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Abstract

In spite of the important research efforts in the area, the integration of powerful partial
evaluation methods into practical compilers for logic programs is still far from reality. This
is related both to 1) efficiency issues and to 2) the complications of dealing with prac-
tical programs. Regarding efficiency, the most successful unfolding rules used nowadays
are based on well founded orders (wfo) or well quasi orders (wqo) applied over (cover-
ing) ancestors, i.e., a subsequence of the atoms selected during a derivation. Ancestor
(sub)sequences are used to improve the specialization power of unfolding while still guar-
anteeing termination and also to reduce the number of atoms for which the wfo or wqo has
to be checked. Unfortunately, maintaining the structure of the ancestor relation during
unfolding introduces significant overhead. We propose an efficient, practical local unfold-
ing rule based on the notion of covering ancestors which can be used in combination with
any wfo or wqo and allows a stack-based implementation without losing any opportunities
for specialization. Using our technique, certain non-leftmost unfoldings are allowed as long
as local unfolding is performed, i.e., any atom of the goal can be selected provided it is
one of those that have been more recently introduced in the goal. Regarding dealing with
practical programs, we propose assertion-based techniques which allow our approach to
treat programs that include (Prolog) built-ins and external predicates in a very extensible
manner, for the case of leftmost unfolding. Finally, we report on our implementation of
these techniques in a practical partial evaluator, embedded in a state of the art compiler
which uses global analysis extensively: the Ciao compiler and, specifically, its preprocessor
CiaoPP. The performance analysis of the resulting system shows that our techniques, in
addition to dealing with practical programs, are also significantly more efficient in time
and somewhat more efficient in memory than traditional tree-based implementations.

KEYWORDS: Partial Evaluation, Partial Deduction, Logic Programming, Prolog, SLD
semantics, Local Unfolding.

∗ A preliminary version of this work appeared in the Proceedings of LOPSTR 2004.
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1 Introduction

The main purpose of partial evaluation (see (Jones et al. 1993) for a general text

on the area) is to specialize a given program w.r.t. part of its input data—hence

it is also known as program specialization. Essentially, partial evaluators are non-

standard interpreters which evaluate expressions while enough information is avail-

able and residualize them otherwise. The partial evaluation of logic programs is

usually known as partial deduction (Lloyd and Shepherdson 1991; Gallagher 1993).

Informally, the partial deduction algorithm proceeds as follows. Given an input

program and a set of atoms, the first step consists in applying an unfolding rule to

compute finite (possibly incomplete) SLD trees for these atoms. This step returns

a set of resultants (or residual rules), i.e., a program, associated to the root-to-

leaf derivations of these trees. Then, an abstraction operator is applied to properly

add the atoms in the right-hand sides of resultants to the set of atoms to be par-

tially evaluated. The abstraction phase yields a new set of atoms, some of which

may in turn need further evaluation and, thus, the process is iteratively repeated

while new atoms are introduced. The number of such new atoms which can be

introduced can in general be unbounded. The termination of the partial deduction

process is ensured by two control issues. Following the terminology of (Gallagher

1993), the so-called local control defines an unfolding rule which determines how to

construct finite SLD trees. The global control defines an abstraction operator which

guarantees that the number of new atoms is kept finite. Termination of the par-

tial deduction algorithm involves ensuring termination both at the local and global

levels. We refer to (Leuschel and Bruynooghe 2002) for a survey on both control

issues. This article is centered on the local control, namely on the development of a

practical, efficient unfolding rule. The techniques we will propose for local control

can be used in combination with any global control strategy.

In spite of the important research efforts in the area, the integration of partial

deduction methods into compilers seems to be still far from reality. We believe

that the general uptake of partial deduction is being hindered by two factors: 1)

the relative inefficiency of the partial deduction method, and 2) the complications

brought about by the treatment of real programs. Indeed, the integration of powerful

strategies in the unfolding rule —like the use of structural orders combined with

the ancestor relation— can introduce a significant cost both in time and memory

consumption of the specialization process. Regarding the treatment of real programs

which include external predicates, non-declarative features, etc, the complications

range from how to identify which predicates include these non-declarative features

(ad-hoc but difficult to maintain tables are often used in practice for this purpose)

to how to deal with such predicates during partial deduction. Also, the optimal

treatment of these predicates during partial deduction often requires information

which can only be available at partial deduction time if a global analysis of the

program is performed. A main objective of this work is to contribute to the uptake

of partial evaluation techniques by proposing novel solutions to some of these issues.

State-of-the-art partial evaluators integrate terminating unfolding rules for local

control based on structural orders, like homeomorphic embedding (Kruskal 1960;
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Leuschel and Bruynooghe 2002) which can obtain very powerful optimizations.

Moreover, they allow performing the ordering comparisons over subsequences of the

full sequence of the selected atoms. In particular, the use of ancestors for refining

sequences of visited atoms, originally proposed in (Bruynooghe et al. 1992), greatly

improves the specialization power of unfolding while still guaranteeing termination

and also reduces the length of the sequences for which admissibility of new atoms

has to be checked. Unfortunately, having to maintain dependency information

for the individual atoms in each derivation during the generation of SLD trees

has turned out to introduce overheads which seem to cancel out the theoretical

efficiency gains expected. In order to address this issue, in this article, we introduce

ASLD resolution as the basis for a novel unfolding rule which relies on the notion

of covering ancestors and which allows a very efficient implementation technique

based on stacks. Our technique can significantly reduce the overhead incurred by

the use of covering ancestors without losing any opportunities for specialization.

We outline as well a generalization that allows certain non-leftmost unfoldings with

the same assurances.

In order to deal with real programs that include (Prolog) built-ins and external

predicates, we extend ASLD resolution to handle these predicates by relying on

assertion-based techniques (Puebla et al. 2000). The use of assertions provides ex-

tensibility in the sense that users and developers of partial evaluators can deal with

new external predicates during partial evaluation by just adding the proper asser-

tions to these predicates —without having to maintain ad-hoc tables or modifying

the partial evaluator itself. We report on an implementation of our technique in

a practical, state-of-the-art partial evaluator, embedded in a production compiler

which uses assertions and global analysis extensively (the Ciao compiler (Bueno

et al. 2004) and, specifically, its preprocessor CiaoPP (Hermenegildo et al. 2005)).

We believe that our experimental results are promising and provide evidence that

our technique pays off in practice and can thus contribute to the practicality of

state-of-the-art partial evaluation techniques.

The structure of the article is as follows. Section 2 presents some required back-

ground on local control during partial deduction. Section 3 shows by means of an

example why using ancestors is needed. Section 4 presents ASLD resolution as the

basis for an efficient unfolding rule based on ancestors which allows a stack-based

implementation. Section 5 extends the unfolding techniques to the case of exter-

nal predicates. Section 6 presents some experimental results which compare the

performance of different unfolding strategies with several implementations. Finally,

Section 7 discusses some related work and concludes.

2 Background

We assume some basic knowledge on the terminology of logic programming. See for

example (Lloyd 1987) for details.

Very briefly, an atom A is a syntactic construction of the form p(t1, . . . , tn),

where p/n, with n ≥ 0, is a predicate symbol and t1, . . . , tn are terms. The function

pred applied to atom A, i.e., pred(A), returns the predicate symbol p/n for A. A
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clause is of the form H ← B where its head H is an atom and its body B is a

conjunction of atoms. A definite program is a finite set of clauses. A goal (or query)

is a conjunction of atoms.

2.1 Basics of partial deduction

The concept of computation rule is used to select an atom within a goal for its

evaluation.

Definition 1 (computation rule)

A computation rule is a function R from goals to atoms. Let G be a goal of the

form ← A1, . . . , AR, . . . , Ak, k ≥ 1. If R(G) =AR we say that AR is the selected

atom in G.

