
Universidad Politécnica
de Madrid

Escuela Técnica Superior de
Ingenieros Informáticos

Grado en Ingeniería Informática

Trabajo Fin de Grado

Improvements in Ciao Prolog’s
Development Environment: Developing
A Rich Development Environment for

Ciao on Visual Studio Code

Autor: Marco Ciccalè Baztán
Tutor: José Francisco Morales Caballero
Cotutor: Pedro López García

Madrid, Junio 2024

Este Trabajo Fin de Grado se ha depositado en la ETSI Informáticos de la
Universidad Politécnica de Madrid para su defensa.

Trabajo Fin de Grado
Grado es Ingeniería Informática

Título: Improvements in Ciao Prolog’s Development Environment: De-
veloping A Rich Development Environment for Ciao on Visual
Studio Code

Junio 2024

Autor: Marco Ciccalè Baztán
Tutor: José Francisco Morales Caballero

Departamento de Inteligencia Artificial
Escuela Técnica Superior de Ingenieros Informáticos
Universidad Politécnica de Madrid

Cotutor: Pedro López García
Consejo Superior de Investigaciones Científicas

Acknowledgements

First off, a huge thanks to my family for unconditionally supporting me through-
out my studies. Your encouragement and belief in me have meant the world.

I owe a big debt of gratitude to my advisors, Jose, Manuel, and Pedro. Your
guidance and patience were key throughout this work. We had a lot of laughs
along the way, and I couldn’t have asked for better mentors.

A special thank you to Aitana for all her love and support. Your presence and
encouragement have been invaluable.

Additionally, I want to extend my thanks to everyone else who has supported
me during this journey, whether through academic assistance, moral support,
or simply being there when needed.

Marco

i

Abstract

The software industry has consistently experienced rapid and transformative
changes since its beginning. A significant aspect of this evolution lies in the
tools and utilities available for creating software solutions. These tools enable
developers to focus on crafting solutions while minimizing time spent on non-
essential tasks.

Among these tools, the text editor is arguably one of the most crucial. In recent
years, Visual Studio Code has emerged as the most widely used text editor glob-
ally. It allows users to extend its functionality through extensions implemented
using modern web technologies.

This project aims to explain the design and implementation of a Visual Studio
Code extension for the Ciao programming language. The extension integrates
core tools such as the Ciao preprocessor (CiaoPP) and the autodocumenter for
(C)LP systems (LPdoc) in an intuitive and comprehensive way inside a modern
and accessible text editor. This integration makes the extension suitable for
developers of all expertise levels in logic programming and software verification.

iii

Resumen

La industria del software siempre se ha caracterizado por su rápida y continua
evolución desde sus inicios. Una parte importante de esta evolución radica en
las herramientas empleadas para crear soluciones software. Estas herramientas
permiten a los desarrolladores concentrarse en idear soluciones, minimizando
el tiempo perdido en tareas ajenas a este objetivo.

De todas estas herramientas, el editor de texto es posiblemente una de las más
importantes. En los últimos años, Visual Studio Code, un editor de texto mo-
derno y altamente configurable usando tecnologías web modernas, se ha con-
vertido en el editor de texto más usado en todo el mundo.

Este trabajo tiene como objetivo explicar el diseño y la implementación de una
extensión de Visual Studio Code para el lenguaje de programación Ciao. Esta
extensión integra herramientas centrales del ecosistema de Ciao como el pre-
procesador (CiaoPP) y el autodocumentador para sistemas (C)LP (LPdoc) de una
manera intuitiva e integral en un editor de texto moderno y accesible. Esta inte-
gración convierte a la extensión en una herramienta apta para desarrolladores
con cualquier nivel de experiencia en programación lógica y verificación de soft-
ware.

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Objectives . 2

2 State of the Art 3
2.1 The Importance of Software Analysis and Verification 3
2.2 Ciao Development Environments . 4
2.3 Prolog Visual Studio Code Extensions 6

3 Technology Stack 7
3.1 Visual Studio Code . 7
3.2 TypeScript . 7

4 Implementation 9
4.1 Visual Studio Code . 9

4.1.1 User Interface . 9
4.1.2 Extensions . 10

4.2 Ciao Top Level . 11
4.2.1 Integrating the Ciao Top Level Inside Visual Studio Code . . 12

4.2.1.1 Initial Approach . 12
4.2.1.2 Final Approach . 12
4.2.1.3 Architecture . 13
4.2.1.4 CiaoTopLevel . 14
4.2.1.5 CiaoPTY . 15
4.2.1.6 CProc . 16

4.2.2 Ciao Top Level Usage Inside Visual Studio Code 17
4.2.3 Highlighting Errors and Warnings in Ciao Source Code . . . 19
4.2.4 Ciao Testing Integration . 20
4.2.5 Ciao Debugger Integration . 21
4.2.6 Ciao Generic Menus Inside Visual Studio Code 22

4.3 Ciao Language Integration . 23
4.3.1 Language Configuration . 23
4.3.2 Syntax Highlighting . 24
4.3.3 Snippet Completion . 25

4.4 LPdoc Integration . 25

vii

CONTENTS

4.4.1 Preview Documentation . 27
4.4.2 Generate and Save Documentation 27

4.5 CiaoPP Integration . 29
4.5.1 Statically Analyze . 30
4.5.2 Check Assertions . 30
4.5.3 CiaoPP Menu . 31

4.6 On-the-fly Analysis . 33
4.6.1 Ciao Flycheck Integration . 33
4.6.2 Language Server Protocol . 33
4.6.3 Ciao Language Server . 34

4.7 Ciao Playground Integration . 36
4.8 Ciao Installation and Version Management 38
4.9 Multiplatform Support . 40

4.9.1 Operating Systems . 40
4.9.2 Cloud Development Environments 40

4.10Bundling and Publishing the Extension 42

5 Conclusions and Future Work 43

6 Impact Analysis 45

Bibliography 47

Appendices 53

A Source Code for CProc 53

B Source Code for Parsing Ciao Error Messages 59

C Source Code for Marking Ciao Debugger Steps 61

D Source Code for CiaoPP Menu Webview Panel 65

E Source Code for Ciao Language Server 69

F Script for Bundling the Extension 73

viii

Chapter 1

Introduction

1.1 Background

Many software engineers spend nearly half of their daily working session com-
pleting coding-related activities such as writing and reviewing code, bug fix-
ing, testing and generating documentation [1]. These activities typically involve
spending time in repetitive and non-relevant tasks such as manually compiling
the code, finding errors, and running tests among others.

As a solution to these problems, Integrated Development Environments (IDEs)
where created, a programming language-sensitive tool that aims to reduce the
time wasted in the previously mentioned tasks by automating them, enabling
engineers to focus on what matters. The common features included in most
IDEs are: syntax and diagnostics highlighting, debugging, and compiling [2].

However, these advantages also come with a substantial set of drawbacks. One
of them lies in the rigidity inherent in such solutions. IDEs typically rely on
a non-extensible core, providing a strongly opinionated and inflexible user ex-
perience that restricts users from extending their functionalities. Furthermore,
IDEs typically come with significant default resource demands, which, when
combined with the previously mentioned rigidity, will definitely strain the CPU
of less powerful computers.

Ciao [3] is a general-purpose, multi-paradigm programming language in the
Prolog family, created in the nineties, as a continuation of the &-Prolog sys-
tem [4, 5]. It integrates the flexibility of dynamically typed languages with the
speed and safety of statically typed languages. The Ciao ecosystem includes a
rich set of powerful tools and utilities. For example, CiaoPP is a tool for program
analysis, verification, debugging, and optimization of Ciao programs, and it has
been extended to other programming languages such as C, Java, or even smart
contracts [6, 7]. Another tool, LPdoc, is an automatic documentation genera-
tor for (C)LP systems, capable of generating comprehensive documentation and
manuals for Ciao programs [8]. Additionally, Ciao provides two development en-
vironments: the Ciao Emacs mode and the Ciao Playground, both of which offer
robust support for interacting with all the tools of the Ciao ecosystem.

1

Chapter 1. Introduction

1.2 Motivation

Emacs was released in the early eighties as an extensible text editor with a
robust and minimalist core, allowing users to customize their experience to meet
their specific needs by adding custom functionalities using the Elisp (Emacs
Lisp) programming language. These snippets are then processed by the Emacs
interpreter, applying the intended changes to itself. This feature makes Emacs
one of the most powerful and extensible text editors and, in fact, one of the most
versatile general IDEs available. However, this great power comes at a cost: it
causes Emacs to have a comparatively steeper learning curve and overall less
intuitive interface, especially for beginners [9].

In contrast, Visual Studio Code (VS Code), a recent addition to the realm of
text editors, not only offers a robust, minimalist and extensible core like Emacs,
but also offers an arguably more intuitive and accessible user experience for
developers of all experience levels [10]. This has led to a very rapid increase in
its popularity: according to the 2023 Stack Overflow developer survey, 73.71%
of developers now prefer using VS Code as their main text editor, compared to
the 4.69% of developers who prefer using Emacs [11].

Ciao provides an IDE experience inside Emacs, integrating features like: syn-
tax and diagnostics highlighting, debugging, test running, integrated top level,
on-the-fly verification and documentation generation among others. Yet, the
steep learning curve of Emacs may negatively affect Ciao developers without
prior experience with it, potentially slowing down their workflow and decreasing
productivity, at least until they become familiar with the environment.

1.3 Objectives

The main objective of this project is to design and develop a Ciao Language Sup-
port VS Code extension, aiming to bridge the gap between the powerful and in-
novative features of Ciao and the intuitive user experience provided by VS Code.
By doing so, this extension seeks to enhance the development workflow of Ciao
programmers with any level of prior experience with text editors. Additionally,
through the integration of a Ciao Language Support Extension for VS Code, the
language will become more accessible and discoverable to a wider audience of
developers, facilitating easier adoption and exploration of its capabilities. More
concretely, the objectives of this work are:

• Explore the state of the art – Chapter 2.

• Select all the necessary tools to develop the extension – Chapter 3.

• Implement all the necessary functionalities – Chapter 4.

• Analyze the current state of the project and suggest possible next steps –
Chapter 5.

• Review the impact of the project – Chapter 6.

2

Chapter 2

State of the Art

2.1 The Importance of Software Analysis and Verifica-
tion

Society heavily relies on software in almost every aspect of life, from leisure
activities to critical areas such as medical assistance, spacecraft, automobiles,
and banking systems, where the creation and maintenance of entirely reliable
and fault free systems is crucial.

Ciao offers advanced tools for software engineers to develop systems that are
reliable and correct by construction. One such tool is CiaoPP, an analysis, ver-
ification, debugging, and optimization tool with native support for (C)LP pro-
grams the enables developers to perform static analysis on their entire system,
inferring properties such as types, determinacy, computational cost, and cor-
rectness, among others [6, 7].

Given this necessity for reliable and correct software systems, some professors
at the Technical University of Madrid (UPM) are progressively introducing these
advanced topics to their students. They encourage the use of these techniques
and tools as a first step towards software verification and inference of properties
as a formal method of verifying software correctness, unveiling the necessity for
an intuitive environment where students can focus on the concepts rather than
the tools themselves.

3

Chapter 2. State of the Art

Figure 2.1: Ciao Emacs Mode Interface

2.2 Ciao Development Environments

The first development environment for Ciao was derived from the 1993 version
of the Emacs mode1 for &-Prolog [5] by Manuel Hermenegildo, itself derived from
the original mode for Prolog (prolog.el) by Masanobu Umeda [12]. The Emacs
mode for Ciao provides a complete IDE that includes syntax highlighting, auto-
indentation, context-sensitive help, etc., and integrates the top-level, the prepro-
cessor (CiaoPP), the autodocumenter (LPdoc), and the (source-level) debugger. It
also features buttons and custom keymaps associated with commands that act
as shortcuts for interacting with the IDE (loading, running, testing or analyzing
a Ciao program). The latest improvements include integration with flycheck for
on-the-fly verification and company for auto-complete features [13].

The Ciao top-level is a key component of the Emacs mode for Ciao, and it will be
further detailed in Section 4.2, but it is important to note that most commands
of the Ciao Emacs mode are based on sending queries to the integrated top-level
and processing its output, providing a convenient way of executing repetitive
tasks such as loading, testing, debugging, documenting or even statically ana-
lyzing a program (see Figure 2.1).

However, due to the comparatively steep learning curve of Emacs and the time
it takes for users to create a customized and tailored workspace [9], developers
that do not want to spend time mastering Emacs and just want to use it as
a regular text editor without customizing it, may find it too hard to climb this
learning curve, which can be frustrating.

As a solution to this issue, the design of this interface has been taken as refer-

1An Emacs mode specifies the editing behaviour of the current buffer based on the filetype and
is commonly used to remap or map new key binds for custom functionality.

4

2.2. Ciao Development Environments

Figure 2.2: Ciao Playground Interface

ence for the implementation of another development environment for Ciao, the
Ciao Playground, a beginner-friendly, web-based environment that allows users
to immediately start working with the Ciao ecosystem without prior local con-
figuration nor installation, as it runs entirely in the browser [14] (see Figure
2.2).

This simpler environment is what makes the Ciao Playground the perfect choice
for beginners and students, which in fact was the first step towards Active Logic
Documents (ALDs) a new and innovative approach for teaching Prolog to begin-
ners that leverages the Ciao Playground core to create interactive and runnable
Ciao documents [15]. However, as the whole system runs inside a browser, it is
more limited than, and lacks the flexibility of, a local development environment.

Notice that both development environments adhere to a common standard that
ensures a consistent high-level user experience and a unified low-level architec-
ture. This standard includes integrating a Ciao top-level as a first-class citizen,
which requires establishing bidirectional communication between the environ-
ment and the integrated top-level to programmatically send queries, processing
its output and providing real-time feedback inside the editor. Additionally, both
environments incorporate buttons for interacting with the environment, serving
as simple shortcuts for sending queries to the integrated top-level. Moreover, by
sharing the same low-level architecture, these environments ensure consistency
and simplicity for Ciao maintainers across multiple platforms. This unified ap-
proach guarantees that once users have learned to work with one Ciao develop-
ment environment, they can easily transition to and be productive in any other
environment within the Ciao ecosystem. This standard for Ciao development
environments will be the basis for the environment described in this work.

