
A Survey on Service Quality Description 

KYRIAKOS KRITIKOS and BARBARA PERNICI and PIERLUIGI PLEBANI and CINZIA 

CAPPIELLO 

Politecnico di Milano 

and 

MARCO COMUZZI 

Eindhoven University of Technology 

and 

SALIMA BENBERNOU 

Paris Descartes University 

and 

IVONA BRANDIC 

Vienna University of Technology 

and 

ATTILA KERTESZ 

MTA SZTAKI 

and 

MICHAEL PARKIN 

Tilburg University 

and 

MANUEL CARRO 

U. Politecnica de Madrid 

Quality of service (QoS) can be a critical element for achieving the business goals of a service 
provider, for the acceptance of a service by the user, or for guaranteeing service characteristics 
in a composition of services, where a service is defined as either a software or a software-support 
(i.e., infrastructural) service which is available on any type of network or electronic channel. 

The goal of this paper is to compare the approaches to QoS description nowadays presented 
in the literature, where several models and meta-models are included. Our survey is performed 
by inspecting the characteristics of the available approaches, to reveal which are the consolidated 
ones and to discuss which are the ones specific to given aspects, and to analyze where the need 
for further research and investigation is. The approaches here illustrated have been selected based 
on a systematic review of conference proceedings and journals spanning various research areas in 
Computer Science and Engineering including: Distributed, Information, and Telecommunication 
Systems, Networks and Security, and Service-Oriented and Grid Computing. 



1. INTRODUCTION 

A service is an action performed by an entity (the provider) on behalf of another 
one (the requester) [O'Sullivan et al. 2002]. Through the interaction between these 
two entities, which is called service provisioning and involves various phases, there 
is a transfer of value from the provider to the requester or recipient. Depending 
on the service nature and the means or channels it is available, different service 
types can be identified. For instance, the drawing of a bank cheque is a physical 
service which is available only on the bank counter so it requires the requester's 
physical presence on a specific place and time to be invoked and delivered. Web 
services are instead autonomous software systems available over the Internet. This 
paper focuses on software and software-support (i.e., infrastructural) services which 
are available on any network or electronic channel type. Thus, in this survey the 
word "service" will have this designated meaning and any other service type will 
be excluded from the analysis and discussion. 

Service orientation has emerged lately as a paradigm facilitating interaction be
tween interoperating systems, but also as a general framework to enable access 
to IT-based applications, since the benefits of adopting it include interoperability, 
just-in-time integration, easy and fast deployment, efficient application develop
ment, and strong encapsulation [Allen 2006; Georgakopoulos and Papazoglou 2008]. 
While in the past such interactions were stable and consolidated, several new appli
cation environments are now based on access to services with a much shorter time 
frame and cost, thus responding effectively to ever-changing market conditions, 
rapid technology improvements, and increased competition and customer needs. 

An interesting characteristic of services is that they can be composed of other 
services (e.g. a transportation service may be composed of land and air transport 
services). For instance, in the e-business area, services can be selected dynamically 
and composed in added-value new services, where the composite service compo
nents are selected from a number of candidate services offering the appropriate 
functionality. In many pervasive applications, access to services is based on context 
characteristics, such as location, environmental parameters, and the like. Utility 
services, such as the telecom and energy provider ones, also require interoperability 
of very complex systems to guarantee service delivery. Multimedia and multichan
nel applications require composing and synchronizing several different services to 
provide a good user experience. In general, to provide such services, several phases 
are needed, from the selection of the adequate services to controlling the charac
teristics of service provisioning, in particular when the providers are not under the 
direct control of the service user. This composition of autonomously running ser
vices requires that the service usage rules specified in agreements are clearly stated 
and their compliance is verified. 



Services can be offered and used across many functional levels following various IT 
architectures. The functional architecture model considered is a simplified version of 
the one proposed in [Lamanna et al. 2003]. It follows a three-layer architecture. The 
first layer, the Application Layer, contains business or user-oriented applications 
which may use services to fulfill a part or their whole functionality. The Service 
Layer is the next layer containing services with an electronic interface which are 
used to build or populate the applications. Various infrastructures, which belong 
to the Infrastructure Layer, host these services and are responsible of managing the 
services underlying resources for communication, transactions, security and so forth, 
e.g. through a platform virtualization environment. Every architecture component 
can be offered as a service to the same or other component types. For instance, 
Infrastructure as a Service (IaaS) is the delivery of computing infrastructures as a 
service which fulfils hosted application or service needs [Dikaiakos et al. 2009]. 

Since they are intended to be discovered and used by other applications across the 
Web, services need to be described and understood both in terms of functional ca
pabilities and service quality properties. Service Quality is a combination of several 
qualities or properties (e.g., availability, security, response time) of a service, and 
can be generally seen as a important factor in distinguishing the success of service 
providers (REF). The service quality description is the main driver in selecting the 
best service among a set of functionally equivalent ones. Besides, quality is used to 
define a contract, i.e., a SLA, between a service provider and a service user in order 
to guarantee that their expectations are met. In addition, such a contract feeds the 
service management system that is in charge of assessing the proper quality level 
during the service execution, enforcing it by taking appropriate adaptation actions, 
such as increasing the underlying service resources, substituting or recomposing the 
faulty service, and determining which settlement actions apply based on the way 
the service was executed, such as the final cost or penalties to be paid by the service 
requester or provider, respectively, and negotiations for SLA termination. 

In all previous cases, a prerequisite for using service quality is its proper, precise, 
and rigorous description, covering all possible service life cycle phases. In this paper, 
the term quality document is used to denote the QoS description of a given service. 
This term will be used in a generic way as a description of quality, and all issues 
related to managing such a document in a specific system architecture will not be 
addressed. Even not referring to specific architectural solutions, it will be shown 
that the problem of being able to write quality documents is far from solved. In the 
literature, several approaches have been proposed, and there is no commonly agreed 
way to specify QoS. This paper aims to systematically and comparatively review 
these approaches according to various criteria, which include their scope, formality, 
expressiveness, and applicability. Many important findings are uncovered from the 
analysis. In addition, areas for further research and investigation are spotted. 

The presented approaches have been selected based on a systematic review of 
conference proceedings and journals spanning various research areas in Computer 
Science and Engineering including: Distributed, Information, and Telecommunica
tion Systems, Networks and Security, and Service-Oriented and Grid Computing. 

This paper is structured as follows. First, in Section 2, a definition of service 
quality is provided along with a small analysis of the service life cycle, while also 



a general classification of quality models is presented, which is then used in the 
remaining paper sections. Section 3 presents a case study of the usage of service 
quality in Cloud Computing. According to the quality model classification, the 
state of the art on quality models is analyzed in Section 4, on quality meta-models 
in Section 5, and on Service Level Agreements in Section 6. In each section, a 
set of comparison characteristics are defined and then exploited to compare the 
approaches according to level of satisfaction of these characteristics. The last section 
analyzes interesting topics for further investigation. 

2. SERVICE LIFE CYCLE AND QUALITY 

By relying on the definition provided in [Kritikos and Plexousakis 2009], which 
mainly applies to software services, service quality is defined as a set of non
functional attributes of those contextual entities that are considered relevant to 
the service-client interaction, including the service and the client, that bear on the 
service ability to satisfy stated or implied needs. Moreover, service quality can 
be classified as Quality of Service (QoS) and Quality of Experience (QoE). QoS 
includes quality attributes that can be objectively measured (like execution time) 
and are typical constituents of Service Level Agreements (SLAs). QoE includes 
quality attributes that can be subjectively measured (e.g. reputation, usability) 
and reflects the perception of individuals or groups of service users. 

The distinguishing feature of service quality with respect to functionality is its 
dynamicity. In particular, the values of some service quality attributes can vary 
without impacting the core service function which remains constant most of the 
time during the service's lifetime. Based on this reason, service quality can be 
used during service discovery to distinguish between many functionally-equivalent 
services. Moreover, it can be monitored and controlled during service provisioning 
to cater for the increasingly high user expectations with respect to the service's 
performance and other types of quality attributes. In fact, service quality can 
play a significant role during several phases of the service life-cycle [Kritikos and 
Plexousakis 2009]. This is evidenced in the reference service life-cycle of Fig. 1. 
Below each activity of this life-cycle is shortly analyzed along with the type of 
quality model it exploits: 

—Advertisement: requesters and providers publish or exchange quality requests 
and quality offers, respectively. Such quality documents are called Quality-Based 
Service Descriptions (QSDs). 

—Matchmaking: The QSDs are matched to examine if offers are able to support 
the user requirements. The result is that the advertised functionally-equivalent 
services are filtered and then selected based on their ability to satisfy the user 
quality requirements. 

—Negotiation: QSDs are exchanged between service providers and requesters. The 
possible agreement between the parties involved leads to the definition of another 
quality document, the SLA. 

—Monitoring/assessment: the SLA is monitored, in order to discover customers 
and/or providers' violations of its functional and quality terms. Monitoring may 
also signal potential dangerous situations, that may lead to a violation of the 
SLA if corrective actions are not timely undertaken. 



Fig. 1. Service life-cycle. 

—Adaptation: in case of SLA unfulfillment, recovery/adaptation reactive and 
proactive actions may be taken. A possible recovery action might require a re
negotiation of the SLA or the execution of the matchmaking activity to find an 
alternative service. It might also happen that an alert is sent to the assessment 
component of the monitoring activity that continues to execute. 

Apart from QSDs and SLAs, another document type is a Service Quality Model 
(SQM). All document types have been introduced for particular reasons, while 
some document types are used as building blocks of other types. Moreover, each 
type is exploited in specific activities of the service life-cycle. In particular, Service 
Quality Models (SQMs) have been used to describe concrete quality properties 
which can be exploited by other quality document types to express service quality 
capabilities/requirements or service levels. QSDs have been used to express service 
quality capabilities and requirements as a set of constraints on quality attributes and 
metrics. Such descriptions contain all the appropriate information for supporting 
the service matchmaking and negotiation activities. Finally, SLAs have been used 
not only to express the service levels in which a service can execute but also other 
information that is suitable for supporting the service provisioning activities. As a 
service level description of an SLA is actually a QSD (i.e. a set of service quality 
constraints), SLAs are actually built on top of the other document types. 

SQMs are descriptions of a taxonomy or concrete list of QoS categories, at
tributes, metrics, and relationships that connect all of these quality entities. For 
example, a typical SQM may contain the Performance QoS category which in
cludes the QoS attributes of response time and throughput. As it will be shown 
in Section 4, some proposed SQMs classify quality attributes in terms of relevant 
scenarios, other SQMs classify them in terms of their dependencies, while other 
SQMs classify them in terms of compliance to existing standards. Relying on these 
models means that SPs and SRs have to preliminary select which is the exact set of 
relevant quality attributes, where this selection is usually performed in an ad hoc 
way. SQMs provide the concrete semantics of the quality terms that may be used 
in QSDs and SLAs, that is in other types of quality documents. In this way, all 
the service life-cycle activities as, for instance, matchmaking and monitoring, are 



designed around this set of quality attributes. Although the above procedure assists 
in producing suitable mechanisms for supporting the service life-cycle activities, the 
suitability of these mechanisms is specific for the considered scenario. 

QSDs are often associated with a validity period or expiration time which signifies 
when they become outdated. Depending on which party is producing them, QSDs 
can be separated into Service Quality Offers (produced by an SP) and Service Qual
ity Request (produced by an SR). Service Quality Requests are further separated 
into Service Quality Requirements and Service Selection Models. The latter denote 
the significance of each quality attribute or metric to the SR by associating it with 
a specific weight and are used for ranking Service Descriptions (SDs). Both Service 
Quality Offers and Requirements are expressed as a set of quality constraints. A 
quality constraint usually contains a comparison operator that is used to compare a 
quality metric or attribute with a value. Sometimes, a quality constraint may also 
contain the unit of the compared value. Thus, QSDs describe all the appropriate 
information that is required for matchmaking and negotiating service quality. In 
this way, they are used in the respective service life-cycle activities. However, they 
are not used further in the service life-cycle, as they do not contain all the appro
priate information that is required for supporting the rest of the service life-cycle 
activities, which mainly concern the service provisioning. 

To this end, SLAs have been introduced to close this gap. An SLA is an impor
tant aspect of a contract for IT services that includes the set of QoS guarantees 
and the obligations of the various parties (see definition in [Keller and Ludwig 
2003]). QoS guarantees are widely known as Service Level Objectives (SLOs) and 
are expressed as conditions on one or more QoS metrics, thus indicating the metrics 
allowed values. A set of SLOs constitutes a specific Service Level (SL). There can 
be different SLs defined in an SLA, expressing the different modes a service may 
execute in different time periods, or degradation/upgrade levels if the agreed SL is 
violated/surpassed. The party obligations are usually expressed as action guaran
tees (e.g. compensation, recovery, or management actions) to be performed when 
a given precondition is met (e.g. a violation occurs). Other important SLA com
ponents are the organizational ones which correspond to information concerning 
service monitoring and reporting. 

As can be seen from the above analysis, SLAs contain more information than 
QSDs in terms of supporting the service provisioning activity. Moreover, there is not 
any uniform and common quality document to be used across all the activities. This 
can be also observed in the reference service life-cycle. This is a major drawback 
that requires time, as document transformations should take place from one format 
to the other, and reduces the automation degree of the activities. 

In order to automate as much as possible the above activities, a clear and for
mal description of QoS is required. Moreover, service providers (SPs) and service 
requesters (SRs) should agree on the same language for expressing their quality 
documents. In this way, all the mechanisms used for supporting the service life-
cycle can be properly enacted. Nowadays, in the literature many meta-models and 
languages for describing service quality exist. In this survey, we firstly group them 
in two main categories. Figure 2 represents the types of quality documents, their 
meta-models, and the various relationships involved between all of these entities. 



Fig. 2. The main types of quality documents, their meta-models, and the inter-relationships. 

At the first level, the Service Quality Meta-Models (SQMMs) provide the means 
for describing QoS in a more general and extensible way than SQMs. Actually, an 
SQMM is a conceptualization of the appropriate quality concepts and their rela
tionships that can be used to capture and describe a SQM. For example, a typical 
SQMM will contain the concepts of QoS category, QoS attribute, and QoS metric 
and the relationships contains (from QoS categories to attributes) and measuredBy 
(from QoS attributes to metrics). So, an SQMM can describe many different SQMs, 
where the number of those SQMs and their actual difference mainly depends on 
the richness of the SQMM. In addition, SQMMs are used to specify QSDs, which 
are usually described by a set of constraints on some QoS attributes and metrics. 
Thus, existing SQMMs can be compared according to their expressiveness, as it 
will be shown in Section 5. On one hand, by adopting an SQMM, the mechanisms 
that use quality documents become more generic than those which adopt a specific 
SQM. Indeed, in this case, these mechanisms can be designed regardless of a specific 
quality attribute set. In case SRs and SPs change the relevant quality attribute 
set, the mechanisms remain the same. On the other hand, due to the intrinsic sub-
jectiveness and complexity of quality, the existing SQMMs are not able to capture 
all the possible features of quality attributes and rely on a common understanding 
of the interacting parties about the concepts defined in the SQMM. 

Finally, at the second level, the SLA Meta-Models (SLA-MMs) are considered. 
In this case, as it will be discussed in Section 6, the approaches involved allow the 
definition of SLAs and SLA Templates between the interacting parties. Since the 
agreement terms include Service Level Objectives (SLOs), which denote constraints 
on quality attributes or metrics listed in an SQM, and both SQMs and constraints 
may be defined by an SQMM, the existence of the three following cases is high-



lighted: a) there are SQMMs, called SLA-enabled SQMMs (SLA-SQMMs), that 
can define SLA specifications apart from QSDs; b) SLA-MMs may use one or more 
SQMMs to define and reference quality attributes and even specify SLOs; c) SLA-
MMs may reference the contents of one or more SQMs. Various SLA description 
capabilities are considered, when comparing existing SLA languages, which concern 
the definition of the contract terms and various other information that may be used 
to support the service life-cycle activities. 

In general, meta-models are used to define a language's abstract syntax. Then, 
different concrete syntaxes may exist for the same language that are based on its 
abstract syntax. So, a meta-model drives the design of a language. Thus, one 
language has one and only underlying meta-model, while one meta-model may be 
used for the design of many languages. However, in practice, there is usually a 
one-to-one correspondence between a language and its underlying meta-model, as 
different languages of the same domain are designed by different modelers which 
have a different conceptualization of that domain. Indeed, to the best of our knowl
edge, Service Quality Specification Languages (SQSLs) and SLA Languages have 
an one-to-one correspondence with their underlying SQMMs and SLA-MMs, re
spectively. Thus, these corresponding terms will be used interchangeably in the 
remaining sections of this survey. 

