
Last Parallel Call Optimization and Fast Backtracking

in And-parallel Logic Programming Systems

Tang DongXing, Enrico Pontelli Manuel Carro

Gopal Gupta

Laboratory for Logic and Databases Facultad de Inform�atica

Dept of Computer Science Universidad Polit�ecnica de Madrid

New Mexico State University 28660-Boadilla del Monte

Las Cruces NM USA Madrid, Spain

fdtang,epontell,guptag@cs.nmsu.edu mcarro@�.upm.es

Abstract

In this paper we present a novel optimization

called Last Parallel Call Optimization. The last

parallel call optimization can be regarded as an

extension of last call optimization, found in se-

quential systems, to and-parallel systems. The

last parallel call optimization leads to improved

time and space performance for a majority of and-

parallel programs. The last parallel call optimiza-

tion is presented in detail in this paper and its

advantages discussed at length. The last par-

allel call optimization can be incorporated in a

parallel system (such as RAPWAM) through rel-

atively minor modi�cations to the runtime ma-

chinery. We also present some experimental re-

sults from a limited implementation of last par-

allel call operation done on the DDAS System.

These experimental results prove that last paral-

lel call optimization is indeed e�ective and pro-

duces better speed-ups with respect to an un-

optimized implementation. We also discuss the

problem of e�ciently performing the kill opera-

tion in and-parallel systems. We present two ap-

proaches for e�ciently propagating the kill signal

to other parallel calls subsumed by the subgoal

that received the kill signal. The �rst approach,

implemented in the and-parallel component of the

ACE system, propagates the kill lazily while the

second one propagates the kill signal eagerly. The

advantages and disadvantages of both these ap-

proaches are presented. The implementation and

optimization techniques presented in this paper

are very pragmatic and we believe that they will

be of considerable utility to implementors of and-

parallel systems.

1 Introduction

A distinguishing feature of logic programming

languages is that they allow considerable free-

dom in the way programs are executed. This

latitude permits one to exploit parallelism im-

plicitly (without the need for programmer inter-

vention) during program execution. Indeed, two

main types of control parallelism have been iden-

ti�ed and successfully exploited in logic programs:

(i). Or-parallelism: arises when more than a sin-

gle rule de�ne some relation and a procedure

call uni�es with more than one rule head|

the corresponding bodies can then be exe-

cuted in or-parallel fashion. Or-parallelism

is thus a way of e�ciently searching for solu-

tion(s) to the top-level query.

(ii). And-parallelism: arises when a set of con-

junctive goals in the current resolvent are

executed in parallel. The conjunctive goals

1

could either be independent, i.e., the argu-

ments of the conjunctive goals are bound

to ground terms or have non-intersecting

set of unbound variables (independent and-

parallelism), or they could be dependent in

which case they will be executed in parallel

until they access the common variable (de-

pendent and-parallelism).

In this paper we will focus on independent and-

parallelism although our results are also applica-

ble to dependent and-parallel systems and and-or

parallel systems. A major problem in implemen-

tation of and-parallel systems is that of e�cient

implementation of backtracking. Because of and-

parallelism not only a new backtracking seman-

tics is needed for such systems, but also its imple-

mentation becomes very tricky. We consider the

backtracking semantics given by Hermenegildo

and Nasr for and-parallel systems [5] and its ef-

�cient implementation in RAPWAM [4]. The

backtracking semantics as given by Hermenegildo

and Nasr attempts to emulate the backward exe-

cution control of Prolog as much as possible. In

this paper, we present some optimizations over

this backtracking scheme that permit faster back-

ward execution. In particular, we propose the

Last Parallel Call Optimization that saves both

time and space when the last call in a clause is

itself a parallel conjunction (from now on a par-

allel conjunction will also be referred to as a par-

call for brevity). Last Parallel Call Optimization

(LPCO), when applicable, simpli�es backtrack-

ing and allows failures and kills to be propagated

faster. We present some experimental results to

demonstrate the advantages of Parallel Last Call

Optimization. We also discuss how the kill oper-

ation can be e�ciently implemented in an and-

parallel system. The kill operation needs to be

performed to terminate computation in subgoals

that constitute a parallel conjunction when one

of the subgoals fails to produce a solution. Its

implementation is complicated by the fact that a

parallel conjunction may have other nested con-

junctions inside that need to be recursively tra-

versed and the computation in their and-parallel

subgoals terminated. Because the kill operation

involves a number of processors that simultane-

ously prune and modify a shared tree, a naive

implementation may result in race conditions and

non-terminating situations, as well as in ine�-

ciency. In this paper we present two approaches

for implementing a kill in an and-parallel system.

One of the approach is lazy while the other is

eager depending on the way in which killing in-

formation is propagated along the branches of the

computation tree.

The rest of the paper is organized as fol-

lows: Section 2 describes the backtracking

scheme of Hermenegildo and Nasr for indepen-

dent and-parallel system and its realization in

Hermenegildo's RAPWAM [4]. Section 3 intro-

duces Last Parallel Call Optimization. Section

4 brie
y describes an implementation scheme for

the LPCO, while Section 5 describes our experi-

ments to test the applicability of LPCO to exist-

ing systems. Section 6 describes in detail the kill

operation, the problems in implementing it, and

the various solutions that we have proposed. The

implementation of kill as reported in this paper

has been incorporated in the and-parallel compo-

nent of ACE [8], an and-or parallel system. Sec-

tion 7 presents our conclusions. We assume that

the user has some familiarity with and-parallelism

and and-parallel systems such as &-Prolog. We

will illustrate our ideas and concepts in the con-

text of independent and-parallelism with goal

recomputation (goal recomputation means that

subgoals to the right of another subgoal g in a par-

allel conjunction are computed in their entirety

for every solution found for subgoal g), although

our results are also applicable to dependent and-

parallel systems such as DDAS [10] and to and-or

parallel systems such as ACE [3].

