
Abstraction-Carrying Code

Elvira Albert1, Germán Puebla2, and Manuel Hermenegildo2,3

1 DSIP, Universidad Complutense Madrid
2 Facultad de Informática, Technical University of Madrid

3 Depts. of Comp. Sci. and El. and Comp. Eng., U. of New Mexico

Abstract. Proof-Carrying Code (PCC) is a general approach to mo-
bile code safety in which programs are augmented with a certificate (or
proof). The practical uptake of PCC greatly depends on the existence
of a variety of enabling technologies which allow both to prove programs
correct and to replace a costly verification process by an efficient checking
procedure on the consumer side. In this work we propose Abstraction-

Carrying Code (ACC), a novel approach which uses abstract interpre-
tation as enabling technology. We argue that the large body of applica-
tions of abstract interpretation to program verification is amenable to
the overall PCC scheme. In particular, we rely on an expressive class
of safety policies which can be defined over different abstract domains.
We use an abstraction (or abstract model) of the program computed by
standard static analyzers as a certificate. The validity of the abstrac-
tion on the consumer side is checked in a single-pass by a very efficient
and specialized abstract-interpreter. We believe that ACC brings the
expressiveness, flexibility and automation which is inherent in abstract
interpretation techniques to the area of mobile code safety. We have im-
plemented and benchmarked ACC within the Ciao system preprocessor.
The experimental results show that the checking phase is indeed faster
than the proof generation phase, and that the sizes of certificates are
reasonable.

1 Introduction

One of the most important challenges which computing research faces today
is the development of security techniques for verifying that the execution of a
program (possibly) supplied by an untrusted source is safe, i.e., it meets certain
properties according to a predefined safety policy. Proof-Carrying Code (PCC)
[15] is an enabling technology for mobile code safety which proposes to asso-
ciate safety information in the form of a certificate to programs. The certificate
(or proof) is created at compile time, and packaged along with the untrusted
code. The consumer who receives or downloads the code+certificate package can
then run a checker which by a straightforward inspection of the code and the
certificate, can verify the validity of the certificate and thus compliance with
the safety policy. The key benefit of this “certificate-based” approach to mobile
code safety is that the consumer’s task is reduced from the level of proving to
the level of checking. Indeed the (proof) checker performs a task that should be
much simpler, efficient, and automatic than generating the original certificate.

The practical uptake of PCC greatly depends on the existence of a variety
of enabling technologies which allow:

1. defining expressive safety policies covering a wide range of properties,
2. solving the problem of how to automatically generate the certificates (i.e.,

automatically proving the programs correct), and
3. replacing a costly verification process by an efficient checking procedure on

the consumer side.

The main approaches applied up to now are based on theorem proving and type
analysis. For instance, in PCC the certificate is originally a proof in first-order
logic of certain verification conditions and the checking process involves ensuring
that the certificate is indeed a valid first-order proof. In Typed Assembly Lan-
guages [13], the certificate is a type annotation of the assembly language program
and the checking process involves a form of type checking. Each of the different
approaches possess their own set of stronger and weaker points. Depending on
the particular safety property and the available computing resources in the con-
sumer, some approaches are more suitable than others. In some cases the priority
is to reduce the size of the certificate as much as possible in order to fit in small
devices or to cope with scarce network access (as in, e.g., Oracle-based PCC [17]
or Tactic-based PCC [1]), whereas in other cases the priority is to reduce the
checking time (as in, e.g., standard PCC [15] or lightweight bytecode verification
[11]). As a result of all this, a successful certificate infrastructure should have a
wide set of enabling technologies available for the different requirements.

In this work we propose Abstraction-Carrying Code (ACC), a novel approach
which uses abstract interpretation [5] as enabling technology to handle the above
practical (and difficult) challenges. Abstract interpretation is now a well es-
tablished technique which has allowed the development of very sophisticated
global static program analyses that are at the same time automatic, provably
correct, and practical. The basic idea of abstract interpretation is to infer in-
formation on programs by interpreting (“running”) them using abstract values
rather than concrete ones, thus obtaining safe approximations of the behavior
of the program. The technique allows inferring much richer information than,
for example, traditional types. This includes data structure shape (with pointer
sharing), bounds on data structure sizes, and other operational variable instan-
tiation properties, as well as procedure-level properties such as determinacy,
termination, non-failure, and bounds on resource consumption (time or space
cost). Our proposal, ACC, opens the door to the applicability of the above
domains as enabling technology for PCC. In particular, ACC has the following
three fundamental elements:

1. An expressive class of safety policies based on “abstract”—i.e. symbolic—
properties over different abstract domains. Our framework is parametric
w.r.t. the abstract domain(s) of interest, which gives us generality and ex-
pressiveness.

2. A fixpoint static analyzer is used to automatically infer an abstract model
(or simply abstraction) about the mobile code which can then be used to
prove that the code is safe w.r.t. the given policy in a straightforward way.

2

We identify the particular subset of the analysis results which is sufficient
for this purpose.

3. A simple, easy-to-trust (analysis) checker verifies the validity of the infor-
mation on the mobile code. It is indeed a specialized abstract interpreter
whose key characteristic is that it does not need to iterate in order to reach
a fixpoint (in contrast to standard analyzers).

While ACC is a general approach, for concreteness we develop herein an incarna-
tion of it in the context of (Constraint) Logic Programming, (C)LP, because this
paradigm offers a good number of advantages, an important one being the matu-
rity and sophistication of the analysis tools available for it. Also for concreteness,
we build on the algorithms of (and report on an implementation on) CiaoPP [8],
the abstract interpretation-based preprocessor of the Ciao multi-paradigm (Con-
straint) Logic Programming system. CiaoPP uses modular, incremental abstract
interpretation as a fundamental tool to obtain information about programs. The
semantic approximations thus produced have been applied to perform high- and
low-level optimizations during program compilation, including transformations
such as multiple abstract specialization, parallelization, resource usage control,
and program verification. We report on our extension of the framework to in-
corporate ACC and on how this instantiation of ACC already shows promising
results.