The operational semantics of definite programs is based on derivations.

Definition 2 (derivation step)

Let G be ← A1, . . . , AR, . . . , Ak. Let R be a computation rule and let R(G) =AR.

Let C = H ← B1, . . . , Bm be a renamed apart clause in P . Then G′ is derived from

G and C via R if the following conditions hold:

θ = mgu(AR, H)

G′ is the goal ← θ(B1, . . . , Bm, A1, . . . , AR−1, AR+1, . . . , Ak)

The definition above differs from standard formulations (such as that in (Lloyd

1987)) in that the atoms newly introduced in G′ are not placed in the same position

where the selected atom AR used to be, but rather they are placed to the left of

any atom in G. For definite programs, this is correct since goals are conjunctions,

which enjoy the commutative property. This modification will become instrumental

to the operational semantics we propose in forthcoming sections.

As customary, given a program P and a goal G, an SLD derivation for P ∪ {G}

consists of a possibly infinite sequence G = G0, G1, G2, . . . of goals, a sequence

C1, C2, . . . of properly renamed apart clauses of P , and a sequence θ1, θ2, . . . of

mgus such that each Gi+1 is derived from Gi and Ci+1 using θi+1. A derivation

step can be non-deterministic when AR unifies with several clauses in P , giving

rise to several possible SLD derivations for a given goal. Such SLD derivations can

be organized in SLD trees. A finite derivation G = G0, G1, G2, . . . , Gn is called

successful if Gn is empty. In that case θ = θ1θ2 . . . θn is called the computed answer

for goal G. Such a derivation is called failed if it is not possible to perform a

derivation step with Gn.

In order to compute a partial deduction (Lloyd and Shepherdson 1991), given

an input program and a set of atoms (goal), the first step consists in applying an

unfolding rule to compute finite (possibly incomplete) SLD trees for these atoms.

Then, a set of resultants or residual rules are systematically extracted from the

SLD trees.1

1 Let us note that the definition of a partial deduction algorithm requires, in addition to an
unfolding rule, the so-called global control level (see Section 1).
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Definition 3 (unfolding rule)

Given an atom A, an unfolding rule computes a set of finite SLD derivations

D1, . . . , Dn (i.e., a possibly incomplete SLD tree) of the form Di = A, . . . , Gi with

computer answer substitution θi for i = 1, . . . , n whose associated resultants are

θi(A)← Gi.

A partial evaluation for the initial goal (query) is then defined as the set of resul-

tants, i.e., a program, associated to the root-to-leaf derivations for the computed

SLD tree. The partial evaluation for a set of goals is defined as the union of the

partial evaluations for each goal in the set. We refer to (Leuschel and Bruynooghe

2002) for details.

2.2 Termination of local control

In order to ensure the local termination of the partial deduction algorithm while

producing useful specializations, the unfolding rule must incorporate some non-

trivial mechanism to stop the construction of SLD trees. Nowadays, well-founded

orderings (wfo) (Bruynooghe et al. 1992; Martens and De Schreye 1996) and well-

quasi orderings (wqo) (Sørensen and Glück 1995; Leuschel 1998) are broadly used

in the context of on-line partial evaluation techniques (see, e.g., (Gallagher 1993;

Leuschel et al. 1998; Sørensen and Glück 1995)).

It is well known that the use of wfos and wqos allows the definition of admissi-

ble sequences which are always finite. Intuitively, a sequence of elements s1, s2, . . .

in S is called admissible with respect to an order ≤S (Bruynooghe et al. 1992) iff

there are no i < j such that si ≤S sj . If the order is a wqo, given a derivation

G1, G2, · · · , Gn+1 in order to decide whether to evaluate Gn+1 or not, we check

that the selected atom in Gn+1 is strictly smaller than any previous (comparable) se-

lected atom. Formally, let≤S be a wqo, we denote by Admissible(A, (A1, . . . , An),≤S

), with n ≥ 0, the truth value of the expression ∀Ai, i ∈ {1, . . . , n} : A ≤S Ai. In

wfo, it is sufficient to verify that the selected atom is strictly smaller than the previ-

ous comparable one (if one exists). Let < be a wfo, by Admissible(A, (A1, . . . , An), <

), with n ≥ 0, we denote the truth value of the expression A < An if n ≥ 1 and

true if n = 0.

We will denote by structural order a wfo or a wqo (written as / to represent any

of them). Among the structural orders, well-quasi orderings have proved to be very

powerful in practice. In particular, the homeomorphic embedding (Kruskal 1960)

ordering is the wqo we will use in our examples. The interested reader is referred

to Leuschel’s work (Leuschel 1998) where a detailed description of homeomorphic

embedding can be found. Informally, atom t1 embeds atom t2 if t2 can be obtained

from t1 by deleting some operators, e.g., s(s(U+W)×(U+s(V))) embeds s(U×(U+V)).

2.3 Covering ancestors

State-of-the-art unfolding rules allow performing ordering comparisons over sub-

sequences of the full sequence of the selected atoms of a derivation by organizing
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qsort([],R,R).

qsort([X|L],R,R2) :-

partition(L,X,L1,L2),

qsort(L2,R1,R2),

qsort(L1,R,[X|R1]).

partition([],_,[],[]).

partition([E|R],C,[E|Left1],Right) :-

E =< C,

partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]) :-

E > C,

partition(R,C,Left,Right1).

Fig. 1. A quick-sort program

atoms in a proof tree (Bruynooghe 1991), achieving further specialization in many

cases while still guaranteeing termination. To do so, they maintain dependencies

over the selected atoms which are chosen in such a way that only a subsequence

of such selected atoms needs to be considered. The essence of the most advanced

techniques is based on the notion of covering ancestors (Bruynooghe et al. 1992).

Definition 4 (ancestor relation)

Given a derivation step and AR, Bi, i = 1, . . . ,m as in Definition 2, we say that AR

is the parent of the instance of Bi, i = 1, . . . ,m, in the resolvent and in each subse-

quent goal where the instance originating from Bi appears. The ancestor relation

is the transitive closure of the parent relation.

The important observation is that a derivation can contain selected subgoals which

are indeed part of a different branch in the proof tree.

Usually, the ancestor test is only applied on comparable atoms, i.e., ancestor

atoms with the same predicate symbol. This corresponds to the original notion of

covering ancestors (Bruynooghe et al. 1992). Given an atom A and a derivation D,

we denote by Ancestors(A,D) the sequence of ancestors of A in D as defined in

Definition 4. It captures the dependency relation implicit within a proof tree.

It has been proved (Bruynooghe et al. 1992) that any infinite derivation must

have at least one inadmissible covering ancestor sequence, i.e., a subsequence of the

atoms selected during a derivation. Therefore, it is sufficient to check the selected

ordering relation / over the covering ancestor subsequences in order to detect in-

admissible derivations. An SLD derivation is safe with respect to an order (wfo or

wqo) if all covering ancestor sequences of the selected atoms are admissible with

respect to that order.