2 Backtracking in And-parallel

Systems

An and-parallel system works by executing a pro-

gram that has been annotated with parallel con-

junctions. These parallel conjunction annota-

tions are either inserted by a parallelizing com-

piler [6, 7] or by the programmer. Execution of

2

all goals in a parallel conjunction is started in par-

allel when control reaches that parallel conjunc-

tion. Parallel conjunctions may also be condi-

tional, which means that the goals in the conjunc-

tion are executed in parallel only if the condition,

i.e., the expression upon which the conjuction is

conditioned, evaluates to true (e.g., Conditional

Graph Expressions [2, 5]).

Backtracking becomes complicated in and-

parallel system because more than one goal may

be executing in parallel, one or more of which

may encounter failure and backtrack at the same

time. Unlike a sequential system, there is no

unique backtracking point. In an and-parallel sys-

tem we must ensure that the backtracking seman-

tics is such that all solutions are reported. One

such backtracking semantics has been proposed

by Hermenegildo and Nasr: consider the subgoals

shown below, where `,' is used between sequential

subgoals (because of data-dependencies) and `&'

for parallel subgoals (no data-dependencies):

a, b, (c & d & e), g, h

Assuming that all subgoals can unify with more

than one rule, there are several possible cases de-

pending upon which subgoal fails: If subgoal a or

b fails, sequential backtracking occurs, as usual.

Since c, d, and e are mutually independent, if ei-

ther one of them fails, backtracking must proceed

to b|but see further below. If g fails, backtrack-

ing must proceed to the right-most choice point

within the parallel subgoals c & d & e, and re-

compute all goals to the right of this choice point.

If e were the rightmost choice point and e should

subsequently fail, backtracking would proceed to

d, and, if necessary, to c. Thus, backtracking

within a set of and-parallel subgoals occurs only

if initiated by a failure from outside these goals,

i.e., \from the right" (also known as outside back-

tracking). If initiated from within, backtracking

proceeds outside all these goals, i.e., \to the left"

(also known as inside backtracking). This latter

behavior is a form of \intelligent" backtracking.

When backtracking is initiated from outside, once

a choicepoint is found in a subgoal g, an untried

alternative is picked from it and then all the sub-

goals to the right of g in the parallel conjunction

are restarted.

Independent and-parallelism with the back-

tracking semantics described above has been

implemented quite e�ciently in RAPWAM [4].

RAPWAM is an extension to the sequential WAM

for and-parallel execution of Prolog programs

with and-parallel annotation (such as CGEs [5]).

In order to execute all goals in a parallel con-

junction in parallel, RAPWAM has a scheduling

mechanism to assign parallel goals to available

processors and some extra data structures to keep

track of the current state of execution. The two

main additional data structures are the goal stack

and the parcall frame. Details of the structure of

a Parcall frame are shown in Figure 1 (more de-

tails can be found in [4, 5]). In addition to parcall

frames and goal stacks, an input marker node and

an end marker node is used to mark the begin-

ning and the end respectively of the segment in

the stack corresponding to an and-parallel goal.

During execution of and-parallel Prolog pro-

grams, when a parallel conjunction is reached

that is to be executed in parallel (recall that a

conditional parallel conjunction may be executed

sequentially if the conditional test fails), a parcall

frame is created in the local stack

1

. The parcall

frame contains: (i) a slot for each goal in the par-

allel conjunction where information regarding the

state of execution of that goal will be recorded,

(ii) necessary information about the state of the

execution of the parallel conjunction. After the

parcall frame is created for a parallel conjunction,

all the goals in the parallel conjunction are pushed

into the goal stack. Each entry in the goal stack

contains all the information required to allow a

remote execution of the corresponding subgoal.

Each processors can pick up a goal for execution

from the goal stacks of other processors as well as

their own goal stack, once they become idle.

The execution of a parallel conjunction can be di-

vided into two phases. The �rst phase, called in-

side phase, starts with the creation of the parcall

frame and ends when the execution of the contin-

uation of the parallel conjunction is �rst begun

(i.e. each goal in the conjunction has found its

1

or in the choice point stack, as in ACE and DDAS.

3

GOAL

STACK

STACK

(A)

PF

E

EPF

B

Goal Frame

GS

B

Choice PointTR’
BP’

PF

SLOT #

OF PARAMETERS

....

P(1) reg

P(2) reg

P(arity) reg

Procedure name

Parcall Frame

PF

CEPF (continuation frame)

BPF

GS’
Status

PIP
of slots
of goals to wait on
of goals still to schedule

process id. comp. status ready

process id. comp. status ready

entries for other goals

Figure 1: Additional data structures and related registers in RAPWAM

�rst solution; we will say that the parallel con-

junction has been completed). Once the execu-

tion of continuation is begun for the �rst time,

outside phase is entered. If failure occurs in the

inside phase, inside backtracking is used, while if

failure occurs in the outside phase outside back-

tracking will be used for backtracking on the par-

allel conjunction. In the inside phase, if a goal

fails, the whole parcall should fail since all goals in

the parcall are assumed independent. Therefore,

when a goal fails in a parcall during the inside

phase, the failing processor should send a kill sig-

nal to all processors that have stolen a goal from

that parcall to undo any execution for the stolen

goal. After all processors �nish undoing the work,

the goal before the CGE will be backtracked over

as in standard WAM.

