓p and

Ĉ↑p : Nm
> → R∞ that give lower and upper bounds respectively on the cost function

Ĉp, where Nm
> is the set of m-tuples whose elements are natural numbers or the

special symbol >, meaning that the size of a given term under a given size metric
is undefined. different arguments and even (i.e., in general m 6= k). Such bounds
are given as a function of tuples of data sizes (representing the concrete tuples of
data of the concrete function Ĉp). Typical size metrics are the actual value of a
number, the length of a list, the size (number of constant and function symbols)
of a term, etc.

2.2 The Ciao Assertion Language

In this section we introduce the subset of the Ciao assertion language that we
will use in the rest of the thesis, which allows expressing global “computational”
properties and, in particular, resource usage. These assertions are part of the
Ciao assertion language. For brevity, we only introduce here the class of “pred”
assertions, since they suffice for our purposes. We refer the reader to [46, 48, 93]
and their references for a full description of the Ciao assertion language.

The assertions of class “pred” follow the schema:

:- [Status] pred Pred [: Precond] [=> Postcond] [+ Comp-Props].

where Pred is a predicate symbol applied to distinct free variables.2 Status
indicates the status of the assertion, as explained in subsection 2.2.1. Precond
and Postcond are logic formulae about execution states. An execution state is
defined by the set of variable/value bindings associated with a given execution
step. The Comp-Props field (appearing after the “+” operator) is a logic formulae
used to describe properties of the whole computation for calls to predicate Pred
that meet Precond. A computation is a sequence of execution states. In order to
give a general intuition about the meaning of the assertion, it can be interpreted
as follows:

In any call to Pred, if Precond holds in the calling state and the com-
putation of the call succeeds, then Postcond should hold in the success
state, and Comp-Props should hold for the computation performed.

2We do not consider assertion syntactic sugar such as modes for simplicity.

12

Chapter 2. The Standard Parametric Cost Relations Framework

Also, the set of Preconds for all the pred assertions for a given Pred describes all
the possible call states, i.e., for any call state for a predicate, there must be at
least one pred assertion for that predicate whose Precond holds in that state.

2.2.1 Assertion Status

Each assertion has an associated Status, marked with one of the following prefixes,
placed just before the pred keyword: check (indicating that the assertion is to
be checked), checked (the assertion has been checked and proved correct by the
system), false (it has been checked and proved incorrect by the system; a compile-
time error is reported in this case), trust (the assertion provides information
coming from the programmer in order to guide the analyzer, and it will be trusted),
or true (the assertion is a result of static analysis and thus correct, i.e., it is a safe
approximation of the concrete semantics). The default status, i.e., if no status
appears before pred, is check.

2.2.2 Resource-related Properties

In this subsection we describe the most important properties related to resource
usage analysis.

costb/3 This property follows the schema:

costb(Res Name, Low Arith Expr, Upp Arith Expr)

where Res Name is a user-provided identifier for the resource the assertion refers
to, Low Arith Expr and Upp Arith Expr are arithmetic functions that map input
data sizes to resource usages, representing respectively lower and upper bounds
on the resource consumption.

cost/3 Similarly to costb/3, the cost/3 property allows expressing only one
resource usage function on input data sizes. It follows the schema:

cost(Bound Type, Res Name, Arith Expr)

where Res Name is the same as in costb/3, Arith Expr is similar to
Low Arith Expr and Upp Arith Expr in costb/3, but it can be either upper or
lower bound depending on the value of Bound Type which are lb for lower bounds
and ub for upper bounds.

size/3 This property is used to describe the size of arguments, in terms of some
metric. It follows the schema

size(Bound Type,Var,Arith Expr)

13

CHAPTER 2. THE STANDARD PARAMETRIC COST RELATIONS
FRAMEWORK

where Var is the argument, and Arith Expr is an arithmetic expression in terms
of sizes of (possibly others) arguments. Metrics are represented as function
applications in Arith Expr, e.g. length(Var) + 1. As before, Bound Type indicates
the type of approximation of Arith Expr.

rsize/2 Similarly to size/3, this property is used to describe the size of argu-
ments, but specialized for sized types. It follows the schema

rsize(Var,Sized Type)

where Var is the argument, and Sized Type is the sized type associated with the
argument. We refer the reader to Section 2.6 for details about sized types.

2.3 Resource Definition

Each concrete resource r to be tracked is defined by two sets of (user-provided)
functions, which can be constants, or general expressions of input data sizes:

1. Head cost ϕ[ap,r](H): a function that returns an approximation of type ap
of the amount of resource r used by the unification of the calling literal
(subgoal) p and the head H of a clause matching p, plus any preparation
for entering a clause (i.e., call and parameter passing cost).

2. Predicate cost Ψ[ap,r](p, x̄): it is also possible to define the full cost for a
particular predicate p for resource r and approximation ap, i.e., the function
Ψ[ap,r](p) : Nm

> → R∞ (with the sizes of p’s input data as parameters, x̄)
that returns the usage of resource r made by a call to this predicate. This is
especially useful for built-in or external predicates, i.e., predicates for which
the source code is not available and thus cannot be analyzed, or for providing
a more accurate function than analysis can infer. In the implementation,
this information can be provided by the user to the analyzer through trust
assertions.

2.3.1 Assertions for Resource Definitions

The parameters of the resource definition are provided in the framework through
assertions. The head cost ϕ[ap,r](H) is defined using the assertion

:- head cost(ResourceId, Bound Type, Head Cost Pred)

where ResourceId is an identifier for the resource r, Bound Type is the type of
approximation defined by the assertion (representing ap), and Head Cost Pred is
a predicate that takes the head of a clause, the sizes of the arguments of the literal
that generated the call, and returns an arithmetic function expressing the amount

14

Chapter 2. The Standard Parametric Cost Relations Framework

of resource consumed. As sugar syntax, if the amount of resource consumed is
constant, then the number can be provided directly in the declaration instead of
Head Cost Pred.

As mentioned before, the function Ψ[ap,r](p) can be provided for the predicate
p using a pred assertion with the status trust.

2.4 Size Analysis

The first step for cost analysis is a data dependency-based method for inferring
bounds on the sizes of output arguments in the head of a predicate as a function
of the sizes of input arguments to the predicate. Besides this, as a result of the
size analysis, we have bounds on the size of each input argument to body literals
in a clause as a function of the size of the input arguments to the head of that
clause. The size of the input arguments to body literals will be used later to infer
functions which give bounds on the resource usage of body literals in terms of the
sizes of the input arguments to the head. For the sake of brevity, here we give a
brief description of the method for obtaining upper bounds, and refer the reader
to [27] for details on how to obtain lower bounds.

The first element of the method is an operation size(m, t), which returns the
size of the term t under the metric m. This operation is defined depending on the
metric, and can be provided by the user. If the size of the term is undefined for
the metric, this operation returns ⊥. Then, the operation diff(m, t1, t2) is used
to obtain the size difference between the terms t1 and t2, under the metric m.

A directed acyclic graph, called argument dependency graph, is used to
represent the data dependency between argument positions in a clause body (and
between them and those in the clause head). Each node in the graph denotes an
argument position. There is an edge from a node n1 to a node n2 if the variable
bindings generated by n1 are used to construct the term occurring at n2. The
node n1 is said to be a predecessor of the node n2, and n2 a successor of n1. This
graph can be explicitly built before the analysis, as in [25], or can be represented
implicitly trough size relations as we explain in Section 2.6.

Using the size and diff functions and the argument dependency graph, the
analysis set up size relations for expressing the size of each argument position
in terms of the sizes of its predecessors. Let sz(a) denote the size of the term
occurring at an argument position a, and @a the term occurring at an argument
position a. We omit the metric in the size and diff functions in the rest of the
text, for readability purposes.

Output Arguments Let l1, . . . , ln denote the input argument positions of the
literal L, and let ψbp : N n

⊥,∞ → R∞ be a function that represents the size of the
b-th output argument of p of literal L in terms of the size of its input arguments,
where N⊥,∞ is the set of natural numbers augmented with ⊥ and ∞, representing

15

CHAPTER 2. THE STANDARD PARAMETRIC COST RELATIONS
FRAMEWORK

undefined and infinite sizes, respectively. For each output argument position a,
the following relation is set up:

sz(a) ≤ ψbp(sz(l1), . . . , sz(ln))

If L is a non-recursive call, then ψbp can be computed independently, and we
replace ψbp(sz(l1), . . . , sz(ln)) by the closed-form expression obtained after the
analysis of the predicate that L references. In case L corresponds to a recursive
call (either direct or indirect), then ψbp(sz(l1), . . . , sz(ln)) is kept as a symbolic
expression, which will be used afterwards for setting up a recurrence relation.

Input Arguments Let predecessors(i) be the set of predecessors of i in the
argument dependency graph. For each input argument position i, we have the
following possibilities:

• if size(@i) 6= ⊥, then sz(i) ≤ size(@i).

• Otherwise, if ∃r ∈ predecessors(i) such that r and i have the same metric,
and diff(@r,@i) 6= ⊥, then sz(i) ≤ size(@r) + diff(@r,@i).

• Otherwise, if size(@i) can be expanded one step using its definition, com-
puting recursively the size(tj) subexpressions appearing in the expansion,
where tj is a subterm of @i. If ∀tj · size(tj) 6= ⊥, then we use them to
compute size(@i). Otherwise, sz(i) = ⊥.

Finally, size relations are propagated to transform a size relation corresponding
to an input argument in a body literal or an output argument in the clause head
into a function in terms of the sizes of the input arguments of the head. For
recursive clauses, we obtain recurrence relations that need to be solve, or safely
approximate.

2.5 Inferring Resource Usage Functions

In order to infer the resource usage functions, all predicates in the program
are processed in a single traversal of the call graph in reverse topological order.
Consider a predicate p defined by clauses C1, . . . , Cm. Assume x̄ are the sizes of p’s
input parameters. Then, the resource usage (expressed in units of resource r with
approximation ap) of a call to p, for an input of size x̄, denoted as Cpred[ap,r](p, x̄),
can be expressed as:

Cpred[ap,r](p, x̄) =
⊙

1≤i≤m

(Ccl[ap,r](Ci, x̄)) (2.1)

where
⊙

= ClauseAggregator(ap, r) is a function that takes an approximation

identifier ap and returns a function that applies over the cost of all the clauses,

16

Chapter 2. The Standard Parametric Cost Relations Framework

Ccl[ap,r](Ci, x̄), for 1 ≤ i ≤ m, in order to obtain the cost of a call to the predicate
p. For example, if ap is the identifier for approximation “upper bound” (ub), then
a possible conservative definition for ClauseAggregator(ub, r) is the

∑
function.

In this case, and since the number of solutions generated by a predicate that will
be demanded is generally not known in advance, a conservative upper bound on
the computational cost of a predicate is obtained by assuming that all solutions are
needed, and that all clauses are executed (thus the cost of the predicate is assumed
to be the sum of the costs of all of its clauses). However, it is straightforward to
take mutual exclusion into account to obtain a more precise estimate of the cost
of a predicate, using the maximum of the costs of mutually exclusive groups of
clauses, as done in [102].

Let us see now how to compute the resource usage of a clause. Consider a
clause C of predicate p of the form H :- L1, . . . , Lk where Lj, 1 ≤ j ≤ k, is a
literal (either a predicate call, or an external or builtin predicate), and H is the
clause head. Assume that ψj(x̄) is a tuple with the sizes of all the input arguments
to literal Lj, given as functions of the sizes of the input arguments to the clause
head. Note that these ψj(x̄) size relations have previously been computed during
size analysis for all input arguments to literals in the bodies of all clauses. Then,
the cost relation for clause C and a single call to p (obtaining all solutions), is:

Ccl[ap,r](C, x̄) = ϕ[ap,r](H) +

lim(ap,C)∑
j=1

solsj(x̄)× Clit[ap,r](Lj, ψj(x̄)) (2.2)

where lim(ap, C) gives the index of the last body literal that is called in the
execution of clause C, and solsj represents the product of the number of solutions
produced by the predecessor literals of Lj in the clause body:

solsj(x̄) =

j−1∏
i=1

spred(Li, ψi(x̄)) (2.3)

where spred(Li, ψi(x̄)) gives the number of solutions produced by Li, with arguments
of size ψi(x̄). The number of solutions and size relations are both inferred
automatically by the framework (we refer the reader to [25, 26, 27, 102] for a
description).

Finally, Clit[ap,r](Lj, ψj(x̄)) is replaced by one of the following expressions,
depending on Lj:

• If Lj is a call to a predicate q which is in the same strongly connected
component as p (the predicate under analysis), then Clit[ap,r](Lj, ψj(x̄)) is
replaced by the symbolic call Cpred[ap,r](q, ψj(x̄)), giving rise to a recurrence
relation that needs to be bounded with a closed-form expression by the
solver afterwards.

17

CHAPTER 2. THE STANDARD PARAMETRIC COST RELATIONS
FRAMEWORK

• If Lj is a call to a predicate q which is in a different strongly connected
component than p, then Clit[ap,r](Lj, ψj(x̄)) is replaced by the closed-form
expression that bounds Cpred[ap,r](q, ψj(x̄)). The analysis guarantees that
this expression has been inferred beforehand, due to the fact that the analysis
is performed for each strongly connected component, in a reverse topological
order.

• If Lj is a call to a predicate q, whose cost is specified (with a trust asser-
tion) as Ψ[ap,r](q, ȳ), then Clit[ap,r](Lj, ψj(x̄)) is replaced by the expression
Ψ[ap,r](q, ψj(x̄)).

2.6 Resource Analysis as an Abstract Domain

The general framework presented so far, based on setting up recurrences rep-
resenting size and resource usage information, is also implemented in CiaoPP
using abstract interpretation, based on the sized types abstract domain [101, 102].
Sized types are regular types extended with structural (shape) information that
express both lower and upper bounds on the size of a set of terms and their
subterms at any position and depth. They also allow relating the sizes of terms
and subterms occurring at different argument positions in logic predicates. With
this information, the resource analysis can infer both lower and upper bounds on
the resources used by all the procedures in a program as functions on the sizes of
input terms (and subterms). The abstract domain operations are based on the
setting up and solving of recurrence equations for inferring both size and resource
usage functions.

We give now an overview of the approach for resource usage analysis by abstract
interpretation present in CiaoPP, showing the main ideas by using the classical
append/3 predicate as a running example:� �
1 append([], S, S).

2 append([E|R], S, [E|T]) :- append(R, S, T).� �
The process starts by performing the regular type analysis present in the CiaoPP
system [114]. In our example, the system infers that for any call to the predicate
append(X, Y, Z) with X and Y bound to lists of numbers and Z a free variable,
if the call succeeds, then Z also gets bound to a list of numbers. The set of “list
of numbers” is represented by the regular type listnum, defined as follows:

l i s tnum := [] | [num | l i s tnum]

From this regular type definition, sized type schemes are derived. The sized
type schema listnum-s is derived from listnum. This schema corresponds to a
list whose length is between α and β, containing numbers between γ and δ.

listnum-s→ listnum(α,β)(num(γ,δ))

18

Chapter 2. The Standard Parametric Cost Relations Framework

From now on, in the examples we will use ln and n instead of listnum and
num for the sake of conciseness. The next phase involves relating the sized types of
the different arguments to the append/3 predicate using recurrence (in)equations.
Let sizeX denote the sized type schema for argument X in a call append(X, Y, Z)

(from the regular type inferred by a previous analysis). We have that sizeX denotes
ln(αX ,βX)(n(γX ,δX)). Similarly, the sized type schema for the output argument Z

is ln(αZ ,βZ)(n(γZ ,δZ)), denoted by sizeZ . We are interested in expressing bounds
on the length of the output list Z and the values of its elements as a function of
size bounds for the input lists X and Y (and their elements). For this, we set up a
system of inequations. For instance, the inequations that are set up to express a
lower bound on the length of the output argument Z, denoted αZ , as a function
on the size bounds of the input arguments X and Y, and their subarguments
(αX , βX , γX , δX , αY , βY , γY , and δY) are:

αZ

(
αX , βX , γX , δX ,
αY , βY , γY , δY

)
≥

αY if αX = 0

1 + αZ

(
αX − 1, βX − 1, γX , δX ,

αY , βY , γY , δY

)
if αX > 0

Note that in the recurrence inequation set up for the second clause of append/3,
the expression αX − 1 (respectively βX − 1) represents the size relationship that a
lower (respectively upper) bound on the length of the list in the first argument of
the recursive call to append/3 is one unit less than the length of the first argument
in the clause head.

As the number of size variables grows, the set of inequations becomes too large.
Thus, in [102] the authors propose a compact representation, which allows us to
grasp all the relations in one view. The first change in this representation is to
write the parameters to size functions directly as sized types. Now, the parameters
to the αZ function are the sized type schemas corresponding to the arguments X

and Y of the append/3 predicate:

αZ

(
ln(αX ,βX)(n(γX ,δX))

ln(αY ,βY)(n(γY ,δY))

)
≥

αY if αX = 0

1 + αZ

(
ln(αX−1,βX−1)(n(γX ,δX))

ln(αY ,βY)(n(γY ,δY))

)
if αX > 0

In a second step, all the relations of a single sized type are grouped together.
Throughout this chapter we use a representation using ≶ for the symbols ≥ and
≤ that are always paired, as the authors of [102] proposed. In the implementation,
constraints for each variable are kept apart and solved separately.

After setting up the corresponding system of inequations for the output
argument Z of append/3, and solving it, we obtain the following expression:

sizeZ (sizeX , sizeY) ≶ ln(αX+αY ,βX+βY)(n(min(γX ,γY),max(δX ,δY)))

19

CHAPTER 2. THE STANDARD PARAMETRIC COST RELATIONS
FRAMEWORK

that represents, among others, the relation αz ≥ αX + αY (resp. βz ≤ βX + βY),
expressing that a lower (resp. upper) bound on the length of the output list
Z, denoted αz (resp. βz), is the addition of the lower (resp. upper) bounds on
the lengths of X and Y. It also represents the relation γZ ≥ min(γX , γY) (resp.
δZ ≤ max(δX , δY)), which expresses that a lower (resp. upper) bound on the
size of the elements of the list Z, denoted γz (resp. δz), is the minimum (resp.
maximum) of the lower (resp. upper) bounds on the sizes of the elements of the
input lists X and Y.

Resource analysis builds upon the sized type analysis and adds recurrence
equations for each resource we want to analyze. Apart from that, when considering
logic programs, we have to take into account that they can fail or have multiple
solutions when executed, so we need an auxiliary cardinality analysis to get correct
results.

Let sL and sU denote lower and upper bounds on the number of solutions for
append/3. Following the program structure we can infer:

sL
(
ln(0,0)(n(γX ,δX)), sizeY

)
≥ 1

sL
(
ln(αX ,βX)(n(γX ,δX)), sizeY

)
≥ sL

(
ln(αX−1,βX−1)(n(γX ,δX)), sizeY

)
sU
(
ln(0,0)(n(γX ,δX)), sizeY

)
≤ 1

sU
(
ln(αX ,βX)(n(γX ,δX)), sizeY

)
≤ sU

(
ln(αX−1,βX−1)(n(γX ,δX)), sizeY

)
Since sL ≤ sU , the solution to these inequations must be (sL, sU) = (1, 1). Thus,
we have inferred that append/3 has at least (and at most) one solution: it behaves
like a function. When setting up the equations, the analysis uses the result of the
non-failure analysis to see that append/3 cannot fail when given lists as arguments.
If not, the lower bound is 0.

Now we move forward to the resource usage approximation. We are considering
the number of resolution steps performed by a call to append/3 (we will only
focus on upper bounds, rU , for brevity). For the first clause, it is clear that only
one resolution step is needed, so:

rU

(
ln(0,0)(n(γX ,δX)), ln(αY ,βY)(n(γY ,δY))

)
≤ 1

The second clause performs one resolution step plus all the resolution steps
performed by all possible backtrackings over the call in the body of the clause.
This number can be bounded as a function of the number of solutions. Thus, the
equation reads:

rU
(
ln(αX ,βX)(n(γX ,δX)), sizeY

)
≤ 1 + sU

(
ln(αX−1,βX−1)(n(γX ,δX)), sizeY

)
× rU

(
ln(αX−1,βX−1)(n(γX ,δX)), sizeY

)
= 1 + rU

(
ln(αX−1,βX−1)(n(γX ,δX)), sizeY

)

20

Chapter 2. The Standard Parametric Cost Relations Framework

Solving these equations the analysis infers that an upper bound on the number of
resolution steps is the (upper bound on) the length of the input list X plus one.
This is expressed as:

rU

(
ln(αX ,βX)(n(γX ,δX)), ln(αY ,βY)(n(γY ,δY))

)
≤ βX + 1

2.7 Example

Consider the following program that checks whether a number n is prime based
on Wilson’s theorem: any integer n > 1 is prime iff (n − 1)! ≡ −1 (mod n).
Equivalently, n is prime iff (n− 1)! + 1 is a multiple of n.� �
1 prime(X):-

2 X > 1,

3 X1 is X - 1,

4 fact(X1 ,F1),

5 F is F1 + 1,

6 multiple(F,X).

7

8 fact(X,1):- X = 1.

9 fact(X,Y):-

10 X > 1,

11 X1 is X - 1,

12 fact(X1 ,Y1),

13 Y is Y1*X.� �
Assume that multiple is a naively implemented library predicate, so that its
resource usage, in number of resolution steps, is linear on the size of the input:
Cmultiple(n,m) = n+ 1 if n > 1. Assuming we don’t have access to the implemen-
tation of multiple, its resource usage function is provided to the analysis by the
following trust assertion:� �
1 :- trust pred multiple(N,M) : (num(N),num(M))

2 => (num(N), rsize(N,num(NLB , NUB)))

3 + (costb(steps , NLB , NUB + 1)).� �
Assume that we want to infer the standard cost of this predicate in resolution
steps, i.e., we define ϕ[ub,steps](H) = 1 for all predicates p ∈ P . For brevity, we also
assume that we are only interested in inferring upper bounds on resource usages,
so that the expression Cpred[ap,r](p, x̄) appearing in Equation 2.1 is understood to
represent an upper bound, and, assuming no definite failure information, then
lim(C, x̄) is the index of the last body literal of clause C. Finally, we also assume
that size relations have been inferred for the different arguments in a clause, and
that the size metric used is the actual value of an argument, since all arguments

21

CHAPTER 2. THE STANDARD PARAMETRIC COST RELATIONS
FRAMEWORK

are numeric. Such relations are obvious in this example, so that we focus only on
cost relations. However, as already stated, CiaoPP is able to infer and deal with
a rich set of size metrics, and also infer such size relations. The size of the kth
output argument of predicate pred, given as a function of the input data sizes n̄
to that predicate is represented as Szkpred(n̄). It is important also to mention the
modes of these predicates (again, inferred automatically by CiaoPP): prime has
one input argument and no output; multiple has two input arguments and no
output; and fact has one input and one output, whose size we have assumed is
already inferred in terms of the size of the input by the size analysis. This size is
represented by Sz2

fact(n), and is obtained from the setting up of the following size
relation:

Sz2
fact(n) = 1 if n = 1

Sz2
fact(n) = n× Sz2

fact(n− 1) if n > 1

By solving this recurrence, the size analysis obtains the closed-form Sz2
fact(n) = n!.

Regarding the number of solutions, in this example all the predicates generate
at most one solution, thus ∀i : solsi = 1 in Equation 2.2. Now we have all the
necessary elements to set up the cost relations for prime, fact, and multiple:

Cfact(n) = 1 if n = 1
Cfact(n) = 1 + Cfact(n− 1) if n > 1

Cmultiple(n,m) = n+ 1 if n > 1

Cprime(n) = 2 + Cfact(n− 1) + Cmultiple(Sz
2
fact(n− 1) + 1, n) if n > 1

Note that in this program, the size of the input of the call to multiple is given
by the size of the output of fact, represented by Sz2

fact(n). After solving these
equations and composing the closed forms, we obtain the following closed form
functions:

Cfact(n) = n if n > 1
Cmultiple(n,m) = n+ 1 if n > 1

Cprime(n) = (n− 1)! + n+ 3 if n > 1

22

3
Static Profiling

3.1 Introduction

In this chapter, we take as starting point the general framework for resource
usage analysis present in the CiaoPP system, described in Chapter 2, which
is parametric with respect to resources, approximations (e.g., lower or upper
bounds), and programming languages, and further generalize and extend it to be
also parametric with respect to notions of costs (e.g., standard cost or accumulated
cost).

Standard cost, and, in general, resource usage information, is very useful for a
number of applications, such as automatic program optimization, verification of
resource-related specifications, detection of performance bugs, or helping devel-
opers make resource-related design decisions. In the latter case, the analysis has
to show which parts of the program are the most resource-consuming, i.e., which
predicates would bring the highest overall improvement if they were optimized, so
that programming efforts can be focused more productively. The standard cost
information only partially meets these objectives. For example, often predicates
with the highest (standard) cost are not the ones whose optimization is most
profitable, since predicates which have lower costs but which are called more often
may be responsible for a larger part of the overall resource usage. The input data
sizes to such calls are also relevant. Thus, rather than the global costs provided
by standard cost analyses, what is really needed in many such applications is
the results of a static profiling of the program that helps identify the parts of a
program responsible for highest fractions of the cost, or, more generally, how the
total resource usage of the execution of a program is distributed over selected parts
of it. By static profiling we mean the static inference of the kinds of information
that are usually obtained at run-time by profilers.

For this reason, herein we are more interested in what we refer to as accumulated
cost. To give an intuition of this concept, we first explain our notion of cost centers,
which is similar to the one we use in [41], and was inspired from [79, 99]: they are

23

CHAPTER 3. STATIC PROFILING

user-defined program points (predicates, in our case) to which execution costs are
assigned during the execution of a program. Data about computational events
is accumulated by the cost center each time the corresponding program point is
reached by the program execution control flow. Assume for example that predicate
p calls another predicate q (either directly or indirectly), and that we declare
that both predicates are cost centers. In this case, the cost of a (single) call p(ē)
accumulated in cost center q, denoted Cqp(ē), expresses how much of the standard
cost of p(ē) is attributed to q, and is the sum of the costs of the computations
performed “under the scope” of all the calls to q generated during the complete
execution of p(ē). We say that a computation is “under the scope” of a call to
cost center q if the closest ancestor of such computation in the call stack that is a
cost center is q. The accumulated cost is formalized as a function Cqp : Π→ R∞.
We refer the reader to [41] for a formal definition of accumulated cost.1

The goal of static analysis is to infer approximations (i.e., abstractions) of
the concrete functions Cqp and Cp (or, more precisely, of the extensions of such
functions to the powerset of Π) that represent the accumulated and standard cost
respectively.

In this chapter we propose a novel, general, and flexible framework for setting
up cost equations/relations which can be instantiated for performing a wide
range of static resource usage analyses, including both accumulated cost and
standard cost. Our starting point is the well-developed technique of setting up
recurrence relations representing resource usage functions parameterized by input
data sizes [6, 25, 26, 27, 84, 98, 102, 117], which are then solved to obtain (exact
or safely approximated) closed-forms of such functions (i.e., functions that provide
upper or lower bounds on resource usage in general).2 Our proposal extends
and generalizes these standard resource analysis techniques by introducing into
the derived relations extra Boolean control variables whose value is 0 or 1. A
particular resource profile can be analyzed by assigning values to the control
variables, effectively switching on or off different terms in the relations. The
standard resource analysis is obtained by assigning 1 to all variables. We also
define a concrete Boolean variable assignment that instantiates our framework
so that it performs static profiling of accumulated cost, similarly to [41], where
the results are also parameterized by input data sizes. However, the approach
we present in this thesis is quite different from the one in [41], which was based
on a program transformation. Our main contributions, and the differences and
advantages over that work can be summarized as follows:

• We propose a novel, general, and flexible framework for setting up cost
relations which can be instantiated for performing a wide range of resource

1In [41] we use the notation C
p
q(ē) instead of Cqp(ē).

2In addition, recently many other approaches have been proposed for resource analysis [6, 11,
36, 38, 39, 50, 54, 87, 113]. While based on different techniques, all these analyses are aimed at
inferring the standard notion of cost. Please see [41] for a further discussion of related work.