3 The Usefulness of Ancestors

We now illustrate some of the ideas discussed so far and, specially, the relevance

of ancestor tracking, through an example. Our running example is the program in

Figure 1, which implements the well known quick-sort algorithm, “qsort”, using

difference lists. Given an initial query of the form ←qsort(List,Result,Cont), where

List is a list of numbers, the algorithm returns in Result a sorted difference list which

is a permutation of List and such that its continuation is Cont. For example, for the

query← qsort([1, 1, 1], L, []), the program should compute L=[1,1,1], constructing

a finite SLD tree. Notice that, in general, if the input arguments to a program are
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1.qs([1, 1, 1], R, []){}

²²

2.p([1, 1], 1, L1, L2){1},3.qs(L2, R1, []){1},4.qs(L1, R, [1|R1]){1}

{L17→[1|L]}
²²

5.1 =< 1{1,2},6.p([1], 1, L, L2){1,2},3.qs(L2, R1, []){1},4.qs([1|L], R, [1|R1]){1}

²²

6. p([1],1,L,L2)
{1,2}

,3.qs(L2, R1, []){1},4.qs([1|L], R, [1|R1]){1}

{L7→[1|L′]}
²²

7.1 =< 1{1,2,6},8.p([], 1, L′, L2){1,2,6},3.qs(L2, R1, []){1},4.qs([1, 1|L′], R, [1|R1]){1}

²²

8.p([], 1, L′, L2){1,2,6},3.qs(L2, R1, []){1},4.qs([1, 1|L′], R, [1|R1]){1}

{L′ 7→[],L27→[]}²²

3.qs([], R1, []){1},4.qs([1, 1], R, [1|R1]){1}

{R1′ 7→[]}²²

4.qs([1, 1], R, [1]){1}

²²

9. p([1],1,L1’,L2’)
{1,4}

,10.qs(L2′, R1′, [1]){1,4},11.qs(L1′, R, [1|R1′]){1,4}
@A

GFÂ
Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

Fig. 2. Derivation with Ancestor Annotations

not sufficiently instantiated, the corresponding SLD tree can be infinite and/or

contain incomplete derivations.

Consider now Figure 2, which presents an incomplete SLD derivation for our

quick-sort program and the query← qsort([1, 1, 1], R, []) using a leftmost unfolding

rule. For conciseness, predicates qsort and partition are abbreviated as qs and

p, respectively in the figure. Note that each atom is labeled with a number (an

identifier) for future reference2 and a superscript which contains the list of ances-

tors of that atom. Let us assume that we use the homeomorphic embedding order

(Leuschel 1998) as structural order. If we check admissibility w.r.t. the full sequence

of atoms, i.e., we do not use the ancestor relation, the derivation will stop when

atom number 9, i.e., p([1], 1, L′, L2′), is found for the second time. The reason is

that this atom is not strictly smaller than atom number 6 which was selected in

the third step, indeed, they are equal modulo renaming.3

This unfolding rule is too conservative, since the process can proceed further

without risking termination (in fact, the SLD tree for a left-to-right computation

rule for the example query is finite and thus the query can safely be fully unfolded).

The crucial point is that the execution of atom number 9 does not depend on atom

2 By abuse of notation, we keep the same number for each atom throughout the derivation
although it may be further instantiated (and thus modified) in subsequent steps. This will
become useful for continuing the example later.

3 Let us note that the two calls to the builtin predicate =< which appear in the derivation can be
executed since the arguments are properly instantiated. However, they have not been considered
in the admissibility test since these calls do not endanger the termination of the derivation, as
we will discuss in Section 5.
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Fig. 3. Proof tree for the example.

number 6 (and, actually, the unfolding of 6 has been already completed when atom

number 9 is being considered for unfolding). In order to illustrate this, consider

Figure 3 which shows the proof tree associated to this derivation. Nodes are labeled

with the numbers assigned to each atom, instead of the atoms themselves. Note that,

in order to decide whether or not to evaluate atom number 9, it is only necessary

to check that it is strictly smaller than atoms 4 and 1, i.e., than those which are

its ancestors in the proof tree. On the other hand, and as we saw before, if the full

derivation is considered instead, as in Figure 2, atom 9 will be compared also with

atom 6 concluding imprecisely that the derivation may not be safe.

Despite their obvious relevance, unfortunately the practical applicability of un-

folding rules based on the notion of covering ancestor is threatened by the overhead

introduced by the implementation of this notion. A naive implementation of the

notion of ancestor keeps —for each atom— the list of its ancestors, as it is depicted

in Figure 2 by using superscripts. This implementation is relatively efficient in time

but presents a high overhead in memory consumption. Our experiments show that

the partial evaluator can run out of memory even for simple examples. A more rea-

sonable implementation maintains the proof tree as a global structure. This greatly

reduces memory consumption but the cost of traversing the tree for retrieving the

ancestors of each atom introduces a significant slowdown in the partial evaluation

process. We argue that our implementation technique is efficient in time and space,

overcoming the above limitations.

4 An Efficient Implementation for Local Unfolding

In this section, we first define the notion of local computation rule. We then intro-

duce ASLD resolution, a modification of SLD which incorporates ancestor stacks

and which is the basis of our efficient implementation. ASLD resolution in princi-

ple is not tied to local computation rules. Interestingly, we then impose the local

condition to the computation rule in order to ensure accurate results for ASLD

resolution.

4.1 A local computation rule

Our definition of local unfolding is based on the notion of ancestor depth.

Definition 5 (ancestor depth)
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Given an SLD derivation D = G0, . . . , Gm with Gm =← A1, . . . , Ak, k ≥ 1, the

ancestor depth of Ai for i = 1, . . . , k, denoted depth(Ai, D) is the cardinality of the

ancestor relation for Ai in D.

Intuitively, the ancestor depth of an atom in a goal is the depth at which this atom

is located in the proof tree associated to the derivation.

Definition 6 (local computation rule)

A computation rule R is local if ∀D = G0, . . . , Gn such that Gi =← Ai1, . . . , Aimi

for i = 0, .., n, it holds that depth(R(Gi), D) ≥ depth(Aij , D) ∀j = 1, . . . ,mi

Intuitively, a computation rule is local if it always selects one of the atoms which

is deepest in the proof tree for the derivation. As a result, local computation rules

traverse proof trees in a depth-first fashion, though not necessarily left to right nor in

any other fixed order. Thus, in principle, in order to implement a local computation

rule we need to record (part of) the derivation history (i.e., its proof tree). Note

that the computation rule used in most implementations of logic programming

languages, such as Prolog, always selects the leftmost atom. This computation rule,

often referred to as left-to-right computation rule, is clearly a local computation

rule. Selecting the leftmost atom in all goals guarantees that the selected atom is

of maximal depth within the proof tree as it is traversed in a depth-first fashion

—without the need of storing any history about the derivation.

An instrumental observation in our approach is that if the proof tree which is

used in order to capture the ancestor relation is traversed depth-first, left-to-right,

it can be interpreted as an activation tree (Aho et al. 1986). In fact, the ancestor

subsequence in any point in time corresponds to the current control word (Rozen-

berg and Salomaa 1997) by simply regarding selected atoms as procedure calls. The

control word for each execution state can be seen as the set of procedures whose

execution has started and is not yet completed, bearing a strong relation with the

stack of activation records which most compilers use as a run-time data structure.