5

Chapter 2. State of the Art

2.3 Prolog Visual Studio Code Extensions

As mentioned before, VS Code has rapidly gained significant popularity among
developers, emerging as the preferred text editor in recent years. Consequently,
many tools and utilities have been ported or developed for this environment,
aiming to enhance the development experience of various programming lan-
guages, including Prolog. Among the available Prolog extensions for VS Code,
only one of them really provides IDE functionalities similar to the ones present
in both Ciao development environments. The VSC-Prolog extension released on
12/08/2017 and last updated on 29/11/2018, provides basic Prolog language
support mainly tailored for SWI Prolog [16, 17].

The key features of the extension are:

• Syntax highlighting.

• Snippets completion.

• Load active source file and query goals inside a shell.

• Experimental debugger for SWI Prolog only.

While the VSC-Prolog extension offers a valuable functionality for Prolog devel-
opment — particularly for SWI Prolog developers — Ciao developers may find
themselves unable to comfortably access the core tools such as CiaoPP and LP-
doc inside VS Code when using this Prolog extension, resulting in a completely
different and downgraded experience compared to the dedicated Ciao develop-
ment environments discussed above.

6

Chapter 3

Technology Stack

3.1 Visual Studio Code

As mentioned in Section 1.2 VS Code is an extensible text editor that allows
developers to customize their workspace to meet their specific needs. Built
upon Electron.js, a framework that enables the creation of desktop applications
for Linux, macOS, and Windows using web technologies like HTML, CSS, and
JavaScript (JS) [18], VS Code offers a familiar environment for many developers,
who can extend and customize their workspace without needing to learn a new
set of tools to do so, as HTML, CSS, and JS are among the most widely used
languages by professional developers in recent years [11].

3.2 TypeScript

The TypeScript programming language (TS) — developed by Microsoft — emerged
as a strongly-typed superset of JS that provides several tools to write scalable
and maintainable code, and catch possible type errors during is compilation to
JS process.

To illustrate the differences between JS and TS, take this trivial adding function
defined in JS:

1 const add = (a, b) => a + b;

If the function is called with two arguments of the type number, it should work as
expected:

1 add(2, 3); // 5 (type number)

However, as JS has a dynamic and weak type system, it is totally possible and
valid to call this function with arguments of any valid type in the language
(string, array, object...), which can lead to an unexpected and weird behaviour
that could crash an entire system:

7

Chapter 3. Technology Stack

1 add(2, '3'); // '23' (type string)
2 add(2, [3]); // '23' (type string)
3 add(2, { '3': 3 }); // '2[object Object]' (type string)

TS tries to solve this problem by adding automatic type inference, optional type
annotations, generic types, type assertions, and many other features present in
statically and strongly typed languages such as Java.1 These features make TS
a much more robust and reliable programming language than JS, as it can be
statically analyzed for detecting possible errors using the techniques mentioned
in Section 2.1.

The add function could now be defined using TS to only accept arguments of type
number as follows:

1 const add = (a: number, b: number): number => a + b;

With these type annotations, the TS compiler can now detect possible type errors
during compile time:

1 add(2, 3); // 5 (type number)
2 add(2, '3'); // TypeScript Error
3 add(2, [3]); // TypeScript Error
4 add(2, { '3': 3 }); // TypeScript Error

Given the additional safety that TS provides to web applications, many web-
based tools are being built with it; a great example is VS Code. This decision
made TS the language of choice for building VS Code extensions, as the API is
entirely written in TS.

1The reader may notice that this is the same role that the Ciao assertion language and the
CiaoPP preprocessor play in the context Prolog. Alhough the Ciao approach covers a wider range
of properties, one can say that in many ways Ciao is to Prolog, like TypeScript is to JavaScript. In
this sense, the Ciao system is a precursor to the many modern “gradual typing”-oriented systems.

8

Chapter 4

Implementation

This chapter aims to provide a comprehensive insight into the development pro-
cess of the Ciao Language Support Extension for VS Code. It provides a brief
overview of VS Code and its user experience and a detailed explanation of each
feature of the extension.

4.1 Visual Studio Code

4.1.1 User Interface

Each window of VS Code is called a workspace. It can hold a collection of one
or more opened folders in the editor, providing easy access to all the contents of
the folder of a particular project (see Figure 4.1).

A workspace in VS Code has four main areas that can be displayed or hidden by
the user:

• Editor: where open files are accessible.

• Sidebar: containing the file explorer and extension marketplace1.

• Integrated Terminal: which offers a conventional terminal within VS Code.

• Status Bar: providing information on the editor and workspace.

In VS Code, users interact with the editor by executing commands. These com-
mands cover a wide range of actions, such as opening a new file, running tasks,
or accessing editor settings. These commands are accessible through the com-
mand palette (see Figure 4.2), which serves as a search-based interface within VS
Code. Through this command palette, users can easily locate and execute com-
mands. Additionally, many frequently used commands have default key bind-
ings assigned to them. For instance, pressing Ctrl+o opens a file, and Ctrl+P
opens the command palette. However, users have the flexibility to customize or
create their own key bindings according to their preferences.

1Similar to a package registry where users can find new extensions to enhance the capabilities
of the editor.

9

Chapter 4. Implementation

Figure 4.1: Visual Studio Code Workspace.

Figure 4.2: Visual Studio Code Command Palette.

4.1.2 Extensions

VS Code is a highly extensible text editor, mostly due to its support for ex-
tensions. These extensions can enhance and customize the functionality and
behaviour of VS Code to better meet the needs of individual users and specific
software development tasks.

10

4.2. Ciao Top Level

Developers can create extensions using the VS Code API and Node.js.2 Given
the event-driven nature of JS and TS, the VS Code API provides a natural and
convenient way for developers to interact with the editor, manipulate its features,
and extend its capabilities. An example of a VS Code extension mentioned in
Section 2.3 is VSC-Prolog, which aims to enhance the editor’s functionalities
to offer a more convenient way of developing Prolog programs, especially SWI-
Prolog ones. These extensions are published in the extension marketplace, a
community-driven repository where VS Code users can easily find and install
them.

4.2 Ciao Top Level

As mentioned before, the Ciao top-level is an interactive programming environ-
ment that provides users with the ability to load and run programs. It also
enables seamless interaction with the other tools within the Ciao ecosystem,
allowing for debugging, testing, documentation generation, and analysis of pro-
grams. By offering these capabilities, it acts as the cornerstone of the entire Ciao
ecosystem.

The Ciao top-level has a shell-like interface where users can execute internal
commands or queries (a goal or a sequence of goals). Users can provide valid
Prolog terms as input to the top-level whenever the prompt (?-) is printed.

After executing a query or an internal command, the possible answers of the
top-level are:

• no if the execution has failed.

• yes if the execution has succeeded, together with all the variable bindings
as a sequence, allowing the user to keep generating new solutions when
the prompt (?) is printed.

By default, the predicates available in the top-level are the classic set of built-in
predicates available in traditional Prolog systems (which in Ciao are actually in
libraries that are loaded by default) plus a number of Ciao-specific predicates.
In addition, if the user wants to interact with a program, the corresponding
Ciao file(s) can be loaded into the top-level to make available all the predicates
declared therein.

Given the importance of the top-level in the Ciao ecosystem, it is essential that
any Ciao IDE includes a comprehensive and fully functional top-level within the
editor. For example, the top-level inside the Ciao Emacs IDE includes not only
all the previously features mentioned before, but also syntax highlighting that
improves the development experience when working with the top-level. Figure
4.3 illustrates the Ciao top-level inside the Ciao Emacs IDE.

2Node.js is a JS runtime that allows JavaScript code to run outside the browser

11

Chapter 4. Implementation

Figure 4.3: The Ciao Top Level running inside Emacs.

4.2.1 Integrating the Ciao Top Level Inside Visual Studio Code

4.2.1.1 Initial Approach

The first approach for integrating the Ciao top-level in VS Code involved regis-
tering a VS Code command that spawned a shell that would subsequently start
a Ciao top-level process, such as ciaosh [19] inside a new terminal in the inte-
grated terminal panel (see Figure 4.1).

While straightforward, this method presented significant limitations. The pri-
mary issue was the inability to read from the output of the integrated terminal
panel itself, and hence, the inability to read from the output of the integrated
top-level. This limitation is inherent to the design of VS Code, as its integrated
terminal API [20] does not support retrieving output data [21]. As mentioned
in Section 2.2, implementing bidirectional communication between the environ-
ment and the integrated top-level is required for any new Ciao development en-
vironment. Consequently, due to this significant limitation, this approach was
discarded in favour of alternative solutions that can meet the requirements.

4.2.1.2 Final Approach

Given the necessity of reading from the output of the top-level, a more flexible
and less opinionated solution was required. VS Code provides a relatively simple
API for defining pseudo terminals (pty) attached to the integrated terminal panel
that can be controlled by extensions [20].

The pty API allows developers to create and register custom handlers for reading
from and writing to the integrated terminal, which is exactly what is needed for
the integrated Ciao top-level. However, all the logic of implementing a bidirec-
tional communication channel between the user or programmatic input and the
Ciao top-level process had to be designed and implemented from scratch.

12

4.2. Ciao Top Level

Figure 4.4: Sequence Diagram of the Integrated Ciao top-level.

This approach, while requiring much more development effort, covers the re-
quirement of reading the output of the integrated top-level, together with the
possibility of enhancing the Ciao development experience inside VS Code by
customizing the top-level behaviour and style to match the integrated top-levels
present in the rest of Ciao development environments.

4.2.1.3 Architecture

After having discussed the final approach for creating the Ciao integrated top-
level inside VS Code, in this section every component of the architecture will be
explained.

The final architecture is composed of three classes: CiaoTopLevel, CiaoPTY, and
CProc. These classes have different responsibilities, ensuring a modular archi-
tecture that is both scalable and decoupled. For instance, the CiaoTopLevel
class manages the lifecycle of the top-level, the CProc class acts as a wrapper for
a Ciao top-level process, such as ciaosh, by managing its standard input and
output, and the CiaoPTY class handles all the logic of capturing and forwarding
user input to the CProc, and processes and displays the output in the integrated
terminal panel of the CiaoTopLevel.

An important aspect of this architecture is that all the classes implement the
sendQuery method with the same interface. This method allows sending pro-
grammatic queries to the upper layer of the integrated top-level, CiaoTopLevel,
which then propagates the call to the sendQuery methods of the lower layers.
The sendQuery method is asynchronous because it needs to wait for the deepest
layer, CProc, to complete the execution of the query; but once this query has
finished, the execution is resolved with the output of the query as the return
value. This asynchronous model has been implemented to enable sequential

13

Chapter 4. Implementation

query execution without race conditions, allowing each query to wait for the pre-
vious one to be resolved before proceeding. Figure 4.4 represents the sequence
diagram of the architecture, with two main entry-points: user input represents
the user input using the pty, and query represents the programmatic input. For
example, the following TS source code represents a sequential programmatic
communication with the CiaoTopLevel architecture:

1 // Ensure a CiaoPP top-level is started
2 await ensureTopLevelStarted(CiaoTopLevelKind.CiaoPP);
3 // Send a query to load the module
4 await topLevel.sendQuery("use_module('qsort.pl').");
5 // Send a query to analyze the module
6 await topLevel.sendQuery("auto_analyze('qsort.pl').");

As mentioned in Section 2.2, this architecture is based on the previous top-level
architectures developed for the Emacs mode and the Ciao Playground, ensuring
a consistent experience for both Ciao users and maintainers.

4.2.1.4 CiaoTopLevel

1 declare class CiaoTopLevel implements vscode.Disposable {
2 /**
3 * Create a new CiaoTopLevel instance.
4 * @param {CiaoTopLevelKind} kind - Ciao, CiaoPP or LPdoc top-level.
5 */
6 constructor(kind: CiaoTopLevelKind);
7

8 /**
9 * Start the top-level. Create and start a CiaoPTY instance.

10 * @param {Object.<string, boolean>} opts - Configuration options on start.
11 * @returns {Promise<CiaoTopLevel>} - A promise that resolves to the CiaoTopLevel.
12 */
13 start(opts?: { hidden?: boolean }): Promise<CiaoTopLevel>;
14

15 /** Restart the CiaoPTY without disposing the terminal. */
16 restart(): Promise<void>;
17

18 /** Dispose the terminal and all its resources associated. */
19 dispose(): void;
20

21 /**
22 * Send a query to the CiaoPTY and returns a promise that will
23 * resolve when the query has terminated or reached a goal.
24 * @param {string} query - The query string.
25 * @param {boolean} [muted=false] - Whether to mute the output or not (default false).
26 * @returns {Promise<string>} - A promise that resolves to the query output.
27 */
28 sendQuery(query: string, muted: boolean = false): Promise<string>;
29 }

The CiaoTopLevel component defined above serves as a high-level interface for
managing the lifecycle of the integrated top-level via the start, restart and
dispose methods. For instance, when the CiaoTopLevel start method is invoked,

14

4.2. Ciao Top Level

it creates a new CiaoPTY instance, injecting it with all necessary dependencies
like the type of top-level (ciaosh, ciaopp, or lpdoc). Additionally, it stores a ref-
erence to this CiaoPTY instance as an attribute, enabling communication with
subsequent layers via the sendQuery method.

