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Abstract

Certain aspects of functional programming provide syntactic convenience, such as having
a designated implicit output argument, which allows function call nesting and sometimes re-
sults in more compact code. Functional programming also sometimes allows a more direct
encoding of lazy evaluation, with its ability to deal with infinite data structures. We present
a syntactic functional extension of Prolog covering function application, predefined evaluable
functors, functional definitions, quoting, and lazy evaluation. The extension is also composable
with higher-order features. We also highlight the Ciao features which help implementation and
present some data on the overhead of using lazy evaluation with respect to eager evaluation.

Keywords: Declarative Languages, Logic Programming, Functional Programming, Logic-Functional
Programming, Lazy Evaluation.

1 Introduction

Logic Programming offers a number of features, such as nondeterminism and partially instantiated
data structures, that give it expressive power beyond that of functional programming. However,
certain aspects of functional programming provide in turn syntactic convenience. This includes
for example having a syntactically designated output argument, which allows the usual form of
function call nesting and sometimes results in more compact code. Also, lazy evaluation, which
brings the ability to deal with infinite (non-recursive) data structures [22, 1], while subsumed by
logic programming features such as delay declarations, enjoys a more direct encoding in functional
programming. Bringing this syntactic convenience to logic programming can result in a more
compact program representation in certain cases and is therefore a desirable objective.

With this objective in mind, in this paper we present a design for an extensive functional
syntactic layer for logic programs and its implementation in the Ciao system [4].! While the
idea of adding functional features to logic programming systems is clearly not new [2, 3, 21], and
there are currently a good number of systems which integrate functions into some form of logic
programming, such as Oz [16] and Mercury [25] (developed simultaneously and independently from
Ciao), or perform a full integration of functional and logic programming, such as Curry [15, 20], we
feel that our proposal and its implementation has peculiarities which make it interesting in itself,
for its application to standard Prolog systems or otherwise.

!The design described herein actually includes some minor changes with respect to the current version which will
be available in the upcoming release of Ciao.



Our target system, Ciao, offers a complete Prolog system, supporting ISO-Prolog, with a novel
modular design [9] which allows both restricting and extending the language. This design has
allowed us to add functional features to it completely at the source (Prolog) level, and without
modifying at all the compiler or the low-level machinery. The implementation is made by means
of a number of Ciao packages [9], i.e., through the same extension mechanism by which other
syntactic and semantic extensions are supported in Ciao, including constraints, objects, feature
terms/records, persistence, several control rules, etc., giving Ciao its multi-paradigm flavor. How-
ever, our approach to the implementation of functions is actually also relatively straightforward
to implement in any modern Prolog system [14]. We will highlight the Ciao features which make
implementation in our view smoother and more orthogonal with the upfront intention of contribut-
ing if possible to the design of other logic programming systems, which is certainly an important
objective of Ciao.

The rest of the paper is organized as follows: first, we discuss in Section 2 our general approach
to integrating functional notation in a logic programming system. Section 3 presents how we
implemented this approach in Ciao. Section 4 shows an example of the use of lazy evaluation, and
how it is achieved by our implementation. Section 5 presents some experimental results. We come
to a close in Section 6 with our conclusions.

2 Functional Notation in Ciao

2.1 Basic Concepts and Notation

Our notion of functional notation for logic programming departs in a number of ways from previous
proposals. The fundamental one is that functional notation simply provides syntactic sugar for
defining and using predicates as if they were functions, but they can still retain the power of
predicates. In this model, any function definition is in fact defining a predicate, and any predicate
can be used as a function. The predicate associated with a function has the same name and one
more argument, meant as the place holder for the result of the function. This argument is by
default added to the right, i.e., it is the last argument, but can be defined otherwise by using the
appropriate declaration. The syntax extensions provided for functional notation are the following;:

Function applications Any term preceded by the ~ operator is a function application, as can
be seen in the goal write(Targ(1,T)), which is equivalent to the sequence arg(1,T,A),
write(A). To use a predicate argument other than the last as the return argument, a dec-
laration like “:- fun_return functor(™,_,_).” can be used, so that “functor(f,2) is
evaluated to £(_,_) (where functor/3 is the standard ISO-Prolog builtin). This defini-
tion of the return argument can also be done on the fly in each invocation in the following
way: ~“functor(~,f,2). Functors can be declared as evaluable (i.e., being in calls in func-

tional syntax) by using the declaration function/1. This allows avoiding the need to use

the = operator. Thus, “:- function arg/2.” allows writing write(arg(1,T)) instead
of write("arg(1,T)) as above. This declaration can be combined with the previous one:
“:= function functor(~,_,_).”. Note that all these declarations, as is customary in

Ciao, are local to the module where they are included. Finally, the ~ operator does not need
to be used within a functional definition (see below) for the functor being defined.