This data structure takes normally the form of a stack, and this suggests one of

the central ideas of our approach: the use of stacks for storing ancestors. Another

important observation is that the control word idea does not need to be restricted

to leftmost computation and it works equally well as long as the computation rule

is local. Indeed, sibling atoms have the same ancestor depth, they can be selected in

any order and the notion of control word still applies. The advantages of computing

the control word instead of the proof tree are clear: the control word corresponds to

a single branch in the proof tree from the current selected atom to all its ancestors

in the proof tree. Thus, the control word offers advantages both from memory and

time consumption. The main difficulty for computing control words is to determine

exactly when each item in the control word should be removed. To do this, we need

to know when the computation of each predicate is finished. In logic programming

terminology this corresponds to determining the success states for all predicates

in the derivation. In principle, success states are not observable in SLD resolution

other than for the top-level query.
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4.2 ASLD Resolution: SLD resolution with ancestor stacks

We now propose an easy-to-implement modification to SLD resolution as presented

in Section 2 in which success states for all internal calls are observable —and where

the control word is available at each state. We will refer to this resolution as SLD

resolution with ancestor stacks, or ASLD for short. The proposed modification

involves 1) augmenting goals with an ancestor stack, which at each stage of the

computation contains the control word of the derivation, which corresponds to

the ancestors of the next atom which will be selected for resolution, and 2) adding

pseudo-atoms to the goals used during resolution which mark a scope whose purpose

is twofold: 2.1) when a mark is leftmost in a goal, it indicates that the current state

corresponds to the success state for the call which is now on top of the ancestor

stack, i.e., the call is completed, and the atom on top of the ancestor stack should

be popped; 2.2) the atoms within the scope of the leftmost mark have maximal

ancestor depth and thus a local unfolding strategy can be easily defined in the

presence of these pseudo-atoms. We use the pseudo-atom ↑ (read as “pop”) to

indicate the end of a depth scope, i.e., after it we move up in the proof tree. It is

guaranteed not to clash with any existing predicate name.

The following two definitions present the derivation rules in our ASLD semantics.

Now, a state S is a tuple of the form 〈G AS〉 where G is a goal and AS is an ancestor

stack (or stack for short). The stack will keep track of the ancestor atoms that the

new selected atoms need to be compared to (by means of the structural order being

used). Thus the stack will be instrumental in being able to stop a derivation as

soon as termination of the process can no longer be guaranteed by the structural

order being used. To handle such stacks, we will use the usual stack operations:

empty, which returns an empty stack, push(AS, Item), which pushes Item onto the

stack AS, and pop(AS), which pops an element from AS. In addition, we will use

the operation contents(AS), which returns the sequence of atoms contained in AS

in the order in which they would be popped from the stack AS and leaves AS

unmodified.

Definition 7 (derive)

Let G =← A1, . . . , AR, . . . , Ak be a goal with A1 6= ↑ . Let S = 〈G AS〉 be a state

and AS be a stack. Let / be a structural order. Let R be a computation rule and

let R(G) =AR with AR 6= ↑ . Let C = H ← B1, . . . , Bm be a renamed apart clause.

Then S′ = 〈G′ AS′〉 is derived from S and C via R if the following conditions

hold:

Admissible(AR, contents(AS), /)

θ = mgu(AR, H)

G′ is the goal ← θ(B1, . . . , Bm, ↑ , A1, . . . , AR−1, AR+1, . . . , Ak)

AS′ = push(AS, ren((AR)))

The derive rule behaves as the one in Definition 2 but in addition: i) the mark ↑

“pop” is added to the goal, and ii) a renamed apart copy of AR, denoted ren(AR),

is pushed onto the ancestor stack. As before, the derive rule is non-deterministic if
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several clauses in P unify with the atom AR. However, in contrast to Definition 2,

this rule can only be applied to an atom different from ↑ if 1) the leftmost atom

in the goal is not a ↑ mark, and 2) the current selected atom AR together with

its ancestors do constitute an admissible sequence. If 1) holds but 2) does not, this

derivation is stopped and we refer to such a derivation as inadmissible.

Definition 8 (pop-derive)

Let G = ← A1, . . . , Ak be a goal with A1 = ↑ . Let S = 〈G AS〉 be a state and

AS be a stack. Then S′ = 〈G′ AS′〉 with G′ =← A2, . . . , Ak and AS′ = pop(AS)

is pop-derived from S.

The pop-derive rule is used when the leftmost atom in the resolvent is a ↑

mark. Its effect is to eliminate from the ancestor stack the topmost atom, which

is guaranteed not to belong to the ancestors of any selected atom in any possible

continuation of this derivation.

Computation for a query G starts from the state S0 = 〈G empty〉. Given a non-

empty derivation D, we denote by curr goal(D) and curr ancestors(D) the goal and

the stack in the last state in D, respectively. At each step of a derivation D at

most one rule, either derive or pop-derive, can be applied depending on whether

the first atom in curr goal(D) is a mark ↑ or not.

Example 1

Figure 4 illustrates the ASLD derivation corresponding to the derivation with ex-

plicit ancestor annotations of Figure 2. Sometimes, rather than writing the atoms

themselves, we use the same numbers assigned to the corresponding atoms in Fig-

ure 2. By abuse of notation, we again always use the same number assigned to

an atom although further instantiation is performed. The stack contains the list

of atoms exactly in the instantiation state they have when they are pushed in the

stack. Each step has been appropriately labeled with the applied derivation rule.

Although rule external-derive has not been presented yet, we can just assume that

the code for the external predicate =< is available and has the expected behavior.

It should be noted that, in the last state, the stack contains exactly the ancestors

of partition([1],1,L1’,L2’), i.e., the atoms 4 and 1, since the previous calls

to partition have already finished and thus their corresponding atoms have been

popped off the stack. Thus, the admissibility test for partition([1],1,L1’,L2’)

succeeds, and unfolding can proceed further without risking termination. Indeed,

the derivation can be totally unfolded, which results in the following (optimal)

partial evaluation in which all input data have been satisfactorily consumed

qsort([1, 1, 1], [1, 1, 1], []).

Note that derive steps w.r.t. a clause which is a fact are always followed by a

pop-derive and thus they are optimized in the figure (and in the implementation,

described in Section 6) by not pushing the selected atom AR onto the stack and

not including a ↑ mark into the goal which would immediately pop AR from the

stack.

Finally, since the goals obtained by ASLD resolution may contain atoms of the form
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〈{qs([1, 1, 1], R, [])} []〉

derive
²²

〈{2,3,4, ↑ } [qsort([1, 1, 1], R, [])]〉

derive
²²

〈{5,6, ↑ ,3,4, ↑ } [part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉

external−derive
²²

〈{6, ↑ ,3,4, ↑ } [part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])〉]

derive
²²

〈{7,8, ↑ , ↑ ,3,4, ↑ } [part([1], 1, L, L2), part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉

external−derive
²²

〈{8, ↑ , ↑ ,3,4, ↑ } [part([1], 1, L, L2), part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉

derive,pop−derive
²²

〈{ ↑ , ↑ ,3,4, ↑ } [part([1], 1, L, L2), part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉

pop−derive
²²

〈{ ↑ ,3,4, ↑ } [part([1, 1], 1, L1, L2), qs([1, 1, 1], R, [])]〉

pop−derive
²²

〈{3,4, ↑ } [qsort([1, 1, 1], R, [])]〉

derive,pop−derive
²²

〈{4, ↑ } [qsort([1, 1, 1], R, [])]〉

derive
²²

〈{part([1], 1, L1′, L2′),10,11, ↑ , ↑ } [qsort([1, 1], R, [1]), qsort([1, 1, 1], R, [])]〉

Fig. 4. ASLD Derivation for the example

↑ , resultants are cleaned up before being transferred to the global control level or

during the code generation phase by simply eliminating all atoms of the form ↑ .

It is easy to see that for each ASLD derivation DS there is a corresponding

SLD derivation D with the same computed answer substitution and the same goal

without the ↑ atoms. Such SLD derivation is the one obtained by performing the

same derive steps (with exactly the same clauses) using the same computation rule

and by ignoring the pop-derive steps since goals in SLD resolution do not contain

↑ atoms. We use simplify(DS) = D to denote that D is the SLD derivation which

corresponds to DS .

4.3 Accuracy results

We would now like to impose a condition on the computation rule which allows

ensuring that the contents of the stack are precisely the ancestors of the atom to be

selected. The following notion of depth-preserving computation rule allows precisely

this.