24

Chapter 3. Static Profiling

usage analyses. Is more general than [41], which is limited to accumulated
cost analysis.

• Our new approach can deal with non-deterministic/multiple-solution pred-
icates, unlike [41]. This is obviously a requirement for analyzing logic
programs and is also useful for dealing with certain aspects of imperative
programs, such as multiple dispatch; see [72]. While our previous approach
could conceivably be extended to deal with such programs, it would certainly
result in a more complicated and indirect solution.

• Our new approach and its implementation are based on a direct applica-
tion of abstract interpretation and integration into the Ciao preprocessor,
CiaoPP [48], rather than on a program transformation. As a result, many
useful CiaoPP features are inherited for free, such as multivariance (being
able to infer separate cost functions for different abstract call patterns for the
same predicate), communication with the other required analyses, integrated
treatment of special control features (such as, e.g., the cut), assertion-based
verification and user interaction, efficient fixpoint, etc. Also, for this inte-
gration we define a novel abstract domain for resource analysis that keeps
track of the environment.

• Furthermore, this direct implementation avoids the disadvantages of the
transformation-based approach, such as making it more difficult to relate
the results (and warnings/errors) to the original program, and complicating
the task of the auxiliary analyses needed for cost analysis (types, modes,
determinism, non-failure, etc.). This is because if the analyses are performed
on the original program, then the results need to be transferred to the
transformed program; and if the analyses are performed on the transformed
program, then there is always the risk of loss of precision. Also, the trans-
formation required by our previous approach is global, which is problematic
for modular compilation. In general, this new approach allows much better
and easier integration in a real-world compilation infrastructure.

• The integration also inherits the capability of CiaoPP’s analyzers of analyzing
for several resources at the same time. While it might be possible to define
a new transformation capable of keeping track of several resources, this
would further complicate the transformed program, and in any case requires
additional work.

• Finally, as our experimental results show, our new approach is more efficient
than the transformation-based approach. This is not only due to its imple-
mentation as a direct abstract interpretation, but also to the inclusion and
use of reachability information, performed automatically by the abstract
interpretation framework.

25

CHAPTER 3. STATIC PROFILING

In the rest of the chapter, Sect. 3.2 describes the proposed generalized approach
in which the cost relations extracted from the program incorporate extra Boolean
variables controlling the profile to be analyzed. Sect. 3.3 presents an instantiation
of such extended approach for static profiling of accumulated cost. Sect. 3.4
describes the implementation of the technique using the CiaoPP program analysis
framework, and provides experimental results. Sect. 3.6 discusses related work,
and finally, Sect. 3.7 presents our conclusions.

3.2 Generalizing the Standard Cost Relations

Approach

Our proposal extends and generalizes the approach described in Chapter 2. We
introduce a new concept of cost, Ccp,e(x̄), representing the (part of the) cost of the
complete execution of a single call p(x̄) (i.e., Cp(x̄) in Section 2.1 of Chapter 2),
performed in an environment e, that is attributed/assigned to cost center c of
the program. The parameter e is used to capture a broad notion of environment.
For example, it can be just the name of a predicate that is an ancestor of p in
the call stack. In a more complex setting, for example when inferring hardware-
dependent resources, such as energy [64, 65, 83], e can also include information
about the state of the hardware (or the whole system, including the running
software environment), e.g., the last instruction executed (useful for modeling the
switching cost of instructions), temperature, voltage, cache state, and pipeline
state. There is of course a trade-off between the amount of information in e and
analysis efficiency and accuracy.

As already said, and similarly to [41], herein we assume that a cost center
is a predicate in the program. Conceptually, we can say that we extend the
notion of resource so that it is now a pair (c, r), where r is a resource identifier
as before (e.g., resolution steps, execution time, energy, etc.), and c is the cost
center (predicate) that the resource usage is attributed/assigned to.

We introduce Boolean functions Bϕ(p, c, e) and B(p, c, e, q) to control which
terms of the cost relation should be considered. Using these boolean functions,
we generalize Equation 2.2 as:

Ccp,e(x̄) = Bϕ(p, c, e)× ϕ(H)

+

lim(ap,C)∑
j=1

solsj(x̄)×B(p, c, e, qj)× Ccqi,e′(ψj(x̄))

(3.1)

where e′ = E(p, c, e, qj(ψj(x̄))), and E is the environment change function, which
obtains the new environment for qj. If the cost of p is given (by using a trust

26

Chapter 3. Static Profiling

assertion) as a function Ψ(p)(x̄), then:

Ccp,e(x̄) = Bϕ(p, c, e)×Ψ(p)(x̄) (3.2)

Again, this equational framework can be instantiated to obtain the standard
cost by defining Bϕ(p, c, e) = B(p, c, e, q) ≡ 1, and defining E so that it does
not change the environment and always returns the input environment, i.e.,
E(p, c, e, qi(x̄i)) = e. The standard cost Cp(x̄) is then given by C

p
p,⊥(x̄), where ⊥ is

the null environment, in which no information about the environment is tracked,
and the only cost center that the cost of a single call to p is attributed to is the
predicate p itself.

Notation For the sake of readability, in this chapter we simplify the general
notation used in Equation 2.2. Concretely, we omit global parameters ap and r,
indicating type of approximation and the resource under analysis respectively,
whenever they can be deduced from the context. Also, as a slight abuse of notation,
we omit subscripts cl, pred and lit from the cost function symbol C, considering
they can also be deduced from the context.

3.3 Instantiation for Parametric Accumulated-

cost Static Profiling

We now instantiate the general approach described in Sect. 3.2 for the static
inference of accumulated cost. As mentioned before, in [41] we proposed a
technique for this purpose, but following a quite different approach that required
a global program transformation, which implies the limitations listed in Sect. 3.1.
The approach we propose herein is more general and flexible, deals with essential
aspects such as non-determinism and multiple solutions, and does not require any
program transformation.

Assume we are given a set of (user-defined) cost centers ♦, which, as mentioned
before, in our approach program predicates. Assuming that p is a cost center, the
standard cost of a single call p(x̄) (as defined in Sect. 3.1, and whose inference
was discussed in Sect. 2.1 of Chapter 2) is the sum of its accumulated costs in all
the cost centers in the program, or, equivalently in all the cost centers that are
descendants (in the call stack) of p. This is formally expressed in [41] Theorem 1,
and, intuitively, the proof is based on the fact that, according to the definition of
accumulated cost, the cost of any computation performed during the complete
execution of p(x̄) is uniquely attributed to a cost center (predicate): the closest
ancestor of such computation in the call stack that is a cost center.

Given a predicate p, we refer to the computations performed by a call p(x̄) that
are not under the scope of any cost center that is a descendant (in the call stack)
of p, as the residual computations of p. We refer to the cost of such computations

27

CHAPTER 3. STATIC PROFILING

as the residual cost of p. Note that such computations include the computations
performed by calls to non-cost-center predicates that are descendants of p and that
are not under the scope of any cost center that is a descendant of p. Assume that
the analysis is inferring accumulated costs on a given cost center c. When analyzing
a call to a non-cost-center predicate p, its residual cost must be attributed to c

only if the call p(x̄) is under the scope of c (i.e., is a descendant of c). When
analyzing a call to a cost-center predicate p, its residual cost must be attributed
to c only if p = c. Thus, in the expression Ccp,e(x̄) (where necessarily c ∈ ♦) the
environment e is just a Boolean value representing whether the (single) call to p

is in the scope of cost center c (e = 1) or not (e = 0). To this end, we define the
environment change function as follows: E(p, c, e,) ≡ (p = c ∨ (p 6∈ ♦ ∧ e)).

Knowing that a given predicate cannot be called by another during program
execution allows the analysis to ignore some parts not affecting the cost to be
inferred. We define a simple calls relation between predicates as: p calls q, denoted
p α q, if and only if a literal with predicate symbol q appears in the body of a
clause defining p; ?

α is the reflexive transitive closure of α. This α relation
is an abstraction (over-approximation) of the concrete relation (a more precise
abstraction is computed by CiaoPP).

The Boolean assignment functions (appearing in Expression 3.1) are defined
as follows:

Bϕ(p, c, e) ≡ (p = c ∨ (p 6∈ ♦ ∧ e)) (3.3)

B(p, c, e, q) ≡ Bϕ(p, c, e) ∨ (q ?
α c) (3.4)

Note that the analysis of the accumulated cost of a given non-cost-center
predicate p in a given cost center c can create at most two versions of Ccp,e(x̄) for
the same input (calling pattern) x̄ (and hence, there will be at most two versions
of the cost relations for p): the version Ccp,1(x̄) created if there is a (direct or
indirect) call to p in the scope of c, e.g., if such call is in the body of a clause
defining c (in which case the ϕ cost is added to the cost relations for p), and the
variant Ccp,0(x̄) created if there is a call to p not in the scope of c (in which case
the ϕ cost is not added).

Lemma 1. ∀p, q ∈ ♦, ∀e ∈ {0, 1}, it holds that E(p, q, e,) ≡ (p = q) and
Bϕ(p, q, e) ≡ (p = q).

This implies that:

Lemma 2. ∀p, q ∈ ♦ it holds that Cqp,0(x̄) = C
q
p,1(x̄).

Thus, if p ∈ ♦ we omit the environment e and write Cqp(x̄). Note that necessarily
q ∈ ♦.

Lemma 3. ∀p, q ∈ ♦, if p 6 ?
α q then Cqp(x̄) = 0

28

Chapter 3. Static Profiling

Lemma 4. ∀p 6∈ ♦,∀q ∈ ♦, if p 6 ?
α q then C

q
p,0(x̄) = 0

Note also that in the standard cost relation-based static analysis, cost relations
are set up for each predicate in the program. In the approach we propose here
for accumulated cost, cost relations are set up for each cost center and for each
predicate in the program.

Example 1. In Example 2.7, predicate prime was found too expensive in terms
of resolution steps to be practical, since Cprime(n) ∈ O(n!). However, the standard
cost inferred for all the predicates called from prime is linear, and it is not easy to
detect at first glance where the resource is really consumed. To locate the culprit,
traditionally this would be attempted using a dynamic profiling tool, executing the
program with several test cases –commonly known as hot spot detection. However,
as with the standard cost analysis, we want to detect such hot spots statically,
in order to have sound information for any possible input. For this purpose,
we perform the accumulated cost analysis declaring that all predicates are cost
centers (i.e, ♦ = {prime, fact, multiple}). Based on the equational framework
instantiation in Sect. 3.3 and Lemma 2, consider the cost of a single call to prime

accumulated in fact, Cfactprime(n), for an input size n. As already stated, the number
of solutions of all these predicates is 1, and the output sizes have already been
inferred. For the sake of conciseness, from now on we refer to prime, fact and
multiple as p, f and m respectively.

Cfp(n) = Bϕ(p, f,)× ϕ(p(n)) + C
f
f (n− 1) + Cfm(Sz2

f (n− 1))

C
f
f (n) = Bϕ(f, f,)× ϕ(f(n)) if n = 1

C
f
f (n) = Bϕ(f, f,)× ϕ(f(n)) + C

f
f (n− 1) if n > 1

Cfm(n) = Bϕ(m, f,)×Ψ(m)(n) = Bϕ(m, f,)× (n+ 1) if n > 1

Following the definitions in Sect. 3.3, we know that Bϕ(p, f,) = Bϕ(m, f,) = 0,
Bϕ(f, f,) = 1 and ϕ() = 1. Using these values, the cost relations defining Cfp(n)
are:

Cfp(n) = C
f
f (n− 1)

C
f
f (n) = 1 if n = 1

C
f
f (n) = 1 + C

f
f (n− 1) if n > 1

Solving this system of equations, we finally obtain: Cfp(n) = n
Analogously, we obtain the closed-form functions for Cmp (n) and Cpp(n):

Cpp(n) = 1 if n > 1
Cmp (n) = (n− 1)! + 2 if n > 1

29

CHAPTER 3. STATIC PROFILING

Now, it is clear that the most expensive part of this program is the call to multiple.
Even though the (standard) cost of this implementation of multiple is linear, its
input size is the output size of the call to fact, which is the factorial of the input
to prime minus 1. In this case the problem can really only be fixed by using a
better implementation of multiple (O(1)) or of prime, to achieve the expected
polynomial resource usage.

This example illustrates how the accumulated cost is more useful than the
standard cost. Neither the standard cost of multiple (n+ 1) nor the number of
calls to this predicate from prime (since it is called just once) gives a direct hint
that this predicate is responsible for most of the resource consumption of prime.

Example 2. Consider the following program P:

� �
1 p(X,Y):-

2 h(X),

3 q(X,Y),

4 w(Y),

5 s(X).

6

7 q(0,_).

8 q(X,Y):-

9 X > 0,

10 X1 is X - 1,

11 m(Y),

12 q(X1 ,Y),

13 s(X).� �

� �
14 m(0).

15 m(X):-

16 X > 0,

17 w(X),

18 X1 is X - 1,

19 m(X1).

20

21 s(0).

22 s(X):-

23 X > 0,

24 X1 is X - 1,

25 w(X),

26 s(X1).

27

28 h(2).

29 h(3).� �
Assume as in the previous example that we want to infer upper bounds of
the standard costs of all the predicates in resolution steps, i.e., ϕ(p(x̄)) =
1 for all predicates p ∈ P. Assume also that w is a library predicate and that
its (standard) cost is given as a predicate cost function (by using a trust assertion):

Ψ(w)(x) = 2x+ 1 (3.5)

We assume again that the size metric used is the actual value of the arguments,
since they are all numeric, and that size relations, again obvious, have been inferred
for all clause arguments, which are all inputs, and we focus only on cost relations.
The cost relation for the recursive clause of predicate s, according to Expression 3.1
is (for simplicity, solsi = 1 for all predicates in this example):

Cs(x) = 1 + Cw(x) + Cs(x− 1) if x > 0

Since Cw(x) is given by a trust assertion as Ψ(w)(x) = 2 x+ 1, this cost relation,
together with the one for the non-recursive clause, form the system:

30

Chapter 3. Static Profiling

Cs(x) = 1 if x = 0
Cs(x) = 1 + 2x+ 1 + Cs(x− 1) if x > 0

and its closed-form solution is Cs(x) = x2 + 3x + 1 for x ≥ 0. The same cost
relations correspond to predicate m, therefore its closed form is Cm(x) = x2 + 3x+
1 for x ≥ 0. For predicate h, the following non-recursive system of cost relations
is set up:

Ch(x) = 1, if x = 2 and Ch(x) = 1, if x = 3

obtaining Ch(x) = 1, since the clauses of h are mutually exclusive. Now, the cost
relations for q are:

Cq(x, y) = 1 if x = 0
Cq(x, y) = 1 + Cm(y) + Cq(x− 1, y) + Cs(x) if x > 0

Replacing Cm(y) and Cs(y) with their corresponding closed-form functions obtained
before, and solving the recurrence, we obtain Cq(x, y) = 1

3
x3 + xy2 + 2x2 + 3xy +

14
3
x+ 1. Finally, the cost relations for the main predicate p result in:

Cp(x, y) = 1 + Ch(x) + Cq(x, y) + Cw(y) + Cs(x)

and its closed form is: Cp(x, y) = 1
3
x3 + xy2 + 3x2 + 3xy + 23

3
x+ 2y + 4.

Now assume that we declare that predicates p, q, m and h are cost centers, i.e.,
♦ = {p, q, m, h}, and s and w are not. For space reasons, we will only illustrate
the inference of upper bounds on accumulated costs in all cost centers.

The accumulated costs in cost center q are inferred as follows. Consider the
clause defining predicate p. Since p ∈ ♦, by Lemma 1 the current environment e is
irrelevant for the computation of the new environment e′ (i.e., e′ = E(p, q, 0,) =
E(p, q, 1,) ≡ (p = q) ≡ 0), and for the computation of the head cost, i.e.,
Bϕ(p, q, 0) = Bϕ(p, q, 1) ≡ (p = q) ≡ 0. Thus, the cost relation for p according to
Equation 3.1 is Cqp(x, y) = C

q
h(x) + Cqq(x, y) + C

q
w,0(y) + C

q
s,0(x). Consider predicate

q now. Since Bϕ(q, q, e) ≡ (q = q) ≡ 1 and Bϕ(q, q, 0) = Bϕ(q, q, 1) ≡ (p =
q) ≡ 1 for e ∈ {0, 1}, the cost relations for the base case and recursive clause of q
respectively are:

Cqq(x, y) = Bϕ(q, q,)× 1 = 1× 1 = 1 if x = 0
Cqq(x, y) = 1 + Cqm(y) + Cqq(x− 1, y) + C

q
s,1(x) if x > 0

For expression C
q
s,1(x) appearing in the recursive cost relation for q above (i.e.,

the version of the cost of s when called in the scope of cost center q), the cost
relations are:3

C
q
s,1(x) = 1 if x = 0
C
q
s,1(x) = 1 + C

q
w,1(x) + C

q
s,1(x− 1) if x > 0

3Since s 6∈ ♦, the environment is needed in this case.

31

CHAPTER 3. STATIC PROFILING

We now need to infer the function represented by expression C
q
w,1(x) appearing

in the recursive cost relation for s above. Since the cost function for w is given
by a trust assertion (see Expression 3.5) and Bϕ(w, q, 1) = 1, we have that
C
q
w,1(x) = Bϕ(w, q, 1)× (2 x + 1) = 2 x + 1. Using this function, the closed-form

solution for C
q
s,1(x) is x2 +3x+1 for x ≥ 0. For expression C

q
w,0(y) appearing in the

equation for p above, we have that Cqw,0(y) = Bϕ(w, q, 0)×(2y+1) = 0×(2y+1) = 0.
Now, for expression C

q
s,0(x) appearing in the cost relation for p above (i.e., the

version of the cost of s when it is not called in the scope of cost center q), we
have that Cqs,0(x) = 0 (Lemma 4). For expression Cqm(y) appearing in the second
cost relation for q above, we have that Cqm(y) = 0 (Lemma 3), and no cost relation
is set up for predicate m. Now, the accumulated costs in cost center h are inferred
as follows. The accumulated cost in h for a call to p is given by:

Chp(x, y) = Chh(x) + Chq(x, y) + Chw,0(y) + Chs,0(x)

We have that:
Chq(x, y) = Chm(y) = 0 (by Lemma 3)

and:
Chs,0(x) = (by Lemma 4)

and Chw,0(y) = Bϕ(w, h,) × 1 = 0 × 1 = 0. Then, the cost relations for the
accumulated cost in h for a call to h are:

Chh(x) = Bϕ(h, h,)× 1 = 1
Chh(x) = Bϕ(h, h,)× 1 = 1

Therefore, Chh(x) = 1 and Chp(x, y) = 1. For cost center m we have:

Cmp(x, y) = xy2 + 3xy + 2y + 1
3
x3 + 5

2
x2 + 25

6
x + 1

Cmq(x, y) = xy2 + 3xy + 1
3
x3 + 3

2
x2 + 13

6
x

Cmm(x) = x2 + 3x + 1

Finally, for cost center p we have:

Cpp(x, y) = 1 Cpq(x, y) = 0 Cpm(x) = 0 C
p
h(x) = 0

Note that the large complexity of Cmp(x, y) makes us realize that if we move the call
m(y) from the recursive clause of q to the clause of p:� �
1 p(X, Y):- h(X), m(Y), q(X, Y), w(Y), s(X).

2

3 q(0, _).

4 q(X, Y):- X > 0, X1 is X - 1, q(X1, Y), s(X).� �
then, the standard cost of p will be reduced. In particular, it is reduced from
Cp(x, y) = 1

3
x3+xy2+3x2+3xy+ 23

3
x+2y+4 to Cp(x, y) = y2+5y+ 1

3
x3+3x2+ 20

3
x+8.

32

Chapter 3. Static Profiling

3.4 Implementation and Experimental Results

We have implemented the proposed approach within the CiaoPP system, by
extending the implementation of [102]. The latter improved on [84] by defining
the resource analysis itself as an abstract domain that is integrated into the PLAI
abstract interpretation framework [82, 95] of CiaoPP, inheriting features such
as multivariance, efficient fixpoints, and assertion-based verification and user
interaction. A significant additional improvement brought about by [102] is it use
of a sized types abstract domain, which allows the inference of non-trivial cost
bounds when these depend on the sizes of parts of input terms at any position and
depth. The resulting abstract interpretation-based implementation builds the cost
equations described in Sect. 3.2. Separate equations are built for each procedure
version thanks to the built-in multivariance in PLAI. Other optimizations include
not building equations for unreachable program parts.

Table 3.1 shows the results of the comparison between the proposed approach
and our previous, program transformation-based approach [41] –New and Prev
respectively from now on. Column Bench shows, for each program, the entry
predicate (marked with a star, e.g., sublist∗) and the predicates that are declared
as cost centers (which always include the entry predicate). Acc. Cost shows the
parametric accumulated cost functions inferred for each cost center, which depend
on the input data sizes of the entry predicate. For conciseness we only show upper
bound functions, although in the experiments both upper and lower bounds were
inferred. The resource inferred in these tests is the number of resolution steps (i.e.,
each clause body is assumed to have unitary cost). The symbols in Column C
compare New and Prev: × means that it is a non-deterministic program that
produces multiple solutions and New is able to obtain non-trivial bounds while
Prev fails to obtain a correct bound (as mentioned before, Prev is not applicable
for these programs). = indicates that New obtains the same bounds as Prev.
Only these two symbols are required because all the results coincide except for the
non-deterministic programs. AvD is the average deviation of the accumulated
costs obtained by evaluating the functions in Column Acc. Cost, with respect
to the costs measured with a dynamic profiler [75]. The input data for dynamic
profiling was selected to exhibit worst case execution,4 in order to compare with
upper bound functions. Time (s) lists the analysis times of New in seconds
(Ciao/CiaoPP version 1.15-4048-g6bd1569, MacBook Pro, 2.4GHz Intel Core i7
CPU, 8 GB 1333 MHz DDR3 memory, MAC OS X Lion 10.7.5) and, between
brackets, how efficient New is with respect to Prev (New−Prev

Prev
× 100). New

is more efficient than Prev in all programs, with one exception (hanoi). Times
are quite encouraging in any case, specially considering the currently inefficient
implementation of the Mathematica interface, one of the solvers used for the
recurrence equations.

4Except for queens: the queens program was simply run for 8 queens. The selection of input
data that can make a program exhibit worst case execution is non-trivial.

33

CHAPTER 3. STATIC PROFILING

Table 3.1: Experimental results (static profiling of accumulated cost).

Bench Acc. Cost C AvD Time (s) Std. Cost #Calls Acc.BigO

sublist∗ n2 + 3 × 5% 4.7 n1n2 + 3n2 + 2 2 O(n2)
append n1n2 + 2n2 − 1 40% (NA) 2n− 1 n1n2 + 2n2 − 1 O(n1n2)
is prime∗ 1

=
0% (n− 1)! + n+ 3 1 O(1)

fact n 0% 1.6 n n O(n)
mult (n− 1)! + 2 0% (-24%) n+ 1 (n− 1)! + 2 O(n!)
queens∗ n+ 2

×

7% O(nn)† 1 O(n)

consistent ((n−1)n−1)nn+1+n

(n−1)2 104% 4.7 2n+ 1 ((n−1)n−1)nn+1+n
(n−1)2 O(nn)

choose (2n−1)(nn−1)
(n−1) 104% (NA) 2n− 1 (2n−1)(nn−1)

n−1 O(nn)

noattack (n−2)n(n+2)+n2

(n−1)2 104% 1 (n−2)nn+2+n2

(n−1)2 O(nn)

search∗ 1 × 0% 1.4 2n+ 2 1 O(1)
member 2n+ 1 0.1% (NA) 2n+ 1 2n+ 1 O(n)
appAll2∗ b1

=
0% 5.3 O(b1b2b3)† 1 O(b1)

appAll b1b2 0% (-16%) b1b2 b1 O(b1b2)
append 2b1b2b3 0% n b1b2 + b1 O(b1b2b3)
hanoi∗ 2n − 1

=
0% 1.6 2n+1 − 2 1 O(2n)

move 2n − 1 0% (-19%) 1 2n − 1 O(2n)
coupled∗ 1

=
0% 2.4 n+ 2 1 O(1)

p n
2 + (−1)n

4 + 3
4 1.2% (-14%) n+ 1 n

2 −
(−1)n

4 + 1
4 O(n)

q n
2 −

(−1)n
4 + 1

4 0% n+ 1 n
2 + (−1)n

4 − 1
4 O(n)

isort∗ n+ 1
=

0% 3 n2 + n+ 1 n+ 1 O(n)
insert n2 71% (-19%) 2n+ 1 n2 O(n2)

minsort∗ n+ 1
=

0% 3.5 (n+1)2

2 + n+1
2 1 O(n)

findmin (n+1)2

2 + n−1
2 7% (-27%) n n+ 1 O(n2)

dyade∗ n1 =
0% 3.2 n1(n2 + 1) 1 O(n1)

mult n1n2 0% (-20%) n n1 O(n1n2)
variance∗ 1

=
0% 3.6 2n2 1 O(1)

sq diff n− 1 0% (-39%) 2n2n1 − 2n2 n− 1 O(n)
mean 2n2 − n 0% 2n+ 1 n O(n2)
variance2∗ 1

=
0% 3.1 5n+ 3 1 O(1)

sq diff n 0% (-40%) n n O(n)
mean 4n+ 2 0% 2n+ 1 2 O(n)
listfact∗ b1 =

0% 1.9 b1(b2 + 2) 1 O(b1)
fact b1b2 + b1 0% (-23%) n b1 O(b1b2)
† For space limitations only the complexity order is shown.

• n1, n2, . . . , nk represent the sizes of k input arguments. For a single input argument, the subscript is
dropped.

• b1, b2, . . . , bk represent the sizes of the nested structures of an input argument, where b1 represents the
size of the outer most structure and bk the inner most. In cases, where the cost only depends on the
outer most structure, the previous representation is used.

34

Chapter 3. Static Profiling

Std. Cost shows the cost functions inferred using the standard notion of
cost (in particular, the cost functions inferred by [102]) for comparison with the
accumulated cost functions (Acc. Cost). The latter clearly signal hot spots
that are not visible from the standard cost functions. Note also that in all cases
the sum of the functions for all the cost centers is the standard cost of the entry
predicate. Due to space limitations we do not include analysis times for obtaining
the standard costs in Column Std. Cost, but while the analysis times of New
are higher, as expected, it is only by 20% on average. #Calls shows the number
of times each predicate is called, as a function of input data sizes of the entry
predicate. These functions are inferred using the standard analysis by defining
explicitly a #Calls resource for each cost center predicate. A large complexity
order in the number of calls to a predicate (in relation to that of a single call)
suggests that it could be profitable to optimize the program to reduce the number
of calls to this predicate, to effectively reduce its impact on the overall cost of the
program. More interestingly, since both resources Acc. Cost and #Calls of a
predicate p are expressed as functions of input data sizes of the entry predicate,
their quotient (Acc. Cost/ #Calls) is meaningful and will give an approximation
of the cost of a single call to p as a function of the input data sizes of the entry
predicate. Note that the standard analysis (Column Std. Cost) also provides an
upper-bound approximation of this cost but as a function of the input data sizes
of q. Finally, Column Acc.BigO shows the actual asymptotic resource usage of
the accumulated cost in different cost centers.

3.5 Hot Spots Detection using Static Profiling

The main objective of the approach presented in this chapter is to help identifying
the most resource-consuming parts of a program and the causes for them. In
this section, we illustrate with an example how we can achieve such goal by
combining the accumulated and the standard cost, the size analysis, together with
a user-defined resource to count the number of calls to a particular predicate.

Let k1, k2, . . . , kr be nonnegative integers, and let n = k1 + k2 + · · ·+ kr. The
multinomial coefficient is defined as(

n

k1, k2, . . . , kr

)
=

n!

k1!k2! · · · kr!

and represents the number of ways n objects can be arranged into r sets, where
the i-th set contains exactly ki objects. Consider the following program that

35

CHAPTER 3. STATIC PROFILING

computes the multinomial coefficient, following such definition exactly:� �
1 multi_coef(N,KL,Res):-

2 fact(N,N1),

3 lfact(KL ,KLF),

4 multiply(KLF ,Div),

5 Res is N1/Div.

6

7 multiply([] ,1).