4.2.1.5 CiaoPTY

1 declare class CiaoPTY implements vscode.Pseudoterminal {
2 /**
3 * Create a new CiaoPTY instance.
4 * @param {CommandRing} commandRing - CommandRing to use.
5 * @param {CiaoTopLevelKind} kind - Ciao, CiaoPP or LPdoc top-level.
6 */
7 constructor(commandRing: CommandRing, kind: CiaoTopLevelKind);
8

9 /**
10 * Open the pty. Create and start CProc instance.
11 * @param {vscode.Dimensions} dimensions - The terminal initial dimensions.
12 * @returns {Promise<CiaoPTY>} - A promise that resolves to the CiaoPTY.
13 */
14 open(dimensions?: vscode.TerminalDimensions): Promise<CiaoPTY>;
15

16 /** Close the pty and terminates the Ciao top-level process. */
17 close(): void;
18

19 /**
20 * Callback executed when new input is received.
21 * @param {string} data - Input received.
22 */
23 handleInput(data: string): void;
24

25 /**
26 * Send a query to the CiaoPTY and returns a promise that will
27 * resolve when the query has terminated or reached a goal.
28 * @param {string} query - The query string.
29 * @param {boolean} [muted=false] - Whether to mute the output or not (default false).
30 * @returns {Promise<string>} - A promise that resolves to the query output.
31 */
32 sendQuery(query: string, muted: boolean = false): Promise<string>;
33 }

The CiaoPTY component defined above handles user interaction with the pty such
as inserting and deleting characters, moving the cursor within the current line
using arrow keys and common key bindings like Ctrl+A and Ctrl+E, clearing the
screen with Ctrl+L, and browsing through previous commands using a com-
mand ring and the arrow keys.

Additionally, it manages the logic of sending user or forwarding programmatic
queries to the CProc component and processing its output. This includes waiting
for the query to terminate and then processing its output by applying syntax
highlighting or marking the current step of the debugger if the user is debugging
a Ciao program (further explained in Section 4.2.5).

The methods open, restart, and close are responsible for managing the pty itself.

15

Chapter 4. Implementation

For example, when the open method is called, the CiaoPTY instance creates and
stores a new CProc instance, injecting it with all necessary dependencies, such
as the type of top-level and a callback to be executed by CProc whenever there is
data available in its buffers. This callback will apply syntax highlighting to the
output by wrapping some of its sections with special pty control sequences, and
will mark the current debugging step — if needed.

The handleInput method processes new input for the pty, implementing the
usual terminal interface behaviours and sends a query when the user presses
the Enter key. Also, storing a reference to the CProc instance enables establish-
ing bidirectional communication with the deepest layer of the architecture via
the sendQuery method, asynchronously forwarding queries to the CProc compo-
nent.

4.2.1.6 CProc

1 declare class CProc {
2 /**
3 * Create a new CProc instance.
4 * @param {CiaoTopLevelKind} kind - Ciao, CiaoPP or LPdoc top-level.
5 * @param {(output: string) => void} outputCallback - Callback to execute once output

data is available.↪→

6 */
7 constructor(
8 kind: CiaoTopLevelKind,
9 outputCallback: (output: string) => void

10);
11

12 /**
13 * Start the Ciao top-level process.
14 * @returns {Promise<CProc>} - A promise that resolves to the CProc.
15 */
16 start(): Promise<CProc>;
17

18 /** Terminate the Ciao top-level process. */
19 exit(): void;
20

21 /**
22 * Send a query to the CiaoPTY and returns a promise that will
23 * resolve when the query has terminated or reached a goal.
24 * @param {string} query - The query string.
25 * @param {boolean} [muted=false] - Whether to mute the output or not (default false).
26 * @returns {Promise<string>} - A promise that resolves to the query output.
27 */
28 sendQuery(query: string, muted: boolean = false): Promise<string>;
29 }

The CProc component defined above is a custom wrapper for a Ciao top-level
process, such as ciaosh, managing interactions by sending queries and buffering
output. The constructor of CProc requires the type of top-level to spawn and a
callback from CiaoPTY to be executed when a query has finished in order to
display its output in the pty.

16

4.2. Ciao Top Level

Figure 4.5: Integrated Ciao top-level inside VS Code.

The sendQuery method writes a query to the Ciao top-level’s standard input and
returns a Promise.3 This Promise is resolved when the prompt appears in the
standard output, indicating that the query has finished or reached one goal.
This method ensures asynchronous handling of queries, allowing the system to
wait for a query to complete before proceeding with subsequent actions.

The start method sets up event handlers for standard output, standard error,
and close events. These handlers manage the data flow and process lifecycle. For
example, the standard output event handler continuously buffers data from the
process, and, when it detects the prompt, the handler resolves the Promise with
the buffer’s content. Additionally, it executes a function to mark possible syntax
errors in the Ciao source code in case the output includes such messages. If
the query is not muted, the handler also runs the outputCallback to display the
output in the pty and mark the current debugger’s step — if needed. The TS
source code in Listing 1 is a simplified version of the CProc implementation that
includes the logic explained above (see Appendix A for the full implementation).

4.2.2 Ciao Top Level Usage Inside Visual Studio Code

With this architecture, the Ciao Language Support Extension for VS Code pro-
vides an enriched Ciao top-level that provides many extra features like an API
for sending queries and waiting until their completion, syntax highlighting for
the top-level output, or processing and marking error and debugging messages
in a Ciao source file.

A command can be executed to start an integrated Ciao top-level inside VS Code.

3An object that represents the eventual completion or failure of an asynchronous operation
together with its resulting value.

17

Chapter 4. Implementation

1 import { spawn } fron "node:child_process";
2 import { markErrorsOnSource } from "./ciao-utils";
3

4 class CProc {
5 constructor(outputCallback?: (output: string) => void) {
6 this.outputCallback = outputCallback;
7 this.buffer = "";
8 this.muted = false;
9 this.resolve = undefined;

10 this.cproc = undefined;
11 }
12 sendQuery(query: string, muted: boolean = false): Promise<string> {
13 // Return a new Promise and store the resolve function
14 // to call it whenever the query has finished
15 return new Promise<string>((resolve) => {
16 this.resolve = resolve;
17 // Write the query in the stdin of the process if started
18 this.cproc?.stdin?.write(`${query}\n`);
19 });
20 }
21 start() {
22 // Spawn the top-level process
23 this.cproc = spawn("ciaosh");
24 // Register an event handler for new data on stdout
25 this.cproc.stdout.on("data", (data: Buffer) => {
26 // Buffer data
27 this.buffer += data;
28 // If the query has finished
29 if (this.buffer.endsWith("?- ")) {
30 // If the query is not muted, execute the outputCallback to display
31 // the output in the pty and mark possible errors on source
32 if (!this.muted) {
33 this.outputCallback(this.buffer);
34 markErrorsOnSource(this.buffer);
35 }
36 // If there's a query Promise that needs to be resolved
37 if (this.resolve !== undefined) {
38 // Resolve the promise with the output of the query
39 this.resolve(this.buffer);
40 }
41 // Reset variables
42 this.resolve = undefined;
43 this.buffer = "";
44 }
45 });
46 }
47 }

Listing 1: Simplified version of the CProc implementation.

The top-level will be started in a new window inside the integrated terminal
panel. Inside this window, users can start interacting with the top-level by writ-
ing and executing queries as in other Ciao development environments (see Fig-
ure 4.5). Additionally, as in the existent Ciao development environments, users
can also interact with the top-level by using custom Ciao buttons inside the VS

18

4.2. Ciao Top Level

Figure 4.6: Highlighted Errors and Warnings on Ciao Source in VS Code.

Code user interface. These buttons are shortcuts for executing the most used
commands such as start a top-level or load the current Ciao file in the top-level
among others. Moreover, if the top-level receives an EOF or a SIGINT signal, it
can be restarted inside the same integrated terminal panel, also recovering the
previous command ring. In following sections, the possible use-cases of the
integrated top-level will be detailed.

4.2.3 Highlighting Errors and Warnings in Ciao Source Code

Each time a Ciao program is loaded inside the top-level, the Ciao compiler will
check for and output possible syntax errors or warnings that will then be dis-
played in the top-level. By parsing these errors or warnings, it is possible to
obtain information such as the specific line range and a brief description of the
issue, which can then be utilized to highlight the problematic code within the
editor.

As mentioned previously in Section 4.2.1.3, when CProc processes the standard
output of the Ciao top-level process, it will call a parser that will capture and
return all the possible errors generated by the Ciao compiler in a convenient data
structure. This data structure will be then processed by another function that
will make use of VS Code’s API to highlight these errors in the active editor. The
TS source code below contains a pseudo-implementation of the error marking
function (see Appendix B for full implementation), and Figure 4.6 illustrates an
example of how errors and warnings related to the current file are highlighted
after having processed the output inside the integrated top-level.

19

Chapter 4. Implementation

Figure 4.7: Executing Ciao Tests in VS Code.

1 const markErrorsOnCiaoSource = (filePath: string, msgs: CiaoDiagnostics) => {
2 // Creating errors
3 const errors = msgs.errors.map((m) => new Diagnostic(m.lines, m.msg, 'error');
4 // Creating warnings
5 const warnings = msgs.warnings.map((m) => new Diagnostic(m.lines, m.msg, 'warning');
6 // Set diagnostics for file
7 vscode.setDiagnosticsForFile(filePath, [...errors, ...warnings]);
8 }

4.2.4 Ciao Testing Integration

Users can execute a VS Code command from the command palette for executing
all the tests inside their Ciao module. Internally, the command simply sends
a set of queries to an active integrated top-level. The TS source code below
implements a simplified version of the command, and Figure 4.7 represents the
result of executing this command.

1 const runTestsInModule = async (filePath: string) => {
2 // Create and start a Ciao top-level
3 await ensureTopLevelStarted(CiaoTopLevelKind.CiaoSH);
4 // Load unittest library and run tests in the specified file
5 await topLevel.sendQuery("use_module(library(unittest)).");
6 await topLevel.sendQuery(`run_tests_in_module('${filePath}')`);
7 };

20

4.2. Ciao Top Level

Figure 4.8: Ciao Debugger in VS Code.

4.2.5 Ciao Debugger Integration

The Ciao debugger allows users to follow the execution steps of a Ciao program
within the top-level interface, including backtracking and control flow. The de-
bugger is essential for understanding the sequence of predicate calls and vari-
able bindings.

Once the debugger is activated for a particular module and a query is executed
in that module, the debugger will trace the program’s execution step by step.
With every step the debugger takes, it outputs two lines to the standard output
of the top-level process. The first line contains information about the current
state of the debugger, such as the name of the predicate that is being executed
and a range of lines where this predicate is located. The second line includes
the current state of the variables and their bindings. Below is an example of the
output generated by one step of the Ciao debugger:

In /Users/marcociccalebaztan/clip/examples/qsort.pl (2-6) qsort_-1
2 2 Call: qsort:qsort_([5,2,3,4,1],Out,[])

The first line of the output means that the debugger is at the first appearance of
the qsort_ atom between lines 2 and 6 of the qsort.pl module, while the second
line shows the current state of the program.

Existing Ciao development environments process the first line of every step to
determine the current position of the debugger. This information is omitted
from the top-level interface and instead processed to visually indicate the exact
position of the debugger with a light blue line and a blue rectangle surrounding
the current atom.

This behaviour is achieved by locating the exact position of the nth occurrence of

21

Chapter 4. Implementation

the given atom within a specified range of lines from the Ciao file. To accomplish
this, it is best to search through the tokens of the file. However, in VS Code, it
is impossible to access the generated tokens for the current file using its native
API [22]. Therefore, a custom Ciao tokenizer function was implemented for this
purpose.

A Ciao debugging session inside VS Code can be started by using a custom but-
ton or by executing the associated command. This command will start a top-level
if one has not already been started and will send the necessary queries for de-
bugging the current module to it. When CiaoPTY displays a debugging step, it
processes and omits the first line of the output to handle the debugging infor-
mation appropriately by highlighting each step the debugger takes in the source
code (see Figure 4.8 for an example and Appendix C for the implementation).

4.2.6 Ciao Generic Menus Inside Visual Studio Code

Many tools within the Ciao ecosystem, such as CiaoPP or LPdoc, can be cus-
tomized to meet the specific needs of each user. To facilitate this customization,
the standard library of Ciao includes a dedicated package, library(menu), de-
signed for defining and generating interactive Ciao menus. This package can be
utilized from the top-level, serving as the backend component for any graphical
interface that acts as the frontend of the menu. With this client-server architec-
ture, Ciao menus can be created in any Ciao development environment that can
interact with a top-level process.

For example, the Emacs mode includes a text-based CiaoPP menu that allows
users to configure all the flags for CiaoPP. Behind the scenes, this text-based
interface sends queries to the top-level, which tracks the state of the flags being
modified by the user.

In an initial iteration of the Ciao Playground, the Ciao Development Team cre-
ated a generic web-based menu interface using HTML, CSS, and JS that could
communicate with a top-level process. Given that VS Code is a web-based appli-
cation, as mentioned in Section 3.1, it made sense to reuse this menu interface
for generating Ciao menus within VS Code.

The JS source code was developed prior to the ECMAScript 2015 (ES6) major
revision for JS [23]. Consequently, it was adapted to this new version of JS,
ensuring compatibility with the source code of the extension.

With this revised version of the Ciao generic menu interface for web-based envi-
ronments, it is possible to render it inside VS Code using its Webview API that
allows extensions to register custom views embedded in VS Code’s user interface
using web technologies. In Section 4.5, the process for creating a Webview for
the CiaoPP menu is detailed.

22

4.3. Ciao Language Integration

1 {
2 "comments": {
3 "lineComment": "%",
4 "blockComment": ["/*", "*/"]
5 },
6 "brackets": [
7 ["{", "}"],
8 ["[", "]"],
9 ["(", ")"]

10],
11 "autoClosingPairs": [
12 { "open": "{", "close": "}" },
13 { "open": "[", "close": "]" },
14 { "open": "(", "close": ")" },
15 { "open": "'", "close": "'", "notIn": ["string", "comment"] },
16 { "open": "\"", "close": "\"", "notIn": ["string"] },
17 { "open": "/*", "close": "*/", "notIn": ["string"] }
18],
19 "folding": {
20 "markers": {
21 "start": "^\\s*%\\s*region\\b",
22 "end": "^\\s*%\\s*endregion\\b"
23 }
24 }
25 }

Listing 2: Language Configuration File for Ciao

4.3 Ciao Language Integration

In this section, all the necessary steps for integrating Ciao as a programming
language within VS Code will be detailed. These steps include defining a set
of declarative language features, registering a custom grammar, and creating
custom snippets for Ciao files.