Definition 9 (depth-preserving)

A computation rule R is depth-preserving if for each non-empty goal G = ←

A1, . . . , Ak with A1 6= ↑ , R(G) = AR and ↑ /∈ {A1, . . . , AR}.
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Intuitively, a depth-preserving computation rule always returns an atom which is

strictly to the left of the first (leftmost) ↑ mark. Note that ↑ is used to separate

groups of atoms which are at different depth in the proof tree. Thus, the notion

of depth-preserving computation rules in ASLD resolution is equivalent to that of

local computation rules in SLD resolution.

Proposition 1 (ancestor stack)

Let DS be an ASLD derivation for initial query G in program P via a depth-

preserving computation rule. Let D be an SLD derivation using an equivalent local

computation rule such that simplify(DS) = D. If,

curr goal(DS) = A1, . . . , An, ↑ , . . . with Ai 6= ↑ for i = 1, . . . , n.

curr ancestors(DS) = AS

Then, contents(AS) = Ancestors(Ai, D) for i = 1, . . . , n.

Proof

The proof is by induction on the length k of the ASLD derivation, DS , of the form

S0, . . . , Sk where Si, for i = 0, . . . , k, is the sequence of states corresponding to each

derivation step from the initial state S0 = 〈G empty〉 .

base case (k = 1). Consider the initial state S0 = 〈G empty〉 where the goal G

is of the form ← A1, . . . , AR, . . . , An, n ≥ 1. Initially, all atoms in G are different

from ↑ , i.e., Ai 6= ↑ for i = 1, . . . , n. Therefore, we can only apply rule derive to

S0. Let us assume that R is a depth-preserving computation rule and R(G) =AR.

Let C = H ← B1, . . . , Bm be a renamed apart clause with θ = mgu(AR, H). The

test Admissible(AR, contents(empty), /) holds (otherwise the derivation step is

not possible). Then, the state S1 = 〈G′ AS′〉 is derived from S0 and C where

G′ = θ(B1, . . . , Bm, ↑ , A1, . . . , AR−1, AR+1, . . . , An) and AS′ = [ren(AR)]. Now,

we want to prove that contents([ren(AR)]) = Ancestors(Bi, D), i = 1, . . . ,m, for

the equivalent SLD derivation D. Hence, we perform the corresponding SLD step

from ← A1, . . . , AR, . . . , Am using the same computation rule R and the same

clause C. In D, we derive the goal θ(B1, . . . , Bm, , A1, . . . , AR−1, AR+1, . . . , Ak).

By definition of ancestor (Def. 4), AR is the only ancestor of Bi in D, i =

1, . . . ,m. Consequently, contents([ren(AR)]) = Ancestors(Bi, D) holds and our

claim follows.

inductive case (k > 1). We decompose the ASLD derivation DS of length k in

two parts. The first part, DS−1, is the derivation from S0 to Sk−1 of length k−1.

The second part corresponds to the last ASLD derivation step from Sk−1 to Sk.

• We first apply the inductive hypothesis to the ASLD derivation, DS−1, of

length k − 1 of the form S0, . . . , Sk−1. Consider that D′ is the equivalent

SLD derivation obtained by using an equivalent local computation rule

such that simplify(DS−1) = D′. Let Sk−1 = 〈Gk−1 ASk−1〉 with Gk−1 =

A1, . . . , An, ↑ , . . . and Ai 6= ↑ for i = 1, . . . , n. Then, contents(ASk−1) =

Ancestors(Ai, D
′) for i = 1, . . . , n.
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• Now, we perform the last ASLD derivation step from Sk−1. Since A1 6= ↑ ,

we can only apply rule derive to Sk−1. By assumption, R is a depth-

preserving computation rule. Thus, it will select an atom AR from A1 to

An. In particular, assume that R(Gk−1) =AR. Let C = H ← B1, . . . , Bm

be a renamed apart clause with θ = mgu(AR, H). We assume that the

test Admissible(AR, contents(ASk−1), /) holds, otherwise the step is not

possible. Then, Sk = 〈Gk ASk〉 is derived from Sk−1 and C where

Gk = θ(B1, . . . , Bm, ↑ , A1, . . . , AR−1, AR+1, . . . , An, ↑ , . . .)

ASk = push(ASk−1, ren(AR))

Now, we want to prove that contents(ASk) = Ancestors(Bi, D), for i =

1, . . . ,m, for the equivalent SLD derivation D. Hence, we perform the cor-

responding SLD step from the last goal, named Q, in D′. We know that

Q is of the form Q = A1, . . . , An, . . . since simplify(DS−1) = D′ and all

Ai 6= ↑ . By using the equivalent local computation rule for SLD resolution,

the selected atom is also AR. With the same clause C, we derive the goal

θ(B1, . . . , Bm, A1, . . . , AR−1, AR+1, . . . , An, . . .). Now, by applying Defini-

tion 4), the ancestors of Bi are AR plus the ancestors of AR in D′, for

i = 1, . . . ,m.

Finally, we proceed to put together the conclusions obtained from the two deriva-

tions. On one hand, we have that contents(ASk−1) = Ancestors(Ai, D
′), i =

1, . . . , n. In particular, we have that contents(ASk−1) = Ancestors(AR, D′) for

i = R. Thus, we have that:

contents(ASk) = push(ASk−1, AR)

= push(Ancestors(AR, D′), AR)

= Ancestors(Bi, D)

which proves our claim.

The above result trivially holds for leftmost unfolding which is always depth-

preserving.

The next theorem guarantees that we do not lose any specialization opportunities

by using our stack-based implementation for ancestors instead of the more complex

tree-based implementation, i.e., our proposed semantics will not stop “too early”.

It is a consequence of the above proposition and the results in (Bruynooghe et al.

1992) about structural orderings.

Theorem 1 (accuracy)

Let D be an SLD derivation for query G in a program P via a local computation

rule. Let / be a structural order. If the derivation D is safe w.r.t / then there exists

an ASLD derivation DS for G and P via a depth-preserving computation rule such

that simplify(DS) = D.
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Proof

The proof is by contradiction for a wqo ≤S (it can be done similarly for a wfo). We

consider the safe SLD derivation D of length k for G via a local computation rule

R. Trivially, the partial derivation D′ of length k − 1 from G to a goal G′ is safe.

Now, the assumption is that, DS , the ASLD derivation for S = 〈G empty〉 corre-

sponding to D is not safe. In particular, we consider the partial ASLD derivation,

D′

S , from the state S to the state S ′, such that simplify(D′

S) = D′ and, from

which a further ASLD derivation step for S ′ is not safe. The state S′ is of the form

S′ = 〈G′ AS′〉 with G′ = A1, . . . , An, ↑ , . . . and Ai 6= ↑ , for i = 1, . . . , n. By

Definition 9, the depth-preserving computation rule can only select an atom Ai, for

i = 1, . . . , n.

Since a safe derivation step from S ′ cannot be performed, the truth value of the

expression Admissible(Ai, contents(AS′),≤S) is false for any selected atom Ai,

i = 1, . . . , n. By the results in (Bruynooghe et al. 1992), this means that ∀Ai, ∃B ∈

contents(AS′) : B ≤S Ai. By applying Proposition 1, we have that the truth value

of Admissible(Ai, Ancestors(Ai, D
′),≤S) is false as well. Therefore, ∀Ai, ∃B ∈

Ancestors(Ai, D
′) : B ≤S Ai.

Finally, since simplify(D′

S) = D′ and all atoms Ai 6= ↑ , G′ is an atom of the

form A1, . . . , An, . . . The equivalent local computation rule, R, can select the same

atoms Ai. However, Admissible(Ai, Ancestors(Ai, D
′),≤S) is false for all Ai, for

i = 1, . . . , n. Thus, the last derivation step in D is inadmissible, hence, we have a

contradiction.

