Last Parallel Call Optimization and Fast Backtracking
in And-parallel Logic Programming Systems

Tang DongXing, Enrico Pontelli
Gopal Gupta

Laboratory for Logic and Databases
Dept of Computer Science
New Mexico State University

Las Cruces NM USA
{dtang,epontell,gupta}@cs.nmsu.edu

Abstract

In this paper we present a novel optimization
called Last Parallel Call Optimization. The last
parallel call optimization can be regarded as an
extension of last call optimization, found in se-
quential systems, to and-parallel systems. The
last parallel call optimization leads to improved
time and space performance for a majority of and-
parallel programs. The last parallel call optimiza-
tion is presented in detail in this paper and its
advantages discussed at length. The last par-
allel call optimization can be incorporated in a
parallel system (such as RAPWAM) through rel-
atively minor modifications to the runtime ma-
chinery. We also present some experimental re-
sults from a limited implementation of last par-
allel call operation done on the DDAS System.
These experimental results prove that last paral-
lel call optimization is indeed effective and pro-
duces better speed-ups with respect to an un-
optimized implementation. We also discuss the
problem of efficiently performing the kill opera-
tion in and-parallel systems. We present two ap-
proaches for efficiently propagating the kill signal
to other parallel calls subsumed by the subgoal
that received the kill signal. The first approach,
implemented in the and-parallel component of the
ACE system, propagates the kill lazily while the
second one propagates the kill signal eagerly. The

Manuel Carro

Facultad de Informatica
Universidad Politecnica de Madrid
28660-Boadilla del Monte
Madrid, Spain

mcarro@fi.upm.es

advantages and disadvantages of both these ap-
proaches are presented. The implementation and
optimization techniques presented in this paper
are very pragmatic and we believe that they will
be of considerable utility to implementors of and-
parallel systems.

1 Introduction

A distinguishing feature of logic programming
languages is that they allow considerable free-
dom in the way programs are executed. This
latitude permits one to exploit parallelism im-
plicitly (without the need for programmer inter-
vention) during program execution. Indeed, two
main types of control parallelism have been iden-
tified and successfully exploited in logic programs:

(i). Or-parallelism: arises when more than a sin-
gle rule define some relation and a procedure
call unifies with more than one rule head—
the corresponding bodies can then be exe-
cuted in or-parallel fashion. Or-parallelism
is thus a way of efficiently searching for solu-
tion(s) to the top-level query.

(ii). And-parallelism: arises when a set of con-
junctive goals in the current resolvent are
executed in parallel. The conjunctive goals

could either be independent, i.e., the argu-
ments of the conjunctive goals are bound
to ground terms or have non-intersecting
set of unbound variables (independent and-
parallelism), or they could be dependent in
which case they will be executed in parallel
until they access the common variable (de-
pendent and-parallelism).

In this paper we will focus on independent and-
parallelism although our results are also applica-
ble to dependent and-parallel systems and and-or
parallel systems. A major problem in implemen-
tation of and-parallel systems is that of efficient
implementation of backtracking. Because of and-
parallelism not only a new backtracking seman-
tics is needed for such systems, but also its imple-
mentation becomes very tricky. We consider the
backtracking semantics given by Hermenegildo
and Nasr for and-parallel systems [5] and its ef-
ficient implementation in RAPWAM [4]. The
backtracking semantics as given by Hermenegildo
and Nasr attempts to emulate the backward exe-
cution control of Prolog as much as possible. In
this paper, we present some optimizations over
this backtracking scheme that permit faster back-
ward execution. In particular, we propose the
Last Parallel Call Optimization that saves both
time and space when the last call in a clause is
itself a parallel conjunction (from now on a par-
allel conjunction will also be referred to as a par-
call for brevity). Last Parallel Call Optimization
(LPCO), when applicable, simplifies backtrack-
ing and allows failures and kills to be propagated
faster. We present some experimental results to
demonstrate the advantages of Parallel Last Call
Optimization. We also discuss how the kill oper-
ation can be efficiently implemented in an and-
parallel system. The kill operation needs to be
performed to terminate computation in subgoals
that constitute a parallel conjunction when one
of the subgoals fails to produce a solution. Its
implementation is complicated by the fact that a
parallel conjunction may have other nested con-
junctions inside that need to be recursively tra-
versed and the computation in their and-parallel
subgoals terminated. Because the kill operation

involves a number of processors that simultane-
ously prune and modify a shared tree, a naive
implementation may result in race conditions and
non-terminating situations, as well as in ineffi-
ciency. In this paper we present two approaches
for implementing a kill in an and-parallel system.
One of the approach is lazy while the other is
eager depending on the way in which killing in-
formation is propagated along the branches of the
computation tree.

The rest of the paper is organized as fol-
lows: Section 2 describes the backtracking
scheme of Hermenegildo and Nasr for indepen-
dent and-parallel system and its realization in
Hermenegildo’s RAPWAM [4]. Section 3 intro-
duces Last Parallel Call Optimization. Section
4 briefly describes an implementation scheme for
the LPCO, while Section 5 describes our experi-
ments to test the applicability of LPCO to exist-
ing systems. Section 6 describes in detail the kill
operation, the problems in implementing it, and
the various solutions that we have proposed. The
implementation of kill as reported in this paper
has been incorporated in the and-parallel compo-
nent of ACE [8], an and-or parallel system. Sec-
tion 7 presents our conclusions. We assume that
the user has some familiarity with and-parallelism
and and-parallel systems such as &-Prolog. We
will illustrate our ideas and concepts in the con-
text of independent and-parallelism with goal
recomputation (goal recomputation means that
subgoals to the right of another subgoal g in a par-
allel conjunction are computed in their entirety
for every solution found for subgoal ¢), although
our results are also applicable to dependent and-
parallel systems such as DDAS [10] and to and-or
parallel systems such as ACE [3].

