
Universidad Politécnica
de Madrid

Escuela Técnica Superior de
Ingenieros Informáticos

Master on Formal Methods in Computer Science and
Engineering

Master’s Thesis

Towards Verification of Higher-Order
(Constraint) Logic Programs via

Abstract Interpretation

Author: Marco Ciccalè Baztán
Advisor: Manuel V. Hermenegildo
Co-Advisor: Jose F. Morales

Madrid, July 2025

Este Trabajo Fin de Máster se ha depositado en la ETSI Informáticos de la Universidad
Politécnica de Madrid para su defensa.

Trabajo Fin de Máster
Máster en Métodos Formales en Ingeniería Informática

Título: Towards Verification of Higher-Order (Constraint) Logic Programs via Ab-
stract Interpretation

Julio de 2025

Autor: Marco Ciccalè Baztán
Tutor: Manuel V. Hermenegildo

Departamento de Inteligencia Artificial
Escuela Técnica Superior de Ingenieros Informáticos
Universidad Politécnica de Madrid

Cotutor: Jose F. Morales
Departamento de Inteligencia Artificial
Escuela Técnica Superior de Ingenieros Informáticos
Universidad Politécnica de Madrid

To my parents, who never stopped believing in me.

i

Acknowledgments

First and foremost, I would like to thank my supervisors Manuel, Jose and Pedro for un-
conditionally sharing their deep technical knowledge, for their constant support, and—
most importantly—for encouraging me to keep doing—what Manuel calls—“fun stuff.”
Their guidance and our discussions have made me genuinely excited about pursuing a
Ph.D., and I truly look forward to what lies ahead.

I would also like to thank Jurjo for putting up with me throughout this work—despite
being nearly 8,000 km away, and for being picky when it came to the definitions and
proofs (someone had to care a bit too much).

A big thanks to all the researchers at IMDEA—especially to Paula, Daniela, Marcos,
Jorge, Leo, Javi, Andoni. . .—for the lunches, coffee breaks, and laughs throughout this
year.

Last but not least, I would like to thank my friends and family for their uncondi-
tional support, and my partner Aitana for encouraging me throughout this year and for
wholeheartedly supporting my decision to continue my academic journey.

iii

Anywhere can be paradise as long as you have
the will to live. After all, you are alive, so you
will always have the chance to be happy...

The End of Evangelion

v

Abstract

Higher-order constructs enable more expressive and concise code by allowing proce-
dures to be parameterized by other procedures, resulting in more modular and main-
tainable code. Assertions are linguistic constructs for writing partial program specifica-
tions, which can then be verified either at compile time (i.e., statically) or run time (i.e.,
dynamically). In the case of higher-order programs, assertions provide descriptions of
the higher-order arguments of procedures. In the context of (C)LP, the run-time verifica-
tion of such higher-order assertions has received some attention. However, verification
at compile time remains relatively unexplored.

We propose a novel approach for the compile-time verification of higher-order (C)LP
programs with assertions that describe higher-order arguments. Although our presenta-
tion is based for concreteness on the Ciao assertion language, the approach is quite gen-
eral and flexible, and we believe it can be applied to similar gradual approaches. Higher-
order arguments are described using predicate properties, a special kind of properties
that allow using the full power of the (Ciao) assertion language for such arguments.

We first present a refinement of both the syntax and semantics of these properties.
Next, we introduce an abstract criterion to determine whether a predicate conforms to
a predicate property at compile time, based on a semantic order relation to compare the
definition of a predicate property and the partial specification of a predicate. We then
propose a technique for dealing with these properties using an abstract interpretation-
based static analyzer for programs with first-order assertions, by reducing predicate
properties to first-order properties that are natively understood by such an analyzer.
Finally, we report on a prototype implementation and study the effectiveness of the ap-
proach with various examples within the Ciao system.

Keywords: Higher-Order · Static Analysis · Assertions · Abstract Interpretation ·
(Constraint) Logic Programming.

vii

Resumen

Las primitivas de orden superior permiten escribir códigomás expresivo y conciso ya que
permiten escribir procedimientos parametrizados por otros procedimientos, resultando
en código más modular y mantenible. Las aserciones son un tipo especial de primitivas
que permiten expresar especificaciones parciales de programas, que luego pueden ser
verificadas en tiempo de compilación (es decir, de forma estática) o en tiempo de ejecu-
ción (es decir, de forma dinámica). En el caso de los programas de orden superior, las
aserciones describen los argumentos de orden superior de los procedimientos. En el con-
texto de la programación lógica (y con restricciones) ((C)LP), la verificación dinámica de
las aserciones de orden superior ha recibido cierta atención. Sin embargo, la verificación
estática sigue siendo un área relativamente poco explorada.

Proponemos un enfoque novedoso para la verificación estática de programas (C)LP
de orden superior con aserciones que describen argumentos de orden superior. Aunque
nuestra presentación se basa en el lenguaje de aserciones de Ciao, la técnica es bastante
general y flexible, y creemos que puede aplicarse a enfoques graduales similares. Los
argumentos de orden superior se describen utilizando propiedades de predicados, un
tipo especial de propiedades que permiten emplear todo el poder de expresividad del
lenguaje de aserciones (de Ciao) para dichos argumentos.

Primero, presentamos una mejora tanto de la sintaxis como de la semántica de estas
propiedades. A continuación, introducimos un criterio abstracto para determinar si un
predicado cumple con una propiedad de predicado en tiempo de compilación, basado en
una relación de orden semántica que compara la definición de una propiedad de predi-
cado con la especificación parcial de un predicado. Luego, proponemos una técnica para
tratar estas propiedades utilizando un analizador estático basado en interpretación ab-
stracta para programas con aserciones de primer orden, mediante la reducción de las
propiedades de predicados a propiedades de primer orden que dicho analizador puede
entender de forma nativa. Finalmente, presentamos una implementación prototipo y
estudiamos la efectividad del enfoque con varios ejemplos dentro del sistema Ciao.

Palabras Clave: Orden Superior · Análisis Estático · Aserciones · Interpretación Ab-
stracta · Programación Lógica con Restricciones.

ix

Contents

1 Introduction 1
1.1 Objective . 1
1.2 Related Work . 2
1.3 Structure of the Document . 2

2 Background 3
2.1 Preliminary Definitions . 3
2.2 (Constraint) Logic Programs . 4
2.3 Abstract Interpretation . 7
2.4 Abstract Interpretation of (C)LP Programs 10

3 The Ciao System 13
3.1 The CiaoPP Program Pre-Processor . 14
3.2 Assertion Language . 15
3.3 Run-Time Checking of Traditional Assertions 18
3.4 Compile-Time Checking of Traditional Assertions 21

4 Specifying and Verifying Higher-Order Programs 23
4.1 Predicate Properties . 23
4.2 Conformance to a Predicate Property . 25

4.2.1 Conformance . 25
4.2.2 Abstract Conformance . 27

4.3 Wrappers . 36
4.4 First-Order Representation of Predicate Properties 38
4.5 Algorithm . 38

5 Implementation and Experiments 41
5.1 Implementation . 41
5.2 Experiments . 42

6 Conclusions & Future Work 49
6.1 Future Work . 50

Bibliography 53

xi

Chapter 1

Introduction

A
bstraction is a fundamental principle in computer science often used for man-
aging complexity. Higher-order constructs are a form of abstraction that en-
ables writing code that is more concise and expressive by allowing procedures

to be parameterized by other procedures, resulting in more modular, maintainable and
scalable code-bases.

(Constraint) logic programming languages like Prolog [1] and functional program-
ming languages like Haskell [2] have included different forms of higher-order since
their early days, and languages from other programming paradigms like Java or C++
have adopted them later on. In particular, Prolog systems allow defining higher-order
predicates and making higher-order calls, and also include higher-order libraries. As an
example, consider the query: “?- P = even, filter(P, [7,4,2,9], L).” which
passes the term even as an argument to the higher-order library predicate filter/3,
which will apply the even predicate to each element of the input list, selecting those that
succeed, and resulting in L = [4,2].

Assertions are linguistic constructs for writing partial program specifications, which
can then be verified or used to detect deviations in program behavior with respect to such
partial specifications. The assertion-based approach to program verification [3, 4] differs
from other approaches such as strong type systems [5] in that assertions are optional
and can include properties that are undecidable at compile time, and thus some checking
may need to be relegated to run time. Hence, the assertion-based approach is closer to
(and a precursor of) gradual typing in functional languages [6].

1.1 Objective

In this thesis we propose a novel approach for the compile-time verification of higher-
order (C)LP programs with assertions that describe higher-order arguments via the ab-
stract interpretation mathematical theory [7] for approximating the concrete semantics
of a program.

1

Chapter 1. Introduction

Although our presentation is based for concreteness on (C)LP and the Ciao assertion
language, the approach is quite general and flexible, and we believe it can be applied to
similar gradual approaches and other programming languages/paradigms.

1.2 Related Work
The combination of higher-order and assertions in the (C)LP context was already ex-
plored by [8]. This work introduced the notion of predicate properties, a special kind of
properties that allow using the full power of the (Ciao) assertion language for describ-
ing the higher-order arguments of procedures. This work also proposed an operational
semantics for dynamically checking higher-order (C)LP programs annotated with such
higher-order assertions. However, the static verification of programs with higher-order
assertions was not addressed in that work and remains relatively unexplored, since other
related work in (C)LP that supports higher order (e.g.,1 [9, 10, 11]) generally adheres to
the strong typing model.

1.3 Structure of the Document
The rest of this thesis is organized as follows: Chapter 2 provides the necessary back-
ground to understand the context and technical foundation of the thesis. Chapter 3
provides a high-level view of the Ciao system, together with an extensive description
of its assertion language and the approaches used to verify such assertions. Chapter 4
presents the approach, starting from its underlying theory, through some instrumental
techniques for reducing the complexity of the verification problem at hand, and finally
deriving the main algorithm of the approach. Chapter 5 reports on a prototype im-
plementation of the approach which leverages the abstract domains and the abstract
interpretation-based analysis engine both within the Ciao system. It also provides de-
tailed examples that were not possible to formally verify up until this point. Finally,
Chapter 6 contains our conclusions and some lines of future work.

1exempli gratia—for example

2

Chapter 2

Background

T
his thesis is intended to be self-contained, assuming only a basic familiarity
with first-order logic and general programming skills. This chapter provides
the reader with the necessary background to understand the context and tech-

nical foundations of this thesis. First, §2.1 provides some instrumental and well-known
mathematical notions. Next, §2.2 introduces (constraint) logic programming ((C)LP), to-
gether with its formal notation and operational semantics extended to support higher-
order constructs. Then, §2.3 summarizes the basic notions of abstract interpretation,
and its application for building safe-by-construction static analysis tools. Finally, §2.4
presents the use of abstract interpretation for (C)LP programs.

2.1 Preliminary Definitions
Wewrite𝑜 ≜ 𝑒 for denoting that themathematical object𝑜 is defined as themathematical
expression 𝑒 . We define B ≜ {tt,ff} as the set of truth values: true (tt) and false (ff), and
N and Z as the set of natural and integer numbers, respectively.

Set Theory. Let 𝐴 and 𝐵 be two arbitrary sets.

Definition 2.1 (Union). We define the union of 𝐴 and 𝐵 as the set containing all ele-
ments that are in 𝐴 or in 𝐵. Formally, 𝐴 ∪ 𝐵 ≜ {𝑥 | 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}. ♦

Definition 2.2 (Intersection). We define the intersection of𝐴 and 𝐵 as the set containing
all elements that are in 𝐴 and in 𝐵. Formally, 𝐴 ∩ 𝐵 ≜ {𝑥 | 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}. ♦

Definition 2.3 (Subset). We define 𝐴 to be a subset of 𝐵, denoted 𝐴 ⊆ 𝐵, iff every
element of 𝐴 is also an element of 𝐵. Formally, 𝐴 ⊆ 𝐵 ⇔ ∀𝑥 ∈ 𝐴. 𝑥 ∈ 𝐵. ♦

Definition 2.4 (Proper Subset). We define 𝐴 to be a proper subset of 𝐵, denoted 𝐴 ⊂ 𝐵,
iff 𝐴 is a subset of 𝐵 and 𝐴 is not equal to 𝐵. Formally, 𝐴 ⊂ 𝐵 ⇔ (𝐴 ⊆ 𝐵 ∧𝐴 ≠ 𝐵). ♦

3

Chapter 2. Background

Definition 2.5 (Powerset). We define the powerset of 𝐴, denoted ℘(𝐴), as the set of all
subsets of 𝐴. Formally, ℘(𝐴) ≜ {𝐶 | 𝐶 ⊆ 𝐴}. ♦

Definition 2.6 (Cartesian Product). Wedefine theCartesian product of𝐴 and𝐵, denoted
𝐴×𝐵, as the set of all ordered pairs—denoted (𝑥,𝑦), or 𝑥/𝑦—with their components being
elements of 𝐴 and 𝐵, respectively. Formally, 𝐴 × 𝐵 ≜ {(𝑥,𝑦) | 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵}. ♦

Definition 2.7 (Set Difference). We define the set difference of 𝐴 and 𝐵, denoted 𝐴 \ 𝐵,
as the set of all elements in 𝐴 that are not in 𝐵. Formally, 𝐴 \ 𝐵 ≜ {𝑥 | 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵}. ♦

Definition 2.8 (Cardinality). We define the cardinality of a set 𝐴, denoted |𝐴|, as the
number of distinct elements in 𝐴. Also, 𝐴 is said to be finite iff |𝐴| < 𝜔 with 𝜔 ∈ N. ♦

2.2 (Constraint) Logic Programs
Alain Colmerauer set out to develop a system for human-machine communication based
on logic. During his research, he came across Robert Kowalski and Donald Kuehner’s
work on SL-resolution [12], which encouraged him to invite Kowalski to visit Marseille
on two occasions. Their collaboration led in 1972 to the first Natural Language applica-
tion of what we now know as Prolog; and also, to the logic programming paradigm (LP),
and to the basis of Prolog itself: a linear resolution system restricted to Horn clauses
that could answer questions in the problem domain described by the clauses input [13].

A few years later, in 1977, Kowalski introduced the notion of “Algorithm = Logic +
Control” as a way to conceptually divide algorithms in two different components: (1) the
“Logic,” which captures the problem specification as a set of rules; and (2) the “Control,”
which states how these rules are used to compute solutions. Thus, by definition, a logic
program (i.e.,1 a set of rules) can be interpreted either: (1) declaratively (“Logic”), as the
problem specification, or (2) procedurally (“Control”), as the way in which resolution
acts on the set of rules. The fact that in LP the “Logic” and “Control” components of
an algorithm are the same set of rules under different interpretations, distinguishes LP
from other paradigms.

In 1987, Joxan Jaffar and Jean-Louis Lassez introduced the constraint logic program-
ming (CLP) paradigm, observing that LP could be seen as an instance of constraint solv-
ing over variables in the Herbrand domain [14]. CLP extends LP by allowing constraints
over variables of additional domains (e.g., the real numbers domain ℜ) in the rules, in
addition to the Herbrand domain.

Notation. Variables start with a capital letter. The anonymous variable, denoted _, is a
variable that is distinct from every other variable. The set of terms is inductively defined
as follows: (1) variables are terms, (2) if 𝑓 is an 𝑛-ary function symbol and 𝑡1, . . . , 𝑡𝑛
are terms, then 𝑓 (𝑡1, . . . , 𝑡𝑛) is a term. We use the overbar notation (·̄) to denote a finite
sequence of elements (e.g., 𝑡 denotes a sequence of terms), andwrite | (·̄) | for representing

1id est—that is

4

2.2. (Constraint) Logic Programs

the length of the sequence (·̄). An atom has the form 𝑝 (𝑡) where 𝑝 is an 𝑛-ary predicate
symbol, and 𝑡 are terms. The function ar(𝑝) denotes the arity of a predicate 𝑝 . A higher-
order atom has the form 𝑋 (𝑡) where 𝑋 is a variable and 𝑡 are terms. Note that variables
are not allowed in the function symbol position of terms, only in literals. A constraint
is a conjunction of expressions built from predefined predicates whose arguments are
constructed using predefined functions and variables, e.g., 𝑋 − 𝑌 > abs(𝑍). A literal is
either an atom, a higher-order atom or a constraint. Constants are simply 0-ary symbols.
Negation is encoded as finite failure (NAFF), supported through a program expansion.
A goal is a finite sequence of literals. A rule has the form 𝐻 ← 𝐵 where 𝐻 , the head, is
an atom and 𝐵, the body, is a possibly empty finite sequence of literals. A higher-order
constraint logic program, or higher-order program, is a finite set of rules.