On the other hand, after a parallel conjunction

completes, if a goal in the continuation of the

CGE fails, then backtracking proceeds into the

conjunction in outside mode. Outside backtrack-

ing is from right to left in the CGE similar to

the backtracking in sequential WAM. The only

di�erence is that a goal to be backtracked over

may have been executed by a remote processor if

another processor stole the goal. Thus the redo

signal has to be sent to the remote processor. If

a new solution is found during backtracking, the

goals to the right of this goal in the parallel con-

junction have to be reexecuted. If outside back-

tracking fails to produce any more answers, the

goal before the CGE will be backtracked over as

in normal sequential execution.

3 Last Parallel Call Optimiza-

tion

Last Parallel Call Optimization produces the fol-

lowing advantages in an and-parallel system:

(i). It speeds up forward execution by avoiding

allocation of certain parcall frames;

(ii). It speeds up the process of killing computa-

tions during an inside backtracking;

(iii). It speeds up the process of backtracking, in

general;

(iv). It saves space on the stacks and allows earlier

recovering of space on backtracking.

The advantages of LPCO are very similar to

those for last call optimization [11] in the WAM.

The conditions under which the LPCO applies are

also very similar to those under which last call

optimization is applicable in sequential systems.

Consider �rst an example that covers a special

case of LPCO: ?- (p & q). where

p :- (r & s).

q :- (t & u).

The and-tree constructed is shown in Figure

2(i). One can reduce the number of parcall nodes,

at least for this example, by rewriting this exam-

ple as ?- (r & s & t & u). Figure 2(ii) shows

4

the and-tree that will be created if we apply this

optimization. Note that executing the and-tree

shown in Figure 2.(ii) on RAPWAM will require

less space because the parcall frames for (r & s)

and (t & u) will not be allocated. The single

parcall frame allocated will have two extra goal

slots compared to the parcall frame allocated for

(p & q) in Figure 2(i). It is possible to detect

cases such as above at compile time. However,

our aim is to accomplish this saving in time and

space at runtime. Thus, for the example above,

our scheme will work as follows. When the par-

allel calls (r & s) and (t & u) are made, the

runtime system will recognize that the parallel

call (p & q) is immediately above and instead

of allocating a new parcall frame some extra in-

formation will be added to the parcall frame of

(p & q) and allocation of a new parcall frame

avoided. The extra information added will con-

sist of adding slots for the goals r, s, etc. Note

that no new control information need be recorded

in the parcall frame of (p & q) (however, some

control information, such as the number of slots,

etc., need to be modi�ed in the parcall frame of

(p & q)).

p & q

r & s t & u

p q

r s t u

fig (i)

r & s & t & u
r s t u

fig(ii)

f1

f2 f3

Figure 2: Reusing Parcall Frames

Note also that if the goal r was to fail in inside

mode, then in case (ii) (Figure 2(ii)) killing of

computation in sibling and-branches will be con-

siderably simpli�ed. In case (i) the failure will

have to be propagated from parcall frame f2 to

parcall frame f1. From f1 a kill message will have

to be sent out to parcall frame f3.

One could argue that the improved scheme

described above can be accomplished simply

through compile time transformations. However,

in case p and q were dynamic predicates this

would not be possible. Also, for many programs

the number of parallel conjunctions that can be

combined into one will only be determined at run-

time. For example, consider the following pro-

gram:

process_list([H|T], [Hout | Tout]) :- (process(H, Hout) &

process_list(T, Tout)). process_list([], []).

?-process_list([1,2,3,4], Out).

In such a case, compile time transformations

cannot unfold the program to eliminate nesting

of parcall frames because it will depend on the

length of the input list. However, using our

runtime technique, given that the goal process

is determinate, nesting of parcall frames can be

completely eliminated (Figure 3). As a result of

the absence of nesting of parcall frames, if the

process goal fails for some element of the list,

then the whole conjunction will fail in one single

step.

E�orts have been made by other researchers

to make execution of recursive program such as

above more e�cient. Heremenegildo and others

have suggested partially unfolding the program so

that instead of allocating one parcall frame per

recursive call, one is allocated per n calls, where

n is the degree of unfolding as illustrated in the

code below (n = 3).

process_list([X,Y,Z|T],[Xo,Yo,Zo|Tout]):- (process(X,Xo) &

process(Y,Yo) & process(Z,Zo) & process_list(T,Tout)).

process_list([X,Y], [Xo,Yo]):- (process(X, Xo) & process(Y, Yo)).

process_list([X], [Xo]):- process(X, Xo).

process_list([], []).

Barklund et al have suggested new language

constructs (the language augmented with these

constructs is termed Reform Prolog [1]) based on

Bounded Quanti�cation that encapsulate a call

such as process list(Lin, Lout) in such a way

that it is executed in parallel in one (parallel)

step.

5

process(1) & process_list([2,3,4])
process process_list

?-process_list([1,2,3,4], Out).

process(2) & process_list([3,4])

process(3) & process_list([4])

process(4) & process_list([])

process

process

process

process_list

process_list

process_list

process(1) & process(2) & process(3) & process(4) & process_list([])

?-process_list([1,2,3,4], Out).

Without the last parallel call optimization
the execution tree will appear as in the left.
With LPCO, it will appear as above. Note that
the second (output) argument is not shown.

Figure 3: Reuse of Parcall Frames for Recursive Programs

Compared to Bounded Quanti�cation and pro-

gram unfolding, our technique based on last par-

allel call optimization does not require any pro-

grammer intervention or pre-processing by a com-

piler and achieves optimal saving in space and

time.

Next we present the most general case of

LPCO. The most general case of LPCO arises

when there are goals preceding the parallel con-

junction in a clause that matches a subgoal that

is itself in a parallel conjunction. Thus, given a

CGE of the form: (p & q) where

p :- e, f, g, (r & s). q :- i, j, k, (t & u).