2 An Assertion Language to Specify the Safety Policy

The purpose of a safety policy is to specify precisely the conditions under which
the execution of a program is considered safe. We propose the use of (a subset of)
the high-level assertion language [18] available in CiaoPP to define an expressive
class of safety policies in the context of constraint logic programs.

2.1 Preliminaries and Notation

We assume familiarity with constraint logic programming [10] (CLP) and the
concepts of abstract interpretation [5] which underlie most analyses in CLP.
The remaining of this section introduces some notation and recalls preliminary
concepts on these topics.

Terms are constructed from variables (e.g., X), functors (e.g., f) and pred-
icates (e.g., p). We denote by {X1 7→ t1, . . . , Xn 7→ tn} the substitution σ with
σ(Xi) = ti for all i = 1, . . . , n (with Xi 6= Xj if i 6= j) and σ(X) = X for any
other variable X, where ti are terms. A renaming is a substitution ρ for which
there exists the inverse ρ−1 such that ρρ−1 ≡ ρ−1ρ ≡ id. We say that a renaming
ρ is a renaming substitution of term t1 w.r.t. term t2 if t2 = ρ(t1).

A constraint is essentially a conjunction of expressions built from predefined
predicates. An atom has the form p(t1, ..., tn) where p is a predicate symbol and
the ti are terms. A literal is either an atom or a constraint. A goal is a finite
sequence of literals. A rule is of the form H:-B where H, the head, is an atom
and B, the body, is a possibly empty finite sequence of literals. A CLP program,
or program, is a finite set of rules.

3

Example 1. The main predicate, create streams/2, of the following CLP pro-
gram receives a list of numbers which correspond to certain file names, and
returns in the second argument the list of file handlers (streams) associated to
the (opened) files:

create_streams([],[]).

create_streams([N|NL],[F|FL]):-

number_codes(N,ChInN), app("/tmp/",ChInN,Fname),

safe_open(Fname,write,F), create_streams(NL,FL).

safe_open(Fname,Mode,Stream):-

atom_codes(File,Fname), open(File,Mode,Stream).

The call number codes(N,ChInN) receives the number N and returns in ChInN

the list of the ASCII codes of the characters comprising a representation of
N. Then, it uses the well-known list concatenation predicate app/3. The call
atom codes(File,Fname) receives in Fname a list of ASCII codes and returns
the atom File made up of the corresponding characters. Also, a call such as
open(File,Mode,Stream) opens the file named File and returns in Stream the
stream associated with the file. The argument Mode can have any of the values:
read, write, or append.4

A distinguishing feature of our approach is that a class of safety policies can be
defined for the different abstract domains available in the system. In particular,
safety properties are expressed as substitutions in the context of an abstract
domain (Dα) which is simpler than the selected concrete domain (D). An ab-
stract value is a finite representation of a, possibly infinite, set of actual values
in the concrete domain. Our approach relies on the abstract interpretation the-
ory [5], where the set of all possible abstract semantic values which represents
Dα is usually a complete lattice or cpo which is ascending chain finite. How-
ever, for this study, abstract interpretation is restricted to complete lattices over
sets, both for the concrete 〈2D,⊆〉 and abstract 〈Dα,v〉 domains. Abstract val-
ues and sets of concrete values are related via a pair of monotonic mappings
〈α, γ〉: abstraction α : 2D → Dα, and concretization γ : Dα → 2D, such that
∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general v is induced
by ⊆ and α. Similarly, the operations of least upper bound (t) and greatest lower
bound (u) mimic those of 2D in a precise sense. In this framework an abstract
property is defined as an abstract substitution which allows us to express prop-
erties, in terms of an abstract domain, that the execution of a program must
satisfy. The description domain we use in our examples is the following regular
type domain [6].

Example 2 (regular type domain). We refer to the regular type domain as eterms,
since it is the name it has in CiaoPP. Abstract substitutions in eterms [21],
over a set of variables V , assign a regular type to each variable in V . We use
in our examples term as the most general type (i.e., term ≡ > corresponds

4 Predicates number codes/2, atom codes/2, and open/3 are ISO-standard Prolog
predicates, and thus they are available in CiaoPP.

4

to all possible terms). We also allow parametric types such as list(T) which
denotes lists whose elements are all of type T. Type list is clearly equivalent
to list(term). Also, list(T) v list v term for any type T. The least general
substitution ⊥ assigns the empty set of values to each variable.5

Apart from predefined types, in the eterms domain, one can have user-defined
regular types declared by means of Regular Unary Logic programs [7]. For in-
stance, in the context of mobile code, it is a safety issue whether the code tries
to access files which are not related to the application in the machine consuming
the code. A very simple safety policy can be to enforce that the mobile code
only accesses temporary files. In a UNIX system this can be controlled (under
some assumptions) by ensuring that the file resides in the directory /tmp/. The
following regular type safe name defines this notion of safety:6

:- regtype safe_name/1.

safe_name("/tmp/"||L) :- list(L,alphanum_code).

:- regtype alphanum_code/1.

alphanum_code(X):- member(X,"abcdefghijklmnopqrstuvwzyz").

alphanum_code(X):- member(X,"ABCDEFGHIJKLMNOPQRSTUVWXYZ").

alphanum_code(X):- member(X,"0123456789").

The abstract property made up of substitution {X7→safe name} expresses that
X is bound to a string which starts by the prefix “/tmp/” followed by a list of
alpha-numerical characters. In the following, we write simply safe name(X) to
represent it.