We use 𝜎 to represent a variable renaming, and 𝜎 (𝐿) or 𝐿𝜎 to represent the result
of applying the renaming 𝜎 to a syntactic object 𝐿. The definition of an atom 𝐿 in a
program, defn(𝐿), is the set of renamed program rules s.t.2 each renamed rule has 𝐿 as
its head. We assume that all rule heads are normalized, i.e.,𝐻 is an atom of the form 𝑝 (𝑣)
where 𝑣 are distinct free variables. This is not restrictive since programs can always be
normalized, and it facilitates the presentation. However, for conciseness in the examples
we sometimes use non-normalized programs.

A predicate (or procedure in the context of (C)LP), is a set of rules with the same
head. In the examples we use Prolog syntax, where the usual implication (←) is denoted
by (:-), and the trivial premise of a rule (tt) is omitted. We refer to a predicate 𝑝 by a
normalized atom 𝑝 (𝑣) or by 𝑝/𝑛, where 𝑛 = ar(𝑝) = |𝑣 |. Projecting the constraint 𝜃 onto
the variables of the syntactic object 𝐿 is denoted as 𝜃↾𝐿 . We denote constraint entailment
by 𝜃1 |= 𝜃2.

Example 2.1 (Higher-Order Logic Program). Consider the program on the left which de-
fines the b/2 predicate, relating the numeric representation of a binary digit to its textual
representation. It also defines the maplist/3 predicate, which relates a list with the re-
sult of applying a given predicate to each of the elements of the list.

1 b(0, z). b(1, o).
2 maplist(_, [], []).
3 maplist(P, [C|Cs], [R|Rs]) :-
4 P(C,R),
5 maplist(P, Cs, Rs).

More concretely, b/2 is defined as a set of two
facts (line 1) that relate the numbers 0 and 1 to
the constants z and o respectively. The predicate
maplist/3 is defined recursively, the base case
(the fact in line 2) represents the case in which

both lists are empty—note the anonymous variable stating that the first argument is not
relevant. The recursive case (the rule in lines 3 to 5) specifies that if both lists are not
empty (with heads C and R, respectively), then two conditions must hold: (1) the higher-
order literal P(C,R)—representing a call to the provided predicate P—must succeed, and
(2) the remaining elements of the lists (Cs and Rs, respectively) with P must also satisfy
the maplist/3 predicate. ♦

2such that

5

Chapter 2. Background

constr 𝐿 is a constraint

⟨𝐿 :: 𝐺 | 𝜃⟩ { ⟨𝐺 | 𝜃 ∧ 𝐿⟩ if 𝜃 ∧ 𝐿 ̸ |= ff (i.e., 𝜃 ∧ 𝐿 is satisfiable)

ho-atom 𝐿 is a higher-order atom of the form 𝑋 (𝑡)
⟨𝐿 :: 𝐺 | 𝜃⟩ { ⟨𝑝 (𝑡) :: 𝐺 | 𝜃⟩ if ∃𝑝 ∈ P . 𝜃 |= (𝑋 = 𝑝) ∧ ar(𝑝) = |𝑡 |

atom 𝐿 is an atom of the form 𝑝 (𝑡), and ∃(𝐿 ← 𝐵) ∈ defn(𝐿)
⟨𝐿 :: 𝐺 | 𝜃⟩ { ⟨𝐵 :: 𝐺 | 𝜃⟩

Figure 2.1: Higher-order (C)LP: Reductions.

Operational Semantics of Higher-Order Programs. The operational semantics of
a higher-order program is given in terms of its derivations, which are sequences of re-
ductions between states. A state ⟨𝐺 | 𝜃⟩ consists of a goal 𝐺 and a constraint store (or
store for short) 𝜃 . We denote sequence concatenation by (::), and the empty sequence by
□. We assume for simplicity that the underlying constraint solver is complete and that
projection exists. We use 𝑆 { 𝑆′ to indicate that a reduction can be applied to state 𝑆 to
obtain state 𝑆′. Naturally, 𝑆 {∗ 𝑆′ indicates that there is a sequence of reduction steps
from 𝑆 to 𝑆′. Given a state 𝑆 = ⟨𝐿 :: 𝐺 | 𝜃⟩ where 𝐿 is a literal, it can be reduced to a state
𝑆′ by applying the reduction rules in Figure 2.1. Assume 𝑆 {∗ 𝑆′ where 𝑆 = ⟨𝐿 :: 𝐺 | 𝜃⟩
and 𝑆′ = ⟨𝐺 | 𝜃 ′⟩, we refer to 𝑆 as a call state for 𝐿, and 𝑆′ as a success state for 𝐿.

A query is a pair (𝐿, 𝜃), where 𝐿 is a literal and 𝜃 a store for which the (C)LP system
starts a computation from state ⟨𝐿 | 𝜃⟩. The set of all (intermediate and finished) deriva-
tions of the programP from the query𝑄 (also a set of queriesQ) is denoted derivs(P, 𝑄).
And, given a derivation 𝐷 , its last step is denoted 𝐷 [−1] . We now provide several instru-
mental definitions related to the operational semantics of (higher-order) programs.

Definition 2.9 (Succesful or Failed Derivation). Given a finished derivation 𝐷 , we say
that 𝐷 is successful (resp.3 failed) iff 𝐷 [−1] is (resp. is not) of the form ⟨□ | 𝜃 ′⟩. ♦

Definition 2.10 (Answer to a Query). Given a program P and a successful derivation
𝐷 from a query 𝑄 = (𝐿, 𝜃) whose last state is of the form ⟨□ | 𝜃 ′⟩, we say that 𝜃 ′↾𝐿 is an
answer to 𝑄 . We denote by answers(P, 𝑄) the set of answers of the program P for𝑄 . ♦

Definition 2.11 (FailedQuery). Given a programP and a query𝑄 , we say that𝑄 finitely
fails iff derivs(P, 𝑄) is finite and contains no successful derivation. ♦

Definition 2.12 (Calling Context). Given a program P, a predicate represented by a
normalized atom Pred, and a set of queries Q, we define the calling context C(Pred,P,Q)
of Pred for P and Q as

{𝜃↾Pred | ∃𝐷 ∈ derivs(P,Q). 𝐷 [−1] = ⟨Pred :: 𝐺 | 𝜃⟩}. ♦
3respectively

6

2.3. Abstract Interpretation

Definition 2.13 (Success Context). Given a program P, a predicate represented by a
normalized atom Pred, a store 𝜃 , and a set of queries Q, we define the success context
S(Pred, 𝜃,P,Q) of Pred and 𝜃 for P and Q as

{𝜃 ′↾Pred | ∃𝐷 ∈ derivs(P,Q). ∃𝐺. ⟨Pred :: 𝐺 | 𝜃⟩ ∈ 𝐷. 𝐷 [−1] = ⟨𝐺 | 𝜃 ′⟩}. ♦

2.3 Abstract Interpretation
Abstract interpretation [7, 15, 16] is a mathematical theory for reasoning about the ex-
ecution of computer programs. It does so by soundly approximating their semantics.
Abstract interpretation can be applied to many areas of computer science, including se-
mantics design, proof methods, and static program analysis. In this thesis we focus on
the use of abstract interpretation for constructing sound-by-construction static program
analysis tools. These tools can extract properties about a program by interpreting it over
an abstract domain, which serves as a simplified and safe approximation of the concrete
domain, effectively approximating the actual semantics of the program.

Order Theory. We first recall the basics of order theory and define some notation.

Definition 2.14 (Partial Order). Given a set 𝐿 and a relation ⊑ on 𝐿, we say that ⊑ is
a partial order iff for all 𝑥,𝑦, 𝑧 in 𝐿, we have that it is: reflexive (𝑥 ⊑ 𝑥), antisymmetric
(𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⇒ 𝑥 = 𝑦), and transitive (𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧). ♦

Definition 2.15 (Partially Ordered Set). Given a set 𝐿 and a partial order ⊑ on 𝐿, we
say that the tuple ⟨𝐿, ⊑⟩ is a partially ordered set (or poset for short). ♦

Definition 2.16 (Ascending Chain Condition). We say that a poset ⟨𝐿, ⊑⟩ satisfies the
ascending chain condition iff it has no infinite ascending chain. ♦

Definition 2.17 ((Least) Upper Bound). Let ⟨𝐿, ⊑⟩ be a poset and 𝑆 ⊆ 𝐿 be a subset. The
subset 𝑆 has: (1) an upper bound 𝑢 ∈ 𝐿 iff ∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑢, and (2) a least upper bound
⊔𝑆 ∈ 𝐿 iff ⊔𝑆 is an upper bound of 𝑆 smaller than any other upper bound of 𝑆 . ♦

Definition 2.18 ((Greatest) Lower Bound). Let ⟨𝐿, ⊑⟩ be a poset and 𝑆 ⊆ 𝐿 be a subset.
The subset 𝑆 has: (1) a lower bound 𝑙 ∈ 𝐿 iff ∀𝑥 ∈ 𝑆. 𝑙 ⊑ 𝑥 , and (2) a greatest lower bound
⊓𝑆 ∈ 𝐿 iff ⊓𝑆 is a lower bound of 𝑆 greater than any other lower bound of 𝑆 . ♦

The least upper (resp. greatest lower) bound ⊔{𝑥,𝑦} (resp. ⊓{𝑥,𝑦}) is denoted using
the infix notation 𝑥 ⊔ 𝑦 (resp. 𝑥 ⊓ 𝑦).

Definition 2.19 (Lattice). Given a poset ⟨𝐿, ⊑⟩, we say that the tuple ⟨𝐿, ⊑,⊔,⊓,⊤,⊥⟩
is a lattice iff for all 𝑥,𝑦 in 𝐿, we have that: (1) the lub 𝑥 ⊔ 𝑦, (2) the glb 𝑥 ⊓ 𝑦, (3) the
supremum (or top for short) ⊤, and (4) the infimum (or bottom for short) belong to 𝐿. ♦

7

Chapter 2. Background

D D♯

𝑓1

𝛼

𝛼 (𝑓1)

𝑓2

𝛼

𝛼 (𝑓2)

⊆
⊑

𝑓
♯

3

𝛾

𝛾 (𝑓 ♯3)

𝑓
♯

4

𝛾

⊑⊆

𝛾 (𝑓 ♯4)

Figure 2.2: Illustration of a Galois connection.

Abstract Domains. Let us now formally introduce the notion of concrete, and abstract
domains and their relation by recalling an instrumental definition from [16].

Definition 2.20 (Galois Connection). Given posets ⟨D, ⊆⟩ (the concrete domain) and
⟨D♯, ⊑⟩ (the abstract domain), the pair ⟨𝛼,𝛾⟩ of monotone functions 𝛼 ∈ D → D♯ (ab-
straction) and 𝛾 ∈ D♯ → D (concretization) is a Galois connection iff

∀𝑓 ∈ D. ∀𝑓 ♯ ∈ D♯ . 𝛼 (𝑓) ⊑ 𝑓 ♯ ⇔ 𝑓 ⊆ 𝛾 (𝑓 ♯)

which we denote by
⟨D, ⊆⟩ −−−→←−−−𝛼

𝛾

⟨D♯, ⊑⟩ ♦

Figure 2.2 depicts an illustration of a Galois connection. Provided a Galois connection
between a concrete domain ⟨D, ⊆⟩ and an abstract domain ⟨D♯, ⊑⟩ via ⟨𝛼,𝛾⟩, abstract
interpretation guarantees that any analysis can be computed in a finite number of steps iff
either ⟨D♯, ⊑⟩ satisfies the ascending chain condition, or awidening operator∇ is used [7].

Example 2.2 (Abstracting Parity). Consider defining a simple analysis that determines
the parity of the integer variables of a program. Let E and O denote the set of even and
odd integer numbers, P ≜ {⊥, even, odd,⊤} be the set representing parity, and P be a
program whose set of integer variables is denoted by V. We define a concrete domain
⟨D, ⊆⟩, where

D ≜ {𝑓 | 𝑓 ∈ V→ ℘(Z)}

represents all possible mappings from each variable to sets of integers, and the ordering
⊆ is the usual set inclusion relation lifted to apply pairwise over the second element of
each pair, i.e., over the set of integers assigned to each variable. Analogously to D, we
define the set

D♯ ≜ {𝑓 ♯ | 𝑓 ♯ ∈ V→ P}

8

2.3. Abstract Interpretation

{𝑋/⊤, 𝑌/⊤}

{𝑋/⊤, 𝑌/even} {𝑋/even, 𝑌/⊤} {𝑋/odd, 𝑌/⊤} {𝑋/⊤, 𝑌/odd}

{𝑋/even, 𝑌/even} {𝑋/odd, 𝑌/even} {𝑋/even, 𝑌/odd} {𝑋/odd, 𝑌/odd}

{𝑋/⊥, 𝑌/⊥}

Figure 2.3: Parity abstract domain for a program P with integer variables 𝑋 and 𝑌 .

as all possible mappings from each variable to their parity. Let us now define the con-
cretization function 𝛾 ∈ D♯ → D as

𝛾 (𝑓 ♯) ≜


𝑋 ↦→ ∅ if 𝑝♯ = ⊥
𝑋 ↦→ E if 𝑝♯ = even
𝑋 ↦→ O if 𝑝♯ = odd
𝑋 ↦→ Z otherwise

�������� (𝑋 ↦→ 𝑝♯) ∈ 𝑓 ♯


and the abstraction function 𝛼 ∈ D→ D♯ as

𝛼 (𝑓) ≜


𝑋 ↦→ ⊥ if 𝑝 = ∅
𝑋 ↦→ even if ∀𝑛 ∈ 𝑝. 𝑛 ∈ E
𝑋 ↦→ odd if ∀𝑛 ∈ 𝑝. 𝑛 ∈ O
𝑋 ↦→ ⊤ otherwise

�������� (𝑋 ↦→ 𝑝) ∈ 𝑓


From these definitions, we can now induce the order relation ⊑ ⊆ D♯ × D♯ defined as

𝑓
♯

1 ⊑ 𝑓
♯

2 ⇔ 𝛾 (𝑓 ♯1) ⊆ 𝛾 (𝑓
♯

2)

thus allowing us to define the parity abstract domain ⟨D♯, ⊑⟩which captures the property
“an integer variable𝑋 in the program P is even or odd.” TheHasse diagram in Figure 2.3
depicts the parity abstract domain ⟨D♯, ⊑⟩ for a program with two variables.

We can now define a Galois connection

⟨D, ⊆⟩ −−−→←−−−𝛼
𝛾

⟨D♯, ⊑⟩

which follows directly from the definitions of 𝛼 and 𝛾 . ♦

9

Chapter 2. Background

2.4 Abstract Interpretation of (C)LP Programs
In the context of (C)LP, it is common for elements of the abstract domain to be finite rep-
resentations of the elements of the concrete domain, which are (possibly infinite) sets of
actual constraints. As usual, these two domains are related via the abstraction and con-
cretization monotone functions, which together form a Galois connection between both
domains. We use, for concreteness, goal-dependent abstract interpretation. In particular
the PLAI algorithm, based on an efficient fixpoint computation [17]. PLAI takes as input
a program P, an abstract domain, and a set of initial abstract queries Q♯ describing all
the possible initial concrete queries to P. As a result, PLAI yields an (abstract domain-
dependent) abstraction of the concrete semantics of the program P. Intuitively, due to
monotonicity, more specific initial abstract queries yield more precise analysis results.

An abstract query 𝑄♯ is a pair (𝐿, 𝜆), where 𝐿 is an atom and 𝜆 is an element of
the abstract domain representing a set of concrete initial program states (e.g., constraint
stores). A set of abstract queries Q♯ represents a set of concrete queries

𝛾 (Q♯) ≜ {(𝐿, 𝜃) | (𝐿, 𝜆) ∈ Q♯ ∧ 𝜃 ∈ 𝛾 (𝜆)}
The goal-dependent abstract interpretation of a program P for the set of initial abstract
queries Q♯ (computed by PLAI) is denoted [P]♯Q♯

. More concretely, PLAI yields a set of
analysis triples

{⟨Pred1, 𝜆
𝑐
1, 𝜆

𝑠
1⟩, . . . , ⟨Pred𝑛, 𝜆𝑐𝑛, 𝜆𝑠𝑛⟩}

where Pred𝑖 is a normalized atom representing a predicate, and 𝜆𝑐𝑖 and 𝜆𝑠𝑖 are abstractions
that safely approximate the calling and success context of Pred𝑖 , respectively, from the
set of queries 𝛾 (Q♯). That is, given any analysis triple ⟨Pred, 𝜆𝑐, 𝜆𝑠⟩ ∈ [P]♯Q♯

,

𝛾 (𝜆𝑐) ⊇ C(Pred,P, 𝛾 (Q♯))
𝛾 (𝜆𝑠) ⊇ ∪{S(Pred, 𝜃,P, 𝛾 (Q♯)) | 𝜃 ∈ 𝛾 (Q♯)}

The operational semantics for higher-order programs is supported by reducing higher-
order calls to first-order calls when the called predicate can be determined by the anal-
ysis, or making conservative assumptions otherwise.