Predefined evaluable functors In addition to functors declared with the declaration function/1,
several functors are evaluable by default, those being;:



e All the functors understood by is/2. Thus, it is possible to use write(A+B) to de-
note T is A+B, write(T). This feature can be disabled by a declaration :- function
arith(false) (and reverted by using true instead of false).

e The functors used for disjunctive and conditional expressions, (1)/2 and (?)/2. A dis-
junctive expression has the form (V1|V2), and its value when first evaluated is V1, and
on backtracking V2. A conditional expression has the form (Cond ? V1), or more com-
monly (Cond ? V1 | V2), and its value, if the execution of Cond as a goal succeeds, is V1,
otherwise in the first form it causes backtracking, and on the second form its value is V2.
Due to operator precedences, a nested expression (Condl ? V1 | Cond2 7 V2 | V3) is
evaluated as (Condl 7 V1 | (Cond2 7 V2 | V3)).

Functional definitions A functional definition is composed of one of more functional clauses. A
functional clause is written using the binary operator :=, as in

opposite(red) := green.

Functional clauses can also have a body, which is executed before the result value is computed.
It can serve as a guard for the clause or to provide the equivalent of where-clauses in functional

languages:
fact(0) := 1.
fact(N) := N * fact(--N) :- N > 0.

In a functional clause, the defined function does not need to be preceded by ~. Note that
guards can often be defined more compactly using conditional expressions:

fact(N) :=N=071
| N>0 7?7 N *x fact(--N).

The translation of functional clauses defining recursive predicates maintains the tail recursion
of the equivalent predicate, thus allowing the usual compiler optimizations.

Quoting functors In clause heads (independently of whether they are defined as predicates or
functions) functors can be prevented from being evaluated by using the (~) /1 prefix operator
(read as “quote”), as in

pair(A,B) := “(A-B).

Note that this just prevents the evaluation of the principal functor of the enclosed term, not
the possible occurrences of other evaluable functors inside.

Scoping When using function applications inside the goal arguments of meta-predicates, there is
an ambiguity as they could be evaluated either in the scope of the outer execution or the
in the scope of the inner execution. The chosen behavior is by default to evaluate function
applications in the scope of the outer execution, and if they should be evaluated in the inner
scope, the goal containing the function application needs to be escaped with the (*~) /1 prefix
operator, as in findall(X, (d(Y), ~~(X = “£(Y)+1)), L) (which could also be written as
findall(X, ~~ (d(Y), X = "f(¥)+1), L)).

Laziness Lazy evaluation is a program evaluation technique used particularly in functional lan-
guages. When using lazy evaluation, an expression is not evaluated as soon as it is assigned,
but rather when the evaluator is forced to produce the value of the expression. The when,
freeze, or block control primitives present in many modern logic programming systems are



more powerful than lazy evaluation. However, they lack the simplicity of use and cleaner se-
mantics of functional lazy evaluation. In our design, a function (or predicate) can be declared

as lazy via the declarations: “:- lazy function function_name/N.”. (or, equivalently

in predicate version, “:- lazy pred_name/M.”, where M = N + 1). In order to achieve
the intended behavior, the execution of each function declared as lazy is suspended until the

return value of the function is needed.

Definition of real functions In the previous scheme, functions are (at least by default) not
forced to provide a single solution for their result, and, furthermore, they can be partial,
producing a failure when no solution can be found. A predicate defined as a function can
be declared to behave as a real function using the declaration “:- funct name/N.”. Such
predicates are then converted automatically to real functions by adding pruning operators
and a number of Ciao assertions [23] which pose (and check) additional restrictions such
as determinacy, modedness, etc., so that the semantics will be the same as in traditional
functional programming.