LPCO will apply to p (resp. q) if

� There is only one matching clause for p (resp.

q), i.e., p (resp. q) is determinate.

� All goals preceding the parallel conjunction

in the clause for p (resp. q) are determinate.

If these conditions are satis�ed then a new par-

call frame is not needed for the parallel conjunc-

tion in the clause. Rather the parcall frame for (p

& q) can be extended with an appropriate num-

ber of slots and execution continues as if clause for

p was de�ned as p :- ((e,f,g,r) & s). Thus,

if we determine at the time of the parallel call (r

& s) that e, f, and g are determinate then we

pretend as if the clause for p is de�ned as p :-

((e,f,g,r) & s). This is illustrated in Figure

4.

p & q

r & s t & u

p q

r s t u

(e,f,g,r) & s & (i,j,k,t) & u
r s t u

fig(ii)

e

f

g

i

j

k

i

j

k

e

f

g

fig(i)

Figure 4: Last Parallel Call Optimization

Note that the two determinacy conditions

above require that when the parallel conjunction

is encountered at the end of clause for p then there

are no intervening choicepoints between the par-

call frame for (p & q) and the current point on

the stack. Thus even though goal p is not de-

terminate in the beginning, the determinacy con-

ditions will be satis�ed when the last clause for

p (resp. q) is tried. LPCO can be applied at

that point. This is akin to last call optimization

in sequential systems when even though a goal

is not determinate, last call optimization is trig-

gered when the last clause for that goal is tried.

Note also that the conditions for LPCO do not

place any restrictions on the nature of goals in

the clause for p (resp. q). The goals r, s, etc.

can be non-deterministic. Note that when out-

6

side backtracking takes place in the tree in Fig-

ure 4(ii), then because of the organization of the

parcall frame, backtracking will directly proceed

into goal s from goals t and u. Backtracking over

goals i, j, k will be missed. Suppose now an

untried alternative is found within s, then the

execution of goals t and u has to be restarted.

At this point because goals i, j, k were never

backtracked over, their existing computation can

be reused, thanks to their determinacy. However,

when we completely backtrack out of the parcall

frame, then care has to be taken that trail sec-

tions corresponding to to i, j and k (as well as

e, f, and g) are unwound.

Finally, note that LPCO can be generalized

further. Given a parallel conjunct (p & q) and

the clause p :- e, f, g, (r & s), h, then it

is still possible to avoid allocation of the parcall

frame for (r & s), augmenting the parcall frame

of (p & q) instead, if goals in the continuation

of (r & s), i.e., h in this example, are determi-

nate. However, determinacy of the continuation

of the parallel conjunct will have to be known in

advance, hence some kind of static analysis will

have to be used to collect this information. In

this paper we do not consider this optimization

any further.

4 Implementation of LPCO

To implement LPCO, the compiler will generate

a di�erent instruction when it sees a parallel con-

junct at the end of a clause. This instruction be-

haves the same as alloc parcall instruction of

the RAPWAM, except that if the conditions for

LPCO are ful�lled last parallel call optimization

will be applied.

Thus, �rst the code for this instruction will

check if there are any choicepoints below the im-

mediate ancestor parcall frame (pointed to by PF

register of RAPWAM). If there are no choice-

points, then the determinacy condition is satis�ed

and LPCO can be applied.

To apply LPCO, the immediate ancestor par-

call frame (or immediately enclosing parcall

frame) will be accessed and if the current par-

allel conjunction has n and-parallel goals, then n

new slots corresponding to these n goals will be

added to it. The number of slots should be incre-

mented by n in the enclosing parcall frame (this

operation should be done atomically).

Recall that in traditional RAPWAM the slots

for goals are part of the parcall frame that resides

on the stack. Given that the enclosing parcall

may be allocated somewhere below in the stack,

adding more slots to it may not be feasible. To

enable more slots to be added later, the slots will

have to be allocated on the heap and pointer to

the beginning of the slot list stored in the parcall

frame (Figure 5). The slot list can be maintained

as a double linked list. Also, each input marker

of an and-parallel goal has a pointer to its slot

in the slot list for quick access. With the linked

list organization, adding new slots becomes quite

simple as shown in Figure 5. Note that modi�-

cation of the slot list will have to be an atomic

operation. The enclosing parcall frame becomes

the parcall frame for the last parallel call, and

rest of the execution will be similar to that in

standard RAPWAM.

Note that changing the representation of slots

from an array recorded on the stack (inside a par-

call frame) to a linked list on the heap will not

add any ine�ciency because an and-parallel goal

can access its corresponding slot in constant time

via its input marker.

It is obvious that LPCO indeed leads to saving

in space as well as time during parallel execution.

Space (as well as time) is saved because alloca-

tion of parcall frames can be avoided. Time is

also saved because backtracking and kill become

faster: there are fewer parallel control structures

(parcall frames) on the stack simplifying back-

ward and forward control.