Note that since our semantics disables performing any further steps as soon as inad-

missible sequences are detected, not all local SLD derivations have a corresponding

ASLD derivation. However, if a local SLD derivation is safe, then its corresponding

DS derivation can be found.

It is interesting to note that we can allow more flexible computation rules which

are not necessarily depth-preserving while still ensuring termination. For instance,

consider a state 〈A1, . . . , An, ↑ , AR, . . . [P1|P ]〉 with ↑ /∈ {A1, . . . , An} and a non

depth-preserving computation rule which selects the atom AR to the right of the ↑

mark. Then, rule derive will check admissibility of AR w.r.t. all atoms in the stack

[P1|P ]. However, the topmost atom P1 is an ancestor only of the atoms Ai to the

left of AR but it is not an ancestor of AR. The more ↑ marks the computation rule

jumps over to select an atom, the more atoms which do not belong to the ancestors

of the selected atom will be in the stack, thus, the more accuracy and efficiency we

lose. In any case, the stack will always be an over-approximation of the actual set

of ancestors of AR.

In principle, our local unfolding rule based on ancestor stacks can be used within

any partial deduction framework, including Conjunctive Partial Deduction (CPD).

It should be noted that some CPD examples may require the use of an unfolding rule

which is not depth-preserving to obtain the optimal specialization. As we discuss

above, we cannot ensure accuracy results (though we still have correctness) in these

cases but in turn the use of local unfolding will clearly improve the efficiency of the

partial deduction process.
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5 Assertion-based Unfolding for External Predicates

Most of real-life Prolog programs use predicates which are not defined in the pro-

gram (module) being developed. We will refer to such predicates as external. Ex-

amples of external predicates are the traditional “built-in” predicates such as arith-

metic operations (e.g., is/2, <, =<, etc.) or basic input/output facilities. We will

also consider as external predicates those defined in a different module, predicates

written in another language, etc. This section deals with the difficulties which such

external predicates pose during partial deduction and extends our ASLD semantics

to deal with them.

5.1 The notion of evaluable atom

When an atom A, such that pred(A) = p/n is an external predicate, is selected

during partial deduction, it is not possible to apply the derive rule in Definition 2

due to several reasons. First, we may not have the code defining p/n and, even

if we have it, the derivation step may introduce in the residual program calls to

predicates which are private to the module M where p/n is defined. In spite of

this, if the executable code for the external predicate p/n is available, and under

certain conditions, it can be possible to fully evaluate calls to external predicates

at specialization time. We use Exec(Sys,M,A) to denote the execution of atom A

on a logic programming system Sys (e.g., Ciao or SICStus) in which the module

M , where the external predicate p/n is defined, has been loaded. In the case of

logic programs, Exec(Sys,M,A) can return zero, one, or several computed answers

for M ∪ A and then execution can either terminate or loop. We will use substitu-

tion sequences (Charlier et al. 2002) to represent the outcome of the execution of

external predicates. A substitution sequence is either a finite sequence of the form

〈θ1, . . . , θn〉, n ≥ 0, or an incomplete sequence of the form 〈θ1, . . . , θn,⊥〉, n ≥ 0, or

an infinite sequence 〈θ1, . . . , θi, . . .〉, i ∈ IN∗, where IN∗ is the set of positive nat-

ural numbers and ⊥ indicates that the execution loops. We say that an execution

universally terminates if Exec(Sys,M,A) = 〈θ1, . . . , θn〉, n ≥ 0.

In addition to producing substitution sequences, it can be the case that the

execution of atoms for (external) predicates produces other outcomes such as side-

effects, errors, and exceptions. Note that this precludes the evaluation of such atoms

to be performed at partial evaluation time, since those effects need to be performed

at run-time. We now introduce the notion of evaluable atom, in order to capture the

requirements which allow executing external predicates at partial deduction time.

Definition 10 (evaluable)

Let A be an atom such that pred(A) = p/n is an external predicate defined in

module M . We say that A is evaluable in a logic programming system Sys if

Exec(Sys,M,A) satisfies the following conditions:

1. it universally terminates

2. it does not produce side-effects

3. it does not issue errors
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4. it does not generate exceptions

We also say that an expression E is evaluable if 1) E is an evaluable atom, or 2)

E is a conjunction of evaluable expressions, or 3) E is a disjunction of evaluable

expressions.

Clearly, some of the above properties are not computable (e.g., termination is un-

decidable in the general case). However, it is often possible to determine some

sufficient conditions (SC) which are decidable and ensure that, if an atom A sat-

isfies such conditions, then A is evaluable. Intuitively, a sufficient condition can be

thought of as a traditional precondition which ensures a certain behavior of the

execution of a procedure provided they are satisfied. Then, if this process is applied

to an atom call corresponding to an external predicate which is selected during

partial deduction, then that atom call can be executed directly at partial deduction

time. To formalize this, we propose to use the “computational assertions” which

are part of the assertion language (Puebla et al. 2000) of CiaoPP, the Ciao system

preprocessor (Hermenegildo et al. 2005), in order to express that a certain predicate

is evaluable under certain conditions. The following definition introduces the notion

of an eval annotation as (part of) a computational assertion. We use id to denote

the empty substitution, i.e., ∀ t , id(t) = t.

Definition 11 (eval annotations)

Let p/n be an external predicate defined in module M . The assertion :- trust

comp p(X1,...,Xn) : SC + eval. in the code for M is a correct eval annotation

for predicate p/n in a logic programming system Sys if, ∀θ:

• the expression θ(SC) is evaluable, and

• if Exec(Sys,M, θ(SC)) = 〈id〉 then θ(p(X1, ..., Xn)) is evaluable.

In principle, assertions have to be provided manually by the supplier of the (exter-

nal) code. However, for predicates that are defined in the source language and use

only external predicates for which eval annotations are available, the analysis tools

which existing within CiaoPP are able to infer eval annotations in many practical

cases, as we will discuss later.

One of the advantages of using this kind of assertion is that it makes it possible to

deal with new external predicates (e.g., written in other languages) in user programs

or in the system libraries without having to modify the partial evaluator itself. Also,

the fact that the assertions are co-located with the actual code defining the external

predicate, i.e., in the module M (as opposed to being in a large table inside the

partial deduction system) makes it more difficult for the assertion to be left out of

sync when a modification is made to the external predicate. We believe this to be

very important to the maintainability of a real application or system library.

Example 2

The computational assertions in CiaoPP for the builtin predicate ≤ include, among

others, the following one:

:- trust comp A =< B : (arithexpr(A), arithexpr(B)) + eval.



18 G. Puebla and E. Albert and M. Hermenegildo

which states that if predicate =</2 is called with both arguments instantiated to

a term of type arithexpr, then the call is evaluable in the sense of Definition 10.

The type arithexpr corresponds to arithmetic expressions which, as expected, are

built out of numbers and the usual arithmetic operators. The type arithexpr is

expressed in Ciao as a unary regular logic program. This allows using the underlying

Ciao system in order to effectively decide whether a term is an arithexpr or not.

5.2 The extension of ASLD resolution

The following definition extends our ASLD semantics by providing a new rule,

external-derive, for evaluating calls to external predicates. Given a sequence of

substitutions 〈θ1, . . . , θn〉, we define Subst(〈θ1, . . . , θn〉) = {θ1, . . . , θn}.

Definition 12 (external-derive)
Let Sys be a logic programming system. Let G =← A1, . . . , AR, . . . , Ak be a goal.

