
Towards Checking Coding Rule Conformance
Using Logic Programming⋆

Guillem Marpons1, Manuel Carro1, Julio Mariño1, Ángel Herranz1,
Lars-Åke Fredlund1, and Juan José Moreno-Navarro1,2

1Universidad Politécnica de Madrid 2IMDEA Software
{gmarpons,mcarro,jmarino,aherranz,lfredlund,jjmoreno}@fi.upm.es

Coding Rules An approach to increasing program reliability and maintainability in-
volves a disciplined use of programming languages so as to minimise the hazards in-
troduced by error-prone features. This is accomplished by writing code that relies only
on a well-defined language subset described by a collection of so-calledcoding rules.
There are several corpora thereof, such as MISRA-C ([1], aimed at the C language)
or HICPP ([2], for C++). Some of them are intended for domains with special restric-
tions, like JavaCard (http://java.sun.com/products/javacard/). Additionally,
organisations can set up their own internal rules. Checkingthe conformance of source
code to a set of rules needs, in general, statically analysing such code.

One feature of coding rules is their diversity: they range from being trivially check-
able (MISRA-C 20.4: “do not use the malloc() function”) to expressing non-compu-
table properties (HICPP 3.1.9: “behavior must be implemented by only one member
function”). Among the rules that can be statically enforced (or, at least, checked in such
a way that the user can be directed to probably non-compliantcode) we have focused
on a particular class that we have termedstructural rules: those which deal with static
entities in the code (classes, member functions, etc.) and their properties and relation-
ships (inheritance, overriding, etc.) There seems to be comparatively less efforts towards
analysing theseprogramming-in-the-large issues than towards checking other runtime
properties (pointer sharing, index ranges, etc.) which arehowever interesting for other
rule types.

This work is part of the Global GCC project (GGCC,http://www.ggcc.info/),
a consortium of EU industrial corporations and research labs funded under the ITEA
Programme, which aims at enriching the capabilities of the GNU Compiler Collection
with advanced project-wide compile-time analysis capacities. In this context we are
adding a facility to define coding rule sets and providing mechanisms to check code
compliance. We plan to take advantage of the static analysers and syntax tools in GGCC.

A Framework for Formalisation and Checking A major drawback of actual coding
rules is that they are written in natural language, which bears ambiguity and undermines
any effort to apply them automatically. We chose to formalise them using first order
logic (similarly to [3]) as it is expressive enough to easilycapture the meaning of short
sentences in well-defined domains. Relationships between program entities are encoded
as facts (thus giving an abstract description of the program) and a formula is generated
for every coding rule. When these, together, are inconsistent, the program violates the

⋆ Work partially supported by PROFIT grants FIT-340005-2007-7 and FIT-350400-2006-
44 from the Spanish Ministry of Industry, Comunidad Autónoma de Madrid grant S-
0505/TIC/0407 (PROMESAS), Ministry of Education and Science grant TIN2005-09207-
C03-01 (MERIT/COMVERS) and EU IST FET grant IST-15905 (MOBIUS).



coding rule. We automate this process by generating a Prologprogram containing such
set of facts and clauses defining a predicate which describesa rule violation. Successful
queries to this predicate pinpoint infringements of the rule and the answer substitutions
identify a source of the violation. A closely related approach, applied to a different
realm, has been followed by [4,5].

We plan to provide a user-friendly domain-specific language[6, Section 4] which
works around Prolog peculiarities. A set of predefined predicates describing (structural)
program properties, gathered by a compiler, sits at the coreof this DSL.

An Example
Rule 3.3.15 of HICPP reads “ensure
base classes common to more than one
derived class are virtual”, where the
domain of discourse is the set of the
classes in the program. A scenario vio-
lating the coding rule is exemplified by
the predicate at the right.

violate_hicpp_3_3_15 (A,B,C,D) :-

class(A), class(B),

class(C), class(D), B \= C,

direct_base_of (A, B),

direct_base_of (A, C),

base_of(B, D), base_of(C, D),

\+ virtual_base_of (A, C).

class/1, direct_base_of/2, andvirtual_base_of/2 are synthesized from the pro-
gram to analyse. The diagram below is a concrete example which violates this rule, and
the facts at its right are a representation of the relationships in the diagram, needed to ap-
ply the code for the rule violation above. A query toviolate_hicpp_3_3_15(A,B,C,D)
would instantiate the variables to the class names in the example.

::Animal

::Mammal ::WingedAnimal

::Bat

virtual

class(’::Animal’).

class(’::Mammal’).

class(’::WingedAnimal’).

class(’::Bat’).

direct_base_of(’::Animal’,’::Mammal’).

direct_base_of(’::Animal’,’::WingedAnimal’).

direct_base_of(’::Mammal’,’::Bat’).

direct_base_of(’::WingedAnimal’,’::Bat’).

virtual_base_of(’::Animal’,’::Mammal’).

%% base_of/2 is the transitive

%% closure of direct_base_of/2

base_of(A,A).

base_of(A,B) :-

direct_base_of(A,C), base_of(C,B).