2.2 Examples

We now illustrate the use of the functionality introduced above through examples. The following
example defines a simple unary function der (X) which returns the derivative of a polynomial
arithmetic expression:

der(x) = 1.

der(C) =0 :— number (C) .
der("(A + B)) = “(der(A) + der(B)).

der("(C * A)) = ~(C * der(h)) :— number (C) .

der("(x *x N)) := (N * “(x ** (N - 1))) :- integer(N), N > 0.

Note that the code is a bit obfuscated because it uses frequently evaluable functors which need
to be quoted. This quoting can be prevented by including the directive mentioned above to make
functors understood by is/2 not evaluable. Thus, the arithmetic evaluation in the last clause needs
to be explicitly requested. The new program follows:

:— function(arith(false)).

der (x) = 1.

der(C) =0 :— number (C) .

der(A + B) := der(A) + der(B).

der(C * A) = C * der(4) :— number (C) .

der(x ** N) := N *x x *x “(N - 1) :- integer(N), N > 0.

Both of the previous code fragments translate to the following code:

der(x, 1).

der(C, 0) :-
number (C) .

der(A + B, X +Y) :-
der(A, X),
der(B, Y).

der(C * A, C * X) :-
number (C) ,



der(A, X).
der(x ** N, N * x **x N1) :-
integer (N),
N > 0,
N1 is N - 1.

Note that with our solution the programmer may use der/2 as a function or as a predicate
indistinctly.

As a simple example of the use of lazy evaluation consider the following definition of a function
which returns the (potentially) infinite list of integers starting with a given one:

:— lazy function nums_from/1.
nums_from(X) := [X | nums_from(X+1)].

One of the nice features of functional notation is that it allows writing regular types (used in
Ciao assertions [23] and checked by the preprocessor) in a very compact way:

color := red | blue | green.
list := [] | [_ | 1list].
list_of (T) := [1 | [T | list_of(T)].

which are equivalent to (note the use of higher-order in the third example, to which we will refer
again later):

color(red). color(blue). color(green).

list([1). 1ist([_IT]) :- 1ist(T).

list_of(_, [1). list_of (T, [X|Xs]) :- T(X), list_of (T, Xs).

3 Implementation Details

As mentioned previously, certain Ciao Prolog features have simplified its extension to handle func-
tional notation. In the following we sketch the features of Ciao we used and then how we applied
them for our needs.

3.1 Code Translations in Ciao

Traditionally, Prolog systems have included the possibility of changing the syntax of the source code
by the use of the op/3 builtin/directive. Furthermore, in many Prolog systems it is also possible
to define expansions of the source code (essentially, a very rich form of “macros”) by allowing the
user to define (or extend) a predicate typically called term_expansion/2 [24, 12]. This is usually
how, e.g., definite clause grammars (DCG’s) are typically implemented.

However, these features, in their original form, pose many problems for modular compilation
or even for creating sensible standalone executables. First, the definitions of the operators and,
specially, expansions are global, affecting a number of files. Furthermore, which files are affected
cannot be determined statically, because these features are implemented as a side-effect, rather
than a declaration, and they are meant to be active after they are read by the code processor
(top-level, compiler, etc.) and remain active from then on. As a result, it is impossible by looking
at a source code file to know if it will be affected by expansions or definitions of operators, which
may completely change what the compiler really sees.

In order to solve these problems, these features were redesigned in Ciao, so that it is still possible
to define source translations and operators, but such translations are local to the module or user



file defining them. Also, these features are implemented in a way that has a well-defined behavior
in the context of a stand-alone compiler (and this has been applied in the Ciao compiler, ciaoc [8]).
In particular, the directive load_compilation module/1 allows separating code that will be used
at compilation time (e.g., the code used for translations) from code which will be used at run-time.
It loads the module defined by its argument into the compiler.

In addition, in order to make the task of writing expansions easier, the effects usually achieved
through term_expansion/2 can be obtained in Ciao by means of four different, more specialized
directives, which, again, affect only the current module.