Without loss of generality, from this point onwardswe assume: (1) a concrete domain
⟨℘(D), ⊆,∪,∩,D,∅⟩ with a lattice structure whose set has a powerset shape, and (2) an
abstract domain ⟨D♯, ⊑,⊔,⊓,⊤,⊥⟩ with a lattice structure which safely approximates the
concrete values and operations.

More concretely, the order relation of the abstract domain (⊑) is induced by the order
relation of the concrete domain (⊆, the set inclusion) and the abstraction function 𝛼 .
Similarly, the join (⊔) and meet (⊓) operators mimic those of the concrete domain in a
precise sense. Formally, given any three abstractions 𝜆1, 𝜆2, 𝜆3 ∈ D♯:

𝜆1 ⊑ 𝜆2 ⇔ 𝛾 (𝜆1) ⊆ 𝛾 (𝜆2) (2.1)
𝜆1 ⊔ 𝜆2 = 𝜆3 ⇔ 𝛾 (𝜆1) ∪ 𝛾 (𝜆2) = 𝛾 (𝜆3) (2.2)
𝜆1 ⊓ 𝜆2 = 𝜆3 ⇔ 𝛾 (𝜆1) ∩ 𝛾 (𝜆2) = 𝛾 (𝜆3) (2.3)

10

2.4. Abstract Interpretation of (C)LP Programs

Typically, the (⊔) and (⊓) operations yield safe approximations of their concrete coun-
terparts (∪) and (∩). However, without loss of generality and to keep the presentation
as clear as possible, we assume that the abstract operators do not lose precision, i.e.,

𝛾 (𝜆1 ⊔ 𝜆2) = 𝛾 (𝜆1) ∪ 𝛾 (𝜆2) (2.4)
𝛾 (𝜆1 ⊓ 𝜆2) = 𝛾 (𝜆1) ∩ 𝛾 (𝜆2) (2.5)

We will explicitly indicate the points where more involved techniques would be needed
to handle situations in which this is not the case.

The abstraction ⊥ represents unreachable code (i.e., 𝛾 (⊥) = ∅), and the abstraction
⊤ represents the most general abstraction (i.e., 𝛾 (⊤) = D).

11

Chapter 3

The Ciao System

T
heCiao system [18] (see Figure 3.1 for a high-level view) is a modern, general-
purpose and multi-paradigm programming language with an advanced pro-
gramming environment. The design philosophy behind the system is to pro-

vide a combination of programming language and development tools that together help
programmers produce trustworthy, scalable and maintainable code in less time and with
less effort. The Ciao system addresses these points from two different approaches: veri-
fication and testing. Verification consists on the automatic or interactive construction of
formal proofs about a piece of code adhering to a given specification. Testing consists
in executing a piece of code for concrete test cases checking that its behavior is the ex-
pected one. The Ciao system introduced a development model and workflow [4, 3, 19]
that seamlessly integrates both verification and testing. In §3.1 we present a high-level
view of the CiaoPP program pre-processor, the main tool behind the verification and
testing phases of the aforementioned workflow.

As part of CiaoPP, one of the fundamental building blocks of this workflow are pro-
gram assertions, which are presented in §3.2. Assertions serve as both specifications for
static analysis and as run-time check generators, unifying run-time verification and unit
testing with static verification and static debugging. Assertions are optional, and they
can be checked at run or compile time, to be presented in §3.3 and §3.4 respectively. The
model considers the situations in which some of the assertions may not be checkable at
compile time, and will generate (run-time) tests for them when possible.

This model represents an alternative approach for writing safe programs without re-
lying on full static typing, specially valuable for dynamic languages like Prolog where
flexibility is not sacrificed for correctness. The intention is to combine the best elements
of static and dynamic languages approaches [20], and is an antecedent to the now pop-
ular gradual- and hybrid-typing approaches [21, 6, 22].

13

Chapter 3. The Ciao System

Compiler

Development Environment

Emacs/VS Code/Web
based, command line,

top-levels (compilation, analysis)

Source (user and library)
Packages

(multi-paradigm)

fsyntax

hiord

clpfd

.

.

.

Modules

(w./wo. assertions)

mod1

mod2

.

.

.

mod𝑛

user interaction

Front-end Compiler

(implements module system)

Expanded Code

(Kernel Language)

Annotated/

Transformed Code

CiaoPP

Analysis (types,
modes, resources, . . .)

Verification (static check-
ing of assertions)

Optimization (parallelism,
specialization, . . .)

Back-end Compiler

(optimized from annotations)

Executable Code

(bytecode, native code)

Documenter

(automatic
documentation
from programs
with assertions)

Run-time Engine and Libs.

Multi-platform
Parallel, sequential, tabled, . . .

Compile-time Messages

Errors/warnings
Static Violations

Run-time Messages

Debugging
Dynamic Violations

Figure 3.1: High-level view of the Ciao system.

3.1 The CiaoPP Program Pre-Processor
The CiaoPP program pre-processor [23, 17, 24, 3, 4, 19] (see Figure 3.2 for a high-level
view) is the abstract interpretation-based program pre-processor of theCiao system that
can be used to perform debugging, analysis, and source-to-source transformation of pro-
grams. It can be applied to (Ciao) Prolog programs, and to programs written in other
low- or high-level programming languages by transforming such programs to the Horn
clause-based intermediate representation used by CiaoPP. More concretely, CiaoPP can
perform the following tasks:

• Inference of properties at a predicate and literal level, such as types, modes and
other variable instantiation properties, non-failure, determinacy, upper bounds in
the computational cost and size of terms in the program, etc.

• Static debugging and verification of programs w.r.t.1 an assertion-based (partial)
specification.

1with respect to

14

3.2. Assertion Language

Code

(user, builtins,
libraries)

Assertions

(user, builtins,
libraries)

:- check
:- test
:- trust
Unit-tests

Static
Analysis
(Fixpoint)

Assertion
Normalizer
& Library
Interface

Analysis Info

Static
Com-
parator

RT-Check

Unit-Test

:- texec

:- check

:- false

:- checked

Possible
run-time error

Compile-time
error

Verification
warning

Verified

Test Case
Generator

CiaoPP Program Pre-Processor
Program

Figure 3.2: High-level view of the CiaoPP program pre-processor.

• Source-to-source program transformations, such as specialization, slicing, partial
evaluation, and parallelization. It can also generate run-time tests for properties
that could not be proved to hold statically, ensuring that the program will run
safely by dynamically checking such properties.

• Construction of abstract models of programs that acts as a certificate of the cor-
rectness of the code, i.e., an abstraction-carrying code approach to mobile code
safety [25].

All the aforementioned tasks rely on the properties inferred at compile time by the PLAI
fixpoint computation algorithm introduced in §2.4.

3.2 Assertion Language
We now introduce the assertion language of the Ciao system.

Property Formulas. Conditions on the constraint store are stated as property formu-
las. A property formula is simply a disjunctive normal form (DNF) formula of property
literals. A property (or prop) literal is a literal corresponding to a special kind of pred-
icates called properties. Properties are typically defined in the source language, in the
same way as ordinary predicates but marked accordingly, and are required to meet cer-
tain conditions [26, 4]. In particular, properties are normally required to be checkable at
run time but not necessarily decidable at compile time, where they are safely approxi-
mated.2

Example 3.1 (Properties & Property Literals). The program in Listing 1 defines the prop-
erties list/1 (“being a list”) and prefix/2 (“being a prefix of a list”). The property

2Ciao assertions can also include properties of a special kind called global properties, which may not
always be checkable at run time (e.g., termination or determinism), but we focus for brevity on the herein
described types of assertions and properties.

15

Chapter 3. The Ciao System

1 :- prop list/1.
2 list([]).
3 list([_|Xs]) :- list(Xs).

4 :- prop prefix/2.
5 prefix([], Ys) :- list(Ys).
6 prefix([X|Xs], [X|Ys]) :- prefix(Xs, Ys).

Listing 1: list_props program.

formula (list(Xs),list(Ys),prefix(Xs,Ys)) states that Xs and Ys should be lists,
and that Xs should be a prefix of Ys. This formula contains three property literals cor-
responding to the list/1 and prefix/2 properties. ♦

We now recall two definitions from [4] for reasoning about property formulas:

Definition 3.1 (Succeeds Trivially). A property literal 𝐿 succeeds trivially for a con-
straint store 𝜃 in a program P, denoted 𝜃 �⇒ 𝐿, iff

∃𝜃 ′ ∈ answers(P, (𝐿, 𝜃)). 𝜃 |= 𝜃 ′

Also, a property formula 𝐹 succeeds trivially for a constraint store 𝜃 in a program P if
all of the property literals of at least one conjunct of 𝐹 succeed trivially. ♦

Intuitively, a property literal (or formula) succeeds trivially if it succeeds for 𝜃 with-
out adding new “relevant” constraints to 𝜃 .

Example 3.2 (Succeeds Trivially). Let list(L) be a property formula, and 𝜃1 = {L =

[1,2]}, 𝜃2 = {L = [1,X]}, 𝜃3 = {L = [1|Ls]} be three constraint stores. The property
formula list(L) succeeds trivially both for 𝜃1 and 𝜃2, since a call to list(L)with either
of them would succeed without adding new constraints to the store. However, list(L)
does not succeed trivially for 𝜃3, since a call list(L) with 𝜃3 would further constraint
the term [1|Ls] by adding the constraint Ls = [] to𝜃3. Intuitively, the property formula
list(L) captures the notion that L is required to be instantiated to a list. ♦

This means that property literals are considered as instantiation checks: they are
true iff the variables they check are at least as constrained as their predicate definition
requires.

TraditionalAssertions. Assertions are syntactic objects for (partially) specifying pro-
cedures by means of expressing properties that must be satisfied at program execution.
They are primarily used for detecting deviations in a procedure’s behavior w.r.t. its spec-
ification. We now recall the assertion schema of [27] that is relevant herein. Predicate
(or pred) assertions have the following syntax:

:- pred Pred : Pre => Post.

where Pred is a normalized atom representing a predicate, and Pre and Post are property
formulas. They express that all calls to Pred must satisfy the pre-condition Pre, and, if
such calls succeed, the post-condition Post must be satisfied. If there are several pred

16

3.2. Assertion Language

1 :- pred take(N, Xs, Ys) : (nnegint(N), list(Xs)) => prefix(Ys, Xs).
2 :- pred take(N, Xs, Ys) : (list(Xs), prefix(Ys, Xs)) => nnegint(N).
3 take(0, _, []).
4 take(N, [X|Xs], [X|Ys]) :-
5 N #> 0,
6 N1 #= N-1,
7 take(N1, Xs, Ys).

Listing 2: take program.

assertions, then the Pre field of at least one of them must be satisfied (see later). We call
this kind of assertions traditional assertions or first-order assertions interchangeably.

Example 3.3 (Assertions). Consider the program in Listing 2. The take(N,Xs,Ys) pred-
icate relates a list Xs and its prefix Ys of length N by leveraging the clpfd finite domain
constraints package for reversible arithmetic.

Consider also the pred assertions (partially) specifying the take(N,Xs,Ys) predicate
using the list/1 and prefix/2 properties defined in the list_props program shown
in Listing 1, and the nnegint/1 built-in property (“being a non-negative integer”). These
assertions restrict the meaning of take(N,Xs,Ys) as follows:

• take(N,Xs,Ys) must be called with Xs bound to a list, and either N bound to a
non-negative integer or Ys bound to a prefix of Xs.

• if take(N,Xs,Ys) succeeds when called with N bound to a non-negative integer
and Xs bound to a list, then Ys must be bound to a prefix of Xs on success.

• if take(N,Xs,Ys) succeeds when called with Xs bound to a list and Ys bound to
a prefix of Xs, then N must be bound to a non-negative integer on success. ♦

Assertion Conditions. We represent the different checks on the constraint store im-
posed by a set of assertions as a set of assertion conditions.

Definition 3.2 (Set of Assertion Conditions). Given a predicate represented by a
normalized atom Pred, and its corresponding set of assertions {𝐴1, . . . , 𝐴𝑛}, with
𝐴𝑖 = “:- pred Pred : Pre𝑖 => Post𝑖.,” the set of assertion conditions for Pred
is {𝐶0,𝐶1, . . . ,𝐶𝑛}, with

𝐶𝑖 =

{
calls(Pred,∨𝑛

𝑗=1 Prej) 𝑖 = 0
success(Pred, Prei, Posti) 𝑖 ∈ 1..𝑛

where calls(Pred,∨𝑛
𝑗=1 Prej), the calls assertion condition, encodes the check that ensure

that all the calls to the predicate represented by Pred are within those admissible by the
set of assertions. And success(Pred, Prei, Posti), the success assertion conditions, encode
the checks for compliance of the successes for particular sets of calls. ♦

17

Chapter 3. The Ciao System

From this point onwards, we denote by A both the set of assertions of the program
and, interchangeably, its associated set of assertion conditions. Also, for a normalized
atom Pred, A(Pred) denotes only the assertions of A associated to the predicate repre-
sented by Pred; and if no assertions are provided for a predicate, we implicitly assume
the most general assertion conditions calls(Pred,tt) and success(Pred,tt,tt).

Example 3.4 (Set of Assertion Conditions). The assertion conditions for the pred asser-
tions of the take(N,Xs,Ys) predicate defined in the take program in Listing 2 are:

calls(take(N,Xs,Ys), (nnegint(N),list(Xs)) ∨ (list(Xs),prefix(Ys,Xs)))
success(take(N,Xs,Ys), (nnegint(N),list(Xs)), prefix(Ys,Xs))
success(take(N,Xs,Ys), (list(Xs),prefix(Ys,Xs)), nnegint(N)) ♦

3.3 Run-Time Checking of Traditional Assertions
We now introduce an extension of the operational semantics of higher-order programs
presented in §2.2 that checks whether assertion conditions hold or not while computing
the derivations from a query, halting the derivation as soon as an assertion condition
is violated. Every assertion condition 𝐶 is related to a unique label ℓ via a mapping
label(𝐶) = ℓ for identifying a possible violation. States of derivations are now of the form
⟨𝐺 | 𝜃 | E⟩, where E denotes the set of labels for falsified assertion condition instances,
and |E | ⩽ 1.3 We also extend the set of literals with (instrumental) literals of the form
check(Pred, ℓ) where Pred is a normalized atom representing a predicate, and ℓ is a label
for an assertion condition, whichwe call check literals. Thus, a literal is now a constraint,
an atom, a higher-order atom, or a check literal.

We now recall the notion of Semantics with Assertions from [28], which we slightly
adapt to support higher-order atoms. Under this semantics, given a state 𝑆 = ⟨𝐿 ::
𝐺 | 𝜃 | ∅⟩ where 𝐿 is a literal, it can be reduced to a state 𝑆′, denoted 𝑆 {A 𝑆′, by applying
the reduction rules in Figure 3.3. The set of all (intermediate and finished) derivations
for the program P with assertions A from the query 𝑄 (also a set of queries Q) using
the semantics with assertions is denoted derivsA (P, 𝑄).

Assertion conditions are checked by directly applying Definition 3.1 in rules atomA
and checkA . More concretely, when applying the atomA rule to an atom of the form
𝑝 (𝑡), we first check its associated calls assertion condition (if any), before reducing it
to its body followed by the PostC sequence. And, when applying the checkA rule to
a check literal check(Pred, ℓ), we are simply checking the success assertion condition
labeled with ℓ , which is associated with the predicate represented by Pred. In both cases,
if an assertion condition is violated during the derivation of a set of queries Q, we say
that the assertion condition is false for Q, and such derivations finish in an state whose
E set is not empty.

3While an E set is unnecessary if execution halts upon an assertion condition violation, we include it
to keep the semantics presented in this thesis close to that of previous work.