2.2 The Safety Policy

Assertions are syntactic objects which allow expressing a wide variety of high-
level properties of (in our case CLP-) programs. Examples are assertions which
state information on entry points to a program module, assertions which de-
scribe properties of built-ins, assertions which provide some type declarations,
cost bounds, etc. The original assertion language [18] available in CiaoPP is com-
posed of several assertion schemes. Among them, we simply consider the two
following schemes for the purpose of this paper, which intuitively correspond to
the traditional pre- and postcondition on procedures.

calls(B, {λ1

Pre; . . . ;λ
n
Pre}): They express properties which should hold in any

call to a given predicate similarly to the traditional precondition. B is a
predicate descriptor, i.e., it has a predicate symbol as main functor and all
arguments are distinct free variables, and λi

Pre, i = 1, . . . , n, are abstract
properties about execution states. The resulting assertion should be inter-
preted as “in all activations of B at least one property λi

Pre should hold in
the calling state.”

5 Let us note that certain abstract domains assign a different meaning to ⊥. In these
cases, a distinguished symbol (i.e., an extra ⊥) can always be added to represent
unreachable points.

6 The regtype declarations are used to define new regular types in CiaoPP.

5

success(B, [λPre,]λPost): This assertion schema is used to describe a postcon-
dition which must hold on all success states for a given predicate. B is a
predicate descriptor, and λPre and λPost are abstract properties about ex-
ecution states. λPre is optional and must be evaluated w.r.t. the store at
the calling state to the predicate while condition λPost is evaluated at the
success state. If the optional λPre is present, then λPost is only required to
hold in those success states which correspond to call states satisfying λPre.
Note that several success assertions with different λPre may be given.

Therefore, abstract properties λPre and λPost in assertions allow us to express
conditions, in terms of an abstract domain, that the execution of a program must
satisfy. Each condition is an abstract substitution corresponding to the variables
in some atom. In existing approaches, safety policies usually correspond to some
variants of type safety (which may also control the correct access of memory
or array bounds [16]). In our system, the (co-)existence of several domains al-
lows expressing a wider range of properties using the assertion language. They
include a wide class of safety policies based on modes, types, non-failure, ter-
mination, determinacy, non-suspension, non-floundering, cost bounds, and their
combinations.

In the CiaoPP preprocessor, the assertion language allows us to define the
safety policy for the run-time system in the presence of foreign functions, built-
ins, etc. In general, it is the task of the compiler designer to define the safety
policies associated to the predefined system predicates. In addition to these
assertions, the user can optionally provide further assertions manually for user-
defined predicates.

Example 3. The following assertion for predicate safe open:
calls(safe open(Fname, ,), {safe name(Fname)})

provides a simple way to guarantee that all calls to open are safe. It can be read as
“the calling conventions for predicate safe open require that the first argument
be a safe name”. Meanwhile the following assertion for open is predefined in our
system:

success(open(X,Y,Z), >, {constant(X),io mode(Y),stream(Z)})
It requires, upon success, the first variable to be of type constant, the second
a proper io mode and the last one of type stream.

In contrast to traditional approaches, assertions are not compulsory for every
predicate. Thus, the user can decide how much effort to put into writing as-
sertions: the more of them there are, the more complete the partial correctness
of the program is described and more possibilities to detect problems. Indeed,
pre- and post-conditions are frequently provided by programmers since they are
often easy to write and very useful for generating program documentation. Nev-
ertheless, the analysis algorithm is able to obtain safe approximations of the
program behavior even if no assertions are given. This is not always the case in
other approaches such as classical program verification, in which loop invariants
are actually required. Such invariants are hard to find and existing automated
techniques are generally not sufficient to infer them, so that often they have to
be provided by hand.

6

Domain Domain

OK OK

OK

Program

Checker

VCGenVCGen

Abstraction

Analyzer

Safety Policy Safety Policy

PRODUCER CONSUMER ,

Fig. 1. Abstraction-Carrying Code in CiaoPP

3 Certifying Programs by Static Analysis

Fig. 1 presents an overview of ACC as performed in the CiaoPP system. This
section introduces the certification process (sketched to the left of the figure)
carried out by the producer, i.e., the generation of a certificate to attest the
adherence of the program to the safety policy. The whole certification method is
based on the following idea: an abstraction of the program computed by abstract
interpretation-based analyzers can play the role of certificate for attesting pro-
gram safety. Our certification process is carried out in the following phases. We
start from an initial program P . Firstly, the Safety Policy is defined by means of
a set of assertions AS in the context of an abstract domain Dα, as introduced in
Sect. 2, among a repertoire of Domains available in the system. Secondly, a stan-
dard Analyzer is run, which returns an abstraction of P ’s execution in terms of
the abstract domain Dα. Let us note that the analyzer is domain–independent.
This allows plugging in different abstract Domains provided suitable interfacing
functions are defined. From the user point of view, it is sufficient to specify the
particular abstract domain desired during the generation of the safety assertions.
Then, a verification condition generator, VCGen extracts, from the initial asser-
tions and the abstraction, a Verification Condition (VC) which can be proved
only if the execution of the code does not violate the safety policy. If VC can
be proved (marked as OK in Fig. 1), then the certificate (i.e., the abstraction)
is sent together with the program P to the code consumer. Sections 3.1 and 3.2
give further details on the Abstraction and the VCGen process, respectively.