4.3.1 Language Configuration

The first step towards integrating Ciao within VS Code is defining some language
features and characteristics that configure the editing experience for Ciao files.
These features are declared inside a JSON file that must follow a schema defined
by VS Code for this purpose.

In this file, it is possible to define the way of commenting code inside Ciao files for
VS Code to know how to comment and uncomment Ciao files when the shortcut
for commenting a portion of code is executed. It is also possible to define auto-
closing pairs such as (...) or [...], folding patterns for hiding portions of the
code when needed, and basic indentation rules.

Listing 2 includes some parts of the language configuration file for Ciao in VS
Code.

23

Chapter 4. Implementation

1 [
2 {
3 "name": "entity.name.function.ciao",
4 "match": "^\\w+([_-]?\\w+)*"
5 },
6 {
7 "name": "variable.parameter.named.ciao",
8 "match": "[A-Z][\\w\\-\\.']*"
9 },

10 {
11 "name": "keyword.predefined.operator.ciao",
12 "match": "(=<|>=|=|>|<|->|-|\\+|*)"
13 }
14]

Listing 3: Some TextMate rules for Ciao

4.3.2 Syntax Highlighting

One of the core features of any IDE is syntax highlighting, a basic yet important
feature that improves code readability and comprehension by highlighting to-
kens4 with different colours. In Ciao, syntax highlighting is particularly crucial
due to its use of domain-specific languages (DSLs) and language extensions such
as assertions or functional syntax.

The process of highlighting code involves tokenizing the source file and identi-
fying different tokens to then apply the same colour to all tokens of the same
type. To achieve this, the tokenization engine of VS Code supports JSON Text-
Mate Grammars [24], a structured collection of regular expressions written as a
JSON file that defines the grammar of a programming language.

Listing 3 includes the definition of three types of Ciao tokens: the definition of
a predicate, a variable and some predefined operators, which are part of the
TextMate grammar defined for Ciao.

However, this grammar will only be used by the VS Code tokenization engine for
generating the tokens, not to apply colours to them. This second step of applying
the colours to the tokens in VS Code is managed by color themes, extensions
that affect all workspaces. This prevents extensions to apply custom colours
to certain tokens, which can be a problem for Ciao and other programming
languages that use fixed colours for some of its syntax. In the case of Ciao, the
status of an assertion has its own colours that must not change across themes,
such as checked, false, or check.

Curiously, users can define some rules in their VS Code settings to customize
the colour of a specific token, this being the only way of specifying the colour
of a token without having to change the colour theme. Leveraging this option,
the extension provides a command that automatically adds a set of rules to add
custom colours only for Ciao files, these colours are different for light and dark
themes, so the user can specify what type of theme they are using in order to

4Smallest unit of meaningful data in source code.

24

4.4. LPdoc Integration

Figure 4.9: Ciao Syntax Highlighting inside VS Code

match their preferences. Figure 4.9 shows examples of syntax highlighting of
some Ciao code inside VS Code.

4.3.3 Snippet Completion

Another valuable feature for enhancing the Ciao development experience in VS
Code is the use of code snippets. Snippets are predefined code templates that
can be quickly inserted into a file using a prefix. These snippets can significantly
improve productivity by reducing the need to type repetitive code segments man-
ually.

The extension registers a set of predefined snippets for Ciao that aim to reduce
the time spent writing boilerplate for assertions and module declarations. VS
Code’s snippets are particularly powerful, as one can specify some breakpoints
inside the snippet so the user can tab through those breakpoints and fill the
slots.

Listing 4 illustrates some of the snippets already registered when the user in-
stalls the Ciao extension.

4.4 LPdoc Integration

LPdoc is a key tool within the Ciao ecosystem designed to generate documenta-
tion manuals directly from the source code files of (C)LP systems. These manu-
als can be exported in various formats, such as HTML, PDF, and Info. Users can
interact with LPdoc via its command-line interface using the lpdoc command:

lpdoc [Options] Input

25

Chapter 4. Implementation

1 {
2 "rule": {
3 "prefix": "rule",
4 "body": "${1:functor}(${2:Args}) :- \n\t${3:% Code}.",
5 "description": "Rule",
6 "scope": "source.ciao"
7 },
8 "module": {
9 "prefix": "module",

10 "body": ":- module(${1:Module}, [${2:Exports}], [${3:Imports}]).",
11 "description": "Module",
12 "scope": "source.ciao"
13 },
14 "test": {
15 "prefix": "test",
16 "body": ":- test ${1:functor}(${2:Args})\n\t: (${3:Precondition})\n\t=>

(${4:Postcondition})\n\t+ (${5:GlobalProperties})\n\t# \"${6:Comment}\".",↪→

17 "description": "Unit test assertion",
18 "scope": "source.ciao"
19 },
20 "pred": {
21 "prefix": "pred",
22 "body": ":- pred ${1:functor}(${2:Args}) : ${3:Precondition} =>

${4:Postcondition}\n\t# \"${5:Comment}\".",↪→

23 "description": "Predicate assertion",
24 "scope": "source.ciao"
25 }
26 }

Listing 4: Set of Ciao Snippets

Additionally, LPdoc has its own top-level process that, by default, loads all the in-
ternal predicates it uses, providing greater flexibility and control over documen-
tation generation. Consequently, it has been the preferred option for integrating
LPdoc into the existing Ciao development environments, and, to maintain con-
sistency with these environments, the Ciao VS Code extension will also integrate
LPDoc using its top-level process instead of its command-line interface.

For generating large and complex manuals, such as the Ciao system manual,
LPdoc makes use of a special file: SETTINGS.pl. Inside this file the user can
specify advanced configuration settings for generating manuals that consist of
multiple modules or packages. While documenting a single module with LPdoc,
a SETTINGS.pl file may not be necessary, it becomes essential for managing large
projects or complex directory structures.

In following subsections, all the VS Code commands related to LPdoc, which
happen to be the most frequent use cases of LPdoc, will be discussed and ex-
plained. These commands will follow a common structure:

1. Ensure an integrated LPdoc top-level is started and running inside VS Code,
as the following steps will involve programmatically interaction with it.

2. Execute external functionality such as: creating a temporary directory or
checking the existence of a SETTINGS.pl file.

26

4.4. LPdoc Integration

3. Send the necessary queries to the LPdoc top-level for generating or display-
ing the documentation.

4.4.1 Preview Documentation

This command allows users to quickly examine an HTML version of the documen-
tation manual generated from their current Ciao file inside a temporary direc-
tory, preventing the final and intermediate files generated by LPdoc from clutter-
ing the current directory. The external functionality required by this command
involves creating a temporary directory and creating a symbolic link to the cur-
rent Ciao file inside this temporary directory, allowing access to the source file
from the new directory. The following source code implements this functionality
in a simplified manner:

1 const previewDocumentation = async () => {
2 // Create a temporary directory
3 const tmpDir = createTmpDir();
4 // Create a symbolic link to the original source file inside the temporary directory
5 symlink('/path/to/foo.pl', tmpDir);
6 // Ensure a LPdoc top-level is started
7 await ensureTopLevelStarted(CiaoTopLevelKind.LPdoc);
8 // Set the cwd of the top-level to the temporary directory
9 await lpdocTopLevel.sendQuery(`working_directory(_,'${tmpDir}')`);

10 // Generate the documentation
11 await lpdocTopLevel.sendQuery(`doc_cmd('foo.pl',[],gen(html)).`);
12 // Display the documentation
13 await lpdocTopLevel.sendQuery(`doc_cmd('foo.pl',[],view(html)).`);
14 };

4.4.2 Generate and Save Documentation

This command allows users to generate and save the documentation manual
generated from their current Ciao module inside their current working directory
in the specified format. By default, only the module source file will be used to
generate the documentation. However, if a SETTINGS.pl file exists in the current
working directory, LPdoc will use this file to generate the documentation. The
external functionality required for this command involves searching for a possi-
ble SETTINGS.pl file inside the current working directory. The following source
code implements this functionality in a simplified manner:

1 const generateAndSaveDocumentation = async (format: string) => {
2 // Ensure a LPdoc top-level is started
3 await ensureTopLevelStarted(CiaoTopLevelKind.LPdoc);
4 // Set the file that LPdoc will be using (SETTINGS.pl or source)
5 const file = existsSettingsFile() ? 'SETTINGS.pl' : 'foo.pl';
6 // Generate the documentation
7 await lpdocTopLevel.sendQuery(`doc_cmd('${file}',[],gen(${format})).`);
8 // Display the documentation
9 await lpdocTopLevel.sendQuery(`doc_cmd('${file}',[],view(${format})).`);

10 };

27

Chapter 4. Implementation

Figure 4.10 represents the VS Code workspace after previewing the documenta-
tion for the current Ciao file, and Figure 4.11 shows the generated documenta-
tion for that file.

Figure 4.10: Preview Documentation Command inside VS Code.

Figure 4.11: Documentation Generated using LPdoc.

28

4.5. CiaoPP Integration

Figure 4.12: High-level Architecture of the CiaoPP Framework

4.5 CiaoPP Integration

Global static analysis and verification tools serve as a resource that software
engineers can leverage to detect high-level errors or ensure their absence in
complex software systems. This is especially relevant for declarative and dy-
namic languages such as Prolog where inferring certain properties such as types,
modes, non-failure, determinacy, computational cost, and variable sharing can
contribute to designing safe and complex systems. These analyses are per-
formed over code specifications in the form of assertions contained within the
source code.

The CiaoPP framework natively supports Prolog and various (C)LP systems, along
with any intermediate Horn clause-based representation of a system developed
using other programming languages not included in the (C)LP paradigm. CiaoPP
can identify semantic errors that extend far beyond the traditional compiler’s
error reporting capabilities. Furthermore, CiaoPP emits statically-obtained cer-
tificates that ensure program properties do not need to be checked at runtime,
thus eliminating certain runtime assertion tests.

CiaoPP is powered by an efficient fixpoint engine that can perform incremental
analysis, reducing the number of reanalyses performed across a software system
that can be made up of a single module or a collection of separate modules.
Figure 4.12 represents the architecture of the CiaoPP framework.

Program verification is first performed at compile-time by inferring the previously
mentioned properties via abstract interpretation-based static analysis, and com-
paring the results against the the assertions inside the source code.

29

Chapter 4. Implementation

Figure 4.13: CiaoPP Analysis Inside VS Code

4.5.1 Statically Analyze

Users can analyze their current Ciao file using a simple command. This com-
mand will: ensure a CiaoPP top-level is started, send a query to it for analyzing
the current file using the auto_analyze/1 predicate from the CiaoPP framework,
mark possible diagnostics on source, and open the analysis output file besides
the current file (see Figure 4.13). The following source code implements this
functionality in a simplified manner:

1 const analyzeFile = async () => {
2 // Ensure a CiaoPP top-level is started
3 await ensureTopLevelStarted(CiaoTopLevelKind.CiaoPP);
4 // Analyze file and get output file
5 const outputFile = await ciaoppTopLevel.sendQuery("auto_analyze('foo.pl').");
6 // Display the output file
7 vscode.openFileInEditor(outputFile);
8 };

4.5.2 Check Assertions

Users can check if the assertions defined in their Ciao program are satisfied or
violated using a simple command. This command will have the same structure
as the analyzeFile command, but it will send a different query and not display
an output file.

30

4.5. CiaoPP Integration

Figure 4.14: Emacs Text-based CiaoPP Menu

4.5.3 CiaoPP Menu

The actions performed by CiaoPP can be configured by a set of flags. Depend-
ing on the flags selected by the user, additional flags may become available for
further customization. After customizing CiaoPP’s behaviour, users can use the
preprocessor to analyze their Ciao program according to this custom set of flags.

These flags can be manually configured by using the set_menu_flag/3 predicate
inside the CiaoPP top-level. However, the Emacs mode for Ciao provides an
interactive, graphical, text-based CiaoPP menu where users can customize any
flag of the preprocessor (see Figure 4.14). Each time the user changes the value
of a flag using this menu, the selected value is sent to the underlying CiaoPP top-
level. The top-level then saves the value and reevaluates the state of the menu
to enable or disable other flags for further customization.

To bring this functionality to the Ciao VS Code extension, the initial CiaoPP
menu definition in JSON is obtained by sending the following query to the CiaoPP
top-level:

menu_to_json(all,_I), json_to_string(_I,_S), write_string(_S).

Once the initial definition of the CiaoPP menus is retrieved, the Webview VS Code
API is leveraged to create a custom web container. This container integrates
the updated Ciao generic web-based menu interface discussed in Section 4.2.6,
acting as the frontend for the CiaoPP top-level, which serves as the backend
using the library(menu) Ciao standard package for creating interactive menus.

The Webview panel is created using the initial menu definition and a simple

31

Chapter 4. Implementation

HTML structure that includes minimal CSS styles and a script to dynamically
generate the configurable menu flags. Additionally, a message listener is regis-
tered within the panel to facilitate communication between the Webview panel
and the Ciao extension (see Appendix D for full implementation).

The script loaded inside the HTML template integrates the Ciao generic web-
based menu interface. This script is responsible for rendering the menu options
based on the initial JSON menu definition and dynamically updating the menu
as users interact with it. It captures user inputs, such as selecting flags, and
executes an injected, context-specific callback when these events are triggered.
In the case of the CiaoPP menu inside VS Code, the callback sends a query to
the integrated CiaoPP top-level, updating the value of the flag.

Below is a schematic implementation of creating a CiaoPP menu using the Ciao
generic web-based menu interface (ciao-menu-html).