18

3.3. Run-Time Checking of Traditional Assertions

constrA 𝐿 is a constraint

⟨𝐿 :: 𝐺 | 𝜃 | ∅⟩ {A ⟨𝐺 | 𝜃 ∧ 𝐿 | ∅⟩ if 𝜃 ∧ 𝐿 ̸ |= ff (i.e., 𝜃 ∧ 𝐿 is satisfiable)

ho-atomA 𝐿 is a higher-order literal of the form 𝑋 (𝑡)
⟨𝐿 :: 𝐺 | 𝜃 | ∅⟩ {A ⟨𝑝 (𝑡) :: 𝐺 | 𝜃 | ∅⟩ if ∃𝑝 ∈ P . 𝜃 |= (𝑋 = 𝑝) ∧ ar(𝑝) = |𝑡 |

atomA 𝐿 is an atom of the form 𝑝 (𝑡), and ∃(𝐿 ← 𝐵) ∈ defn(𝐿)

⟨𝐿 :: 𝐺 | 𝜃 | ∅⟩ {A

⟨𝐺 | 𝜃 | {ℓ}⟩ if ∃𝐶 = calls(𝐿, Pre) ∈ A . label(𝐶) = ℓ ∧

∧ 𝜃 ̸�⇒ Pre
⟨𝐵 :: PostC :: 𝐺 | 𝜃 | ∅⟩ otherwise,

where PostC is the sequence of check literals check(𝐿, ℓ1) :: . . . :: check(𝐿, ℓ𝑛) such that
each ℓ𝑖 = label(𝐶𝑖), where 𝐶𝑖 = success(𝐿, Pre𝑖, Post𝑖) ∈ A, and 𝜃 �⇒ Pre𝑖

checkA 𝐿 is a check literal check(𝐿′, ℓ)

⟨𝐿 :: 𝐺 | 𝜃 | ∅⟩ {A

⟨𝐺 | 𝜃 | {ℓ}⟩ if ∃𝐶 = success(𝐿′, _, Post) ∈ A .

label(𝐶) = ℓ ∧ 𝜃 ̸�⇒ Post
⟨𝐺 | 𝜃 | ∅⟩ otherwise

Figure 3.3: Higher-order (C)LP with assertions: Reductions.

Definition 3.3 (Erroneous Derivation). Given a finished derivation 𝐷 , we say that 𝐷 is
erroneous iff the last state in 𝐷 is of the form ⟨𝐺′ | 𝜃 ′ | {ℓ}⟩. ♦

Otherwise, if an assertion condition is never violated in any derivation from Q,
we say that the assertion condition is checked for Q. Additionally, we extend Defi-
nitions 2.12 and 2.13 to derivations with assertions.

Definition 3.4 (Calling Context with Assertions). Given a program P and its set of
assertionsA, a predicate represented by a normalized atom Pred, and a set of queries Q,
we define the calling context CA (Pred,P,Q) of Pred for P and Q as

{𝜃↾Pred | ∃𝐷 ∈ derivsA (P,Q). 𝐷 [−1] = ⟨Pred :: 𝐺 | 𝜃⟩}. ♦

Definition 3.5 (Success Context with Assertions). Given a program P and its set of
assertions A, a predicate represented by a normalized atom Pred, a store 𝜃 , and a set of
queries Q, we define the success context SA (Pred, 𝜃,P,Q) of Pred and 𝜃 for P and Q as

{𝜃 ′↾Pred | ∃𝐷 ∈ derivsA (P,Q). ∃𝐺. ⟨Pred :: 𝐺 | 𝜃⟩ ∈ 𝐷. 𝐷 [−1] = ⟨𝐺 | 𝜃 ′⟩}. ♦

Remark 3.1. Naturally, given a programP with assertionsA, and a set of queries𝛾 (Q♯);
for any predicate in P represented by the normalized atom Pred, its calling and success

19

Chapter 3. The Ciao System

contexts without assertions are supersets of those with assertions:

C(Pred,P,Q) ⊇ CA (Pred,P,Q)
S(Pred, 𝜃,P,Q) ⊇ SA (Pred, 𝜃,P,Q)

since derivsA (P,Q) ⊆ derivs(P,Q) by the definition of the semantics without and with
assertions shown in Figures 2.1 and 3.3 respectively.

Thus, it follows that given the analysis triple ⟨Pred, 𝜆𝑐, 𝜆𝑠⟩ ∈ [P]♯Q♯
,

𝛾 (𝜆𝑐) ⊇ CA (Pred,P, 𝛾 (Q♯))
𝛾 (𝜆𝑠) ⊇ ∪{SA (Pred, 𝜃,P, 𝛾 (Q♯)) | 𝜃 ∈ 𝛾 (Q♯)} ♦

We now define the notion of run-time checking of assertions during the derivation
of a program from a set of queries.

Definition 3.6 (Run-Time Checking of Assertions). Given a set of queries Q, we say
that an assertion is checked (resp. false) for Q if all (resp. any) of the corresponding
assertion conditions are checked (resp. false) for Q. ♦

Example 3.5 (Run-Time Checking of Assertions). Consider deriving a query

𝑄 = (P(N,Xs,Ys), 𝜃), with 𝜃 = {P = take, N = -1, Xs = [1,2]}

to the take program in Listing 2 while checking its set of assertionsA using the opera-
tional semantics with assertions in Figure 3.3. Given𝑄 , we start the derivation from the
state ⟨P(N,Xs,Ys) | 𝜃 | ∅⟩.

⟨P(N,Xs,Ys) | 𝜃 | ∅⟩ {A ⟨take(N,Xs,Ys) | 𝜃 | ∅⟩ Papplying ho-atomAQ
{A ⟨take(N,Xs,Ys) | 𝜃 | {ℓ}⟩ Papplying atomAQ

where ℓ = label(calls(take(N,Xs,Ys), Pre))—see Example 3.4 for the full condition.

Notice that the derivation ends in an erroneous state since N is not a non-negative in-
teger ((N = -1) ∈ 𝜃), and thus the calls assertion condition associated to the
take(N,Xs,Ys) predicate does not succeed trivially for 𝜃 (𝜃 ̸�⇒ Pre). Then, we can
conclude that the calls assertion condition labeled with ℓ is false. ♦

Intuitively, we can conclude that an assertion is false just by finding a derivation
step in which one of the assertion conditions of such assertion is violated. However,
for concluding that an assertion is checked, we need to prove that its set of assertion
conditions is checked for all possible derivations from a set of queries, which is often
not feasible in practice. This is why static analysis is often used for this purpose.

20

3.4. Compile-Time Checking of Traditional Assertions

3.4 Compile-TimeChecking of TraditionalAssertions

For the static verification of traditional assertions, the abstract interpretation [P]♯Q♯
of a

program P for a set of abstract queries Q♯ is compared (in the abstract domain) against
the property formulas in each assertion. Given the nature of abstract interpretation (and
static analyses in general), the check assertion status is now considered. This status
represents that an assertion could not be statically proved to be checked or false, and
that it is subject to its run-time checking.

Since properties are defined in the source language, some of the expressible prop-
erties may be undecidable, or not exactly representable in an abstract domain (e.g., the
prefix/2 property defined in Listing 1). However, it is always possible to safely under-
or over-approximate them in any abstract domain. We now recall some essential defini-
tions from [4] for reasoning about property formulas at compile time.

Definition 3.7 (Trivial Success Set of a Property Formula). Given a property formula
𝐹 , we define the trivial success set of 𝐹 , denoted 𝐹 ♮, as

𝐹 ♮ ≜ {𝜃↾𝐹 | 𝜃 �⇒ 𝐹 } ♦

Intuitively, the trivial success set 𝐹 ♮ of a property formula 𝐹 is the (possibly infinite)
set of constraint stores forwhich the formula succeeds trivially (see Definition 3.1). Thus,
𝐹 ♮ belongs to the set of the concrete domain ℘(D). Since this object is only used in the
context of the compile-time checking via abstract interpretation, we use the ♮ symbol
notation (as a dual of the ♯ symbol notation for “things” living in the abstract domain).

Lemma 3.1. Given two property formulas 𝐹1 and 𝐹2, (𝐹1 ∧ 𝐹2)♮ = 𝐹
♮

1 ∩ 𝐹
♮

2 . ♦

Proof. We proceed by direct proof. Assume (𝐹1 ∧ 𝐹2)♮ ≠ ∅, take any 𝜃 ∈ (𝐹1 ∧ 𝐹2)♮.
By Definition 3.7, 𝜃 �⇒ (𝐹1 ∧ 𝐹2), and from Definition 3.1, 𝜃 �⇒ 𝐹1 ∧ 𝜃 �⇒ 𝐹1. Hence,
by Definition 3.7, 𝜃 ∈ 𝐹

♮

1 ∧ 𝜃 ∈ 𝐹
♮

2 , and from Definition 2.2, we conclude 𝜃 ∈ (𝐹 ♮

1 ∩ 𝐹
♮

2).
Assume now (𝐹1 ∧ 𝐹2)♮ = ∅, then ∀𝜃 ∈ 𝐹 ♮

1 . 𝜃 ∉ 𝐹
♮

2 ; hence 𝐹
♮

1 ∩ 𝐹
♮

2 = ∅. □

Definition 3.8 (Abstract Trivial Success Subset of a Property Formula). Given a prop-
erty formula 𝐹 , an abstraction is an abstract trivial success subset of 𝐹 , denoted 𝐹 ♯−, iff

𝛾 (𝐹 ♯−) ⊆ 𝐹 ♮ ♦

Definition 3.9 (Abstract Trivial Success Superset of a Property Formula). Given a prop-
erty formula 𝐹 , an abstraction is an abstract trivial success superset of 𝐹 , denoted 𝐹 ♯+, iff

𝐹 ♮ ⊆ 𝛾 (𝐹 ♯+) ♦

Intuitively, the abstract trivial success subset 𝐹 ♯− or superset 𝐹 ♯+ of a property for-
mula 𝐹 safely under- and over-approximate the trivial success set 𝐹 ♮ of 𝐹 , respectively.
Thus, 𝐹 ♯−, 𝐹 ♯+ ∈ D♯, and 𝛾 (𝐹 ♯−) ⊆ 𝐹 ♮ ⊆ 𝛾 (𝐹 ♯+).

21

Chapter 3. The Ciao System

These approximations can be computed by PLAI, and they are always computable
by choosing the closest element in the abstract domain. Intuitively, ⊥ and ⊤ are, re-
spectively, an under- and over-approximation of any property formula. Based in these
abstractions, the following definitions from [29] present sufficient conditions for the
compile-time checking of first-order assertions.

Definition 3.10 (Compile-Time Checking of Calls Assertion Condition). Given the ab-
stract interpretation [P]♯Q♯

of a program P for a set of abstract queries Q♯, we say that
a calls assertion condition calls(Pred, Pre) is

checked⇔ ∀⟨Pred, 𝜆𝑐, 𝜆𝑠⟩ ∈ [P]♯Q♯
. 𝜆𝑐 ⊑ Pre♯−

false⇔ ∀⟨Pred, 𝜆𝑐, 𝜆𝑠⟩ ∈ [P]♯Q♯
. 𝜆𝑐 ⊓ Pre♯+ = ⊥ ♦

Definition 3.11 (Compile-Time Checking of Success Assertion Condition). Given the
abstract interpretation [P]♯Q♯

of a program P for a set of abstract queries Q♯, we say that
a success assertion condition success(Pred, Pre, Post) is

checked⇔ ∀⟨Pred, 𝜆𝑐, 𝜆𝑠⟩ ∈ [P]♯Q♯
. (𝜆𝑐 ⊓ Pre♯+ = ⊥) ∨ (𝜆𝑠 ⊑ Post♯−)

false⇔ ∀⟨Pred, 𝜆𝑐, 𝜆𝑠⟩ ∈ [P]♯Q♯
. (𝜆𝑐 ⊑ Pre♯−) ∧ (𝜆𝑠 ⊓ Post♯+ = ⊥) ♦

22

Chapter 4

Specifying and Verifying
Higher-Order Programs

I
n higher-order (C)LP, variables can be bound to predicate symbols that are
later invoked. This naturally gives rise to the need of expressing conditions
on these predicates that must hold during program execution—much like how

properties are used for expressing conditions on first-order terms. This chapter presents
the main contribution of this thesis. First, in §4.1 we revisit the notion of predicate
properties first presented in [8], and we provide a refinement of both the syntax and
semantics of these properties. Subsequently, in §4.2 we introduce the notion of confor-
mance to a predicate property in the setting of the concrete semantics, i.e., a predicate
“behaving correctly w.r.t.” a predicate property. Together with its abstract counterpart,
abstract conformance, an alternative to conformance which is statically computable, i.e.,
at compile-time. Next, in §4.3 we present a programming technique for creating pred-
icate property-tailored predicates for simplifying the computation of abstract confor-
mance, among other advantages to be presented later. Afterwards, in §4.4 we introduce
a reduction from predicate properties to first-order properties, as a technique for rea-
soning about higher-order properties using a first-order static analyzer. Finally, in §4.5
we present a high-level algorithm for the compile-time verification of a program with
higher-order predicates and assertions using all the concepts presented in the previous
sections.

4.1 Predicate Properties
Predicate properties were already introduced in [8], which we revise and refine here.1 A
predicate property is defined as a set of anonymous assertions. Anonymous assertions
generalize traditional assertions by allowing the predicate symbol in the Pred field to
act as a placeholder. This placeholder can be instantiated with a predicate symbol 𝑝 ,

1Wepropose amore compact syntax here that avoids having to use a named variable for the anonymous
predicate symbol (as in [8]) and takes advantage of functional notation (:=).

23

Chapter 4. Specifying and Verifying Higher-Order Programs

producing a traditional assertion for 𝑝 . We now provide the formal definitions and some
examples.

Definition 4.1 (AnonymousAssertion). An anonymous assertion ◦𝐴 is an assertionwhose
Pred field is of the form _(𝑣), where 𝑣 are free, distinct variables, and _ is a placeholder
for a predicate symbol.2 Instantiating _ with a specific predicate symbol 𝑝 produces a
traditional assertion for 𝑝 derived from the anonymous assertion, denoted ◦𝐴|𝑝 . ♦

Example 4.1 (Anonymous Assertion). Let ◦𝐴 be the anonymous assertion:

:- pred _(X,Y) : int(X) => int(Y).

Then, ◦𝐴|𝑝 is the traditional assertion:

:- pred p(X,Y) : int(X) => int(Y).

obtained by instantiating the anonymous assertion ◦𝐴 with the predicate symbol p. ♦

Definition 4.2 (Predicate Property). A predicate property Π is defined as a set of anony-
mous assertions {◦𝐴1, . . . ,

◦𝐴𝑛}. Its syntax is:
Π := {

:- pred _(𝑣) : Pre1 => Post1.
...
:- pred _(𝑣) : Pre𝑛 => Post𝑛.

}.

and the function ar(Π) denotes the arity of the predicates for which all of the anonymous
assertions in Π express a property. Instantiating Π with a specific predicate symbol 𝑝
produces a set of traditional assertions for 𝑝 , denoted Π |𝑝 = {◦𝐴1|𝑝, . . . , ◦𝐴𝑛|𝑝}. ♦

Similarly to our use of A to denote a set of assertions and its associated set of as-
sertion conditions, we use Π to refer to both a set of anonymous assertions and, in-
terchangeably, the corresponding set of anonymous assertion conditions. In this way,
the instantiation of a predicate property Π to a specific predicate symbol is naturally
extended to its associated set of anonymous assertion conditions.

Example 4.2 (Predicate Property). Consider the program in Listing 3, where we define
the predicate property int_op (“being a predicate that behaves as an integer nonde-
terministic binary operator”), and (partially) specify the higher-order predicate eval/4
using the int_op predicate property.

The predicate property literal int_op(IntOp) states that IntOp should be bound to
a 3-ary predicate such that, if it is called with its first two arguments bound to integers,
then its third argument should be bound to an integer upon success. The assertion for
the eval/4 predicate states that it must be called with its first two arguments bound

2We also use for compactness “_” as anonymous functor, a syntactic extension from the Ciao hiord
package [30], but double quotes ‘’ can also be used to stay within ISO-Prolog syntax.

24

4.2. Conformance to a Predicate Property

1 int_op := { :- pred _(X, Y, Z) : (int(X), int(Y)) => int(Z). }.
2

3 :- pred eval(A, B, IntOp, R) : (int(A), int(B), int_op(IntOp)) => int(R).

Listing 3: int_op predicate property.

to integers and its third argument bound to a predicate that conforms to the int_op
predicate property, and that if any such call succeeds, then its third argument should be
bound to an integer. ♦

Once we have established how to specify higher-order programs using predicate
properties, we will now concentrate on how to verify such programs.