3. CASE-STUDY 

Cloud computing1 is an important step on the road to make distributed computing 
resources a utility, accessible at any time from any place. The advantage of cloud 
computing is that, like accessing electricity, gas or water utilities, it requires little 
or no cost to start accessing the utility provider's service. However, as with all 
utilities, cloud computing users expect to be given guarantees about how and when 
the service will be provided and an indication of the charges applied to its access 
and use. In the presence of these guarantees potential users can decide whether the 
service meets their requirements, compare the service's properties to other services, 
and determine if the value of the service is worth the advertised cost. 

Cloud computing is a form of service-oriented computing (SOC). In SOC guar
antees on the properties of computing services are known as QoS information. Such 
information can be used to describe a number of aspects of the service properties, 
such as the type, performance, and reliability of the hardware used. 

For example, Figure 3 shows how a cloud provider supplies its cloud resources, 
e.g., as Infrastructure as a Service (IaaS), Platform as a Service (Paas) or Software 
as a Service (SaaS), together with a set of Service Level Properties. 

SRs form service requests containing their QoS preferences and constraints and, 
if these are within the capabilities of the Cloud Provider, they can form SLAs, 
or contracts for service provision. The advantage of using and agreeing an SLA 
between the provider and consumer is that it allows the provider to organize its 
internal resources for maximum efficiency and for the consumer to be assured that 
the service will operate according to the details given in the SLA; through evaluation 
of the SLOs against the relevant metrics of the service's performance, they can 

TA list of cloud computing success stories can be found here: http://cloudtp.com/cloud-

computing/cloud-computing-success-stories 

http://cloudtp.com/cloudcomputing/cloud-computing-success-stories
http://cloudtp.com/cloudcomputing/cloud-computing-success-stories


Fig. 3. The way cloud resources are supplied by a cloud provider. 

determine if the SLA has been met. Such SLAs are usually described by the most 
widely used SLA languages such as WS-Agreement. 

The presence of QoS information in this simple cloud computing scenario shows 
how the the cloud platform quality can be advertised and guaranteed for the SR. 

4. SERVICE QUALITY MODELS 

4.1 Background 

As described in the previous section, an SQM focuses on the analysis of the set of 
quality attributes that are considered relevant in service applications. If services are 
considered as standalone software modules, then their quality can be determined 
by the attributes that traditionally characterize software quality and, thus, by the 
attributes defined in the ISO 9126 model [ISO/IEC 2001]. However, this model 
has to be adapted accordingly to capture the peculiarities deriving from the service 
intended use, i.e., their composition to build service-based applications by removing 
the non-applicable attributes and their categories (i.e., the majority of internal 
attributes) and refining or specializing other attributes (i.e., the rest of internal 
and all external attributes). Services in the publication and utilization phase are 
considered as black boxes that expose their external attributes to the audience 
of service-based developers. From this perspective, all external quality attributes 
proposed for traditional software are applicable, e.g. privacy, security, performance, 
and reliability. However, some internal quality attributes are not applicable (e.g., 
analysahility, changeability) since they require the analysis of the software code that 
is hidden in the service-oriented programming or consider portability aspects which 
are de-facto covered by a service. On the other hand, some internal software product 
characteristics can be useful at least during service design as they influence the way 
a composite service is built or executed. For instance, in case of the stability quality 
attribute, a composite service developer would select service components that are 
more stable than others to build at design- or run-time a stable composite service 
which will be used many times as it is without being updated. 

Thus, it is easy to understand that the ISO 9126 quality model is not adequate 
for representing service quality. In addition, it applies only to software services and 



not to other service types like the infrastructural ones. For this reason, different 
contributions can be found in the literature which propose various SQMs. These 
SQMs' structure is based on the use of taxonomies in which categories, related to 
different analyzed aspects, are defined. Each category contains a set of attributes 
that are entities which can be verified or measured in the service. Most of the 
models associate each attribute with a definition and, in some cases, also the related 
metric and assessment formula are provided. The latter information is needed only 
for measurable quality attributes [Kritikos and Plexousakis 2009]. 

The most referenced QoS categories among all SQMs are the Performance, Se
curity, Dependability, and Configuration, which usually contain specific quality at
tributes as it will be shown in Section 3.3. As there is a differentiation on how 
SQMs categorize the rest of the service quality attributes, it was decided not to 
evaluate SQMs in terms of specific categories but generally on the extensiveness of 
their quality attribute categorization. Moreover, SQMs were evaluated also on the 
level of detail in their categorization in order to inspect the SQM richness. Section 
3.3 evaluates SQMs in terms of the quality attributes they contain in order to dis
tinguish which attributes are the most common ones and to provide a proof for the 
correct evaluation of the SQM richness. 

4.2 Methodology and Analysis 

The most significant SQMs proposed for services and their applications have been 
collected. Only generic SQMs were considered and not specialized models proposed 
for security, data, and network aspects. This is because in the analysis of each 
security and data quality model the service level and service type attributes are not 
considered, since the respective classifications have been often defined for generic 
applications and not for service-based ones. 

A set of comparison criteria have been selected in order to analyze and compare 
the different SQM approaches according to the type and value of the information 
that they contain. A summary of these criteria is shown in Table I, while their 
thorough presentation is provided later on in this section. The evaluation results 
of the examined SQMs according to the comparison criteria are shown in Table 
II. In this table, the SQMs are sorted according to their chronological order (from 
the oldest to the newest). In this way, interesting conclusions concerning trends in 
SQM modeling can be drawn. 

The UML diagram depicted in Figure 4 shows an ideal meta-model for expressing 
SQMs that satisfy all the comparison criteria set. The concepts and associations 
marked with red show the common conceptual elements among all SQMs. This 
meta-model could be that part of an SQMM related to the appropriate and rich 
quality attribute description. 

In the remainder of this section, each criterion along with its evaluation results is 
presented in separate subsections. In the end, a global analysis of the SQMs across 
all criteria is given and the most frequent quality categories and attributes in the 
considered SQMs are distinguished. 

4.2.1 Quality Categorization Extensiveness. Quality attributes are usually cat
egorized into quality categories. This categorization is required as the set of quality 
attributes is usually large and it considers several aspects such as the higher the 



Table I. Summary of the Comparison Criteria of Service Quality Models 

Fig. 4. Ideal meta-model for SQMs. 

category number the higher the comprehensiveness of the approach. Categories 
also improve the model's readability. In fact, a classification enables users to better 
explore the model and optimize the search activity. Categories that are defined in 
many SQMs are: Performance, Security, Dependability, and Configuration Man
agement. A flat model would contain only one quality category while an extensive 
one can contain up to 9 or 10 categories. Grades of extensiveness: flat (1 category), 
fair (2-4 categories), good (5-7) categories and extensive (8-10) categories. 

The evaluation results are presented in the second column of Table II. The 
majority of SQMs uses categories to classify the attributes and improve the model's 
understandability. Moreover, there is a balance between all the criterion-specific 



T
able II. 

C
om

parison of R
esearch A

pproaches P
roviding Service Q

uality M
odels 



SQM partitions (apart from the flat partition which has only one approach) with 
the partition corresponding to good extensiveness to have a very small precedence. 
Finally, by observing the last nine values of the corresponding criterion column, the 
trend that SQMs are improving according to this aspect (with the exception of the 
approach in [Nessi Open Framework 2009]) can be revealed. 

4.2.2 Level of Detail in Quality Categories. This criterion is used to inspect 
if each category contains a sufficient quality attribute number. In this way, the 
higher the number the higher the probability that the most significant attributes 
are covered in this category. So when a quality category does not contain more than 
two attributes, its level of detail is: low. When it contains three to five attributes, 
it is good, while when it contains more than five it is high. In this way, we can 
generalize to express the level of detail of the whole SQM. Thus, we have defined 
the following levels: very low (every category has low level of detail), low (some 
categories have low and other have good level of detail), fair (some categories have 
low and other have good or high level of detail), good (all categories have good 
level of detail), very good (some categories have good and other have high level of 
detail), high (most categories have high level of detail). 

The evaluation results are presented in the third column of Table II. More than 
half of the SQMs have a fair level of detail which means that some of their categories 
contain less than three quality attributes. For the rest of the approaches, SQMs that 
present high level of detail are more than those having good. Finally, approaches 
with higher level of detail than fair are starting to appear after 2005. This means 
that SQMs have slightly improved over the years according to this aspect. 

4.2.3 Containment of Domain-Independent and Domain-Dependent Quality At
tributes. Domain-independent quality attributes are general/technical attributes 
that can characterize all services in any possible application domain. For example, 
it is difficult to find an SQM that does not contain the response time and avail
ability (domain-independent) attributes. On the other hand, domain-dependent 
quality attributes characterize services (or their parts) of one or more but not any 
application domain. For example, data-related attributes like validity and timeli
ness characterize the input or output data of services that manipulate data. So 
the evaluation of this criterion for a specific SQM would be: domain ind. (only 
domain-independent), domain dep. (only domain-dependent), and both. 

The evaluation results are presented in the fourth column of Table II. All the 
approaches tend to be general and not domain specific. In fact, all the SQMs pro
pose domain-independent criteria that can be generally used in every context in 
which non functional properties are considered, while only four approaches enu
merate also some domain-specific attributes of a particular domain [Sakellariou 
and Yarmolenko 2008; Kritikos and Plexousakis 2009; Mabrouk et al. 2009] or 
some quality attributes used in some domains according to a particular context 
[Cappiello et al. 2008]. The latter four approaches have been proposed recently. 

4.2.4 Consideration of Service Provider and Requester Views. This criterion 
considers the relevance degree of the different quality attributes with respect to 
the SP and SR. Some quality attributes are particularly relevant for SPs, such as 
availability and response time. Other quality attributes are important to SRs, such 



as response time and usability. Thus, some quality attributes are both important 
to SPs and SRs, so they belong to their common view, while other attributes are 
important only for one of these parties, so they are either SP-specific or SR-specific. 
If the SQM captures both views, it should provide a quality attribute set that can 
be used to express both SP capabilities and SR requirements. Thus, this criterion's 
evaluation for a specific SQM would be: SP (if the SQM contains SP-specific and 
common quality attributes), SR (if it contains SR-specific and common attributes), 
and both (if it contains common, SP-specific, and SR-specific attributes). 

The evaluation results are presented in the fifth column of Table II. More than 
half of the SQMs consider quality attributes that correspond to both provider and 
requesters view. So, researchers have understood the need of expressing both views 
in an SQM. Moreover, the evaluation results of this criterion are in accordance with 
those of the previous one. First, domain independence signifies that the selected 
quality attributes are more specific to the service and independent of its usage 
in specific applications, so at least the provider view is covered. This is because 
providers are more concerned about having their services used across many appli
cation domains so they focus more on those quality attributes that are generic and 
tend to distinguish their services from other services independently of the appli
cation domain. Second, domain dependence signifies that the selected attributes 
are specific to an application and its usage, so they have an impact on the user's 
expectations. Thus, domain-dependent attributes tend to cover the requester view. 
Indeed, by cross-checking the results of this and the previous criterion (domain-
independence), we can observe that when only domain-independent attributes are 
contained in an SQM, then at least the SP's view is captured. In addition, when 
an SQM also captures domain-dependent attributes, then also the requester's view 
is captured. Finally, it can be observed that while in the past most SQMs were 
capturing only the SP view, this situation has changed recently as the more recent 
SQMs (from 2006 and on) tend to cover both views. 

4.2.5 QoS and QoE Consideration. QoE attributes certainly reflect the requester 
view. However, two main questions arise that may be addressed by the evaluation 
of this criterion and the observation of the evaluation results of the previous cri
terion: a) "are all requester-view quality attributes QoE or not?", and b) "what 
is the situation with the provider-view quality attributes, in other words do the 
provider-view attributes contain QoS, QoE, or both attribute types?". Thus, these 
two questions actually concern which views do the QoS attributes reflect. Obvi
ously, both sets of attributes are important and should be represented by an SQM. 
So, the evaluation of this criterion for a specific SQM would be: QoS (only QoS), 
QoE (only QoE), and both. 

The evaluation results are presented in the sixth column of Table II. It is easily 
noticeable that there is a balance between the SQMs that contain only QoS at
tributes with those that contain also QoE attributes. Moreover, the more recent 
SQMs tend to cover both attribute types. This means that SQM modelers have 
understood the importance of modelling both QoS and QoE attributes. 

By inspecting this criterion's results and those of the previous one, some other 
interesting facts can be inferred. First, when an SQM covers only the SP view, then 
it covers only QoS attributes. This means that an SP considers the QoS attributes 



as more important. This is quite reasonable as the SP-view quality attributes are in 
their majority domain-independent attributes that should be measured objectively 
in order to be able to meaningfully compare services across all application domains. 
Second, when an SQM additionally covers the SR view, then it covers either QoS or 
both QoS and QoE attributes. This signifies that the SR-view corresponds to both 
attribute types. On one hand, the SR-view domain-independent attributes will 
tend to be QoE attributes because these attributes can be assessed differently from 
users across the various application domains, as in each domain the usage and the 
requirements from a service are different with respect to the other domains. On the 
other hand, SR-view domain-dependent attributes will tend to be QoS attributes 
because in a specific application domain the requirements and the service usage are 
specific or vary in a specific way according to the user expectations, while the user's 
domain expertise is high. In this way, the SR-view domain-dependent attributes 
will tend to be measured with well-established domain metrics or be assessed by 
the same objective way by users that have similar expectations. 

4.2.6 Atomic and Composite Quality Attribute Inclusion. Some attributes are 
composite and can be computed by evaluating other attribute values. For exam
ple, response time (the parent) is a composite attribute since it can be assessed 
by evaluating latency and network delay (its children). Other attributes, like exe
cution time, are atomic as they do not rely on any attribute. The composability 
aspect is important as it can be used later by meta-models to capture this inherent 
relationship type between the parent and child quality attribute. Moreover, if this 
relationship is associated with a specific mathematical formula, then it can also 
drive the way the parent quality attribute is measured from its child attributes. In 
addition, even if this relationship is captured by a simple connection (symbolic or 
phrasal), it can be useful in service monitoring to check for example if the increase 
in a child attribute value causes an increase in the parent attribute value. So it is 
important to inspect if both attribute types and parent-child relationships are cap
tured. Thus, this criterion's evaluation for an SQM would be: atomic (only atomic 
attributes are included), composite (only composite attributes are included), and 
both (both attribute types are included along with a connecting relationship). 

The evaluation results are presented in the seventh column of Table II. Most of 
the SQMs contain both atomic and composite quality attributes along with a con
necting relationship. In addition, as all SQMs that have been proposed after 2005 
contain both attribute types, there is a trend of SQM improvement with respect 
to this aspect. Finally, by inspecting the evaluation of the SQM of [Colombo et al. 
2005] according to this and the first two criteria, it can be observed that this SQM 
contains only atomic quality attributes, while its category extensiveness is flat and 
its level of detail is fair. Indeed, such an SQM is built and structured in this way for 
supporting fact computation (i.e. service matchmaking and selection) algorithms 
which require that no inter-attribute dependencies exist but only QoS attributes 
that can be immediately measured by specific metrics without introducing more 
higher measurement levels. 

4.2.7 Types of Dependencies. There can be two dependency types between qual

ity attributes: quantitative and qualitative. The former are expressed by mathe- ACM 



matical formulas or constraints and a specific subclass of them are the composite 
attribute derivation formulas included in parent-child relationships, while the lat
ter are expressed symbolically or descriptively. An qualitative dependency example 
is that availability and reliability have "a positive correlation" i.e an increase of 
the one's value causes an increase to the other's value. So it must be inspected if 
concrete dependencies between quality attributes exist in an SQM without consid
ering which modeling constructs are used, as SQMs and not SQMMs are evaluated. 
Thus, this criterion's evaluation for a specific SQM would be: no (no dependen
cies are expressed), quant, (only quantitative dependencies are expressed), qual. 
(only qualitative dependencies are expressed) and both (both dependency types are 
expressed). 

The evaluation results are presented in the eighth column of Table II. Only 
qualitative dependencies are addressed by the SQMs. In addition, all of these 
quantitative dependencies concern composite attribute derivation formulas. Finally, 
by comparing the evaluation results with those of the previous criterion, it can be 
inferred that the majority of the SQMs that specify both composite and atomic 
quality attributes also specify the way the composite attributes are produced from 
the atomic ones. 

4.2.8 Layer Designation. Our reference model consists of three layers: applica
tion, service and infrastructure. The application and service layers usually have an 
identical attribute set with the exception that the application attributes are pro
duced from their service counterparts. Moreover, some business or user-oriented 
attributes are associated to the application layer. The infrastructure layer usually 
contains a completely different quality attribute set with respect to the other two 
layers. So, as it is important to clarify to which service layers an SQM refers to, this 
criterion's evaluation for a specific SQM would be: service, serv. & appl. (service 
and application), injr. (infrastructure), serv. & injr. (service and infrastructure) 
and all (all layers are referenced). 