2 Backtracking in And-parallel
Systems

An and-parallel system works by executing a pro-
gram that has been annotated with parallel con-
junctions.
tions are either inserted by a parallelizing com-
piler [6, 7] or by the programmer. Execution of

These parallel conjunction annota-

all goals in a parallel conjunction is started in par-
allel when control reaches that parallel conjunc-
tion. Parallel conjunctions may also be condi-
tional, which means that the goals in the conjunc-
tion are executed in parallel only if the condition,
i.e., the expression upon which the conjuction is
conditioned, evaluates to true (e.g., Conditional
Graph Expressions [2, 5]).

Backtracking becomes complicated in and-
parallel system because more than one goal may
be executing in parallel, one or more of which
may encounter failure and backtrack at the same
time. Unlike a sequential system, there is no
unique backtracking point. In an and-parallel sys-
tem we must ensure that the backtracking seman-
tics is such that all solutions are reported. One
such backtracking semantics has been proposed
by Hermenegildo and Nasr: consider the subgoals
shown below, where *.” is used between sequential
subgoals (because of data-dependencies) and ‘&’
for parallel subgoals (no data-dependencies):

a, b, (c&d&e), g, h

Assuming that all subgoals can unify with more
than one rule, there are several possible cases de-
pending upon which subgoal fails: If subgoal a or
b fails, sequential backtracking occurs, as usual.
Since ¢, d, and e are mutually independent, if ei-
ther one of them fails, backtracking must proceed
to b—but see further below. If g fails, backtrack-
ing must proceed to the right-most choice point
within the parallel subgoals ¢ & 4 & e, and re-
compute all goals to the right of this choice point.
If e were the rightmost choice point and e should
subsequently fail, backtracking would proceed to
d, and, if necessary, to c. Thus, backtracking
within a set of and-parallel subgoals occurs only
if initiated by a failure from outside these goals,
i.e., “from the right” (also known as outside back-
tracking). If initiated from within, backtracking
proceeds outside all these goals, i.e., “to the left”
(also known as inside backtracking). This latter
behavior is a form of “intelligent” backtracking.
When backtracking is initiated from outside, once
a choicepoint is found in a subgoal g, an untried
alternative is picked from it and then all the sub-
goals to the right of ¢ in the parallel conjunction

are restarted.

Independent and-parallelism with the back-
tracking semantics described above has been
implemented quite efficiently in RAPWAM [4].
RAPWAM is an extension to the sequential WAM
for and-parallel execution of Prolog programs
with and-parallel annotation (such as CGEs [5]).
In order to execute all goals in a parallel con-
junction in parallel, RAPWAM has a scheduling
mechanism to assign parallel goals to available
processors and some extra data structures to keep
track of the current state of execution. The two
main additional data structures are the goal stack
and the parcall frame. Details of the structure of
a Parcall frame are shown in Figure 1 (more de-
tails can be found in [4, 5]). In addition to parcall
frames and goal stacks, an input marker node and
an end marker node is used to mark the begin-
ning and the end respectively of the segment in
the stack corresponding to an and-parallel goal.
During execution of and-parallel Prolog pro-
grams, when a parallel conjunction is reached
that is to be executed in parallel (recall that a
conditional parallel conjunction may be executed
sequentially if the conditional test fails), a parcall
frame is created in the local stack!. The parcall
frame contains: (i) a slot for each goal in the par-
allel conjunction where information regarding the
state of execution of that goal will be recorded,
(ii) necessary information about the state of the
execution of the parallel conjunction. After the
parcall frame is created for a parallel conjunction,
all the goals in the parallel conjunction are pushed
into the goal stack. Each entry in the goal stack
contains all the information required to allow a
remote execution of the corresponding subgoal.
Each processors can pick up a goal for execution
from the goal stacks of other processors as well as
their own goal stack, once they become idle.

The execution of a parallel conjunction can be di-
vided into two phases. The first phase, called in-
stde phase, starts with the creation of the parcall
frame and ends when the execution of the contin-
uation of the parallel conjunction is first begun
(i.e. each goal in the conjunction has found its

Yor in the choice point stack, as in ACE and DDAS.

PF

| CEPF (continuation frame)

GS —»

BPF

PF

GS

SLOT #

Status

OF PARAMETERS

PIP

P(1) reg

of dlots

P(2) reg

of goalsto wait on

of goals till to schedule

entries for other goals

P(arity) reg

.| Procedure name

“.| "processid. " comp. status _ ready

Goal Frame

STACK

Parcall Frame

TR’ Choice Point

AT

Figure 1: Additional data structures and related registers in RAPWAM

first solution; we will say that the parallel con-
junction has been completed). Once the execu-
tion of continuation is begun for the first time,
outside phase is entered. If failure occurs in the
inside phase, inside backtracking is used, while if
failure occurs in the outside phase outside back-
tracking will be used for backtracking on the par-
allel conjunction. In the inside phase, if a goal
fails, the whole parcall should fail since all goals in
the parcall are assumed independent. Therefore,
when a goal fails in a parcall during the inside
phase, the failing processor should send a kill sig-
nal to all processors that have stolen a goal from
that parcall to undo any execution for the stolen
goal. After all processors finish undoing the work,
the goal before the CGE will be backtracked over
as in standard WAM.