5 Experimental Results

We implemented our ideas described above on the

emulator of the DDAS [10] system. In fact be-

cause the implementation was unfamiliar to us,

we implemented a diluted form of LPCO (de-

scribed below). Even with this restricted imple-

7

fig(ii)

(e,f,g,r) & s & (i,j,k,t) & u
r s t u

i

j

k

e

f

g

p & q

p q
e

f

g

i

j

k

fig(i)

Note that the goal q is being executed
on control stack of some other processor.
Also note that input markers have a direct
pointer to their corresponding goal slot in
the heap.

of slots = 4
of goals to wait on
ptr to beginning of slots list

Other control info.
goal = r
goal = s

HEAP

CONTROL STACK

p
a
r
c
a
l
l

f
r
a
m
e

f
o
r

(
p

&

q
)

r
e
u
s
e
d

goal = t
goal = ue

f
g

of slots = 2
of goals to wait on
ptr to beginning of slots list

Other control info.

goal = p
goal = q

HEAPCONTROL STACK

p
a
r
c
a
l
l

f
r
a
m
e

f
o
r

(
p

&

q
)

p’s input marker

Figure 5: Allocating Goal Slots on the Heap

mentation of LPCO we obtained improved speed-

ups for all examples that we tried. Essentially, the

deeper the nesting of a CGE in the benchmark

the more improvement we obtained. Deep lev-

els of nesting are not uncommon in and-parallel

programs (e.g., in matrix multiplication, levels of

nesting of the order of thousand parcalls can be

created).

Our diluted implementation of LPCO was as

follows: When a goal in a CGE C is stolen from

the goal stack of another processor, and the exe-

cution of this stolen goal deterministically reaches

another CGE C

0

, then we chain the parcall frame

for the current CGE C

0

to the parcall frame cor-

responding to the CGE C (In a more faithful im-

plementation of LPCO the parcall frame for C

0

would not have been allocated; the parcall frame

for C would have been partially expanded). Hav-

ing maintained such parcall frame chain(s), when

the execution of a CGE corresponding to some

parcall frame in the chain fails, we send a kill sig-

nal to all the processors which are executing or

have executed a goal taken from a parcall frame

that is in this chain. In this way the kill signals

reach the processor in the minimum amount of

time possible. In the standard RAPWAM, the

kill signals will be sent gradually as the failing

processor backtracks over the search tree. As a

result, not only processors do less useless work

that will be eventually killed, they undo the work

that needs to be undone and execute other goals

that may lead to useful solutions sooner. This

results in execution speed-ups.

Consider the following program.

?- g. a.

g :- (a & b & c & d). d.

b :- (x & y). x.

c :- (u & v). u.

y :- (e & f). v.

Assume there are four processors (say P1, P2, P3,

and P4), all parallel conjunctions can be executed

in parallel, and the top-level query ?- g is exe-

cuted by P1. When P1 reaches the parallel con-

junction (a & b & c & d), a parcall frame will

be created in its local stack S1 and then all goals

in the CGE will be pushed into its goal stack G1.

Assume that P1 executes the �rst goal a locally

(indicated by * in Figure 6), P2 steals the goal b

from G1 for (remote) execution, and P3 steals the

goal c for (remote) execution. During the execu-

8

tion of P2, a parcall frame will be created in the

local stack S2 when it reaches the CGE (x & y).

Since the execution leading to this parcall frame

is deterministic, pointers are created linking the

parcall frame for (a & b & c & d) and the par-

call frame currently created for (x & y). Similar

situation occurs with respect to execution of goal

c by processor P3 (Figure 6).

During the execution of (x & y), assume that P2

continues to execute the �rst goal x and P4 steals

goal y for remote execution. Execution of goal y

will determinately lead to CGE (e & f). Thus,

a parcall frame is created for this CGE in stack

S4 of P4 and chained to the parcall frame for the

CGE (x & y) in S2. Finally, when P4 executes

the goal e, execution fails. Therefore, a kill signal

will be sent by P4 to processors P1 and P2 (note

that P4 could also send a kill signal directly to

processor P3 as well but because of lack of com-

plete understanding of code for DDAS system we

could not implement it in our modi�cation; P3

will receive a kill signal from P1 via standard

kill mechanism employed by DDAS), since they

have executed goals taken from the parcall frame

chain, to undo all work done corresponding to the

chained parcall frames. After P1, P2, and P4 �n-

ish killing, they can �nd other work that may be

useful.

In standard DDAS (or RAPWAM) implemen-

tation P4 will kill the computation corresponding

to goals e and f. It will then backtrack to the par-

call frame of (x & y) communicating the failure

of that parcall frame to processor P2. P2 will then

kill the computations for x and y and backtrack

further up eventually communicating the failure

of (a & b & c & d) to processor P1. As is ap-

parent, the kill gets processed in a somewhat se-

quential manner in the RAPWAM, whereas due

to LPCO it is propagated faster in the RAPWAM

with our modi�cation.

Our experimental results for three programs

are shown in Figure 7 in which the dashed curves

represent normal DDAS execution while the solid

curves represents speed-ups on DDAS that in-

cludes our approximation of LPCO.

Figure 7(I) shows the speed-up in the execution of

S1 S2

S3 S4

processor 1 processor 2

processor 4processor 3

PF

B11

PF

PF

PF

B31

B21

B41

a
b
c

d

(*)
(p2)
(p3)

(*)

u

v

(*)

(*)

input
marker

input marker

x

y

(*)

(p4)

e
f

(*)

The dashed arrows
represent links in
the parcall chain

Figure 6: The parcall frame chain

.

a program that tests if an element is non-zero in

a 250-element list, if yes, some processing is done,

otherwise the computation fails (thus the pro-

gram is similar to process list program given

in Section 3). Figure 7(II) is the speed-up of the

execution of a program which checks if a given

element is absent in a sorted binary tree. If the

element is found, execution fails. Figure 7(III)

is the speed-up graph of quicksort using di�er-

ence list where both arguments of quicksort are

ground. From the speed-up curves one can see

that DDAS augmented with our approximation

of LPCO performs consistently better than sim-

ple DDAS execution. In fact, we believe that if

LPCO was implemented more faithfully, speed-up

improvements will be even more dramatic (this is

because in our diluted implementation we still in-

cur the cost of allocating full parcall frames while

in a more faithful implementation of LPCO this

cost will be considerably reduced). The fact that

LPCO leads to considerable improvement in ex-

ecution speed-up is not all that surprising since

Last Call Optimization also results in dramatic

improvement in execution performance of sequen-

tial systems. Note that in Figure 7(III) the fact

that the dashed curve and dotted curves meet

is because all available parallelism has been ex-

9

7.00

6.50

6.00

5.50

5.00

4.50

4.00

3.50

(II)