8 multiply([X|Y],Z):-

9 multiply(Y,Z0),

10 Z is Z0*X.� �

� �
11 lfact([],[]).

12 lfact([N|R],[F|Fr]):-

13 fact(N,F),

14 lfact(R,Fr).

15

16 fact (0,1).

17 fact(N,Fact):- N>0,

18 N1 is N-1,

19 fact(N1 ,Fact1),

20 Fact is N*Fact1.� �
We first use our cost analysis tool to infer the standard cost of the main

predicate, multi coef/3 in our example, given in terms of resolution steps. For
brevity, we only show upper bounds in this example, although the process is
analogous for the case of lower bounds. We assume that size relations have
been inferred for the different arguments in a clause, and that the size metrics
used are the number of type rule applications for lists, and the actual value for
numbers. After running the analyzer, we obtain the following closed form functions
representing the standard cost of each predicate in the program:

Cfact(n) = n+ 1
Clfact(l, e) = el − e+ 2l − 1

Cmultiply(l) = l
Cmulti coef(n, l, e) = el − e+ 3l + n+ 1

where l represents an upper bound on the size of the input list, e represents an
upper bound on the size of elements in the input list (which are all numbers in
this example), and n is an upper bound on the number of objects to arrange. Note
that the standard cost of our interest, Cmulti coef(n, l, e), is in O(el + n). We know
from this what is the overall cost of our program. However, this information does
not show details about how the cost is distributed among the different predicates.

3.5.1 Hot Spots Identification

In general, in order to optimize the performance of an existing piece of code, a
straightforward procedure consists of a) identify the most costly parts of it, and
b) try to optimize those parts. To achieve this, we run our static profiling tool
declaring all the predicates in the program as cost centers. In the example, the
resulting accumulated costs are the following:

Cfactmulti coef(n, l, e) = el − e+ l + n

Clfactmulti coef(n, l, e) = l

C
multiply
multi coef(n, l, e) = l

Cmulti coef
multi coef(n, l, e) = 1

Then, we rank the cost centers based on the complexity orders, identifying fact/2

as the predicate where most of the resource consumption is occurring, and focus
our optimizations efforts on aspects related to fact/2.

36

Chapter 3. Static Profiling

3.5.2 Calls and Size Analysis

After identifying the cost center(s) where most of the resource is consumed, we
need to fetch more details about the causes of that behavior, in order to take
appropriate actions. Intuitively, the factors causing a high accumulated cost in a
given predicate possibly are:

• a high standard cost of the predicate (i.e. the predicate is intrinsically
expensive in terms of cost),

• a high number of calls to the predicate,

• a big input data in some of the calls to the predicate, or

• a combination of all the factors above.

At this stage, the analysis has already obtained bounds on the size of the
outputs for all the predicates related to the call of our interest. In our example,
these bounds are the following:

Sz2
fact(n) = n!

Sz2
multiply(l, n) = nl−1

Sz2
lfact(l) = l

Sz
2/(./1)
lfact (n) = n!

The next information we need to infer is an upper bound on the number of
calls made to each hot spot detected before. We need to distinguish external from
internal (directly recursive) calls. While internal calls are caused by the control
flow of the predicate, depending on its initial input, calls originated externally do
not dependent on the callee. This difference is important in order to know where
we can potentially apply optimizations. To this end, we can define a resource,
calls[w], that represents the number of times that predicate w is called. In order
to identify the different sources of the calls, we use the accumulated cost in terms
of this resource. If we want the number of calls to w, originated from w itself
(i.e., the internal calls of w), in the context of a single call to the predicate p,
this information is exactly given by Cw

p . The external calls to w, on the other
hand, can be given by Cp

p , declaring only p and w as cost centers for the resource
calls[w]. In our example, the analyzer obtains the number of external and internal
calls to fact/2, which is the one with the biggest accumulated cost:

Callsexternalfact (l) = Cmulti coef
multi coef(l) = l

Callsinternalfact (l, e) = Cfactmulti coef(l, e) = 2le− 2e

Note that most of the calls to fact/2 are originated internally (recursively).

37

CHAPTER 3. STATIC PROFILING

3.5.3 Interpreting the Results

So far, the analysis pointed out which are the hot-spots with the highest cost,
together with the distribution of calls to these parts, and the size complexity
of each predicate. Combining this information we can draw some conclusions
about where and how it is worth to focus most of the optimization efforts. In our
running example, based on the information obtained, we conclude that fact/2 is
a good target for optimizations, and that a possible action to take is to reduce
the number of internal calls to fact/2, which means, reducing its standard cost.
Intuitively, the analysis suggests this after observing that:

1. Callsinternalfact (l, e) ∈ O(el) is higher than Callsexternalfact (l) ∈ O(l)

2. The input received by fact/2 has the same size than the input of
multi coef/2, without any increment through the data path.

3.5.4 Hot Spots Optimizations

Finally, we can apply optimizations to the hot-spots detected, taking into account
the causes spotlighted by the analysis. The optimizations can be automatic,
releasing the developer of this task. For example, we can declare the hot spots
as tabled predicates, or automatically parallelize them. In other cases, we can
modify the code using some common performance improving techniques, such
as, dynamic programming, or simply replacing the code with a better, closer to
optimal algorithm.

Continuing with our example, lets pay closer attention to how we use this
predicate in particular. First, each time we compute n!, we also compute k! for
1 ≤ k < n. By saving these intermediate results in an auxiliary data structure, we
can avoid unnecessary recomputations, and calls to fact/2 consequently. Second,
we actually know from the input the biggest number for which we need to compute
factorial, which is n = k1 + · · ·+ kr. These two facts allow us to precompute all
the necessary factorial numbers in linear time, storing them in an efficient data
structure accessible from the rest of the program when necessary. The optimized

38

Chapter 3. Static Profiling

program is the following (we assume that the cost of the builtin arg/3 is 0):� �
1 multi_coef_opt(N,KL ,R):-

2 inc_fact(N,Memo),

3 fact_cons(N,Memo ,N1),

4 lfact(Memo ,KL ,KLF),

5 multiply(KLF ,Div),

6 R is N1/Div.

7

8 multiply([] ,1).

9 multiply([X|Y],Z):-

10 multiply(Y,Z0),

11 Z is Z0*X.

12

13 inc_fact(N,Fact):-

14 inc_fact_ (0,N,1,Fact0),

15 Fact =.. [p|Fact0].� �

� �
15 inc_fact_(N,N,_F,[]).

16 inc_fact_(I,N,F0,[F1|F]):-

17 I<N,

18 I1 is I + 1,

19 F1 is I1*F0 ,

20 inc_fact_(I1,N,F1,F).

21

22 fact_cons(N,T,E):-

23 arg(N,T,E).

24

25 lfact(_,[],[]).

26 lfact(Memo ,[N|R],[F|Fr]):-

27 fact_cons(N,Memo ,F),

28 lfact(Memo ,R,Fr).� �
Then, we run the analysis again, this time obtaining the following accumulated

costs (with the new set of cost centers):

Cfact cons
multi coef opt(n, l, e) = l

Cinc fact
multi coef opt(n, l, e) = 1

Cinc fact
multi coef opt(n, l, e) = n+ 1

C
multiply
multi coef opt(n, l, e) = l

Clfactmulti coef opt(n, l, e) = l

C
multi coef opt
multi coef opt(n, l, e) = 1

Now the total cost of a call to multi coef/3 is bounded by Cmulti coef(n, l, e) =
3l+ n+ 3. Thus, after our modification we have reduced the number of resolution
steps significatively, improving the asymptotic behaviour of the program from
O(el + n) to O(l + n). Figure 3.1 compares both bounds graphically, for a list of
100 subsets (l = 100). We can continue this procedure iteratively, taking in each
iteration the next cost center identified as hot spot by the analysis. This example
has shown how our general framework helps with the process of improving the
overall resource usage of a program.

3.6 Related Work

Wegbreit [117] proposed a general approach to cost analysis, based on setting
up and solving recurrence equations, for simple lisp programs. This seminal
work has been developed significantly in subsequent work, addressing limitations,
increasing automation, applying to several language paradigms, and extending the
notions of cost. For example, also within functional programming, [98] proposed
an automatic upper-bound analysis based on an abstract interpretation of a step-
counting version of the functional program, in order to infer both execution time
and execution steps. However, elements like size measures had to be provided by

39

CHAPTER 3. STATIC PROFILING

0 20 40 60 80 0

50

100
0

0.5

1
·104

e
n

a) Cmulti coef(n, l, e)

0 20 40 60 80 1000

50

100
0

0.5

1
·104

e
n

b) Cmulti coef opt(n, l, e)

Figure 3.1: Comparison of the costs (in resolution steps) between multi coeff/3

and its optimized version multi coeff opt/3 (for l = 100).

hand and few details were provided about the practicality of the analysis.
In the context of logic programming, [25, 26] presented an analysis that inferred

upper-bounds on the number of execution steps, given as functions on the input
data sizes. This work also proposed techniques to address the additional challenges
posed by the logic programming paradigm, such as, for example, dealing with non-
deterministic programs that generate multiple solutions and provided experimental
results, including those from an application in granularity control for automatic
program parallelization. This work also required annotations for modes and size
measures. It was however fully automated in [27, 48, 70] (by integrating it into
CiaoPP and using its analyzers to automatically provide modes and size measures)
and extended to infer both upper- and lower-bounds on the number of execution
steps (which is non-trivial because of the possibility of failure) [27].

In addition, [27] introduced the idea of setting up non-deterministic recurrence
relations and applied it to the class of divide-and-conquer programs (for which
previous approaches incurred in loss of precision), proposing as well a technique
for computing approximated closed form bound functions for some of them. The
proposed technique was based on bounding the number of terminal and non-
terminal nodes in the set of computation trees corresponding to the evaluation of
the non-deterministic recurrence relations, and bounding the cost of such nodes.
Non-deterministic recurrence relations were also used and further developed in [6]
(referred to there as cost relations).

The approach in [25, 26, 27] was generalized in [84] to infer user-defined
resources (by using an extension of the Ciao assertion language [46]), and was
further improved in [102] by defining the cost relations and functions as an abstract
domain and the whole resource analysis as a multivariant abstract interpretation.
This is, as mentioned before, the implementation that we have used as starting
point for our experiments.

40

Chapter 3. Static Profiling

Recently, many other approaches have been proposed for resource analysis [6,
11, 36, 38, 50, 54, 87, 113]. While based on different techniques, all the analyses
discussed share the goal of inferring the standard notion of cost –that we have
called herein the standard cost– which provides for a given program P , and for all
predicates p ∈ P , an approximation of the total cost of a single call.

The exception is [41], which computes a static profiling of accumulated cost,
where the results are also parameterized by input data sizes. However, that
approach is based on a global program transformation and, as mentioned be-
fore, has significant shortcomings with respect to our work: it cannot deal with
non-deterministic programs that produce multiple solutions, the transformation
is complex (and, because it is global, problematic in the context of modular
compilation), it complicates the inference of more than one resource by requiring
multiple transformations, it is less efficient and more complicated to integrate
with the compiler, and it is less flexible, since it is specific to profiling.

Static profiling in the context of Worst Case Execution Time (WCET) Analysis
of real-time programs is presented in [18]. It proposes an approach to computing
worst-case timing information for all code parts of a program using a complemen-
tary metric, called criticality. Every statement of a real-time program is assigned
with a criticality value, expressing how critical the respective code is for the global
WCET. Our approach is not limited to WCET, since it is able to obtain results
for a general class of user-defined resources. Furthermore, our inferred metrics
are parametric on the input data sizes of the main program, in contrast to the
criticality metric, which is a numeric value in the range [0, 1]. In addition, our
approach is modular and compositional, able to compute accumulated costs w.r.t.
calls originating from different procedures of the program, and not only the main
program entry point. In [16] the authors present static profiling techniques to
estimate the execution likelihood and frequency of program points in order to
assess whether the cost of certain compile-time optimizations would pay off. To
this end, they explore the use of some static analysis techniques for predicting
the result of conditional branches, such as assuming uniform distribution over
all branches, making heuristic based predictions, and performing value range
propagation. In this context, our approach can be used to infer bounds on the
number of times a certain program point will be called from a given entry point,
as functions on input data sizes, in contrast with a single value representing the
execution likelihood or frequency. Besides, since our techniques are supported
mainly by the theory of abstract interpretation, the approximations inferred are
correct by design.

3.7 Conclusions

We presented a novel, general, and flexible framework for setting up cost equa-
tions/relations which can be instantiated for performing a wide range of resource

41

CHAPTER 3. STATIC PROFILING

usage analyses, including both accumulated cost and standard cost. We have also
reported on an implementation of this general framework within the CiaoPP sys-
tem, and its instantiation for accumulated cost, and provided some experimental
results. The results show that the resulting accumulated cost analysis, in addition
to providing results for non-deterministic programs, is also more efficient than our
previous approach based on program transformation, and has a good number of
additional advantages. We argue that our approach is quite general, and it can
be easily applied to other paradigms, including imperative programs, functional
programs, CHR, etc., using the strategy based on compilation to Horn Clauses,
as in our previous work with Java or XC.

42

4
Analysis of Parallel Programs

4.1 Introduction

In this chapter, we further generalize and extend the framework for resource
usage analysis present in the CiaoPP system, described in Chapter 2, to be also
parametric with respect to execution models (e.g., sequential or parallel execution).

Due to the heat generation barrier in traditional sequential architectures,
parallel computing with (heterogeneous) architectures has become the dominant
paradigm in current computer architecture. In the past decades, electronic
components used to build computers have decreased in size and cost, doubling the
number of transistors on a single chip every two years approximately (Moore’s
law [78]).

With more transistors on a single chip, data paths became shorter, allowing
greater clock speeds and in this way increasing the rate at which instructions were
issued. This was a key source of performance improvement during the 90’s, in
combination with instruction level parallelism (superscalar architectures). Thus,
Software engineers’ main concern was to develop more software, while hardware
engineers developed better processors where the same software could run faster.
However, this approach stumbled upon the power consumption barrier. While
the performance of processors was growing linearly, the power consumption and
heat emission of these chips was raising much more faster [13]. To overcome
this limitation, new architectures appeared, where multiple processing cores with
shared-memory are configured on a chip. With lower clock frequencies and less
voltage, multi-core processors require less power while maintain and improve the
throughput. Multi-core architectures are present everywhere, from data-centers
to mobiles and small embedded devices. As a consequence of this change, it
becomes vital that software be able to make effective use of the parallelism that
is present now in hardware. In order to achieve this, programmers need to expose
the concurrency of programs. Thus, languages and tools for parallel programming
are key nowadays, and their importance is raising.

43

CHAPTER 4. ANALYSIS OF PARALLEL PROGRAMS

Many languages and language extensions have been developed for parallel
programming. An extensively used framework is OpenMP [2]. OpenMP is a
shared-memory application programming interface (API). OpenMP is suitable for
developing on a broad range of shared-memory architectures. Rather than being a
new new programming language, OpenMP is mostly used through directives added
to a sequential program in Fortran, C, or C++. Much of the work with OpenMP
consists in taking a sequential piece of code, detecting the computing intensive
hot-spots in it, and then optimize those parts by exploiting their parallelism. In
order to help in this process, profilers are used extensively.

MPI (Message-Passing Interface) is a message-passing library interface speci-
fication [1]. With tools implementing this specification, such as OpenMPI [35],
developers can build parallel programs following the message-passing parallel
programming model, in which data is moved across different processors with
possibly different memory spaces through cooperative operations. MPI is usually
combined with OpenMP, exploiting intra-node parallelism with OpenMP and
inter-node parallelism with MPI.

GPGPU, short for general-purpose computation on graphics processing units,
is another parallel approach to accelerate the execution of scientific applications,
by taking advantage of the GPU’s massively-parallel architectures. The CUDA
programming model [3], from NVIDIA, was created for developing applications
that delegate part of their computations to GPU cards. This kind of applications
moves data back and forth in different memory spaces over a bus.

To this end, predicting resource usage on parallel platforms poses important
challenges. It is not surprising that most work on static resource analysis has
focused on sequential programs, and relatively little progress has been made on
the analysis of parallel programs, or on parallel logic programs in particular.
The significant body of work on static analysis of sequential logic programs has
already been applied to the analysis of other programming paradigms, including
imperative programs. This is achieved via a transformation into Horn clauses [72].
In this chapter we concentrate on the analysis of parallel Horn clause programs,
which could be the result of such a translation from a parallel imperative program
or be themselves the source program. Our starting point is the well-developed
technique of setting up recurrence relations representing resource usage functions
parameterized by input data sizes [6, 25, 26, 27, 84, 98, 102, 117], which are then
solved to obtain (exact or safely approximated) closed-forms of such functions
(i.e., functions that provide upper or lower bounds on resource usage). We build
on this and propose a novel, general, and flexible framework for setting up cost
equations/relations which can be instantiated for performing static resource usage
analysis of parallel logic programs for a wide range of resources, platforms, and
execution models. Such an analysis estimates both lower and upper bounds on
the resource usage of a parallel program as functions on input data sizes. We
have instantiated the framework for dealing with Independent And-Parallelism
(IAP) [40, 45], which refers to the parallel execution of conjuncts in a goal.

44

Chapter 4. Analysis of Parallel Programs

However, the results can be applied to other languages and types of parallelism,
by performing suitable transformations into Horn clauses.

The main contributions presented in this chapter can be summarized as follows:

• We have extended a general static analysis framework for the analysis of
sequential Horn clause programs [84, 102], to deal with parallel programs.

• Our extensions and further generalizations support a wide range of resources,
platforms, and parallel/distributed execution models, and allow the inference
of both lower and upper bounds on resource usage. This is the first approach,
to our knowledge, to the cost analysis of parallel logic programs that can deal
with features such as backtracking, multiple solutions (i.e., non-determinism),
and failure.

• We have instantiated the developed framework to infer useful information
for assessing and exploiting the potential and actual parallelism of a system.

• We have developed a prototype implementation that instantiates the frame-
work for the analysis of logic programs with Independent And-Parallelism
within the CiaoPP system [48, 84, 102], and provided some experimental
results.

The rest of the chapter is organized as follows: in Section 4.2 we introduce
some preliminary concepts and give an overview of our approach through a running
example. In Section 4.3 we present our extensions to the general framework, to
deal with Independent And-parallel logic programs. In Section 4.4 we describe our
implementation of the techniques using the CiaoPP program analysis framework,
and discuss about the experiments performed. In Section 4.5 we discuss related
work. Finally, in Section 4.6 we present our conclusions.

4.2 Preliminaries

In this section we present preliminary concepts that are used in the rest of the
chapter. Independent And-Parallelism refers to the case where the execution of two
goals do not affect each other, and thus can be executed in parallel without altering
the functional behaviour of the program. A sufficient condition for independence
(assuming side-effect free execution) is the absence of variable sharing at run-time
among the goals. The binary operator &/2 is used to indicate the parallel execution
of its operands. Concretely, p & q triggers the execution of the goals p and q in
parallel, finishing when both executions finish.

4.2.1 Cost Metrics for Parallel Programs

We now enumerate different metrics used to evaluate the performance of parallel
logic programs, compared against its corresponding sequential version [103]. Here,

45

CHAPTER 4. ANALYSIS OF PARALLEL PROGRAMS

these metrics are parameterized with respect to the resource in which the cost is
expressed (e.g., number of resolution steps, execution time, or energy consumption):

• Sequential cost (Work): It is the standard cost of executing a program,
assuming no parallelism.

• Parallel cost (Depth): It is the cost of executing a program in parallel,
considering an unbounded number of processors.

• Maximum number of processes running in parallel: It is the maxi-
mum number of processes that may run simultaneously in a program. This
is useful to determine what is the minimum number of processors that are
required to guarantee that all the processes run in parallel.

4.2.2 Overview

The following example illustrates our approach.

Example 3. Consider the predicate scalar/3 below, and a calling mode to it
with the first argument bound to an integer n and the second one bound to a list
of integers [x1, x2, . . . , xk]. Upon success, the third argument is bound to the list of
products [n ·x1, n ·x2, . . . , n ·xk]. Each product is recursively computed by predicate
mult/3. The calling modes are automatically inferred by CiaoPP (see [48] and
its references): the first two arguments of both predicates are input, and their last
arguments are output.� �
1 scalar(_,[],[]).

2 scalar(N,[X|Xs],[Y|Ys]):-

3 mult(N,X,Y) & scalar(N,Xs ,Ys).

4

5 mult(0,_,0).

6 mult(N,X,Y):-

7 N>1,

8 N1 is N - 1,

9 mult(N1 ,X,Y0),

10 Y is Y0 + X.� �
The call to the parallel &/2 operator in the body of the second clause of scalar/3
causes the calls to mult/3 and scalar/3 to be executed in parallel. We want to
infer the cost of such a call to scalar/3, in terms of the number of resolution
steps, as a function of its input data sizes. We use the CiaoPP system to infer size
relations for the different arguments in the clauses, as well as dealing with a rich
set of size metrics (see [84, 102] for details). Assume that the size metrics used in
this example are the actual value of N (denoted int(N)), for the first argument,
and the list-length for the second and third arguments (denoted length(X) and
length(Y), respectively). Since size relations are obvious in this example, we

46

Chapter 4. Analysis of Parallel Programs

scalar(5, [1, 2, 3, 4]) 1

scalar(5, [2, 3, 4]) 1

scalar(5, [3, 4]) 1

scalar(5, [4]) 1

scalar(5, []) 1

true

mult(5, 1) 6

mult(5, 2) 6

mult(5, 3) 6

mult(5, 4) 6S
eq

u
en

ti
al

co
st

=
29

st
ep

s

(a) Sequential execution

scalar(5, [1, 2, 3, 4]) 1

&

scalar(5, [2, 3, 4]) 1

&

scalar(5, [3, 4]) 1

&

scalar(5, [4]) 1

&

scalar(5, []) 1

true

mult(5, 4) 6

mult(5, 3) 6

mult(5, 2) 6

mult(5, 1) 6

P
ar

al
le

l
co

st
=

10
st

ep
s

Parallel processes = 4(+main)

(b) Parallel execution

Figure 4.1: Resolutions steps performed by the call scalar(5, [1, 2, 3, 4]), consider-
ing different execution models.

focus only on the setting up of cost relations for the sake of brevity. Regarding
the number of solutions, in this example all the predicates generate at most one
solution. For simplicity we assume that all builtin predicates, such as is/2 and
the comparison operators have zero cost (in practice they have a “trust”assertion
that specifies their cost as if it had been inferred by the system). As the program
contains parallel calls, we are interested in inferring both total resolution steps,
i.e., considering a sequential execution (represented by the seq identifier), and
the number of parallel steps, considering a parallel execution, with an unbounded
number of processors (represented by par). In the latter case, the definition of
this resource establishes that the aggregator of the costs of the parallel calls that
are arguments of the &/2 meta-predicate is the max/2 function. Thus, the number
of resolution steps performed in parallel for p & q is the maximum between the
parallel steps performed by p and the ones performed by q. However, for computing
the total resolution steps, the aggregation operator we use is the addition, both
for parallel and sequential calls. For brevity, in this example we only infer upper
bounds on resource usages. In Figure 4.1 we show graphically the actual cost in
terms of resolution steps of the goal scalar(5, [1, 2, 3, 4]), considering a sequential
and a parallel execution.

We now set up the cost relations for scalar/3 and mult/3. Note that the cost
functions have two arguments, corresponding to the sizes of the input arguments.1

In the equations, we underline the operation applied as cost aggregator for &/2.
For the sequential execution (seq), we obtain the following cost relations:

1For the sake of clarity, we abuse notation in the examples when representing the cost
functions that depend on data sizes.

47

CHAPTER 4. ANALYSIS OF PARALLEL PROGRAMS

Cscalar(n, l) = 1 if l = 0
Cscalar(n, l) = 1 + Cmult(n)+Cscalar(n, l − 1) if l > 0

Cmult(n) = 1 if n = 0
Cmult(n) = 1 + Cmult(n− 1) if n > 0

After solving these equations and composing the closed-form solutions, we obtain
the following closed-form functions:

Cscalar(n, l) = (n+ 2)× l + 1 if n ≥ 0 ∧ l ≥ 0
Cmult(n) = n+ 1 if n ≥ 0

For the parallel execution (par), we obtain the following cost relations:

Cscalar(n, l) = 1 if l = 0
Cscalar(n, l) = 1 +max(Cmult(n), Cscalar(n, l − 1)) if l > 0

Cmult(n) = 1 if n = 0
Cmult(n) = 1 + Cmult(n− 1) if n > 0

Similarly, we obtain the following closed-form functions:

Cscalar(n, l) = n+ l + 1 if n ≥ 0 ∧ l ≥ 0
Cmult(n) = n+ 1 if n ≥ 0

By comparing the complexity order (in terms of resolution steps) of the sequential
execution of scalar/3, O(n · l), with the complexity order of its parallel execution
(assuming an ideal parallel model with an unbounded number of processors) O(n+l),
we can get a hint about the maximum achievable parallelization of the program.

Another useful piece of information about scalar/3 that we want to infer is
the maximum number of processes that may run in parallel, considering all possible
executions. For this purpose, we define a resource named sthreads. The operation
count process/3 aggregates the cost of both arguments of the meta-predicate &/2

for the sthreads resource, by adding the maximum number of processes for each
argument plus one additional process, corresponding to the one created by the call
to &/2. The sequential cost aggregator is now the maximum operator, in order
to keep track of the maximum number of processes created along the different
instructions of the program executed sequentially. Note that if the instruction
p executes at most Prp processes in parallel, and the instruction q executes at
most Prq processes, then the program p, q will execute at most max(Prp, P rq)
processes in parallel, because all the parallel processes created by p will finish before
the execution of q. Note also that for the sequential execution of both p and q,
the cost in terms of the sthreads resource is always zero, because no additional
process is created. The analysis sets up the following recurrences for the sthreads

resource and the predicates scalar/3 and mult/3 of our example:

48

Chapter 4. Analysis of Parallel Programs

Cscalar(n, l) = 0 if l = 0
Cscalar(n, l) = Cmult(n) + Cscalar(n, l − 1) + 1 if l > 0

Cmult(n) = 0 if n ≥ 0

For which we obtain the following closed-form functions:

Cscalar(n, l) = l if n ≥ 0 ∧ l ≥ 0
Cmult(n) = 0 if n ≥ 0

As we can see, this predicate will execute, in the worst case, as many processes as
there are elements in the input list.

4.3 Our Extended Resource Analysis Frame-

work for Parallel Programs

In this section, we describe how we extend the resource analysis framework detailed
in Chapter 2, in order to handle logic programs with Independent And-Parallelism,
using the binary parallel &/2 operator. First, we introduce a new general pa-
rameter that indicates the execution model the analysis has to consider. For
our current prototype, we have defined two different execution models: standard
sequential execution, represented by seq, and an abstract parallel execution model,
represented by par(n), where n ∈ N ∪{∞}. The abstract execution model par(∞)
is similar to the work and depth model, presented in [15] and used extensively
in previous work such as [51]. Basically, this model is based on considering an
unbounded number of available processors to infer bounds on the depth of the
computation tree. The work measure is the amount of work to be performed
considering a sequential execution. These two measures together give an idea on
the impact of the parallelization of a particular program. The abstract execution
model par(n), where n ∈ N , assumes a finite number n of processors.

In order to obtain the cost of a predicate, equation (2.1) remains almost
identical, the only difference being the addition of the new parameter to indicate
the execution model.

Now we address how to set up the cost for clauses. In this case, equation (2.2)
is extended with the execution model ex, and also the default sequential cost
aggregation,

∑
, is replaced by a parametric associative operator

⊕
, that depends

on the resource being defined, the approximation, and the execution model. For
ex ≡ par(∞) or ex ≡ seq, the following equation is set up:

Ccl[ap,r,ex](C, x̄) = ϕ[ap,r](H) +

lim(ap,ex,C)⊕
j=1

(solsj(x̄)× Clit[ap,r,ex](Lj, ψj(x̄))) (4.1)

49

CHAPTER 4. ANALYSIS OF PARALLEL PROGRAMS

Note that the cost aggregation operators must depend on the resource r
(besides the other parameters). For example, if r is execution time, then the cost
of executing two tasks in parallel must be aggregated by taking the maximum of
the execution times of the two tasks. In contrast, if r is energy consumption, then
the aggregation is the addition of the energy of the two tasks.