On the other hand, after a parallel conjunction
completes, if a goal in the continuation of the
CGE fails, then backtracking proceeds into the
conjunction in outside mode. Outside backtrack-
ing is from right to left in the CGE similar to
the backtracking in sequential WAM. The only
difference is that a goal to be backtracked over
may have been executed by a remote processor if
another processor stole the goal. Thus the redo
signal has to be sent to the remote processor. If
a new solution is found during backtracking, the
goals to the right of this goal in the parallel con-
junction have to be reexecuted. If outside back-
tracking fails to produce any more answers, the
goal before the CGE will be backtracked over as

in normal sequential execution.

3 Last Parallel Call Optimiza-
tion

Last Parallel Call Optimization produces the fol-
lowing advantages in an and-parallel system:

(i). It speeds up forward execution by avoiding
allocation of certain parcall frames;

(ii). It speeds up the process of killing computa-
tions during an inside backtracking;

(iii). It speeds up the process of backtracking, in
general;

(iv). It saves space on the stacks and allows earlier
recovering of space on backtracking.

The advantages of LPCO are very similar to
those for last call optimization [11] in the WAM.
The conditions under which the LPCO applies are
also very similar to those under which last call
optimization is applicable in sequential systems.

Consider first an example that covers a special
case of LPCO: 7- (p & q). where

p - (r & s).

q:- (t & w.

The and-tree constructed is shown in Figure
2(i). One can reduce the number of parcall nodes,
at least for this example, by rewriting this exam-
pleas 7- (r & s & t & u). Figure 2(ii) shows

the and-tree that will be created if we apply this
optimization. Note that executing the and-tree
shown in Figure 2.(ii) on RAPWAM will require
less space because the parcall frames for (r & s)
and (t & u) will not be allocated. The single
parcall frame allocated will have two extra goal
slots compared to the parcall frame allocated for
(p & q) in Figure 2(i). It is possible to detect
cases such as above at compile time. However,
our aim is to accomplish this saving in time and
space at runtime. Thus, for the example above,
our scheme will work as follows. When the par-
allel calls (r & s) and (t & u) are made, the
runtime system will recognize that the parallel
call (p & q) is immediately above and instead
of allocating a new parcall frame some extra in-
formation will be added to the parcall frame of
(p & q9) and allocation of a new parcall frame
avoided. The extra information added will con-
sist of adding slots for the goals r, s, etc. Note
that no new control information need be recorded
in the parcall frame of (p & q) (however, some
control information, such as the number of slots,
etc., need to be modified in the parcall frame of

(p & q)).

r|s \t \u

fig (i) fig (i)

the number of parallel conjunctions that can be
combined into one will only be determined at run-
time. For example, consider the following pro-
gram:

process_list([HI|T], [Hout | Toutl])
process_list(T, Tout)). process_list([], [1).

?-process_list([1,2,3,4], Out).

In such a case, compile time transformations
cannot unfold the program to eliminate nesting
of parcall frames because it will depend on the
length of the input list. However, using our
runtime technique, given that the goal process
is determinate, nesting of parcall frames can be
completely eliminated (Figure 3). As a result of
the absence of nesting of parcall frames, if the
process goal fails for some element of the list,
then the whole conjunction will fail in one single
step.

Efforts have been made by other researchers
to make execution of recursive program such as
above more efficient. Heremenegildo and others
have suggested partially unfolding the program so
that instead of allocating one parcall frame per
recursive call, one is allocated per n calls, where
n is the degree of unfolding as illustrated in the
code below (n = 3).

:— (process(H, Hout

process_list([X,Y,Z|T], [Xo,Y0,Zo|Tout]):- (process(X,!
Figure 2: Reusing Parcall Frames process(Y,Yo) & process(Z,Zo) & process_list(T,Tout))

Note also that if the goal r was to fail in inside process_list([X,¥], [Xo,Yol):~ (process(X, Xo) & proc

mode, then in case (ii) (Figure 2(ii)) killing of
computation in sibling and-branches will be con-
siderably simplified. In case (i) the failure will
have to be propagated from parcall frame {2 to
parcall frame f1. From f1 a kill message will have
to be sent out to parcall frame f3.

One could argue that the improved scheme
described above can be accomplished simply
through compile time transformations. However,
in case p and q were dynamic predicates this
would not be possible. Also, for many programs

process_list([X], [Xo]):- process(X, Xo).
process_list([1, [1).

Barklund et al have suggested new language
constructs (the language augmented with these
constructs is termed Reform Prolog [1]) based on
Bounded Quantification that encapsulate a call
such as process 1ist(Lin, Lout) in such a way
that it is executed in parallel in one (parallel)
step.

?-process_list([1,2,3,4], Qut).

?-process_list([1,2,3,4], CQut).

process(1l) & process_list([2,3,4]) |

|process(1) & process(2) & process(3) & process(4) & process_list([]) |

proces/ Yocessl ist

| process(2) & process_list([3,4]) |

proces/

process_|ist

| process(3) & process_list([4]) |

process_|ist

/

proces/

| process(4) & process_list([]) |

pr oces/

Yocess_l i st

B

Wthout the last parallel call optimzation
the execution tree will appear as in the left.
Wth LPCO it will appear as above. Note that
the second (output) argument is not shown.

Figure 3: Reuse of Parcall Frames for Recursive Programs

Compared to Bounded Quantification and pro-
gram unfolding, our technique based on last par-
allel call optimization does not require any pro-
grammer intervention or pre-processing by a com-
piler and achieves optimal saving in space and
time.