4.2 Conformance to a Predicate Property

Whenwe provide a partial specification for a higher-order argument𝑋 of a higher-order
predicate using a predicate property Π, we are describing requirements that the predi-
cates that 𝑋 may be bound to must meet. As mentioned before, we refer to a predicate 𝑝
behaving correctly w.r.t. Π as 𝑝 conforming to Π. In this section we refine and formalize
this notion of conformance. Our overall objective is to be able to safely approximate the
set of predicates that𝑋 can be bound to without violating the conditions imposed by the
predicate property Π.

It is important to note that, for the purposes of determining conformance, the as-
sertions of the predicates in the program can be provided by the user, inferred by static
analysis, or a combination of both. Throughout the rest of the discussion, let P be a
program, 𝑝 be a predicate s.t. 𝑝 ∈ P, Π be a predicate property, and A be the set of
assertion conditions of P.

4.2.1 Conformance

Definition 4.3 (Covered Predicate). Given the calls assertion condition calls(𝑝 (𝑣), Pre) ∈
A, and the anonymous calls assertion condition calls(_(𝑣), ◦Pre) ∈ Π associated toΠ. We
say that the predicate 𝑝 can be covered with the predicate property Π iff

◦Pre♮ ⊆ Pre♮ ♦

Intuitively, a predicate 𝑝 can be covered with a predicate property Π if the set of
admissible calls to 𝑝 is a superset of the set of admissible calls described by Π.

Lemma 4.1. Under the same conditions as in Definition 4.3,

◦Pre♯+ ⊑ Pre♯− ⇒ 𝑝 can be covered with Π ♦

25

Chapter 4. Specifying and Verifying Higher-Order Programs

Proof. The proof proceeds by assuming ◦Pre♯+ ⊑ Pre♯− and showing ◦Pre♮ ⊆ Pre♮.
◦Pre♯+ ⊑ Pre♯−

⇔ 𝛾 (◦Pre♯+) ⊆ 𝛾 (Pre♯−) P(2.1)Q
⇔ ◦Pre♮ ⊆ 𝛾 (◦Pre♯+) ⊆ 𝛾 (Pre♯−) ⊆ Pre♮ PDefs. 3.8 and 3.9Q
⇔ ◦Pre♮ ⊆ Pre♮ PDef. 2.14Q

□

Definition 4.4 (Redundance). Under the same conditions as in Definition 4.3, given
that the predicate 𝑝 can be covered with the predicate property Π, we define the set of
assertion conditions A′ as

A′ = {calls(𝑝 (𝑣), Pre ∧ ◦Pre)} ∪ (A \ {𝐶}) ∪ (Π \ {◦𝐶})|𝑝
where 𝐶 = calls(𝑝 (𝑣), Pre) ∈ A and ◦𝐶 = calls(_(𝑣), ◦Pre) ∈ Π.

Given a sequence of literals 𝐺 , letU(𝐺) denote the result of removing all check lit-
erals from𝐺 . We extendU to derivations so thatU(𝐷) denotes the derivation resulting
from transforming all states ⟨𝐺 | 𝜃 | E⟩ in 𝐷 into the state ⟨𝐺′ | 𝜃⟩, where 𝐺′ =U(𝐺).

Let 𝑄𝑝 be a query to 𝑝 . We say that Π is redundant for 𝑝 under 𝑄𝑝 iff

∀𝐷′ ∈ derivsA′ (P, 𝑄𝑝). 𝐷′[−1] = ⟨𝐺
′ | 𝜃 | {ℓ′}⟩

and
∀𝐷 ∈ derivsA (P, 𝑄𝑝). U(𝐷) =U(𝐷′)

it holds that 𝐷 [−1] {
∗
A ⟨𝐺 | 𝜃 | {ℓ}⟩ through a derivation that reduces only check literals

(if any at all),3 where ℓ (resp. ℓ′) is the label for a calls or success assertion condition in
A(𝑝 (𝑣)) (resp. A′(𝑝 (𝑣))). ♦

Intuitively, a predicate property Π is redundant for a predicate 𝑝 ∈ P under a query
𝑄𝑝 to 𝑝 iff augmenting the original set of assertion conditions (A) with that of Π instan-
tiated to 𝑝 (A′) does not introduce new run-time check errors in any derivation of P
starting from𝑄𝑝 . That is, for any derivation 𝐷′ of P withA′ from𝑄𝑝 that ends in an er-
roneous state, and for any derivation𝐷 of P withA from𝑄𝑝 that is equivalent—modulo
check literals—to𝐷′, then𝐷 ends in an erroneous state after 0 to𝑛 check literal-reduction
steps.

Definition 4.5 (Conformance). Let P be a program, 𝑝 be a predicate s.t. 𝑝 ∈ P, Π be a
predicate property, and Q𝑝 be the set of all possible queries to 𝑝 . We say that 𝑝 conforms
to Π, denoted 𝑝 ≺ Π iff

∀𝑄𝑝 ∈ Q𝑝 . Π is redundant for p under 𝑄𝑝

Conversely, we say that 𝑝 does not conform to Π, denoted 𝑝 ⊀ Π iff

∃𝑄𝑝 ∈ Q𝑝 . Π is not redundant for p under 𝑄𝑝 ♦
3Note that this impliesU(𝐺) =U(𝐺 ′).

26

4.2. Conformance to a Predicate Property

4.2.2 Abstract Conformance

Intuitively, to prove that a predicate conforms to a predicate property, all possible deriva-
tions from all possible queries to that predicate have to be considered, which is often not
feasible in practice. To this end, we introduce the notion of abstract conformance as a
compile-time conformance criterion.

Abstract conformance safely approximates the notion of conformance by comparing
the assertion conditions of a predicate and those of a predicate property under the order
relation of an abstract domain.

We denote by ≺♯− the notion of strong abstract conformance, and by ≺♯+ that ofweak
abstract conformance. That is, an under- and over-approximation of abstract confor-
mance, respectively. Intuitively, strong abstract conformance captures only predicates
known to conform, while weak abstract conformance also includes those for which con-
formance is unknown. Thus, the negation of weak abstract conformance, denoted ⊀♯+,
captures the predicates that are known not to conform.

We now provide sufficient conditions for determining (non-)abstract conformance.

Definition 4.6 (Abstract Conformance on “Calls”). Let Pre be the pre-condition of the
calls assertion condition for 𝑝 in A, and ◦𝐶 be an anonymous calls assertion condition
calls(_(𝑣), ◦Pre). We say that the predicate 𝑝 abstractly conforms on calls to the anony-
mous assertion condition ◦𝐶 , denoted 𝑝 ≺♯− ◦𝐶 , iff

(Pre♯+ ⊑ ◦Pre♯−) ∧ (Pre♯− ⊒ ◦Pre♯+)

Conversely, we say that 𝑝 does not abstractly conform on calls to ◦𝐶 , denoted 𝑝 ⊀♯+ ◦𝐶 , iff

Pre♯+ ⊓ ◦Pre♯+ = ⊥ ♦

Intuitively, when determining abstract conformance to an anonymous calls condition,
we need both pre-conditions to be (essentially) equivalent. That is, they both succeed
for the same call states. This is to avoid unexpected behavior, either by getting more (or
less) run-time check errors than expected.

Although this condition seems—and is, indeed—hard to satisfy, we later provide an
example that illustrates the need for such a strict condition; which also serves as moti-
vation for the programming technique based in wrappers presented in §4.3 as a way of
alleviating this condition and turning it into a trivial check

Conversely, when determining non abstract conformance to an an anonymous calls
condition, we require that their pre-conditions describe completely disjoint call patterns.
This way we are sure that regardless of the concrete semantics of the predicate, it is—for
sure—not conformant to the anonymous calls assertion condition.

An illustration of the conditions above is depicted in Figure 4.1.

27

Chapter 4. Specifying and Verifying Higher-Order Programs

𝛾 (Pre♯{−,+}) = 𝛾 (◦Pre♯{−,+})

(a) Abstract conformance on calls.

𝛾 (◦Pre♯+)

𝛾 (Pre♯+)

(b) Non abstract conformance on calls.

Figure 4.1: Venn diagram representations of the abstract conformance on calls conditions
(Definition 4.6). More concretely, the set inclusion relation between the concretizations
of the property formulas of the involved calls assertion conditions.

Definition 4.7 (Abstract Conformance on “Success”). Let ◦𝐶 be an anonymous success
assertion condition success(_(𝑣), ◦Pre, ◦Post). We say that the predicate 𝑝 abstractly con-
forms on success to the anonymous assertion condition ◦𝐶 , denoted 𝑝 ≺♯− ◦𝐶 , iff

∃𝑆 ⊂ A . (Pre♯−⊔ ⊒ ◦Pre♯+) ∧ (Post
♯+
⊔ ⊑ ◦Post♯−)

where
Pre♯−⊔ = ⊔{Pre♯− | success(𝑝 (𝑣), Pre, _) ∈ 𝑆}
Post♯+⊔ = ⊔{Post♯+ | success(𝑝 (𝑣), _, Post) ∈ 𝑆}

Conversely, we say that 𝑝 does not abstractly conform on success to ◦𝐶 , denoted 𝑝 ⊀♯+ ◦𝐶 ,
iff

∃ success(𝑝 (𝑣), Pre, Post) ∈ A . (Pre♯+ ⊑ ◦Pre♯−) ∧ (Post♯+ ⊓ ◦Post♯+ = ⊥) ∧
∧ ∃𝜃 ∈ Pre♮ . SA (𝑝 (𝑣), 𝜃,P, 𝛾 (Q♯

𝑝)) ≠ ∅

where Q♯
𝑝 is the set of abstract queries s.t. 𝛾 (Q

♯
𝑝) is a superset of the set of valid queries

to 𝑝 described by 𝑝’s calls assertion condition in A. ♦

Intuitively, when determining abstract conformance to an anonymous success asser-
tion condition, we look for a subset of the success assertion conditions of the predicate
such that:

• All of their pre-conditions succeed for—at least—all the call states for which the
anonymous success assertion condition pre-condition succeeds (first conjunct).
That is, they are more general, i.e., describing a broader set of call states for which
the post-conditions are applicable.

• All of their post-conditions succeed for—at most—all the success states for which
the anonymous success assertion condition post-condition succeeds (second con-
junct). That is, they are less general, i.e., describing a smaller set of success states
for which the post-conditions succeed.4

4The reader may notice that these two concepts are—in a way—similar to the notion of covariance and

28

4.2. Conformance to a Predicate Property

𝛾 (Pre♯−⊔)

𝛾 (◦Pre♯−)

𝛾 (◦Post♯−)

𝛾 (Post♯−⊔)

(a) Abstract conformance on success.

𝛾 (◦Pre♯−)

𝛾 (Pre♯−⊔) 𝛾 (◦Post♯+)

𝛾 (Post♯+)

(b) Non abstract conformance on success.

Figure 4.2: Venn diagram representations of the abstract conformance on success condi-
tions (Definition 4.7). More concretely, the set inclusion relation between the concretiza-
tions of the property formulas of the involved success assertion conditions.

As discussed in §3.4, for abstract domains whichmay lose precision with their (⊔) ab-
stract operator, more advanced techniques for leveraging multiple abstractions become
necessary. See, for instance, covering [32, 33] or abstraction partitioning [34, 35], which
continue to be active research topics in the field of abstract interpretation.

Conversely, when determining non abstract conformance to an anonymous success
assertion condition, we look for a success assertion condition of the predicate such that:

• Its pre-condition succeeds for—at most—all the call states for which the anony-
mous success assertion condition pre-condition succeeds (first conjunct).

• Its post-condition succeeds for a set of success states that is disjoint from that of
the anonymous success assertion condition post-condition (second conjunct).

An illustration on the conditions above is depicted in Figure 4.2.

However, if you recall Definition 4.5, for determining non conformance, we need to
find a counter-example: an erroneous derivation with the augmented set of assertions
such that the corresponding derivation with the original set of assertions is successful.
So, what if the predicate does not have any possible successful derivation? To make our
argument more concrete, consider the following example.

Example 4.3 (The Need for a Success State). Given the program in Listing 4, we may be
tempted to conclude that p/1 does not abstractly conform on success to p_nat_nat, since
Ywould be bound to an integer upon success—violating the post-condition of p/1. How-
ever, consider the case in which the opaque/1 predicate always fails, but that we cannot
detect it in any way. For example, a library predicate, external call via a foreign function
interface, etc. Then, according to Definition 4.5, p/1would conform to p_nat_nat, since
every possible derivation of p/1 would not proceed further than line 7, hence not rais-
ing a run-time check error. Although it would raise a run-time check error if execution
reaches line 8. ♦

contravariance in the context of subtyping of function types [31]. However, since we are dealing with
multiple modes (or usages) of a single predicate, it can be seen as a generalization of such notion.

29

Chapter 4. Specifying and Verifying Higher-Order Programs

1 % 2-ary predicates that, when called with `X` bound to an
2 % integer, `Y` is unified with an integer upon success.
3 p_nat_nat := { :- pred _(X, Y) : nat(X) => nat(Y). }.
4

5 :- pred p(X, Y) : nat(X) => atm(Y).
6 p(4, Y) :-
7 opaque(4), % This call always fails.
8 Y = 4. % This unification is unreachable.

Listing 4: Example program invoking an opaque predicate which always fails.

To this end, we add the third conjunct in the definition of non abstract conformance
on success, which encodes the existence of at least one successful state for the predicate
with its set of assertions.

We now lift the notion of abstract conformance and the definitions presented above
to predicate properties.

Definition 4.8 (Abstract Conformance). We say that the predicate 𝑝 abstractly conforms
to a predicate property Π, denoted 𝑝 ≺♯− Π, iff

∀ ◦𝐶 ∈ Π. 𝑝 ≺♯− ◦𝐶

Conversely, we say that 𝑝 does not abstractly conform to Π, denoted 𝑝 ⊀♯+ Π, iff

∃ ◦𝐶 ∈ Π. 𝑝 ⊀♯+ ◦𝐶 ♦

We now relate the notions of conformance and abstract conformance.

Theorem 4.1. Let 𝑝 be a predicate and Π be a predicate property. Then,

𝑝 ≺♯− Π ⇒ 𝑝 ≺ Π (≺♯−)
𝑝 ⊀♯+ Π ⇒ 𝑝 ⊀ Π (⊀♯+)

♦

Proof. Let P be a program, 𝑝 be a predicate s.t. 𝑝 ∈ P, and Π be a predicate property.
We will prove each case separately.

• (≺♯−). We proceed by contradiction. Assume that 𝑝 abstractly conforms to Π:

𝑝 ≺♯− Π (4.1)

and that 𝑝 does not conform to Π:

𝑝 ⊀ Π (4.2)

First, by (4.1) and Lemma 4.1, we know that 𝑝 can be covered with Π, hence
◦Pre♮ ⊆ Pre♮ (4.3)

30

4.2. Conformance to a Predicate Property

From (4.2) we know that there exists a query 𝑄𝑝 = (𝑝 (𝑣), 𝜃0) to 𝑝 s.t. Π is not re-
dundant for 𝑝 . Thus, by negating the redundance condition fromDefinition 4.4, we
know that: ∃𝐷′ ∈ derivsA′ (P, 𝑄𝑝). 𝐷′[−1] = ⟨𝐺

′ | 𝜃 | {ℓ′}⟩, and∃𝐷 ∈ derivsA (P, 𝑄𝑝).
U(𝐷) =U(𝐷′), s.t.𝐷 [−1] {

∗
A ⟨𝐺 | 𝜃 | ∅⟩ through any derivation that reduces only

check literals; where A′ is defined as in Definition 4.5.

We also know that both derivsA′ (P, 𝑄𝑝) and derivsA (P, 𝑄𝑝) share the same initial
state 𝑆 = ⟨𝑝 (𝑣) | 𝜃0 | ∅⟩ given that they are deriving the same query 𝑄𝑝 to 𝑝 .

We now consider two cases: the error comes from a calls or success assertion
condition in A′.

Calls: The label ℓ′ identifies a calls assertion condition 𝐶′ in A′—of the form
calls(𝑝 (𝑣), Pre ∧ ◦Pre) (from the definition ofA′)—which fails to be checked for 𝜃 ;
and the calls assertion condition 𝐶 in A—of the form calls(𝑝 (𝑣), Pre)—is checked
for 𝜃 .