3.1 Using Analysis Results as Certificates

A key idea in our certification process is that the certificate is automatically
generated by an abstract interpretation-based analyzer (or simply static ana-
lyzer). In particular, the goal dependent (a.k.a. goal oriented) analyzer of [9],
which is the one implemented in the CiaoPP system, plays the role of Analyzer.
This analysis algorithm (we simply write Analysis for short in the following)
receives as input, in addition to the program P and the abstract domain Dα, a
set of calling patterns CP . A calling pattern is a description of the calling modes

7

(or entries) into the program. For simplicity, we assume that P comes enhanced
with its entries CP . In particular, a set of calling patterns Q consists of a set
of pairs of the form 〈A : CP 〉 where A is a predicate descriptor and CP is an
abstract substitution (i.e., a condition of the run-time bindings) of A expressed
as CP ∈ Dα. In principle, calling patterns are only required for exported pred-
icates. The analysis algorithm is able to generate them automatically for the
remaining internal predicates. Nevertheless, they can still be automatically gen-
erated by assuming > (i.e., no initial data) for all exported predicates (although
the idea is to improve this information in the initial calling patterns).

In order to compute Analysis(P,Q,Dα), traditional (goal dependent) ab-
stract interpreters for (C)LP programs construct an and–or graph (or analysis
graph) which corresponds to (or approximates) the abstract semantics of the
program [2]. The graph has two sorts of nodes: or–nodes and and–nodes. Or–
nodes correspond to literals whilst and–nodes to rules. Both kinds of nodes are
interleaved in the graph and connected as follows. An or–node has arcs to those
and–nodes which correspond to the rules whose head unifies with the literal
it represents. An and–node for a rule H :– B1, . . . , Bn has n arcs to the or–
nodes which corresponds to the literals Bi in the body of the rule. Due to space
limitations, and given that it is now well understood, we do not describe here
algorithm Analysis(P,Q,Dα) (details can be found in, e.g., [9]). Nevertheless,
the checking algorithm of Sect. 4 illustrates how an and–or graph is traversed.

The analysis graph computed by CiaoPP’s analyzer represents an abstract
model (or abstraction) of the program. It is represented by means of two data
structures in the output: the answer table and the arc dependency table. The
following definition introduces the notion of analysis table (similar definitions
can be found, e.g., in [2, 9]). Informally, it says that its entries are of the form
〈A : CP 7→ AP〉 which should be interpreted as “the answer pattern for calls to
A satisfying precondition (or call substitution), CP, accomplishes postcondition
(or success substitution), AP.”

Definition 1 (AT – analysis answer table). Let P be a program. Let Q

be a set of calling patterns expressed in the abstract domain Dα. We define an
analysis answer table, AT , as the set of entries 〈Aj : CPj 7→ APj〉, ∀j = 1..n
computed by Analysis(P,Q,Dα)[9] where, in each entry, Aj is an atom and CPj

and APj are, respectively, the abstract call and success substitutions.

Intuitively, the answer table contains the answer patterns for all literals in the
or–nodes of the graph while the arc dependency table keeps detailed information
about dependencies among or–nodes in the graph. A central idea in this work
is that, for certifying program safety, it suffices to send the information stored
in the analysis answer table. In contrast to the original generic algorithm [9], a
simple analysis checker can be designed for validating the answer table without
requiring the use of the arc dependency table at all (as we show in Sect. 4).
The theory of abstract interpretation guarantees that the answer table is a safe
approximation of the runtime behavior (see [2, 9] for details).

Example 4. Take the calling pattern 〈create streams(X, Y), {list(X, num)}〉,
which indicates that calls to create streams are performed with a list of num-

8

bers in the first argument. The answer table computed by CiaoPP contains
(among others) these entries:

〈create streams(A, B) : {list(A, num)} 7→ {list(A, num), list(B, stream)}〉
〈safe open(A, B, C) : {sf(A), B = write} 7→ {sf(A), B = write, stream(B)}〉

The first entry should be interpreted as: all calls to predicate create streams

provide as input a list of numbers in the first argument and, upon success, they
yield lists of numbers and streams, respectively, in each of its two arguments. In
the second entry, it is interesting to note that CiaoPP creates the auxiliary type:

sf("/tmp/"||A):-list(A,numcodes).

to represent lists of numbers starting by the prefix "/tmp/". We use the notation
B = write to denote that the system generates a new type for B whose only
element is constant write.

In order to increase accuracy, analyzers are usually multivariant on calls (see, e.g.,
[9]). Indeed, though not visible in this example, CiaoPP incorporates a multivari-
ant analysis, i.e., more than one triple 〈A : CP1 7→ AP1〉,. . ., 〈A : CPn 7→ APn〉
n > 1 with CPi 6= APi for some i, j may be computed for the same predicate
descriptor A.

It is important to note that our approach would work directly in other pro-
gramming paradigms, such as imperative or functional programming (the latter
already covered in our current system), as long as a static analyzer/checker is
available. Note that the fundamental components of the approach (fixpoint se-
mantics and abstract interpretation) have both been widely applied also in these
paradigms.

3.2 The Verification Condition

In the next step, the verification condition generator (VCGen in Fig. 1) extracts,
from the initial assertions and answer table, a Verification Condition (VC) which
can be proved only if the execution of the code does not violate the safety policy.

Definition 2 (VC – verification condition). Let AT be an analysis answer
table computed for a program P and a set of calling patterns Q in the abstract
domain Dα. Let S be an assertion. Then, the verification condition, V C(S,AT),
for S w.r.t. AT is defined as follows:

V C(S,AT) ::=







































∧

〈A:CP 7→AP 〉∈AT

(ρ(CP) v λ1

Prec ∨ . . . ∨ ρ(CP) v λn
Prec)

if S = calls(B, {λ1

Prec; . . . ;λ
n
Prec})

∧

〈A:CP 7→AP 〉∈AT

ρ(CP) u λPrec = ⊥ ∨ ρ(AP) v λPost

if S = success(B, λPrec, λPost)

where ρ is a variable renaming substitution of A w.r.t. B.
If AS is a finite set of assertions, then its verification condition, V (AS,AT),

is the conjunction of the verification conditions of the elements of AS.