The solutions we provided to implement functions in Ciao are based on the possibility of defin-
ing these source translations. In particular, we have used the directives add_sentence_trans/1
(to define sentence translations) and add_goal_trans/1 (to define goal translations). A sentence
translation is a predicate which will be called by the compiler to possibly convert each term read
by the compiler to a new term, which will be used by the compiler in place of the original term.
A goal translation is a predicate which will be called by the compiler to possibly convert each goal
present in the clauses of the current text to another goal to replace the original one. Note the pro-
posed model can be implemented in other Prolog systems using similarly using term_expansion/2
and operator declarations, but that having operators and syntactic transformation predicates lo-
cal to modules makes it scalable and amenable to combination with other packages and syntactic
extensions.

3.2 Ciao Packages

Packages in Ciao are libraries which define extensions to the language, and have a well defined and
repetitive structure. These libraries typically consist of a main source file which defines only some
declarations (operator declarations, declarations loading other modules into the compiler or the
module using the extension, etc.). This file is meant to be included as part of the file using the
library, since, because of their local effect, such directives must be part of the code of the module
which uses the library. Any auxiliary code needed at compile-time (e.g., translations) is included
in a separate module which is to be loaded into the compiler via a load_compilation module/1
directive placed in the main file. Also, any auxiliary code to be used at run-time is placed in
another module, and the corresponding use module declaration is also placed in the include file.

In our implementation of functional notation in Ciao we have provided two packages: one for the
bare function features without lazy evaluation, and an additional one to provide the lazy evaluation
features. The reason for this is that in many cases the lazy evaluation features are not needed and
thus the translation procedure is simplified.

3.3 The Ciao Implementation of Functional Extensions

To translate the functional definitions, we have used as mentioned above the add_sentence_trans/1
directive to provide a translation procedure which transforms each functional clause to a predicate
clause, adding to the function head the output argument, in order to convert it to the predicate
head. This translation procedure also deals with functional applications in heads, as well as with
function directives.

On the other hand, we have used the add_goal_trans/1 directive to provide a translation
procedure for dealing with function applications in bodies. The rationale to using a goal translation
is that each function application inside a goal will be replaced by a variable, and the goal will be
preceded by a call to the predicate which implements the function in order to provide a value for
that variable.



An additional sentence translation is provided to handle the lazy directives. The translation of
a lazy function into a predicate is done in two steps. First, the function is converted into a predicate
using the procedure explained above. Then, the resulting predicate is transformed to suspend its
execution until the value of the output variable is needed. This suspension is achieved by the
use of the freeze/1 control primitive that many modern logic programming systems implement
quite efficiently [11] (block or when declarations can obviously also be used, but we explain the
transformation in terms of freeze because it is more widespread). This translation will rename
the original predicate to an internal name and add a bridge predicate with the original name which
invokes the internal predicate through a call to freeze/1. This will delay the execution of the
internal predicate until its result is required, which will be detected as a binding (i.e., demand) of
its output variable. The following section will provide a detailed example of the translation of a
lazy function. The implementation with block is even simpler since no bridge predicate is needed.

We show below, for reference, the main files for the Ciao library packages functions:
% functions.pl
:- include(library(’functions/ops’)).
:-— load_compilation_module(library(’functions/functionstr’)).
:— add_sentence_trans(defunc/3).
:— add_goal_trans(defunc_goal/3).
and lazy (which will usually be used in conjunction with the first one):
/° lazy.pl
include(library(’lazy/ops’)).
:- use_module(library(freeze)) .
:= load_compilation_module(library(’lazy/lazytr’)).
:— add_sentence_trans(lazy_sentence_translation/3).
The Ciao system source provides the actual detailed coding along the lines described above.

4 Lazy Functions: an Example

In this section we show an example of the use of lazy evaluation, and how a lazy function is
translated by our Ciao package.

Figure 1 shows in the first row the definition of a lazy function which returns the infinite list
of Fibonacci numbers, in the second row its translation into a lazy predicate? (by the functions
package) and in the third row the expansion of that predicate to emulate lazy evaluation (where
fiblist_$$1lazy$$ stands for a fresh predicate name).

In the fiblist function defined, any element in the resulting infinite list of Fibonacci numbers
can be referenced, as for example, nth(X, “fiblist, Value). The other functions used in the
definition are tail/2, which is defined as lazy and returns the tail of a list; zipWith/3, which is also
defined as lazy and returns a list whose elements are computed by a function having as arguments
the successive elements in the lists provided as second and third argument;® and add/2, defined as
add(X,Y) := X + Y.