The evaluation results are presented in the ninth column of Table II. As all SQMs 
are built by having specialized focus on the components of the service layer, i.e. the 
software services, they contain service-layer quality attributes. Almost half of the 
SQMs also contain either infrastructure-layer or application-layer attributes, while 
the same result applies for SQMs that have adopted a holistic approach. Thus, 
apart from the initial SQM that contained solely service-layer quality attributes, 
the researchers have quickly understood the need of covering quality attributes from 
other layers apart from the service one so as to be able to characterize the quality 
of all types of services. 

4.2.9 Metric Identification. This criterion is used to inspect if SQMs contain 
quality metrics used to measure quality attributes. Metrics are entities that en
capsulate all appropriate measurement details of an attribute such as measurement 
values, units, formulas, and schedules. However, a metric's measurement formula 
or assessment algorithm was decided to be used as a separate comparison criterion 
from the current one because some SQMs provide the name of a metric and some 
of its details, when they associate it to an attribute, but not an assessment guide
line or algorithm for it. So it must be assessed first which SQMs associate specific 



metrics to attributes and then the existence or not of assessment guidelines for the 
incorporated metrics. Thus, this criterion's evaluation for each SQM will take the 
following discrete values: none if no metrics are provided in the SQM, partial if the 
SQM associates metrics to a subset of the quality attributes, and complete when 
all attributes are associated with at least one corresponding metric. 

The evaluation results are presented in the tenth column of Table II. More than 
half of the SQMs associate metrics to a subset of the contained quality attributes, 
while only two SQMs are complete in this aspect. The reason of having many 
partial SQMs can be twofold: a) some quality attributes are not measurable or are 
difficult to measure (e.g. QoE attributes), and b) there was a decision of associating 
metrics only to the most popular or widely used (in QSDs and SLAs) attributes. 
Finally, two SQMs do not associate metrics to attributes, which significantly limits 
their usage in specific service quality description and matchmaking scenarios. 

4.2.10 Association with Assessment Guidelines. An SQM may provide algo
rithms to assess the quality attributes that it defines. This criterion's evaluation 
would be: none if guidelines are not provided, fair if simple assessment rules are 
provided, and good if the authors specify precise assessment algorithms. 

The evaluation results are presented in the eleventh column of Table II. More 
than half SQMs just specify some guidelines for each metric, while one third of the 
considered SQMs do not provide metric assessment guidelines. Thus, as the latter 
SQMs cannot be used in the monitoring and assessment service life-cycle activity, 
their use is limited mostly in the advertisement and matchmaking activities. Only 
one approach provides precise assessment algorithms for all defined metrics and 
associates metrics to all its contained attributes. So, this approach is suitable for 
annotating QSDs and SLAs which can be used across all service life-cycle activ
ities. However, it can be used in specific scenarios as it contains a small set of 
domain-independent quality attributes and not domain-dependent ones. Finally, 
by correlating the evaluation results of this criterion with those of the previous one, 
it can be inferred that SQMs, which associate metrics to some or all of their quality 
attributes, do provide for them simple assessment rules which could be further used 
to create precise assessment algorithms. 

4.3 Overall Analysis 

Based on the above analysis, none SQM can be distinguished as the best according 
to its evaluation on all the considered criteria. On one hand, by considering the 
first six criteria plus the "Layer Designation" one which relate to an SQM's ex-
tensiveness, structure, and generality, four approaches can be distinguished as the 
best [Cappiello 2006; Cappiello et al. 2008; Kritikos and Plexousakis 2009; Mabrouk 
et al. 2009]. On the other hand, by considering the last two criteria which relate to 
an SQM's attribute assessment and applicability, the approach in [Colombo et al. 
2005] can be distinguished. Moreover, all approaches have the worst behavior with 
respect to the "Types of Dependencies" criterion. Thus, a new SQM is needed com
bining the characteristics of the best approaches in the above two criteria partitions 
and describing all the possible but realistic inter-attribute dependencies. 

Apart from the criteria-based analysis, the frequency of the service quality cate
gories and attributes across all SQMs was assessed in order to distinguish the most 



Table III. Attributes Defined in Service Quality Approaches 

frequent ones. Table III shows which quality attributes have been defined by which 
SQM(s). 

Although several different QoS attributes and categories can be found in the var
ious proposals, it is possible to single out the most frequent and consider them as 



the "basic" and most important QoS attributes and categories, respectively. This is 
because all other attributes either capture secondary features or are more context-
dependent (i.e. very specific), while they appear very scarcely in the proposed 
SQMs. As can be seen from Table III, response time, latency, and throughput are 
the attributes that mostly represent the performance category, which is present in 
most SQMs. Another important category is security which has three attributes, 
namely authentication, authorization, and non-repudation, that are steadily present 
in the SQMs. Availability, accuracy, and reliability are the remaining three most 
important attributes. Another interesting observation is that internal software 
product quality attributes are not represented at all. This means that either these 
attributes are not so important for composite service developers or the SQM mod
elers have neglected them and focused only on their external counterparts. 

Data quality is a multidimensional concept that defines the suitability of the 
used data for the application in which is involved. In the literature, there exist 
several contributions about data quality attributes and taxonomies/SQMs (e.g., 
[Redman 1997], [Strong et al. 1997]). The most important and representative data 
quality attributes (according to the data quality research) are accuracy, complete
ness, consistency, and timeliness. Since the service output is mostly composed of 
information, data quality can be considered as a part of the service QoS and it 
can drive thoroughly the analysis of the required input and provided output. Thus, 
data quality attributes could be easily applied to the service world in order to check 
the correctness of data, the existence of missing or contradictory values, and the 
updateness of the information provided. However, data quality aspects are scarcely 
considered. The only data quality aspect that is mostly considered is correctness. 

Some SQMs take into account particular network aspects. In these SQMs there 
is usually a Network quality category which mainly contains the four most frequent 
network attributes, namely bandwidth, network delay, jitter, and packet loss. 

5. SERVICE QUALITY METAMODELS 

5.1 Background 

SQMMs have been mainly used to describe the service quality capabilities or re
quirements of an SP or SR, respectively. Thus, apart from their ability to describe 
SQMs, SQMMs can specify QSDs. As service description is a prerequisite for service 
discovery, the content of SQMMs has been used for quality-based service match
making (QBSM) and service selection in service registries. QBSM is a process 
executed after functional service discovery (FSD) to further filter out a registry's 
service descriptions (SDs) based on their service quality capabilities with respect 
to the service quality requirements of a SR. It must be noted that SDs specify both 
the service functional and quality capabilities. The results of the QBSM process 
may be ranked, if it is needed, by executing the service selection process. 

As it was analyzed in Section 2, some SQMMs can be also considered as SLA-
MMs because they can describe SLAs. These SQMMs are called SLA-enabled 
SQMMs (SLA-SQMMs). The corresponding languages of this SQMM type include 
QML [Fr0lund and Koistinen 1998], WSLA [Keller and Ludwig 2003], WSOL [Tosic 
et al. 2003] and SWAPS [Oldham et al. 2006]). SLA meta-models that do not define 
quality attributes and the corresponding service quality capabilities are not con-



Table IV. Summary of the Comparison Criteria of Service Quality Specification Languages 
Criterion 

Formalism 
Quality Model 
Metric Model 
Constraint Model 
Complexity 
Service Description Separa
tion 
Service Description Refine
ment 
Service Description Granu
larity 
Symmetric but Separate 
QSDs 
Class of Service 
Connection 

Quality Matching 
Framework Support 

Summary 

The language's expression formalism 
Expressiveness in defining SQMs 
Expressiveness in defining metric models 
Expressiveness in defining service quality constraints 
The complexity of producing SQMs and QSDs 
Separation of functional and quality-based SDs 

Refinement/reuse of QSDs 

The ability to define quality constraints for the various 
service components 
QSDs should be defined for both SPs and SRs in the same 
way but separately 
The ability to produce different QSDs for the same service 
Connection of a language's QSDs with functional SDs of a 
specific language 
The way QSDs of SPs and SRs should be matched 
In which type of frameworks is the language used 

sidered in this section (e.g., WS-Agreement [WS-AGREEMENT 2003]). Section 6 
will analyze all kinds of SLA languages with the appropriate SLA-based criteria. 

Some security aspects like trust and privacy are orthogonal to service quality 
and are usually separated from the service quality description with respect to the 
other security aspects. In this way, another partition of SQMMs is considered in 
this section which maps to languages, such as Trust-Serv [Skogsrud et al. 2004], 
PeerTrust [Nejdl et al. 2004], WS-Trust [Nadalin et al. 2007], and P3P [Cranor 
et al. 2006], that describe a service quality part which is not described in the rest 
of the SQSLs. The SQMMs of this type are called security-based SQMMs. 

5.2 Methodology and Analysis 

In order to analyze all SQMMs and compare them on their ability to define quality, 
a set of comparison criteria have been chosen, which were either devised by the 
authors or collected from other research approaches [Fr0lund and Koistinen 1998; 
Tosic et al. 2002; Maximilien and Singh 2002; Cortes et al. 2005; De Paoli et al. 2008; 
Kritikos 2008; Kritikos and Plexousakis 2009]. These criteria mainly reflect the 
formality, expressiveness, complexity, and applicability of the examined SQMMs. 
The summary of our selected criteria (without their grouping) is shown in Table IV, 
while their complete presentation is provided later on. 

Based on the SQMM categorization of the previous subsection, there are actually 
three SQMM partitions: pure, SLA-enahled, and security-based. The content of 
these partitions with respect to the corresponding SQMMs can be seen in Table V. 
The evaluation results of the examined SQMMs according to our comparison criteria 
are presented in one tree structure (see Fig. 6) and one table (see Table VI). The use 
of the tree structure is due to two main reasons: 1) some criteria were closely related 
to each other, and 2) a tree is a more user-intuitive means for presenting related 
evaluation results. Table VI is separated into three clusters, each one presenting 



Table V. SQMM partitions and their corresponding approaches 

the evaluation results of one particular SQMM partition. 
An ideal SQMM that satisfies most of the comparison criteria is visualized as 

a UML diagram in Figure 5. The parts that are highlighted with the red color 
correspond to those conceptual elements that are common among all SQMMs. 

In the remainder of this section, each criterion or group of criteria is presented 
along with its evaluation results in separate subsections, where the analysis of the 
evaluation results takes place both globally for all SQMMs and locally for each 
partition. In the end, a global analysis of the SQMMs across all criteria is given. 

5.2.1 Formalism. This criterion has been chosen in order to distinguish SQMMs 
(i.e., the meta-models that define the abstract syntax of quality languages) de
pending on their representation formalism. Various formalisms have been used to 
express an SQMM including informal (such as DTDs or XML Schemas), UML 
and ontologies. Each formalism has its own advantages and disadvantages. For 
example, ontologies provide a formal, syntactic and semantic description model 
of concepts, properties and relationships between concepts. They are extensible, 
human-understandable and machine-interpretable and enable reasoning support by 
using Semantic Web technologies. However, sometimes their expressive power is 
more than needed while also the tool support is not so efficient with respect to the 
other formalisms. Moreover, current ontology tools from the research community 
require expertise in knowledge representation. The evaluation of this criterion for 
each SQMM could get the following values: informal, UML, and ontologies. 

The evaluation results are presented in the second column of Table VI. Most of 
the approaches use either ontologies or informal formalisms (mostly schema lan
guages focusing on a language's concrete syntax), while only two use UML. This 
result is reasonable as ontologies are powerful modeling formalisms and very ex
pressive, while informal formalisms are simple and very well supported. Concerning 



T
able V

I. 
C

om
parison of S

Q
M

M
 approaches on eight evaluation criteria 



Fig. 5. An ideal SQMM. 

the local partitions, pure SQMMs are modeled mostly through ontologies, while an 
informal formalism is the best modeling choice in the other partitions. For pure and 
SLA-enabled SQMMs there is a recent trend to use ontologies for their modeling. 
This is because ontologies provide unambiguous semantics to quality terms and, 
thus, enable machines to automatically process and reason on ontology-specified 
QSDs to support service life-cycle activities like discovery and negotiation. 

5.2.2 Richness in Defining Service Quality Models. In the presence of multiple 
services with overlapping or identical functionality, SRs need objective quality cri
teria to distinguish between these services. However, it is not practical to come up 
with a standard SQM that can be used for all services in every domain. This is 
because quality is a broad concept that encompasses a number of non-functional 
properties such as privacy, reputation and usability. Moreover, when evaluating 
service quality, domain specific criteria must be considered. Therefore, a rich and 
extensible SQM must be enabled by the SQMM that includes both generic and 



domain specific attributes and can be extended appropriately with the addition 
of new attributes. All the considered SQMMs advertise that they are extensible 
according to this aspect. 

However, an SQMM richness depends also on other additional modeling capabil
ities that concern the offering of constructs that enable a quality attribute descrip
tion in every possible detail/aspect. The following list summarizes all the modeling 
criteria that are needed to assess an SQMM's richness in defining SQMs: 

(1) Enumeration of all possible quality attributes 

(2) Modeling the attribute's domain (e.g. phone service provisioning) (i.e. the 
entity and its relation to the "attribute" entity) 

(3) Modeling of inter-attribute relationships/dependencies (either one or both types) 

(4) Modeling the attribute's compositionality (i.e. if it is composite or not (and 
what are its child attributes)) 

(5) Modeling the different views which an attribute may concern, i.e., the SP's, 
SR's or both views 

(6) Distinguishing by using appropriate constructs between QoS and QoE attributes 
(7) Distinguishing by using appropriate constructs between domain-dependent and 

domain-independent attributes 

(8) Modeling the service layer an attribute refers to 
(9) Modeling the association/relationship between quality attributes and metrics 

It must be noted that for the last sub-criterion we do not inspect the richness of 
the metric model, as this is the subject of the next criterion. 

This criterion's evaluation for a specific SQMM depends on the SQMM's satis
faction of the nine previously analyzed sub-criteria. So if the considered SQMM 
satisfies only 1-2 sub-criteria, then it is considered poor. If it satisfies 3-4 criteria, 
it is considered fair. Otherwise, if it satisfies 5-7 criteria, it is considered good. 
Finally, if the meta-model satisfies 8-9 criteria, it is considered rich. 

The evaluation results are presented in the third column of Table VI. Most of 
the SQMMs can describe either a fair or good in richness SQM, while the rest can 
describe a poor SQM. As there is not any SQMM that can describe a rich SQM, 
there is not a perfect approach capturing this modeling aspect. Concerning the 
local partitions, the above general result also applies to pure SQMMs, while there 
is a trend revealing that the SQM richness is improved in recent pure SQMM ap
proaches. Moreover, SLA-enabled SQMMs do not perform well in this modeling 
aspect because they give more importance on how a quality attribute can be mea
sured than how it is modeled. On the other hand, security-based SQMMs perform 
moderately as the definition of quality attributes is one of their major concerns but 
not all attribute aspects need to be described. 

5.2.3 Richness in Defining Quality Metric Models. An attribute is measured 
through the abstraction of a metric. While a metric model is encompassed in a 
quality model, the capability of a SQMM to express such models in a rich way was 
inspected separately for two main reasons. First, quality attributes and metrics 
are two different concepts. Second, both of these concepts require a quite rich 
description as the number of sub-criteria that were used to compare the SQMMs 



richness in describing both of these concepts can reveal. So, an SQMM's overall 
richness depends on the richness of both its quality and metric models. 

Thus, SQMMs should enable the creation of rich service quality metric models. 
The richness of the SQMM metric models was evaluated according to the following 
metric aspects: 

(1) The metric dynamicity. Metrics should be distinguished between dynamic and 
static ones. Dynamic metrics measure dynamic quality attributes (like avail
ability) that change over time and are computed according to a schedule or 
trigger. Static metrics measure static quality attributes (like security) and 
have a specific value that does not change over time. This means that these at
tributes are not only controllable but also fixable, so SPs are able to guarantee 
a fixed value for them for their services even if the services' context changes. 

(2) The metric value type. A metric value type specifies a domain of values. These 
values can be used in constraints involving this metric. The domain of values 
may be ordered. For example, a numeric domain comes with a built-in ordering 
that corresponds to the usual ordering on numbers. So, only the maximum and 
minimum value along with its numeric type (e.g., real or integer) have to be 
modeled for numeric domains. If the domain is not continuous, then it can be 
expressed as a union of continuous domains. In practice, numeric domains are 
used for most quality metrics. Set and enumeration domains do not have a 
built-in ordering, so a user-ordering of the domain elements must be described 
apart from the explicit modeling of these elements. Depending on the quality 
metric semantics (e.g. if the amount of values the metric can take only matters), 
the natural partial order of sets defined by inclusion can be used. The order 
in which an enumeration's elements are defined may also be their sorting order 
but the user has to define if it is increasing or decreasing. Finally, for unordered 
domains only the domain values have to be explicitly defined. 