On the one hand:

𝐶′ fails to be checked for 𝜃
⇔ 𝜃 ̸�⇒ Pre ∧ ◦Pre PSemantics in Fig. 3.3Q
⇔ 𝜃 ∉ (Pre ∧ ◦Pre)♮ PDef. 3.7Q
⇔ 𝜃 ∉ Pre♮ ∩ ◦Pre♮ PLem. 3.1Q
⇔ 𝜃 ∉ ◦Pre♮ P(4.3)Q

On the other hand:

𝐶 is checked for 𝜃
⇔ 𝜃 �⇒ Pre PSemantics in Fig. 3.3Q
⇔ 𝜃 ∈ Pre♮ PDef. 3.7Q

Since 𝑝 ≺♯− Π (4.1), we know from Definition 4.6 that:

Pre♯+ ⊑ ◦Pre♯−

⇔ 𝛾 (Pre♯+) ⊆ 𝛾 (◦Pre♯−) P(2.1)Q
⇔ Pre♮ ⊆ 𝛾 (Pre♯+) ⊆ 𝛾 (◦Pre♯−) ⊆ ◦Pre♮ PDefs. 3.8 and 3.9Q

Since 𝜃 ∈ Pre♮ and ⊆ is a partial order, it implies that 𝜃 ∈ ◦Pre♮, contradicting
𝜃 ∉ ◦Pre♮. E

Success: The label ℓ′ identifies a success assertion condition𝐶′ inA′—of the form
success(𝑝 (𝑣), ◦Pre, ◦Post)—which fails to be checked for 𝜃 ; and all success assertion
conditions𝐶𝑖 inA—of the form success(𝑝 (𝑣), Pre𝑖, Post𝑖) with 𝑖 ∈ 1..𝑛—is checked
for 𝜃 .

31

Chapter 4. Specifying and Verifying Higher-Order Programs

On the one hand:

𝐶′ fails to be checked for 𝜃
⇔ (𝜃0 �⇒ ◦Pre) ∧ (𝜃 ̸�⇒ ◦Post) PSemantics in Fig. 3.3Q
⇔ (𝜃0 ∈ ◦Pre♮) ∧ (𝜃 ∉ ◦Post♮) PDef. 3.7Q

Since 𝑝 ≺♯− Π (4.1), we know from Definition 4.7 that there exists a proper subset
of success assertion conditions 𝑆 ⊂ A s.t.:

(Pre♯−⊔ = ⊔{Pre♯− | success(𝑝 (𝑣), Pre, _) ∈ 𝑆}) ⊒ ◦Pre♯+ (4.4)

and
(Post♯+⊔ = ⊔{Post♯+ | success(𝑝 (𝑣), _, Post) ∈ 𝑆}) ⊑ ◦Post♯− (4.5)

From (4.4) and (4.5), and Definitions 3.8 and 3.9, we obtain the following relations:

∪{Pre♮ | success(𝑝 (𝑣), Pre, _) ∈ 𝑆} ⊇ 𝛾 (Pre♯−⊔) ⊇ 𝛾 (◦Pre♯+) ⊇ ◦Pre♮ (4.6)

and

∪{Post♮ | success(𝑝 (𝑣), _, Post) ∈ 𝑆} ⊆ 𝛾 (Post♯+⊔) ⊆ 𝛾 (◦Post♯−) ⊆ ◦Post♮ (4.7)

Finally, since 𝜃0 ∈ ◦Pre♮:

𝜃0 ∈ ◦Pre♮

⇔ 𝜃0 ∈ ∪{Pre♮ | success(𝑝 (𝑣), Pre, _) ∈ 𝑆} P(4.6)Q
⇔ ∃(𝐶 = success(𝑝 (𝑣), Pre, Post)) ∈ 𝑆. 𝜃0 ∈ Pre♮ PDef. 2.1Q
⇔ 𝜃 �⇒ Post P𝐶 checked for 𝜃 , hypothesisQ
⇔ 𝜃 ∈ Post♮ PDef. 3.7Q
⇔ 𝜃 ∈ ∪{Post♮ | success(𝑝 (𝑣), _, Post) ∈ 𝑆} PDef. 2.1Q
⇔ 𝜃 ∈ ◦Post♮ P(4.7)Q

which leads to a contradiction with our initial hypothesis 𝜃 ∉ ◦Post♮. E

• (⊀♯+). We proceed by direct proof. Since 𝑝 does not abstractly conform to Π:

𝑝 ⊀♯+ Π (4.8)

we consider two cases: 𝑝 does not abstractly conform to Π’s anonymous calls
assertion condition, or to some anonymous success assertion condition of Π.

32

4.2. Conformance to a Predicate Property

Calls: Let (◦𝐶 = calls(_(𝑣), ◦Pre)) ∈ Π, we know that 𝑝 ⊀♯+ ◦𝐶 , then:

𝑝 ⊀♯+ ◦𝐶

⇔ Pre♯+ ⊓ ◦Pre♯+ = ⊥ PDef. 4.6Q
⇔ Pre♮ ∩ ◦Pre♮ = ∅ PDef. 3.9Q
⇔ ∀𝜃 ∈ ◦Pre♮ . 𝜃 ∉ Pre♮ PDef. 2.2Q
⇒ ◦Pre♮ ⊄ Pre♮ PDef. 2.4Q
⇒ 𝑝 cannot be covered with Π PDef. 4.3Q
⇒ 𝑝 ⊀ Π PDefs. 4.4 and 4.5Q

Success: Let (◦𝐶 = success(_(𝑣), ◦Pre, ◦Post)) ∈ Π, since 𝑝 ⊀♯+ ◦𝐶 , we know that
there exists a success assertion condition (𝐶 = success(𝑝 (𝑣), Pre, Post)) ∈ A
s.t. the following hold:

Pre♯+ ⊑ ◦Pre♯− (4.9)
Post♯+ ⊓ ◦Post♯+ = ⊥ (4.10)

∃𝜃0 ∈ Pre♮ . SA (𝑝 (𝑣), 𝜃0,P, 𝛾 (Q♯
𝑝)) ≠ ∅ (4.11)

where 𝛾 (Q♯
𝑝) is a superset of the set of valid queries to 𝑝 described by 𝑝’s calls

assertion condition in A.

First, by Definitions 3.8 and 3.9, from (4.9) and (4.10) we obtain:

Pre♮ ⊆ ◦Pre♮ (4.12)
Post♮ ∩ ◦Post♮ = ∅ (4.13)

Next, from (4.11) and (4.12), it follows that𝜃0 ∈ Pre♮ and𝜃0 ∈ ◦Pre♮. Also, from (4.11)
and Definition 3.5, we know that

𝜃 ∈ SA (𝑝 (𝑣), 𝜃0,P, 𝛾 (Q♯
𝑝))

hence 𝜃 ∈ Post♮. However, by (4.13) we know that 𝜃 ∉ ◦Post♮.

By Definition 3.7, this means that, on the one hand:

𝜃0 �⇒ Pre ∧ 𝜃 �⇒ Post (4.14)

And in the other hand:
𝜃0 �⇒ ◦Pre ∧ 𝜃 ̸�⇒ ◦Post (4.15)

The above conditions (4.14) and (4.15), together with the definition of the oper-
ational semantics with assertions in Figure 3.3, implies that there exists a query
𝑄𝑝 = (𝑝 (𝑣), 𝜃0) to 𝑝 s.t. Π is not redundant for 𝑝 . And, by the definition of non
conformance (Definition 4.5), this implies that 𝑝 does not conform to Π. □

33

Chapter 4. Specifying and Verifying Higher-Order Programs

1 % 2-ary predicates that, when called with `X` bound to an
2 % integer, `Y` is unified with an integer upon success.
3 p_nat_nat := { :- pred _(X, Y) : nat(X) => nat(Y). }. % Π
4

5 :- pred n2n(X, Y)
6 : nat(X) => nat(Y). % 𝐴1
7 :- pred a2n(X, Y)
8 : atm(X) => nat(Y). % 𝐴2
9 :- pred i2z(X, Y)
10 : int(X) => zero(Y). % 𝐴3
11 :- pred z2i(X, Y)
12 : zero(X) => int(Y). % 𝐴4
13 :- pred nz2n(X, Y)
14 : negz(X) => nat(Y). % 𝐴5

(a) Predicate property and some assertions.

⊤

int

negz nat atm

zero

⊥
(b) Abstract domain lattice.

Figure 4.3: Example case analysis on a predicate property and assertions.

Example 4.4 (Abstract Conformance). Consider the source code in Figure 4.3a. We first
define the predicate property p_nat_nat, which, for simplicity, we will interchangeably
refer to as Π for the rest of the example. We then partially specify some predicates with
assertionsA = {𝐴1, . . . , 𝐴5}. Notice that the property formulas of both Π andA include
property literals of the properties (exactly) represented in the abstract domain whose
(simplified) lattice is depicted in Figure 4.3b. The corresponding assertion conditions for
Π and 𝐴𝑖 are:

Π ≡ {calls(_(X,Y), nat(X)), success(_(X,Y), nat(X), nat(Y))}
𝐴1 ≡ {calls(n2n(X,Y), nat(X)), success(n2n(X,Y), nat(X), nat(Y))}
𝐴2 ≡ {calls(a2n(X,Y), atm(X)), success(a2n(X,Y), atm(X), nat(Y))}
𝐴3 ≡ {calls(i2z(X,Y), int(X)), success(i2z(X,Y), int(X), zero(Y))}
𝐴4 ≡ {calls(z2i(X,Y), zero(X)), success(z2i(X,Y), zero(X), int(Y))}
𝐴5 ≡ {calls(nz2n(X,Y), negz(X)), success(nz2n(X,Y), negz(X), nat(Y))}

Assume now that we would like to determine which of the predicates partially spec-
ified by assertionsA abstractly conform to the predicate property Π. For each predicate
and its corresponding pair of calls and success assertion conditions, we proceed as fol-
lows:

1. Determine abstract conformance to Π’s anonymous calls condition;

2. Determine abstract conformance to Π’s anonymous success condition; and,

3. Determine abstract conformance to Π.

Abstract Conformance on “Calls” to 𝚷: Table 4.1 summarizes the abstract confor-
mance analysis between the calls assertion condition of each predicate and Π’s anony-

34

4.2. Conformance to a Predicate Property

Table 4.1: Abs. conf. on “calls” example with ◦Pre = nat(X).

Pred Prei Relation w. ◦Pre Abs. Conf.

n2n(X,Y) nat(X) nat(X) = nat(X) yes

a2n(X,Y) atm(X) atm(X) ⊓ nat(X) = ⊥ no

i2z(X,Y) int(X) int(X) ⊒ nat(X) maybe

z2i(X,Y) zero(X) zero(X) ⊑ nat(X) maybe

nz2n(X,Y) negz(X)

negz(X) ⊓ nat(X) ≠ ⊥
maybe∧ negz(X) @ nat(X)

∧ negz(X) A nat(X)

Table 4.2: Abs. conf. on “success” example with ◦Pre = nat(X), ◦Post = nat(Y).

Pred Prei Relation w. ◦Pre Posti Relation w. ◦Post Abs. Conf.

n2n(X,Y) nat(X) nat(X) = nat(X) nat(Y) nat(Y) = nat(Y) yes

a2n(X,Y) atm(X) atm(X) ⊓ nat(X) = ⊥ nat(Y) nat(Y) = nat(Y) maybe

i2n(X,Y) int(X) int(X) ⊒ nat(X) zero(Y) zero(Y) ⊑ nat(Y) yes

z2i(X,Y) zero(X) zero(X) ⊑ nat(X) int(Y) int(Y) ⊒ nat(Y) maybe

nz2n(X,Y) negz(X)

negz(X) ⊓ nat(X) ≠ ⊥
nat(Y) nat(Y) = nat(Y) maybe∧ negz(X) @ nat(X)

∧ negz(X) A nat(X)

mous calls assertion condition, by comparing their respective pre-conditions. We then
apply Definition 4.6 to determine abstract conformance on calls.

Abstract Conformance on “Success” to 𝚷: Table 4.2 summarizes the abstract con-
formance analysis between the success assertion condition of each predicate and Π’s
anonymous success assertion condition, by comparing their respective pre- and post-
conditions. We then apply Definition 4.7 to determine abstract conformance on success.

Abstract Conformance to 𝚷: As a summary, we have that the only predicate that
definitely conforms to the p_nat_nat predicate property is n2n/2, since both of its
assertion conditions conform to those of p_nat_nat. ♦

35

Chapter 4. Specifying and Verifying Higher-Order Programs

4.3 Wrappers
Consider a predicate 𝑝 and a predicate property Π such that 𝑝 can be covered by Π.
From Definition 4.3 we know that given their respective pre-conditions Pre and ◦Pre
given by their calls assertion conditions, Pre♮ ⊇ ◦Pre♮. Thus, by Lemma 4.1 and according
to Definition 4.6, 𝑝 may abstractly conform to Π (𝑝 ≺♯+ Π).

The reason behind not concluding abstract conformance is that Pre may describe
more admissible call states for 𝑝 than ◦Pre, which can lead to omitting some run-time
check errors that would be raised by ◦Pre. Intuitively, if that is the case for a query 𝑄𝑝 ,
𝑝 would not conform to Π according to Definition 4.5 since 𝑝 would not be redundant
for Π under 𝑄𝑝 (Definition 4.4). And this would mean that abstract conformance yields
unsound results.

To make our argument more concrete consider the following example.

Example 4.5 (Weak Abstract Conformance). Consider a query (foo(P), {P = even})
to the program:

1 % 1-ary predicates that must be called with a natural number.
2 p_nat := { :- pred _(N) : nat(N). }.
3

4 :- pred even(N) : int(N).
5 even(N) :-
6 integer(N),
7 0 is N mod 2.
8

9 :- pred foo(P) : p_nat(P).
10 foo(P) :- P(10). % (1)
11 foo(P) :- P(-10). % (2)

Take a derivation of such query that starts by reducing to the body of the first clause
(1)—line 10: no calls assertion condition violation is expected since all predicates that
conform to p_nat must accept all natural numbers on calls.

Now, take a derivation that reduces to the body of the second clause (2)—line 11: a
calls assertion condition violation is expected since all predicates that conform to p_nat
must raise an error for any input different from a natural number. However, in this
particular case, no error is raised, since even/1 accepts any integer on calls.

Moreover, if we extended the program with a new clause for foo/1:

13 foo(P) :- bar(P). % (3)
14

15 % 1-ary predicates that must be called with a negative number.
16 p_neg := { :- pred _(N) : neg(N). }.
17

18 :- pred bar(P) : p_neg(P).
19 bar(P) :- P(-4).

36

4.3. Wrappers

then a clause like (3)—line 13—would be problematic. For this clause, looking at the
assertion of foo/1, the predicate in P is required to conform to p_nat, which would
raise a run-time check error when calling bar(P), since p_neg is disjoint from p_nat.
However, if we consider the particular case inwhich P = even, it may not, since even/1
actually accepts both natural and negative numbers.

So, as formalized in Definition 4.6, we could only conclude that even/1 ≺♯+ p_nat,
i.e., even/1 may abstractly conform to the p_nat predicate property. ♦

In the example above, we motivate the need for such a restrictive condition for ab-
stract conformance on calls (see Definition 4.6). However, wemaywant to use predicates
whose set of admissible calls is greater than that of a predicate property, but without in-
troducing unexpected behavior.

To this end, we propose a technique to restrict the set of admissible calls of a predicate
𝑝 described by Pre to match that of ◦Pre in a program analysis friendly manner. This
restriction is implemented using wrappers.

A wrapper for 𝑝 with Π is simply a new predicate defined by a single clause𝑤 (𝑣) ←
𝑝 (𝑣) with an assertion “:- pred 𝑤 (𝑣) : ◦Pre.,” (note that fields of pred assertions, in
this case the post-condition, can be omitted, equivalently to tt). A wrapper for 𝑝 with
Π also makes explicit the intention of creating a Π-tailored version of 𝑝 . Additionally,
wrappers can also be used to alleviate the process of determining abstract conformance
on calls (particularly useful in the implementation), since the wrapper would syntacti-
cally (and thus, semantically) match the pre-condition of the predicate property.

Example 4.6 (Wrapper). As a follow-up of the previous example, consider wrapping the
even/1 predicate to restrict its set of admissible calls to natural numbers:

21 :- pred even_nat(N) : nat(N).
22 even_nat(N) :- even(N).

Intuitively, the wrapper even_nat/1 for even/1 with p_nat (trivially) conforms to
p_nat (even_nat/1 ≺♯− p_nat). Also, computing the condition for abstract confor-
mance on calls of even_nat/1 to p_nat becomes trivial, and the analyzer can now in-
fer that the clause in line 13 should raise an error on calls (since even_nat/1 no longer
accepts negative numbers). ♦

Rationale for Explicit Wrappers. The design of this approach follows the philoso-
phy behind theCiao system [18], which extendsPrologwith static and dynamic assertion
checking (among other modular extensions) without altering its untyped nature.