Next we present the most general case of
LPCO. The most general case of LPCO arises
when there are goals preceding the parallel con-
junction in a clause that matches a subgoal that
is itself in a parallel conjunction. Thus, given a
CGE of the form: (p & q) where

p:i-e, f,g, (r&s). g
LPCO will apply to p (resp. q) if

¢ There is only one matching clause for p (resp.
q), i.e., p (resp. q) is determinate.

o All goals preceding the parallel conjunction
in the clause for p (resp. q) are determinate.

If these conditions are satisfied then a new par-
call frame is not needed for the parallel conjunc-
tion in the clause. Rather the parcall frame for (p
& q) can be extended with an appropriate num-
ber of slots and execution continues as if clause for
p was defined asp :- ((e,f,g,r) & s). Thus,
if we determine at the time of the parallel call (r
& s) that e, £, and g are determinate then we
pretend as if the clause for p is defined as p :-

(Ce,f,g,r) & s). This is illustrated in Figure
4,

P q\i |(e,f,g,r)&s&(i,j,k,t)&u|

f .-": ""-__J

| r&s t&u /:g k\

; X| . kt &|

Figure 4: Last Parallel Call Optimization

=i, j, k, (¢t & w.

Note that the two determinacy conditions
above require that when the parallel conjunction
is encountered at the end of clause for p then there
are no intervening choicepoints between the par-
call frame for (p & q) and the current point on
the stack. Thus even though goal p is not de-
terminate in the beginning, the determinacy con-
ditions will be satisfied when the last clause for
p (resp. q) is tried. LPCO can be applied at
that point. This is akin to last call optimization
in sequential systems when even though a goal
is not determinate, last call optimization is trig-
gered when the last clause for that goal is tried.
Note also that the conditions for LPCO do not
place any restrictions on the nature of goals in
the clause for p (resp. q). The goals r, s, etc.
can be non-deterministic. Note that when out-

side backtracking takes place in the tree in Fig-
ure 4(ii), then because of the organization of the
parcall frame, backtracking will directly proceed
into goal s from goals t and u. Backtracking over
goals i, j, k will be missed. Suppose now an
untried alternative is found within s, then the
execution of goals t and u has to be restarted.
At this point because goals i, j, k were never
backtracked over, their existing computation can
be reused, thanks to their determinacy. However,
when we completely backtrack out of the parcall
frame, then care has to be taken that trail sec-
tions corresponding to to i, j and k (as well as
e, T, and g) are unwound.

Finally, note that LPCO can be generalized
further. Given a parallel conjunct (p & q) and
the clause p :- e, £, g, (r & s), h, then it
is still possible to avoid allocation of the parcall
frame for (r & s), augmenting the parcall frame
of (p & q) instead, if goals in the continuation
of (r & s), i.e., hin this example, are determi-
nate. However, determinacy of the continuation
of the parallel conjunct will have to be known in
advance, hence some kind of static analysis will
have to be used to collect this information. In
this paper we do not consider this optimization
any further.

4 Implementation of LPCO

To implement LPCO, the compiler will generate
a different instruction when it sees a parallel con-
junct at the end of a clause. This instruction be-
haves the same as alloc_parcall instruction of
the RAPWAM, except that if the conditions for
LPCO are fulfilled last parallel call optimization
will be applied.

Thus, first the code for this instruction will
check if there are any choicepoints below the im-
mediate ancestor parcall frame (pointed to by PF
register of RAPWAM). If there are no choice-
points, then the determinacy condition is satisfied
and LPCO can be applied.

To apply LPCO, the immediate ancestor par-
call frame (or immediately enclosing parcall
frame) will be accessed and if the current par-

allel conjunction has n and-parallel goals, then n
new slots corresponding to these n goals will be
added to it. The number of slots should be incre-
mented by n in the enclosing parcall frame (this
operation should be done atomically).

Recall that in traditional RAPWAM the slots
for goals are part of the parcall frame that resides
on the stack. Given that the enclosing parcall
may be allocated somewhere below in the stack,
adding more slots to it may not be feasible. To
enable more slots to be added later, the slots will
have to be allocated on the heap and pointer to
the beginning of the slot list stored in the parcall
frame (Figure 5). The slot list can be maintained
as a double linked list. Also, each input marker
of an and-parallel goal has a pointer to its slot
in the slot list for quick access. With the linked
list organization, adding new slots becomes quite
simple as shown in Figure 5. Note that modifi-
cation of the slot list will have to be an atomic
operation. The enclosing parcall frame becomes
the parcall frame for the last parallel call, and
rest of the execution will be similar to that in
standard RAPWAM.

Note that changing the representation of slots
from an array recorded on the stack (inside a par-
call frame) to a linked list on the heap will not
add any inefficiency because an and-parallel goal
can access its corresponding slot in constant time
via its input marker.

It is obvious that LPCO indeed leads to saving
in space as well as time during parallel execution.
Space (as well as time) is saved because alloca-
tion of parcall frames can be avoided. Time is
also saved because backtracking and kill become
faster: there are fewer parallel control structures
(parcall frames) on the stack simplifying back-
ward and forward control.

5 Experimental Results

We implemented our ideas described above on the
emulator of the DDAS [10] system. In fact be-
cause the implementation was unfamiliar to us,
we implemented a diluted form of LPCO (de-
scribed below). Even with this restricted imple-

| (efgr) &s & (ijkt)&u |

FRTITY

if

/Ig k\ fig(ii)

Note that the goal q is being executed

on control stack of sone other processor.
Al'so note that input markers have a direct
pointer to their corresponding goal slot in
the heap.

g

ST . H

= g | Other control info.