1 import CiaoPPMenu from '../ciao-utils/ciao-menu-html';
2

3 const createCiaoPPMenu = (menudef: string) => {
4 try {
5 const menu = new CiaoPPMenu(
6 // Parse the menu definiton from JSON string to JS Object
7 JSON.parse(menudef),
8 // Callback to execute when a flag's value is changed
9 () => {

10 // Send a message that will be captured by the Webview panel message listener
11 vscode.postMessage({
12 command: 'submit',
13 text: /* Query for updating the flag in the top-level */,
14 });
15 }
16);
17 } catch {
18 vscode.postMessage({ command: 'error' });
19 }
20 }

With this setup, the CiaoPP interactive menu can be opened with a simple VS
Code command, which starts a hidden integrated CiaoPP top-level along with
the custom Webview. Additionally, as the queries sent to the top-level can be ex-
tensive, they are sent silently, ensuring that the user does not see these queries
within the integrated top-level interface. Figure 4.15 shows the CiaoPP menu
integrated within VS Code.

32

4.6. On-the-fly Analysis

Figure 4.15: Integrated CiaoPP Menu Inside VS Code.

4.6 On-the-fly Analysis

On-the-fly analysis refers to the real-time checking and validation of source code
as it is being written. This process helps developers catch errors early, re-
ceive immediate feedback, and improve code quality by running various check-
ers and analyzers continuously in the background. This approach significantly
enhances the development experience and productivity.

4.6.1 Ciao Flycheck Integration

Flycheck is an on-the-fly analysis package for Emacs that provides real-time feed-
back within the current buffer by running background processes called check-
ers [25]. These checkers report errors or warnings in the content of the current
buffer, which are then displayed in the current buffer. Flycheck continuously
runs the checkers to ensure a responsive experience for the developer. The Ciao
development team integrated Flycheck into the Emacs mode for Ciao to enhance
the coding experience by providing immediate feedback on syntax errors and
assertion checking (VeriFly) [13]. Behind the scenes, the Flycheck integration
for Ciao creates a temporary file to track modifications made to the original file
without automatically saving it. The Flycheck checkers analyze this temporary
file and send any diagnostics directly to the current buffer.

4.6.2 Language Server Protocol

Language Server Protocol (LSP) is a JSON-RPC-based protocol definition developed
and maintained by Microsoft that tries to standardize the communication be-
tween a text editor or IDE and a language server that provides programming
language specific functionalities, such as autocompletion, go to definition and

33

Chapter 4. Implementation

Figure 4.16: Communication Between Editor and Language Server via LSP.

diagnostics reporting [26]. This way, a language server that complies with the
LSP standard can be used in any text editor or IDE that supports communication
with language servers via LSP.

Before explaining how LSP works, it is crucial to understand the JSON-RPC pro-
tocol. A Remote Procedure Call (RPC) is defined as the action of executing a spe-
cific procedure, function, or subroutine on a remote host (another computer),
abstracting the developer from specifying the details of the remote interaction.
JSON-RPC is a protocol for encoding these RPCs using JSON.

LSP is the standard for providing on-the-fly analysis inside VS Code. It lever-
ages JSON-RPC for encoding the messages exchanged between the text editor
and the language server. These messages include requests from the editor for
language-specific features, and responses from the language server providing
the requested information (see Figure 4.16). Note that when a user opens a doc-
ument, the editor loads the content into memory, making it the ground truth
instead of the disk contents. By keeping an in-memory copy, the editor can
track changes to the document without automatically saving them.

LSP has proven to be a great tool for facilitating the development process for
both language and editor implementers, particularly for languages with domain-
specific languages (DSLs), such as Ciao [27].

4.6.3 Ciao Language Server

The Ciao development team had already considered creating a Ciao language
server [13], and, in this work, a minimal implementation of the first Ciao lan-
guage server that provides on-the-fly verification with CiaoPP and diagnostics
reporting is presented.

For the sake of simplicity, the Ciao language server will be implemented using a
Node.js library that simplifies the development of language servers by providing
utilities and abstractions to handle tasks such as JSON-RPC communication.

34

4.6. On-the-fly Analysis

Figure 4.17: Ciao Checkers Available in VS Code.

When a user changes the document in the editor, the language server performs
the following steps:

1. Document Change Detection: The language server detects changes in the
in-memory representation of the file using an event listener that triggers
when the content is modified.

2. Temporary File Creation: Since Ciao only supports compilation and anal-
ysis by providing an actual file, not just the contents as an argument, the
language server creates a temporary file. This temporary file has the same
name as the original file, appended with a special suffix. This suffix allows
Ciao’s module system to recognize that, despite the differing file names,
the temporary file corresponds to the same module as the original. The
temporary file tracks modifications without affecting the original file, as the
changes received by the language server are in the form of a string contain-
ing the content of the document.

3. Running a Ciao Checker: Users can specify what Ciao checker they want
to use for on-the-fly analysis inside VS Code’s settings (see Figure 4.17).
The available options are: off (disables on-the-fly analysis), ciaoc (checks
for syntax errors), ciaopp (checks assertions), and lpdoc (checks for doc-
umentation errors). The selected checker will be executed to process the
temporary file previously created, and output possible diagnostics.

4. Send Diagnostics to Client: If diagnostics are generated, the language
server will process and convert them into diagnostics messages that are
then sent back to the editor using JSON-RPC, where they are displayed to
the user in real-time.

Figure 4.18 shows the Ciao language server in action, and Listing 5 is its schematic
implementation (see Appendix E for full implementation).

35

Chapter 4. Implementation

Figure 4.18: Ciao On-the-fly Analysis Using the Ciao Language Server.

1 // Register an onChange event that triggers when the in-memory document has changed
2 documents.onDidChangeContent((change) => {
3 validateTextDocument(change.document, ciaoChecker);
4 });
5 const validateTextDocument = async (document, ciaoChecker) => {
6 // Create a temporary file with the flycheck suffix
7 // that has the contents of the modified file
8 const tmpFilePath = getTmpPath(document.path);
9 writeFileSync(tmpFilePath, document.getText());

10 // Spawn the CiaoChecker and obtain the stderr
11 const { stderr } = spawnSync(ciaoChecker.executable, ciaoChecker.args);
12 // Retrieve the parsed diagnostics
13 const { errors, warnings } = parseErrorMsg(stderr.toString());
14 // Send the computed diagnostics to the language client (VS Code)
15 connection.sendDiagnostics({
16 uri: document.uri,
17 diagnostics: [...errors, ...warnings],
18 });
19 };

Listing 5: Schematic implementation of the Ciao language server.

4.7 Ciao Playground Integration

The Ciao Playground, discussed in Section 2.2, is a web-based Ciao development
environment where users can write, run, debug, document, and analyze Ciao
programs all within their browser with no prior configuration or setup. From the
Ciao VS Code extension, users can open their current file in a Ciao Playground
window, facilitating collaborative development, lectures and code sharing as the
whole program is inserted as a query parameter in the Ciao Playground URL.
Figure 4.19 shows the button to share the current Ciao file and the browser tab

36

4.7. Ciao Playground Integration

1 /** @returns Ciao Playground URL with the current **Ciao Prolog** file embedded */
2 export function createPlaygroundURL(): string | undefined {
3 // Get Active File Content
4 const code = getActiveCiaoFileContent();
5 if (!code) return;
6 // Encode the File Content and Insert it as a Query Parameter
7 const url = `https://ciao-lang.org/playground/?code=${encodeURIComponent(code)}`;
8 // Check if the URL Does not Exceed the Maximum Size
9 const maxUrlLength = 2048;

10 if (url.length <= maxUrlLength) {
11 return url;
12 }
13 window.showErrorMessage(
14 `ERROR: The file length exceds the maximum limit accepted by most
15 browsers: ${maxUrlLength}.`
16);
17 }

Listing 6: Function to send code to playground.

that was opened after sharing the current file. Listing 6 shows the implementa-
tion of this functionality.

Figure 4.19: Ciao Playground Window after Sharing from VS Code.

37

Chapter 4. Implementation

Figure 4.20: Pop Up Alert when Ciao is not Installed.

Figure 4.21: Ciao Installer Inside VS Code.

4.8 Ciao Installation and Version Management

Novice software engineers often encounter issues when installing new software
tools or managing their versions [28]. To address this, the Ciao Development
Team has worked diligently to simplify the installation process of the Ciao ecosys-
tem. Despite these efforts, some beginners, particularly students, still struggle
when installing the Ciao ecosystem. To further ease this process, users can now
download the Ciao toolchain and manage different Ciao versions directly from
the Ciao VS Code extension. It is important to note that this feature is cur-
rently available only in the VS Code Ciao development environment, but there
are plans to extend it to the Emacs mode for Ciao also.

When a user installs the Ciao VS Code extension and opens a .pl file, the ex-
tension will check for the ciao command inside the PATH environment variable
(by default, when Ciao is installed, it adds its executables directory to the PATH).
If it is not found, an alert within VS Code will pop up indicating that the user
does not have Ciao installed on the system (see Figure 4.20). This alert will also
include a button for downloading the Ciao system. If clicked, a new terminal will
be spawned with the Ciao interactive installer process running, allowing users
to follow the installation instructions all within VS Code (see Figure 4.21).

38

4.8. Ciao Installation and Version Management

Figure 4.22: Ciao Version Picker Inside VS Code.

Additionally, users with multiple Ciao versions installed on their system can
easily select which version to use when working with the integrated top-level in
VS Code. This can be done using a simple VS Code command that allows users
to choose their preferred version. By default, this command will list the Ciao
version found in the PATH, as well as the versions located in the default installa-
tion directory $HOME/.ciaoroot (see Figure 4.22). Once a version is selected, the
ciao-env process from the binaries folder of that version is executed to obtain
the necessary environment variables needed to use that version, which are then
stored in VS Code’s local storage. Finally, when spawning any integrated top-
level, if the local storage contains any custom environment variables, they are
loaded during the top-level process initiation (see the source code below).

1 import { spawn } from "node:child_process";
2

3 // If there is a version of Ciao specified, retrieve its environment variables
4 // If not, simply return an empty object.
5 const ciaoEnv = getCiaoEnvVariables() ?? {};
6

7 // Load environment variables when spawning the top-level process
8 const cproc = spawn('ciaosh', {
9 env: {

10 // Keep the current environment variables
11 ...process.env,
12 // Load ciaoEnv to the environment variables of the process
13 // If ciaoEnv is empty, no changes are made
14 ...ciaoEnv,
15 }
16 });

Moreover, if users have Ciao versions installed in non-standard locations, they

39

Chapter 4. Implementation

can register custom versions using VS Code’s settings file by providing a name
and a path to that version. These user defined versions will also be considered
when listing all Ciao versions in the system.

4.9 Multiplatform Support

4.9.1 Operating Systems

The Ciao system supports multiple UNIX-based systems, including various Linux
distributions such as Debian, Ubuntu, and Arch Linux, as well as macOS. Regard-
ing Windows, Ciao does not fully support it natively at the moment. This could
be seen as a shortcoming, given that Windows is the most widely used operating
system for both personal and professional purposes among software engineers
[11]. However, Ciao does offer partial support via MSYS2/MinGW and full sup-
port via Windows Subsystem for Linux [29] (WSL), developed by Microsoft, which
allows the execution of a Linux distribution directly on Windows and thus pro-
vides Windows users with a UNIX-based development environment within their
system. VS Code in turn offers a WSL extension that sets up a WSL-based de-
velopment environment within the editor.5 This enables developers to use VS
Code to interact seamlessly with the WSL system.

The Ciao VS Code extension provides the same functionality for both native
UNIX-based operating systems and Windows with WSL, including handling the
logic of opening external applications like the browser.

4.9.2 Cloud Development Environments

Cloud Development Environments (CDEs) offer preconfigured, remote develop-
ment environments hosted in the cloud, eliminating the need for developers to
configure on-premise environments. Their popularity is expected to rise signifi-
cantly in the coming years due to their ease of use [30].

Examples of CDEs include GitHub Codespaces, Gitpod, AWS Cloud9, Google
Cloud Shell, Repl.it, Codeanywhere, and Eclipse Che. While not all CDEs are
based on VS Code, those like GitHub Codespaces and Gitpod leverage VS Code,
making them compatible with VS Code extensions.

The Ciao VS Code extension also supports VS Code-based CDEs, such as GitHub
Codespaces or Gitpod. For example, users can create a GitHub Codespace di-
rectly from Ciao’s GitHub repository.6 After creating the Codespace, it will be
built as a Docker image, which includes the latest stable version of Ciao together
with the Ciao VS Code extension installed by default. This setup ensures that
developers can immediately start working in a fully configured VS Code-based
remote environment for Ciao (see Figures 4.23 and 4.24).

5https://code.visualstudio.com/docs/remote/wsl
6https://github.com/ciao-lang/ciao

40

https://code.visualstudio.com/docs/remote/wsl
https://github.com/ciao-lang/ciao

4.9. Multiplatform Support

Figure 4.23: GitHub Codespace creation from Ciao’s GitHub Repository.

Figure 4.24: Ciao GitHub Codespace environment.

41

Chapter 4. Implementation

4.10 Bundling and Publishing the Extension

An important part of the development process of the Ciao VS Code extension is
the packaging and bundling process. This step is essential for installing and
testing the extension locally, ensuring it matches the version that end users will
eventually install. Moreover, only bundled extensions can run in CDEs.7

Bundling involves merging multiple source code files, including TS and JS files,
into a single JS file. The goal of bundling is to reduce the number of requests
made by the web browser. Bundlers can also compile TS code to a specific
version of JS, ensuring compatibility with various browsers and runtimes.

Concretely, the Ciao VS Code extension is bundled using esbuild, an extremely
fast JS bundler that is easy to configure. The bundled version of the Ciao VS
Code extension consists of one JS file for the extension, one JS file for the lan-
guage server, and a JS file together with a CSS file for the webview panel (see
Appendix F for the bundling script).