Finally, we extend how the cost of a literal Li, expressed as Clit[ap,r,ex](Li, ψi(x̄)),
is set up. The previous definition is extended considering the new case where the
literal is a call to the meta-predicate &/2. In this case, we introduce a new parallel
aggregation associative operator, denoted by

⊗
. Concretely, if Li = B1&B2,

where B1 and B2 are two sequences of goals, then:

Clit[ap,r,ex](B1&B2, x̄) = Cbody[ap,r,ex](B1, x̄)
⊗

Cbody[ap,r,ex](B2, x̄) (4.2)

Cbody[ap,r,ex](B, x̄) =

lim(ap,ex,B)⊕
j=1

(solsj(x̄)× Clit[ap,r,ex](L
B
j , ψj(x̄))) (4.3)

where B = LB1 , . . . , L
B
m.

Consider now the execution model ex ≡ par(n), where n ∈ N (i.e., assuming
a finite number n of processors), and a recursive parallel predicate p that creates
a parallel task qi in each recursion i. Assume that we are interested in obtaining
an upper bound on the cost of a call to p, for an input of size x̄. We first infer
the number k of parallel tasks created by p as a function of x̄. This can be easily
done by using our cost analysis framework and providing the suitable assertions
for inferring a resource named “ptasks.” Intuitively, the “counter” associated
to such resource must be incremented by the (symbolic) execution of the &/2

parallel operator. More formally, k = Cpred[ub,ptasks](p, x̄). To this point, an upper
bound m on the number of tasks executed by any of the n processors is given by
m = d k

n
e. Then, an upper bound on the cost (in terms of resolution steps, i.e.,

r = steps) of a call to p, for an input of size x̄ can be given by:

Cpred[ub,r,par(n)](p, x̄) = Cu + Spawnu (4.4)

where Cu can be computed in two possible ways: Cu =
∑m

i=1 C
u
i ; or Cu = m Cu

1 ,
where Cu

i denotes an upper bound on the cost of parallel task qi, and Cu
1 , . . . , C

u
k

are ordered in descending order of cost. Each Cu
i can be considered as the sum

of two components: Cu
i = Schedui + T ui , where Schedui denotes the cost from the

point in which the parallel subtask qi is created until its execution is started by
a processor (possibly the same processor that created the subtask), i.e. the cost
of task preparation, scheduling, communication overheads, etc. T ui denotes the
cost of the execution of qi disregarding all the overheads mentioned before, i.e.,
T ui = Cpred[ub,r,seq](q, ψq(x̄)), where ψq(x̄) is a tuple with the sizes of all the input
arguments to predicate q in the body of p. Spawnu denotes an upper bound on

50

Chapter 4. Analysis of Parallel Programs

Table 4.1: Description of the benchmarks.

map add1/2 Parallel increment by one of each element
of a list.

fib/2 Parallel computation of the nth Fibonacci
number.

add mat/3, mmatrix/3 Parallel matrix multiplication and addition.
blur/2 Generic parallel image filter.

intersect/3, union/3, diff/3 Set operations.
dyade/3, dyade map/3 Dyadic product of two vectors

(and on a set of vectors).
append all/3 Appends a prefix to each list of a list of lists.

the cost of creating the k parallel tasks qi. It will be dependent on the particular
system in which p is going to be executed. It can be a constant, or a function
of several parameters, (such as input data size, number of input arguments, or
number of tasks) and can be experimentally determined.

4.4 Implementation and Experimental Results

We have implemented a prototype of our approach, leveraging the existing resource
usage analysis framework of CiaoPP. The implementation basically consists of the
parameterization of the operators used for sequential and parallel cost aggregation,
i.e., for the aggregation of the costs corresponding to the arguments of ,/2 and
&/2, respectively. This allows the user to define resources in a general way, taking
into account the underlying execution model.

We selected a set of benchmarks that exhibit different common parallel pat-
terns, briefly described in Table 4.1, together with the definition of a set of
resources that help understand the overall behavior of the parallelization. Ta-
ble 4.2 shows some results of the experiments that we have performed with our
prototype implementation. Column Bench shows the main predicates analyzed
for each benchmark. Set operations (intersect, union and diff), as well as the
programs append all, dyade and add mat, are Prolog versions of the benchmarks
analyzed in [51], which is the closest related work we are aware of. Column Res
indicates the name of each of the resources inferred for each benchmark: sequen-
tial resolution steps (SCost), parallel resolution steps assuming an unbounded
number of processors (PCost), and maximum number of processes executing in
parallel (SThreads). The latter gives an indication of the maximum parallelism
that can potentially be exploited. We are considering a resolution step as the
overhead of spawning a new thread. Column Bound Inferred shows the upper

51

CHAPTER 4. ANALYSIS OF PARALLEL PROGRAMS

Table 4.2: Resource usage inferred for Independent And-Parallel Programs.

Bench Res Bound Inferred Acc.BigO TA(ms)

map add1(x)

SCost 2 · lx + 1 O(lx)

31.17
PCost 2 · lx + 1 O(lx)

SThreads lx O(lx)

fib(x)

SCost F (ix) + L(ix)− 1 O(2ix)

127.81
PCost 2 · ix + 1 O(ix)

SThreads F (ix) + L(ix)− 1 O(2ix)

mmatrix(m1, n1,m2, n2)

SCost in2 · im2 · im1 + 2 · im2 · im1 + 2 · im1 + 1 O(in2 · im2 · im1)

194.45
PCost in2 + 2 · im2 + 2 · im1 + 1 O(in1 + im1 + im2)

SThreads im2 · im1 + im1 O(im2 · im1)

blur(m,n)

SCost 2 · im · in + 2 · in + 1 O(im · in)

126.63
PCost 2 · im + 2 · in + 1 O(im + in)

SThreads in O(in)

add mat(m,n)

SCost im · in + 2 · in + 1 O(im · in)

128.93
PCost im + 2 · in + 1 O(im + in)

SThreads in O(in)

intersect(a, b)

SCost la · lb + 3 · la + 3 O(la · lb)

233.14
PCost lb + 3 · la + 3 O(la + lb)

SThreads la O(la)

union(a, b)

SCost la · lb + 3 · la + 3 O(la · lb)

218.31
PCost 2 · lb + 3 · la + 3 O(la + lb)

SThreads la O(la)

diff(a, b)

SCost la · lb + 3 · la + 3 O(la · lb)

232.55
PCost lb + 3 · la + 3 O(la + lb)

SThreads la O(la)

dyade(a, b)

SCost la · lb + 2 · la + 1 O(la · lb)

82.71
PCost lb + 2 · la + 1 O(la + lb)

SThreads la O(la)

dyade map(l,m)

SCost imax(m) · lm · ll + 2 · lm · ll + 2 · lm + 1 O(imax(m) · lm · ll)

177.91
PCost imax(m) + 2 · lm + 2 · ll + 1 O(imax(m) + lm + ll)

SThreads ll · lm + ll O(lm · ll)

append all(l,m)

SCost ll · lm + 2 · lm + 1 O(ll · lm)

81.97
PCost ll + 2 · lm + 1 O(ll + lm)

SThreads lm O(lm)

F (n), L(n) represent the nth. element of the Fibonacci sequence and the nth. Lucas number, respectively.
ln, in represent the size of n in terms of the metrics length and int, respectively.

bounds obtained for each of the resources indicated in Column Res. While in the
experiments both upper and lower bounds were inferred, for the sake of brevity,
we only show upper-bound functions. Column Acc.BigO shows the complexity
order, in big O notation, corresponding to each resource. For all the benchmarks
in Table 4.2 we obtain the exact complexity orders. We also obtain the same
complexity order as in [51] for the Prolog versions of the benchmarks taken from
that work. Finally, Column TA(ms) shows the analysis times in milliseconds.
The results show that most of the benchmarks have different asymptotic behavior
in the sequential and parallel execution models. In particular, for fib(x), the
analysis infers an exponential upper bound for sequential execution steps, and
a linear upper bound for parallel execution steps. As mentioned before, this is
an upper bound for an ideal case, assuming an unbounded number of processors.
Nevertheless, such upper-bound information is useful for understanding how the
cost behavior evolves in architectures with different levels of parallelism. In

52

Chapter 4. Analysis of Parallel Programs

Table 4.3: Resource usage inferred for a bounded number of processors.

Bench Bound Inferred Acc.BigO TA(ms)

map add1(x) 2 · d lx
p
e+ 1 O(d lx

p
e) 54.36

blur(m,n) 2 · d in
p
e · im + 2 · d in

p
e+ 1 O(d in

p
e · im) 205.97

add mat(m,n) d in
p
e · im + 2 · d in

p
e+ 1 O(d in

p
e · im) 185.89

intersect(a, b) d la
p
e · lb + 2 · d la

p
e+ la + 2 O(d la

p
e · lb) 330.47

union(a, b) d la
p
e · lb + 2 · d la

p
e+ la + lb + 2 O(d la

p
e · lb) 311.3

diff(a, b) d la
p
e · lb + 2 · d la

p
e+ la + 2 O(d la

p
e · lb) 339.01

dyade(a, b) d la
p
e · lb + 2 · d la

p
e+ 1 O(d la

p
e · lb) 120.93

append all(l,m) d lm
p
e · ll + 2 · d lm

p
e+ 1 O(d lm

p
e · ll) 117.8

p is defined as the minimum between the number of processors and SThreads.

addition, this dual cost measure can be combined together with a bound on the
number of processors in order to obtain a general asymptotic upper bound (see
for example Brent’s Theorem [43], which is also mentioned in [51]). The program
map add1(l) exhibits a different behavior: both sequential and parallel upper
bounds are linear. This happens because we are considering resolution steps, i.e.,
we are counting each head unification produced from an initial call map add1(l).
Even under the parallel execution model, we have a chain of head unifications
whose length depends linearly on the length of the input list. It follows from the
results of this particular case that this simple, non-associative parallelization will
not be useful for improving the number of resolution steps performed in parallel.

Another useful information inferred in our experiments is the maximum number
of processes that can be executed in parallel, represented by the resource named
SThreads. We can see that for most of our examples the analysis obtains a
linear upper bound for this resource, in terms of the size of some of the inputs.
For example, the execution of intersect(a,b) (parallel set intersection) will
create at most la processes, where la represents the length of the list a. For other
examples, the analysis shows a quadratic upper bound (as in mmatrix), or even
exponential bounds (as in fib). The information about upper bounds on the
maximum level of parallelism required by a program is useful for understanding
its scalability in different parallel architectures, or for optimizing the number of
processors that a particular call will use, depending on the size of the input data.

Finally, the results of our experiments considering a bounded number of
processors are shown in Table 4.3.

4.5 Related Work

Our approach is an extension of an existing cost analysis framework for sequential
logic programs [27, 41, 69], which extends the classical cost analysis techniques
based on setting up and solving recurrence relations, pioneered by [117], with
solutions for recurrences involving maximization. The framework also handles
characteristics such as backtracking, non-determinism, and failure. Furthermore,

53

CHAPTER 4. ANALYSIS OF PARALLEL PROGRAMS

it is able to infer both upper and lower bounds as general expressions, not limited
to linear or polynomial expressions. These features are inherited by our approach,
and are absent from other approaches to parallel cost analysis in the literature.

In the context of functional programming, the work presented in [51] describes
an automatic analysis for the inference of bounds on the worst-case evaluation
cost of first order functional programs. Similar to what we presented in the thesis,
this analysis derives bounds under a cost model based on two measures: work and
depth, over-approximating the sequential and parallel evaluation cost of functional
programs, respectively, considering an unlimited number of processors. The
analysis is based on type judgments annotated with a cost metric, which generate
a set of inequalities which are then solved by linear programming techniques.
However, their analysis is only able to infer multivariate resource polynomial
bounds, while non-polynomial bounds are left as future work. The cost model
based on work and depth metrics was introduced by [15] as a framework to formally
analyze parallel programs.

In [49] the authors propose an automatic analysis also based on work and
depth model, for a simple imperative language with explicit parallel loops.

There are other approaches to cost analysis of parallel and distributed systems,
based on different models of computation than the independent and-parallel
model in our work. In [9] the authors present a static analysis which is able
to infer upper bounds on the maximum number of active (i.e., not finished nor
suspended) processes running in parallel, and the total number of processes created
for imperative async-finish parallel programs. The approach described in [4] uses
recurrence (cost) relations to derive upper bounds on the cost of concurrent object-
oriented programs, with shared-memory communication and future variables.
They address concurrent execution for loops with semi-controlled scheduling, i.e.,
with no arbitrary interleavings. In [10] the authors address the cost of parallel
execution of object-oriented distributed programs. The approach is to identify
the synchronization points in the program, use serial cost analysis of the blocks
between these points, and then, exploiting the techniques mentioned, construct a
graph structure to capture the possible parallel execution of the program. The
path of maximal cost is then computed. The allocation of tasks to processors
(called “locations”) is part of the program in these works, and thus, although
independent and-parallel programs could be modeled in this computation style, it
is not directly comparable to our more abstract model of parallelism.

Solving, or safely bounding recurrence relations with max and min functions
has been addressed mainly for recurrences derived from divide-and-conquer algo-
rithms [12, 53, 116]. In [6] the authors present solutions for Cost Relation Systems
by obtaining upper bounds for both the number of nodes and the cost added in
each node in the derived evaluation tree. These bounds are then combined in
order to obtain a closed-form upper-bound expression. This closed form possibly
contains maximization operations to express upper bounds for a set of subexpres-
sions. However, each cost relation is defined as a summatory of costs, while in

54

Chapter 4. Analysis of Parallel Programs

our approach, in addition to summations, we also consider other operations for
aggregating the costs, including max operators. The presence of these operators
often produces recurrence relations where the recursive calls are under the scope
of such a max operator, for which we present a method to obtain a closed-form
bound. This class of recurrences are not handled by most of the current computer
algebra systems, as the authors in [6] mention.

4.6 Conclusions

We have presented a novel, general, and flexible analysis framework that can be
instantiated for estimating the resource usage of parallel logic programs, for a wide
range of resources, platforms, and execution models. To the best of our knowledge,
this is the first approach to the cost analysis of parallel logic programs. Such
estimations include both lower and upper bounds, given as functions on input data
sizes. In addition, our analysis also infers other information which is useful for
improving the exploitation and assessing the potential and actual parallelism of a
program. Finally, we have developed a prototype implementation of our general
framework, instantiated it for the analysis of logic programs with Independent And-
Parallelism, and performed an experimental evaluation, obtaining encouraging
results w.r.t. accuracy and efficiency.

55

5
Recurrence Solver Extensions

5.1 Introduction and Motivation

As already said, the traditional approach to static resource usage analysis is
based on setting up recurrence relations representing the size and computational
cost of procedures, depending on the input data sizes. Solving such relations
means to obtain closed-form expressions, which can be exact representations or
approximations of the initial recurrences. Automatically finding closed-form upper
and lower bounds for recurrence relations is an uncomputable problem. For some
special classes of recurrences, exact solutions are known, for example for linear
recurrences with one variable. For some other classes, it is possible to apply
transformations to fit into a class of recurrences with known solutions. Such
transformation can be useful even if they obtain an appropriate approximation
rather than an equivalent expression.

A common approach to automatually solving the size and cost relations
that arise during program analysis consists on expressing them as mathematical
recurrences and using a Computer Algebra System (CAS) or a specialized solver to
find a closed-form. However, this approach poses several difficulties. For example,
some recurrences may not have the form required by such systems because an
input data size variable does not decreases, but increases instead. Nevertheless,
the decreasing variable can be implicit in the program, i.e., it is actually a function
of the input data sizes (a ranking function), which can be inferred by applying
other techniques traditionally used in termination analysis [91]. However, such
techniques are usually restricted to linear arithmetics. Moreover, some recurrence
relations contain complex expressions or recursive structures that most of the
well-known CASs cannot solve, making necessary to develop ad-hoc techniques to
handle such cases.
Our first step towards addressing these challenges is the design of a solver that
follows a modular architecture (see Figure 5.1), and is able to integrate different
recurrence solvers, either general or specialized for certain classes of recurrences,

57

CHAPTER 5. RECURRENCE SOLVER EXTENSIONS

following different strategies. Such solver, which is a fundamental component of
our resource analysis framework, in charge of solving or bounding recurrences,
has been implemented and integrated into the CiaoPP system [48]. The main
modules of the architecture in Figure 5.1 are:

• Solver Strategies : This module defines the common interface to the different
strategies to solve recurrence relations.

• Strati: These are the different strategies to solve or over-approximate
recurrences, using the services of the back-end solvers and the classifier in
order to identify different characteristics of the recurrences.

• Rec Classifier : It associates a label to each input recurrence relation that
identifies the class of recurrence.

• Solver Utils : Defines the common interface to the different back-end solvers.

• BSi: These are the modules that implement the interface defined by
Solver Utils, connecting directly with the particular back-end solvers,
such as Mathematica®, CiaoPP’s built-in solver, etc.

Our second step, which we describe in detail in this chapter, consists on
extending our modular solver by developing novel methods for solving arbitrary,
constrained recurrence relations, and implementing and integrating them into the
modular architecture depicted in Figure 5.1 as specialized solvers (BSi).

The rest of this chapter is organized as follows. In Section 5.2 we present our
specialized solver based on machine learning that performs linear regression. In
Section 5.3 we propose a method for solving a subclass of recurrences that include
a maximization operator. Finally, in Section 5.4 we give our conclusions.

5.2 Solving Recurrence Relations using Linear

Regression

As already said, we have designed and implemented a specialized backend solver
that follows a guess and check approach, by using well-known machine learning
techniques for the guess stage, and a combination of an SMT-solver and a CAS
for the check phase (see Figure 5.2). We illustrate with a set of examples how
this approach is useful for improving the accuracy and applicability of static cost
analysis.

5.2.1 Overview of the Approach

We now give an overview of our approach, illustrating it with an example. We
first show how the CiaoPP system sets up recurrence relations representing the

58

Chapter 5. Recurrence Solver Extensions

Figure 5.1: Architecture of the modular solver framework.

Figure 5.2: Control flow diagram of our novel solver based on machine learning.

sizes of output arguments of procedures, as well as the cost of such procedures.
Then, we show how our novel approach is used to solve such recurrence relations.

Example 4. Consider predicate p/2 in Figure 5.3, for calls where the first
argument is bound to a non-negative integer and the second one is a free variable.
Upon success of these calls, the second argument is bound to an non-negative
integer too, which is the result of the computation. Such calling mode, where the

59

CHAPTER 5. RECURRENCE SOLVER EXTENSIONS

first argument is input and the second one is output, is automatically inferred by
CiaoPP (see [48] and its references).

� �
1 :- entry p/2: nnegint*var.

2 p(X,0):-

3 X==0.

4 p(X,Y):-

5 X>0,

6 X1 is X - 1,

7 p(X1 ,Y1),

8 p(Y1 ,Y2),

9 Y is Y2 + 1.� �
Figure 5.3: A program with a nested recursion.

The CiaoPP system first infers size relations for the different arguments of
predicates, using a rich set of size metrics (see [84, 102] for details). Assume that
the size metric used in this example for a numeric argument X is the actual value
of it (denoted int(X)). The system will try to infer a function Sp(x) that gives
the size of the output argument of p/2 (the second one), as a function of the
size (x) of the input argument (the first one). For this purpose, the following size
relations for Sp(x) are automatically set up:

Sp(x) = 0 if x = 0
Sp(x) = Sp(Sp(x− 1)) + 1 if x > 0

(5.1)

which, for this example, represent a nested recurrence. Once the size relations
have been inferred, CiaoPP uses them to infer the cost of a call to p/2. For
simplicity, assume that for this example, such cost is given in terms of the number
of resolution steps, as a function of the size of the input argument, but recall that
CiaoPP’s cost analysis can infer a wide range of resources besides resolution steps,
since it is parametric with respect to resources, which can be defined by the user
by means of a rich assertion language. Also for simplicity, we assume that all
builtin predicates, such as is/2 and the comparison operators have zero cost (in
practice there is a “trust”assertion for each builtin that specifies its cost as if it
had been inferred by the analysis).

In order to infer the cost function Cp(x) for p/2, CiaoPP sets up the following
cost relations:

Cp(x) = 1 if x = 0
Cp(x) = Cp(x− 1) + Cp(Sp(x− 1)) + 1 if x > 0

(5.2)

For some applications, it is enough working with both size and cost functions
expressed as recurrences, as they can be evaluated for a given input data size
of interest, and the result (a numeric constant) can be used in the appropriate

60

Chapter 5. Recurrence Solver Extensions

way. However, for other applications we are interested in finding closed-forms for
such functions, i.e., solving such recurrences (or at least finding approximated
solutions). Assume that we have a recurrence relation for a function f(x̄) (either
a size of cost function). Ideally, we want to find a closed-form function f̂(x̄) such
that Dom(f̂) = Dom(f), and ∀x̄ ∈ Dom(f)(f̂(x̄) = f(x̄)). If this is not possible
f̂(x̄) can be an approximation of f(x̄).

In our example, the cost of the second recursive call to p/2 depends on the
size of the output argument of the first recursive call to p/2, which is given by
another function, Sp(x). Thus, in order to find an equivalent closed-form for
Cp(x), it is necessary to find a closed-form for Sp(x) first. However, most of the
state-of-the-art recurrence solvers do not handle nested recurrences, as the ones
that arise in this example. As a result, CiaoPP fails to find closed-form functions
for the recurrence relations above. In order to fill this gap, we propose a novel,
automatic approach that uses machine-learning regression techniques to guess a
candidate closed-form function, and a combination of an SMT-solver and a CAS
to check if such function is actually a solution of the recurrence relation. We now
give an overview of both stages.

The linear regression stage As we essentially use a linear regression mech-
anism, the model we obtain (which constitutes a candidate solution) is a linear
combination of a set of terms, i.e., a function f̂(x̄) of the form:

f̂(x̄) = a0 + a1 t1(x̄) + a2 t2(x̄) + · · ·+ an tn(x̄)

where the ai’s are the coefficients that are estimated by the regression method, and
the ti’s are arbitrary functions on x̄ from a set T of candidate terms that we call
base functions. Such a set can be user-provided, or can be automatically inferred
by using different heuristics. For example, we can start with a set containing
all the base functions that are representative of the common complexity orders.
Alternativelly, we can perform an automatic analysis of the recurrence we are
solving, to extract some features that allow selecting the terms that most likely
are part of the solution. For example, if the recurrence has a nested, double
recursion, then we can select a quadratic term. Assume that for the regression in
this example we use the former approach, providing the following set T of base
functions:

T = {λx.x, λx.x2, λx.x3, λx.dlog2(x)e, λx.2x, λx.x · dlog2(x)e}

where each base function is represented as a lambda expression. Then, the linear
regression is performed as follows:

1. Generate a training set S. First, a set Xtrain = {x̄1, . . . , x̄k} of input values
to the recurrence function is randomly generated. Then, starting with an
initial S = ∅, for each input value x̄i ∈ Xtrain, a training case si is generated

61

CHAPTER 5. RECURRENCE SOLVER EXTENSIONS

and added to S. For any input value x̄ ∈ Xtrain the corresponding training
case s is a tuple of the form:

s = 〈b, c1, . . . , cn〉

where ci = [[ti]]x̄ for 1 ≤ i ≤ n, and [[ti]]x̄ represents the result (a constant
number) of evaluating the base function ti ∈ T for input value x̄, where T
is a set of n base functions as already explained. The (dependent) value
b (also a constant number) is the result of evaluating the recurrence f(x̄)
that we want to approximate, in our example, Sp(x), defined in equation 5.1.
Following our example, where the tuples of input data in Xtrain have one
element only, and assuming that there is a x̄ ∈ Xtrain such that x̄ = 〈5〉, its
corresponding training case s will be:

s = 〈Sp(5), [[x]]5, [[x
2]]5, [[x

3]]5, [[dlog2(x)e]]5, . . .〉
= 〈5, 5, 25, 125, 3, . . .〉

2. Perform the regression in two steps using the training set S created above.
In the first step, we use linear regression with Lasso regularization. Such
regression method adds a penalization to those inputs that apparently have
a small correlation with the dependent value, assigning 0 to their coefficients.
This way, most of the candidate terms in T will be discarded, and only
those that best approximate our target function will be kept. The level
of penalization is determined by using a real-valued parameter λ. Instead
of using a single value, we use cross-validation to find the value of λ that
achieves the best fit on S. The result of this step is a (column) vector β̄ of
coefficients1, and an independent coefficient β0. Then, we randomly generate
a test set Xtest of input values to the recurrence function (in a similar way
as Xtrain was generated in the previous stage, but with different values)
to obtain a measure R2 of the accuracy of the estimation. Additionally,
we discard those terms whose corresponding coefficient is less than a given
threshold ε. The resulting closed-form expression that estimates the target
function is

f̂(x̄) = rmε(β̄
T) · E(T, x̄) + β0

where E(T, x̄) is a vector of the terms in T with the arguments bound to x̄,
and rmε takes a vector of coefficients and returns another vector where the
coefficients less than ε are rounded to zero. Both the Lasso regularization and
the pruning function discard many terms from T in the final cost function.

Finally, our method performs again a standard linear regression (without Lasso
regularization) using S, but projecting out those inputs corresponding to the

1We round these coefficients to two decimals, which causes that many very small coefficients
become 0 as well.

62

Chapter 5. Recurrence Solver Extensions

terms discarded previously by Lasso and the ε-pruning. In our example, with
ε = 0.001, we obtain:

Ŝp(x) = 1.0 x (R2 = 1)

As the measure of the accuracy of the estimation, R2, is 1 in our example, the
estimation obtained predicts exactly the values for the test set, and thus, it is a
candidate solution for Sp. If the final R2 is less than 1, it means that we have not
obtained a candidate solution, but an approximation.

The verification stage Once a function that is a candidate solution for the
recurrence has been obtained, the second step of our method tries to verify whether
such a candidate is actually a solution. To do so, the recurrence is encoded as a first
order logic formula where the references to the target function are replaced by the
candidate solution whenever possible. Afterwards, we use an SMT-solver to check
whether the negation of such formula is satisfiable, in which case, we can conclude
that the candidate is not a solution for the recurrence. Otherwise, if such formula
is unsatisfiable, then the candidate function is a correct solution. Sometimes, it is
necessary to consider a precondition for the domain of the recurrence, which is
also included in the encoding.

To illustrate this processs, Expression (5.3) below shows the recurrence relation
we target to solve, followed by the candidate solution obtained previously using
linear regression.

Sp(x) = 0 if x = 0
Sp(x) = Sp(Sp(x− 1)) + 1 if x > 0
Ŝp(x) = x if x ≥ 0

(5.3)

Now, Expression (5.4) below shows the encoding of the recurrence as a first order
logic formula.

∀x ·
(

(x = 0 =⇒ Sp(x) = 0) ∧ (x > 0 =⇒ Sp(x) = Sp(Sp(x− 1)) + 1)
)

(5.4)

Finally, Expression (5.5) below shows the negation of such formula, as well as the
references to the function name substituted by the definition of the candidate solu-
tion. We underline both the subexpressions to be replaced, and the subexpressions
resulting from the substitutions.

∃x · ¬(((x = 0 =⇒ x = 0) ∧ (x > 0 =⇒ x = x− 1 + 1))) (5.5)

It is easy to see that Formula (5.5) is unsatisfiable. Therefore, Ŝp(x) = x is a
exact solution for Sp(x). Finally, we can use this result to set up and solve the
recurrence for Cp(x), obtaining Ĉp(x) = 2x+1 − 1.

For some cases where the candidate solution contains transcendental functions,
our implementation of the method uses a Computer Algebra System to perform

63

CHAPTER 5. RECURRENCE SOLVER EXTENSIONS

simplifications and transformations, in order to obtain a formula supported by
the SMT-solver. We find this combination of CAS and SMT-solver particularly
useful, since it allows solving more problems than only using one of these systems
in isolation.