= Z[Fdfdas=2 :

; 5 | # of goalsto wait on god = p | 3
S

p’s input marker A

ptr to beginning of slots list 77 god =q <

CONTROL STACK HEAP
- i
pa ’
> f = P!
© 2 | Other control info. ! gz: _rs || | <
—T[#ofdots=4 :
T3 | #of goalsto wait on '
= T T =
& = | ptr to beginning of slotslist: goal =t |
QE e goal =u :>
f
g HEAP

CONTROL STACK

Figure 5: Allocating Goal Slots on the Heap

mentation of LPCO we obtained improved speed-
ups for all examples that we tried. Essentially, the
deeper the nesting of a CGE in the benchmark
the more improvement we obtained. Deep lev-
els of nesting are not uncommon in and-parallel
programs (e.g., in matrix multiplication, levels of
nesting of the order of thousand parcalls can be
created).

Our diluted implementation of LPCO was as
follows: When a goal in a CGE (' is stolen from
the goal stack of another processor, and the exe-
cution of this stolen goal deterministically reaches
another CGE (', then we chain the parcall frame
for the current CGE C’ to the parcall frame cor-
responding to the CGE €' (In a more faithful im-
plementation of LPCO the parcall frame for ¢’
would not have been allocated; the parcall frame
for C' would have been partially expanded). Hav-
ing maintained such parcall frame chain(s), when
the execution of a CGE corresponding to some
parcall frame in the chain fails, we send a kill sig-
nal to all the processors which are executing or
have executed a goal taken from a parcall frame
that is in this chain. In this way the kill signals
reach the processor in the minimum amount of

time possible. In the standard RAPWAM, the

kill signals will be sent gradually as the failing
processor backtracks over the search tree. As a
result, not only processors do less useless work
that will be eventually killed, they undo the work
that needs to be undone and execute other goals
that may lead to useful solutions sooner. This
results in execution speed-ups.
Consider the following program.

- g. a.
g:-(a&b&ct&d. d.
b :- (x &y). X.
c - (u&wv). u.
y = (e &). V.

Assume there are four processors (say P1, P2, P3,
and P4), all parallel conjunctions can be executed
in parallel, and the top-level query 7- g is exe-
cuted by P1. When P1 reaches the parallel con-
junction (a & b & ¢ & d), a parcall frame will
be created in its local stack S1 and then all goals
in the CGE will be pushed into its goal stack G1.
Assume that P1 executes the first goal a locally
(indicated by * in Figure 6), P2 steals the goal b
from G1 for (remote) execution, and P3 steals the
goal ¢ for (remote) execution. During the execu-

tion of P2, a parcall frame will be created in the
local stack S2 when it reaches the CGE (x & y).
Since the execution leading to this parcall frame
is deterministic, pointers are created linking the
parcall frame for (a & b & ¢ & d) and the par-
call frame currently created for (x & y). Similar
situation occurs with respect to execution of goal
¢ by processor P3 (Figure 6).

During the execution of (x & y), assume that P2
continues to execute the first goal x and P4 steals
goal y for remote execution. Execution of goal y
will determinately lead to CGE (e & £). Thus,
a parcall frame is created for this CGE in stack
54 of P4 and chained to the parcall frame for the
CGE (x & y) in S2. Finally, when P4 executes
the goal e, execution fails. Therefore, a kill signal
will be sent by P4 to processors P1 and P2 (note
that P4 could also send a kill signal directly to
processor P3 as well but because of lack of com-
plete understanding of code for DDAS system we
could not implement it in our modification; P3
will receive a kill signal from P1 via standard
kill mechanism employed by DDAS), since they
have executed goals taken from the parcall frame
chain, to undo all work done corresponding to the
chained parcall frames. After P1, P2, and P4 fin-
ish killing, they can find other work that may be
useful.

In standard DDAS (or RAPWAM) implemen-
tation P4 will kill the computation corresponding
to goals e and £. It will then backtrack to the par-
call frame of (x & y) communicating the failure
of that parcall frame to processor P2. P2 will then
kill the computations for x and y and backtrack
further up eventually communicating the failure
of (a & b & ¢ & d) to processor P1. As is ap-
parent, the kill gets processed in a somewhat se-
quential manner in the RAPWAM, whereas due
to LPCO it is propagated faster in the RAPWAM
with our modification.

Our experimental results for three programs
are shown in Figure 7 in which the dashed curves
represent normal DDAS execution while the solid
curves represents speed-ups on DDAS that in-
cludes our approximation of LPCO.

Figure 7(I) shows the speed-up in the execution of

S
i 1nput
marker

<=—— input marker —|:

B3y { Bg1]
s s

The dashed arrows
S3 represent links in sS4

processor 3 the parcall chain processor 4

Figure 6: The parcall frame chain

a program that tests if an element is non-zero in
a 250-element list, if yes, some processing is done,
otherwise the computation fails (thus the pro-
gram is similar to process_list program given
in Section 3). Figure 7(II) is the speed-up of the
execution of a program which checks if a given
element is absent in a sorted binary tree. If the
element is found, execution fails. Figure 7(III)
is the speed-up graph of quicksort using differ-
ence list where both arguments of quicksort are
ground. From the speed-up curves one can see
that DDAS augmented with our approximation
of LPCO performs consistently better than sim-
ple DDAS execution. In fact, we believe that if
LPCO was implemented more faithfully, speed-up
improvements will be even more dramatic (this is
because in our diluted implementation we still in-
cur the cost of allocating full parcall frames while
in a more faithful implementation of LPCO this
cost will be considerably reduced). The fact that
LPCO leads to considerable improvement in ex-
ecution speed-up is not all that surprising since
Last Call Optimization also results in dramatic
improvement in execution performance of sequen-
tial systems. Note that in Figure 7(III) the fact
that the dashed curve and dotted curves meet
is because all available parallelism has been ex-