200 40 60 80 100
of processors

Sp
ee

d-
up

30.00

40.00

50.00

60.00

70.00

40 50 60 70 80 90 100 110 120

(I)

Sp
ee

d-
up

of processors

Sp
ee

d-
up

5 10 15 20

7.50

6.50

5.50

4.50

3.50

1.50

2.50

of processors

(III)

Figure 7: Experimental Results

ploited when that point is reached in which case

LPCO cannot produce any performance improve-

ment.

6 Implementing KILL in And-

parallel Systems

In this section we discuss two methods for imple-

menting the kill operation. As mentioned earlier,

performing the kill is not easy since it is a global

operation on the execution tree that may involve

more than one processor.

The killing of a subgoal G involves complete

removal of all the information allocated on stacks

of processor(s) during the execution of G. It con-

sists of two actions:

� garbage collection: recovery of the stack

space occupied by the killed computation;

� trail unwinding: removal of all the bindings

generated during the killed computation.

Both the actions do not impose any sort

of constraint on the order in which they

must be performed (i.e. the various parts of

the computation may be deallocated and un-

wound in any order). However, care must

be taken while mixing forward and backward

execution. For instance, Consider a goal:

:- a, (b & c & d) ...

in which the processor P1 that executed goal a

also picks up goal b. Goals c and d are picked up

by other processors. Suppose goal b fails, then

processor P1 will send a kill to processors ex-

ecuting c and d. While the kill of c and d is

in progress, P1 cannot backtrack over a, unwind

the trail, and restart some other computation. In

other words the processor executing the goal pre-

ceding the parallel conjunction should not restart

computation elsewhere because unless c and d are

completely killed the correct state would not have

been restored to begin this new computation.

A kill phase is always started by a failing

worker that reaches a parcall frame during back-

tracking. This covers two cases:

� the parcall frame is reached while there are

other and-parallel subgoals of this parcall

that are still active (i.e. the parcall frame

is in inside status). In this case all the other

subgoals of the parcall need to be killed.

� the parcall frame is reached after all the sub-

goals have detected at least one solution

(i.e. the parcall frame is in outside status).

In this case the traditional &-Prolog point-

backtracking is applied and kill messages are

sent to those and-parallel subgoals whose

computation was deterministic (i.e., these

determinate goals do not o�er any further

alternatives, and hence such goals should be

killed immediately rather than backtracked

over).

In the second case, all the processors involved

in the kill operation are free to return to their

normal previous operation once the kill is com-

pleted (since the worker generating the kills is

10

itself taking care of continuing the execution by

sending redo messages to the non-deterministic

subgoals). In the �rst case, instead, once the kill

is completed, one of the workers who was execut-

ing the parcall's subgoals needs to continue the

main execution by continuing backtracking over

the computation preceeding the parcall frame.

A kill can be serviced lazily or eagerly. Both

approaches require di�erent kind of support from

the underlying runtime system. The only data

structures that are common to both the lazy ap-

proach and the eager approach described in this

paper are those that are required to support the

sending/receiving of kill messages. Kill messages

are realized by associating a kill-message queue

with each worker. The kill-message queue of a

processor is accessible to all other processors. Ac-

cess operations on these queue must be atomic

since these queues are shared.

6.1 Kill Steps

The process of killing a computation can be fur-

ther subdivided into two distinct phases:

(i). Propagation phase: in which the kill sig-

nal is propagated to all the and-parallel

branches nested inside the and-branch of the

subgoal being killed;

(ii). Cleaning phase: in which the space from

killed computation is removed (garbage col-

lection and trail unwinding).

The execution of the cleaning phase is relatively

easy but it requires the knowledge of the physi-

cal boundaries of the computation to be removed.

The stack structure adopted to store the com-

putation by any Prolog Inference Engine allows

exclusively a bottom-up traversal of the compu-

tation tree (i.e. we can only visit the computation

tree starting from the leaves and moving upwards,

towards the root), which corresponds to scan-

ning the stack from the top towards the bottom

2

.

Thus to scan the tree, we at least require pointers

2

a scan in the opposite direction would be very expen-

sive, due to the variabile size of the structures allocated on

the choice point stack.

to the bottommost leaf nodes that represent the

point from which the upward traversal to clean up

should begin. Once this starting point is known,

cleaning is a straightforward operation, which re-

sembles in many aspects a backtracking process.

As in backtracking, the worker performing the kill

scans the stack, removing each encountered data

structure and unwinding the part of trail associ-

ated with that part of the computation. The main

di�erences with the backtracking process are:

� alternatives in the choice points are

ignored|and the choice points are removed;

� parcall frames are treated as if they are in in-

side status, i.e. kills towards all the subgoals

of the parcall frame are generated.

It is important to observe that the cleaning activ-

ity can be performed quite e�ciently since paral-

lel branches enclosed in a killed subgoal can be

cleaned in parallel. Once the bottommost ex-

treme of the computation to be killed has been

detected, the cleaning step can be immediately

applied. Figure 8 shows this process. The main

issue|and the most di�cult problem|is the ac-

tual detection of the location of the leaves from

which cleaning activity can be started. This is the

purpose of the propagation step mentioned earlier

and the rest of the section will deal with di�erent

approaches to tackling this problem.