9

Roughly speaking, the VC generated according to Def. 2 is a conjunction of
boolean expressions (possibly containing disjunctions) whose validity ensures the
consistency of a set of assertions w.r.t. the answer table computed by Analysis.
It distinguishes two different cases depending on the kind of assertion. For calls
assertions, the VC requires that at least one precondition λi

Prec be a safe ap-
proximation of all existing abstract calling patterns for the atom B. In the case
of success assertions, there are two cases for them to hold. The first one indi-
cates that the precondition is never satisfied and, thus, the assertion trivially
holds (and the postcondition does not need to be tested). The second corre-
sponds to the case in which the success substitutions computed by analysis for
the predicate are more particular than the one required by the assertion.

Example 5. Consider the entry for predicate safe open in the answer table of
Ex. 4 and the calls assertion of Ex. 3 for the same predicate. According to
Def. 2, the VC is: B = write, sf(X) v safe name(X) whose validity can be easily
proved in our system since sf v safe name. This allows CiaoPP to infer that
calls to open performed within this program satisfy the simple safety policy
discussed in Ex. 1. The complete example includes further assertions for the
different predicates and its corresponding VCs. We do not include them here
due to space limitations.

Therefore, upon creating the answer table and generating the VC, the validity
of the whole boolean condition is checked by resolving each conjunct separately.
Note that each conjunct consists of comparisons of pairs of abstract substitu-
tions, which simply return either true or false but do not compute any substi-
tution. This validation may yield three different possible status: i) the VC is
indeed checked and the AT is considered a valid abstraction (marked as OK),
ii) it is disproved, and thus the certificate is not valid and the code is definitely
not safe to run (we should obviously correct the program before continuing the
process); iii) it cannot be proved nor disproved. The latter case happens because
some properties are undecidable and the analyzer performs approximations in
order to always terminate. Therefore, it may not be able to infer precise enough
information to verify the conditions. The user can then provide a more refined
description of initial calling patterns or choose a different, finer-grained, domain.
Although, it is not shown in the picture, in both the ii) and iii) cases, the certi-
fication process needs to be restarted until achieving a VC which meets i).

The following theorem states the soundness of the VC. Intuitively, it amounts
to saying that if the VC holds, then the execution of the program will preserve
all safety assertions. Following the notation of [15], we write BV C when V C is
valid.

Theorem 1 (Soundness of the Verification Condition). Let AT be an
analysis answer table for a program P and a set of calling patterns Q in an
abstract domain Dα (as defined in Def. 1). Let AS be a set of assertions. Let
V C(AS,AT) be the verification condition for AS w.r.t. AT (generated as stated
in Def. 2). If BV C(AS,AT), then P satisfies all assertions in AS for all com-
putations described by Q.

This result derives from the fact that the static analysis algorithm of [9] computes
a safe approximation of the stores reached during computation.

10

4 Checking Safety in the Consumer

The checking process performed by the consumer is illustrated in the right hand
side of Fig. 1. Initially, the supplier sends the program P together with the
certificate to the consumer. To retain the safety guarantees, the consumer can
provide a new set of assertions which specify the Safety Policy required by this
particular consumer. It should be noted that ACC is very flexible in that it allows
different implementations on the way the safety policy is provided. Clearly, the
same assertions AS used by the producer can be sent to the consumer. But,
more interestingly, the consumer can decide to impose a weaker safety condition
which can still be proved with the submitted abstraction. Also, the imposed
safety condition can be stronger and it may not be proved if it is not implied by
the current abstraction (which means that the code would be rejected). From the
provided assertions, the consumer must generate again a trustworthy VC and
use the incoming certificate to efficiently check that the VC holds. Thus, in the
validation process, a code consumer not only checks the validity of the answer
table but it also (re-)generates a trustworthy VC. The re-generation of V C (and
its corresponding validation) is identical to the process already discussed in the
previous section. Therefore, this section describes only the former part of the
validation process, i.e., algorithm check.

Although global analysis is now routinely used as a practical tool, it is still un-
acceptable to run the whole Analysis to validate the certificate since it involves
considerable cost. One of the main reasons is that the analysis algorithm is an it-
erative process which often computes answers (repeatedly) for the same call due
to possible updates introduced by further computations. At each iteration, the
algorithm has to manipulate rather complex data structures—which involve per-
forming updates, lookups, etc.—until the fixpoint is reached. The whole valida-
tion process is centered around the following observation: the checking algorithm
can be defined as a very simplified “one-pass” analyzer. The computation of the
Analysis algorithm can be understood as: Analysis = fixpoint(analysis step).
I.e., a process which repeatedly performs a traversal of the analysis graph (de-
noted by analysis step) until the computed information does not change. The
idea is that the simple, non-iterative, analysis step process can play the role
of abstract interpretation-based checker (or simply analysis checker). In other
words, check ≡ analysis step. Intuitively, since the certification process already
provides the fixpoint result as certificate, an additional analysis pass over it can-
not change the result. Thus, as long as the answer table is valid, one single
execution of analysis step validates the certificate.

The next definition presents our abstract interpretation-based checking al-
gorithm. It receives as an additional input a Certificate (which is the analysis
fixpoint). In a single traversal, it constructs a program analysis graph by using
the information in Certificate. The algorithm is devised as a graph traversal pro-
cedure which places entries in a local answer table, AT , as new nodes in the
program analysis graph are encountered. Thus, it handles two distinct answer
tables: the local AT + the incoming Certificate. The final goal of the checking is
to reconstruct the analysis graph and compare the results with the information

11

stored in Certificate. As long as Certificate is valid, both results coincide and,
thus, the certificate is guaranteed to be valid w.r.t. the program.