Speed-up

4 50 60 70 8 9 100 110 120
of processors

(1)

750 |

7.00 &----
6.50 6.50

6.00 5.50

550 450

Speed-up

500 |---

Speed-up

350 |--
B
450 |---f8

5
400 |---F-
350

2.50

1.50

b H H | v
0 20 40 60 80 100 10 15 0
of processors # of processors

n D)

Figure 7: Experimental Results

ploited when that point is reached in which case
LPCO cannot produce any performance improve-
ment.

6 Implementing KILL in And-
parallel Systems

In this section we discuss two methods for imple-
menting the kill operation. As mentioned earlier,
performing the kill is not easy since it is a global
operation on the execution tree that may involve
more than one processor.

The killing of a subgoal ¢ involves complete
removal of all the information allocated on stacks
of processor(s) during the execution of G. It con-
sists of two actions:

e garbage collection: recovery of the stack
space occupied by the killed computation;

e trail unwinding: removal of all the bindings
generated during the killed computation.

Both the actions do not impose any sort
of constraint on the order in which they
must be performed (i.e. the various parts of
the computation may be deallocated and un-
wound in any order). However, care must
be taken while mixing forward and backward
execution. For instance, Consider a goal:

- a, (b&c&d
in which the processor P1 that executed goal a
also picks up goal b. Goals c and d are picked up
by other processors. Suppose goal b fails, then

processor P1 will send a kill to processors ex-
ecuting ¢ and d. While the kill of ¢ and 4 is
in progress, P1 cannot backtrack over a, unwind
the trail, and restart some other computation. In
other words the processor executing the goal pre-
ceding the parallel conjunction should not restart
computation elsewhere because unless ¢ and d are
completely killed the correct state would not have
been restored to begin this new computation.

A kill phase is always started by a failing
worker that reaches a parcall frame during back-
tracking. This covers two cases:

e the parcall frame is reached while there are
other and-parallel subgoals of this parcall
that are still active (i.e. the parcall frame
is in inside status). In this case all the other
subgoals of the parcall need to be killed.

e the parcall frame is reached after all the sub-
goals have detected at least one solution
(i.e. the parcall frame is in outside status).
In this case the traditional &-Prolog point-
backtracking is applied and kill messages are
sent to those and-parallel subgoals whose
computation was deterministic (i.e., these
determinate goals do not offer any further
alternatives, and hence such goals should be
killed immediately rather than backtracked
over).

In the second case, all the processors involved
in the kill operation are free to return to their
normal previous operation once the kill is com-
pleted (since the worker generating the kills is

itself taking care of continuing the execution by
sending redo messages to the non-deterministic
subgoals). In the first case, instead, once the kill
is completed, one of the workers who was execut-
ing the parcall’s subgoals needs to continue the
main execution by continuing backtracking over
the computation preceeding the parcall frame.

A kill can be serviced lazily or eagerly. Both
approaches require different kind of support from
the underlying runtime system. The only data
structures that are common to both the lazy ap-
proach and the eager approach described in this
paper are those that are required to support the
sending/receiving of kill messages. Kill messages
are realized by associating a kill-message queue
with each worker. The kill-message queue of a
processor is accessible to all other processors. Ac-
cess operations on these queue must be atomic
since these queues are shared.

6.1 Kill Steps

The process of killing a computation can be fur-
ther subdivided into two distinct phases:

(i). Propagation phase: in which the kill sig-
nal is propagated to all the and-parallel
branches nested inside the and-branch of the
subgoal being killed;

(ii). Cleaning phase: in which the space from

killed computation is removed (garbage col-

lection and trail unwinding).

The execution of the cleaning phase is relatively
easy but it requires the knowledge of the physi-
cal boundaries of the computation to be removed.
The stack structure adopted to store the com-
putation by any Prolog Inference Engine allows
exclusively a bottom-up traversal of the compu-
tation tree (i.e. we can only visit the computation
tree starting from the leaves and moving upwards,
towards the root), which corresponds to scan-
ning the stack from the top towards the bottom?.
Thus to scan the tree, we at least require pointers

2a scan in the opposite direction would be very expen-
sive, due to the variabile size of the structures allocated on
the choice point stack.

11

to the bottommost leaf nodes that represent the
point from which the upward traversal to clean up
should begin. Once this starting point is known,
cleaning is a straightforward operation, which re-
sembles in many aspects a backtracking process.
Asin backtracking, the worker performing the kill
scans the stack, removing each encountered data
structure and unwinding the part of trail associ-
ated with that part of the computation. The main
differences with the backtracking process are:

e alternatives in the choice points are

ignored—and the choice points are removed;

e parcall frames are treated as if they are in in-
side status, i.e. kills towards all the subgoals
of the parcall frame are generated.

It is important to observe that the cleaning activ-
ity can be performed quite efficiently since paral-
lel branches enclosed in a killed subgoal can be
cleaned in parallel. Once the bottommost ex-
treme of the computation to be killed has been
detected, the cleaning step can be immediately
applied. Figure 8 shows this process. The main
issue—and the most difficult problem—is the ac-
tual detection of the location of the leaves from
which cleaning activity can be started. This is the
purpose of the propagation step mentioned earlier
and the rest of the section will deal with different
approaches to tackling this problem.