We also considered some alternative solutions to the problem at hand, such as taint-
ing each predicate passed as an argument annotated with a predicate property, and re-
stricting its future use in all internal (recursive) calls. However this approach would
have required modifying the standard Prolog semantics regarding higher-order calls.
The use of wrappers allows us to simulate this behavior without altering the underlying
semantics.

37

Chapter 4. Specifying and Verifying Higher-Order Programs

4.4 First-OrderRepresentation of Predicate Properties
As mentioned in §2.1, the abstract interpretation-based static analyzer can infer proper-
ties about higher-order programs, and also verify traditional (i.e., first-order) assertions.
However, here we obviously need to deal with predicate properties in assertions.

Usually, for a new type of property, a new abstract domain is needed. As an al-
ternative approach, we herein propose representing predicate properties as first-order
properties of a kind which can be natively supported by the analyzer, thus allowing us
to leverage existing and mature abstract domains.

More concretely, we propose representing predicate properties as regular types, a
special kind of properties (and thus defined as predicates) that are used to describe the
shape of a term. Intuitively, such types will capture sets of predicate names.

For example, given the predicate property pp, we can represent that the predicates
p/n, and q/n strongly, and r/n weakly conform to pp as the following regular types:

pp−/1 = {pp−(p), pp−(q)},
pp+/1 = {pp+(p), pp+(q), pp+(r)}.

Or, using Ciao’s functional notation:

:- regtype pp−/1. pp− := p | q.
:- regtype pp+/1. pp+ := p | q | r.

Formally, given a predicate property Π, we define two associated regular types 𝜋−/1
and 𝜋+/1 that capture the set of predicates that strongly and weakly abstractly conform
to Π as follows:

𝜋−/1 = {𝜋−(𝑝) | 𝑝 ∈ P ∧ 𝑝 ≺♯− Π},
𝜋+/1 = {𝜋+(𝑝) | 𝑝 ∈ P ∧ 𝑝 ≺♯+ Π}.

Note that, by definition, 𝜋−/1 is a subtype of 𝜋+/1. These regular types reduce the
compile-time checking of higher-order assertions to that of first-order assertions since
they can be abstracted and inferred by several abstract domains; for concreteness we use
the eterms abstract domain [36].

4.5 Algorithm
We now present the core algorithm for the compile-time verification of a higher-order
programP with higher-order assertionsA from a high-level point of view (Algorithm 1).
We now describe each step:

1. First, it initializes a set of rules 𝑅, and it computes the regular type representa-
tions of each predicate property Π in P, i.e., the 𝜋− and 𝜋+ predicates respectively

38

4.5. Algorithm

Algorithm 1: Verify a Higher-Order Program with Higher-Order Assertions
Input : Program: P, Assertions: A, Abstract Queries: Q♯

Output: Verified Status (checked/false/check) for the Assertions A of P: V
1 𝑅 ← ∅
2 repeat
3 𝑅′← 𝑅

4 foreach Predicate Property Π ∈ P do
5 𝑅 ← 𝑅 ∪ {𝜋−(𝑝) | 𝑝 ∈ P ∧ 𝑝 ≺♯− Π} ∪ {𝜋+(𝑝) | 𝑝 ∈ P ∧ 𝑝 ≺♯+ Π}
6 until 𝑅 = 𝑅′

7 V ← acheck(A, [P ∪ 𝑅]♯Q♯
) // first-order assertion checking process

(lines 4 and 5). These computations are performed by directly applying Defini-
tions 4.6 to 4.8 using the operators of the abstract domain and the first-order ana-
lyzer.

2. Since predicate properties can include predicate property literals from other predi-
cate properties—i.e., there can be dependencies among predicate properties—lines 4
and 5 are repeated until a fixpoint is reached (between lines 2 and 6).

3. Next, it computes the abstract interpretation of P, augmented with the regular
type representations of every predicate property, for the set of abstract queries Q♯

(line 7).

4. Finally, it performs the compile-time verification of the set of (now first-order)
assertions A w.r.t. the static analysis results, where predicate properties are now
treated as standard regular types (line 7).

As the result of the algorithm, we obtain the verified status of each assertion ofA, where
each assertion can be discharged (checked), disproved (false) and an error flagged, or
left in check status, and subject to run-time checks, as in [8].

We argue that, despite the inherent complexity of the verification problem in hand,
the proposed concepts make the resulting compile-time checking algorithm clear and
concise; and, more importantly, easily implementable using a first-order assertion checker.

39

Chapter 5

Implementation and Experiments

F
or demonstrating the potential of our approach, we have developed a proto-
type implementation in the form of a Ciao bundle named Hiord♯, which is in-
tegrated into the Ciao/CiaoPP system. In §5.1 we describe how the approach

is implemented using program transformation techniques and the abstract domain oper-
ations. Then, in §5.2 we present a set of experiments which serves as a representative set
of programs with the most common used higher-order patterns that were not possible
to verify until this point.

5.1 Implementation

The Hiord♯ bundle has been implemented and integrated within the CiaoPP framework.
It acts as a pre-processor for the input program, assertions, and predicate properties,
producing a transformed program along with a set of (now first-order) assertions that
can be analyzed and checked by CiaoPP. A high-level view of CiaoPP extended with
Hiord♯ is depicted in Figure 5.1.

Essentially, Hiord♯ begins by normalizing the predicate properties to an internal rep-
resentation. It then implements Algorithm 1, relying in PLAI to compute under- and
over-approximations of the involved property formulas, and on the abstract domain op-
erations for comparing such approximations. Finally, it asserts the grounded versions of
predicate properties into the program as regular types (as explained in §4.4).

Focusing on the abstract conformance computation step, recall that the condition
for determining non abstract conformance on success (presented in Definition 4.7) is a
conjunction of three sub-conditions. While the first two conjuncts are reliably checkable
at compile time using PLAI and the abstract domain operations, the third conjunct is, in
general, undecidable. It can be approximated using significantly more computationally
expensive techniques, such as non-failure analyses [32, 33], but these are not practical
for general use, as the condition in question only affects a small number of corner cases.

For this reason, the implementation omits checking the third conjunct. This omission

41

Chapter 5. Implementation and Experiments

Code

(user, builtins,
libraries)

Assertions

& Predprops

(user, builtins,
libraries)

:- check
:- test
:- trust
Unit-tests

Code

(with grounded
predprops)

Prog. Transf.

Domains,
Fixpoint

Traditional

Assertions

Static
Analysis
(Fixpoint)

Assertion
Normalizer
& Library
Interface

Analysis Info

Static
Com-
parator

RT-Check

Unit-Test

:- texec

:- check

:- false

:- checked

Possible
run-time error

Compile-time
error

Verification
warning

Verified

Test Case
Generator

CiaoPP Program Pre-ProcessorHiord♯

Program

Figure 5.1: High-level view of the CiaoPP program pre-processor including Hiord♯.

makes Hiord♯ conservative: it may classify some predicates—typically corner cases such
as the one in Example 4.3—as non abstractly conformant on success, even though they
may in fact conform (in the concrete semantics setting). This simplification is sound,
since the omitted conjunct is part of a negative condition; therefore, skipping it cannot
cause non-conformant predicates to be classified as conformant—it may only lead to
some predicates being conservatively rejected.

5.2 Experiments
We now provide a detailed description of the most relevant experiments that we ran.

A Synthetic Benchmark. We started by defining a test case comprising a predicate
property using an anonymous pred assertion and 25 predicates, each with a pred asser-
tion. This test case was explicitly designed to exhaustively cover all possible orderings
between the calls pre-conditions of the predicate property and of each predicate, and
likewise for the success pre- and post-conditions.

We defined the following regular types:

1 :- regtype p0/1. :- regtype p1/1. :- regtype p2/1. :- regtype dj/1.
2 p0 := 0 | 1. p1 := 0 | 1 | 2. p2 := 0 | 1 | 2 | 3. dj := -1.
3

4 :- regtype q0/1. :- regtype q1/1. :- regtype q2/1. :- regtype mx/1.
5 q0 := a | b. q1 := a | b | c. q2 := a | b | c | d. mx := a | 0.

whose order relation in the concrete domain is depicted in Figure 5.2; which then induces
their corresponding order relation in the eterms abstract domain.

Then, we defined the following predicate property f11:

9 f11 := { :- pred _(X, Y) : p1(X) => p1(Y). }.

42

5.2. Experiments

𝛾 (dj)

𝛾 (p2) 𝛾 (p1) 𝛾 (p0) 𝛾 (q2)𝛾 (q1)𝛾 (q0)𝛾 (mx)

Figure 5.2: Venn diagram representation of the set inclusion relation between the con-
cretizations of each regular type. Such relation then induces the order relation of the
eterms abstract domain.

and tested conformance of predicates (partially) specified by assertions covering all pos-
sible orders. We now show an example of how each possible combination is encoded:

10 :- pred g00(X, Y) : p0(X) => q0(Y).
11 :- pred g01(X, Y) : p0(X) => q1(Y).
12 :- pred g02(X, Y) : p0(X) => q2(Y).
13 :- pred g0d(X, Y) : p0(X) => dj(Y).
14 :- pred g0m(X, Y) : p0(X) => mx(Y).
15 ...

We then ran Hiord♯ obtaining the correct results according to the abstract confor-
mance definitions, reporting that from all tested combinations: 2 predicates definitely
conform, 7 predicates definitely not conform, with 16 predicates left where no definite
conclusion could be reached (at compile-time).

Higher-Order List Utilities. We defined various partially specified higher-order util-
ity predicates specialized for workingwith lists of a particular type t/1, e.g., t := ~num.
For example, consider the t_cmp predicate property defined below:

1 t_cmp := { :- pred _(X, Y) : (t(X), t(Y)). }.

which describes comparator predicates of elements of type t/1.

Next, we use such predicate property in the following higher-order assertion for a
generic quicksort implementation that is parameterized by a comparator predicate P:

2 :- pred qsort(Xs, P, Ys) : (list(t, Xs), t_cmp(P)) => list(t, Ys).
3 qsort(Xs, P, Ys) :-
4 qsort_(Xs, P, Ys, []).
5

6 qsort_([], _, R, R).

43

Chapter 5. Implementation and Experiments

7 qsort_([X|L], P, R, R0) :-
8 partition(L, X, P, L1, L2),
9 qsort_(L2, P, R1, R0),
10 qsort_(L1, P, R, [X|R1]).
11

12 partition([], _, _, [], []).
13 partition([X|L], Y, P, [X|L1], L2) :-
14 P(X, Y), !,
15 partition(L, Y, P, L1, L2).
16 partition([X|L], Y, P, L1, [X|L2]) :-
17 partition(L, Y, P, L1, L2).

In the program point of the higher-order atom P(X,Y) in line 14, the static analysis
is able to propagate the t_cmp predicate property to the predicate in P in that exact
program point; and if in such program point X is inferred to be bound to, e.g., an atom
a, an error is indeed statically captured by Hiord♯.

Consider the following comparator predicate:

18 :- pred lex(X, Y) : (term(X), term(Y)).
19 lex(X, Y) :- X @< Y.

For a query (qsort(Xs, P, Ys), {P = lex}),Hiord♯ reports awarning on calls since the
predicate lex/2 may or may not conform to the t_cmp predicate property. Intuitively,
this is because lex/2 has amore general call pattern than that of t_cmp, and thus, it will
not raise a run-time check error when called with an element that is not of type t/1,
introducing unexpected behavior.

However, consider defining a wrapper for lex/2 with t_cmp:

20 :- pred lex_t(X, Y) : (t(X), t(Y)).
21 lex_t(X, Y) :- lex(X, Y).

Intuitively, for a query (qsort(Xs, P, Ys), {P = lex_t}), Hiord♯ is able to prove that
such call would behave correctly w.r.t. qsort/3’s higher-order assertion, since lex_t/2
trivially conforms to t_cmp.

As a follow-up, consider a predicate property which represents a parameterizable
sorter of lists of elements of type t/1, defined “in terms of” the t_cmp predicate property:

22 t_sort := { :- pred _(Xs, P, Ys)
23 : (list(t, Xs), t_cmp(P)) => list(t, Ys). }.

For determining that qsort/3 abstractly conforms to t_sort, Hiord♯ would need to per-
form an additional iteration of the fixpoint computation after the one above. That is,
after computing the predicates that weakly or strongly abstractly conform to the t_cmp
predicate property.

HTTP Server. Consider the following schematic interface for a generic HTTP server
where we use regular types for representing requests and responses, and a predicate

44

5.2. Experiments

property for representing handler predicates:

1 handler := { :- pred _(Req, Res) : req(Req) => res(Res). }.
2

3 :- regtype req/1. :- regtype res/1.
4 req := 'DELETE' res := 'OK'
5 | 'GET' | 'CREATED'
6 | 'POST' | 'BAD_REQUEST'
7 | 'PUT'. | 'NOT_FOUND'.

and the following partial specification of a higher-order server predicate server/3:

8 :- pred server(H, Req, Res) : (handler(H), req(Req)) => res(Res).

Such server is parameterized by a predicate that must be able to handle the four main
REST-API operations that may be received by the server.

Consider the following (schematic) implementation of a handler predicate h/2:

9 h('DELETE', Res) :- ..., Res = 'OK'.
10 h('POST', Res) :- ..., Res = 'CREATED'.
11 h('PUT', Res) :- ..., Res = 'BAD_REQ'. % Typo, should be `BAD_REQUEST`.
12 h('GET', Res) :- ..., Res = 'NOT_FOUND'.

Since h/2 does not have a user-provided assertion, CiaoPP would infer the following
assertion and regular type:

1 % Inferred by CiaoPP
2 :- pred h(Req, Res) : req(Req) => rt1(Res).
3

4 :- regtype rt1/1.
5 rt1 := 'OK'
6 | 'CREATED'
7 | 'BAD_REQ' % This case is different from that of `res/1`.
8 | 'NOT_FOUND'.

Given the definition of rt1/1, Hiord♯ reports a warning stating that the h/2 predicate
may or may not conform to handler, since we introduced a typo in the definition of
h/2 (line 11). Note that in this situation, Hiord♯ cannot conclude that h/2 does not defi-
nitely conform to handler since res/1 and rt1/1 are not completely disjoint, and thus
conformance would depend on the concrete semantics of the h/2 predicate.

Dutch National Flag. This problem involves sorting a list of red, white, or blue ele-
ments, such that elements of the same color are grouped together in a specified order
(typically red, then white, then blue).

A naive solution can be implemented by splitting the input list into three separate
lists, one for each color, based on comparisons with a designated neutral element (often
white). These lists are then concatenated in the desired order, yielding a sorted result.
However, we want to generalize the solution by allowing the user to provide a compara-
tor that given two elements, yields the result of the comparison.

45

Chapter 5. Implementation and Experiments

We first define regular types to represent the colored elements and the result of their
comparison:

1 :- regtype rwb/1. :- regtype lge/1.
2 rwb := r lge := <
3 | w | >
4 | b. | = .

Next, we define the dutch_cmp predicate property, that represents comparator predi-
cates between two elements of type rwb/1:

5 dutch_cmp := { :- pred _(X, R, Y) : (rwb(X), rwb(Y)) => lge(R). }.

and also implement and partially specify a (naive) dutch_flag/3 higher-order predicate
by providing a higher-order assertion:

6 :- pred dutch_flag(Cmp, L1, L2)
7 : (dutch_cmp(Cmp), list(rwb, L1)) => list(rwb, L2).
8 dutch_flag(Cmp, L1, L2) :-
9 dutch_flag_(Cmp, L1, Red, White, Blue),
10 append(~append(Red, White), Blue, L2).
11

12 dutch_flag_(_, [], [], [], []).
13 dutch_flag_(Cmp, [E|L1], [E|Red], White, Blue) :-
14 Cmp(E, <, w),
15 dutch_flag_(Cmp, L1, Red, White, Blue).
16 dutch_flag_(Cmp, [E|L1], Red, [E|White], Blue) :-
17 Cmp(E, =, w),
18 dutch_flag_(Cmp, L1, Red, White, Blue).
19 dutch_flag_(Cmp, [E|L1], Red, White, [E|Blue]) :-
20 Cmp(E, >, w),
21 dutch_flag_(Cmp, L1, Red, White, Blue).