(3) The metric unit. The values a metric can take are measured in specific units, 
e.g. seconds for a metric measuring execution time. Concerning the modeling 
of units, describing just the unit name is not enough because additional infor
mation regarding how to convert a value expressed in a specific unit to a value 
expressed in another unit has to be modeled. This information is crucial in case 
the SP and SR express a metric constraint using different units or when com
bining metric measurements of different units originating from different sources. 
Units should be separated into basic and derived units. Basic units should have 
a name and a short abbreviation. Derived units are produced from other units 
by multiplying the component unit with a specific (float) value (i.e. multiples 
of units) and possibly dividing it with another one. For example, the unit of 
minutes is produced by multiplying the unit of seconds with 1/60. As another 
example, one unit for the throughput quality attribute is "bytes/second" pro
duced by dividing the unit of "bytes" with the unit of "seconds". Thus, two 
relationships stating which unit(s) is directly proportional and which is inverse 
proportional to it and an additional multiplying factor should be modeled for 
a derived unit. 

(4) The metric measurement directive or function. Quality metrics should be clas
sified into resource and composite metrics. Resource metrics are directly mea-



sured from the service's system instrumentation through measurement direc
tives. For measurement directives, a URI specifying how the value of a managed 
resource is going to be retrieved and the value type of the return value should 
be described. In addition, the access model (i.e., push or pull) must be specified 
to clear out if the party responsible for the measurement will ask for the value 
or receive it when it is ready. Moreover, specific measurement directives may 
require a possible extra attribute (timeout) specification concerning the time 
duration that the measurement party will wait for obtaining the measurement 
value. Composite metrics are computed by applying statistical or other math
ematical functions to other metrics. So there must be a description of both 
the function and the metrics used to compute the composite metric. More
over, a function model should be provided in order to enable users to select the 
appropriate function for each composite metric. 

(5) The metric schedule. The SQMM should enable the definition of at least one of 
the following types of time windows for the periodic or instantaneous calculation 
of new values for a quality metric: 
(a) calendar time window like week, month and/or year; 
(b) sliding windows like the last ten days; 
(c) expanding window or running total, e.g. from this year's start until now. 

(6) The metric weight relative to its implicit domain and user preferences. This 
weight can be used to calculate the rank of a service quality offer and indicates 
the impact that this metric has to the overall quality offered by a service. 

(7) The characteristic of the function from metric values to overall quality values. 
An SQMM should explicitly specify the exact monotonicity of monotonic met
rics (e.g. negative for an execution time metric) and mapping functions for 
non-monotonic metrics. This information modeling is sufficient in most of the 
quality-based service discovery scenarios. 
The non-monotonic metrics need user-defined mapping functions to express the 
user preferences regarding the values that these metrics can take. For example, 
for the non-monotonic metric enumerating the encryption algorithms that can 
be supported by a service, there can be a user function that maps the value of 
"AES-192" to service level 3, the value of "AES-256" to service level 2, and 
the value of "AES-128" to service level 1. So, the highest security value gets 
a lower quality value than the second highest one indicating that the user may 
be satisfied with the second highest value and does not want to pay more in 
order to have a more secured service. 
The above situation is tailored for QBSM scenarios where each quality metric is 
considered independently of the other. In case that there are dependencies be
tween quality metrics and attributes, functions (or n-ary constraints) should be 
used to capture them in conjunction to the aforementioned mapping functions. 
The Simple Additive Weighting technique [Hwang and Yoon 1981] is commonly 
used in service selection and requires that the values of each attribute or met
ric are normalized according to a specific evaluation function. In this case, the 
above mapping functions of non-monotonic metrics can be used provided that 
they map the metric values to the same range (usually the [0.0,1.0] range). For 
monotonic metrics, particular evaluation functions are used in most research 



approaches tha t do not have to be captured in an SQMM. 

(8) Aggregation of the values of a composite service's metric. There must be a 
description (mathematical or otherwise formal) of how a quality metric's value 
of a complex service can be derived from the corresponding quality metrics ' 
values of the individual services tha t constitute the complex one. For example, 
the execution time Tc of a complex service C, which is defined as a sequence of 
two services A and B, can be computed as the sum Ta + T b of the execution 
times of the two individual services. This description is essential for the auto
mated estimation of the quality metric values for a composite service. So this 
description is needed for automating the quality analysis process, a prerequisite 
for a successful quality-based service discovery. 

This criterion's evaluation for a specific SQMM depends on the SQMM's satis
faction of the eight previously analyzed sub-criteria. If a SQMM does not comply 
with all the modeling requirements for a specific sub-criterion, then this SQMM 
does not satisfy the sub-criterion. So if the considered SQMM satisfies only 1-2 
sub-criteria, then it is considered poor. If it satisfies 3-4 criteria, it is considered 
fair. If it satisfies 5-6 criteria, it is considered good. Otherwise, if it satisfies 7-8 
criteria, it is considered rich. 

The evaluation results are presented in the fourth column of Table VI. Most 
SQMMs encompass either a good or a fair metric model, while only one SQMM 
encompasses a poor model. In addition, only one approach (OWL-Q) captures a 
rich metric model, while it does not offer a rich quality model. Thus, a metric model 
is bet ter captured in the current state-of-the-art SQMMs than a quality model. 
Considering the local results in each partition, SLA-enabled SQMMs capture a 
good metric model with respect to its richness. This observation was actually 
justified in the previous criterion's evaluation, where it was stated tha t SLA-enabled 
approaches pay more attention to metric than to a t t r ibute modeling. The majority 
of pure and security-based SQMMs present a fair metric model. Finally, there is 
a t rend tha t pure SQMMs improve their metric model as the SQMMs proposed 
after 2004 do not encompass a fair or poor metric model. By combining this result 
with the respective result of the previous criterion, it can be deduced tha t the most 
recent pure SQMMs have increased their expressiveness as they cater for a bet ter 
service quality and metric model. 

5.2.4 Expressiveness in Constraint Description. A service quality specification 
comprises quality constraints. Each quality constraint consists of a name, an op
erator, and a value [Fr0lund and Koistinen 1998]. The name is typically a quality 
metric's name, although it can also be the name of a metric aspect or function. The 
permissible operators and values depend on the quality metric's value type. Only 
the values tha t a metric can take should be used in constraints for tha t metric. The 
domain may be ordered. The domain ordering determines which operators can be 
used in constraints for tha t domain. For example, only the equal "=" and unequal 
operators "7^" can be used in unordered domains and not inequality operators ("<" , 
" > " , " > " , " < " ) . 

Aspects [Fr0lund and Koistinen 1998] are statistical characterizations of quality 
constraints like: percentile, mean, variance, and frequency. They are used for the 



characterization of measured values over some time period. For example, the per
centile aspect could be used to define an upper or lower value for a percentage of the 
measurements or occurrences that have been observed. Aspects can be very useful 
when the measurements or occurrences of a quality metric present some special 
characteristics and a new complex metric should not be produced from the basic 
quality metric for each of these characteristics. 

Quality constraints are usually connected by logical operators into expressions. 
A service quality specification should contain one complete constraint expression 
or just one constraint. Moreover, quality constraints should be joined into Con
straint Groups (CG) or Constraint Group Templates (parameterized CGs) in order 
to be reused by many service quality specifications [Tosic et al. 2003]. Constraint 
Groups contain a set of concrete quality constraints, while Constraint Group Tem
plates contain abstract quality constraints (i.e. the second constraint operand is not 
specified). Other reusability constructs can also be created even for expressions. 

To evaluate this criterion for a specific SQMM, the following cases are considered: 
If the SQMM does not satisfy any of the above requirements, then its expressiveness 
is poor. If the SQMM allows comparison operators in constraints but does not check 
their compatibility with the metrics used, then it is considered fair. If the SQMM 
allows comparison operators and checks their compatibility with constraints, then 
it is considered good. If the SQMM is good and allows not only "and" but also other 
constraint expressions and formations, it is considered rich. Finally, if the SQMM 
is rich and allows the specification of aspects, then it is considered as excellent. 

This criterion's evaluation results are presented in the fifth column of Table VI. 
Most of SQMMs use a rich constraint model. As there are no fair constraint mod
els, SQMMs either perform above or below the average in this aspect. Moreover, 
in the SLA-enabled partition, there is a balance between those SQMMs that cap
ture excellent constraint models and those that capture rich. This is because rich 
constraint representation, especially for service quality levels, is one of the corner
stone features of SLA languages, which is equally important for all SLA contracting 
parties. The security-based SQMMs mostly use a good constraint model because 
they do not require advanced constraint modeling features. In pure SQMMs rich 
constraint models are the majority. Moreover, pure SQMM modelers have quickly 
understood this feature's importance as their SQMMs moved from a poor to a bet
ter constraint model. By combining this result with the respective results of the 
two previous criteria, it can be deduced that pure SQMMs have increased their 
overall expressiveness over time. 

5.2.5 Complexity. On one hand, a meta-model's formalism characterizes the 
explicitness in which the semantics of the meta-model's terms are expressed, while 
its expressiveness or richness concerns how well the domain of discourse (i.e. service 
quality) is modeled. On the other hand, a meta-model's complexity mainly concerns 
its size and structure and significantly impacts user understandability, the modeling 
effort involved, and the size and amount of information included in the produced 
descriptions. Obviously, the better the domain is modeled and more details are 
captured, the higher is the meta-model complexity. So, usually there is a trade
off between complexity and richness that is mainly regulated by the meta-model's 
quality. The latter depends on how accurately and extensively the meta-model 



expresses its domain, the existence of formal and semantic inconsistencies in it, 
and the relevance and appropriateness of the modeled information. Thus, rich and 
qualitative meta-models must be developed such that their complexity is not very 
big-

It is very difficult to assess a meta-model's quality and very few approaches have 
been proposed focusing on some quality aspect [Jiang et al. 2004; Welty et al. 2003]. 
On the contrary, many metrics have been proposed for measuring meta-model or 
ontology complexity [Mens and Lanza 2002; Yi et al. 2004; Yoa et al. 2005; Yang 
et al. 2006]. Thus, the SQMM quality can be speculated by assessing the SQMM 
complexity through one of these metrics in combination with the SQMM richness. 

The complexity metric that measures a meta-model's concept number was chosen 
for the following reasons: a) many SQMMs are not publicly available, so they 
cannot be evaluated with sophisticated complexity metrics; b) many complexity 
metrics are not applicable to informal SQMMs; c) the structure particularities of the 
informal SQMMs require using a simple and fair metric that does not depend on the 
SQMM structure and is easy to compute. However, such a simplistic metric prevents 
performing reasonable speculations about the SQMM quality, as the threshold on 
the number of sufficient concepts for modeling a domain depends on the subjective 
view of domain modelers. 

Particular thresholds on the number of concepts involved in SQMMs were used 
to categorize them according to their complexity. So, if an SQMM has less than 25 
concepts, it is evaluated to have low complexity. If it has 26 to 50 concepts, then 
it has medium complexity. Finally, if it has more than 50 concepts, then it has big 
complexity. 

This criterion's evaluation results are presented in the sixth column of Table VI. 
Most SQMMs have low complexity, while only five SQMMs have medium complex
ity. Only one SQMM (OWL-Q) has high complexity, which is the most expressive 
SQMM according to the evaluation of the previous three criteria. Concerning the 
SLA-enabled partition, there is a balance between the approaches with low and 
medium complexity. All security-based SQMMs exhibit low complexity. By in
specting the results, the trend that pure and SLA-enabled SQMMs of higher com
plexity are proposed lately can be revealed. This means that modelers increase the 
expressiveness of their SQMMs and, in result, the complexity of their SQMMs in
creases. Indeed, based on the analysis of the previous criterion, pure SQMMs have 
increased their expressiveness over the years. Section 6 will show that the SLA-
enabled SQMMs have increased their expressiveness but in SLA-based aspects and 
not in quality-related ones. Security-based SQMMs have only low complexity as 
they are deliberately designed in this way, i.e. to produce short descriptions that 
are easily exchanged, processed, and matched by various entities over the Web. 

5.2.6 Service Description Separation, Refinement, and Granularity. This sub
section presents and analyzes a group of three related criteria. Fig. 6 presents the 
group's evaluation results with a tree-like structure. 

5.2.6.1 Syntactical Separation of Quality-Based and Functional Parts of Service 
Description. Service quality specifications should be syntactically separated from 
other parts of service specifications, such as interface definitions. This separation 



Fig. 6. Evaluation of SQMM approaches for the 4.2.6 group of criteria 

allows to specify different quahty properties for different implementations of the 
same interface. Moreover, while functional constraints rarely change during run
time, service quality constraints do change. So, the separation of service quality 
offers from WSDL descriptions permits these offers to be deactivated, reactivated, 
created, or deleted dynamically without any modification of the underlying WSDL 
file. Finally, a service quality offer could be referenced from multiple WSDL files 
and thus be reused for different services. Thus, this criterion's evaluation for a 
specific SQMM is: yes (for syntactical separation) and no. 

5.2.6.2 Support for the Refinement of Quality-Based Service Descriptions and 
their Constructs. Apart from syntactical separation, another form of reusability 
is equally important. Service quahty specifications should be also refined. This 
means that a new service quality offer can be created by referencing an older one 
and adding constraints like refinement of an older quality restriction or creation 
of a new one. In addition, templates of service quality offerings should be created 
and appropriately extended for every domain. Thus, this criterion's evaluation for 
a specific SQMM is: yes (supports refinement) and no. 

5.2.6.3 Support for Fine-Grained Quality-Based Service Description. It should 
be possible to specify quality properties/metrics at a fine-grained level. As an exam
ple, performance characteristics are commonly specified for individual operations. 
A SQMM must allow quality specifications for interfaces, operations, attributes, 
operation parameters, and operation results. So, this criterion's evaluation for a 
specific SQMM is: yes (it allows), and no. 

The most populated node of Fig. 6 is the one which corresponds to those SQMMs 
that enable all three features. So, most SQMM modelers have understood the 
importance of these three features. The same result holds for all the partitions. The 
mostly supported features among all SQMM approaches are syntactical separation 
and specification refinement, followed by fine-grained specification. The same order 
holds for the pure and security-based SQMMs. Finally, for SLA-enabled SQMMs 
the order is different. Fine-grained specification is the most important feature, 
while the other two are of equal importance. 

5.2.7 Support for Symmetric but Separate Quality-Based Service Description 
for Providers and Requesters. Both the quality properties that clients require and 



the quality properties that services provide must be specified separately so that a 
client-server relationship has two service quality specifications: a specification that 
captures the client's requirements (i.e service quality requirement) and a specifica
tion that captures service provisioning (i.e service quality offer). This separation 
allows us to specify the quality properties that a component provides or requires, 
without specifying the interconnection of components in order to enable the com
ponent reuse in different contexts. 

Service quality requirements and offers should be specified in the same expres
sive way, i.e. symmetrically. Assuming that S is a multidimensional space whose 
dimensions are given by domains of quality parameters, then both a service quality 
offer and requirement should be expressed as a subspace in S. Traditionally, service 
quality offers have been described as points in S, i.e., asymmetrically. However, this 
semantics makes it difficult to specify offers whose quality can vary. Moreover, the 
probability that an offer is matched with a requirement is quite low. On the other 
hand, the probability of matching is higher when both types of QSDs are expressed 
as subspaces, while also more advanced protocols are enabled in service negotia
tion. In addition, symmetric approaches achieve a better expressiveness to specify 
QoS, since there is usually no restriction on the number of involved parameters or 
operator types, so that non-linear or more complex expressions are allowed. 

This sub-criterion inspects if both SPs and SRs can provide service quality speci
fications, if these specifications are defined separately with different constructs, and 
if these specifications are allowed to have the same expressiveness. This criterion's 
evaluation for a specific SQMM has the following values: a) SP, b) same construct, 
c) asymmetric (so also different constructs are used), and d) symmetric (where 
different constructs are used). The first and last values are the worst and best, 
respectively, while there is no definite order between the second and third value as 
each violates a different requirement. 