5.2.2 Preliminaries

We use the last letters from the alphabet to denote variables, and the first letters
from the alphabet to denote constants and coefficients. We use f, g to represent
functions, and e, t to represent arbitrary expressions. We use ϕ to represent
arbitrary boolean constraints over a set of variables. Sometimes, we also use β to
represent coefficients obtained with linear regression. In all cases, the symbols
can be subscribed. We use x̄ to denote a finite sequence 〈x1, x2, . . . , xn〉, for some
n > 0. Given a sequence S and an element x, 〈x|S〉 is a new sequence with first
element x and tail S.

Given a piecewise function:

f(x̄) =

e1(x̄) if ϕ1(x̄)

e2(x̄) if ϕ2(x̄)

...
...

ek(x̄) if ϕk(x̄)

(5.6)

where f ∈ D → R+, with D = {x̄|x̄ ∈ Zm ∧ ϕpre(x̄)} for some boolean constraint
ϕpre, and ei, ϕi are arbitrary expressions and constraints over x̄ respectively. We
say that ϕpre is the precondition of f , and that f is a constrained recurrence
relation if and only if:

• ∃i ∈ [1, k] such that ei contains a call to f .

• ∃i ∈ [1, k] such that ei does not contain any call to f (i.e., it is in closed-
form).

• ϕpre |=
∨

1≤i≤k
ϕi.

Given a concrete input d̄ ∈ D, we evaluate f(d̄) deterministically, assuming
the evaluation of f as a nested if-then-else control structure as follows:

if ϕ1(d̄) then
return e1(d̄)

else
if ϕ2(d̄) then

return e2(d̄)
else
· · ·

end if
end if

64

Chapter 5. Recurrence Solver Extensions

More formally, let def(f) denote the definition of a (piecewise) constrained re-
currence relation f represented as the sequence 〈(e1(x̄), ϕ1(x̄)), . . . , (ek(x̄), ϕk(x̄))〉,
where each element of the sequence is a pair representing a case. The order of
such sequence determines the evaluation strategy. Then, the evaluation of f for a
concrete value d̄, denoted EvalFun(f(d̄)), is defined as follows:

EvalFun(f(d̄)) = EvalBody(def(f), d̄)

EvalBody(〈(e, ϕ)|Ps〉, d̄) =

{
[[e]]d̄ if ϕ(d̄)

EvalBody(Ps, d̄) if ¬ϕ(d̄)

Our goal is to find a function f̂ ∈ D → R+ such that for all d̄ ∈ D:

• If EvalFun(f(d̄)) terminates, then EvalFun(f(d̄)) = [[f̂]]d̄, and

• f̂ does not contain any recursive call in its definition.

In particular, we look for a definition of the form:

f̂(x̄) = a0 + a1 t1(x̄) + a2 t2(x̄) + · · ·+ an tn(x̄) (5.7)

where ai ∈ R, and ti are expressions over ȳ, not including recursive references to
f̂ . If the above conditions are met, we say that f̂ is a closed-form for f .

To illustrate the need of introducing an evaluation strategy for the recurrence
that is consistent with the termination of the program, consider the following
Prolog program which does not terminate for a call p(X) where X is bound to an
integer:� �
1 p(X) :- X > 0, X1 is X + 1, p(X1).

2 p(X) :- X == 0.� �
The following cost relations can be set up for it:

Cp(x) = 1 if x = 0
Cp(x) = 1 + Cp(x+ 1) if x > 0

(5.8)

A CAS will give the closed-form Cp(x) = 1− x for such recurrence, however, the
cost analysis should give Cp(x) =∞.

Linear Regression Multiple linear regression (MLR) is a statistical technique
used to approximate the linear relationship between a number of independent
variables and a dependent (output) variable. Given a vector of independent
(input) variables XT = (X1, . . . , Xp), we use MLR to obtain a vector of coefficients

β̂T = (β0, . . . , βp) to predict an output variable Y using the formula

Ŷ = β̂0 +

p∑
i=1

β̂iXi (5.9)

65

CHAPTER 5. RECURRENCE SOLVER EXTENSIONS

A well-known technique for obtaining the coefficient vector is the least squares
method. Basically, given a set of observations {yi, xi1, . . . , xip}ni=1, MLR selects
the vector β that minimizes the residual sum of squares

β = argmin
β

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβi

)2
 (5.10)

Sometimes some of the variables are not relevant enough to explain the output,
and as a result MLR obtains very small coefficients for them. In such cases, it is
preferable to take those variables out of the model, by making their coefficients
0. Lasso is a regression analysis method that uses a penalty to select the most
relevant variables. In Lasso, the formula to minimize is

β = argmin
β

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβi

)2

+ λ

p∑
i=1

|βi|

 (5.11)

where λ is a parameter of the method that determines the level of penalization:
the greater the lambda, the greater the number of coefficients that are equal to 0.

5.2.3 Description of the Approach

In this section we describe our approach for generating and checking candidate
solutions for recurrences that arise in resource analysis. Algorithms 1 and 2
correspond to the guesser and checker components, respectively, which are shown
in Figure 5.2).

Algorithm 1 receives the recurrence equation for a function F to solve, the set
of candidate terms, and a threshold to decide when to discard irrelevant terms.
The output is a closed-form expression F̂ for F , and a score S that reflects the
accuracy of the approximation, in the range [0, 1]. If S ∼ 1, the approximation
can be considered a candidate solution. Otherwise, F̂ is an approximation. In
line 1 we start by generating a set of random inputs for F . Each input x̄i is a
m-tuple verifying precondition ϕpre, where m is the number of arguments of F .
In line 2 we produce the training set. The independent inputs are generated by
evaluating the candidate terms in T = 〈t1, t2, . . . , tp〉 with each tuple x̄ ∈ I. This
is done by using function E, defined as follows:

E(〈t1, t2, . . . , tp〉, x̄) = 〈t1(x̄), t2(x̄), . . . , tp(x̄)〉

We also evaluate the recurrence equation for input x̄, and add the observed
output F (x̄) as the first element in the vectors of the training set. In line 3
we generate a first linear model by applying function CV LassoRegression to
the generated training set. CV LassoRegression performs a linear regression
with Lasso regularization. As already mentioned, Lasso regularization requires a

66

Chapter 5. Recurrence Solver Extensions

Algorithm 1: Candidate solution generation.

Input :F ∈ D → R+: target recurrence relation.
ϕpre: precondition defining D.
T ⊆ D → R+: candidate terms.
Λ: range of values to automatically choose a penalization λ ∈ R+

for Lasso regularization.
k: indicates performing k−fold cross-validation, k > 2.
ε ∈ R+: threshold for term (ti ∈ T) selection.

Output : F̂ ∈ Exp: a candidate solution (or an approximation) for F .
S ∈ [0, 1]: score, indicates the accuracy of the estimation (R2).

1 I ← {x̄i|x̄i ∈ Zm ∧ ϕpre(x̄i)}Ni=1 ; // N Random inputs for F

2 X ← {〈F (x̄)|E(T, x̄)〉|x̄ ∈ I} ; // Training set

3 (β̄′, β′0)← CV LassoRegression(X ,Λ, k);
4 (T ′,X ′)← RemoveTerms(T,X , β̄′, β′0, ε);
5 (β̄, β0, S)← LinearRegression(X ′);
6 F̂ ← λx̄ · β̄T × E(T ′, x̄) + β0;

7 return (F̂ , S);

parameter λ that determines the level of penalization for the coefficients. Instead
of using a single value for λ, CV LassoRegression uses a range of possible values,
applying cross-validation on top of the linear regression to automatically select the
best value for that parameter, from the given range. The result of this function
is the vector of coefficients β̄′, together with the intercept β′0. These coefficients
are used in line 4 to decide which candidate terms are discarded before the last
regression step. Note that RemoveTerms removes the candidate terms from T
together with their corresponding input values from the training set X , returning
the new set of candidate terms T ′ and its corresponding training set X ′. In
line 5, standard linear regression (without regularization nor cross-validation) is
applied, obtaining the final coefficients β̄ and β0. Additionally, from this step
we also obtain the score of the resulting model. In line 6 we set up the resulting
closed-form expression, given as a function on the variables in x̄. Note that we use
the function E to bind the variables in the candidate terms to the arguments of the
closed-form expression. Finally, the closed-form expression and its corresponding
score are returned as the result of the algorithm.

Algorithm 2 mainly relies on an SMT solver and a Computer Algebra System.
Concretely, given the constrained recurrence relation F ∈ D → R+ defined as

F (x̄) =

e1(x̄) if ϕ1(x̄)

e2(x̄) if ϕ2(x̄)

...
...

ek(x̄) if ϕk(x̄)

67

CHAPTER 5. RECURRENCE SOLVER EXTENSIONS

our algorithm constructs the logic formula:

t
k∧
i=1

((
i−1∧
j=1

¬ϕj(x̄)

)
∧ ϕi(x̄) ∧ ϕpre(x̄) =⇒ Eqi

)|

smt

(5.12)

where Eqi is the result of replacing in F (x̄) = ei(x̄) each occurrence of F , if
possible, by the definition of the candidate solution F̂ (by using replaceCalls in
line 4), and performing a simplification by the CAS (by using simplifyCAS in
line 6). A goal of such simplification is to obtain (sub)expressions supported by
the SMT-solver. The function replaceCalls(expr, F (x̄′), F̂ , ϕpre, ϕ) replaces every

subexpression in expr of the form F (x̄′) by F̂ (x̄′), if ϕpre(x̄)∧ϕ =⇒ ϕpre(x̄
′). The

operation JeKsmt is the translation of any expression e to a SMT-LIB expression.
Although all variables appearing in 5.12 are declared as integers, we omit these
details in Algorithm 2 and in Formula 5.12 for the sake of brevity. Note that this
encoding is consistent with the evaluation (EvalFun) described in Section 5.2.2.
Finally, the algorithm asks the SMT solver for models of the negated formula
(line 17). If no model exists, then it returns true, concluding that F̂ is an
exact solution to the recurrence, i.e., F̂ (x̄) = F (x̄) for any input x̄ ∈ D such
that EvalFun(F (x̄)) terminates. Otherwise, it returns false. Note that, if it
is not possible to replace all occurrences of F by F̂ , or if after performing the
simplification by simplifyCAS there are subexpressions not supported by the
SMT, then the algorithm finishes returning false.

5.2.4 Implementation and Experimental Evaluation

We have implemented a prototype of this approach as an extension of our current
recurrence solver. Concretely, it is a specialized back-end solver that integrates
the modular architecture depicted in Figure 5.1. It takes a recurrence and returns
the closed-form obtained together with an indication if such closed-form has been
verified (i.e., if it has been inferred that the closed-form is an exact solution).
It also returns the accuracy of the estimation (score). This way, the module
could also be integrated in any existing resource analysis tool, besides CiaoPP.
Depending on the requirements of the application, only verified solutions can be
used, or also approximated solutions together with its corresponding accuracy.

The prototype is implemented in Python 3, using Sympy [76] as Computer
Algebra System, and Scikit-Learn [89] for the regression with Lasso regularization.
We use Z3 [24] as SMT-Solver, and Z3Py [119] as interface. The solver is pre-
configured with a set of global parameters:

• An integer k > 2, to perform k−fold cross-validation. This means that the
training set is split into k parts or folds. Then, each fold is taken as the
test set, training the model with the remaining k − 1 folds. Finally, the
performance measure reported is the average of the values computed in the
k iterations.

68

Chapter 5. Recurrence Solver Extensions

Algorithm 2: Solution Checking

Input :F ∈ D → R+: Target Recurrence Relation.
ϕpre: Precondition defining D.

F̂ ∈ Exp: A candidate solution for F .
Output : true if F̂ is a solution for F , false otherwise.

1 ϕprevious ← true ;
2 Formula← true ;
3 foreach (ϕ, e) ∈ def(F) do

4 Eq ← replaceCalls(“F (x̄)− e = 0”, F (x̄), F̂ , ϕpre, ϕ);
5 if ¬containsCalls(Eq, F) then

6 Eq ← simplifyCAS(inlineCalls(Eq, F̂ , def(F̂)));
7 if supportedSMT (Eq) then
8 Formula← “Formula ∧ (ϕpre ∧ ϕprevious ∧ ϕ =⇒ Eq)”;
9 ϕprevious ← “ϕprevious ∧ ¬ϕ” ;

10 else
11 return false;
12 end

13 else
14 return false;
15 end

16 end
17 return (6|=SMT J¬FormulaKSMT);

• A range of real values Λ, to automatically choose a λ for Lasso regularization
that maximizes the performance of the model via cross-validation.

• A set of basic symbolic functions T , to form the candidate terms ti to be
used in the expression obtained by the algorithm.

• Optionally, a precondition ϕpre on the arguments of the recurrence to solve.

We have implemented a prototype of our approach and performed an experi-
mental evaluation with it, whose results are shown in Table 5.1. Column Bench
shows the name that we have assigned to each recurrence that we have chosen
(which is inspired in the program such recurrence originated from during cost/size
analysis), and Column Recurrence shows their definitions, where we use the
same function symbol, f , for all of them. Such recurrences are challenging for
our previous solver, either because they cannot be solved by any of the back-end
solvers, or because they are necessarily over-estimated in the solving process.
Some recurrences, like nested, are problematic even for most of the current state-
of-the-art solvers. Column CF shows the closed-forms obtained by our previous
recurrence solver, and Column CFNew shows the closed-forms obtained by our

69

CHAPTER 5. RECURRENCE SOLVER EXTENSIONS

Bench Recurrence CF CFNew T (s)

merge-sz f(x, y) =

max(f(x− 1, y),

f(x, y − 1)) + 1 if x > 0 ∧ y > 0

x if x > 0 ∧ y ≤ 0

y if x ≤ 0 ∧ y > 0

− x+ y 0.92

merge f(x, y) =

max(f(x− 1, y),

f(x, y − 1)) + 1 if x > 0 ∧ y > 0

0 otherwise

− max (0, x+ y − 1) 0.71

nested f(x) =

{
f(f(x− 1)) + 1 if x > 0

0 otherwise
− x 0.13

open-zip f(x, y) =

f(x− 1, y − 1) + 1 if x > 0 ∧ y > 0

f(x, y − 1) + 1 if x ≤ 0 ∧ y > 0

f(x− 1, y) + 1 if y ≤ 0 ∧ x > 0

0 otherwise

− max (x, y) 0.12

div f(x, y) =

{
f(x− y, y) + 1 if x >= y

0 otherwise
−

⌊
x
y

⌋
0.13

div-ceil f(x, y) =

f(x− y, y) + 1 if x >= y

1 if x < y ∧ x > 0

0 otherwise

−
⌈
x
y

⌉
0.12

s-max f(x, y) =

{
max(y, f(x− 1, y)) + 1 if x > 0

y otherwise
x+y x+ y 0.12

s-max-1 f(x, y) =

{
max(y, f(x− 1, y + 1)) + 1 if x > 0

y otherwise
− 2x+ y 0.14

sum-osc f(x, y) =

f(x− 1, y) + 1 if x > 0 ∧ y > 0

f(x+ 1, y − 1) + y if x ≤ 0 ∧ y > 0

1 otherwise

− x+ y2

2
+ 3y

2
0.13

Table 5.1: Experimental results: closed-forms obtained with the previous (CF)
and new solver (CFNew).

new extension, i.e., after applying Algorithms 1 and 2. All of them have been
validated as exact solutions to the recurrences by Algorithm 2.

Finally, Column T(s) shows the total time, in seconds, needed to obtain the
closed-forms and validate them by our new approach. For all the experiments, we
set k = 2, in order to perform 2−fold cross-validation. We have also set the range
for λ to 100 equidistant values taken from the interval [0.001, 1]. Regarding the
set T of candidate terms, for recurrences with one or two arguments, we provide a
predefined set of representative functions of the most common complexity orders, as
well as some compositions of them. For recurrences with three or more arguments,
we provide an initial set of simple functions, that are combined automatically to
generate the basic functions ti for the set T . Finally, as a default precondition,
we assume that the initial values for the variables that are the arguments of the
recurrences are all greater than or equal to zero, i.e., ϕpre =

∧
x∈Args

(x ≥ 0), where

Args is the set of arguments of the recurrence.
As we can see, none of the recurrences are solvable by our previous recurrence

70

Chapter 5. Recurrence Solver Extensions

solver, except s-max, which can be solved by applying Theorem 1 (see Section 5.3),
although such theorem is also a contribution of this thesis. In contrast, our new
solver is able to infer exact closed-forms functions for all the recurrences in a
reasonable time.

5.3 Solving Recurrence Relations Including a

Maximization Operator

Recurrences including a maximization operator enclosing a recursive call arise
quite commonly in the analysis of independent and-parallel logic programs. For
example, if we are analyzing elapsed time of a parallel logic program, a proper
parallel aggregation operator is the maximum between the times elapsed for each
literal running in parallel. Such recurrences also arise in the analysis of sequential
programs, for example, when expressing sizes of inner terms in data structures, or
when expressing upper bounds in conditionals. To the best of our knowledge, no
general solution exists for recurrences of this type. However, we have identified
some common classes of this type of recurrences for which we obtain closed-forms
that are proven to be correct. In this section, we present these different classes,
together with the corresponding method to obtain a correct bound.

Consider the following function f : Nm → N , defined as a general form of a
first-order recurrence equation with a max operator:

f(x̄) =

{
max(C, f(x̄|i − 1)) +D xi > a

B xi ≤ a
(5.13)

where x̄ is the sequence of variables x1, x2, . . . , xm, the sequence x1, . . . , xi −
1, . . . , xm for some i, 1 ≤ i ≤ m is denoted by x̄|i − 1, a ∈ N , and C, D, and B
are arbitrary expressions possibly depending on x̄. If C and D do not depend on
xi, then C and D do not change throughout the different recursive instances of f
(i.e., “recursive calls to” f). In this case, an equivalent closed-form is given by the
following theorem:

Theorem 1. Given f : Nm → N as defined in (5.13), where C and D are
functions of x̄ \ xi (i.e., they do not depend on xi). Then, for all x̄:

f(x̄) = f
′
(x̄) =

{
max(C,B) + (xi − a) ·D xi > a

B xi ≤ a

Proof. The proof for the case xi ≤ a is trivial.
In the following, we prove the theorem for xi > a, or equivalently, for xi ≥ a+ 1.
The proof is by induction on this subset.

71

CHAPTER 5. RECURRENCE SOLVER EXTENSIONS

Base Case. We have to prove that f(x1, . . . , xi−1, a + 1, . . . , xm) =
f ′(x1, . . . , xi−1, a+ 1, . . . , xm). Using the definition of f and f ′ we have that

f(x1, . . . , xi−1, a+ 1, . . . , xm) = max(C, f(x1, . . . , xi−1, a, . . . , xm)) +D

= max(C,B) +D

f ′(x1, . . . , xi−1, a+ 1, . . . , xm) = max(C,B) + (a+ 1− a) ·D
= max(C,B) +D

General Case. Assuming
f(x1, . . . , xi−1, xi, . . . , xm) = f ′(x1, . . . , xi−1, xi, . . . , xm), we need to prove that
f(x1, . . . , xi−1, xi + 1, . . . , xm) = f ′(x1, . . . , xi−1, xi + 1, . . . , xm). By induction
hypothesis we have that:

f(x1, . . . , xi−1, xi + 1, . . . , xm) = max(C, f(x1, . . . , xi−1, xi, . . . , xm)) +D

= max(C,max(C,B) + (xi − a) ·D) +D

= max(C,B) + (xi − a) ·D +D

= max(C,B) + (xi − a+ 1) ·D
= f ′(x1, . . . , xi−1, xi + 1, . . . , xm)

For the case where C = g(x̄) and D = h(x̄) are functions non-decreasing on xi,
then the upper bound is given by the following closed-form:

Theorem 2. Given f : Nm → N as defined in (5.13), where g and h are functions
of x̄, non-decreasing on xi. Then, ∀x̄:

f(x̄) ≤ f ′(x̄) =

{
max(g(x̄), B) + (xi − a− 1)×max(g(x̄), h(x̄|i − 1)) + h(x̄) xi > a

B xi ≤ a

Proof. In order to prove this theorem, we need to recall some properties and
lemmas of the max/2 operator, whose proofs are trivial.

For all a, b, c ∈ N ∪ {0}, the following properties hold:

• Commutative: max(a, b) = max(b, a)

• Associative: max(a,max(b, c)) = max(max(a, b), c)

• Idempotent: max(a, a) = a

Lemma 5. ∀a, b, c ∈ N : max(a, b+ c) ≤ max(a, b) +max(a, c)

Lemma 6. ∀a, b, c, d ∈ N : a ≤ c ∧ b ≤ d =⇒ max(a, b) ≤ max(c, d)

72

Chapter 5. Recurrence Solver Extensions

The proof for the case xi ≤ a is trivial.
In the following, we prove the theorem for xi > a, or equivalently, for xi ≥ a+ 1.
The proof is by induction on this subset. For brevity, we only show the argument
corresponding to the position of xi in x̄. However, the proof is still valid consider-
ing all arguments.

Base Case. We have to prove that f(a+ 1) ≤ f ′(a+ 1). Using the definition
of f and f ′ we have that

f(a+ 1) = max(g(a+ 1), f(a)) + h(a+ 1)

= max(g(a+ 1), B) + h(a+ 1)

f ′(a+ 1) = max(g(a+ 1), B) + ((a+ 1)− a− 1)×max(g(a+ 1), h(a)) + h(a+ 1)

= max(g(a+ 1), B) + h(a+ 1)

General Case. Assuming f(x) ≤ f ′(x), we need to prove that f(x+1) ≤ f ′(x+1).
By induction hypothesis and Lemma 6 we have that:

f(x+ 1) = max(g(x+ 1), f(x)) + h(x+ 1)

≤ max(g(x+ 1),max(g(x), B) + (x− a− 1)×max(g(x), h(x− 1)) + h(x))

+ h(x+ 1)

By Lemma 5 we have that:

f(x+ 1) ≤ max(g(x+ 1),max(g(x), B))

+max(g(x+ 1), (x− a− 1)×max(g(x), h(x− 1)))

+max(g(x+ 1), h(x))

+ h(x+ 1)

(5.14)

Consider now the first term appearing in the sum of the right hand side of the
inequality (5.14). Since max is associative, and it holds that ∀x : g(x+ 1) ≥ g(x)
(which follows from the hypothesis of the theorem), we obtain:

max(g(x+ 1),max(g(x), B)) = max(max(g(x+ 1), g(x)), B)

= max(g(x+ 1), B)
(5.15)

We consider now the second term in (5.14). By Lemma 5 we obtain:

max(g(x+ 1), (x− a− 1)×max(g(x), h(x− 1)))

≤ (x− a− 1)×max(g(x+ 1),max(g(x), h(x− 1)))

73

CHAPTER 5. RECURRENCE SOLVER EXTENSIONS

As before, by associativity of max, this is equivalent to:

(x− a− 1)×max(g(x+ 1), h(x− 1))

By Lemma 6, and h(x− 1) ≤ h(x) (by hypothesis), we have that:

(x− a− 1)×max(g(x+ 1), h(x)) (5.16)

Replacing the results of (5.15) and (5.16) in (5.14):

f(x+ 1) ≤ max(g(x+ 1), B)

+ (x− a− 1)×max(g(x+ 1), h(x))

+max(g(x+ 1), h(x)) + h(x+ 1)

= max(g(x+ 1), B)

+ (x− a)×max(g(x+ 1), h(x)) + h(x+ 1)

= f ′(x+ 1)

∴ f(x+ 1) ≤ f ′(x+ 1)

If the recurrence is not included in the classes defined by Theorems (1) and (2),
we try to eliminate the max operator by simplification. Consider an expression
max(e1, e2) appearing in a recurrence relation. First, we use the function com-
parison capabilities of CiaoPP, presented in [67, 69]. If an ei contains non-closed
recurrence function calls, we use an SMT solver [24] representing non-closed
functions as uninterpreted functions, assuming that they are positive and non-
decreasing. Concretely, for each non-closed function call f(x̄) appearing in ei, we
add the properties ∀x̄(f(x̄) ≥ 0) and ∀x̄, ȳ(x̄ ≤ ȳ ⇐⇒ f(x̄) ≤ f(ȳ)) to a set M .
Then, we check whether M |= e1 ≤ e2 or M |= e2 ≤ e1 hold.2

Finally, if no proof is found, we replace the max operator by an addition,
which causes a loss in accuracy but gives safe upper bounds.

5.4 Conclusions

In this chapter we have presented two extensions of our traditional recurrence
solver for dealing with arbitrary, constrained recurrence relations that arise during
resource consumption and size analysis of programs.

The first extension consists on a guess and check approach that uses linear
regression with Lasso regularization and cross-validation for the guess stage,

2As the algorithm used by SMT solvers in this case is not guaranteed to terminate, we set a
timeout.

74

Chapter 5. Recurrence Solver Extensions

which infers a candidate closed-form solution for the recurrence. Then, using
a combination of a SMT-solver and a Computer Algebra System, it checks if
the candidate solution is actually a solution. We have applied this approach to
a set of recurrences that are either not solvable or over-approximated by our
previous solver, obtaining exact results in a reasonable time. Since our technique
uses linear regression with a randomly generated training set (by evaluating the
recurrence to obtain the dependent value), it is not guaranteed that a solution
can be found. Even if a exact solution is found in the first stage, it is not always
possible to prove its correctness in the second stage. Therefore, in this sense,
this approach is not complete. However, it is able to find some solutions that
current state-of-the-art solvers are unable to find. As a proof of concept, we
have considered a particular deterministic evaluation for constrained recurrence
relations, and the verification of the candidate solution is consistent with this
evaluation. However, it is possible to implement different evaluation semantics for
the recurrences, adapting the verification stage accordingly. Note that we need
to require the termination of the recurrence evaluation as a precondition for the
conclusions obtained. This is also due to the particular evaluation strategy of
recurrences that we are considering. In practice, non-terminating recurrences can
be discarded in the first stage, by setting a timeout. Our approach can also be
combined with a termination prover in order to guarantee such precondition. As
a final remark regarding this extension, note that an alternative use of our tool
is to omit the verification stage, using only the closed-form function inferred by
the first stage, together with an error measure. Interestingly, this can be useful in
some applications where it is enough to have good but unsafe approximations.

The second extension presented in this chapter consists on a method for solving
recurrence relations involving a maximization operator. This class of recurrences
arise, for example, when expressing sizes of inner terms in data structures, when
expressing upper bounds in conditionals, or in the analysis of parallel programs.

In conclusion, both extensions, and in particular the new solver based on the
combination of Machine Learning (Linear Regression with Lasso Regularization),
CASs, and SMT-solvers, improve our analysis framework significatively by extend-
ing the class of recurrences that can be solved. It is also a general approach to
the recurrence solving problem, which, besides static program analysis, could be
useful for other applications.

75

6
Application: Estimation and Verification of

Run-time Checking Overheads

6.1 Introduction and Motivation

In this chapter we use the parametric cost analysis framework developed in the
thesis in a novel application: the static estimation and verification of the overhead
introduced by run-time checking. We also extend an existing assertion verification
framework to specify “admissible” overheads, and statically and automatically
check whether the instrumented program for run-time checking conforms with
such specifications.

Dynamic programming languages are a popular programming tool for many
applications, due to their flexibility. They are often the first choice for web
programming, prototyping, and scripting. The lack of inherent mechanisms for
ensuring program data manipulation correctness (e.g., via full static typing or
other forms of full static built-in verification) has sparked the evolution of flexible
solutions, including assertion-based approaches [17, 20, 29, 30, 47, 61, 90, 94] in
(constraint) logic languages, soft- and gradual-typing [21, 28, 32, 85, 86, 96, 104,
109, 110, 111, 112, 115] in functional languages (also applied to, e.g., Prolog [100] or
Ruby [56]), and contract-based approaches [31, 62, 63, 66, 80, 85, 88] in imperative
languages.

A trait that many of these approaches share is that some parts of the spec-
ifications may be the subject of run-time checking (e.g., those that cannot be
discharged statically in the case of systems that support this functionality). How-
ever, such run-time checking comes at the price of overhead during program
execution, that can affect a number of resources, such as execution time, mem-
ory use, energy consumption, etc., often in a significant way [96, 110]. If these
overheads become too high, the whole program execution becomes impractical
and programmers may opt for sacrificing the checks to keep the required level of
performance.