References

1. MIRA Ltd.: MISRA-C:2004. Guidelines for the Use of the C Language in Critical Systems.
(October 2004)

2. The Programming Research Group: High-Integrity C++ Coding Standard Manual. (May
2004)

3. Taibi, T.: An Integrated Approach to Design Patterns Formalization. In: Design Pattern
Formalization Techniques. IGI Publishing (March 2007)

4. Fabry, J., Mens, T.: Language-independent detection of object-oriented design patterns. Com-
puter Languages, Systems and Structures30(1–2) (April/July 2004) 21–33

5. Blewitt, A., Bundy, A., Stark, I.: Automatic verificationof design patterns in java. In Red-
miles, D.F., Ellman, T., Zisman, A., eds.: ASE 2005, ACM (2005) 224–232

6. Marpons, G., Mariño, J., Herranz,́Angel., Fredlund, L.Å., Carro, M., Moreno-
Navarro, J.J.: Automatic coding rule conformance checkingusing logic programs
http://www.ggcc.info/?q=codingrules.



TOWARDS CHECKING CODING RULE CONFORMANCE

USING LOGIC PROGRAMMING
G. Marpons(1) M. Carro(1) J. Mariño(1) A. Herranz(1) L. Fredlund(1) J. Moreno-Navarro(1,2)

(1) Universidad Politécnica de Madrid (2) IMDEA Software

Coding Rules

Constrain admissible constructs (e.g. forbidding error-prone

features or coding styles) to help producing safer code.

Standard coding rule sets do exist, e.g.:

MISRA-C (C language): automotive industry standard

High-Integrity C++ (HICPP): sponsored by a private company

Javacard: addressing specific restrictions of Java Smart Cards

Enormous diversity in:

• Program features involved

• Analysis techniques required

• Static enforceability

We focus on structural rules, which deal with relationships between

static entities in the code (classes, member functions, etc.), e.g.:

Rule HICPP 3.3.15:

“Ensure base classes common to more than

one derived class are virtual.”

Natural language is inherently ambiguous: Which inheritance links

must be tagged as “virtual”?

A framework to formalise coding rules is necessary to statically

check that programs conform to a given set. We are developing

such a framework in the environment of the GGCC project.

Knowledge Base
About a Program

A set of classes violating rule HICPP 3.3.15:: :
: : : :

: :
Program properties gathered during compila-

tion for the above example and relevant to

rule HICPP 3.3.15:

class(’::Animal’).
class(’::Mammal’).
class(’::WingedAnimal’).
class(’::Bat’).
direct_base_of(’::Animal’,’::Mammal’).
direct_base_of(’::Animal’,’::WingedAnimal’).
direct_base_of(’::Mammal’,’::Bat’).
direct_base_of(’::WingedAnimal’,’::Bat’).
virtual_base_of(’::Animal’,’::Mammal’).

The Global GCC Project

• ITEA funded (2006-08) consortium of industrial / research partners

• Goal: improving static analysis capabilities of the GNU Compiler Collection (GCC)

• Global GCC knowledge base: share information among different GGCC analysers

C o d i n g R u l eF o r m a l i s a t i o n C o d i n g R u l eC o m p i l e r P r o l o g R e p r .o f C o d i n gR u l e s C o d i n g R u l eC h e c k e r C o d i n g R u l eC o m p l i a n c eD i a g n o s i s

G l o b a l G C CK n o w l d e g eB a s eG l o b a l G C CK n o w l d e g eB a s e G l o b a lO p t i m i s e rS t a t i cA n a l y s e r sG l o b a l G C CK n o w l d e g eB a s e

G C CF r o n t G E n d G i m p l e , S S A ,a n d o t h e rG C C I n t e r n a lR e p r . G C CB a c k G E n dS o u r c e F i l e s :. c , . c p p , . j a v a O b j e c tC o d e

Rule Formalisation

Based on first-order logic and written in a domain-specific

language which is translated into Prolog and that:

• Formalises standard coding rule sets in a declarative style

• Makes it easier for the final user to define additional cod-

ing rules

• Provides a collection of predefined predicates about

program facts (such as class/1, base_of/2, or

in_call_graph_of/2)

• Quantification over certain domains

• Constructive negation

Rule Checking

Rule HICPP 3.3.15 translated into Prolog

violate_hicpp_3_3_15(A, B, C, D) :-

class(A), class(B), class(C), class(D), B \= C,

direct_base_of(A, B), direct_base_of(A, C),

base_of(B, D), base_of(C, D),

\+ virtual_base_of(A, C).

We do not code the rule itself, but its negation. Any program that satisfies

the negated rule thus violates the coding rule.

Predicates coding rule violations are queried against facts describing a pro-

gram. A successful resolution flags a rule violation, providing a witness.

Work partially supported by PROFIT grants FIT-340005-2007-7 and FIT-350400-2006-44 from the Spanish Ministry of Industry, Comunidad Autónoma de Madrid grant

S-0505/TIC/0407 (PROMESAS), Ministry of Education and Science grant TIN2005-09207-C03-01 (MERIT/COMVERS) and EU IST FET grant IST-15905 (MOBIUS).