After the extension is bundled, it can be published to the VS Code Marketplace,
a public repository where developers can publish their extensions or download
extensions created by the community. The Ciao VS Code extension was pub-
lished under the ciao-lang verified organization using the vsce command-line
tool for packaging and publishing VS Code extensions.8 Moreover, for Gitpod’s
CDE, the extension was also published to the OpenVSX Registry, an open-source
alternative to VS Code’s marketplace where VS Code-compatible extensions can
be published.

7https://code.visualstudio.com/api/working-with-extensions/bundling-extension
8https://github.com/microsoft/vscode-vsce

42

https://code.visualstudio.com/api/working-with-extensions/bundling-extension
https://github.com/microsoft/vscode-vsce

Chapter 5

Conclusions and Future Work

In this work, a completely new, innovative, and modern development environ-
ment for Ciao has been created as a VS Code language extension. This exten-
sion seamlessly integrates the Ciao ecosystem into one of the most popular text
editors, providing a powerful and comprehensive yet user-friendly tool for de-
velopers of all experience levels with Ciao. It offers features such as custom
syntax highlighting, an enriched integrated Ciao top-level with a powerful API,
Ciao debugging integration with custom marks, CiaoPP integration with a graph-
ical menu to configure its flags, LPdoc integration for generating documentation
manuals of Ciao programs, and on-the-fly analysis with multiple checkers pro-
vided by a minimal Ciao language server among others. The development of this
extension involved writing nearly 3,000 lines of code. Despite the extensive func-
tionality, the extension is implemented in a way that keeps the number of lines
as small as possible while delivering a robust set of features, making the exten-
sion more maintainable and scalable.The extension is published in VS Code’s
Marketplace1, and the full source code of the extension is publicly available in a
GitHub repository.2

Arguably, the Ciao system has become significantly more discoverable and ac-
cessible due to the engagement and positive reception of the extension since its
publication. With over 1,150 downloads, it is clear that the extension has filled a
crucial need within the community, promoting broader adoption and exploration
of Ciao’s capabilities. Furthermore, students at UPM have used the extension for
completing their Declarative Programming course’s assignments, demonstrating
its practical application and effectiveness in an academic setting.

While already very capable, there is certainly still room for improvement in the
Ciao VS Code language extension. Below are a few possible lines of future work:

Enhance the sendQuery API : While the sendQuery API of the CiaoTopLevel com-
ponent already includes the output of the query upon completion, meeting a
critical requirement for the extension, there is still room for improvement. By

1https://marketplace.visualstudio.com/items?itemName=ciao-lang.ciao-prolog-vsc
2https://github.com/ciao-lang/ciao_vsc

43

https://marketplace.visualstudio.com/items?itemName=ciao-lang.ciao-prolog-vsc
https://github.com/ciao-lang/ciao_vsc

Chapter 5. Conclusions and Future Work

incorporating additional information about the state of the query, such as vari-
able bindings, the sendQuery API can be made more robust. This enhancement
would facilitate the creation of a general-purpose API for interacting with the
Ciao ecosystem from TypeScript.

Implement a complete Ciao language server: In this work, and initial ver-
sion of the Ciao language server was implemented using TypeScript. However,
developing the language server using the Ciao language itself would offer invalu-
able advantages. This approach would enable the provision of comprehensive
programming language features to any text editor that integrates with LSP.

Integrate the Ciao debugger using the Debug Adapter Protocol (DAP): The
Ciao debugger has been deeply integrated within VS Code according to the other
Ciao development environments, ensuring a consistent user experience across
all of them. However, in recent years, a debugging abstract protocol has emerged
with the same purpose of the LSP, to standardize the interaction between a
text editor and a debugger [31]. The Debug Adapter Protocol (DAP) is natively
supported in VS Code, and it already powers the debugging experience of other
languages like Java or Node.js. Further work is needed to fully leverage the DAP
and provide an overall better experience when debugging Ciao programs inside
VS Code or any text editor that supports DAP.

44

Chapter 6

Impact Analysis

After having explored the goal and results of the Ciao Language extension for VS
Code, it can be assured that the Ciao ecosystem will be much more accessible
for software engineers with any level of expertise around the globe, since the
whole set of tools of the Ciao ecosystem are now natively supported in the most
popular code editor in the industry, Visual Studio Code. Furthermore, since
Ciao is taught to students who may lack expertise in Declarative Programming,
providing an accessible environment adapted to a well-known editor may posi-
tively affect their learning process by reducing the time spent in learning how to
use a new tool such as Emacs.

Nevertheless, IDEs may negatively affect inexperienced users [32]. For example,
they may become dependent on the IDE buttons and facilities and not truly
deepen in the manual interaction with the Ciao ecosystem. However, as most
features provided in the extension are just interacting with the integrated top-
level, if the user wants to find out what is happening behind the scenes, they
can simply read and explore the top-level history of queries and results.

Taking a look at the objectives of the Agenda 2030, this project could be framed
in Objective 9, supporting research and increasing the development of technol-
ogy. In particular, this work will make CiaoPP, the Ciao preprocessor, more
accessible to software engineers by providing a seamless interface to work with
it, making it easier for programmers to implement optimization and analysis
techniques in their development workflow. This can actually represent a con-
tribution to reducing the energy footprint of IT: in fact, the static analyses that
CiaoPP performs make it possible to infer resource consumption metrics from
the source code without executing it, verifying that a system conforms to its
energy specifications or detecting energy consumption violations [33]. This also
allows programmers to optimize complex systems to reduce their resource con-
sumption. By making the use of CiaoPP more convenient, the Ciao VS Code ex-
tension can contribute to the reduction of the energy footprint of IT and can thus
help comply with the sustainable development objective of the Agenda 2030.

45

Bibliography

[1] A. N. Meyer, E. T. Barr, C. Bird, and T. Zimmermann, “Today was a good
day: The daily life of software developers,” IEEE Transactions on Software
Engineering, vol. 47, no. 5, pp. 863–880, 2019.

[2] I. Zayour and H. Hajjdiab, “How much integrated development environ-
ments (ides) improve productivity?” JSW, vol. 8, no. 10, pp. 2425–2431,
2013.

[3] M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia, E. Mera,
J. Morales, and G. Puebla, “An Overview of Ciao and its Design
Philosophy,” TPLP, vol. 12, no. 1–2, pp. 219–252, 2012. [Online]. Available:
http://arxiv.org/abs/1102.5497

[4] M. Hermenegildo, “An Abstract Machine for Restricted AND-parallel Execu-
tion of Logic Programs,” in ICLP’86, ser. LNCS, vol. 225. Springer-Verlag,
1986, pp. 25–40.

[5] M. Hermenegildo and K. Greene, “The &-Prolog System: Exploiting Inde-
pendent And-Parallelism,” New Generation Computing, vol. 9, no. 3,4, pp.
233–257, 1991.

[6] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia, “Integrated
Program Debugging, Verification, and Optimization Using Abstract Inter-
pretation (and The Ciao System Preprocessor),” Science of Computer Pro-
gramming, vol. 58, no. 1–2, pp. 115–140, October 2005.

[7] M. V. Hermenegildo, F. Bueno, G. Puebla, and P. Lopez-Garcia, “Program
Analysis, Debugging and Optimization Using the Ciao System Preproces-
sor,” in 1999 Int’l. Conference on Logic Programming. Cambridge, MA: MIT
Press, November 1999, pp. 52–66.

[8] M. V. Hermenegildo, “A Documentation Generator for (C)LP Systems,” in In-
ternational Conference on Computational Logic, CL2000, ser. LNAI, no. 1861.
Springer-Verlag, July 2000, pp. 1345–1361.

[9] M. Birkenkrahe, “Teaching data science with literate programming tools,”
Digital, vol. 3, no. 3, pp. 232–250, 2023.

[10] Microsoft, “Visual studio code,” 2015. [Online]. Available: https:
//code.visualstudio.com

47

http://arxiv.org/abs/1102.5497
https://code.visualstudio.com
https://code.visualstudio.com

BIBLIOGRAPHY

[11] S. Overflow, “Stack overflow developer survey 2023,”
2023. [Online]. Available: https://survey.stackoverflow.co/2023/
#section-most-popular-technologies-integrated-development-environment

[12] M. Umeda, “prolog.el,” Online, 1986. [Online]. Available: https://github.
com/emacs-mirror/emacs/blob/master/lisp/progmodes/prolog.el

[13] M. Sanchez-Ordaz, I. Garcia-Contreras, V. Perez-Carrasco, J. F. Morales,
P. Lopez-Garcia, and M. V. Hermenegildo, “VeriFly: On-the-fly Assertion
Checking via Incrementality,” Theory and Practice of Logic Programming,
vol. 21, no. 6, pp. 768–784, September 2021.

[14] G. Garcia-Pradales, J. Morales, and M. V. Hermenegildo, “The Ciao
Playground,” Technical University of Madrid (UPM) and IMDEA Software
Institute, Tech. Rep., 2021. [Online]. Available: http://ciao-lang.org/ciao/
build/doc/ciao_playground.html/ciao_playground_manual.html

[15] J. Morales, S. Abreu, D. Ferreiro, and M. Hermenegildo, “Teaching Prolog
with Active Logic Documents,” in Prolog - The Next 50 Years, ser. LNCS, D. S.
Warren, V. Dahl, T. Eiter, M. Hermenegildo, R. Kowalski, and F. Rossi, Eds.
Springer, July 2023, no. 13900, ch. 14, pp. 171–183. [Online]. Available:
http://cliplab.org/papers/ActiveLogicDocuments-PrologBook.pdf

[16] A. Wang, “Vsc-prolog,” 08 2017. [Online]. Available: https://marketplace.
visualstudio.com/items?itemName=arthurwang.vsc-prolog

[17] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “SWI-Prolog,” Theory
and Practice of Logic Programming, vol. 12, no. 1-2, pp. 67–96, 2012.

[18] Electron.js, “Electron.js,” 2013. [Online]. Available: https://www.
electronjs.org

[19] F. Bueno, M. Carro, M. V. Hermenegildo, P. Lopez-Garcia, and J. M. (Eds.),
“The Ciao System. Ref. Manual (v1.22),” Tech. Rep., April 2023, available
at http://ciao-lang.org. [Online]. Available: http://ciao-lang.org

[20] Microsoft, “Visual studio code api,” Online, 04 2015. [Online]. Available:
https://code.visualstudio.com/api/references/vscode-api

[21] ——, “Get output from integrated terminal "sendtext",” Online, 11 2018,
gitHub Issue #59384. [Online]. Available: https://github.com/microsoft/
vscode/issues/59384

[22] ——, “Obtain tokens of current file,” Online, 11 2015, gitHub Issue #580.
[Online]. Available: https://github.com/microsoft/vscode/issues/580

[23] E. International, “ECMAScript 2015 Language Specification,” 2015.
[Online]. Available: https://www.ecma-international.org/ecma-262/6.0/

[24] MacroMates, “Textmate language grammars,” 10 2004. [Online]. Available:
https://macromates.com/manual/en/language_grammars

[25] S. Wiesner, “Flycheck: Modern on-the-fly syntax checking for gnu emacs,”
2013. [Online]. Available: https://www.flycheck.org

48

https://survey.stackoverflow.co/2023/#section-most-popular-technologies-integrated-development-environment
https://survey.stackoverflow.co/2023/#section-most-popular-technologies-integrated-development-environment
https://github.com/emacs-mirror/emacs/blob/master/lisp/progmodes/prolog.el
https://github.com/emacs-mirror/emacs/blob/master/lisp/progmodes/prolog.el
http://ciao-lang.org/ciao/build/doc/ciao_playground.html/ciao_playground_manual.html
http://ciao-lang.org/ciao/build/doc/ciao_playground.html/ciao_playground_manual.html
http://cliplab.org/papers/ActiveLogicDocuments-PrologBook.pdf
https://marketplace.visualstudio.com/items?itemName=arthurwang.vsc-prolog
https://marketplace.visualstudio.com/items?itemName=arthurwang.vsc-prolog
https://www.electronjs.org
https://www.electronjs.org
http://ciao-lang.org
http://ciao-lang.org
https://code.visualstudio.com/api/references/vscode-api
https://github.com/microsoft/vscode/issues/59384
https://github.com/microsoft/vscode/issues/59384
https://github.com/microsoft/vscode/issues/580
https://www.ecma-international.org/ecma-262/6.0/
https://macromates.com/manual/en/language_grammars
https://www.flycheck.org

BIBLIOGRAPHY

[26] Microsoft, “Language server protocol,” 2016. [Online]. Available: https:
//microsoft.github.io/language-server-protocol/

[27] H. Bünder, “Decoupling language and editor-the impact of the language
server protocol on textual domain-specific languages.” in MODELSWARD,
2019, pp. 129–140.

[28] L. Salerno, C. Treude, and P. Thongtatunam, “Open source software devel-
opment tool installation: Challenges and strategies for novice developers,”
2024.

[29] Microsoft, “Windows subsystem for linux documentation,” 2016. [Online].
Available: https://learn.microsoft.com/en-us/windows/wsl/

[30] L. Perri, “What’s new in the 2023 gart-
ner hype cycle for emerging technologies,” August
2023. [Online]. Available: https://www.gartner.com/en/articles/
what-s-new-in-the-2023-gartner-hype-cycle-for-emerging-technologies

[31] Microsoft, “Debug adapter protocol,” 2017. [Online]. Available: https:
//microsoft.github.io/debug-adapter-protocol/

[32] E. Dillon, M. Anderson-Herzog, and M. Brown, “Teaching students to pro-
gram using visual environments: Impetus for a faulty mental model?” Jour-
nal of Computational Science Education, vol. 5, no. 1, pp. 1–2, 2014.