77

CHAPTER 6. APPLICATION: ESTIMATION AND VERIFICATION OF
RUN-TIME CHECKING OVERHEADS

Dealing with excessive run-time overhead is a challenging problem. Proposed
approaches in order to address this problem include discharging as many checks
as possible via static analysis [20, 31, 42, 47, 93, 94, 108], optimizing the dynamic
checks themselves [60, 88, 97, 107], or limiting run-time checking points [74].
Nevertheless, there are cases in which a number of checks cannot be optimized
away and must remain in place, because of software architecture choices (e.g., the
case of the external interfaces of reusable libraries or servers), the need to ensure
a high level of safety (e.g., in safety-critical systems), etc.

At the same time, low program performance may not always be due to the
run-time checks. Consider for example two basic database access operations:
insertion and query. Consider also a program that follows the pattern of rare
inserts and frequent querying. In this case it can perhaps be fine to perform
complex run-time checks in the first operation, provided that the checks in the
second are inexpensive enough.

A technique that can help in this context is profiling, often used to detect
performance “hot spots” and guide program optimization. Prior work on using
profiling in the context of optimizing the performance of programs with run-time
checks [34, 75, 106] clearly demonstrates the benefits of this approach. Still,
profiling infers information that is valid only for some particular input data values
(and their execution traces). I.e, the profiling results thus obtained may not be
valid for other input data values. Since the technique is by nature not exhaustive,
detecting the worst cases can take a long time, and is impossible in general.

We develop and evaluate a static analysis-based approach aimed at delivering
guarantees on the costs introduced by the run-time checks in a program (i.e., on
the run-time checking overhead). The resulting method provides the programmer
with feedback at compile-time regarding the impact that run-time checking will
have on the program costs. Furthermore, we propose an assertion-based mech-
anism that allows programmers to specify bounds on the admissible run-time
checking overhead introduced in programs. The approach then compares the
inferred run-time checking overhead against the admissible one and provides
guarantees on whether such specifications are met or not. Such guarantees can
be given as constraints (e.g., intervals) on the size of the input data. We provide
the formalization of the method and present also results from its implementation
and experimental evaluation. As already said, our proposal builds on static cost
analysis [8, 25, 26, 27, 71, 92, 102] instead of (or as a complement to) dynamic
profiling. This type of analysis is aimed at inferring statically (i.e., without
actually running the program with concrete data) safe upper and lower bounds
on execution costs, i.e., bounds that are guaranteed and will never be violated in
actual executions. Since such costs are data-dependent, these bounds take the
form of functions that depend on certain characteristics (generally, data sizes) of
the inputs to the program. These functions encode (bound) how the program
costs change as the size of the input grows.

78

Chapter 6. Application: Estimation and Verification of Run-time Checking
Overheads

To the best of our knowledge, this is the first work that proposes, implements,
and benchmarks a method for expressing the admissible costs introduced by the
run-time checks in a program (the run-time checking overhead) and producing
statically (i.e., at compile time) guarantees of such overheads meeting these
specifications or identifying errors with respect to them. In the following, we will
present our proposal for concreteness in the context of the Ciao system and apply
it to logic programs. However, the approach is general and can be applied directly
to other languages and systems.

The rest of the chapter proceeds as follows: as preliminaries, Section 6.2
gives an overview of the assertion language used, its relation with run-time and
static checking, and the types of run-time checks generated with instrumentation.
Then, Section 6.3 presents the proposed method for analyzing, specifying limits
on, and verifying the run-time checking overhead. These issues are covered in
subsections 6.3.1, 6.3.2, and 6.3.3. Also, subsection 6.3.4 proposes a method for
applying accumulated cost (presented in Chapter 3) analysis for detecting hot
spots. Section 6.4 describes our implementation and presents results from the
experimental evaluation. Finally, Section 6.5 presents our conclusions.

(C)LP Notation Used in the Chapter We recall below some common (C)LP
notation used throughout the chapter:

• variable names start with a capital letter: L, Xs;

• predicate and functor names start with a lower-case letters: app1C, rev,
warn if false;

• each predicate and functor symbol has a number associated with it, called
arity, that denotes the number of arguments of that symbol. E.g., the
notation app1/3 means that the predicate app1 and 3 arguments;

• [X|Xs] denotes a list with head X and tail Xs.

System properties appearing in the examples:

• term(X): X is any program term (variable, constant, number, structure,
etc.);

• var(X): X is a free variable;

• nat(X): X is a natural number;

• list(X): X is a list (see property definition below);

• length(L,N): list L has N elements.

79

CHAPTER 6. APPLICATION: ESTIMATION AND VERIFICATION OF
RUN-TIME CHECKING OVERHEADS� �

1 list([]). % empty list

2 list([Head|Tail]) :- list(Tail).� �
Arithmetic expressions appearing in the examples:

• A /\ B : integer bitwise AND;

• A \/ B : integer bitwise OR;

• A # B : integer bitwise exclusive OR (XOR);

• (A#1)\/B: integer bitwise implication (A→ B ⇔ ¬ A ∨ B).

6.2 Assertions and Run-time Checking

Assertions are linguistic constructions that allow expressing properties of programs.
For concreteness we use the pred assertions of the Ciao assertion language [46,
47, 93], following the presentation of [108]. Such pred assertions allow defining
the set of all admissible preconditions for a given predicate, and for each such
precondition a corresponding postcondition. These pre- and postconditions are
formulas containing literals defined by predicates specially labeled as properties,
to which we refer to as prop literals.

Recalling from Chapter 2, every assertion has a status indicating whether the
assertion refers to intended or actual properties. Programmer-provided assertions
by default have status check, and only assertions with this status generate run-
time checks. Static analysis can prove or disprove properties in assertions for a
given class of input queries, statically verifying assertions (if all the prop literals
are proved to be true, in which case their status is changed to checked) or flagging
errors (if any prop literal is proved to be false, and then the status is changed to
false). Assertions can also be simplified by eliminating the prop literals proved
to be true, so that only the remaining ones need to be checked. Other information
inferred by static analysis is communicated by means of true assertions (e.g., see
Example 9).

Example 5 (Program with Assertions). Consider the following implementation
of a predicate for reversing a list and its assertions (note that in this running
example we are using app1 which appends one new element at the end of a list):

80

Chapter 6. Application: Estimation and Verification of Run-time Checking
Overheads

� �
1 :- check pred rev(X,Y) % \

2 : (list(X), var(Y)) % A1

3 => (list(X), list(Y)). % /

4

5 rev([], []).

6 rev([X|Xs], Y) :-

7 rev(Xs , Ys),

8 app1(Ys ,X,Y).

9

10 :- check pred app1(Y,X,Z) % \

11 : (list(Y), term(X), var(Z)) % A2

12 => (list(Y), term(X), list(Z)). % /

13

14 app1([],X,[X]).

15 app1([E|Y],X,[E|T]) :-

16 app1(Y,X,T).� �
Assertion A1 states that if rev/2 is called with a list X and a free variable Y, on its
success the second argument Y will also be a list. Assertion A2 says if app1/3 is
called with a list Y, a term X, and a free variable Z, on success the third argument Z
will be a list. The algorithmic complexity of rev/2 is O(N2) in the size (list length
in this case) N of its input argument X. While this implementation is obviously
not optimal, we use it as a representative of the frequent case of nested loops with
linear costs.

Example 6 (Assertions After Static Checking). The following listing shows a
possible result (only the assertions) after performing static assertion checking for
the code of rev/2. We assume that the code is in a module, exporting only rev/2,
and that it is analyzed in isolation, i.e., we have no information on the callers to
rev/2.� �
1 :- check calls rev(X,Y)

2 : (list(X), var(Y)).

3 :- checked pred rev(X,Y) % \

4 : (list(X), var(Y)) % A1 (proved)

5 => (list(X), list(Y)). % /

6

7 rev([], []).

8 rev([X|Xs], Y) :-

9 rev(Xs , Ys),

10 app1(Ys ,X,Y).

81

CHAPTER 6. APPLICATION: ESTIMATION AND VERIFICATION OF
RUN-TIME CHECKING OVERHEADS

11

12 :- checked pred app1(Y,X,Z) % \

13 : (list(Y), term(X), var(Z)) % A2 (proved)

14 => (list(Y), term(X), list(Z)). % /

15

16 app1([],X,[X]).

17 app1([E|Y],X,[E|T]) :-

18 app1(Y,X,T).

19

20 � �
Here, the interface assertion (calls) for the rev/2 predicate remains active and
generates run-time checks (i.e., calls into the module are sanitized). This contrasts
with the situation in Example 5, where all assertions generate run-time checks.

6.2.1 Run-time Check Instrumentation

We recall the definitional source transformation of [107], that introduces wrapper
predicates that check calls and success assertions, and also groups all assertions
for the same predicate together to produce optimized checks. Given a program,
for every predicate p the transformation replaces all clauses p(x̄) ← body by
p′(x̄)← body, where p′ is a new predicate symbol, and inserts the wrapper clauses
given by wrap(p(x̄), p′):

wrap(p(x̄), p′) =

p(x̄) :- pC(x̄, r̄), p′(x̄), pS(x̄, r̄).
pC(x̄, r̄) :- ChecksC .
pS(x̄, r̄) :- ChecksS .

Here ChecksC and ChecksS are the optimized compilation of pre- and post-
conditions

∨n
i=1 Prei and

∧n
i=1(Prei → Posti) respectively; and the additional

status variables r̄ are used to communicate the results of each Prei evaluation
to the corresponding (Prei → Posti) check, thus avoiding double evaluation of
preconditions.

The compilation of checks for assertions emits a series of calls to a
reify check(P,Res) predicate, which accepts as the first argument a property P

and unifies Res with 1 or 0, depending on whether the property check succeeds
or not. The results of those reified checks are then combined and evaluated
as Boolean algebra expressions using bitwise operations and the Prolog is/2

predicate. That is, the logical operators (A ∨B), (A ∧B), and (A→ B) used in
encoding assertions are replaced by their bitwise logic counterparts R is A \/ B,
R is A /\ B, R is (A # 1) \/ B, respectively.

82

Chapter 6. Application: Estimation and Verification of Run-time Checking
Overheads

Example 7 (Run-time Checks (a)). The program transformation that introduces
the run-time checking harness for the program fragment from Example 5 (assuming
none of the assertions has been statically discharged by analysis) is essentially as
follows:

� �
1 rev(A,B) :-

2 revC(A,B,C),

3 rev'(A,B),
4 revS(A,B,C).

5

6 revC(A,B,E) :-

7 reify_check(list(A),C),

8 reify_check(var(B), D),

9 E is C/\D,

10 warn_if_false(E,'calls ').
11

12 rev'([],[]).
13 rev'([X|Xs],Y) :-

14 rev(Xs ,Ys),

15 app1(Ys,X,Y).

16

17 revS(A,B,E) :-

18 reify_check(list(A),C),

19 reify_check(list(B),D),

20 F is C/\D,

21 G is (E#1)\/F,

22 warn_if_false(G,'success ').
23

24

25 app1(A,B,C) :-

26 app1C(A,B,C,D),

27 app1 '(A,B,C),
28 app1S(A,B,C,D).

29

30 app1C(A,B,C,G) :-

31 reify_check(list(A),D),

32 reify_check(term(B),E),

33 reify_check(var(C), F),

34 G is D/\(E/\F),

35 warn_if_false(G,'calls ').
36

37 app1 '([],X,[X]).
38 app1 '([E|Y],X,[E|T]) :-

39 app1(Y,X,T).

40

83

CHAPTER 6. APPLICATION: ESTIMATION AND VERIFICATION OF
RUN-TIME CHECKING OVERHEADS

41 app1S(A,B,C,G) :-

42 reify_check(list(A),D),

43 reify_check(term(B),E),

44 reify_check(list(C),F),

45 H is D/\(E/\F),

46 K is (G#1)\/H,� �
The warn if false/2 predicates raise run-time errors terminating program exe-
cution if their first argument is 0, and succeed (with constant cost) otherwise. We
will refer to this case as the worst performance case in programs with run-time
checking.

Example 8 (Run-time Checks (b)). This example represents the run-time checking
generated for the scenario of Example 6, i.e., after applying static analysis to
simplify the assertions (see code below). Run-time checks are generated only
for the interface calls of the rev/2 predicate. Note that rev’/2 here is a point
separating calls to rev/2 coming outside the module from the internal calls (now
made through rev i/2).� �
1 rev(A,B) :-

2 revC(A,B),

3 rev'(A,B).
4

5 revC(A,B) :-

6 reify_check(list(A),C),

7 reify_check(var(A), D),

8 E is C/\D,

9 warn_if_false(E,'calls ').
10

11 rev'(A,B) :-

12 rev_i(A,B).

13

14 rev_i([],[]).

15 rev_i([X|Xs],Y) :-

16 rev_i(Xs ,Ys),

17 app1(Ys,X,Y).� �
Note also that app1/3 is called directly (i.e., with no run-time checks). Clearly in
this case there are fewer checks in the code and thus smaller overhead. We will
refer to this case, where only interface checks remain, as the base performance
case.

Static Cost Analysis As we mentioned before, we use our static cost analysis
to infer the resource usage of both the instrumented and non-instrumented version
of a program. In this chapter we add some sugar syntax to the resource-related

84

Chapter 6. Application: Estimation and Verification of Run-time Checking
Overheads

properties in assertions, to adapt better these properties with the extensions
introduced for specifying an admissible run-time checking overhead. Here, we
show an example of the output of our static cost analysis. A detailed explanation
of the different resource-related properties is given in Section 6.3.2.

Example 9 (Static Cost Analysis Result). The following assertion is part of the
output of the resource usage analysis performed by CiaoPP for the rev/2 predicate
from Example 5:

� �
1 :- true pred rev(X,Y)

2 : (list(X), var(Y), length(X,L))

3 => (list(X), list(Y),

4 length(X,L), length(Y,L))

5 + cost(exact (0.5*(L)**2+1.5*L+1),

6 [steps]).� �
It includes, in addition to the precondition (:Pre) and postcondition (=>Post)
fields, a field for computational properties (+Comp), in this case cost. The
assertion uses the cost/2 property for expressing the exact cost (first argument
of the property) in terms of resolution steps (second argument) of any call to
rev(X,Y) with the X bound to a list and Y a free variable. Such cost is given by
the function 0.5 L2 + 1.5 L+ 1, which depends on L, i.e., the length of the (input)
argument X, and is the argument of the exact/1 qualifier. It means that such
function is both a lower and an upper bound on the cost of the specified call. This
aspect of the assertion language (including the cost/2 property) and our proposed
extensions are discussed in Section 6.3.

6.3 Specifying, Analyzing, and Verifying Run-

time Checking Overhead

Our approach to analysis and verification of run-time checking overhead consists of
three basic components: using static cost analysis to infer upper and lower bounds
on the cost of the program with and without the run-time checks; providing
the programmer with a means for specifying the amount of overhead that is
admissible; and comparing the inferred bounds to these specifications. Such
approach is depicted in Figure 6.1. In the following, we describe each of these
components in more detail.

85

CHAPTER 6. APPLICATION: ESTIMATION AND VERIFICATION OF
RUN-TIME CHECKING OVERHEADS

Figure 6.1: Run-time Checking Overhead Analysis and Verification Framework.

6.3.1 Computing the Run-time Checking Overhead
(Ovhd)

The first step of our approach is to infer upper and lower bounds on the cost
of the program with and without the run-time checks, using cost analysis. The
inference of the bounds for the program without run-time checks was illustrated
in Example 9. The following two examples illustrate the inference of bounds for
the program with the run-time checks. They cover the two scenarios discussed
previously, i.e., with and without the use of static analysis to remove run-time
checks.

Example 10 (Cost with Run-time Checks (a)). The code below is the result
of cost analysis for the run-time checking harness of Example 7 for the rev/2

predicate, together with a (stylized) version of the code analyzed, for reference.
Note the change in the complexity order of rev/2 from quadratic to cubic in L,
the length of list A, which is most likely not admissible. The reason is that run-
time checks are performed at each (recursive) call to app1/3, and they check the
property list/1, for which the whole input list needs to be traversed. Thus, such
run-time checks have linear complexity, and they are performed a linear number of

86

Chapter 6. Application: Estimation and Verification of Run-time Checking
Overheads

times in app1/3, and hence, the complexity order of app1/3 changes from linear
to quadratic. Since rev/2 calls app1/3 for each element of the input list (i.e.,
a linear number of times), its complexity order changes from quadratic to cubic.
Note that the additional list traversals introduced by the run-time checks in the
body of rev/2 (which have linear complexity) do not affect the complexity order of
rev/2 because rev/2 already called predicate app1/3 that was linear. Such checks
only increase the constant coefficients of the cost function for rev/2.

� �
1 :- true pred rev(A,B)

2 : (list(A), var(B), length(A,L))

3 => (list(A), list(B),

4 length(A,L), length(B,L))

5 + cost(exact (0.5*L**3+7*L**2+14.5*L+8),

6 [steps]).

7 rev(A,B) :-

8 revC(A,B,C),

9 rev'(A,B),
10 revS(A,B,C).

11

12 revC(A,B,C) :- list(A), var(B), bit ops.
13

14 revS(A,B,C) :- list(A), list(B), bit ops.
15

16 rev'([],[]).
17 rev'([X|Xs],Y) :-

18 rev(Xs ,Ys),

19 app1(Ys ,X,Y).

20

21 app1(A,B,C) :-

22 app1C(A,B,C,D),

23 app1 '(A,B,C),
24 app1S(A,B,C,D).

25

26 app1C(A,B,C,G) :- list(A), term(B), var(C), bit ops.
27

28 app1S(A,B,C,G) :- list(A), term(B), list(C), bit ops.
29

30 app1 '([],X,[X]).
31 app1 '([E|Y],X,[E|T]) :-

32 app1(Y,X,T).

33 � �

87

CHAPTER 6. APPLICATION: ESTIMATION AND VERIFICATION OF
RUN-TIME CHECKING OVERHEADS

Example 11 (Cost with Run-time Checks (b)). This example shows the result
of cost analysis for the base instrumentation case of Example 8: although there
are still some run-time checks present for the public interface, the overall cost of
the rev/2 predicate remains quadratic, which is probably admissible.

� �
1 :- true pred rev(A,B)

2 : (list(A), var(B), length(A,L))

3 => (list(A), list(B),

4 length(A,L), length(B,L))

5 + cost(exact (0.5*L**2+2.5*L+7),

6 [steps]).

7

8 rev(A,B) :-

9 revC(A,B),

10 rev'(A,B).
11

12 revC(A,B) :- list(A), var(B), bit ops.
13

14 rev'(A,B) :-

15 rev_i(A,B).

16

17 rev_i([],[]).

18 rev_i([X|Xs],Y) :-

19 rev_i(Xs ,Ys),

20 app1(Ys,X,Y).� �

In Figure 6.2 we can see graphically how the cost inferred for nrev/2 changes,
depending on the amount of run-time checks instrumented in its code.

6.3.2 Expressing the Admissible Run-time Checking
Overhead (AOvhd)

We add now to our approach the possibility of expressing the admissible run-time
checking overhead (AOvhd). This is done by means of an extension to the Ciao
assertion language. As mentioned before, this language already allows expressing
a wide range of properties, and this includes the properties related to resource
usage.

Example 12 (Cost Specification). For example in order to tell the system to
check whether an upper bound on the cost, in terms of number of resolution steps,
of a call p(A, B) with A instantiated to a natural number and B a free variable, is
a function in O(A), we can write the following assertion:

88

Chapter 6. Application: Estimation and Verification of Run-time Checking
Overheads

1 2 3 4 5 6 7 8 9 10

200

400

600

800

1,000

1,200

L (length of the input list)

S
te
ps

No RT checks: (L
2

2
+ 3L

2
+ 1)

All RT checks: (L
3

2
+ 7L2 + 29L

2
+ 8)

Opt. RT checks: (L
2

2
+ 5L

2
+ 7)

Figure 6.2: Graphical comparison of the cost functions inferred for the different
versions of nrev/2.

� �
1 :- check pred p(A, B)

2 : (nat(A), var(B))

3 + cost(o_ub(A), [steps , std]).� �
The first argument of the cost/2 property is a cost function, which in turn appears
as the argument of a qualifier expressing the kind of approximation. In this case,
the qualifier o ub/1 represents the complexity order of an upper bound function
(i.e., the “big O”). Other qualifiers include ub/1 (an upper-bound cost function,
not just a complexity order), lb/1 (a lower-bound cost function), and band/2 (a
cost band given by both a lower and upper bound). The second argument of the
cost/2 property is a list of qualifiers (identifiers). The first identifier expresses
the resource, i.e., the cost metric used. The value steps represents the number of
resolution steps. The second argument expresses the particular kind of cost used.
The value std represents the standard cost (the value by default if it is omitted),
the value acc the accumulated cost (see Chapter 3), etc.

We introduce the possibility of writing assertions that are universally quantified
over the predicate domain (i.e., that are applicable to all calls to all predicates in
a program), which is particularly useful in our application. As an example, the
following assertion:� �
1 :- check pred *

2 + is_det.� �
89

CHAPTER 6. APPLICATION: ESTIMATION AND VERIFICATION OF
RUN-TIME CHECKING OVERHEADS

states that all predicates in the program should be deterministic, i.e., produce at
most one answer. An issue that appears in this context is that different predicates
can have different numbers and types of arguments. To solve this problem we
introduce a way to express symbolic complexity orders without requiring the
specification of details about the arguments on which cost functions depend nor
the size metric used, by means of symbols (identifiers) without arguments, such
as constant, linear, quadratic, exponential, logarithmic, etc. For example,
in order to extend the assertion in Example 12 to all possible predicate calls in a
program (independently of the number and type of arguments), we can write:� �
1 :- check pred *

2 + cost(so_ub(linear), [steps]).� �
In the context of the previous extensions, our objective is expressing and

specifying limits on how the complexity/cost changes when run-time checks are
performed, i.e., expressing and specifying limits on the run-time checking overhead.
To this end we propose different ways to quantify this overhead. Let Cp(n̄) represent
the standard cost function of predicate p without any run-time checks and Cp rtc(n̄)
the cost function for the transformed/instrumented version of p that performs
run-time checks, p rtc. A good indicator of the relative overhead is the ratio:

Cp rtc(n̄)

Cp(n̄)

We introduce the qualifier rtc ratio to express this type of ratios. For example,
the assertion:� �
1 :- check pred p(A, B)

2 : (nat(A), var(B))

3 + cost(so_ub(linear),

4 [steps , rtc_ratio]).� �
expresses that p/2 should be called with the first argument bound to a natural
number and the second one a variable, and the relative overhead introduced by
run-time checking in the calls to p/2 (the ratio between the cost of the predicate
with and without run-time checks) should be at most a linear function. Similarly,
using the universal quantification over predicates, the following assertion:� �
1 :- check pred *

2 + cost(so_ub(linear),

3 [steps , rtc_ratio]).� �
expresses that, for all predicates in the program, the ratio between the cost of the
predicate with and without run-time checks should be at most a linear function.

90

Chapter 6. Application: Estimation and Verification of Run-time Checking
Overheads

6.3.3 Verifying the Admissible Run-time Checking Over-
head (AOvhd)

We now turn to the third component of our approach: verifying the admissible run-
time checking overhead (AOvhd). To this end, we leverage the general framework
for resource usage analysis and verification of [67, 68], and adapt it for our purposes,
using the assertions introduced in Section 6.3.2. The verification process compares
the (approximated) intended semantics of a program (i.e., the specification) with
approximated semantics inferred by static analysis. These operations include the
comparison of arithmetic functions (e.g., polynomial, exponential, or logarithmic
functions) that may come from the specifications or from the analysis results. The
possible outcomes of this process are the following:

1. The status of the original (specification) assertion (i.e., check) is changed
to checked (resp. false), meaning that the assertion is correct (resp.
incorrect) for all input data meeting the precondition of the assertion,

2. the assertion is “split” into two or three assertions with different status
(checked, false, or check) whose preconditions include a conjunct express-
ing that the size of the input data belongs to the interval(s) for which the
assertion is correct (status checked), incorrect (status false), or the tool
is not able to determine whether the assertion is correct or incorrect (status
check), or

3. in the worst case, the assertion remains with status check, meaning that
the tool is not able to prove nor to disprove (any part of) it.

In our case, the specifications express a band for the AOvhd, defined by a
lower- and an upper-bound cost function (or complexity orders). If the lower
(resp. upper) bound is omitted, then the lower (resp. upper) limit of the band is
assumed to be zero (resp. ∞).

This implies that we need to perform some adaptations with respect to the
verification of resource usage specifications for predicates described in [67, 68].
Assume for example that the user wants the system to check the following assertion:

� �
1 :- check pred p(A, B)

2 : (nat(A), var(B))

3 + cost(ub(2*A), [steps , rtc_ratio]).� �
which expresses that the ratio defined in Section 6.3.2 (with n̄ = A) Cp rtc(n̄)

Cp(n̄)
must

be in the band [0, 2 ∗ A] for a given predicate p. The approach in [67, 68] uses
static analysis to infer both lower and upper bounds on Cp(n̄), denoted Clp(n̄) and
Cup (n̄) respectively. In addition, in our application, the static analysis needs to

91

CHAPTER 6. APPLICATION: ESTIMATION AND VERIFICATION OF
RUN-TIME CHECKING OVERHEADS

infer, both lower and upper bounds on Cp rtc(n̄), denoted Clp rtc(n̄) and Cup rtc(n̄),
and use all of these bounds to compute bounds on the ratio. A lower (resp. upper)

bound on the ratio is given by
Clp rtc(n̄)

Cup (n̄)
(resp.

Cup rtc(n̄)

Clp(n̄)
). Both bounds define an

inferred (safely approximated) band for the actual ratio, which is compared with
the (intended) ratio given in the specification (the band [0, 2 ∗ A]) to produce the
verification outcome as explained above.

6.3.4 Using the Accumulated Cost for Detecting Hot
Spots

So far, we have used the standard notion of cost in the examples for simplicity.
However, in our approach we also use the accumulated cost (see Chapter 3), inferred
by CiaoPP, to detect which of the run-time check predicates (properties) have a
higher impact on the overall run-time checking overhead, and are thus promising
targets for optimization (or removal, if some reduction in safety guarantees is
allowed). As already said in Chapter 3, the accumulated cost is based on the
notion of cost centers, which in our approach are predicates to which execution
costs are assigned during the execution of a program. The programmer can
declare which predicates will be cost centers. Consider again a predicate p, and
its instrumented version p rtc that performs run-time checks, and let Cp(n̄) and
Cp rtc(n̄) be their corresponding standard cost functions. Let ck represent a run-
time check predicate (e.g., list/1, num/1, var/1, etc.). Let ♦p rtc be the set of
run-time check predicates used by p rtc. Assume that we declare that the set of
cost centers to be used by the analysis, ♦, is ♦p rtc ∪ {p rtc}. In this case, the
cost of a (single) call to p rtc accumulated in cost center ck, denoted Cckp rtc(n̄),
expresses how much of the standard cost Cp rtc(n̄) is attributed to run-time check
ck predicate (taking into account all the generated calls to ck). The ck predicate
with the highest Cckp rtc(n̄) is a hot spot, and thus, its optimization can be more
profitable to reduce the overall run-time checking overhead. The predicate ck with
the highest Cckp rtc(n̄) is not necessarily the most costly by itself, i.e., the one with
the highest standard cost. For example, a high Cckp rtc(n̄) can be caused because ck
is called very often. We create a ranking of run-time check predicates according to
their accumulated cost. This can help in deciding which assertions and properties
to simplify/optimize first to meet an overhead target.