Assume that we need to program a color comparator predicate cmp/3. Consider a
first attempt at implementing cmp/3 where we write the full name of the color instead
of the first letter:

22 cmp(red, =, red). cmp(white, =, white). cmp(blue, =, blue).
23 cmp(red, <, white). cmp(white, >, red). cmp(blue, >, red).
24 cmp(red, <, blue). cmp(white, <, blue). cmp(blue, >, white).

As in a previous example, since cmp/3 has no user-provided assertion, CiaoPP would
infer the following assertion and regular type:

1 % Inferred by CiaoPP
2 :- pred cmp(X, R, Y) : (rt2(X), rt2(Y)) => lge(R).
3

4 :- regtype rt2/1.
5 rt2 := red
6 | white
7 | blue.

46

5.2. Experiments

When determining its conformance to dutch_cmp, Hiord♯ finds that it is definitely not
conformant, since the regular type rt2/1 inferred by CiaoPP is completely disjoint from
that of the dutch_cmp predicate property (namely rwb/1). That is, in the eterms abstract
domain: rt2 ⊓ rwb = ⊥.

We proceed by correcting it, but in the process we accidentally mistype some of the
r atoms for o atoms in lines 22 and 23:

22 cmp(o, =, r). cmp(w, =, w). cmp(b, =, b).
23 cmp(o, <, w). cmp(w, >, r). cmp(b, >, r).
24 cmp(r, <, b). cmp(w, <, b). cmp(b, >, w).

Again, CiaoPP would infer the following assertion and regular type:

1 % Inferred by CiaoPP
2 :- pred cmp(X, R, Y) : (rt3(X), rwb(Y)) => lge(R).
3

4 :- regtype rt3/1.
5 rt3 := r
6 | w
7 | b
8 | o.

However, Hiord♯ is again able to detect that this version of cmp/3 does not definitely
conform to dutch_cmp, since it would not raise a run-time check error when called with
an o on its first argument. That is, it has more admissible call patterns than dutch_cmp
since rwb ⊏ rt3 in the eterms abstract domain.

In an attempt at improving the precision of the ordering, we try to refine cmp/3 to
yield more informative results. In particular, we introduce new comparison outcomes
<< and >> to indicate that X is “much lower” than Y and vice-versa. We also explicitly
define an assertion for cmp/3, and define a new regular type with the new comparison
outcomes.

22 :- pred cmp(X, R, Y) : (rwb(X), rwb(Y)) => lgLGe(R).
23 cmp(r, =, r). cmp(w, =, w). cmp(b, =, b).
24 cmp(r, <, w). cmp(w, >, r). cmp(b, >>, r).
25 cmp(r, <<, b). cmp(w, <, b). cmp(b, >, w).
26

27 :- regtype lgLGe/1.
28 lgLGe := < | >
29 | << | >>
30 | = .

However, when determining conformance of this refined version of cmp/3 to dutch_cmp,
Hiord♯ also detects that cmp/3 is not definitely conformant, since cmp/3 could yield com-
parison results that are not reflected in dutch_cmp. That is, lge ⊏ lgeLG in the eterms
abstract domain.

Finally, we develop the following implementation and assertion of cmp/3:

47

Chapter 5. Implementation and Experiments

22 :- pred cmp(X, R, Y) : (rwb(X), rwb(Y)) => lge(R).
23 cmp(r, =, r). cmp(w, =, w). cmp(b, =, b).
24 cmp(r, <, w). cmp(w, >, r). cmp(b, >, r).
25 cmp(r, <, b). cmp(w, <, b). cmp(b, >, w).

For which Hiord♯ determines that it definitely conforms to dutch_cmp, since it behaves
exactly as expected, and we end up with a solution to the higher-order dutch national
flag problem where the assertions are formally verified.

48

Chapter 6

Conclusions & Future Work

L
ooking back to the main objective of this thesis presented in §1.1, we have
presented a novel approach for the compile-time verification of higher-order
(C)LP programs with assertions that describe higher-order arguments.

We started by refining both the syntax and semantics of predicate properties, a special
kind of property that allow using the full power of the (Ciao) assertion language for
describing higher-order arguments.

Then, we introduced the notions of conformance in the concrete domain setting—in
general not computable, and abstract conformance in the abstract domain setting which
can be computed at compile-time by leveraging the abstract interpretationmathematical
theory for approximating the concrete semantics of a program. We proposed (compile-
time) conditions for determining abstract conformance, and then formally proved the
relation between the notions of conformance and abstract conformance.

Afterwards, we motivated the use of wrappers, a technique for restricting the set of
admissible calls of a predicate to match that of a predicate property, reducing the abstract
conformance on calls condition to a trivial check in a program analysis friendly manner.

Next, we presented a reduction from predicate properties to regular types, which
are first-order properties that are natively supported by the CiaoPP framework; and
we provided a high-level algorithm for the verification of a higher-order program with
higher-order assertions based in all the concepts presented before.

Finally, we reported on Hiord♯, the prototype implementation of the technique that
is part of the CiaoPP framework; and presented a representative set of experiments that
were not possible to verify until this point.

We believe our proposal constitutes a practical approach to closing the existing gap in
the verification at compile time of higher-order assertions. We also believe the approach
is quite general and flexible, and can be applied, at least conceptually, to other similar
gradual approaches.

49

Chapter 6. Conclusions & Future Work

6.1 Future Work
We end this thesis with some lines of future work.

Integration with Modular and Incremental Analysis. This thesis presented the
theoretical foundations of an approach to tackle the problem at hand, and provided an
initial working prototype integrated in the CiaoPP framework. However, it would be
interesting to study how the approach can be adapted to the modular and incremental
analysis techniques already present in CiaoPP.

More General forms of Higher-Order. Another interesting direction would be to
explore how the approach can be extended to more general forms of higher-order con-
structs such as predicate abstractions or partial applications.

50

...As long as the Sun, the Moon, and the Earth
exist, everything will be all right.

The End of Evangelion

51

Bibliography

[1] P. Körner, M. Leuschel, J. Barbosa, V. Santos-Costa, V. Dahl, M. V. Hermenegildo,
J. F. Morales, J. Wielemaker, D. Diaz, S. Abreu, and G. Ciatto, “Fifty Years of
Prolog and Beyond,” Theory and Practice of Logic Programming, 20th Anniversary
Special Issue, vol. 22, no. 6, pp. 776–858, May 2022. [Online]. Available:
https://arxiv.org/abs/2201.10816

[2] S. Marlow, Ed., Haskell 2010 Language Report, 2010.

[3] M. Hermenegildo, G. Puebla, and F. Bueno, “Using Global Analysis, Partial Spec-
ifications, and an Extensible Assertion Language for Program Validation and De-
bugging,” in The Logic Programming Paradigm: a 25–Year Perspective, K. R. Apt,
V. Marek, M. Truszczynski, and D. S. Warren, Eds. Springer-Verlag, July 1999, pp.
161–192.

[4] G. Puebla, F. Bueno, and M. Hermenegildo, “Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs,” in Logic-based Program
Synthesis and Transformation (LOPSTR’99), ser. LNCS, no. 1817. Springer-Verlag,
March 2000, pp. 273–292.

[5] L. Cardelli, “Typeful programming,” in Formal Description of Programming
Concepts, based on a seminar organized by IFIP Working Group 2.2 and held
near Rio de Janeiro in April 1989, ser. IFIP State-of-the-Art Reports, E. J.
Neuhold and M. Paul, Eds. Springer, 1989, p. 431. [Online]. Available:
http://lucacardelli.name/Papers/TypefulProg.pdf

[6] J. G. Siek and W. Taha, “Gradual Typing for Functional Languages,” in Scheme and
Functional Programming Workshop, 2006, pp. 81–92.

[7] P. Cousot and R. Cousot, “Abstract Interpretation: AUnified LatticeModel for Static
Analysis of Programs by Construction or Approximation of Fixpoints,” in ACM
Symposium on Principles of Programming Languages (POPL’77). ACM Press, 1977,
pp. 238–252.

[8] N. Stulova, J. F. Morales, and M. Hermenegildo, “Assertion-based Debugging of
Higher-Order (C)LP Programs,” in 16th Int’l. ACM SIGPLAN Symposium on Princi-
ples and Practice of Declarative Programming (PPDP’14). ACM Press, September
2014, pp. 225–235.

53

https://arxiv.org/abs/2201.10816
http://lucacardelli.name/Papers/TypefulProg.pdf

BIBLIOGRAPHY

[9] D. Miller, “A logic programming language with 𝜆-abstraction, function variables,
and simple unification,” Journal of Logic and Computation, vol. 1(4), pp. 497–536,
1991.

[10] Z. Somogyi, F. Henderson, and T. Conway, “The Execution Algorithm of Mercury:
an Efficient Purely Declarative Logic Programming Language,” Journal of Logic Pro-
gramming, vol. 29, no. 1–3, pp. 17–64, October 1996.

[11] P. Hill and J. Lloyd, The Goedel Programming Language. Cambridge MA: MIT
Press, 1994.

[12] R. Kowalski and D. Kuehner, “Linear resolution with selection function,” Artificial
Intelligence, vol. 2, pp. 227–260, 1971.

[13] A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel, “Un systeme de communi-
cation homme-machine en francais,” Rapport preliminaire, Groupe de Res. en Intell.
Artif, 1973.

[14] J. Jaffar and J.-L. Lassez, “Constraint Logic Programming,” in ACM Symposium on
Principles of Programming Languages. ACM, 1987, pp. 111–119.

[15] P. Cousot and R. Cousot, “Systematic Design of Program Analysis Frameworks,”
in Sixth ACM Symposium on Principles of Programming Languages, San Antonio,
Texas, 1979, pp. 269–282.

[16] P. Cousot, Principles of abstract interpretation. MIT Press, 2021.

[17] K. Muthukumar and M. Hermenegildo, “Compile-time Derivation of Variable De-
pendency Using Abstract Interpretation,” Journal of Logic Programming, vol. 13, no.
2/3, pp. 315–347, July 1992.

[18] M. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia, E. Mera, J. Morales, and
G. Puebla, “An Overview of Ciao and its Design Philosophy,” TPLP, vol. 12, no. 1–2,
pp. 219–252, 2012.

[19] M. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia, “Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor),” Science of Computer Programming, vol. 58, no. 1–2, pp.
115–140, October 2005.

[20] M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia, E. Mera, J. Morales, and
G. Puebla, “The Ciao Approach to the Dynamic vs. Static Language Dilemma,” in
Proceedings for the International Workshop on Scripts to Programs (STOP’11). New
York, NY, USA: ACM, 2011.

[21] C. Flanagan, “Hybrid Type Checking,” in Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2006, Charleston, South Carolina, USA, January 11-13, 2006, J. G. Morrisett
and S. L. Peyton Jones, Eds. ACM, 2006, pp. 245–256. [Online]. Available:
https://doi.org/10.1145/1111037.1111059

54

https://doi.org/10.1145/1111037.1111059

BIBLIOGRAPHY

[22] A. Rastogi, N. Swamy, C. Fournet, G. M. Bierman, and P. Vekris, “Safe &
Efficient Gradual Typing for TypeScript,” in Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, S. K. Rajamani and D. Walker, Eds. ACM,
2015, pp. 167–180. [Online]. Available: http://dl.acm.org/citation.cfm?id=2676726

[23] K. Muthukumar and M. Hermenegildo, “Deriving A Fixpoint Computation
Algorithm for Top-down Abstract Interpretation of Logic Programs,” Mi-
croelectronics and Computer Technology Corporation (MCC), Austin, TX
78759, Technical Report ACT-DC-153-90, April 1990. [Online]. Available:
https://cliplab.org/papers/mcctr-fixpt.pdf

[24] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski,
and G. Puebla, “On the Role of Semantic Approximations in Validation
and Diagnosis of Constraint Logic Programs,” in Proc. of the 3rd Int’l.
Workshop on Automated Debugging–AADEBUG’97. Linköping, Sweden: U.
of Linköping Press, May 1997, pp. 155–170. [Online]. Available: https:
//cliplab.org/papers/aadebug97-informal_bitmap.pdf

[25] E. Albert, G. Puebla, and M. Hermenegildo, “Abstraction-Carrying Code,” in Proc.
of LPAR’04, ser. LNAI, vol. 3452. Springer, 2005.

[26] M. Hermenegildo, G. Puebla, and F. Bueno, “Using Global Analysis, Partial Specifi-
cations, and an Extensible Assertion Language for Program Validation and Debug-
ging,” in The Logic Programming Paradigm: a 25–Year Perspective. Springer-Verlag,
1999, pp. 161–192.

[27] G. Puebla, F. Bueno, and M. Hermenegildo, “An Assertion Language for Constraint
Logic Programs,” in Analysis and Visualization Tools for Constraint Programming,
ser. LNCS. Springer-Verlag, 2000, no. 1870, pp. 23–61.

[28] N. Stulova, J. F. Morales, and M. Hermenegildo, “Some Trade-offs in Reducing the
Overhead of Assertion Run-time Checks via Static Analysis,” Science of Computer
Programming, vol. 155, pp. 3–26, April 2018, selected and Extended papers from the
2016 International Symposium on Principles and Practice of Declarative Program-
ming.

[29] M. Sanchez-Ordaz, I. Garcia-Contreras, V. Perez-Carrasco, J. F. Morales, P. Lopez-
Garcia, and M. Hermenegildo, “VeriFly: On-the-fly Assertion Checking via
Incrementality,” Theory and Practice of Logic Programming, vol. 21, no. 6, pp.
768–784, September 2021. [Online]. Available: https://arxiv.org/abs/2106.07045

[30] D. Cabeza, M. Hermenegildo, and J. Lipton, “Hiord: A Type-Free Higher-Order
Logic Programming Language with Predicate Abstraction,” in ASIAN’04, ser. LNCS,
no. 3321. Springer-Verlag, December 2004, pp. 93–108.

[31] B. C. Pierce, Types and Programming Languages. MIT Press, February 2002.

55

http://dl.acm.org/citation.cfm?id=2676726
https://cliplab.org/papers/mcctr-fixpt.pdf
https://cliplab.org/papers/aadebug97-informal_bitmap.pdf
https://cliplab.org/papers/aadebug97-informal_bitmap.pdf
https://arxiv.org/abs/2106.07045

BIBLIOGRAPHY

[32] S. Debray, P. Lopez-Garcia, and M. Hermenegildo, “Non-Failure Analysis for Logic
Programs,” in 1997 International Conference on Logic Programming. Cambridge,
MA: MIT Press, Cambridge, MA, June 1997, pp. 48–62.

[33] F. Bueno, P. Lopez-Garcia, and M. Hermenegildo, “Multivariant Non-Failure Anal-
ysis via Standard Abstract Interpretation,” in 7th International Symposium on Func-
tional and Logic Programming (FLOPS 2004), ser. LNCS, no. 2998. Heidelberg,
Germany: Springer-Verlag, April 2004, pp. 100–116.

[34] L. Mauborgne and X. Rival, “Trace partitioning in abstract interpretation based
static analyzers,” in European Symposium on Programming (ESOP’05), ser. Lecture
Notes in Computer Science, M. Sagiv, Ed., vol. 3444. Springer-Verlag, 2005, pp.
5–20.

[35] X. Rival and L. Mauborgne, “The trace partitioning abstract domain,” ACM Trans.
Program. Lang. Syst., vol. 29, no. 5, p. 26–es, Aug. 2007. [Online]. Available:
https://doi.org/10.1145/1275497.1275501

[36] C. Vaucheret and F. Bueno, “More Precise yet Efficient Type Inference for Logic
Programs,” in SAS’02, ser. LNCS, no. 2477. Springer, 2002, pp. 102–116.

56

https://doi.org/10.1145/1275497.1275501

	1 Introduction
	1.1 Objective
	1.2 Related Work
	1.3 Structure of the Document

	2 Background
	2.1 Preliminary Definitions
	2.2 (Constraint) Logic Programs
	2.3 Abstract Interpretation
	2.4 Abstract Interpretation of (C)LP Programs

	3 The Ciao System
	3.1 The CiaoPP Program Pre-Processor
	3.2 Assertion Language
	3.3 Run-Time Checking of Traditional Assertions
	3.4 Compile-Time Checking of Traditional Assertions

	4 Specifying and Verifying Higher-Order Programs
	4.1 Predicate Properties
	4.2 Conformance to a Predicate Property
	4.2.1 Conformance
	4.2.2 Abstract Conformance

	4.3 Wrappers
	4.4 First-Order Representation of Predicate Properties
	4.5 Algorithm

	5 Implementation and Experiments
	5.1 Implementation
	5.2 Experiments

	6 Conclusions & Future Work
	6.1 Future Work

	Bibliography