Let S = 〈G AS〉 be a state and AS a stack. Let R be a computation rule such that

R(G) =AR with pred(AR) = p/n an external predicate from module M . Let C

be a renamed apart assertion :- trust comp p(X1,...,Xn) : SC + eval. Then,

S′ = 〈G′ AS′〉 is external-derived from S and C via R in Sys if:

σ = mgu(AR, p(X1, ..., Xn))

Exec(Sys,M, σ(SC)) = 〈id〉

θ ∈ Subst(Exec(Sys,M,AR))

G′ is the goal θ(A1, . . . , AR−1, AR+1, . . . , Ak)

AS′ = AS

Notice that, since after computing Exec(Sys,M,AR) the computation of AR is fin-

ished, there is no need to push (a copy of) AR into AS and the ancestor stack is

not modified by the external-derive rule. This rule can be nondeterministic if the

substitution sequence for the selected atom AR contains more than one element,

i.e., the execution of external predicates is not restricted to atoms which are deter-

ministic. The fact that AR is evaluable implies universal termination. This in turn

guarantees that in any ASLD tree, given a node S in which an external atom has

been selected for further resolution, only a finite number of descendants exist for S

and they can be obtained in finite time.

Example 3
Consider the Ciao system with the assertion in Example 2 for 1=<1. Consider also

the atoms 5 and 7, which are of the form 1=<1, in the ASLD derivation of Figure 2.

Both atoms can be evaluated because

Exec(ciao, arithmetic, (arithexpr(1), arithexpr(1))) = 〈id〉

This is a sufficient condition for Exec(ciao, arithmetic, (1 =< 1)) to be evaluable.

Its execution returns Exec(ciao, arithmetic, (1 =< 1)) = 〈id〉.

In addition to the conditions discussed above which allow evaluating atoms for

external predicates at specialization time, an orthogonal issue is that of the cor-

rectness of non-leftmost unfolding in the presence of external predicates. As it is
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well known, the independence of the computation rule no longer holds for programs

with extra logical predicates. This includes binding-sensitive predicates, predicates

with side-effects, etc. The problems involved in and some possible solutions to non-

leftmost unfolding can be found in the literature (Leuschel 1994; Etalle et al. 1997;

Albert et al. 2002; Leuschel and Bruynooghe 2002). However, there is still ample

room for improvements. In particular, the intensive use of static analysis techniques

in this assertion-based context seems particularly promising. We are investigating

the use of the analyzers available in CiaoPP with this aim, though this is outside

the scope of this article.

6 Experimental Results

We have implemented in our partial deduction system the unfolding rule we propose,

together with other variations in order to evaluate the efficiency of our proposal.

Our partial deduction system has been integrated in a practical state of the art

compiler which uses global analysis extensively: the Ciao compiler and, specifically,

its preprocessor CiaoPP (Hermenegildo et al. 2005). For the tests, the whole system

has been compiled using Ciao 1.11#275 (Bueno et al. 2004), with the bytecode

generation option. All of our experiments have been performed on a Pentium 4 at

2.4GHz and 512MB RAM running GNU Linux RH9.0. The Linux kernel used is

2.4.25.

The results in terms of execution time and memory consumption are presented in

Table 1 and 2, respectively. The programs used as benchmarks are indicated in the

Bench column. We have chosen a number of classical programs for the analysis and

partial deduction of logic programs as benchmarks. In order to factor out the cost

of global control, we have used in our experiments initial queries which can be fully

unfolded using homeomorphic embedding with ancestors. The program advisor3

is a variation of the advisor program in the DPPD (Leuschel 2002) library. The pro-

grams query and zebra are classical benchmarks for program analysis. Programs

qsort 80 and qsort 33 correspond to the quick-sort program shown in the arti-

cle with pseudo-random lists of natural numbers of length 80 and 33 respectively.

nrev 80 and nrev 38 correspond to the well-known naive reverse with lists of 80

and 38 natural numbers. rev 80 is a reverse program with linear complexity which

uses an accumulator. The initial query is, as before, a list of 80 natural numbers.

Finally, permute is a permutation program which uses a nondeterministic deletion

predicate. It is partially evaluated w.r.t. a list of 6 and 7 elements respectively.

None of advisor3, query, nor zebra can be fully unfolded using homeomorphic

embedding over the full sequence of selected atoms. Also, nrev and, as seen in the

running example, qsort are potentially not fully unfolded if the input lists con-

tain repetitions unless ancestors are considered. In the two tables, the following

group of columns show execution time and memory consumption, respectively, of

the unfolding process with the different implementations of unfolding:

Relation We refer to an implementation where each atom in the resolvent is an-

notated with the list of atoms which are in its ancestor relation, as done in the

example in Figure 2.
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Execution Times Relative Speed Up

Bench Relation Trees Stacks MEcce Relation Trees MEcce

advisor3 144 192 106 1240 1.36 1.81 11.70

nrev 80 mem 106490 15040 64970 ∞ 7.08 4.32

nrev 38 998 2804 806 4370 1.24 3.48 5.42

permute 7 mem 5226 2800 34680 ∞ 1.87 12.39

permute 6 476 614 336 3530 1.42 1.83 10.51

query 166 214 116 1290 1.43 1.84 11.12

qsort 80 mem 98514 8970 71870 ∞ 10.98 8.01

qsort 33 686 2432 454 4580 1.51 5.36 10.09

rev 80 984 1102 960 1400 1.02 1.15 1.46

zebra 1562 2276 994 186620 1.57 2.29 187.75

Overall mem 7.19 12.25

Table 1. Comparison of Proof Trees Vs. Ancestor Stacks (Execution Time)

Trees This column refers to the implementation where the ancestor relations of

the different atoms are organized in a proof tree.

Stacks The column Stacks refers to our proposed implementation based on an-

cestor stacks.

MEcce We have also measured the time that it takes to process the same bench-

marks using Leuschel’s M-Ecce (modular Ecce (Leuschel 2002)) system, compiled

with the same version of Ciao and in the same machine.

In the case of M-Ecce, we have not provided figures for memory consumption since

that would require a deep understanding of M-Ecce implementation in order to

make a fair comparison. The last set of columns compare the relative measures

of the different approaches w.r.t. the Stacks algorithm. Finally, in the last row,

labeled Overall, we summarize the results for the different benchmarks using a

weighted mean, which places more importance on those benchmarks with relatively

larger unfolding figures. We use as weight for each program its actual unfolding

time/memory. We believe that this weighted mean is more informative than the

arithmetic mean, as, for example, doubling the speed in which a large unfolding

tree is computed is more relevant than achieving this for small trees.
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6.1 Execution times

Let us explain the results in Table 1. Times are in milliseconds, measuring run-

time, and are computed as the arithmetic mean of five runs. Three entries in the

Relation column contain the value “mem”, instead of a number, to indicate that

the partial deduction system has run out of memory. For each of these three cases,

we have repeated the experiment with the largest possible initial query that Re-

lation can handle in our system before running out of memory. This explains that

the three benchmarks are specialized w.r.t. two different initial queries. As it can

be seen in the column for relative speedups, Relation is quite efficient in time

for those benchmarks it can handle, though a bit slower than the one based on

stacks. However, and as can be seen in Table 2, its memory consumption is ex-

tremely high, which makes this implementation inadmissible in practice. Regarding

column Trees, the implementation based on proof trees has a good memory con-

sumption but is slower than Relation due to the overhead of traversing the tree for

retrieving the ancestors of each atom. In comparison to M-ecce, the results provide

evidence that our proof tree-based implementation is indeed comparable to state

of the art systems, since the execution times are similar in some cases or even bet-

ter in others. The last set of columns compares the relative execution times of the

different approaches w.r.t. the Stacks algorithm which is the fastest in all cases.