In the following text we present two approaches

for propagating kills (with possible variations).

These approaches are parameterized by:

(i). direction of the propagation: two possi-

ble directions can be considered

(a) top-down: kill signals are actively prop-

agated from the root of the killed sub-

goal to the leaves;

(b) bottom-up: kill is started from the

leaves and pushed towards the root of

the subgoal.

Note that a top-down element is always

present in any kill propagation mechanism

since, after all, a kill is received by a subgoal

11

and has to be propagated to its descendent

parcall frames.

(ii). mode of propagation: the propagation of

the kill signals in the tree can be realized in

two alternative ways:

(a) active: the various workers are actively

receiving and propagating the kill sig-

nals;

(b) passive: workers lazily wait to receive a

kill directed to them.

6.2 Lazy Propagation of Kill Message

The main idea behind this propagation technique

is to avoid sending kill messages (unless they are

strictly necessary). This is realized by leaving

to each processor the task of realizing when the

computation that it is currently performing has

been killed.

The only data structures that are required in

order to implement lazy propagation of kill mes-

sages are the following:

(i). the generic support for the sending/receiving

of kill messages such as kill-message queues,

locks, shadow registers, etc.;

(ii). a unique global queue in which suspended

kills are recorded;

(iii). a
ag in each slot of the parcall frame which

will be used to indicate that the correspond-

ing subgoal should be killed;

(iv). a representation of the computation tree

that will help determine e�ciently whether

a given subgoal is contained in another

subgoal

3

.

In the lazy approach to killing, a kill message is

sent to a worker only when the bounds of the com-

putation are known (i.e. the computation to be

killed has already been completed). In this case

the cleaning step can be immediately applied.

3

It is an open question whether it is possible to ob-

tain this information in constant time for a dynamically

growing tree.

Failing Subgoal

CGE

End of Subgoal
1

2

3

4

5

1: failing subgoal

2: kill message to end of subgoal

3: unwind+garbage collection on local branch
4: kill propagated to other subgoals

5: continuation above the CGE

Figure 8: Cleaning Operation during a Kill

If the kill is issued when the branch to be killed

is still computing, then a suspended kill is gener-

ated. The suspended kill is represented by

� setting the failing
ag in the slot correspond-

ing to the killed subgoal (i.e. subgoal corre-

sponding to the killed branch);

� storing the information relative to the kill in a

new entry of the global queue for suspended

kills.

The e�ects of this operation are:

(i). since the worker which completes the execu-

tion of the subgoal will access the slot for

updating the various �eld of the slot (like

recording its id for backtracking purposes),

it will immediately realize that the compu-

tation that it has just completed has been

previously killed and automatically it will

start performing the cleaning operation (as

explained above).

(ii). if the and-scheduler selects an and-parallel

subgoal that is subsumed by another sub-

goal with a suspended kill then it will imme-

diately discard the goal and look for a new

work. Key to this step is the presence of a

representation of the computation tree which

allows us to e�ciently determine whether one

subgoal is subsumed by another (i.e. one is

a descendent of the other in the search tree).

(iii). periodically each worker checks whether its

current computation is subsumed by one of

the goals killed by a suspended subgoal. If

12

this condition is satis�ed then the worker will

immediately interrupt the computation and

start the cleaning phase.

The beauty of this approach lies in its simplic-

ity. The scheme can also take advantage of many

of the algorithms that have been developed for ef-

�cient backtracking (lazy kill is almost identical

to backtracking). Furthermore, a worker is never

distracted by kill messages during a useful com-

putation, since the checks performed will a�ect

its execution only if the worker is positioned on

a killed branch of the tree. In this way the kill

operation is postponed and performed only when

no useful work is available.

The main disadvantages that we can identify

in this approach are the following:

(i). the implementation of this scheme relies on

the availability of a representation of the

computation tree which allows to determine

e�ciently whether a given subgoal is a de-

scendent of another. It is an open problem

whether this can be done in constant time.

(ii). the execution of the kill may be slower than

in other schemes; this is due to the fact that

cleaning is started by one processor from the

bottommost end of a branch, making it an

inherently sequential operation. Other ap-

proaches may o�er an higher degree of par-

allelism during the cleaning up of execution.

6.3 Eager Kill

The disadvantages mentioned above seems to

make the Lazy Kill approach not too easily imple-

mentable. For this reason we propose a di�erent

approach, called eager kill, which is mainly (but

not exclusively) a top-down approach (see Fig.

9).

The main problem in this approach is the lack

of information that will allow us to perform a top-

down traversal of the tree (starting from a given

node towards the leaves). As we will see later on,

the amount of information required to accomplish

this for our purpose is quite limited.

Failing Subgoal

Direction of Kill
Propagation

Failing Subgoal

Direction of Kill
Propagation

Lazy Kill Eager Kill

Figure 9: Comparison of Lazy and Eager Kill

6.3.1 Support for Eager Kill

In terms of data structures required to support

eager kill, the following elements need to be added

in the design:

� each slot is extended in order to contain a

pointer either to (i) the �rst parcall frame

(if any) created during the execution of the

subgoal, (ii) or to the marker indicating the

end of the computation, if this computation

completes witout creating a parcall frame.

� a return id �eld is introduced in each par-

call frame. This �eld will be used to indi-

cate which worker is assumed to continue the

kill/backtracking above the parcall frame in

the execution tree once the whole computa-

tion originating from the parcall has been re-

moved.

Note that the pointer to the �rst parcall frame

created during the execution of a subgoal is in-

deed the same pointer needed to maintain the

parcall chain described in Section 5

We now present an example to illustrate our

technique for eager propagation of a kill.

6.3.2 An example

Let us consider the computation described in Fig-

ure 10.