The evaluation results are presented in the seventh column of Table VI. Most 
SQMMs allow both SPs and SRs to specify service quality specifications with the 
same construct, followed by those SQMMs that allow both SPs and SRs to specify 
service quality specifications with different constructs but symmetrically. Thus, 
researchers have realized that both SPs and SRs should be allowed to specify their 
QSDs with the same expressiveness. Concerning the SQMM partitions, all SLA-
enabled and security-based SQMMs use the same construct for expressing the two 
QSD types. This is a rational choice for SLA-enabled SQMMs as the produced SLAs 
express both the views of the SP and SR. However, for security-based SQMMs, this 
is not a rational choice for privacy, as there must be a clear distinction between who 
is requesting privacy requirements and who is offering to satisfy these requirements, 
but it is rational for trust, as the specification of requirements and offerings is 
performed in a bilateral way. The majority of pure SQMMs express the two different 
QSD types in a separate and symmetric way. Thus, the pure SQMM modelers have 
realized the significance of this design choice. 

5.2.8 Support for Classes of Service Description. Class of Service means the 
discrete variation of the complete service and quality provided by one service. In 
our opinion a Class of Service has the same meaning as the alternatives have in 
WS-Agreement. In other words, a Class of Service is actually the set of (functional 



and) non-functional guarantees that are to be provided by a service in terms of a 
SLA. So, this criterion assesses if a SQMM can capture only one class of service 
specification or many. In this way, this criterion's evaluation for a specific meta-
model is: one (class of service), and many. 

The evaluation results are presented in the eighth column of Table VI. Most 
SQMMs can represent many classes of service. This result also applies to each 
partition separately. So SQMM modelers have understood the advantage of allowing 
many classes of service specification for one service. For pure and SLA-enabled 
SQMMs this understanding is more anticipated in the most recent approaches. 

5.2.9 Connection to Service Functional Specification Languages. This criterion 
inspects if the SQMM is connected to or references a Service Functional Specifica
tion Language (SFSL) like WSDL, WSMO, or OWL-S. On one hand, if the answer 
is positive for an SQMM, this means that there would be no effort required to ex
tend this meta-model (and probably all of its QSDs) in order to be used in a registry 
containing functional SDs obeying to the connected SFSL. On the other hand, if 
the answer is negative, then the SQMM can be extended in order to be connected 
to any SFSL and not only to a specific one. In this way, it can be practically used 
with any registry. 

The evaluation results are presented in the ninth column of Table VI. WSDL is 
the most referenced SFSL, followed by OWL-S (ontology-based SFSL), while an
other ontology-based language, namely WSMO, is referenced by only two SQMMs. 
Three SQMMs do not reference any SFSL, being in this way SFSL-independent. 
Taking specific SQMM partitions into consideration, OWL-S (or ontology-based 
SFSLs more generally) is the most referenced SFSL in pure SQMMs for two main 
reasons: 1) ontological approaches are greater in population with respect to the rest 
of the approaches in this partition, and 2) the use of semantics has been proven 
to increase the accuracy in FSD, so pure SQMM modelers prefer a ontology-based 
SFSL for this reason. On the other hand, WSDL is the most referenced SFSL 
in the rest of the SQMM partitions. This is expected because SLA-enabled and 
security-based SQMMs do not consider the FSD scenario when they are designed, 
as they regard it as an orthogonal issue. So they prefer to stay on the most popular 
and used SFSL (i.e., WSDL) in order to increase their adoption. Moreover, there 
is a trend that the most recent SLA-enabled SQMMs are connected to WSDL. 

5.2.10 Support for Quality Matching. As users may have different conceptual
izations of the same domain, it is possible that in different QSDs of the same SQMM 
the same concepts are expressed differently or different concepts are expressed in 
the same way. Concerning the QoS domain, this can be true for QoS metrics and 
QoS attributes but not for measurement units that are more or less standardized. 
This argument is also strengthened by the fact that the same QoS metric or at
tribute can be considered either composite or atomic in different SQMs depending 
on the level-of-detail required or the measurement types supported. For instance, 
a service's availability is measured from high-level readings in one system's instru
mentation, while it is measured from low-level readings (e.g from service's uptime) 
in another system's instrumentation. In the former case, the service's availability 
metric is resource, while in the latter case, the same metric is composite. 



As the basic QSD part is the one where QoS capabilities or requirements are 
expressed as a set of constraints on specific QoS metrics or attributes, these sets 
of QoS concepts must be matched in order to increase the accuracy of the QBSM 
process. Thus, semantic QoS metric/attribute matching rules must be developed 
and used internally or externally to an SQMM in order to enrich and align the 
produced QSDs. Depending on the SQMM's formalism, rules may be part of the 
SQMM's specification or may be developed externally in a possibly different format. 
In the latter case, it could be argued that these external rules are not actually part 
of the SQMM's specification and, thus, they should not be a criterion for comparing 
SQMMs. However, this information, either being internal or external, should be 
additionally modeled as it can be used to support service discovery and increase 
an SQMM's adoption and significance. Thus, this criterion's evaluation for each 
SQMM will be: yes, if the corresponding SQMM contains or is accompanied with 
quality matching rules and no otherwise. 

The evaluation results are presented in the tenth column of Table VI. Most of 
the SQMM approaches have not considered this modeling aspect at all. This also 
holds locally in each partition. Moreover, not all security-based SQMMs use or 
model these matching rules as they are not required because the quality attributes 
in this area are more or less standardized, while quality metrics are used less often. 
Finally, the most recent pure and SLA-enabled approaches have understood the 
need of modeling this feature and have produced the required matching rules. 

5.2.11 Framework Support. This criterion inspects if any service discovery and 
negotiation framework has adopted the SQMM under inspection. If the answer is 
positive, then this means that the SQMM has been used in practice in one of the 
service life-cycle activities (apart from the first one). So this criterion evaluates 
the adoption and usage of every SQMM. In addition, it evaluates if SQMMs have 
been used in service negotiation apart from service discovery. The evaluation of a 
specific SQMM for this criterion is: no (support), only discovery, only negotiation, 
and both (discovery and negotiation). As all SLA-enabled SQMMs already have an 
underlying SLA enforcement framework implementation, we chose not to explicitly 
represent this fact in this evaluation. 

The evaluation results are presented in the last column of Table VI. The majority 
of the SQMMs have been used in service discovery implementations. This result 
holds not only globally but also in each partition. In addition, in conjunction with 
the results of the previous criterion, all the SQMM approaches that model matching 
rules have been used in service discovery implementations, thus realizing the need 
for increasing the accuracy of the service discovery activity. However, none of the 
implementing discovery frameworks can also perform service negotiation. Moreover, 
there is no service negotiation framework supporting any of the SQMMs. It must 
be noted that there are negotiation frameworks supporting WS-Agreement but not 
SWAPS (which is a WS-Agreement extension). 

Most of the SLA-enabled SQMMs apart from WSLA are not used in any im
plemented negotiation framework. This actually reduces the dynamics and further 
spread of these SQMMs. In addition, by considering the service life-cycle analyzed 
in Section 2, it should be stated that only the SLA-enabled SQMMs have been 
used in service negotiation, as the QSDs of this SQMM type that are used in this 



activity are SLAs or SLA templates. Thus, the service negotiation activity is the 
stopping usage point of the QSDs and the corresponding starting point of SLAs. 

5.3 Overall Analysis 

Based on the above analysis, there is not any complete approach that has taken 
the best value in all criteria. Prom all the SQMMs, OWL-Q can be distinguished 
as the best among the good approaches which are found mainly in the pure SQMM 
partition. However, it must be extended in order to enable the specification of rich 
SQMs, while a balance between expressiveness and complexity should be accom
plished by defining which are the obligatory and non-obligatory concepts in order 
to help modelers in defining their QSDs with less effort and more speed. Thus, the 
design of this language should be revised accordingly. 

Considering the remaining SQMM partitions, SWAPS is the best among all SLA-
enabled SQMMs but it must significantly improve its attribute and metric model. 
This is also true for PeerTrust, the best among all security-based SQMMs. Thus, 
the SLA-enabled and security-based SQMMs need further improvement and exten
sion in their attribute and metric models and far more changes with respect to 
those needed for the pure SQMM approaches. 

By closely inspecting the last criterion results, pure and security-based SQMMs 
are used until the service discovery activity and they seem not to be exploited 
further in the service life-cycle. This can be justified by their inability to model 
SLA specific constructs which are considered more useful for supporting the rest of 
the service life-cycle activities. This should be the reason why SLA languages have 
been proposed, i.e., to fill the gap and play the significant role of mostly supporting 
those service activities that are beyond service discovery. The next section explains 
this role and provides an analysis of the capabilities of the SLA languages with 
respect to their support to the service life-cycle activities. 

6. SERVICE LEVEL AGREEMENTS 

6.1 Background 

6.1.1 Contracts and SLAs. As the global economy is changing at a fast pace 
and the competition is rising due to technology advancements, organizations have 
to enter in dynamic business relationships with other organizations, whose result 
would be one or more cross-organizational processes. The basis for the estab
lishment of such dynamic relationships are electronic contracts, which are legally 
binding digital agreements that safeguard the concerns of each participating orga
nization [Hoffner et al. 2001], as they assist in speeding up and automating the 
various activities that support these relationships, which include the contractual 
relationships establishment and the enactment infrastructure set-up. Many types 
of contracts exist based on the type of value that is exchanged between two or more 
organizations [Grefen and Angelov 2002]. However, this paper considers only ser
vice contracts, as the focus is on services. A service contract includes information, 
such as [Hoffner et al. 2001; Oren et al. 2005]: a) parties involved in the agree
ment, b) the service, including interface description and expected interactions, c) 
description of norms (obligations, prohibitions, permissions, etc.) imposed on each 
party concerning service provision and consumption, d) timing and conditions of 



contract termination. Apart from technical information, some service contracts 
may also contain legal procedures in case of breach of contract and arbitration. 

Most of the service contract languages focused on describing the service func
tionality and on automated contract execution monitoring [Oren et al. 2005], i.e., 
determining the state a contract is in, and which contract rules are in effect given 
this state. Thus, they focused more on how the service behaves while they more or 
less neglected the QoS aspects of service behavior. However, as QoS plays an im
portant role in the whole service life-cycle and is equally important to functionality, 
the focus is now on more specialized service contracts, which are called SLAs. SLAs 
describe how well a service performs its functions [Tosic and Pagurek 2005]. They 
contain quality guarantees that have to be respected during service execution and 
other important terms indicating the actions to be taken when these guarantees 
are violated. Thus, they increase the trust and consolidate the overall relationship 
between an SP and an SR, as the service will either meet the stated requirements 
or there will be consequences that tend to compensate the client for the harm it 
suffers due to these requirements being missed [Skene 2007]. The last conclusion 
is very important as it signifies that both service contracts and SLAs are the basis 
for the establishment and support of business relationships. 

6.1.2 SLA Demystification. According to [Paschke and Schnappinger-Gerull 2006], 
SLA documents contain technical (e.g. metrics, actions), organizational (monitor
ing and reporting), and legal components (legal responsibilities, invoicing and pay
ment modes). The legal components are hard to be automated and enforced by 
a management system, so they are either omitted or neglected. The most com
mon SLA components are the following [Paschke and Schnappinger-Gerull 2006]: 
involved parties, contract validity period, service definitions, SLOs, and action guar
antees. Involved parties are roles referenced inside a contract. They can be dis
tinguished between [Keller and Ludwig 2003] signatory parties, which are usually 
played by the SP and SR that sign the contract, and supporting parties, which have 
the role to support the SLA monitoring and assessment. These two role types are 
not mutually exclusive, as, for instance, a SP can provide measurements for the 
provided service's execution time. The contract validity period specifies for how 
long the SLA will be valid and enforceable. This field is important for continuous 
services as it determines the period that the SPs should provide their services to the 
requesters according to the directives of the agreed SLAs. The service definitions 
section specifies the service characteristics (i.e. functionality), components (i.e., op
erations, input, output, internal and external services for a composite service), and 
observable parameters (i.e. QoS metrics for the service and its components). SLOs 
are QoS guarantees that must be met by a specific obliged party (e.g., SP) and 
have validity periods [Keller and Ludwig 2003], while they can also have qualifying 
conditions on external factors such as time of the day (i.e., when the SLO should be 
evaluated) as well as the conditions that a client must meet (e.g., a client's request 
rate is above a threshold). Finally, action guarantees [Keller and Ludwig 2003] 
express a commitment that a particular activity is performed by an obliged party 
if a given precondition is met (e.g. a violation occurs). The committing activities 
include compensation, reward, recovery, and management actions. 

Besides the common SLA components, two additional SLA parts should be de-



Fig. 7. SLA Categorization. 

scribed [Muller 1999]: limitations and renegotiation. The former describes the 
limits of IT support during peak period demand conditions, resource contention 
by other applications, and general overall application workload intensities. These 
limitations should be agreed by all parties in order to prevent finger pointing and 
user dissatisfaction. The latter describes how and under what circumstances the 
SLA must be changed through renegotiation to reflect changes in the (user, service 
or environmental) context. 

Before SLAs are established, they are in a form which is called SLA template2. 
These SLA templates are used to describe, matchmake, and negotiate the SLs to 
be offered by a service of an SP to an SR. Thus, they are produced by both SPs 
and SRs. SLA templates can be complete or incomplete SLAs. Complete SLA 
templates are commonly agreed among all participants in a restricted domain or 
are used as bilateral agreements between two organizations or as SLA offerings 
advertised by an SP to specific customer classes. Thus, they are offered in a "take 
it or leave it" basis [Hoffner et al. 2001]. Incomplete SLA templates can be seen as 
a skeleton with fields which must be completed according to the directives of the 
desired relationship between two organizations [Hoffner et al. 2001]. So, they are 
generic forms or templates that can be tailored to the specific circumstances of a 
SLA instance. According to the granularity of choice and specialization [Hoffner 
et al. 2001], they may : a) be monolithic where values are inserted in predefined 
positions; b) have certain sections which can be included or removed; c) be clause-
based [Fosbrook and Laing 1996]. 

There can be different SLA types according to their composability, intended 
purpose [Paschke and Schnappinger-Gerull 2006], and the service usage based on the 
reference functional architecture model [Lamanna et al. 2003]. Figure 7 shows the 
three dimensions of SLA categorization along with their corresponding types. These 
dimensions are orthogonal to each other and their types are mutually exclusive, so 

•^The term Contract Template is used for service contracts 



one SLA may belong to only one type of each dimension. 
According to their composability, SLAs are distinguished between Single and 

Composite. Single SLAs specify the SLs of one service, independently of the ser
vice type (i.e., single or composite), and are agreed between two parties, the SP 
and SR. On the other hand, Composite SLAs specify the SLs of both the service, 
which should be provided to an SR by the SP, and some of its components or 
supporting services that are provided by third party SPs to the main SP. Thus, a 
Composite SLA may consist or depend on other SLAs. This does not exclude the 
possibility that a Single SLA may depend on one or more other SLAs. However, 
this dependency information is not included in the Single SLA's description. 

Based on their intended purpose, SLAs can be distinguished between Operation 
Level Agreements (OLAs), and Underpinning Contracts (UCs). OLAs are usually 
informal SLAs with internal operational partners, while UCs are SLAs with external 
operational partners. Both SLA types specify the service that the operational 
partners are going to deliver to the SP, which will be used to support the service 
specified in another SLA that the SP promises to deliver to a prospective SR. 

Based on the functional architecture model introduced in Section 1, there can 
be many different SLA types [Lamanna et al. 2003], corresponding to the different 
service usages present in the model. These types are divided into Vertical or In-
frastructural SLAs, in which the service provides technical support to the SR, and 
Horizontal SLAs, in which the SR sub-contracts a part of its service functionality 
to another service of the same type. Vertical SLAs, according to the Infrastruc
ture Layer granularity, can be divided into Hosting (between an SP and a host), 
Persistence (between a host and a storage provider), Communication (between ap
plication, service, or host and an Internet service provider), and Security SLAs 
(between application, service, or host and a security provider). So, Vertical SLAs 
concern services that are either offered from the Infrastructure Layer to the layers 
above it or from an Infrastructure Layer's functional level to a same-layer level 
above it. Horizontal SLAs are divided into ASP (Application Service Provision
ing) (between applications or services and other applications or services), Container 
(between container providers), Network (between network providers), and Storage 
SLAs (between storage providers). For this SLA type the granularity is very coarse
grained in the first two layers and then fine-grained in the Infrastructure Layer. 

6.2 Methodology and Analysis 

As an SLA is a document, it has a life-cycle that starts with its creation and ends 
with its disposal or archiving. This life-cycle includes all the appropriate activities 
needed for the SLA management and is tightly coupled with the service life-cycle 
introduced in Section 2. The same holds for the contract life-cycle. This tight 
coupling is justified as follows. SLAs and service contracts in general, exist as 
long as the service they describe exists because this service is the reason for the 
establishment and very existence of the business relationship between the SP and 
SR. Indeed, all service contract and SLA management systems actually support, 
directly or indirectly, the management of the service offered by the SP to the SR. 
Thus, through the support of the SLA/contract life-cycle, the service life-cycle is 
supported and especially those activities that correspond to service provisioning. 