Since p rtc is declared as a cost center, we can express the standard cost of
p rtc as

Cp rtc(n̄) =
∑
q∈♦

Cqp rtc(n̄) (6.1)

Also, note that the standard cost of p can be expressed in terms of p rtc as follows:

Lemma 7. Let p be a predicate, and p rtc an instrumented version of p with
run-time check predicates in the set ♦p rtc. Let Cp(n̄) and Cp rtc(n̄) be the standard

92

Chapter 6. Application: Estimation and Verification of Run-time Checking
Overheads

cost functions of p and p rtc, respectively. If we consider the set of cost centers
♦ = ♦p rtc ∪ {p rtc}, then

Cp(n̄) = Cp rtcp rtc(n̄)

Proof Sketch. Considering the set of cost centers ♦ = ♦p rtc ∪ {p rtc}, it follows
from the definition of accumulated cost that Cp rtcp rtc is the cost of a single call
to p rtc, excluding the cost of the run-time check predicates in ♦p rtc (as they
are cost centers accumulating their own cost). As we defined p rtc as p (only)
instrumented with run-time checks in ♦p rtc, the cost that remains after excluding
the cost of the run-time checks is the cost of p, i.e., Cp.

The absolute run-time checking overhead introduced by run-time check proper-
ties in ♦p rtc is the difference of the costs between the two versions of the program,
i.e., Cp rtc(n̄)− Cp(n̄). The following lemma shows how to express this difference
in terms of the accumulated cost of cost centers in ♦p rtc.

Lemma 8. Considering p, p rtc, Cp, Cp rtc, and the set of cost centers ♦p rtc ∪
{p rtc} as in lemma 7. Then

Cp rtc(n̄)− Cp(n̄) =
∑

q∈♦p rtc

Cqp rtc(n̄)

Proof. As ♦ = ♦p rtc ∪ {p rtc}, we have that∑
q∈♦

Cqp rtc(n̄) =
∑

q∈♦p rtc

Cqp rtc(n̄) + Cp rtcp rtc(n̄)

From lemma 7, we obtain∑
q∈♦

Cqp rtc(n̄) =
∑

q∈♦p rtc

Cqp rtc(n̄) + Cp(n̄)

Finally, from equation 6.1, and subtracting Cp(n̄) to both sides of the equality, we
conclude that

Cp rtc(n̄)− Cp(n̄) =
∑

q∈♦p rtc

Cqp rtc(n̄)

Thus, we only need to infer accumulated costs and combine them to both detect
hot spots and compute the absolute run-time checking overhead, or the rtc ratio

described in Section 6.3.2.

Example 13 (Detecting hot spots). Let app1 rtc/3 denote the instrumented
version for run-time checking of predicate app1/3 in Example 5. The following
table shows the cost centers automatically declared by the system, which are the
predicate app1 rtc/3 itself and the run-time checking properties it uses (first
column), as well as the accumulated costs of a call to app1 rtc(A,B,) in each of
those cost centers, where lX represents the length of list X (second column):

93

CHAPTER 6. APPLICATION: ESTIMATION AND VERIFICATION OF
RUN-TIME CHECKING OVERHEADS

Table 6.1: Description of the benchmarks.

app1(A,B,) list concatenation
oins(E,L,) insertion into an ordered list
mmtx(A,B,) matrix multiplication
nrev(L,) list reversal

ldiff(A,B,) 2 lists difference
sift(A,) sieve of Eratosthenes

pfxsum(A,) sum of prefixes of a list of numbers
bsts(N,T) membership checks in a binary search tree

Cost center (ck) Cckapp1 rtc(lA, lB)

app1 rtc/3 lA + 1
list/1 3× (lA− 1)2 + 6× (lA + 1)×

(lB + 1)
+8× (lA + 1)− 12

var/1 lA + 1
bit ops/1 3× (lA + 1)

With these results, from the formula 6.1 and lemmas 7 and 8, we obtain the
following costs:

Capp1 rtc(lA, lB)− Capp1(lA, lB) ≤ 3× (lA − 1)2

+ 6× (lA + 1)× (lB + 1)

+ 12× (lA + 1)− 12

Capp1 rtc(lA, lB) ≤ 3× (lA − 1)2

+ 6× (lA + 1)× (lB + 1)

+ 13× (lA + 1)− 12

Capp1(lA, lB) ≤ lA + 1

It is clear that the hot spot is the list/1 property, which is responsible for the
change in complexity order of the instrumented version app1 rtc/3 from linear to
quadratic.

6.4 Implementation and Experimental Evalua-

tion

We have implemented a prototype of our approach by modifying the Ciao system,
and in particular CiaoPP’s abstract interpretation-based resource usage analysis

94

Chapter 6. Application: Estimation and Verification of Run-time Checking
Overheads

and CiaoPP’s libraries implementing different components for static and dynamic
verification (run-time checking transformation, function comparison, etc.).

Table 6.1 contains a list of the benchmarks that we have used in our ex-
periments.1 Each benchmark has assertions with properties related to shapes,
instantiation state, variable freeness, and variable sharing, as well as in some cases
more complex properties such as, for example, sortedness. The benchmarks and
assertions were chosen to be simple enough to have easily understandable costs
but at the same time produce interesting cost functions and overhead ratios.

As stated throughout the chapter, our objective is to exploit static cost analysis
to obtain guarantees on program performance and detect cases where adding
run-time checks introduces overhead that is not admissible. To this end, we
have considered the code instrumentation scenarios discussed previously, i.e. (cf.
Examples 7 and 8):

performance static checking run-time checking instr.
Original no no (off)

Worst no yes (full)
Base eterms + shfr yes (opt)

and we have performed for each benchmark and each scenario run-time checking
overhead analysis and verification, following the proposed approach. The optimiza-
tion in the opt case consists in statically proving some of the properties appearing
in the assertions, using different static analyses and using this information to
eliminate the checks that are proved to always succeed, as in Example 6. In our
experiments we apply this to two classes of properties. The first one is the state
of instantiation of variables, i.e., which variables are bound to ground terms, or
unbound, and, if they are unbound, the sharing (aliasing) patterns, i.e., which
variables point to each other (“share”). This is a property that can appear in
assertions (typically stating that a variable is independent of others) but, more
importantly, it is also very important to track grounding information (“strong
update”), to ensure the correctness and precision of the state of instantiation
information. These properties are approximated using the sharing and freeness
(shfr) domain [81, 82]. The second class of properties we will be using refers to
the shapes of the data structures constructed by the program in memory. To
this end we use the eterms [114] abstract domain which infers safely these shapes
as regular trees. The inferred abstractions are useful for simplifying properties
referring to the types/shapes of arguments in assertions.

Regarding the cost analysis, the resource inferred in these experiments is the
number of resolution steps (i.e., each clause body is assumed to have unitary cost).
While in practice other resources can be of interest (time, memory, energy, etc.),
the number of resolution steps is a good abstraction for our purposes and the

1Sources and additional information available at http://cliplab.org/papers/

rtchecks-cost/.

95

http://cliplab.org/papers/rtchecks-cost/
http://cliplab.org/papers/rtchecks-cost/

CHAPTER 6. APPLICATION: ESTIMATION AND VERIFICATION OF
RUN-TIME CHECKING OVERHEADS

Table 6.2: Experimental results (benchmarks for which analysis infers exact cost
functions).

Bench RTC Bound Inferred TA(ms) Ovhd Verif.

app1(A,B,)

off lA + 1 98.13

full 3 · lA2 + 6 · lA · lB + 16 · lA + 6 · lB + 13 521.18 lA + lB false

opt 3 · lA + 2 · lB + 8 311.98 lB
lA

+ 1 false

nrev(L,)

off 1
2 · lL

2 + 3
2 · lL + 1 218.15

full 1
2 · lL

3 + 17
2 · lL

2 + 21 · lL + 11 885.08 lL false

opt 1
2 · lL

2 + 5
2 · lL + 7 756.82 1 checked

sift(A,)

off 1
2 · lA

2 + 3
2 · lA + 1 255.55

full 2
3 · lA

3 + 7 · lA2 + 49
3 · lA + 10 980.63 lA false

opt 1
2 · lA

2 + 7
2 · lA + 5 521.65 1 checked

pfxsum(A,)

off lA + 2 146.98

full 2 · lA2 + 15 · lA + 20 749.94 lA false

opt 3 · lA + 7 469.71 1 checked

techniques carry over straightforwardly to the other resources. The times in the
tables are given in milliseconds. The experiments were performed on a MacBook
Pro with 2.5GHz Intel Core i5 CPU, 10 GB 1333 MHz DDR3 memory, running
macOS Sierra 10.2.6.

Tables 6.2 and 6.3 show the results that our prototype obtains for the different
benchmarks. In Table 6.2 we group the benchmarks for which the analysis is able
to infer the exact cost function, while in Table 6.3 we have the benchmarks for
which the analysis infers a safe upper-bound of their actual resource consumption.
The analysis also infers lower bounds, but we do not show them and concentrate
instead on the upper bounds for conciseness. Note that in those cases where the
analysis infers exact bounds (Table 6.2), the inferred lower and upper bounds are
of course the same. Column Bench shows the name of the entry predicate for
each benchmark. Column RTC indicates the scenario, as defined before, i.e., no
run-time checks (off); full run-time checks (full); or only those left after optimizing
via static verification (opt).

Column Bound Inferred shows the resource usage functions inferred by our
resource analysis, for each of the cases. These functions depend on the input
data sizes of the entry predicate (as before, lX represents the length of list X).

96

Chapter 6. Application: Estimation and Verification of Run-time Checking
Overheads

In order to measure the precision of the functions inferred, in Column %D we
show the average deviation of the bounds obtained by evaluating the functions
in Column Bound Inferred, with respect to the costs measured with dynamic
profiling. The input data for dynamic profiling was selected to exhibit worst case
executions. In those cases where the inferred bounds are exact, the deviation is
always 0.0%. In Column Ovhd we show the relative run-time checking overhead as
the ratio (rtc ratio) between the complexity order of the cost of the instrumented
code (for full or opt), and the complexity order of the cost corresponding to the
original code (off). Finally, in Column TA(ms) we list the cost analysis time for
each of the three cases.2

From the results shown in Column Ovhd we see that the analysis correctly
detects that the full run-time checking versions of the benchmarks (full case) are
asymptotically worse than the original program, showing for example a linear
asymptotic ratio (run-time checking overhead) for oins/3, or even exponential for
bsts/2. In the case of app/3, we can see that the asymptotic relative overhead
is linear, but the instrumented versions become dependent on the size of both
arguments, while originally the cost was only depending on the size of the first list
(though probably it is still worthwhile performing the checks since a list check on
the second argument should have been performed anyway in the code). On the
other hand, for all the benchmarks except for app/3 and bsts/2, the resulting
asymptotic relative overhead of the optimized run-time checking version (opt case),
is null, i.e., Ovhd = 1.

In the case of bsts/2, the overhead is still exponential because the type
analysis is not able to statically prove the property binary search tree. Thus, it is
still necessary to traverse the input binary tree at run-time in order to verify it.
However, the optimized version traverses the input tree only once, while the full
version traverses it on each call, which is reflected in the resulting cost function. In
any case, note that the exponential functions are on the depth of the tree dT , not
on the number of nodes. Analogously, in oins/3 the static analysis is not able to
prove the sorted property for the input list, although in that case the complexity
order does not change for the optimized version, only the constant coefficients of
the cost function are increased. We have included optimized versions of these two
cases (marking them with *) to show the change in the overhead if the properties
involved were verified; however, the eterms+shfr domains used cannot prove these
complex properties.

Column Verif. shows the result of verification (i.e.,
checked/false/check) assuming a global assertion for all predicates in all the
benchmarks stating that the relative run-time checking overhead should not be
larger than 1 (Ovhd ≤ 1). Finally, Column TA(ms) shows that the analysis time

2This time does not include the static analysis and verification time in the opt case, performed
with the eterms+shfr domains, since the process of simplifying at compile-time the assertions is
orthogonal to the work presented in this chapter. Recent experiments and results on this topic
can be found in [108].

97

CHAPTER 6. APPLICATION: ESTIMATION AND VERIFICATION OF
RUN-TIME CHECKING OVERHEADS

Table 6.3: Experimental results (rest of the benchmarks; we show the upper
bounds).

Bench RTC Bound Inferred %D TA(ms) Ovhd Verif.

oins(E,L,)

off lL + 2 0.09 142.55

full 3 · (lL + 1)2 + 10 · LL + 11 99.93 917.39 lL false

opt* 3 · lL + 6 50.14 340.15 1 checked

mmtx(A,B,)

off rA ·cA ·cB+3·rA ·cB+2·rA−2·cB 7.58 460.21

full 4 ·rA2cA ·cB +4 ·rA2 ·cA+4 ·rA2 ·
cB + 4 · rA2 + rA · cA2 · cB + 4 · rA ·
cA

2 + 2 · rA · cA · cB2 + 11 · rA · cA ·
cB + 20 · rA · cA + 15 · rA + 7

0.0 1682.54 N † false

opt rA · cA · cB + 2 · cA · cB + 2 · rA ·
cA+ 4 · rA · cA+ 6 · rA+ 2 · cA+ 11

0.0 1120.23 1 checked

ldiff(A,B,)

off lA · lB + 2 · lA + 1 2.06 786.22

full lA
2 +3 · lA · lB +13 · lA+2 · lB +10 0.27 1769.22 lA

lB
+ 1 false

opt lA · lB + 5 · lA + 2 · lB + 6 0.0 1226.15 1 checked

bsts(N,T)

off dT + 3 0.1 714.83

full 3 · 2(dT +2) + 3
2 · d

2
T + 27

2 · dT + 20 1.19 438.72
2dT

dT
false

opt* 3 · 2(dT +1) + 4 · dT + 14 4.01 245.09
2dT

dT
false

†N = max(rA, cA, cB)

is ≈ 4 times slower on versions with full instrumentation, and ≈ 2 times slower
on versions instrumented with run-time checks after static analysis, respectively,
but in any case all analysis times are small.

We believe that these results are encouraging and strongly suggest that our
approach can provide information that can help the programmer understand
statically, at the algorithmic level whether the overheads introduced by the run-
time checking required by the assertions in the program are acceptable or not.

6.5 Conclusions

We have proposed a method that uses static analysis to infer bounds on the
overhead that run-time checking introduces in programs. The bounds are func-
tions parameterized by input data sizes. Unlike profiling, this approach can

98

Chapter 6. Application: Estimation and Verification of Run-time Checking
Overheads

provide guarantees for all possible execution traces, and allows assessing how the
overhead grows as the size of the input grows. We have also extended the Ciao
assertion verification framework to express “admissible” overheads, and statically
and automatically check whether the instrumented program conforms with such
specifications. Our experimental evaluation suggests that our method is feasible
and also promising in providing bounds that help the programmer understand at
the algorithmic level the overheads introduced by the run-time checking required
for the assertions in the program, in different scenarios, such as performing full
run-time checking or checking only the module interfaces.

Since our static analysis is compositional, there are no theoretical limits to the
size of programs it can be applied to. Our approach incorporates a mechanism,
the trust assertions of Ciao, that allows the programmer to provide the cost of any
predicate for which the analysis infers an imprecise result, so that the imprecision
does not propagate to the rest of the code. This is of course a burden, but it is
obviously less work than the alternative without the tool, i.e., having to reason
about every predicate. The approach is in any case useful even for small programs,
since it can uncover (changes in) costs that are not immediately obvious even in
such programs (see Example 10).

In general, the user should reason about the cost of the run-time checking
performed by the program in the same way as about that of the rest of the
code. Our tool addresses both of these tasks. Note that, since both tasks are
undecidable, the best it can do is compute safe approximations. Since our tool
cannot possibly solve the problem completely, its objective is instead to assist the
programmer in these two tasks in a formally correct way. Again, the underlying
argument is that it will always be better to have this tool take care of a good part
of both tasks, rather than having to do everything by hand.

We believe that the application of static cost analysis for estimating the impact
of run-time checks on program cost and complexity is an important contribution,
and that an interesting synergy emerges from this combination. The use of run-time
checks is unavoidable in many situations where it is not feasible to verify statically
a given property and it is still necessary to guarantee that no incorrect execution
is allowed. In this scenario our approach allows the programmer to annotate
the program with pre- and post-conditions, but additionally with conditions
about the admissible impact of run-time checking, in such a way that some alerts
and guarantees can be received statically regarding the final performance of the
program. We believe that this is essential for making design decisions, specially
regarding performance-correctness trade-offs.

Note also that a useful aspect of our approach is that a change in an imple-
mentation of a predicate with the same interface but introducing an undesirable
cost can be detected through an assertion violation.

Finally, as argued in the introduction and in the context of the discussion of
Horn clauses as intermediate representation (and illustrated by our previous work
with Java, Java bytecode, or XC), although we have presented our proposal for

99

CHAPTER 6. APPLICATION: ESTIMATION AND VERIFICATION OF
RUN-TIME CHECKING OVERHEADS

concreteness in the context of the Ciao system and applied it to logic programs,
we believe the approach is general and can be applied directly to other languages
and systems.

100

7
Conclusions and Future Work

This thesis addresses the construction of effective analysis tools capable of assisting
in the development and optimization of a wide range of software systems, in
terms of resource consumption, considering a very general notion of resource. In
particular, we improve and extend state-of-the-art static cost analysis techniques
by developing a novel, general and flexible framework for cost analysis that can
be easily instantiated to infer a wide range of resources, notions of costs, and
approximations, which can deal with different programming languages, platforms
and execution models.

In Chapter 3 we have presented a novel, general, and flexible framework for
setting up cost equations/relations which can be instantiated for performing a
wide range of resource usage analyses, including both static profiling and the
standard notion of cost. Our proposal is an extension and generalization of the
standard resource analysis techniques in which the cost relations produced and
solved include additional Boolean control variables which allow switching on or
off different terms in the relations, as required by the desired type of resource
usage analysis. We have also shown how, with a particular Boolean variable
assignment, our framework can be instantiated for performing static profiling
of accumulated cost, with the results also parameterized by input data sizes.
We have reported on an implementation of this general framework within the
CiaoPP system, and its instantiation for accumulated cost, and provided some
experimental results. The results show that this instantiation of the proposed
framework for accumulated cost, in addition to being able to provide results for
non-deterministic/multiple solutions programs, is also more efficient than the
previous approach based on program transformation, and has a good number
of additional advantages. Since our approach is quite general, it can be applied
to other logic-based formalisms, such as Constraint Handling Rules, where cost
bounds can be inferred and accumulated on constraints/rules. In particular, the
fact that cost relations provide a language-independent representation makes
such application much easier than, e.g., the application of our previous ad-hoc

101

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

transformation-based approach. In summary, our tool helps developers to detect
the hot spots with the highest impact in resource usage, potentially minimizing
the optimization effort, while maximizing the gains in performance.

In the future, we plan to improve and extend the static profiling presented
in several aspects. Currently it is able infer how the total cost of a single call
to a predicate is distributed over a set of points of interest, called cost centers.
However, we have defined cost centers as predicates in the program under analysis,
although a more general notion of cost center can have great utility. For example,
we could define sets of predicates as cost centers representing different aspects
of interest, such as the set {login user, authorize access, revoke access,. . .}
representing the cost center security. Another interesting extension is to be able
to define a (set of) literals as a cost center, in case we are interested in particular
calls to predicates. Another possibility is to extend the definition of cost centers
with conditions involving the current (abstract) execution environment.

In Chapter 4 we have presented an extension to our parametric framework that
can be instantiated for estimating the resource usage of parallel logic programs,
for a wide range of resources, platforms, and execution models. To the best of our
knowledge, this is the first approach to the cost analysis of parallel logic programs.
Such estimations include both lower and upper bounds, given as functions on
input data sizes. In addition, our analysis also infers other information which
is useful for improving the exploitation and assessing the potential and actual
parallelism of a program.

We have developed a prototype implementation of our general framework, and
instantiated it for the analysis of logic programs with Independent And-Parallelism.
However, we have left the instantiations for other types of parallelism as future
work. For example, we plan to explore the analysis of unrestricted And-parallel
programs [22], and dealing with the more general and flexible parallel execution
operators provided by this execution model.

In Chapter 5 we have extended the recurrence solver present in the CiaoPP
system. Concretely, we have integrated specialized solvers into a modular solver
architecture, in order to extend the capabilities of our analysis. We have also
presented a novel solver that follows a guess and check approach, using linear
regression with Lasso regularization for the guess stage, and a combination of an
SMT-solver and a Computer Algebra System for the check step. We illustrate
with a set of examples how this approach is useful for improving the scalability and
applicability of our static cost analysis. Additionally, we have proposed a method
to solve a subclass of recurrences which include a maximization operator. Together,
these methods can augment the capabilities of existing recurrence solvers.

In Chapter 6 we have applied our parametric cost analysis framework in a
novel application. In particular, we use the static analysis to infer bounds on
the overhead that run-time checking introduces in programs. The bounds are
functions parameterized by input data sizes. Unlike profiling, this approach can
provide guarantees for all possible execution traces, and allows assessing how the

102

Chapter 7. Conclusions and Future Work

overhead grows as the size of the input grows. We have also extended the Ciao
assertion verification framework to specify “admissible” overheads, and statically
and automatically check whether the instrumented program conforms with such
specifications. Our experimental evaluation suggests that our method is feasible
and also promising in providing bounds that help the programmer understand at
the algorithmic level the overheads introduced by the run-time checking required
for the assertions in the program, in different scenarios, such as performing full
run-time checking or checking only the module interfaces. Since our static analysis
is compositional, there are no theoretical limits to the size of programs it can be
applied to. The approach has proven to be useful even for small programs, since
it can uncover (changes in) costs that are not immediately obvious even in such
programs.

In the future, we plan to consider other applications of our parametric cost
analysis framework, such as the development of resource-oriented automatic
optimizations. For example, we plan to define effective methods that use static
profiling for identifying hot-spots and the possible causes of performance bugs. In
this sense, a tool could automatically select the most appropriate transformations
that improve the performance of these parts of the program, while preserving its
functionality.

Finally, as an overall conclusion, we have shown how to further generalize and
extend the classical parametric cost approach in order to address the challenges
posed by current computing platforms and applications, paving the way to the
rapid and effective implementation and maintenance of cost analyzers that adapt
to continuous changes in many aspects, including the execution models and the
type of resource usage information required by applications.

103

8
Bibliography

[1] (2012). MPI: A Message-Passing Interface Standard, Version 3.0. Message
Passing Interface Forum.

[2] (2013). OpenMP Application Program Interface, Version 4.0. OpenMP
Architecture Review Board.

[3] (2014). CUDA Toolkit Documentation v6.5. NVIDIA Corporation.

[4] Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., and Puebla, G.
(2011a). Cost Analysis of Concurrent OO programs. In The 9th Asian Sym-
posium on Programming Languages and Systems (APLAS’11), volume 7078,
pages 238–254. Springer.

[5] Albert, E., Arenas, P., Genaim, S., and Puebla, G. (2008). Cost Relation
Systems: a Language–Independent Target Language for Cost Analysis. In 8th
Spanish Conference on Programming and Computer Languages (PROLE’08),
volume 17615 of Electronic Notes in Theoretical Computer Science. Elsevier.

[6] Albert, E., Arenas, P., Genaim, S., and Puebla, G. (2011b). Closed-Form
Upper Bounds in Static Cost Analysis. Journal of Automated Reasoning,
46(2):161–203.

[7] Albert, E., Arenas, P., Genaim, S., Puebla, G., and Zanardini, D. (2007). Cost
Analysis of Java Bytecode. In Nicola, R. D., editor, 16th European Symposium
on Programming, ESOP’07, volume 4421 of Lecture Notes in Computer Science,
pages 157–172. Springer.

[8] Albert, E., Arenas, P., Genaim, S., Puebla, G., and Zanardini, D. (2012).
Cost Analysis of Object-Oriented Bytecode Programs. Theoretical Computer
Science (Special Issue on Quantitative Aspects of Programming Languages),
413(1):142–159.

105

CHAPTER 8. BIBLIOGRAPHY

[9] Albert, E., Arenas, P., Genaim, S., and Zanardini, D. (2011c). Task-Level
Analysis for a Language with Async-Finish parallelism. In Vitek, J. and Sutter,
B. D., editors, Proceedings of the ACM SIGPLAN/SIGBED 2011 conference on
Languages, compilers, and tools for embedded systems, LCTES 2011, Chicago,
IL, USA, April 11-14, 2011, pages 21–30. ACM.

[10] Albert, E., Correas, J., Johnsen, E. B., Pun, K. I., and Román-Dı́ez, G.
(2018). Parallel cost analysis. ACM Trans. Comput. Logic, 19(4):31:1–31:37.

[11] Albert, E., Genaim, S., and Masud, A. N. (2011d). More Precise yet Widely
Applicable Cost Analysis. In 12th Verification, Model Checking, and Abstract
Interpretation (VMCAI’11), volume 6538 of Lecture Notes in Computer Science,
pages 38–53. Springer Verlag.

[12] Alonso, L., Reingold, E. M., and Schott, R. (1995). Multidimensional divide-
and-conquer maximin recurrences. SIAM J. Discret. Math., 8(3):428–447.

[13] Annavaram, M. (2006). Energy per instruction trends in intel microprocessors.
Technology Intel Magazine.

[14] Bjørner, N., Fioravanti, F., Rybalchenko, A., and Senni, V., editors (2014).
Workshop on Horn Clauses for Verification and Synthesis. Electronic Proceed-
ings in Theoretical Computer Science.

[15] Blelloch, G. E. and Greiner, J. (1996). A provable time and space efficient
implementation of NESL. In ACM SIGPLAN International Conference on
Functional Programming, pages 213–225.

[16] Boogerd, C. and Moonen, L. (2008). On the use of data flow analysis in
static profiling. In Source Code Analysis and Manipulation, 2008 Eighth IEEE
International Working Conference on, pages 79–88.

[17] Boye, J., Drabent, W., and Ma luszyński, J. (1997). Declarative Diagnosis of
Constraint Programs: an Assertion-based Approach. In Proc. of the 3rd. Int’l
Workshop on Automated Debugging–AADEBUG’97, pages 123–141, Linköping,
Sweden. U. of Linköping Press.

[18] Brandner, F., Hepp, S., and Jordan, A. (2012). Static profiling of the worst-
case in real-time programs. In Proceedings of the 20th International Conference
on Real-Time and Network Systems, RTNS 2012, pages 101–110, New York,
NY, USA. ACM.

[19] Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., and Giesl, J. (2014).
Alternating runtime and size complexity analysis of integer programs. In
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 140–155. Springer.

106

Chapter 8. Bibliography

[20] Bueno, F., Deransart, P., Drabent, W., Ferrand, G., Hermenegildo, M. V.,
Maluszynski, J., and Puebla, G. (1997). On the Role of Semantic Approxima-
tions in Validation and Diagnosis of Constraint Logic Programs. In Proc. of the
3rd Int’l. Workshop on Automated Debugging–AADEBUG’97, pages 155–170,
Linköping, Sweden. U. of Linköping Press.

[21] Cartwright, R. and Fagan, M. (1991). Soft Typing. In Proceedings of
the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation (PLDI 1991), pages 278–292, New York, NY, USA. ACM.

[22] Casas, A., Carro, M., and Hermenegildo, M. V. (2008). A High-Level Imple-
mentation of Non-Deterministic, Unrestricted, Independent And-Parallelism.
In Garćıa de la Banda, M. and Pontelli, E., editors, 24th International Confer-
ence on Logic Programming (ICLP’08), volume 5366 of LNCS, pages 651–666.
Springer-Verlag.

[23] Cousot, P. and Cousot, R. (1977). Abstract Interpretation: a Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In ACM Symposium on Principles of Programming Languages
(POPL’77), pages 238–252. ACM Press.

[24] de Moura, L. M. and Bjørner, N. (2008). Z3: An Efficient SMT Solver.
In Ramakrishnan, C. R. and Rehof, J., editors, Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS
2008, volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer.

[25] Debray, S. K. and Lin, N. W. (1993). Cost Analysis of Logic Programs. ACM
Transactions on Programming Languages and Systems, 15(5):826–875.

[26] Debray, S. K., Lin, N.-W., and Hermenegildo, M. V. (1990). Task Granularity
Analysis in Logic Programs. In Proc. 1990 ACM Conf. on Programming
Language Design and Implementation (PLDI), pages 174–188. ACM Press.

[27] Debray, S. K., Lopez-Garcia, P., Hermenegildo, M. V., and Lin, N.-W. (1997).
Lower Bound Cost Estimation for Logic Programs. In 1997 International Logic
Programming Symposium, pages 291–305. MIT Press, Cambridge, MA.