Indeed, Stacks is even faster than the implementation based on explicitly storing

all ancestors of all atoms (Relation) while having a memory consumption com-

parable to (and in fact, slightly better than) the implementation based on proof

trees. The actual speedup ranges from 1.15 in the case of rev 80 to 10.98 in the

case of qsort 80. This variation is due to the different shapes which the proof trees

can have for the (derivations in the) SLD tree. In the case of rev, the speedup is

low since the SLD tree consists of a single derivation whose proof tree has a single

branch. Thus, in this case considering the ancestor sequence is indeed equivalent to

considering the whole sequence of selected atoms. But note that this only happens

for binary clauses. It is also worth noticing that the speedup achieved by the Stacks

implementation increases with the size of the SLD tree, as can be seen in the three

benchmarks which have been specialized w.r.t. different queries. The overall result-

ing speedup of our proposed unfolding rule over other existing ones is significant:

over 7 times faster than our tree-based implementation.

6.2 Memory consumption

We have also studied the memory required by the unfolding process. Let us briefly

discuss the figures depicted in Table 2 which represent, in number of bytes, memory

consumption. It has been measured at each derivation step during the construction

of the ASLD trees. At each step, the resulting numbers for all memory areas (stack,

heap, etc.) have been added and then compared to the previous maximum value,

taking always the larger of the two, thus computing the high water mark, i.e., the

maximum memory required to run the partial deducer. The figures show, for each

benchmark, the high water mark minus the memory already in use when the con-
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Memory Consumption Relative Memory Reduction

Bench Relation Trees Stacks Relation Trees

advisor3 2932232 819026 634460 4.62 1.29

nrev 80 mem 4000060 3930042 ∞ 1.02

nrev 38 32738070 859219 817910 40.03 1.05

permute 7 mem 2669486 1198208 ∞ 2.23

permute 6 7303335 191976 189484 38.54 1.01

query 2841120 7452 6916 410.80 1.08

qsort 80 mem 4175244 3940280 ∞ 1.06

qsort 33 34359640 861234 810474 42.39 1.06

rev 80 2499152 132736 127556 19.59 1.04

zebra 26287044 81140 75096 350.05 1.08

Overall ∞ 1.18

Table 2. Comparison of Proof Trees Vs.Ancestor Stacks (Memory Consumption)

struction of the SLD tree was started. In order to make these numbers independent

of whether automatic garbage collection is triggered or not during the different

experiments, garbage collection has been turned off during these experiments.

As for the case of execution time, the Stacks algorithm presents lower consump-

tion than any other algorithm for all programs studied. It can be seen that the

memory required by the Relation algorithm precludes it from its practical us-

age. Regarding the Stacks algorithm, not only it is significantly faster than the

implementation based on trees. Also it provides a relatively important reduction

(1.18 overall, computed again using a weighted mean) in memory consumption over

Trees, which already has a good memory usage.

Altogether, when the results of Table 1 and Table 2 are combined, they provide

evidence that our proposed techniques allow significant speedups while at the same

time requiring somewhat less memory than tree based implementations and much

better memory consumptions than implementations where the ancestor relation is

directly computed. This suggests that our techniques are indeed effective and can

contribute to making partial deduction a practical tool.
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7 Related Work and Conclusions

The development of powerful unfolding rules has received considerable attention

during the last years (Leuschel and Bruynooghe 2002). The most successful tech-

niques to-date are based on two fundamental ingredients:

• the use of a structural order which can be used to guarantee termination while

achieving very powerful unfoldings,

• structuring the atoms already visited in each derivation in a tree rather than

using an unstructured collection, such as a set.

Among the structural orders used, well-quasi orderings in general, and homeomor-

phic embedding (Kruskal 1960; Leuschel and Bruynooghe 2002) in particular, have

proved to be very powerful in practice. Regarding the structure to use for visited

atoms, the notion of ancestors seems to be the best one since it guarantees termi-

nation while allowing transformations which are strictly more powerful than those

achievable if unstructured collections are used.

The use of ancestors for refining sequences of visited atoms was proposed early

on by (Bruynooghe et al. 1992) and significant effort has been devoted to improve

the implementation of ancestors (Martens and De Schreye 1996). However, the

combination of structural orderings and ancestors happens to be very inefficient

in practice. This is mainly due to the fact that dependency information has to

be maintained for the individual atoms in each derivation. In principle, the use of

ancestors should not only allow more powerful transformation but also speed up

unfolding since it reduces the length of sequences for which admissibility has to

be checked. Unfortunately, maintaining such information about ancestors during

the generation of SLD trees introduces a costly overhead which can eliminate the

theoretical efficiency gains.

In this work we have proposed ASLD resolution, a novel extension over the SLD

semantics to incorporate ancestor stacks which can be used as a basis for the efficient

generation of (incomplete) SLD trees during partial deduction in combination with

structural orders. The main features of our unfolding rule based on ASLD resolution

are: (1) it is parametric w.r.t. the structural order of interest; (2) it can handle logic

programs with builtins; (3) it is guaranteed to always provide finite trees; (4) it is

very easy to implement since the ancestor information is simply stored using a

stack; (5) it provides a very efficient implementation of ancestor information; (6) if

certain conditions are imposed on the computation rule, then it is as accurate as

standard (more inefficient) unfolding rules based on ancestors. Note that, as it is the

case with unfolding rules based on traditional SLD resolution, our semantics can be

used in combination with a determinacy check which may decide to stop unfolding

even if termination is guaranteed whenever too many alternative, non-deterministic,

branches are generated in the SLD tree.

The unfolding rule proposed in this work has been implemented in the CiaoPP

system (Hermenegildo et al. 2005), the preprocessor of the Ciao programming lan-

guage. Experimental results are promising: they provide evidence that our pro-

posed techniques allow significant speedups while at the same time requiring some-
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what less memory than tree based implementations and much better memory con-

sumptions than implementations where the ancestor relation is directly computed.

Though specialization time is obviously not as critical as execution time, being able

to perform powerful specializations in reasonable time can only contribute to the

practical takeup of partial deduction techniques.

As for future work, we plan to incorporate in our partial evaluator (embedded

in CiaoPP) the extensions needed to perform Conjunctive Partial Deduction and

to investigate whether local unfolding can be successfully used in this contexts. We

are also investigating additional solutions for the problems involved in non-leftmost

unfolding for programs with extra logical predicates beyond those presented in

the literature (Leuschel 1994; Etalle et al. 1997; Albert et al. 2002; Leuschel and

Bruynooghe 2002). In particular, the intensive use of static analysis techniques in

this context seems particularly promising. In our case we can take advantage of

the fact that our partial deduction system is integrated in CiaoPP, which includes

extensive program analysis facilities. A first step in this direction has been taken

in (Albert et al. 2005) by using backwards analysis to infer purity assertions which

determine when a non-leftmost step is safe in the presence of impure predicates.
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(Eds.), G. P. 2004. The Ciao System. Reference Manual (v1.10). Tech. Rep.
CLIP3/97.1.10(04), School of Computer Science (UPM). August. Available at
http://clip.dia.fi.upm.es/Software/Ciao/.

Charlier, B. L., Rossi, S., and Van Hentenryck, P. 2002. Sequence Based Abstract
Interpretation of Prolog. Theory and Practice of Logic Programming 2, 1, 25–84.

Etalle, S., Gabbrielli, M., and Marchiori, E. 1997. A Transformation System for
CLP with Dynamic Scheduling and CCP. In Proc. of the ACM Sigplan PEPM’97. ACM
Press, New York, 137–150.

Gallagher, J. 1993. Tutorial on specialisation of logic programs. In Proceedings of
PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-Based
Program Manipulation. ACM Press, 88–98.

Hermenegildo, M. V., Puebla, G., Bueno, F., and López-Garćıa, P. 2005. Inte-
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