Service contract life-cycles (e.g. in [Hoffner et al. 2001] are more coarse-grained 



and general with respect to the SLA life-cycle as they consider both the service 
provisioning functional aspects and the QoS ones. However, as the focus is on 
service quality and its description, only the QoS aspects of service provisioning are 
considered. To this end, the analysis of service contract and SLA languages in this 
survey is based on a set of comparison criteria which are grouped along the SLA 
life-cycle activities. These criteria are used to compare these languages along the 
lines of the information they can describe which is necessary for supporting the 
SLA life-cycle activities. 

Various SLA life-cycles have been proposed in the literature, which differ on 
the activities they involve, the activities granularity level, and their terminology. 
However, none of them is suitable in this paper context as they are either coarse
grained or tend to neglect some activities. To this end, an extended SLA life-cycle 
has been devised based on the research works of [Keller and Ludwig 2003; Parkin 
et al. 2008], which is depicted in Figure 8. 

In the following, using this life-cycle as a basis, the life-cycle activities involved in 
the SLA management are analyzed along with their relation to those of the service 
life-cycle: 

— Template Development: A SLA template is developed by the SP or the SR ac
cording to the service quality capabilities and requirements, respectively. This 
activity is executed after the service is implemented and tested but can happen 
before, during or after the service deployment. 

—Advertisement: After the SLA template is developed by the SP, it is advertised 
in intra- or inter-organizational repositories in order to be discovered by potential 
SRs. This activity happens after the service is deployed. It is a joint activity of 
the service and SLA life-cycles. 

—Matchmaking: SRs make a request represented by an SLA template to a bro
ker or discovery service so as to find the SLA templates of those services that 
satisfy their quality requirements. This activity is after or in parallel with the 
functional service discovery activity. It may also be a joint activity of the two 
considered life-cycles, as SLAs can represent all information needed for the func
tional and quality-based service discovery. As a result of this activity, the user's 
SLA template may change, if it is over-constrained, to reflect realistic perfor
mance situations in the respective application domain. 

—Negotiation: This is a joint activity of the two considered life-cycles. The SP 
of the best service (or the SPs of the matched services) negotiates with the SR 
according to their SLA templates' content. These SLA templates may change 
during the negotiation to reflect the compromises performed by the two parties. 

—Agreement & Deployment: As the outcome of service negotiation is not always 
successful, this activity is separated from the previous one. If the outcome is 
successful (agreement is reached), then a specific SLA is produced and signed 
by the two corresponding parties. This SLA has to be validated first and then 
deployed. SLA deployment is performed at two steps: a) a signatory party's 
deployment system extracts from the SLA the appropriate configuration infor
mation and distributes it to the corresponding supporting parties so as to inform 
them about their roles and duties; b) the supporting party deployment systems 
configure their own implementations in a suitable way. All parties need to know 



Fig. 8. The SLA life-cycle. 

the definitions of the interfaces they must expose, as well as the interfaces of 
the partners they interact with. This composite activity is usually performed 
before service execution. When no active service instance can execute in the cor
responding SL of the SLA, then a new service instance must be deployed or more 
resources are given to a specific instance. In this case, the service deployment 
activity runs in parallel with the corresponding SLA activity. 

—Monitoring & Assessment: While the service is executing, the SLA is also "exe
cuted" . The latter means that the service is periodically monitored and the SLA's 
agreed SLOs are assessed. Monitoring is performed by the measurement compo
nents of the supporting parties run-time systems which maintain information on 
the current system configuration and the SLA metrics. These components mea
sure QoS metrics either from inside, by retrieving resource metrics directly from 
managed resources, or outside the SPs domain, e.g., by probing or intercepting 
client invocations. The condition evaluation components of supporting parties 
run-time systems compare the measurement information against the SLOs and 
notify the management systems (of the signatory parties and the SLA's external 
one (if it exists)) about violations. If the violation or violation number is very 
critical, then the SLA is re-negotiated or canceled according to the SLA's cor
responding action guarantee. If not, an appropriate corrective action is selected 
and performed by the SP's management system (e.g. more resources are provided 
to the under-performing service) according to the current context and the SP's 
business goals and policies. This SLA management activity runs in parallel with 
the service execution, monitoring, and recovery life-cycle activities. 

—Settlement: This activity determines if the SLA was met, the final cost to paid by 
the SR, and which penalties may apply to the SP for breaching the SLA terms. 
Negotiations for SLA termination may be carried out between the parties, in the 
same way as the SLA establishment is performed, or for service re-execution in 
a different SL and cost. This activity occurs after the end of service execution. 

—Archive: After the SLA settlement takes place, the SLA may be disposed or 
archived according to the signatory parties policies. However, even if the SLA is 
decided to be discarded, there is usually a statutory period (known as the "limi
tation period") where the SLA must be kept as it is a legal document describing 
how services were provided. If this activity is accompanied with an audit trail 
mechanism, it can be used for identifying problems and patterns of wrong service 
behavior or user requirement trends so as to improve the future developed SLA 
templates content and even evolve the service implementation towards correcting 
the identified problems and meeting the increased customer needs. Thus, this 
activity can provide significant input to the service evolution life-cycle activity. 



The summary of the selected criteria is shown in Table VII, while their complete 
presentation is provided later on in this section. In this table, the term "Descrip
tion" is used to cover the first two SLA life-cycle activities, i.e. the "SLA Template 
Development" and the "SLA Advertisement", as they are actually associated with 
an SLA's description. Moreover, the "Agreement & Deployment" activity was not 
analyzed by using any criterion, as this activity does not need any specific infor
mation which is not already covered by existing SLA languages. Finally, as it was 
explained in Section 5, most SLA languages regard that quality should be defined 
outside the SLA specification by different formalisms and languages and only ref
erenced inside this specification. For this reason, this section neglects from its 
analysis the quality description capabilities of the SLA languages. 

Service contracts and SLAs are expressed by their respective languages which are 
shown in Table VIII. While there is no standard service contract language (SCL), 
there are two widely used SLA languages, namely WSLA [Keller and Ludwig 2003] 
and WS-Agreement [WS-AGREEMENT 2003], which can be considered as stan
dards. The most representative SCLs have been chosen because, as was explained 
above, the majority of these languages focuses more on the functional aspects of 
service behavior. The evaluation results of the examined languages according to 
our selected criteria are presented in Tables IX and X. 

In the remaining part of this section, each activity-based group of criteria along 
with their evaluation results is presented in separate subsections. In the end, there 
is an overall analysis of the service contract and SLA languages across all criteria. 

6.2.1 Description. Every SLA and service contract language must possess some 
properties that enable it to be a good candidate for representing SLAs. A set of 
such four properties/criteria has been selected and is analyzed in the next four 
sub-subsections. 

6.2.1.1 Formalism. Similarly to SQSLs, each SLA language adopts a specific 
formalism to express its meta-model. These formalisms include: informal (such 
as DTDs or XML Schemas), UML, RuleML, Finite State Machines (FSMs), and 
ontologies, and have been used for categorizing each language. 

The evaluation results are presented in the first row of the Description composite 
SLA life-cycle activity of Tables IX and X. The vast majority of the SLA-MMs is 
expressed with informal formalisms (mostly XML Schema but also other schema 
languages which focus on a language's concrete syntax). The same result applies 
to the SLA language partition but not to the SCL one, where SCLs exploit mostly 
formal formalisms. Schema languages are selected as they lead to a quick way of 
producing a language, surpassing in this way its abstract syntax expression. In addi
tion, the majority of the approaches uses XML Schema for the concrete syntax and 
XML for the SLA representation. XML is adopted due to its platform-independence, 
simplicity, and ease of use, the excellent range of tool support available enabling 
automatahility, including editors, parsers, transformation engines, and document 
validity checkers, and the fact that is both human and machine understandable and 
processahle. However, XML Schema and correspondingly XML lack proper and 
precise language semantics needed to perform semantic SLA consistency and the 
formality needed to perform SLA analysis (analysability) [Skene 2007] which can 



Table VII. Summary of the Comparison Criteria of the SLA and Service Contract Languages 

be used to reveal hidden obligations and other important nonvisible implications. 
For this reason, XML-based SLA descriptions are either transformed to another 
formalism [Linington et al. 2004] or other formalisms are adopted for expressing 
the SLA-MM like FSM (X-Contract), RuleML (RBSLA and SweetDeal) or Event 
Calculus (TCXML). This justifies the choice of SCL modelers to adopt such for
malisms, as the focus is on analyzing the functional service behavior. While the 
adoption of stronger formalisms equips the SLA language with powerful tools to 
perform various forms of reasoning, there is usually a trade-off with simplicity, ease 
of use, and human-understandability and processing. 



Table VIII. The SLA and service contract languages examined 

Table IX. Evaluation results of SLA Languages 

Most SLA and service contract languages can perform at most the structural 
and semantical validity forms, (i.e. discover syntactic and semantic inconsistencies 
with the help of DTDs, XML Schemas, and ontologies). However, another validity 
form is also required, which is called SL validity, in order to discover a specific 
quality inconsistency type in SLs, which concerns the constraint consistency. As 
SLs are composed from the logical combinations of SLOs, it must be checked if this 
combination is meaningful and correct. For instance, if two constraints of the form 
X < a and X > b are conjunctively combined, where X is a QoS metric and b > a, 
then metric X would not be allowed to take any value from its value type, so the 

ID 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Approach 
N a m e 

QML 
WSLA 
WS-A 
SLAng 
WSOL 
RBSLA 
QoWL 
GXLA 

TrustCom 
X-Contract 

BCL 
SweetDeal 
CTXML 
SWCL 

Approach 
Reference 

[Pr0lund and Koistinen 1998] 
[Keller and Ludwig 2003] 
[WS-AGREEMENT 2003] 

[Lamanna et al. 2003] 
[Tosic et al. 2003] 

[Paschke 2005] 
[Brandic et al. 2006] 

[Tebbani and Aib 2006] 
[TrustCoM Consortium 2007] 
[Molina-Jimenez et al. 2003] 

[Linington et al. 2004] 
[Grosof and Poon 2004] 

[Farrell et al. 2004] 
[Oren et al. 2005] 

Type 

SLA 
SLA 
SLA 
SLA 
SLA 
SLA 
SLA 
SLA 
SLA 

Service Contract 
Service Contract 
Service Contract 
Service Contract 
Service Contract 



Table X. Evaluation results of Service Contract Languages 

produced SL would not be valid. This problem is exacerbated when arbitrary func
tions are involved in the SLO constraint expressions. One good solution would be 
to transform the SL description into an appropriate constraint model and then use 
Constraint Logic Programming (CLP) (for arbitrary logical combinations of SLOs) 
or Constraint Programming (only for conjunctions of SLOs) techniques [Rossi et al. 
2006] to check the constraint model's consistency [Miiller et al. 2008]. 

6.2.1.2 Coverage. SLA and service contract languages should be able to express 
in an efficient and complete way both functional and quality terms. The functional 
terms description should include the description of the service functionality op
erations, input and output. Moreover, if the service is composite, then all of its 
tasks, both internal and external, should also be described. All languages are able 
to define SLOs. However, the quality terms description should also include the 
description of the QoS metrics to be measured and various other quality concepts 
in order to be complete. If the SLA or service contract languages are not able to 
describe these additional quality terms, they reference these terms' external de
scriptions in respective SQSLs. Thus, this criterion's evaluation considers these 
two description aspects and provides the following values for a language: [n,n] (no 
functional and no SLO description), [n,p] (no functional and only SLO description), 
[n,y] (only complete quality description), \p,p] (references to functional and only 
SLO description), [p/y] (reference to functional and complete quality description), 
[y,y] (complete functional and quality description). 

The evaluation results are presented in the second row of the Description activ
ity of Tables IX and X. All the languages reference or explicitly define functional 
terms. Besides, the majority of these languages references an external functional 
description of the offered service (e.g. WSDL or BPEL). This result also applies 
in each partition. Only four SLA languages enable the description of the func-



tional terms of the SLA, while no SCL enables this description. Moreover, the WS-
Agreement and TrustCom SLA languages enable both the description and reference 
of the functional SLA terms. The latter language is an WSLA-based extension of 
WS-Agreement, so it is reasonable to inherit the majority of WS-Agreement's capa
bilities. As already explained in Section 5, the syntactical separation of functional 
and SLA descriptions enables the reuse of a specific contract among many services 
that exhibit the same quality capabilities. In addition, it facilitates the contract 
management and evolution (through the manipulation of changing SLs [Tosic et al. 
2003]) and disables the repetition of a service's functional description in all the 
service's contracts. On the other hand, the inclusion of the service functional de
scription inside an SLA mitigates the risk that the client experiences a different 
functionality from the one requested without being able to claim for this violation 
in the agreement. In this way, abnormal behavior of SPs that change the service 
functionality and description externally and not visibly to an SLA is avoided. 

Concerning the description of additional quality terms apart from SLOs, almost 
half of the languages only reference external quality descriptions usually found in 
SQMs. In the SLA language partition, there is no language that does not describe 
or reference additional quality terms and this result is quite reasonable. The CSLs 
that have been constructed to accommodate for any possible electronic contract 
and not just SLAs are not very efficient in this matter as most of them do not 
reference any quality term but could be extended to do so. It must be noted that 
referencing external descriptions of the additional quality terms enables their reuse 
but may create problems in the Matchmaking activity of the SLA management 
life-cycle, which is analyzed in the next subsection. 

6.2.1.3 Reusability & Extensibility. A SLA/service contract language should en
able the creation of templates and documents that can be re-used or extended for 
creating new SLA or service contract specifications, respectively. Moreover, SLA or 
service contract specification parts, like the functional and quality terms, should be 
reused across many SLA or service contract documents or extended appropriately. 
Thus, this criterion's evaluation for each language could get the following values: 
no, part (i.e. only the whole SLA/service contract is reusable and extensible), and 
yes (i.e. parts and whole SLA/service contract are extensible and reusable). 

The evaluation results are presented in the third row of the Description activity 
of Tables IX and X. Most SLA languages are re-usable and extensible both in the 
SLA specification entirety and in its parts. This result applies also to the SLA 
language partition. Concerning the SCL partition, there is a balance between those 
SCLs that are re-usable and extensible only in their entirety and those that are also 
re-usable and extensible in their parts. 

6.2.1.4 Composability. This property indicates the ability of an SLA or service 
contract language to represent composite SLAs or service contracts, respectively. 
It can be achieved when the language presents the following abilities: a) describe 
or reference composite service descriptions; b) define or reference metrics that are 
associated to composite services and are computed based on aggregation rules that 
depend on the composite service structure; c) cater for the different party types 
(i.e. third-party SPs) involved in composite contracts; d) define composite and 



component-based SLs and their associations; e) define appropriate action guaran
tees that consider the contract's two-level hierarchy. Most of the languages possess 
at most both of the first two abilities. For this reason, this criterion has been 
evaluated for each language depending on the language's satisfaction of these five 
abilities according to their order. So, if the language does not possess any ability, it 
is evaluated with no (i.e. it is not composable). If it possesses one of the first two 
abilities, it is neutral. If it possesses the first two abilities, it is considered fair (i.e. 
it has the basis for becoming composable). If it possesses the first three or four 
abilities, it is considered good. Finally, if it possesses all the abilities, it is evaluated 
with yes (i.e. it is composable). 

The evaluation results are presented in the last row of the Description activity of 
Tables IX and X. Most languages has not even the basis of being composable. This 
result applies also to the SCL partition, where four out of five approaches are not 
composable at all, while one approach possesses only the first ability. This actually 
means that SCLs were not designed to represent composite service contracts or 
SLAs. Concerning the SLA languages partition, there is actually a balance between 
approaches that have fair/basic and no composability at all. Only one SLA (GXLA) 
language scores good in its composability. This means that the SLA modelers have 
not yet understood the need for representing composite SLAs. 

6.2.1.5 Overall Analysis for the Description Activity. Based on the above anal
ysis, there is no SLA or SCL that meets the high standards posed. Only GXLA 
can be distinguished based on its capabilities with respect to composability. How
ever, this language lacks the appropriate formality (or transformation to such a 
formality) which is needed for SLA validity and analysis. 

6.2.2 Matchmaking. Only one research approach [Oldham et al. 2006] performs 
proper matchmaking of SLA specifications so as to match the user QoS requirements 
with the service QoS capabilities. In this approach, WS-Agreement specifications 
are enriched with semantic annotations from both domain-independent and domain-
dependent ontologies, while rules are also used to infer the matchmaking. The usual 
procedure followed in the remaining approaches is that matchmaking is performed 
during service negotiation, where one participant proposes a specific SLA (or service 
contract) template and the other one accepts it or changes it, by implicitly checking 
every SLO and changing its limits and by entering new SLOs, or proposes a new 
one. This matchmaking type is not efficient for the following reasons: a) QoS 
metrics are defined inadequately and syntactically in possibly different languages 
leading to low accuracy results; b) no matchmaking metric is defined so each party 
utilizes its own metric to infer if the proposed SLA template is the appropriate one 
c) the probability of matching is low because SLOs are usually expressed as hard 
constraints; d) it is time consuming as each time each party receives, parses, and 
processes an SLA document and may send a modified version of it or a new one. 