Definition 3 (Analysis Checker). Let P be a normalized7 program and Q be
a set of calling patterns in the abstract domain Dα. Let Certificate be a safety
certificate as defined in Def. 1. The validation of Certificate is performed by the
procedure check depicted in Figure 2. The algorithm uses a local answer table,
AT , to compute the results (initially it does not contain any entry). Procedure
check is defined in terms of five abstract operations [9] on the description domain
Dα of interest:

– Arestrict(CP,V) performs the abstract restriction of a description CP to the
set of variables in the set V , denoted vars(V);

– Aextend(CP,V) extends the description CP to the variables in the set V ;
– Aadd(C,CP) performs the abstract operation of conjoining the actual con-

straint C with the description CP;
– Aconj(CP1,CP2) performs the abstract conjunction of two descriptions;
– Alub(CP1,CP2) performs the abstract disjunction of two descriptions.

Following the presentation of Analysis [9], we assume that the program
P and the answer table are global parameters throughout the algorithm. The
checking algorithm proceeds as follows. For each calling pattern in the set Q,
the procedure process node inspects all rules defining the considered atom. For
each rule, it performs a left-to-right traversal of the atoms in the rule body.
The processing of each atom Bk,i in the rule body is handled by process arc.
We refer by CPb to the description of the program point immediately before the
atom Bk,i and by CPa to the description after processing the atom. Initially,
the description CPb takes the value of the initial description CP for the calling
pattern A : CP (extended to all the variables in the rule).8 We use variables
CPRx to denote that description CPx has been restricted, with x ∈ {a, b}. The
procedure process arc is aimed at computing the resulting description CPa after
processing a given atom Bk,i. It distinguishes two different cases:

– Constraints are simply abstractly added to the current description.
– If Bk,i is an atom, then it inspects whether it has been processed before:

• If the atom already has an entry in the answer table, we do not need to
recompute it. Indeed, this could risk the termination of the algorithm.

• Otherwise, we process it by executing procedure process node. On return,
and in the absence of errors, this processing will have placed an answer
for Bk,i in the answer table (and possibly for other related atoms as
well).

Either way, there will be an answer for the atom at this point. This answer
is conjoined8 with the description CPb from the program point immediately
before Bk,i in order to obtain the description for the program point after it.

7 For clarity of presentation, in the algorithm we assume that all rule heads are normal-
ized, i.e., H is of the form p(X1, ..., Xn) where X1, ..., Xn are distinct free variables.

8 Further insights on the operations on abstract substitutions (like extensions, restric-
tions, disjunctions etc.) can be found in [2].

12

check(Q, Certificate)
foreach A : CP ∈ Q

process node(A : CP, Certificate)
return Valid

process node(A : CP, Certificate)
if (∃ a renaming σ s.t. σ(A : CP 7→ AP) in Certificate)

then add (A : CP 7→ AP) to AT
else return Error

foreach rule Ak ← Bk,1, . . . , Bk,nk
in P

W := vars(Ak, Bk,1, . . . , Bk,nk
)

CPb :=Aextend(CP, vars(Bk,1, . . . , Bk,nk
))

CPRb := Arestrict(CPb, Bk,1)
foreach Bk,i in the rule body i = 1, ..., nk

CPa := process arc(Bk,i : CPRb, CPb, W, Certificate)
if (i <> nk) then CPRa := Arestrict(CPa, var(Bk,i+1))
CPb := CPa

CPRb := CPRa

AP1 := Arestrict(CPa, vars(Ak))
AP2 := Alub(AP1, σ

−1(AP))
if AP <> AP2 then return Error

process arc(Bk,i : CPRb, CPb, W, Certificate)
if Bk,i is a constraint then CPa := Aadd (Bk,i, CPb)
elseif (6 ∃ a renaming σ s.t. σ(Bk,i : CPRb 7→ AP ′) in AT)

then process node (Bk,i : CPRb, Certificate)
AP1 := Aextend (ρ−1(AP), W) where ρ is a renaming s.t.

ρ(Bk,i : CPRb 7→ AP) in AT
CPa := Aconj (CPb, AP1)

return CPa

Fig. 2. Abstract Interpretation-based Checking in CiaoPP

The computed result is used to process the next literal in the rule when Bk,i

is not the last literal. Otherwise, the computed result constitutes indeed the
computed answer for the rule. The answer is combined 8 with the corresponding
answer supplied by the certification process in Certificate. If Certificate is valid,
the comparison should hold; otherwise the process prompts an error and the
program is not safe to run.

The following theorem ensures that algorithm check is able to validate safety
certificates which are stored in a valid analysis answer table.

Theorem 2 (partial correctness). Let P be a program, let Q be a set of
calling patterns in an abstract domain Dα. Let Certificate be a safety certificate
for P and Q as stated in Def. 1. Then, check(Q,Certificate) terminates and
validates Certificate in P .