[33] P. Lopez-Garcia, L. Darmawan, M. Klemen, U. Liqat, F. Bueno, and M. V.
Hermenegildo, “Interval-based Resource Usage Verification by Translation
into Horn Clauses and an Application to Energy Consumption,” Theory
and Practice of Logic Programming, Special Issue on Computational Logic for
Verification, vol. 18, no. 2, pp. 167–223, March 2018, arXiv:1803.04451.
[Online]. Available: https://arxiv.org/abs/1803.04451

49

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://learn.microsoft.com/en-us/windows/wsl/
https://www.gartner.com/en/articles/what-s-new-in-the-2023-gartner-hype-cycle-for-emerging-technologies
https://www.gartner.com/en/articles/what-s-new-in-the-2023-gartner-hype-cycle-for-emerging-technologies
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://arxiv.org/abs/1803.04451

Appendices

51

Appendix A

Source Code for CProc

1 import { ChildProcessWithoutNullStreams, spawn } from 'node:child_process';
2 import { workspace } from 'vscode';
3 import { EXE, PROMPTS } from '../constants';
4 import { markErrorsOnCiaoSource } from './ciao-file';
5 import { isDebuggerLine } from './ciao-dbg';
6 import {
7 type Resolver,
8 type OutputCallback,
9 type CiaoEnvVars,

10 type CiaoUserConfiguration,
11 CiaoTopLevelKind,
12 } from '../types';
13 import { parseErrorMsg } from './ciao-parse';
14 import { getGlobalValue } from '../managers/context-manager';
15

16 const getCwd = (): string =>
17 workspace.workspaceFolders ? workspace.workspaceFolders[0].uri.fsPath : '/';
18

19 const getExecutableInfo = (
20 procKind: CiaoTopLevelKind
21): { exe: string; args: string[] } => EXE[procKind];
22

23 export class CProc {
24 private outputCallback: OutputCallback;
25 private resolveCommand: Resolver | undefined;
26 private cproc: ChildProcessWithoutNullStreams | undefined;
27 private procKind: CiaoTopLevelKind;
28 private commandOutputBuf: string;
29 private stdoutBuf: string;
30 private stderrBuf: string;
31 private errors: string;
32 private muted: boolean;
33 private flushTimeout: NodeJS.Timeout | undefined;
34

35 /**
36 * Create a new CProc instance.
37 * @param {CiaoTopLevelKind} kind - Ciao, CiaoPP or LPdoc top-level.
38 * @param {(output: string) => void} outputCallback - Callback to execute once output

data is available.↪→

53

Chapter A. Source Code for CProc

39 */
40 constructor(
41 procKind: CiaoTopLevelKind,
42 outputCallback: OutputCallback
43) {
44 this.outputCallback = outputCallback;
45 this.procKind = procKind;
46 this.commandOutputBuf = '';
47 this.stdoutBuf = '';
48 this.stderrBuf = '';
49 this.errors = '';
50 this.muted = false;
51 }
52

53 /**
54 * Start the Ciao top-level process.
55 * @returns {Promise<CProc>} - A promise that resolves to the CProc.
56 */
57 start(): Promise<CProc> {
58 const cwd: string = getCwd();
59

60 // Getting executable info
61 const { exe, args } = getExecutableInfo(this.procKind);
62

63 // Obtain ENV variables of the Ciao Version
64 const ciaoEnv: CiaoEnvVars = getGlobalValue('CIAO-ENV', {});
65

66 // Spawn the process
67 this.cproc = spawn(exe, args, {
68 cwd,
69 env: {
70 ...process.env,
71 ...ciaoEnv,
72 },
73 });
74

75 // Return a promise that sets all the listeners
76 return new Promise<CProc>((resolve) => {
77 this.cproc?.on('exit', this.handleExit);
78 this.cproc?.stderr.on('data', this.handleStderr);
79

80 // Setup a 'once' listener to treat differentely the initial
81 // prompt that is printed by 'ciaosh'
82 this.cproc?.stdout.once('data', (data: Buffer) => {
83 this.stdoutBuf += String(data);
84 // Printing the first prompt of the Ciao Top Level
85 this.outputCallback(this.stdoutBuf);
86 this.stdoutBuf = '';
87 // Setup the regular listener for subsequent data
88 this.cproc?.stdout.on('data', this.handleStdout);
89 resolve(this);
90 });
91 });
92 }
93

94 /** Flush the current output buffer. */
95 flush(): void {
96 if (!this.stdoutBuf) return;

54

97 this.outputCallback(this.stdoutBuf);
98 this.commandOutputBuf += this.stdoutBuf;
99 this.stdoutBuf = '';

100 }
101

102 /**
103 * Send an interrupt signal to the Ciao process.
104 * @returns {Promise<string>} - A promise that resolves to the top-level exit menu.
105 */
106 interrupt(): Promise<string> {
107 return new Promise<string>((resolve) => {
108 this.resolveCommand = resolve;
109 this.cproc?.kill('SIGINT');
110 });
111 }
112

113 /**
114 * Send a query to the Ciao process.
115 * @param {string} query - The query string.
116 * @param {boolean} muted - Whether to mute the output.
117 * @returns {Promise<string>} - A promise that resolves to the query output.
118 */
119 sendQuery(command: string, muted: boolean = false): Promise<string> {
120 this.muted = muted;
121 return new Promise<string>((resolve) => {
122 this.resolveCommand = resolve;
123 this.cproc?.stdin?.write(`${command}\n`);
124 });
125 }
126

127 /**
128 * Check if the top-level is still running.
129 * @returns {boolean}
130 */
131 isRunning(): boolean {
132 return (
133 !!this.cproc &&
134 this.cproc.exitCode === null &&
135 (this.cproc.signalCode === null || this.cproc.signalCode === 'SIGINT')
136);
137 }
138

139 /** Terminate the Ciao top-level process. */
140 exit(): void {
141 this.cproc?.kill('SIGQUIT');
142 }
143

144 private isWaitingForQuit = (): boolean =>
145 this.stdoutBuf.endsWith(PROMPTS.PROMPT_QUIT.text);
146

147 private isWaitingForResponse = (): boolean =>
148 this.stdoutBuf.endsWith(PROMPTS.PROMPTVAL.text);
149

150 private isWaitingForInput = (): boolean =>
151 this.stdoutBuf.endsWith(PROMPTS[this.procKind].text) ||
152 this.isWaitingForResponse() ||
153 this.isWaitingForQuit();
154

55

Chapter A. Source Code for CProc

155 private handleExit = (_code: number, _signal: string) => {
156 this.outputCallback('\r\nCiao Listener finished\r\n\n');
157 };
158

159 private handleStdout = (buffer: Buffer): void => {
160 // Buffering the data
161 this.stdoutBuf += String(buffer);
162

163 // Buffering all the output of the command
164 this.commandOutputBuf += String(buffer);
165

166 // Clear the previous flushTimeout
167 clearTimeout(this.flushTimeout);
168

169 // If there's data in STDERR, send it and reset buffer
170 if (this.stderrBuf.length > 0) {
171 this.errors = this.stderrBuf;
172 if (!this.muted) this.outputCallback(this.stderrBuf);
173 this.stderrBuf = '';
174 }
175

176 // Split the stdout in the last '\n'
177 const lines = this.stdoutBuf.split('\n');
178

179 // Do not add an additional new line character if the buffer only has one line,
180 // or if the previous line is a debugging information line.
181 const rest = `${
182 lines.length === 1 || isDebuggerLine(lines[lines.length - 2]) ? '' : '\n'
183 }${lines.pop()}`;
184 const data = lines.join('\n');
185

186 // Buffer the rest of data or restart buffer
187 this.stdoutBuf = rest ?? '';
188

189 // Send the data to the PTY
190 if (!this.muted) this.outputCallback(data);
191

192 // Set the flushTimeout in case there is data in stdout without newlines
193 this.flushTimeout = setTimeout(this.flush.bind(this), 300);
194

195 // When the command is finished, reset the buffer and resolve the promise
196 if (this.isWaitingForInput() && this.resolveCommand) {
197 // Print the promt
198 if (!this.muted) this.outputCallback(this.stdoutBuf);
199

200 // Check if the user wants to mark errors on save
201 const userConfiguration = workspace
202 .getConfiguration('ciao')
203 .get<CiaoUserConfiguration>('checker');
204

205 if (userConfiguration === 'off' && !this.muted) {
206 markErrorsOnCiaoSource(parseErrorMsg(this.errors));
207 }
208

209 // Resolve the promise
210 this.resolveCommand(this.commandOutputBuf);
211 // Resetting variables
212 this.resolveCommand = undefined;

56

213 this.commandOutputBuf = '';
214 this.stdoutBuf = '';
215 this.stderrBuf = '';
216 this.errors = '';
217 this.muted = false;
218 }
219 };
220

221 private handleStderr = (buffer: Buffer): void => {
222 // Buffering the data
223 this.stderrBuf += String(buffer);
224 // Buffering all the output of the command
225 this.commandOutputBuf += String(buffer);
226 };
227 }

57

Appendix B

Source Code for Parsing Ciao
Error Messages

1 import type { CiaoDiagnosticInfo, CiaoDiagnostics } from '../types';
2 /**
3 * Parses the compilation messages generated by the Ciao top-level.
4 * @param msgs
5 * @returns An object containing the parsed messages.
6 */
7 export function parseErrorMsg(msgs: string): CiaoDiagnostics {
8 const warnings: CiaoDiagnosticInfo[] = [];
9 const errors: CiaoDiagnosticInfo[] = [];

10 const regexp =
/{[^{}]*\b(WARNING|ERROR|Reading|In|Compiling|Checking|Loading)\b([^^]+)}/g;↪→

11 const w_regexp = /(Reading|In|Compiling|Checking|Loading)/g;
12 msgs.match(regexp)?.forEach((e) => {
13 let lines: string | undefined;
14 let msg: string | undefined;
15 if (/{SYNTAX (ERROR|WARNING)/.test(e)) return;
16 if (w_regexp.test(e)) {
17 e.split('\n')
18 .filter((line) => line.includes('WARNING') || line.includes('ERROR'))
19 .forEach((line) => {
20 const errmsg = line.slice(line.indexOf(':') + 2);
21 if (line.includes('lns')) {
22 lines = errmsg.slice(errmsg.indexOf('(') + 5, errmsg.indexOf(')'));
23 msg = errmsg.slice(errmsg.indexOf(')') + 2);
24 } else {
25 lines = undefined;
26 msg = errmsg;
27 }
28 if (line.includes('WARNING')) {
29 warnings.push({ lines, msg });
30 } else if (line.includes('ERROR')) {
31 errors.push({ lines, msg });
32 } else {
33 return;
34 }
35 });
36 } else {

59

Chapter B. Source Code for Parsing Ciao Error Messages

37 const errmsg = e.slice(e.indexOf(':') + 2);
38 if (e.includes('lns')) {
39 lines = errmsg.slice(errmsg.indexOf('(') + 5, errmsg.indexOf(')'));
40 msg = errmsg.slice(errmsg.indexOf(')') + 2, errmsg.indexOf('}') - 1);
41 } else {
42 lines = undefined;
43 msg = errmsg.slice(0, errmsg.indexOf('}') - 1);
44 }
45 if (e.includes('WARNING')) {
46 warnings.push({ lines, msg });
47 } else if (e.includes('ERROR')) {
48 errors.push({ lines, msg });
49 }
50 }
51 });
52 return { errors, warnings };
53 }

60

Appendix C

Source Code for Marking Ciao
Debugger Steps

1 import type { DebugMark } from '../types';
2 import { translatePath } from './ciao-file';
3

4 const dbgMarkRegex = / {0,9}In (.*) \(([0-9]+)-([0-9]+)\) (.*?)-([0-9]+)/;
5

6 /**
7 * Determines wether the line is a debugging line or not
8 * @param line Output line to check
9 * @returns `true` if it is, `false` otherwise

10 */
11 export function isDebuggerLine(line: string): boolean {
12 return dbgMarkRegex.test(line);
13 }
14

15 /*
16 * Useful regexes?
17 *
18 * [/^ [0-9]+ [0-9]+ Call: /m, 'comment'],
19 * [/^ [0-9]+ [0-9]+ Exit: /m, 'comment'],
20 * [/^ [0-9]+ [0-9]+ Redo: /m, 'comment'],
21 * [/^ [0-9]+ [0-9]+ Fail: /m, 'comment'],
22 *
23 */
24

25 /**
26 * Parses a debugger message and returns the information
27 * @param msg Debugger message to parse
28 * @returns Object containing all the extracted information
29 */
30 export function parseDbgMsg(msg: string): DebugMark | undefined {
31 const match = msg.match(dbgMarkRegex);
32 if (!match) return;
33 const [, srcFile, startLine, endLine, predName, nthPred] = match;
34 return {
35 predName,
36 srcFile: translatePath(srcFile),
37 nthPred: Number(nthPred),

61

Chapter C. Source Code for Marking Ciao Debugger Steps

38 startLine: Number(startLine) - 1,
39 endLine: Number(endLine) - 1,
40 };
41 }
42

43 /**
44 * Sets the current debugger mark in source.
45 * @param Object containing the parsed info of the debug mark.
46 */
47 export function markDbgMarksOnCiaoSource({
48 srcFile,
49 startLine,
50 endLine,
51 predName,
52 nthPred,
53 }: DebugMark): void {
54 const activeEditor = window.activeTextEditor;
55 // Check if the active editor is not the same as the file being debugged
56 if (activeEditor?.document.fileName !== srcFile) return;
57 // Creating Range
58 const range = new Range(
59 activeEditor.document.lineAt(startLine).range.start,
60 activeEditor.document.lineAt(endLine).range.end
61);
62 // Get the chunk of code from source to parse
63 const code = getActiveCiaoFileContent(range);
64 // Check if there's code
65 if (!code) return;
66 // Tokenize the chunk of code
67 const tokens = ciaoTokenize(code);
68

69 // Search the line of the nth predName
70 let count = 0;
71 let predLine = -1;
72 let row = -1;
73