Assuming that processor P

i

is the one which

started the execution of b, then the initial kill

message will be sent to P

i

from the worker which

13

a & b & c

d & f

g

h & i

j

b

d f

h i

Failing Subgoal

1

2

3

4

5

6

7

6

7

Figure 10: An Example of Eager Kill

failed in the computation of c. If P

i

was look-

ing for work by invoking the and-scheduler, then

it will simply leave the and-scheduler and start

serving the kill. Otherwise, at the next check

for kill it will suspend the current execution, set

the shadow registers and move to service the kill.

Let's assume the second case.

As mentioned in section 6.3.1, P

i

has access to

the �rst parcall frame generated during the com-

putation of b. It positions itself on that parcall

frame and, since this has already completed (i.e.

it is in outside status), it starts the killing activ-

ity by sending a kill to the continuation of the

parcall frame (step 2). The continuation itself

contains another parcall frame (pointed to by the

endmarker of the previous parcall frame), so the

worker receving this kill message will access the

parcall frame (step 3) and send another kill mes-

sage to its continuation (since even this parcall

frame is in outside status). The worker executing

j will receive the kill and serve it, removing the

whole computation of j and setting the appropri-

ate bit in the parcall frame (h&i). At this point

the worker that is busy waiting on such parcall

frame (busy waiting until the continuation has

been killed) will kill all the subgoals of the par-

allel call (h and i, step 6) and then continue fur-

ther and kill g. Once g has been removed, a bit

in the parcall frame (d&f) is set and P

i

, which

was in the meantime busy waiting on that parcall

frame (busy waiting until the continuation has

been killed), may proceed to send the kill mes-

sages to the subgoals of the parallel call (d and f,

step 7) and, once all of them have reported the

end of the kill, it may proceed with the killing of

b.

Once the whole branch has been removed and

also a has reported the end of the kill, the worker

P

i

is free to restart the computation previously

interrupted.

Note that both the Lazy and Eager schemes for

propagating kill can be optimized further, how-

ever, we do not describe these possible improve-

ments due to lack of space. More details can be

found elsewhere [9]. The Lazy scheme has been

incorporated in the and-parallel component of the

ACE system [8, 3].

7 Conclusion

In this paper we presented a novel optimization

called Last Parallel Call Optimization. The Last

Parallel Call optimization can be regarded as an

extension of last call optimization, found in se-

quential systems, to and-parallel systems. We

also presented some experimental results that

demonstrate the e�ectiveness of this optimiza-

tion. Not only the LPCO saves space, it also

leads to reduced runtime for a majority of and-

parallel programs. The modi�cations needed to

incorporate the LPCO in an and-parallel system

are quite minor and only require some changes

to the way the parcall frame (of RAPWAM) is

implemented. We plan to include LPCO in the

and-parallel component of ACE, an and-or par-

allel system being collaboratively developed by

New Mexico State University and University of

Madrid. We also discussed the problem of e�-

ciently supporting the kill operation in an and-

parallel system. We presented two approach, one

lazy and the other eager, of which the former has

been currently incorporated in the and-or paral-

lel system ACE. The techniques discussed in this

14

paper, we believe, are very pragmatic and will be

immensely useful to implementors of and-parallel

systems.

References

[1] J. Barklund, H. Millroth. Providing Iteration

and Concurrency in Logic Program through

Bounded Quanti�cations. In Proc. Interna-

tional Conf. on Fifth Generation Computer

Systems, June 1992, pages 817{824.

[2] D. DeGroot. Restricted AND-parallelism. In

International Conference on Fifth Genera-

tion Computer Systems, Nov., 1984.

[3] G.Gupta, E. Pontelli, M. Hermenegildo,

V. Santos Costa. ACE: And/Or-parallel

Copying-based Execution of Logic Programs.

In Proc. International Conference on Logic

Programming, 1994, MIT PRess, to appear.

[4] M. V. Hermenegildo. An Abstract Ma-

chine for Restricted AND-parallel Execution

of Logic Programs. In Third International

Conference on Logic Programming, Lecture

Notes in Computer Science 225, pages 25{

40. Springer-Verlag, July 1986.

[5] M. V. Hermenegildo, R. I. Nasr, E�cient

Implementation of backtracking in AND-

parallelism. In 3rd International Conference

on Logic Programming, London, 1986. pages

40{54.

[6] D. Jacobs and A. Langen. Accurate and Ef-

�cient Approximation of Variable Aliasing

in Logic Programs. In 1989 North Ameri-

can Conference on Logic Programming. MIT

Press, October 1989.

[7] K. Muthukumar and M. Hermenegildo.

Compile-time Derivation of Variable Depen-

dency Using Abstract Interpretation. Jour-

nal of Logic Programming, 13(2 and 3):315{

347, July 1992.

[8] E. Pontelli, G. Gupta, M. Hermenegildo.

ACE: A progress Report. Technical Report.

Department of Computer Science. New Mex-

ico State University, March 1994.

[9] E. Pontelli, M. Carro, G. Gupta, \Kill and

Backtracking in And-parallel Systems," In-

ternal Report, ACE Project, Department of

Computer Science, New Mexico State Uni-

versity, Dec. 1993.

[10] K. Shen: Studies in And/Or Parallelism

in Prolog. Ph.D thesis, University of Cam-

bridge, 1992.

[11] D. H. D. Warren. Last Call Optimiza-

tion. \An Improved Prolog Implementation

Which Optimises Tail Recursion," In 2nd In-

ternational Logic Programming Conference,

1984, K. Clark and S. A. T�arnlund (eds).

Academic Press. Also Research Paper 156,

DAI, Univ. of Edinburgh, 1980.

15