In the following text we present two approaches
for propagating kills (with possible variations).
These approaches are parameterized by:

(i). direction of the propagation: two possi-
ble directions can be considered

(a) top-down: kill signals are actively prop-
agated from the root of the killed sub-
goal to the leaves;

(b) bottom-up: kill is started from the
leaves and pushed towards the root of
the subgoal.

Note that a top-down element is always
present in any kill propagation mechanism
since, after all, a kill is received by a subgoal

and has to be propagated to its descendent
parcall frames.

. mode of propagation: the propagation of
the kill signals in the tree can be realized in
two alternative ways:

(a) active: the various workers are actively
receiving and propagating the kill sig-
nals;

(b) passive: workers lazily wait to receive a
kill directed to them.

6.2 Lazy Propagation of Kill Message

The main idea behind this propagation technique
is to avoid sending kill messages (unless they are
strictly necessary).
to each processor the task of realizing when the
computation that it is currently performing has
been killed.

The only data structures that are required in
order to implement lazy propagation of kill mes-
sages are the following:

This is realized by leaving

. the generic support for the sending/receiving
of kill messages such as kill-message queues,
locks, shadow registers, etc.;

. a unique global queue in which suspended
kills are recorded;

a flag in each slot of the parcall frame which
will be used to indicate that the correspond-

ing subgoal should be killed;

. a representation of the computation tree
that will help determine efficiently whether
a given subgoal is contained in another
subgoal®.

In the lazy approach to killing, a kill message is
sent to a worker only when the bounds of the com-
putation are known (i.e. the computation to be
killed has already been completed). In this case
the cleaning step can be immediately applied.

°It is an open question whether it is possible to ob-
tain this information in constant time for a dynamically
growing tree.

12

CGE

End of Subgoal

Failing Subgoal
1: failing subgoal

2: kill message to end of subgoal

3: unwind+garbage collection on local branch

4: kill propagated to other subgoals

5: continuation above the CGE

7
7]
7

Figure 8: Cleaning Operation during a Kill

If the kill is issued when the branch to be killed
is still computing, then a suspended kill is gener-
ated. The suspended kill is represented by

¢ setting the failing flag in the slot correspond-
ing to the killed subgoal (i.e. subgoal corre-
sponding to the killed branch);

¢ storing the information relative to the kill in a
new entry of the global queue for suspended

kills.
The effects of this operation are:

(i). since the worker which completes the execu-
tion of the subgoal will access the slot for
updating the various field of the slot (like
recording its id for backtracking purposes),
it will immediately realize that the compu-
tation that it has just completed has been
previously killed and automatically it will
start performing the cleaning operation (as
explained above).

. if the and-scheduler selects an and-parallel
subgoal that is subsumed by another sub-
goal with a suspended kill then it will imme-
diately discard the goal and look for a new
work. Key to this step is the presence of a
representation of the computation tree which
allows us to efficiently determine whether one
subgoal is subsumed by another (i.e. one is
a descendent of the other in the search tree).

periodically each worker checks whether its
current computation is subsumed by one of
the goals killed by a suspended subgoal. If

(i)

this condition is satisfied then the worker will
immediately interrupt the computation and
start the cleaning phase.

The beauty of this approach lies in its simplic-
ity. The scheme can also take advantage of many
of the algorithms that have been developed for ef-
ficient backtracking (lazy kill is almost identical
to backtracking). Furthermore, a worker is never
distracted by kill messages during a useful com-
putation, since the checks performed will affect
its execution only if the worker is positioned on
a killed branch of the tree. In this way the kill
operation is postponed and performed only when
no useful work is available.

The main disadvantages that we can identify
in this approach are the following:

(i). the implementation of this scheme relies on
the availability of a representation of the
computation tree which allows to determine
efficiently whether a given subgoal is a de-
scendent of another. It is an open problem
whether this can be done in constant time.

(ii). the execution of the kill may be slower than

in other schemes; this is due to the fact that

cleaning is started by one processor from the
bottommost end of a branch, making it an
inherently sequential operation. Other ap-
proaches may offer an higher degree of par-
allelism during the cleaning up of execution.

6.3 Eager Kill

The disadvantages mentioned above seems to
make the Lazy Kill approach not too easily imple-
mentable. For this reason we propose a different
approach, called eager kill, which is mainly (but
not exclusively) a top-down approach (see Fig.
9).

The main problem in this approach is the lack
of information that will allow us to perform a top-
down traversal of the tree (starting from a given
node towards the leaves). As we will see later on,
the amount of information required to accomplish
this for our purpose is quite limited.

13

=4

fal
I

/{ ; _ Failing Subgoal
/ \\ ‘ Direction of Kill

Propagation

" Failing Subgoal

Direction of Kill
Propagation

-

Lazy Kill Eager Kill

Figure 9: Comparison of Lazy and Fager Kill

6.3.1 Support for Eager Kill

In terms of data structures required to support
eager kill, the following elements need to be added
in the design:

e cach slot is extended in order to contain a
pointer either to (i) the first parcall frame
(if any) created during the execution of the
subgoal, (ii) or to the marker indicating the
end of the computation, if this computation
completes witout creating a parcall frame.

e a return id field is introduced in each par-
call frame. This field will be used to indi-
cate which worker is assumed to continue the
kill /backtracking above the parcall frame in
the execution tree once the whole computa-
tion originating from the parcall has been re-
moved.

Note that the pointer to the first parcall frame
created during the execution of a subgoal is in-
deed the same pointer needed to maintain the
parcall chain described in Section 5

We now present an example to illustrate our
technique for eager propagation of a kill.