[28] Dimoulas, C. and Felleisen, M. (2011). On Contract Satisfaction in a Higher-
Order World. ACM Transactions on Programming Languages and Systems
(TOPLAS), 33(5):1–29.

[29] Drabent, W., Nadjm-Tehrani, S., and Ma luszyński, J. (1988). The Use of
Assertions in Algorithmic Debugging. In Proceedings of the Intl. Conf. on Fifth
Generation Computer Systems, pages 573–581.

107

CHAPTER 8. BIBLIOGRAPHY

[30] Drabent, W., Nadjm-Tehrani, S., and Maluszynski, J. (1989). Algorithmic
debugging with assertions. In Abramson, H. and M.H.Rogers, editors, Meta-
programming in Logic Programming, pages 501–522. MIT Press.

[31] Fähndrich, M. and Logozzo, F. (2011). Static Contract Checking with
Abstract Interpretation. In Proceedings of the 2010 International Conference on
Formal Verification of Object-oriented Software, FoVeOOS’10, volume 6528 of
Lecture Notes in Computer Science, pages 10–30, Berlin, Heidelberg. Springer-
Verlag.

[32] Findler, R. B. and Felleisen, M. (2002). Contracts for Higher-Order Functions.
In Wand, M. and Jones, S. L. P., editors, Proceedings of the Seventh ACM
SIGPLAN International Conference on Functional Programming (ICFP ’02),
Pittsburgh, Pennsylvania, USA, October 4-6, 2002, pages 48–59. ACM.

[33] Flores-Montoya, A. (2016). Upper and lower amortized cost bounds of
programs expressed as cost relations. In Fitzgerald, J., Heitmeyer, C., Gnesi, S.,
and Philippou, A., editors, FM 2016: Formal Methods, pages 254–273, Cham.
Springer International Publishing.

[34] Furr, M., An, J.-h. D., and Foster, J. S. (2009). Profile-guided Static
Typing for Dynamic Scripting Languages. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’09, pages 283–300, New York, NY, USA. ACM.

[35] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres,
J. M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H.,
Daniel, D. J., Graham, R. L., and Woodall, T. S. (2004). Open MPI: Goals,
concept, and design of a next generation MPI implementation. In Proceedings,
11th European PVM/MPI Users’ Group Meeting, pages 97–104, Budapest,
Hungary.

[36] Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., and Fuhs, C. (2012).
Symbolic evaluation graphs and term rewriting: a general methodology for
analyzing logic programs. In Proceedings of PPDP’12, pages 1–12. ACM.

[37] Grebenshchikov, S., Gupta, A., Lopes, N. P., Popeea, C., and Rybalchenko,
A. (2012). HSF(C): A Software Verifier Based on Horn Clauses - (Competition
Contribution). In Flanagan, C. and König, B., editors, TACAS, volume 7214 of
LNCS, pages 549–551. Springer.

[38] Grobauer, B. (2001). Cost recurrences for DML programs. In Proceedings of
the Sixth ACM SIGPLAN International Conference on Functional Programming,
ICFP ’01, pages 253–264, New York, NY, USA. ACM.

108

Chapter 8. Bibliography

[39] Gulwani, S., Mehra, K. K., and Chilimbi, T. M. (2009). SPEED: Precise
and Efficient Static Estimation of Program Computational Complexity. In The
36th Symposium on Principles of Programming Languages (POPL’09), pages
127–139. ACM.

[40] Gupta, G., Pontelli, E., Ali, K., Carlsson, M., and Hermenegildo, M. V.
(2001). Parallel Execution of Prolog Programs: a Survey. ACM Transactions
on Programming Languages and Systems, 23(4):472–602.

[41] Haemmerlé, R., Lopez-Garcia, P., Liqat, U., Klemen, M., Gallagher, J. P.,
and Hermenegildo, M. V. (2016). A Transformational Approach to Parametric
Accumulated-cost Static Profiling. In Kiselyov, O. and King, A., editors, 13th
International Symposium on Functional and Logic Programming (FLOPS 2016),
volume 9613 of LNCS, pages 163–180. Springer.

[42] Hanus, M. (2017). Combining Static and Dynamic Contract Checking for
Curry. CoRR, abs/1709.04816.

[43] Harper, R. (2016). Practical Foundations for Programming Languages. Cam-
bridge University Press, 2 edition.

[44] Henriksen, K. S. and Gallagher, J. P. (2006). Abstract Interpretation of
PIC Programs through Logic Programming. In SCAM ’06, Proceedings of the
Sixth IEEE International Workshop on Source Code Analysis and Manipulation,
pages 184–196. IEEE Computer Society.

[45] Hermenegildo, M. and Rossi, F. (1995). Strict and Non-Strict Independent
And-Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time
Conditions. Journal of Logic Programming, 22(1):1–45.

[46] Hermenegildo, M. V., Bueno, F., Carro, M., Lopez-Garcia, P., Mera, E.,
Morales, J., and Puebla, G. (2012). An Overview of Ciao and its Design
Philosophy. Theory and Practice of Logic Programming, 12(1–2):219–252.

[47] Hermenegildo, M. V., Puebla, G., and Bueno, F. (1999). Using Global
Analysis, Partial Specifications, and an Extensible Assertion Language for
Program Validation and Debugging. In Apt, K. R., Marek, V., Truszczynski,
M., and Warren, D. S., editors, The Logic Programming Paradigm: a 25–Year
Perspective, pages 161–192. Springer-Verlag.

[48] Hermenegildo, M. V., Puebla, G., Bueno, F., and Lopez-Garcia, P. (2005).
Integrated Program Debugging, Verification, and Optimization Using Abstract
Interpretation (and The Ciao System Preprocessor). Science of Computer
Programming, 58(1–2):115–140.

109

CHAPTER 8. BIBLIOGRAPHY

[49] Hoefler, T. and Kwasniewski, G. (2014). Automatic complexity analysis of
explicitly parallel programs. In Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’14, pages 226–235, New
York, NY, USA. ACM.

[50] Hoffmann, J., Aehlig, K., and Hofmann, M. (2012). Multivariate amortized
resource analysis. ACM Transactions on Programming Languages and Systems,
34(3):14:1–14:62.

[51] Hoffmann, J. and Shao, Z. (2015). Automatic static cost analysis for parallel
programs. In Vitek, J., editor, Programming Languages and Systems, pages
132–157, Berlin, Heidelberg. Springer Berlin Heidelberg.

[52] Hojjat, H., Konecný, F., Garnier, F., Iosif, R., Kuncak, V., and Rümmer, P.
(2012). A Verification Toolkit for Numerical Transition Systems - Tool Paper.
In Giannakopoulou, D. and Méry, D., editors, FM 2012: Formal Methods -
18th International Symposium, Paris, France, August 27-31, 2012. Proceedings,
volume 7436 of Lecture Notes in Computer Science, pages 247–251. Springer.

[53] Hwang, H.-K. and Tsai, T.-H. (2003). An asymptotic theory for recurrence
relations based on minimization and maximization. Theoretical Computer
Science, 290(3):1475 – 1501.

[54] Igarashi, A. and Kobayashi, N. (2002). Resource usage analysis. In Proceedings
of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’02, pages 331–342, New York, NY, USA. ACM.

[55] Jayaseelan, R., Mitra, T., and Li, X. (2006). Estimating the worst-case
energy consumption of embedded software. In IEEE Real Time Technology and
Applications Symposium, pages 81–90. IEEE Computer Society.

[56] Kazerounian, M., Vazou, N., Bourgerie, A., Foster, J. S., and Torlak, E.
(2018). Refinement Types for Ruby. In Dillig, I. and Palsberg, J., editors,
Proceedings of the 19th International Conference on Verification, Model Check-
ing, and Abstract Interpretation, VMCAI’18, pages 269–290, Cham. Springer
International Publishing.

[57] Kincaid, Z., Breck, J., Boroujeni, A. F., and Reps, T. (2017). Compositional
recurrence analysis revisited. SIGPLAN Not., 52(6):248262.

[58] Klemen, M., Lopez-Garcia, P., Gallagher, J., Morales, J., and Hermenegildo,
M. V. (2020). A General Framework for Static Cost Analysis of Parallel
Logic Programs. In Gabbrielli, M., editor, Post-Proceedings of the 29th In-
ternational Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR’19), volume 12042 of LNCS, pages 19–35. Springer-Verlag.

110

Chapter 8. Bibliography

[59] Klemen, M., Stulova, N., Lopez-Garcia, P., Morales, J. F., and Hermenegildo,
M. V. (2018). Static Performance Guarantees for Programs with Run-time
Checks. In 20th Int’l. ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming (PPDP’18). ACM Press.

[60] Koukoutos, E. and Kuncak, V. (2014). Checking Data Structure Properties
Orders of Magnitude Faster. In Bonakdarpour, B. and Smolka, S. A., editors,
Runtime Verification, volume 8734 of Lecture Notes in Computer Science, pages
263–268. Springer International Publishing.

[61] Läı, C. (2000). Assertions with Constraints for CLP Debugging. In Der-
ansart, P., Hermenegildo, M. V., and Maluszynski, J., editors, Analysis and
Visualization Tools for Constraint Programming, volume 1870 of Lecture Notes
in Computer Science, pages 109–120. Springer.

[62] Lamport, L. and Paulson, L. C. (1999). Should Your Specification Language
be Typed? ACM Transactions on Programming Languages and Systems,
21(3):502–526.

[63] Leavens, G. T., Leino, K. R. M., and Müller, P. (2007). Specification and
verification challenges for sequential object-oriented programs. Formal Asp.
Comput., 19(2):159–189.

[64] Liqat, U., Georgiou, K., Kerrison, S., Lopez-Garcia, P., Hermenegildo, M. V.,
Gallagher, J. P., and Eder, K. (2016). Inferring Parametric Energy Consumption
Functions at Different Software Levels: ISA vs. LLVM IR. In Eekelen, M. V. and
Lago, U. D., editors, Foundational and Practical Aspects of Resource Analysis:
4th International Workshop, FOPARA 2015, London, UK, April 11, 2015.
Revised Selected Papers, volume 9964 of Lecture Notes in Computer Science,
pages 81–100. Springer.

[65] Liqat, U., Kerrison, S., Serrano, A., Georgiou, K., Lopez-Garcia, P., Grech,
N., Hermenegildo, M. V., and Eder, K. (2014). Energy Consumption Analysis
of Programs based on XMOS ISA-level Models. In Gupta, G. and Peña, R.,
editors, Logic-Based Program Synthesis and Transformation, 23rd International
Symposium, LOPSTR 2013, Revised Selected Papers, volume 8901 of Lecture
Notes in Computer Science, pages 72–90. Springer.

[66] Logozzo et al., F. (Accessed: 2018). Clousot. http://msdn.microsoft.com/
en-us/devlabs/dd491992.aspx.

[67] Lopez-Garcia, P., Darmawan, L., and Bueno, F. (2010). A Framework for
Verification and Debugging of Resource Usage Properties: Resource Usage
Verification. In Hermenegildo, M. V. and Schaub, T., editors, Technical
Communications of the 26th Int’l. Conference on Logic Programming (ICLP’10),

111

http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx

CHAPTER 8. BIBLIOGRAPHY

volume 7 of Leibniz International Proceedings in Informatics (LIPIcs), pages 104–
113, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[68] Lopez-Garcia, P., Darmawan, L., Bueno, F., and Hermenegildo, M. V. (2012).
Interval-Based Resource Usage Verification: Formalization and Prototype. In
na, R. P., Eekelen, M., and Shkaravska, O., editors, Foundational and Practical
Aspects of Resource Analysis. Second International Workshop FOPARA 2011,
Revised Selected Papers, volume 7177 of Lecture Notes in Computer Science,
pages 54–71. Springer-Verlag.

[69] Lopez-Garcia, P., Darmawan, L., Klemen, M., Liqat, U., Bueno, F., and
Hermenegildo, M. V. (2018). Interval-based Resource Usage Verification by
Translation into Horn Clauses and an Application to Energy Consumption.
Theory and Practice of Logic Programming, Special Issue on Computational
Logic for Verification, 18(2):167–223. arXiv:1803.04451.

[70] Lopez-Garcia, P., Hermenegildo, M. V., and Debray, S. K. (1996). A Method-
ology for Granularity Based Control of Parallelism in Logic Programs. Journal
of Symbolic Computation, Special Issue on Parallel Symbolic Computation,
21(4–6):715–734.

[71] Lopez-Garcia, P., Klemen, M., Liqat, U., and Hermenegildo, M. V. (2016). A
General Framework for Static Profiling of Parametric Resource Usage. Theory
and Practice of Logic Programming, 32nd Int’l. Conference on Logic Program-
ming (ICLP’16) Special Issue, 16(5-6):849–865.

[72] Méndez-Lojo, M., Navas, J., and Hermenegildo, M. (2007). A Flexible
(C)LP-Based Approach to the Analysis of Object-Oriented Programs. In 17th
International Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR 2007), number 4915 in Lecture Notes in Computer Science, pages
154–168. Springer-Verlag.

[73] Mera, E., Lopez-Garcia, P., Carro, M., and Hermenegildo, M. V. (2008).
Towards Execution Time Estimation in Abstract Machine-Based Languages. In
10th Int’l. ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP’08), pages 174–184. ACM Press.

[74] Mera, E., Lopez-Garcia, P., and Hermenegildo, M. V. (2009). Integrating
Software Testing and Run-Time Checking in an Assertion Verification Frame-
work. In 25th Int’l. Conference on Logic Programming (ICLP’09), volume 5649
of LNCS, pages 281–295. Springer-Verlag.

[75] Mera, E., Trigo, T., Lopez-Garcia, P., and Hermenegildo, M. V. (2011).
Profiling for Run-Time Checking of Computational Properties and Performance
Debugging in Logic Programs. In Practical Aspects of Declarative Languages

112

Chapter 8. Bibliography

(PADL’11), volume 6539 of Lecture Notes in Computer Science, pages 38–53.
Springer-Verlag.

[76] Meurer, A., Smith, C. P., Paprocki, M., Čert́ık, O., Kirpichev, S. B., Rocklin,
M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S.,
Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F.,
Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, v., Saboo, A., Fernando, I.,
Kulal, S., Cimrman, R., and Scopatz, A. (2017). Sympy: symbolic computing
in python. PeerJ Computer Science, 3:e103.

[77] Miné, A. (2012). Static analysis of run-time errors in embedded real-time
parallel C programs. Logical Methods in Computer Science (LMCS), 8(26):63.
http://www.di.ens.fr/~mine/publi/article-mine-LMCS12.pdf.

[78] Moore, G. E. et al. (1975). Progress in digital integrated electronics. In
Electron devices meeting, volume 21, pages 11–13.

[79] Morgan, R. G. and Jarvis, S. A. (1998). Profiling Large-Scale Lazy Functional
Programs. Journal of Functional Programing, 8(3):201–237.

[80] MSR (Accessed: 2018). Code contracts. http://research.microsoft.com/
en-us/projects/contracts/.

[81] Muthukumar, K. and Hermenegildo, M. (1991). Combined Determination of
Sharing and Freeness of Program Variables Through Abstract Interpretation.
In International Conference on Logic Programming (ICLP 1991), pages 49–63.
MIT Press.

[82] Muthukumar, K. and Hermenegildo, M. (1992). Compile-time Derivation of
Variable Dependency Using Abstract Interpretation. Journal of Logic Program-
ming, 13(2/3):315–347.

[83] Navas, J., Méndez-Lojo, M., and Hermenegildo, M. (2008). Safe Upper-
bounds Inference of Energy Consumption for Java Bytecode Applications. In
The Sixth NASA Langley Formal Methods Workshop (LFM 08), pages 29–32.
Extended Abstract.

[84] Navas, J., Mera, E., Lopez-Garcia, P., and Hermenegildo, M. (2007). User-
Definable Resource Bounds Analysis for Logic Programs. In 23rd International
Conference on Logic Programming (ICLP’07), volume 4670 of Lecture Notes in
Computer Science, pages 348–363. Springer. 10-year Test of Time Award.

[85] Nguyen, P. C., Tobin-Hochstadt, S., and Van Horn, D. (2014). Soft Contract
Verification. In Proceedings of the 19th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP ’14, pages 139–152, New York, NY,
USA. ACM.

113

http://www.di.ens.fr/~mine/publi/article-mine-LMCS12.pdf
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/

CHAPTER 8. BIBLIOGRAPHY

[86] Nguyen, P. C., Tobin-Hochstadt, S., and Van Horn, D. (2017). Higher-
order Symbolic Execution for Contract Verification and Refutation. Journal of
Functional Programming, 27(3).

[87] Nielson, F., Nielson, H., and Seidl, H. (2002). Automatic complexity analysis.
In Programming Languages and Systems, volume 2305 of Lecture Notes in
Computer Science, pages 243–261. Springer Berlin Heidelberg.

[88] Papi, M. M., Ali, M., Jr., T. L. C., Perkins, J. H., and Ernst, M. D. (2008).
Practical pluggable types for java. In Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2008, Seattle,
WA, USA, July 20-24, 2008, pages 201–212.

[89] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
(2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830.

[90] Pietrzak, P., Correas, J., Puebla, G., and Hermenegildo, M. V. (2006).
Context-Sensitive Multivariant Assertion Checking in Modular Programs. In
13th International Conference on Logic for Programming Artificial Intelligence
and Reasoning (LPAR’06), number 4246 in LNCS, pages 392–406. Springer-
Verlag.

[91] Podelski, A. and Rybalchenko, A. (2004). A Complete Method for the
Synthesis of Linear Ranking Functions. In 5th International Conference on
Verification, Model Checking and Abstract Interpretation (VMCAI’04), Lecture
Notes in Computer Science, pages 239–251. Springer.

[92] Portillo, Á. R., Hammond, K., Loidl, H.-W., and Vasconcelos, P. (2002).
Cost Analysis Using Automatic Size and Time Inference. In Proceedings of the
International Workshop on Implementation of Functional Languages, volume
2670 of Lecture Notes in Computer Science, pages 232–247, Madrid, Spain.
Springer-Verlag.

[93] Puebla, G., Bueno, F., and Hermenegildo, M. V. (2000a). An Assertion
Language for Constraint Logic Programs. In Deransart, P., Hermenegildo,
M. V., and Maluszynski, J., editors, Analysis and Visualization Tools for
Constraint Programming, number 1870 in LNCS, pages 23–61. Springer-Verlag.

[94] Puebla, G., Bueno, F., and Hermenegildo, M. V. (2000b). Combined Static
and Dynamic Assertion-Based Debugging of Constraint Logic Programs. In
Logic-based Program Synthesis and Transformation (LOPSTR’99), number 1817
in LNCS, pages 273–292. Springer-Verlag.

114

Chapter 8. Bibliography

[95] Puebla, G. and Hermenegildo, M. V. (1996). Optimized Algorithms for
the Incremental Analysis of Logic Programs. In International Static Analysis
Symposium (SAS 1996), number 1145 in Lecture Notes in Computer Science,
pages 270–284. Springer-Verlag.

[96] Rastogi, A., Swamy, N., Fournet, C., Bierman, G. M., and Vekris, P. (2015).
Safe & Efficient Gradual Typing for TypeScript. In Rajamani, S. K. and
Walker, D., editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai,
India, January 15-17, 2015, pages 167–180. ACM.

[97] Ren, B. M. and Foster, J. S. (2016). Just-in-time Static Type Checking for
Dynamic Languages. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’16, pages 462–476,
New York, NY, USA. ACM.

[98] Rosendahl, M. (1989). Automatic Complexity Analysis. In 4th ACM Con-
ference on Functional Programming Languages and Computer Architecture
(FPCA’89), pages 144–156. ACM Press.

[99] Sansom, P. M. and Jones, S. L. P. (1995). Time and Space Profiling for
Non-Strict, Higher-Order Functional Languages. In Cytron, R. K. and Lee,
P., editors, Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL’95, pages 355–366, New York,
NY, USA. ACM.

[100] Schrijvers, T., Santos Costa, V., Wielemaker, J., and Demoen, B. (2008).
Towards Typed Prolog. In Pontelli, E. and de la Banda, M. M. G., editors,
International Conference on Logic Programming, number 5366 in LNCS, pages
693–697. Springer Verlag.

[101] Serrano, A., Lopez-Garcia, P., Bueno, F., and Hermenegildo, M. V. (2013).
Sized Type Analysis for Logic Programs. In Swift, T. and Lamma, E., ed-
itors, Theory and Practice of Logic Programming, 29th Int’l. Conference on
Logic Programming (ICLP’13) Special Issue, On-line Supplement (technical
communication), volume 13, pages 1–14. Cambridge U. Press.

[102] Serrano, A., Lopez-Garcia, P., and Hermenegildo, M. V. (2014). Resource
Usage Analysis of Logic Programs via Abstract Interpretation Using Sized
Types. Theory and Practice of Logic Programming, 30th Int’l. Conference on
Logic Programming (ICLP’14) Special Issue, 14(4-5):739–754.

[103] Shen, K. and Hermenegildo, M. (1996). High-level Characteristics of Or- and
Independent And-parallelism in Prolog. Int’l. Journal of Parallel Programming,
24(5):433–478.

115

CHAPTER 8. BIBLIOGRAPHY

[104] Siek, J. G. and Taha, W. (2006). Gradual Typing for Functional Languages.
In Scheme and Functional Programming Workshop, pages 81–92.

[105] Sinn, M., Zuleger, F., and Veith, H. (2014). A simple and scalable static
analysis for bound analysis and amortized complexity analysis. In Biere, A.
and Bloem, R., editors, Computer Aided Verification, pages 745–761, Cham.
Springer International Publishing.

[106] St-Amour, V., Andersen, L., and Felleisen, M. (2015). Feature-Specific
Profiling. In Franke, B., editor, Proceedings of the 24th International Conference
on Compiler Construction, pages 49–68, Berlin, Heidelberg. Springer Berlin
Heidelberg.

[107] Stulova, N., Morales, J. F., and Hermenegildo, M. V. (2015). Practical
Run-time Checking via Unobtrusive Property Caching. Theory and Practice of
Logic Programming, 31st Int’l. Conference on Logic Programming (ICLP’15)
Special Issue, 15(04-05):726–741. http://arxiv.org/abs/1507.05986.

[108] Stulova, N., Morales, J. F., and Hermenegildo, M. V. (2018). Some Trade-
offs in Reducing the Overhead of Assertion Run-time Checks via Static Analysis.
Science of Computer Programming, 155:3–26. Selected and Extended papers
from the 2016 International Symposium on Principles and Practice of Declarative
Programming.

[109] Takikawa, A., Feltey, D., Dean, E., Flatt, M., Findler, R. B., Tobin-
Hochstadt, S., and Felleisen, M. (2015). Towards Practical Gradual Typing. In
Boyland, J. T., editor, 29th European Conference on Object-Oriented Program-
ming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic, volume 37 of
LIPIcs, pages 4–27. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

[110] Takikawa, A., Feltey, D., Greenman, B., New, M. S., Vitek, J., and Felleisen,
M. (2016). Is Sound Gradual Typing Dead? In Bod́ık, R. and Majumdar, R.,
editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, pages 456–468. ACM.

[111] Tobin-Hochstadt, S. and Felleisen, M. (2008). The Design and Implementa-
tion of Typed Scheme. In Necula, G. C. and Wadler, P., editors, Proceedings of
the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2008), San Francisco, California, USA, January 7-12, 2008,
pages 395–406. ACM.

[112] Tobin-Hochstadt, S. and Horn, D. V. (2012). Higher-order symbolic execu-
tion via contracts. In Leavens, G. T. and Dwyer, M. B., editors, Proceedings of
the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming,

116

Chapter 8. Bibliography

Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012,
Tucson, AZ, USA, October 21-25, 2012, pages 537–554. ACM.

[113] Vasconcelos, P. and Hammond, K. (2003). Inferring Cost Equations for
Recursive, Polymorphic and Higher-Order Functional Programs. In Proceedings
of the International Workshop on Implementation of Functional Languages,
volume 3145 of Lecture Notes in Computer Science, pages 86–101. Springer-
Verlag.

[114] Vaucheret, C. and Bueno, F. (2002). More Precise yet Efficient Type
Inference for Logic Programs. In 9th International Static Analysis Symposium
(SAS’02), volume 2477 of Lecture Notes in Computer Science, pages 102–116.
Springer-Verlag.

[115] Vazou, N., Seidel, E. L., Jhala, R., Vytiniotis, D., and Peyton-Jones, S.
(2014). Refinement Types for Haskell. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’14, pages 269–282,
New York, NY, USA. ACM.

[116] Wang, B.-F. (2000). Tight bounds on the solutions of multidimen-
sional divide-and-conquer maximin recurrences. Theoretical Computer Science,
242(1):377 – 401.

[117] Wegbreit, B. (1975). Mechanical Program Analysis. Communications of the
ACM, 18(9):528–539.

[118] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley,
D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut,
I., Puschner, P., Staschulat, J., and Stenström, P. (2008). The worst-case
execution-time problem - Overview of methods and survey of tools. ACM Trans.
Embedded Comput. Syst., 7(3).

[119] Z3Py (2010). Z3 api in python. https://ericpony.github.io/

z3py-tutorial/guide-examples.htm. Accessed: 2010-09-30.

[120] Zuleger, F., Gulwani, S., Sinn, M., and Veith, H. (2012). Bound analysis
of imperative programs with the size-change abstraction (extended version).
CoRR, abs/1203.5303.

117

https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://ericpony.github.io/z3py-tutorial/guide-examples.htm

	1 Introduction
	1.1 State of the Art
	1.1.1 Cost Analysis of Parallel Programs
	1.1.2 Static Profiling
	1.1.3 Analysis of Run-Time Checking Overheads

	1.2 Thesis Objectives
	1.3 Contributions
	1.4 Organization

	2 The Standard Parametric Cost Relations Framework
	2.1 Resource Usage Semantics
	2.2 The Ciao Assertion Language
	2.2.1 Assertion Status
	2.2.2 Resource-related Properties

	2.3 Resource Definition
	2.3.1 Assertions for Resource Definitions

	2.4 Size Analysis
	2.5 Inferring Resource Usage Functions
	2.6 Resource Analysis as an Abstract Domain
	2.7 Example

	3 Static Profiling
	3.1 Introduction
	3.2 Generalizing the Standard Cost Relations Approach
	3.3 Instantiation for Parametric Accumulated-cost Static Profiling
	3.4 Implementation and Experimental Results
	3.5 Hot Spots Detection using Static Profiling
	3.5.1 Hot Spots Identification
	3.5.2 Calls and Size Analysis
	3.5.3 Interpreting the Results
	3.5.4 Hot Spots Optimizations

	3.6 Related Work
	3.7 Conclusions

	4 Analysis of Parallel Programs
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Cost Metrics for Parallel Programs
	4.2.2 Overview

	4.3 Our Extended Resource Analysis Framework for Parallel Programs
	4.4 Implementation and Experimental Results
	4.5 Related Work
	4.6 Conclusions

	5 Recurrence Solver Extensions
	5.1 Introduction and Motivation
	5.2 Solving Recurrence Relations using Linear Regression
	5.2.1 Overview of the Approach
	5.2.2 Preliminaries
	5.2.3 Description of the Approach
	5.2.4 Implementation and Experimental Evaluation

	5.3 Solving Recurrence Relations Including a Maximization Operator
	5.4 Conclusions

	6 Application: Estimation and Verification of Run-time Checking Overheads
	6.1 Introduction and Motivation
	6.2 Assertions and Run-time Checking
	6.2.1 Run-time Check Instrumentation

	6.3 Specifying, Analyzing, and Verifying Run-time Checking Overhead
	6.3.1 Computing the Run-time Checking Overhead (Ovhd)
	6.3.2 Expressing the Admissible Run-time Checking Overhead (AOvhd)
	6.3.3 Verifying the Admissible Run-time Checking Overhead (AOvhd)
	6.3.4 Using the Accumulated Cost for Detecting Hot Spots

	6.4 Implementation and Experimental Evaluation
	6.5 Conclusions

	7 Conclusions and Future Work
	8 Bibliography