Note that the zipWith/3 function (respectively the zipWith/4 predicate) is in fact a higher-
order function (resp. predicate). Ciao provides in its standard library a package to support higher-
order [7, 5, 10], which together with the functions and lazy packages (and, optionally, the type
inference and checking provided by the Ciao preprocessor [18]) basically provide all the functionality
present in modern functional languages.

®The :- lazy function fiblist/0. declaration is converted into a :- lazy fiblist/1. declaration.
3Tt has the same semantics as the zipWith function in Haskell.



:— lazy function fiblist/0.
fiblist := [0, 1 | “zipWith(add, FibL, “tail(FibL))]
:— FibL = fiblist.

:- lazy fiblist/1.

fiblist ([0, 1 | Rest]) :-
fiblist(FibL),
tail(FibL, T),
zipWith(add, FibL, T, Rest).

fiblist(X) :-
freeze(X, ’fiblist_$$lazy$s$’ (X)).

'fiblist_$$lazy$$’ ([0, 1 | Rest]) :-
fiblist(FibL),
tail (FibL, T),
zipWith(add, FibL, T, Rest).

Figure 1: Code translation for a fibonacci function, to be evaluated lazily.

5 Some Performance Measurements

Since the functional extensions proposed simply provide a syntactic bridge between functions and
predicates, there are only a limited number of performance issues worth discussing. For the case
of real functions, it is well known that performance gains can be obtained from the knowledge of
a certain function or predicate being moded (e.g., for a function all arguments being ground on
input and the “designated output” argument being ground on output), determinate, non-failing,
etc. [26, 17, 19]. In Ciao this information can in general (i.e., for any predicate or function) be
inferred by the Ciao preprocessor or declared with Ciao assertions [18, 23]. As mentioned before,
for declared “real” (func) functions, the corresponding information is added automatically. Some
results on current Ciao performance when this information is available are presented in [19)].

In the case of lazy evaluation of functions, the main goal of the technique presented herein is not
really any increase in performance, but achieving new functionality and convenience through the
use of code translations and delay declarations. However, while there have also been some studies
of the overhead introduced by delay declarations, it is interesting to see how this overhead affects
our implementation of lazy evaluation by observing its performance. Consider the nat/2 function
in Figure 2, a simple function which returns a list with the first N numbers from an (infinite) list
of natural numbers.

:— function nat/1. :— function nat/1.
nat(N) := “take(N, nums_from(0)). :— function nats/2.
nat(X) := nats(0, X).
:- lazy function nums_from/1. nats(X, Max) := X > Max 7 []
nums_from(X) := [X | nums_from(X+1)]. | [X | nats(X+1, Max)].

Figure 2: Lazy and eager versions of function nat (X).



Function take/2 in turn returns the list of the first N elements in the input list. This nat (N)
function cannot be directly executed eagerly due to the infinite list provided by the nums_from(X)
function, so that, in order to compare time and memory results between lazy and eager evaluation,
an equivalent version of that function is provided.

Table 1 reflects the time and memory overhead of the lazy evaluation version of nat(X) and
that of the equivalent version executed eagerly. As a further example, Table 2 shows the results for
a quicksort function executed lazily in comparison to the eager version of this algorithm. All the
results were obtained by averaging ten runs on a medium-loaded Pentium IV Xeon 2.0Ghz with two
processors, 4Gb of RAM memory, running Fedora Core 2.0, and with the translation of Figure 1.

Lazy Evaluation || Eager Evaluation

‘ List ‘ Time ‘ Heap || Time ‘ Heap
10 elements 0.030 1503.2 || 0.002 491.2
100 elements 0.276 10863.2 || 0.016 1211.2
1000 elements 3.584 | 104463.0 || 0.149 8411.2
2000 elements 6.105 | 208463.2 || 0.297 16411.2
5000 elements 17.836 | 520463.0 || 0.749 40411.2
10000 elements || 33.698 | 1040463.0 || 1.277 80411.2

Table 1: Performance for nat/2 (time in ms. and heap sizes in bytes).