The theorem can be demonstrated by showing that check is a simplified version of
Analysis [9] in two main aspects. Regarding the efficiency, our point to justify
an efficient behavior of check for validating an answer table is that it performs a

13

Analysis Checking Speedup Source Byte Code Certificate

Bench PA An TA PC Ch TC A/C TA/TC Source ByteC B/S Cert C/S

aiakl 2 87 89 2 71 72 1.2 1.2 1555 3805 2.4 3090 2.0
ann 22 452 474 18 254 272 1.8 1.7 12745 43884 3.4 24475 1.9
bid 4 56 60 4 35 38 1.6 1.6 4945 10376 2.1 5939 1.2
boyer 9 143 151 7 85 92 1.7 1.6 11010 32522 3.0 12300 1.1
browse 3 14 17 3 12 15 1.2 1.2 2589 8467 3.3 1661 0.6
deriv 2 86 88 1 19 20 4.6 4.4 957 4221 4.4 288 0.3
grammar 2 10 12 2 9 11 1.1 1.1 1598 3182 2.0 1259 0.8
hanoiapp 2 25 26 2 16 18 1.5 1.5 1172 2264 1.9 2325 2.0
mmatrix 1 13 14 1 10 11 1.3 1.3 557 1053 1.9 880 1.6
occur 2 16 18 2 10 12 1.7 1.6 1367 6903 5.0 1098 0.8
progeom 2 13 15 2 9 11 1.5 1.4 1619 3570 2.2 2148 1.3
read 9 792 801 8 488 497 1.6 1.6 11843 24619 2.1 25359 2.1
qplan 13 1411 1424 11 962 973 1.5 1.5 9983 33472 3.4 20509 2.1
qsortapp 1 20 21 1 12 14 1.6 1.5 664 1176 1.8 2355 3.5
query 5 11 15 4 9 12 1.2 1.3 2090 8833 4.2 531 0.3
rdtok 8 141 149 6 43 49 3.3 3.1 13704 15354 1.1 6533 0.5
serialize 2 40 42 2 17 19 2.3 2.2 987 3801 3.9 1779 1.8
warplan 8 173 181 7 108 115 1.6 1.6 5203 23971 4.6 15305 2.9
witt 16 196 212 14 72 86 2.7 2.5 17681 41760 2.4 19131 1.1
zebra 3 94 97 3 90 92 1.1 1.0 2284 5396 2.4 4058 1.8

Overall 1.63 1.61 1 2.66 1.44

Table 1. Checking Time and Certificate Size

single graph traversal. Indeed, for a regular type domain, [4] demonstrates that
directional type-checking for logic programs is fixed-parameter linear. The next
section reports experimental evidence of efficiency issues.

5 Experimental Results

In this section we show some experimental results aimed at studying two crucial
points for the practicality of our proposal: the checking time as compared to
the analysis time, and the size of certificates. We have implemented the checker
as a simplification of the generic abstract interpretation system of CiaoPP. It
should be noted that this is an efficient, highly optimized, state-of-the-art anal-
ysis system and which is part of a working compiler. Both the analysis and
checker are parametric w.r.t. the abstract domain. In these experiments they
both use the same implementation of the domain-dependent functions of the
sharing+freeness domain [14]. We have selected this domain because the infor-
mation it infers is very useful for reasoning about instantiation errors, which is a
crucial aspect for the safety of logic programs. The whole system is implemented
in Ciao 1.11#200 [3] with compilation to bytecode. All of our experiments have
been performed on a Pentium 4 at 2.4GHz and 512MB RAM running GNU
Linux RH9.0. The Linux kernel used is 2.4.25, customized with the hrtime patch
to provide improved precision and resolution in time measurements.

Execution times are given in milliseconds and measure runtime. They are
computed as the arithmetic mean of five runs. A relatively wide range of pro-

14

grams has been used as benchmarks. They are the same ones used in [9], where
they are described in some detail. For each benchmark, the columns for Analysis
are the following: PA is the time required by the preprocessing phase, in which
program clauses are processed and stored in the format required by the ana-
lyzer. The analysis time proper is shown in column An. The actual time needed
for analysis –the sum of these two times– is shown in column TA. Similarly, in
the case of checking, three columns are shown. The preprocessing phase, PC ,
includes asserting the certificate in addition to asserting the program to be ana-
lyzed. As the figures show, the overhead required for asserting the certificate is
negligible. Column Ch is the time for executing the checking algorithm. Finally,
TC is the total time for checking. The columns under Speedup compare analysis
and checking times. As can be seen in columns A/C and TA/TC , the checking
algorithm is faster than the analysis algorithm in all cases. The actual speedup
ranges from almost none, as in the case of zebra, to over four times faster in the
case of deriv. The last row summarizes the results for the different benchmarks
using a weighted mean, which places more importance on those benchmarks
with relatively larger analysis times. We use as weight for each program its ac-
tual analysis time. We believe that this weighted mean is more informative than
the arithmetic mean, as, for example, doubling the speed in which a large and
complex program is analyzed (checked) is more relevant than achieving this for
small, simple programs. Overall, the speedup is 1.63 in just analysis time, or
1.61 if we also take into account the preprocessing time. We believe that the
achieved speedup is significant taking into account that CiaoPP’s analyzer for
this domain is highly optimized and converges very efficiently. However, it is to
be expected that, for other domains and implementations, the relative gains will
be higher.

The second part of the table studies the size of the certificates, coded in
compact (fastread) format, for the different benchmarks and compares it to the
size of the source code for the same program and to the size of the corresponding
bytecode. To make this comparison fair, we subtract 4180 bytes from the size of
the bytecode for each program: the size of the bytecode for an empty program
in this version of Ciao (minimal top-level drivers and exception handlers for any
executable). The results show the size of the certificate to be quite reasonable. It
ranges from 0.3 times the size of the source code (for deriv) to 3.5 (in the case of
qsortapp). Overall, it is 1.44 times the size of the source code. We consider this
acceptable since in general Prolog programs are quite compact (up to 10 times
more compact than equivalent imperative programs). In fact, the size of source
plus certificate is smaller (1+1.44) than that of the bytecode (2.66).