6.3.2 An example

Let us consider the computation described in Fig-
ure 10.

Assuming that processor P; is the one which
started the execution of b, then the initial kill
message will be sent to P; from the worker which

Failing Subgoal

i 64
J

5

Figure 10: An Example of Fager Kill

failed in the computation of ¢. If P; was look-
ing for work by invoking the and-scheduler, then
it will simply leave the and-scheduler and start
serving the kill. Otherwise, at the next check
for kill it will suspend the current execution, set
the shadow registers and move to service the kill.
Let’s assume the second case.

As mentioned in section 6.3.1, P; has access to
the first parcall frame generated during the com-
putation of b. It positions itself on that parcall
frame and, since this has already completed (i.e.
it is in outside status), it starts the killing activ-
ity by sending a kill to the continuation of the
parcall frame (step 2). The continuation itself
contains another parcall frame (pointed to by the
endmarker of the previous parcall frame), so the
worker receving this kill message will access the
parcall frame (step 3) and send another kill mes-
sage to its continuation (since even this parcall
frame is in outside status). The worker executing
J will receive the kill and serve it, removing the
whole computation of 7 and setting the appropri-
ate bit in the parcall frame (h&7). At this point
the worker that is busy waiting on such parcall
frame (busy waiting until the continuation has
been killed) will kill all the subgoals of the par-
allel call (h and i, step 6) and then continue fur-

14

ther and kill g. Once g has been removed, a bit
in the parcall frame (d& f) is set and P;, which
was in the meantime busy waiting on that parcall
frame (busy waiting until the continuation has
been killed), may proceed to send the kill mes-
sages to the subgoals of the parallel call (d and f,
step 7) and, once all of them have reported the
end of the kill, it may proceed with the killing of
b.

Once the whole branch has been removed and
also a has reported the end of the kill, the worker
FP; is free to restart the computation previously
interrupted.

Note that both the Lazy and Eager schemes for
propagating kill can be optimized further, how-
ever, we do not describe these possible improve-
ments due to lack of space. More details can be
found elsewhere [9]. The Lazy scheme has been

incorporated in the and-parallel component of the
ACE system [8, 3].

7 Conclusion

In this paper we presented a novel optimization
called Last Parallel Call Optimization. The Last
Parallel Call optimization can be regarded as an
extension of last call optimization, found in se-
quential systems, to and-parallel systems. We
also presented some experimental results that
demonstrate the effectiveness of this optimiza-
tion. Not only the LPCO saves space, it also
leads to reduced runtime for a majority of and-
parallel programs. The modifications needed to
incorporate the LPCO in an and-parallel system
are quite minor and only require some changes
to the way the parcall frame (of RAPWAM) is
implemented. We plan to include LPCO in the
and-parallel component of ACE, an and-or par-
allel system being collaboratively developed by
New Mexico State University and University of
Madrid. We also discussed the problem of effi-
ciently supporting the kill operation in an and-
parallel system. We presented two approach, one
lazy and the other eager, of which the former has
been currently incorporated in the and-or paral-
lel system ACE. The techniques discussed in this

paper, we believe, are very pragmatic and will be

immensely useful to implementors of and-parallel
systems.

References

[1]

J. Barklund, H. Millroth. Providing Iteration
and Concurrency in Logic Program through
Bounded Quantifications. In Proc. Interna-
tional Conf. on Fifth Generation Computer
Systems, June 1992, pages 817-824.

D. DeGroot. Restricted AND-parallelism. In
International Conference on Fifth Genera-
tion Computer Systems, Nov., 1984.

G.Gupta, E. Pontelli, M. Hermenegildo,
V. Santos Costa. ACE: And/Or-parallel
Copying-based Iixecution of Logic Programs.
In Proc. International Conference on Logic
Programming, 1994, MIT PRess, to appear.

M. V. Hermenegildo. An Abstract Ma-
chine for Restricted AND-parallel Execution
of Logic Programs. In Third International
Conference on Logic Programming, Lecture
Notes in Computer Science 225, pages 25—
40. Springer-Verlag, July 1986.

M. V. Hermenegildo, R. I. Nasr, Efficient
Implementation of backtracking in AND-
parallelism. In 3rd International Conference

on Logic Programming, London, 1986. pages
40-54.

D. Jacobs and A. Langen. Accurate and Ef-
ficient Approximation of Variable Aliasing
in Logic Programs. In 1989 North Ameri-
can Conference on Logic Programming. MIT
Press, October 1989.

K. Muthukumar and M. Hermenegildo.
Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. Jour-
nal of Logic Programming, 13(2 and 3):315-
347, July 1992.

15

[8]

E. Pontelli, G. Gupta, M. Hermenegildo.
ACE: A progress Report. Technical Report.
Department of Computer Science. New Mex-
ico State University, March 1994.

E. Pontelli, M. Carro, G. Gupta, “Kill and
Backtracking in And-parallel Systems,” In-
ternal Report, ACE Project, Department of
Computer Science, New Mexico State Uni-
versity, Dec. 1993.

K. Shen: Studies in And/Or Parallelism
in Prolog. Ph.D thesis, University of Cam-
bridge, 1992.

D. H. D. Warren. Last Call Optimiza-
tion. “An Improved Prolog Implementation
Which Optimises Tail Recursion,” In 2nd In-
ternational Logic Programming Conference,
1984, K. Clark and S. A. Tarnlund (eds).
Academic Press. Also Research Paper 156,
DAI, Univ. of Edinburgh, 1980.