Lazy Evaluation Eager Evaluation

‘ List Time ‘ Heap Time ‘ Heap
10 elements 0.091 3680.0 0.032 1640.0
100 elements 0.946 37420.0 0.322 17090.0

1000 elements 13.303 459420.0 5.032 | 253330.0
5000 elements 58.369 | 2525990.0 31.291 | 1600530.0
15000 elements || 229.756 | 8273340.0 || 107.193 | 5436780.0
20000 elements || 311.833 | 11344800.0 || 146.160 | 7395100.0

Table 2: Performance for gsort/2 (time in ms. and heap sizes in bytes).

We can observe that there is certainly an impact on the execution time when functions are
evaluated lazily, but even with this version the results are quite acceptable if we take into account
that the execution of the predicate does really suspend. Related to memory consumption we
show heap sizes, without garbage collection (in order to observe the raw memory consumption
rate). Lazy evaluation implies as expected some memory overhead due to the need to copy (freeze)
program goals into the heap. Also, while comparing with standard lazy functional programming
implementations is beyond the scope of this paper, some simple tests done for sanity check purposes
(with HUGS) show that the results are comparable, our implementation being for example slower
on nat but faster on gsort, presumably due to the different optimizations being performed by the
compilers.

An example when lazy evaluation can be a better option than eager evaluation in terms of
performance and not only convenience is found in a concurrent or distributed system environment
(such as, e.g., [13]), and in the case of Ciao also within the active modules framework [4, 6]. The
example in Figure 3 uses a function, defined in an active module, which returns a big amount of data.
Function test/0 in module modulel needs to execute function squares/1, in (active, i.e., remote)



module module2, which will return a very long list (which could be infinite for our purposes). If
squares/1 were executed eagerly then the entire list would be returned, to immediately execute the
takeWhile/2 function with the entire list. takeWhile/2 returns the first elements of a (possibly
infinite) list while the specified condition is true. But creating the entire initial list is very wasteful
in terms of time and memory requirements. In order to solve this problem, the squares/1 function
could be moved to module modulel and merged with takeWhile/2 (or, also, they could exchange a
size parameter). But rearranging the program is not always possible and may perhaps complicate
other aspects of the overall program design.

But if the squares/1 function is evaluated lazily, it is possible to keep the definitions unchanged
and in different modules, so that there will be a smaller time and memory penalty for generating
and storing the intermediate result. As more values are needed by the takeWhile/2 function, more
values in the list returned by squares/1 are built (in this example, only while the new generated
value is less than 10000), considerably reducing the time and memory consumption that the eager
evaluation would take.

:— module(modulel, [test/1], [functions, lazy, hiord,actmods]).
:— use_module(library(’actmods/webbased_locate’)).

:— use_active_module(module2, [squares/2]).

:— function takeWhile/2.

takeWhile(P, [H|IT]) := P(H) ? [H | takeWhile(P, T)]
[ [0.

:— function test/O0.

test := takeWhile(condition, squares).

condition(X) :- X < 10000.

:- module(module2, [squares/1], [functions, lazy, hiord]).

:- lazy function squares/0.
squares := map_lazy(take(1000000, nums_from(0)), square).

:- lazy function map_lazy/2.
map_lazy([1, _) = [].
map_lazy([X|Xs], P) ["P(X) | map_lazy(Xs, P)].

:— function take/2.
take(0, _) = [1.
take(X, [HIT]) := [H | take(X-1, T)] :- X > 0.

:— lazy function nums_from/1.
nums_from(X) := [X | nums_from(X+1)].

:— function square/1.
square(X) := X * X.

Figure 3: A distributed (active module) application using lazy evaluation.
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6 Conclusions

We have presented a functional extension of Prolog, which includes the possibility of evaluating
functions lazily. The proposed approach has been implemented in Ciao and is used now throughout
the libraries and other system code (including the preprocessor and documenter) as well as in a
number of applications written by the users of the system.

The performance of the package has been tested with several examples. As expected, evaluating
functions lazily implies some overhead (and also additional memory consumption) with respect to
eager evaluation. This justifies letting the user choose via annotations for which functions or
predicates lazy evaluation is desired. In any case, the main advantage of lazy evaluation is to
make it easy to work with infinite (non-periodic) data structures in the manner that is familiar to
functional programmers.
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