6 Discussion and Related Work

The main contribution of this work is to introduce, implement, and (preliminar-
ily) benchmark abstraction-carrying code (ACC) as a novel enabling technology
for PCC, which is based throughout on the use of abstract interpretation tech-
niques. We argue that ACC is highly flexible due to the parametricity on the
abstract domain inherited from the analysis engines used in (C)LP. Our ap-
proach differs from existing approaches to PCC in several aspects. In our case,

15

the certificate is computed automatically on the producer side by an abstract
interpretation-based analyzer and the certificate takes the form of a particu-
lar subset of the analysis results. The burden on the consumer side is reduced
by using a simple one-traversal checker, which is a very simplified and efficient
abstract interpreter which does not need to compute a fixpoint.

A type-level dataflow analysis of Java virtual machine bytecode is also the
basis of most existing verifiers [12, 11], and some are loosely based on abstract
interpretation. These analyses allow proving that the program is correct w.r.t.
type-related correctness conditions. In [19] a proposal is presented to split the
type-based bytecode verification of the KVM (an embedded variant of the JVM)
in two phases, where the producer first computes the certificate by means of a
type-based dataflow analyzer and then the consumer simply checks that the
types provided in the code certificate are valid. As in our case, the second phase
can be done in a single, linear pass over the bytecode. However, these approaches
are designed limited to types, whereas our approach is inherently parametric and
thus supports a very rich set of domains, and combinations of several of them.
Let us note that the checker is part of the trusted computing base and, hence,
the code consumer has to trust also the domain operations. Other approaches
to PCC use logic-based verification methods as enabling technology, an example
is [22] which formalises a simple assembly language with procedures and presents
a safety policy for arithmetic overflow in Isabelle/HOL. The coexistence of
several abstract domains in our framework is somewhat related to the notion of
models to capture the security-relevant properties of code, as addressed in the
work on Model-Carrying Code (MCC) [20].

Another difference between our work and other related work is that the
instance that we have described is actually defined at the source-level, whereas
in existing PCC frameworks the code supplier typically packages the certificate
with the object code rather than with the source code (both are untrusted).
Actually, both approaches are of interest from our point of view (and, in fact, our
approach can also be applied to bytecode). Open-source code is becoming much
more relevant these days (in fact, Ciao and CiaoPP are themselves GNU-licensed
and available in source code). As a result, it is now realistic to expect that a
relatively large amount of untrusted source code is available to the consumer. The
advantages of open-source with respect to safety are important since it allows
inspecting the code and applying powerful techniques for program analysis and
validation which allow inferring information which may be difficult to observe
in low-level, compiled code.

Acknowledgments

This work was funded in part by the Information Society Technologies programme of

the European Commission, Future and Emerging Technologies under the IST-2001-

38059 ASAP project and by the Spanish Ministry of Science and Education under the

MCYT TIC 2002-0055 CUBICO project. Part of this work was performed during a

research stay of Elvira Albert and Germán Puebla at UNM supported by respective

grants from the Secretaŕıa de Estado de Educación y Universidades, Spanish Ministry

of Science and Education. Manuel Hermenegildo is also supported by the Prince of

Asturias Chair in Information Science and Technology at UNM.

16

References

1. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile resource
guarantees for smart devices. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean, editors, Proceedings of CASSIS’04, LNCS. Springer, 2004.

2. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91–124, 1991.

3. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla.
The Ciao System. Reference Manual (v1.10). May 2004. Technical University of
Madrid (UPM). Available at http://clip.dia.fi.upm.es/Software/Ciao.

4. W. Charatonik. Directional Type Checking for Logic Programs: Beyond Discrim-
inative Types. In Proc. of ESOP 2000, pages 72–87. LNCS 1782, 2000.

5. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL’77, pages 238–252, 1977.

6. P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In Types

in Logic Programming, pages 157–187. MIT Press, 1992.
7. T. Früwirth, E. Shapiro, M.Y. Vardi, and E. Yardeni. Logic programs as types for

logic programs. In Proc. LICS’91, pages 300–309, 1991.
8. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Develop-

ment Using Abstract Interpretation (and The Ciao System Preprocessor). In Proc.

of SAS’03, pages 127–152. Springer LNCS 2694, 2003.
9. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis

of Constraint Logic Programs. ACM TOPLAS, 22(2):187–223, March 2000.
10. J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of

Logic Programming, 19/20:503–581, 1994.
11. Xavier Leroy. Java bytecode verification: algorithms and formalizations. Journal

of Automated Reasoning, 30(3-4):235–269, 2003.
12. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-

Wesley, 1997.
13. G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly

language. ACM TOPLAS, 21(3):527–568, 1999.
14. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and

Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna-

tional Conference on Logic Programming, pages 49–63. MIT Press, June 1991.
15. G. Necula. Proof-Carrying Code. In Proc. of POPL’97, pages 106–119. ACM

Press, 1997.
16. G. Necula and P. Lee. The Design and Implementation of a Certifying Compiler.

In Proc. of PLDI’98. ACM Press, 1998.
17. G.C. Necula and S.P. Rahul. Oracle-based checking of untrusted software. In

Proceedings of POPL’01, pages 142–154. ACM Press, 2001.
18. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint

Logic Programs. In Analysis and Visualization Tools for Constraint Programming,
pages 23–61. Springer LNCS 1870, 2000.

19. K. Rose, E. Rose. Lightweight bytecode verification. In OOPSALA Workshop on

Formal Underpinnings of Java, 1998.
20. R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D. DuVarney. Model-

carrying code: A practical approach for safe execution of untrusted applications.
In Proc. of SOSP’03, pages 15–28. ACM, 2003.

21. C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic
programs. In Proc. of SAS’02, pages 102–116. Springer LNCS 2477, 2002.

22. M. Wildmoser and T. Nipkow. Certifying Machine Code Safety: Shallow Versus
Deep Embedding. In TPHOLs, number 3223 in LNCS. Springer, 2004.

17