74 for (const token of tokens) {
75 // Found an atom including the name
76 if (token.kind === 'atom' && token.text.includes(predName)) {
77 count += 1;
78 if (count === nthPred) {
79 // The count is finished
80 row = token.position.row;
81 predLine = startLine + token.position.line;
82 break;
83 }
84 }
85 }
86

87 // Check if the line was found
88 if (predLine === -1 || row === -1) return;
89

90 // Create one line range
91 const lineToMark = new Range(
92 activeEditor.document.lineAt(predLine).range.start,
93 activeEditor.document.lineAt(predLine).range.end
94);
95

62

96 const atomToMark = new Range(
97 new Position(predLine, row),
98 new Position(predLine, row + predName.length)
99);

100

101 // Mark the line on source
102 activeEditor.setDecorations(debuggerDecorationType, [lineToMark]);
103 // Mark the specific atom on source
104 activeEditor.setDecorations(debuggerDecorationAtom, [atomToMark]);
105 // Focus the line at the center of the source file
106 activeEditor.revealRange(lineToMark, TextEditorRevealType.InCenter);
107 }

63

Appendix D

Source Code for CiaoPP Menu
Webview Panel

1 import {
2 window,
3 Disposable,
4 ViewColumn,
5 WebviewPanel,
6 Webview,
7 Uri,
8 } from 'vscode';
9 import { getNonce, getUri } from '../utils';

10 import { CiaoTopLevel } from '../ciao-utils/ciao-top-level';
11 import { WebviewMessage } from '../types';
12

13 export class CiaoPPMenuPanel {
14 public static currentPanel: CiaoPPMenuPanel | undefined;
15 private readonly _panel: WebviewPanel;
16 private _disposables: Disposable[] = [];
17 private _topLevel: CiaoTopLevel;
18

19 private constructor(
20 panel: WebviewPanel,
21 extensionUri: Uri,
22 menudef: string,
23 topLevel: CiaoTopLevel
24) {
25 this._panel = panel;
26 this._panel.onDidDispose(() => this.dispose(), null, this._disposables);
27 this._panel.webview.html = this._getWebviewContent(
28 this._panel.webview,
29 extensionUri,
30 menudef
31);
32 this._topLevel = topLevel;
33 this._setWebviewMessageListener(this._panel.webview, this._topLevel);
34 }
35

36 public static render(
37 extensionUri: Uri,

65

Chapter D. Source Code for CiaoPP Menu Webview Panel

38 menudef: string,
39 topLevel: CiaoTopLevel
40): void {
41 if (CiaoPPMenuPanel.currentPanel) {
42 CiaoPPMenuPanel.currentPanel._panel.reveal(ViewColumn.Beside);
43 return;
44 }
45 const panel = window.createWebviewPanel(
46 'ciaopp-menu-panel',
47 'CiaoPP Menu',
48 ViewColumn.Beside,
49 {
50 // Enable JavaScript inside the Webview
51 enableScripts: true,
52 // Restrict the webview to only load resources from the

`out/client/src/webview`↪→

53 localResourceRoots: [
54 Uri.joinPath(
55 extensionUri,
56 'out',
57 'client',
58 'src',
59 'webview'
60),
61],
62 }
63);
64 CiaoPPMenuPanel.currentPanel = new CiaoPPMenuPanel(
65 panel,
66 extensionUri,
67 menudef,
68 topLevel
69);
70 }
71

72 public dispose(): void {
73 CiaoPPMenuPanel.currentPanel = undefined;
74 this._panel.dispose();
75 while (this._disposables.length > 0) {
76 const disposable = this._disposables.pop();
77 if (disposable) {
78 disposable.dispose();
79 }
80 }
81 }
82

83 private _getWebviewContent(
84 webview: Webview,
85 extensionUri: Uri,
86 menudef: string
87): string {
88 const nonce = getNonce();
89 const webviewUri = getUri(webview, extensionUri, [
90 'out',
91 'client',
92 'src',
93 'webview',
94 'webview.js',

66

95]);
96 const stylesUri = getUri(webview, extensionUri, [
97 'out',
98 'client',
99 'src',

100 'webview',
101 'styles.css',
102]);
103 return /*html*/ `<!DOCTYPE html>
104 <html lang="en">
105 <head>
106 <meta charset="UTF-8">
107 <meta name="viewport" content="width=device-width, initial-scale=1.0">
108 <meta http-equiv="Content-Security-Policy" content="default-src 'none'; style-src

${webview.cspSource}; script-src 'nonce-${nonce}';">↪→

109 <link rel="stylesheet" href="${stylesUri}">
110 <title>CiaoPP Menu</title>
111 </head>
112 <body>
113 <h1>CiaoPP Menu</h1>
114 ${menudef}
115 <script type="module" nonce="${nonce}" src="${webviewUri}"></script>
116 </body>
117 </html>`;
118 }
119

120 private _setWebviewMessageListener(
121 webview: Webview,
122 topLevel: CiaoTopLevel
123): void {
124 webview.onDidReceiveMessage(
125 (message: WebviewMessage) => {
126 const { command, text = '' } = message;
127 switch (command) {
128 case 'submit': {
129 if (text) {
130 topLevel.sendQuery(text);
131 }
132 return;
133 }
134 case 'error': {
135 window.showErrorMessage(
136 text || 'CiaoPP Menu could not be generated succesfully.'
137);
138 return;
139 }
140 default:
141 }
142 },
143 undefined,
144 this._disposables
145);
146 }
147 }

67

Appendix E

Source Code for Ciao Language
Server

1 'use strict';
2

3 import * as path from 'node:path';
4 import { fileURLToPath } from 'node:url';
5 import { writeFileSync } from 'node:fs';
6 import { spawnSync } from 'node:child_process';
7 import {
8 createConnection,
9 _Connection,

10 TextDocuments,
11 Diagnostic,
12 DiagnosticSeverity,
13 ProposedFeatures,
14 TextDocumentSyncKind,
15 InitializeResult,
16 } from 'vscode-languageserver/node';
17 import { TextDocument } from 'vscode-languageserver-textdocument';
18 import type {
19 CiaoDiagnosticInfo,
20 CiaoDiagnostics,
21 CiaoChecker,
22 CiaoUserConfiguration,
23 } from './types';
24 import { parseErrorMsg } from './ciao-utils/ciao-parse';
25

26 const flycheckSuffix = '_flycheck_tmp_co';
27 const connection = createConnection(ProposedFeatures.all);
28 const documents: TextDocuments<TextDocument> = new TextDocuments(TextDocument);
29

30 // Timer to wait for the user to stop typing
31 let compileTimer: NodeJS.Timeout | undefined;
32

33 connection.onInitialize(() => {
34 const result: InitializeResult = {
35 capabilities: {
36 textDocumentSync: TextDocumentSyncKind.Incremental,
37 },

69

Chapter E. Source Code for Ciao Language Server

38 };
39 return result;
40 });
41

42 documents.onDidChangeContent((change) => {
43 // If the user opens a tmp file, do not check it
44 if (
45 path
46 .basename(fileURLToPath(change.document.uri))
47 .includes(flycheckSuffix)
48) {
49 return;
50 }
51 // Minidelay so it starts when the user stops typing
52 clearTimeout(compileTimer);
53 compileTimer = setTimeout(() => {
54 validateTextDocument(change.document);
55 }, 200);
56 });
57

58 function createDiagnostics(
59 msgs: CiaoDiagnosticInfo[],
60 severity: DiagnosticSeverity
61): Diagnostic[] {
62 return msgs.map(({ lines, msg }) => {
63 // If the lines are not specified, hardcode it to the top of the file
64 const [startLine, endLine] = lines ? lines.split('-') : ['1', '1'];
65 const diagnostic: Diagnostic = {
66 severity,
67 message: msg ?? '',
68 range: {
69 start: {
70 line: Number(startLine) - 1,
71 character: 0,
72 },
73 end: {
74 line: Number(endLine) - 1,
75 character: 20_000,
76 },
77 },
78 };
79 return diagnostic;
80 });
81 }
82

83 async function validateTextDocument(textDocument: TextDocument): Promise<void> {
84 const { dir, ext, name } = path.parse(fileURLToPath(textDocument.uri));
85

86 const tmpFilePath = path.join(dir, `${name}${flycheckSuffix}${ext}`);
87

88 const checker: CiaoChecker | undefined = await getCiaoChecker(tmpFilePath);
89 if (!checker) {
90 return;
91 }
92

93 writeFileSync(tmpFilePath, textDocument.getText());
94 const { stderr } = spawnSync(checker.executable, checker.args);
95

70

96 // Parse messages
97 const { errors, warnings }: CiaoDiagnostics = parseErrorMsg(String(stderr));
98 // Send the computed diagnostics to VSCode.
99 connection.sendDiagnostics({

100 uri: textDocument.uri,
101 diagnostics: [
102 ...createDiagnostics(errors, DiagnosticSeverity.Error),
103 ...createDiagnostics(warnings, DiagnosticSeverity.Warning),
104],
105 });
106 }
107

108 const ciaoCheckerTable: { [k in CiaoUserConfiguration]: CiaoChecker } = {
109 off: {
110 executable: 'false',
111 args: [],
112 },
113 ciaopp: {
114 executable: 'ciaopp',
115 args: ['-op', flycheckSuffix, '-V'],
116 },
117 lpdoc: {
118 executable: 'lpdoc',
119 args: ['-t', 'nil', '-op', flycheckSuffix],
120 },
121 ciaoc: {
122 executable: 'ciaoc',
123 args: ['-c', '-op', flycheckSuffix],
124 },
125 };
126

127 async function getCiaoChecker(
128 filePath: string
129): Promise<CiaoChecker | undefined> {
130 const userConfiguration = <CiaoUserConfiguration>(
131 await connection.workspace.getConfiguration('ciao.checker')
132);
133 const checker = ciaoCheckerTable[userConfiguration];
134 if (checker.executable === 'false') {
135 return;
136 } else {
137 // Append the filePath to the arg list
138 checker.args.push(filePath);
139 return checker;
140 }
141 }
142

143 connection.onDidChangeWatchedFiles(() => {});
144

145 documents.listen(connection);
146

147 connection.listen();

71

Appendix F

Script for Bundling the
Extension

1 const path = require('node:path');
2 const { build } = require('esbuild');
3 const { copy } = require('esbuild-plugin-copy');
4

5 ///@ts-check
6 /**@typedef {import('esbuild').BuildOptions} BuildOptions **/
7

8 /**@type BuildOptions */
9 const baseConfig = {

10 bundle: true,
11 minify: process.env.NODE_ENV === 'production',
12 sourcemap: process.env.NODE_ENV !== 'production',
13 };
14

15 /**@type BuildOptions */
16 const extensionConfig = {
17 ...baseConfig,
18 platform: 'node',
19 mainFields: ['module', 'main'],
20 format: 'cjs',
21 external: ['vscode'],
22 };
23

24 /**@type BuildOptions */
25 const clientConfig = {
26 ...extensionConfig,
27 entryPoints: [path.resolve(__dirname, 'src', 'extension.ts')],
28 outfile: path.resolve(__dirname, 'out', 'client', 'src', 'extension.js'),
29 };
30

31 /**@type BuildOptions */
32 const serverConfig = {
33 ...extensionConfig,
34 entryPoints: [path.resolve(__dirname, 'src', 'server.ts')],
35 outfile: path.resolve(__dirname, 'out', 'server', 'src', 'server.js'),
36 };
37

73

Chapter F. Script for Bundling the Extension

38 /**@type BuildOptions */
39 const webviewConfig = {
40 ...baseConfig,
41 target: 'es2020',
42 format: 'esm',
43 entryPoints: [path.resolve(__dirname, 'src', 'webviews', 'main.ts')],
44 outfile: path.resolve(
45 __dirname,
46 'out',
47 'client',
48 'src',
49 'webview',
50 'webview.js'
51),
52 plugins: [
53 copy({
54 resolveFrom: 'cwd',
55 assets: {
56 from: [
57 path.resolve(__dirname, 'src', 'webviews', 'styles.css'),
58],
59 to: [
60 path.resolve(__dirname, 'out', 'client', 'src', 'webview'),
61],
62 },
63 }),
64],
65 };
66

67 (async () => {
68 try {
69 await Promise.all(
70 [clientConfig, serverConfig, webviewConfig].map(build)
71);
72 console.log('Build complete!\n');
73 } catch (err) {
74 console.error(err);
75 process.exit(1);
76 }
77 })();

74

	Introduction
	Background
	Motivation
	Objectives

	State of the Art
	The Importance of Software Analysis and Verification
	Ciao Development Environments
	Prolog Visual Studio Code Extensions

	Technology Stack
	Visual Studio Code
	TypeScript

	Implementation
	Visual Studio Code
	User Interface
	Extensions

	Ciao Top Level
	Integrating the Ciao Top Level Inside Visual Studio Code
	Initial Approach
	Final Approach
	Architecture
	CiaoTopLevel
	CiaoPTY
	CProc

	Ciao Top Level Usage Inside Visual Studio Code
	Highlighting Errors and Warnings in Ciao Source Code
	Ciao Testing Integration
	Ciao Debugger Integration
	Ciao Generic Menus Inside Visual Studio Code

	Ciao Language Integration
	Language Configuration
	Syntax Highlighting
	Snippet Completion

	LPdoc Integration
	Preview Documentation
	Generate and Save Documentation

	CiaoPP Integration
	Statically Analyze
	Check Assertions
	CiaoPP Menu

	On-the-fly Analysis
	Ciao Flycheck Integration
	Language Server Protocol
	Ciao Language Server

	Ciao Playground Integration
	Ciao Installation and Version Management
	Multiplatform Support
	Operating Systems
	Cloud Development Environments

	Bundling and Publishing the Extension

	Conclusions and Future Work
	Impact Analysis
	Bibliography
	Appendices
	Source Code for CProc
	Source Code for Parsing Ciao Error Messages
	Source Code for Marking Ciao Debugger Steps
	Source Code for CiaoPP Menu Webview Panel
	Source Code for Ciao Language Server
	Script for Bundling the Extension