Based on the content of most SLA life-cycles (including the proposed one) and the 
above reasoning, SLA/service contract template matchmaking should be performed 
before service negotiation in order to discover those services of the corresponding 
SPs that suit the user quality requirements. This process can be effective and 
accurate if some prerequisites are met by the SLA and service contract languages 



and there is a common, unique, and fair matchmaking metric that can be used to 
perform the matchmaking in such way that will always give the same results for the 
same input. In the following, three main description prerequisites and one specific 
requirement (i.e., the existence of a matchmaking metric) are analyzed, which must 
be met by an SLA language in order to enable the matching of its specifications. 
In the end, an overall analysis of the SLA languages ability to support this SLA 
management life-cycle activity is given. 

6.2.2.1 Metric Definition. Metric modeling capabilities were analyzed in Sec
tion 5, where four SLA languages were compared. The rest of the SLA (apart from 
TrustCom) and service contract languages considered are not able to define QoS 
metrics but just reference external metric descriptions of SQSLs. In this way, two 
main problems may arise: a) language incompatibility - the involved SQSLs may 
encompass different metric meta-models so they can describe metrics in a different 
way and, thus, it will be difficult to transform one SQSL's metric description into the 
other's one when matchmaking SLA descriptions; b) even if the SQSLs are compat
ible, equivalent metrics described in these different languages may have a different 
name, so their descriptions have to be matched via metric matching rules [Kritikos 
and Plexousakis 2006] to infer their equivalence. These two problems reduce the 
matchmaking activity's accuracy. Thus, languages that define metrics or enforce 
the use of a specific SQSL to define metrics are preferred. So, this criterion's eval
uation for each language would be no, if the language does not define metrics or 
reference metric descriptions from a specific SQSL, or yes otherwise. 

The evaluation results are presented in the first row of the Matchmaking life-cycle 
activity of Tables IX and X. Five SLA languages (four plus TrustCom that relies on 
WSLA) satisfy this criterion, which are the approaches able to define QoS metrics 
and other SLO quality terms on their own. So, by also considering the results of the 
coverage criterion of the Description composite activity, it can be inferred that all 
languages that can reference external metric descriptions do not determine which 
SQSL should be used to specify these descriptions. Thus, the use of these languages 
may lead to low accuracy matchmaking results based on the above analysis. 

6.2.2.2 Alternatives. Two SLA/service contract specifications match when their 
part corresponding to the offered or required SL is matched. Existing languages do 
not encompass the SL concept but either assume it is the conjunction of all SLOs 
defined in the SLA or emulate it either through the use of logical predicates that 
logically connect the defined SLOs or by offering different SLAs for each service. 
However, the ability to implicitly represent a SL is not enough as the probability 
that there is a match between the encompassing SLOs of the compared SLs of two 
SLA specifications is very low. Moreover, users have diverse needs that can be 
represented through trade-offs between the requested SL and its cost. Thus, SLA 
and service contract languages should be able to represent alternative SLs in order 
to increase the chances of matching their corresponding specifications. Alternative 
SLs represent the different modes in which a service can operate to suit the diverse 
needs of different user classes, and the variations of a requested SL by a SR that 
trade-off the SL with the price the SR is willing to pay. Thus, this criterion's 
evaluation for each language would be no if the language is not able to represent 



SLs, impl if it can define them implicitly, and yes if there is an explicit language 
construct that is used to represent alternative SLs. 

The evaluation results are presented in the second row of the Matchmaking life-
cycle activity of Tables IX and X. Most languages are able to implicitly define 
alternative SLs which are needed to increase the chances of matchmaking with 
potential SRs. This result also applies to the SLA languages partition. Moreover, 
there is no language that explicitly defines SLs. Finally, among the SCLs, only 
X-Contract is able to implicitly define SLs. Thus, both SLA and service contract 
languages were not designed to support SLs but only SLA languages are able to 
implicitly define them. 

6.2.2.3 Soft Constraints. Even if many alternative SLs are represented in an 
SLA template to be matched, there will always exist a problem [Kritikos 2008] where 
users express over-constrained SLs which cannot be matched by any alternative SL 
of any offered SLA template. An over-constrained SL means that its encompassing 
SLOs contain very restrictive constraints that cannot be satisfied. As the root of 
this problem is that SLOs are expressed as hard constraints that must be satisfied 
at all costs to infer the matchmaking, its solution may come through the use of soft 
constraints. In particular, if SLOs are expressed as soft constraints, where the user 
expresses their significance through using weights or levels, then not all of them 
have to be satisfied when matching. In this way, there can be a match between an 
offered and requested SL, even if some insignificant requested SLOs are violated. 
Thus, this criterion's evaluation for each language would be no if the language 
cannot express soft constraints (i.e. SLOs), or yes otherwise. 

The evaluation results are presented in the third row of the Matchmaking life-
cycle activity of Tables IX and X. Only two SLA and one service contract language 
can define soft constraints, while the rest of the languages define SLOs as hard 
constraints. Thus, only these three languages could be used to express SLAs/service 
contracts which could be exploited to solve the over-constrained user-requested SLs 
problem. 

6.2.2.4 Matchmaking Metric. As languages may differ in the way they define 
QoS metrics and SLOs, it would be very useful when implementing SLA match
making engines if a specific matchmaking metric was defined internally or externally 
in the SLA language. This metric would be used for matching SLAs (defined by the 
respective language) in a fair and uniform manner according to the matchmaking 
requirements defined in [Kritikos 2008; Kritikos and Plexousakis 2009]. Thus, this 
criterion's evaluation for each language would be no if no matchmaking metric is 
defined, or yes otherwise. 

The evaluation results are presented in the last row of the Matchmaking life-cycle 
activity of Tables IX and X. Only two SLA languages (QML and SLang) explicitly 
define a matchmaking metric with which their produced SLA specifications can be 
matched. 

6.2.2.5 Overall Analysis for the Matchmaking Activity. There is no language 
that satisfies all four criteria of the Matchmaking activity. Only QML and Trust-
Corn satisfy three of the criteria. However, among these two languages QML is 
considered as the best because the soft constraints criterion is the least significant 



one as it provides additional and not basic support the SLA matchmaking activity. 
QML is the oldest of all SLA languages and is not used any more. However, it was 
designed with the explicit goal of contract conformance, which is actually used for 
the SLA specification matchmaking. Thus, it can be deduced that the majority 
of the languages and especially the SCLs were not designed with the objective of 
matchmaking the quality terms of their specifications. 

6.2.3 Negotiation. Service negotiation is one of the most important activities as 
it produces the final SLA document that will drive the service execution. For this 
reason, SLA languages must describe all the appropriate information that will be 
provided as input and assist the service negotiation process. This information can 
be categorized into two parts: meta-negotiation, and negotiability. In the following, 
it is explained why these two information types must be captured by SLA languages 
and what should be their content, while it is inspected if the languages capture this 
essential information. Finally, the overall performance and support of the examined 
languages for this SLA management activity is assessed. As negotiation strategies 
represent private and sensitive information for the participants which must not be 
exposed in SLA templates, it was considered that they do not constitute appropriate 
SLA information for the support of service negotiation. 

6.2.3.1 Meta-Negotiation. Meta-negotiation is any information that can be used 
for negotiation establishment, i.e. to enable and initiate the negotiation between 
the participants. The following information has been identified as meta-negotiation 
[Brandic et al. 2009; Comuzzi et al. 2009]: a) negotiation protocol support; b) 
description of negotiation capabilities; c) authentication method reference. 

The negotiation protocol is the allowable sequence of exchanged messages used to 
negotiate and conclude (i.e., agree) an SLA/service contract. The protocol should 
also unambiguously define the semantics and format, or schema, of the messages. 
Each negotiation participant may be able to support a subset of all possible ne
gotiation protocols. Thus, the supported negotiation protocols of all participants 
must be matched in order to find the appropriate for enacting the negotiation. For 
this reason, each participant's corresponding SLA/service contract template must 
reference all negotiation protocols that can be supported. Moreover, this reference 
should include a pointer to the supported negotiation protocol description for two 
reasons: a) to enable reasoning on protocol compatibility and substitutability, i.e. 
if one protocol can be used in place of the other, and b) some negotiation proto
cols may not be not implemented in negotiation engines and brokers as e.g. are 
not widely used; therefore, they have to be defined, e.g. in BPEL, in order to be 
properly enacted by the negotiation broker. 

When no matching negotiation protocol is found, it is advocated in [Comuzzi et al. 
2009] that the participant negotiation capabilities must be described in a more fine
grained way along with the possibilities of delegating capabilities to trusted third-
parties. Then, ontology-based reasoning can be used to infer if a specific negotiation 
protocol can be supported by the participants and their trusted third-parties. Thus, 
based on the above analysis, the participants fine-grained negotiation capabilities 
must be also advertised in their SLA templates apart from the coarse-grained ones. 

While negotiating, the participants reveal and exchange important information 



which should not be exposed to third-parties listening on the insecure channels 
established between the participants. For example, SPs do not want the offers they 
make to specific (e.g. privileged) clients to be viewed by all other clients. For this 
reason, the participants must describe in their SLA templates the authentication 
methods they prefer to be used for securing the channels exploited when exchanging 
negotiation information. Then, preferred authentication methods will be matched 
so as to select the most common one for the negotiation. 

Each language is evaluated according to the number of meta-negotiation infor
mation it can describe. Thus, if it cannot describe any information, it is evaluated 
as poor. If it describes only one of the above information types, it is considered 
fair. If it describes two meta-negotiation information types, it is considered good. 
Finally, if it describes all possible negotiation information, it is considered rich. 

The evaluation results are presented in the first row of the Negotiation life-cycle 
activity of Tables IX and X. The vast majority of the languages is not capable of 
modeling any meta-negotiation information. This result holds also in every parti
tion. Only WS-Agreement, TrustCom, and X-Contract determine or can represent 
negotiation protocols, while QoWL is able to both specify the negotiation protocol 
and the authentication method to be used for the SLA negotiation. 

6.2.3.2 Negotiability. While meta-negotiation represents information which is 
used to support the service negotiation enactment, negotiability represents infor
mation which is used during the negotiation. In particular, negotiability is the 
ability of a SLA language to describe which parts of its specifications are nego
tiable and in what way. Focusing on quality, a language presents negotiability if 
it can characterize which quality terms are negotiable or not and which are the 
allowable values in the quality terms upper and lower limits. Thus, this criterion's 
evaluation for each language would be no if the language does not define which 
terms are negotiable, part if the language characterizes only the terms negotiabil
ity, and yes if the language also determines which are the allowed values or range 
of values for the quality terms upper and/or lower limits. 

The evaluation results are presented in the second row of the Negotiation life-
cycle activity of Tables IX and X. Only two SLA languages (WS-Agreement and 
TrustCom) specify in a special part of their produced SLA templates which terms 
are negotiable. However, they do not specify the way these terms are negotiable. 
On the contrary, the constraints used to define the negotiable terms are hard and 
do not specify if a quality term's limits can take one or more values. 

6.2.3.3 Overall Analysis for the Negotiation Activity. According to the eval
uation results on the above two criteria of the Negotiation activity, only WS-
Agreement (and TrustCom that extends it) can partially provide information that 
can assist this activity. However, they should be extended by modeling the partic
ipant negotiation capabilities, the authentication method used for the information 
exchange during the negotiation, and specific constraints that define the allowed 
values for the negotiable quality terms limits. Considering the latter extension, one 
good solution is proposed in [Andrieux et al. 2004] which is, however, not adopted 
in the language's formal specification. SCLs are not able to properly support the 
quality-based terms negotiation. This fact along with the inability of the SCLs to 



support the SLA matchmaking activity prevents them from being widely adopted 
as the languages for expressing a service's quality-based behavior. 

6.2.4 Monitoring & Assessment. During service execution, the service is moni
tored so as to assess if the SLOs defined in its SLA are violated. Service monitoring 
is performed by producing measurements according to the information that is en
capsulated in the SLO metrics that are in the service scope. As both the metric 
definition and the association of metrics to service objects were evaluated in pre
vious parts of this paper, the only additional information needed for Monitoring is 
who is in charge of performing the metric measurements, i.e. the Metric Provider, 
and how often the measurements are produced, i.e. the Metric Schedule. This infor
mation is encompassed in a metric meta-model, but is usually specified concretely 
only when the SLAs is established after service negotiation. 

6.2.4.1 Metric Provider. The Metric Provider is the responsible party for pro
ducing a specific metric's measurements. This criterion's evaluation for each lan
guage would be no if the language does not define this party, or yes otherwise. 

The evaluation results are presented in the first row of the Monitoring life-cycle 
activity of Tables IX and X. Almost half SLA and almost all service contract 
languages are not able to specify the providers of SLO metrics as they assume that 
the measurements are only provided by the SP. This is a major limitation because 
measurements may be provided by other parties and the SLO evaluators, which 
may be different from SPs or even SRs, would not be able to assess the SLOs if 
they do not know the place from where SLO metric measurements can be obtained. 

6.2.4.2 Metric Schedule. The schedule of a metric determines the production 
frequency of its measurements. This criterion's evaluation for each language would 
be no if the language cannot define metric schedules, or yes otherwise. 

The evaluation results are presented in the second row of the Monitoring life-cycle 
activity of Tables IX and X. Only four SLA languages are able to specify metric 
schedules. Three (WSML, WSLA, and SLAng) of these four languages satisfy both 
the current and the previous criterion. The rest of the SLA languages and all SCLs 
do not model this feature. However, as this feature is used to specify the timing of 
the measurement productions of the SLO metrics, its lack can cause problems in 
the Assessment activity. 

The SLA assessment is one of the most crucial SLA life-cycle activities. Thus, 
SLA languages must model all appropriate information that could be used to sup
port this activity. Apart from the main condition of the SLO (clause) that is 
modeled in all SLA/service contract languages, other important SLA assessment 
information that should be modeled is: a) Condition Evaluator, b) Qualifying Con
dition, c) Obliged Party, d) Assessment Schedule, e) Validity Period, and f) Cor
rective Actions. In the following, the purpose and content of this information is 
analyzed and it is evaluated if the examined languages have modeled it. 

6.2.4.3 Condition Evaluator. Similarly to metric measurement, the SLO assess
ment should be made by a (supporting) party which is named Condition Evaluator. 
This party is in charge of collecting the measured values of all metrics involved in 
an SLO, replacing the metrics with their values, and then checking if the SLO holds 



or not. This criterion's evaluation for each language would be no if the language 
does not define this type of supporting party, or yes otherwise. 

The evaluation results are presented in the first row of the Assessment life-cycle 
activity of Tables IX and X. Only two SLA languages (WSLA and WSOL) and 
two SCLs (X-Contract and SweetDeal) are able to model this information. All 
the other languages pre-suppose that the SLA assessment activity is performed 
in the signatory parties management systems based on the information coming 
or pulled from the monitoring components. In this way, they limit the way an 
SLA management system can be implemented or distributed as they exclude the 
existence of third-party assessment components. 

6.2.4.4 Qualifying Condition. Apart from the SLO to be evaluated, there can 
be a precondition, named Qualifying condition, which must hold to assess the SLO. 
This precondition may express assertions over service or other quality attributes or 
external factors such as the SR's service request rate. This criterion's evaluation for 
each language would be no if the language does not define qualifying conditions, 
impl if it defines them implicitly through other constructs, or yes otherwise. 

The evaluation results are presented in the second row of the Assessment life-
cycle activity of Tables IX and X. Only one SLA language (WS-Agreement) and two 
SCLs are able to explicitly model the qualifying condition attribute, while another 
SLA language (WSLA) can implicitly define it through other constructs. All the 
other languages do not offer this capability. This lack leads to inability of expressing 
preconditions for the enactment of an SLO's assessment, which would eventually 
lead to situations where SLOs are assessed wrongly with regards to timing or other 
excluding conditions (e.g. client-side or management-related restrictions). 

6.2.4.5 Obliged. The Obliged party is in charge of delivering what is promised in 
an SLO. In many cases, this party is the SP, while in other cases it can be another 
party, e.g. a service component's third-party provider. Thus, every language should 
associate an SLO with the party that promises it. This criterion's evaluation for 
each language would be no if the language does not define the obliged party in the 
SLOs, or yes otherwise. 

The evaluation results are presented in the third row of the Assessment life-cycle 
activity of Tables IX and X. Most SLA languages are able to define which is the 
obliged party in an SLO. Moreover, all SCLs model this information as their design 
is based on policies expressing obligations and various other implication types. 

6.2.4.6 Assessment Schedule. An SLO is not assessed just one but several times 
according to an Assessment Schedule. This schedule can be as simple as assessing 
when new values are measured for the SLO metric or complex representing a se
quence of regularly occurring events. This criterion's evaluation for each language 
would be no if the language cannot define assessment schedules, or yes otherwise. 

The evaluation results are presented in the fourth row of the Assessment life-cycle 
activity of Tables IX and X. Most of the languages specify an SLO's assessment 
schedule. This result applies also to the SCL partition, as SCLs have been designed 
to support this criterion. However, most of the SLA languages do not model this 
information. This limits their application only in expressing SLAs that involve 
services whose performance should be checked at only one instant. The languages 



that model this criterion follow two different approaches. In the first approach the 
schedule is defined concretely with timing constraints, while in the second approach 
the schedule is based on events originating from the SLA management system's 
monitoring components. The first approach is adopted by the SLA languages, 
while the second approach is adopted by all SCLs. 

6.2.4.7 Validity Period. While the assessment schedule determines when to as
sess an SLO, the validity period determines the time period in which the SLO is 
guaranteed and, thus, should be checked for validity. An example of the value set 
this field can take is {business days, regular working hours, maintenance periods}. 
This criterion's evaluation for each language would be no if the language does not 
define the an SLO's validity period, or yes otherwise. 

The evaluation results are presented in the fifth row of the Assessment life-cycle 
activity of Tables IX and X. Most of the languages do not model this information. 
This result also applies to the SCL partition. However, it does not apply to the 
SLA languages partition, as there is a balance between the approaches that model 
this information and those that do not. Thus, SLA language designers have better 
understood the need of supporting this criterion with respect to those of the SCLs. 

6.2.4.8 Corrective Actions. When the signatory parties are informed about an 
SLO violation, corrective actions must be carried out at the obliged party's man
agement system or at the global level by renegotiating or canceling the SLA/service 
contract. When corrective actions should be taken by the obliged party, the choice 
of which action to perform depends on many situational factors and the obliged 
party's business goals and policies. So, this party would not desire or be possible to 
advertise in an SLA/service contract what actions to perform in which SLO viola
tion case. However, this party may advertise some corrective actions to be taken for 
the corresponding SLOs violations to increase its reputation and trust with respect 
to the SR or to guarantee the high gain that will get from assuring the agreed SL 
to a golden class customer. Thus, this information should be certainly modeled in 
an SLA/service contract. So, this criterion's evaluation for each language would be 
no if the language does not model corrective actions, or yes otherwise. 

The evaluation results are presented in the fifth row of the Assessment life-cycle 
activity of Tables IX and X. The majority of the language designers has recognized 
the significance of modeling this information. The same result also applies to the 
SCL partition. However, it does not apply to the other partition, as there is a 
balance between SLA languages that model corrective actions and those that do 
not. This means that SCL designers have better understood the importance of this 
criterion with respect to those of the SLA languages. 

6.2.4.9 Overall Analysis for the Monitoring & Assessment Activity. Based on 
the overall performance of the examined languages on the monitoring and assess
ment criteria, WSLA is the best language that models all appropriate information 
that is required for supporting the Monitoring and Assessment life-cycle activities, 
as the support of these two activities was one of its design requirements which seems 
to be successfully implemented. By inspecting the two different partitions, SCLs 
offer well support, while apart from WSLA the rest of the SLA languages do not 
seem to support well the SLA monitoring and assessment activities. 



6.2.5 Settlement. This activity assesses what has happened during the service's 
execution and what are each signatory party's responsibilities according to the 
agreed SLA. So, for example, if a specific SLO was violated, then the SP has to 
pay a small penalty to the SR. As another example, if the service runs in a higher 
SL than requested, then the SR has to pay, apart from the actual service cost, a 
reward for getting a better SL. The appropriate information to be modeled by an 
SLA/service contract language for supporting this activity is the following: a) the 
incurred penalties, b) the incurred rewards, c) settlement actions. 

6.2.5.1 Penalties. Penalties are paid by the SP if one or more SLOs are vio
lated. Each SLO is usually associated with a specific penalty-amount. However, in 
some cases, the penalty to be paid could increase exponentially with the violation 
number [Paschke and Schnappinger-Gerull 2006]. The latter penalty type is not 
modeled by most languages as it would require the definition of the appropriate SL 
first and then its association to a specific policy or function that would increase ex
ponentially or linearly according to the violation number in the SLOs that compose 
this SL. If a language is able to define penalties at the SL, then it can also define 
penalties at the individual SLO level. Thus, this criterion's evaluation for each 
language would be no if the language does not define penalties, SLO if it defines 
penalties at the SLO level, or SL if it defines total penalties at the SL level. 

The evaluation results are presented in the first row of the Settlement life-cycle 
activity of Tables IX and X. Most of the languages are able to specify penalties. The 
majority of these languages can define penalties for the whole SL, while only three 
languages define penalties for each SLO. Considering each partition separately, the 
majority of the SCLs is able to define penalties for each SL, while there is a balance 
between those SLA languages that are able to define penalties and those that are 
not. Moreover, there is a balance between the SLA languages that model penalties 
at the SL level and those that model penalties at the SLO level. The results show 
that SCL designers have better understood the need to model penalties than the 
SLA language designers. 

6.2.5.2 Rewards. Rewards are paid by the SR if one or more SLOs are more than 
respected. Rewards can be defined at the SLO (via a specific value) or SL level 
(via a function). Rewards should be modeled as they would give extra motives to 
SPs to provide even better SLs than the ones offered to respective SRs in the past. 
This SL upgrade would lead to increase in profits, which is one main goal of SPs 
when they offer their services. Moreover, the SL's trust and reliability would also 
increase. This criterion's evaluation for each language would be no if the language 
does not define rewards, SLO if it defines rewards at the SLO level, or SL if it 
defines rewards at the SL level. 

The evaluation results are presented in the second row of the Settlement life-
cycle activity of Tables IX and X. The results are different with respect to those 
of the previous criterion. Less than half of all languages are able to define rewards. 
Moreover, there is a balance between the languages able to define rewards at the 
SL level and those able to define rewards at the SLO level. In the SCL language 
partition, all SCLs are able to define rewards at the SL level. Concerning the other 
partition, the majority of the SLA languages is not able to define rewards as either 



no real-world case of SLAs contains rewards or the SLA language designers have not 
recognized the need of modeling rewards. As SLA languages represent the majority 
of all languages, this explains the bad global result. 

6.2.5.3 Settlement Actions. Settlement actions are mutually taken by both sig
natory parties to decide about the SLA/service contract final outcome. Thus, when 
there are no severe SLO violations or the violation number is not high or zero, the 
SLA outcome is successful and maybe only penalties or rewards have to be paid. 
However, in the opposite case, it should be determined if the SLA must be can
celed, re-negotiated or re-enforced (e.g. the service has to be re-executed). Thus, 
SLA/service contract languages should be able to model these settlement actions 
and the conditions on which they are applied. So, this criterion's evaluation for each 
language would be no if no settlement actions can be defined, or yes otherwise. 

The evaluation results are presented in the last row of the Settlement life-cycle 
activity of Tables IX and X. Half of the languages are not able to model settlement 
actions. Concerning the SLA partition, only two SLA languages are able to model 
such actions. This is a significant limitation that would discourage potential SPs 
or SRs from using them. Moreover, this explains the bad global result. This 
situation is reversed in the SCL partition, as all SCLs support the modeling of this 
information. This means that, indeed, the SCL design has been centered on the 
modeling of various compensation actions, including the settlement ones. 

6.2.5.4 Overall Analysis for the Settlement Activity. Based on the evaluation 
results of the settlement criteria, only RBSLA among the SLA languages satisfies all 
criteria and can specify penalties and rewards on the SL. The same applies for three 
(SweetDeal, CTXML, and SWCL) out of five SCLs. Thus, these four languages can 
be used for appropriately supporting the Settlement life-cycle activity. However, 
these languages require significant effort and extensions from the SLA modeler to 
express different SLAs with different settlement actions and conditions. In addition, 
they force the SLA management systems adopting them either to support one 
by one the different settlement actions that may exist in the SLAs or to define 
appropriate extensions with which the modelers may specify their SLAs. The latter 
may lead to a situation where various different versions of the same language are 
adopted by different SLA/service contract management systems. Thus, to avoid 
such situations and further increase their adoption and universality, these languages 
should be extended appropriately to specify explicit constructs that model the 
various settlement actions that may exist in an SLA/service contract. 

6.2.6 Archive. An SLA/service contract is archived in three distinct cases: a) 
the SLA is canceled, b) the maximum number of service invocations has been 
reached, or c) its validity period has expired. In the first case, settlement or correc
tive actions dictate when the SLA is canceled. In the second case, the SLA has to 
determine this maximum number of service invocations, and none of the existing 
languages is able to model this information. In the third case, the language has to 
model the SLA's validity period. Besides the timing of SLA archiving, some parties 
desire to dispose the SLA. In this case, the SLA is first archived and then disposed 
when a specific statutory period is expired. Again, none of the existing languages 
models this information. Thus, for this activity, each language is evaluated only 



based on its capability to model the SLA validity period. If it does not model this 
period, the evaluation result is no, otherwise yes. 

The evaluation results are presented in the last row of Tables IX and X. While the 
modeling of an SLA's (service contract's) validity period is very important, less than 
half of the languages are able to offer it. Concerning each partition separately, there 
is a balance between SLA languages that support and do not support the modeling 
of this information. On the other hand, only one SCL models this information. So, 
the SLA language designers are starting to understand the need of modeling this 
information, while the corresponding SCL designers do not. Prom the SCL side, 
this conclusion can be explained by considering that these languages were designed 
with the focus on functionality and not on quality. Thus, as functionality does not 
change so much, there is no need to explicitly model the service contract validity 
period. The contract could be invalidated as soon as the business relationship 
between the contracting organizations ceased to exist for various reasons. 

6.3 Overall Analysis 

The analysis performed has revealed some significant facts and limitations of exist
ing SLA and service contract languages in their ability to appropriately support the 
SLA life-cycle management activities. In this subsection, the analysis focuses on 
the overall global level of SLA management activity support so as to reveal other 
interesting facts that are not obvious in a first sight. 

First of all, by inspecting each activity's overall results, it can be inferred that 
there is no language supporting in a satisfactory way all activities. On the contrary, 
in each activity a different language is awarded as the most appropriate one. In 
addition, there are some SLA management activities which are not satisfactorily 
supported by any language, including those of SLA Description, Matchmaking, and 
Negotiation, while others are properly supported by few languages, including those 
of SLA Monitoring & Assessment, Settlement, and Archive. 

The above general results burden the SLA languages which were explicitly de
signed to support all SLA management activities, as they signify that these lan
guages do not possess all appropriate modeling capabilities so they should be used 
for expressing only some SLA types. Based on the fact that the capabilities of 
the most widely used SLA languages, i.e. WSLA and WS-Agreement, are comple
mentary with respect to the SLA management activities support, one solution that 
could be adopted is to design a new SLA language that unifies the capabilities of 
these languages by extending them and encompassing some modeling constructs 
of the one to the other. One such paradigm is TrustCom, which is the only SLA 
language that has a good evaluation score across all the activities. Another solution 
would be to design a new SLA language that could use the best modeling features 
of the two standardized ones and explicitly model the missing features. 

Another interesting result that derives from the above analysis is that SCLs 
do not fully support most of the SLA management activities apart from those 
of SLA Monitoring & Assessment and Settlement. This can be explained by the 
focus of SCL design on service functionality, which was inevitable during SCL 
modeling time. In this way, service quality, which has the main focus now because 
of its dynamicity, is either neglected or not appropriately modeled. Thus, although 
these languages were designed to accommodate for any electronic contract type, 



they cannot be used for specifying SLAs unless they are extended appropriately. 
SWCL is a SCL language that could be easily extended as it has the best score 
among all SCLs across all SLA management activities. This language along with 
TCXML are the most representative and recent SCLs which have included quality-
related constructs in order to accommodate for the change of focus from service 
functionality to quality. 

7. CONCLUDING REMARKS AND FUTURE WORK 

This paper has focused on investigating the issue of service quality description. To 
this end, a systematic review of a large number of approaches has been conducted 
in order to reveal their strengths and weaknesses and highlight where the need for 
further research and investigation is. Initially, the approaches were separated into 
three clusters according to their scope: (1) service quality models (SQMs) which are 
taxonomies of service quality that can be used to annotate other types of quality 
documents like QSDs and SLAs, (2) service quality meta-models (SQMMs) which 
are capable of expressing SQMs as well as service quality offerings and requirements 
(i.e, QSDs), and (3) service level agreement meta-models (SLA-MMs) which are ca
pable of describing SLAs. Then, there was a comparison of the approaches of each 
cluster according to a set of scope-specific criteria aiming at unveiling which ap
proaches are the consolidated ones and which are the ones specific to given aspects. 
This comparison uncovered many interesting findings, while also spotted particular 
aspects of under-performance concerning each cluster's approaches. The next three 
subsections summarize the most important of these findings and draw directions 
for further research and improvement. 

7.1 Discussion on Service Quality Models 

Various SQMs have been proposed, from small or fiat categories of service quality 
attributes to sophisticated taxonomies containing many categories and attribute 
types. In order to compare these approaches in a fair and consistent manner, a 
set of criteria were devised characterizing the extensiveness, information richness, 
structure, generality, and applicability of the considered SQMs. Concerning the 
first four aspects, the evaluation results have shown a trend that the approaches 
are improving over the years. In average, the SQMs have a satisfactory category 
number, where each category contains a small quality attribute number. Most 
SQMs mainly cover general (i.e. domain-independent) quality attributes, while a 
small number of them also covers specific (i.e. domain-dependent) ones. As the 
inclusion of general attributes tends to cover the SP view while the inclusion of 
specific ones tends to cover the SR view, most SQMs mainly cover the SP view. 
Besides, most SQMs contain both composite and atomic quality attributes along 
with the connecting relation between them. The latter relation is very important 
during service monitoring as it may be used to validate or enrich the monitoring 
results of a service monitoring engine or component. 

Another interesting finding is that the majority of the SQMs includes only QoS 
attributes, while only the most recent approaches also include QoE attributes. The 
latter result signifies that the researchers are starting to realize that apart from 
considering attributes that can be assessed objectively, attributes that are assessed 
subjectively based on user feedback are equally important as they reveal the service 



performance and usability under the perspective of the persons who really use the 
service to satisfy their needs, so they also constitute critical service selection factors. 

An important evaluation result shows that apart from the very initial approaches 
that focused on quality attributes associated to the service layer, the rest of the 
approaches are increasingly considering attributes that can be associated to the 
one or both of the two additional layers, namely the application and infrastructure 
layers. While this is a significant advance, it is outweighed by the lack of inter-
attribute dependencies not only within the same but also across the layers. Inter-
attribute dependencies are extremely important as they reveal the influence one 
attribute has on the other. In this way, the service monitoring, assessment, and 
adaptation activities can exploit them to perform dependency analysis in order to 
detect wrong monitoring facts and discover the components of the same or different 
layer that caused an SLO violation. 

The current state-of-the-art approaches scarcely consider data quality aspects. 
However, since the service output is mostly composed of information, data quality 
can be considered as a part of service QoS and can drive thoroughly the analysis 
of the required input and provided output. 

Concerning the applicability comparison aspect, only one SQM [Colombo et al. 
2005] associates metrics with concrete assessment formulas to all the attributes it 
contains. However, it does not perform well with respect to the first four aspects. 
Thus, this SQM could be used to annotate QSDs and SLAs which can be used 
across all service life-cycle activities but in specific scenarios. This is because this 
SQM contains a rather small amount of domain-independent quality attributes and 
thus could not be used to capture any possible case in which also some domain-
dependent quality attributes are needed. Most of the remaining approaches provide 
a metric description for some of the included attributes which does not contain a 
precise assessment formula but an assessment rules set. As the latter rules can 
be further used to create precise assessment formulas, these approaches could be 
exploited in all the service life-cycle activities, if extended appropriately. 

Based on the above analysis, no SQM can be considered as optimal according 
to its evaluation on all the considered criteria. In fact, for particular partitions of 
the comparison aspects, different approaches are distinguished as the best. Thus, a 
new SQM is needed that should combine the characteristics of the best approaches 
in all the considered aspects, describe all the possible but realistic inter-attribute 
dependencies, and include also data quality attributes. 

7.2 Discussion on Service Quality Meta-Models 

Many SQMMs have been proposed, which were separated into three partitions based 
on their scope such that the analysis can be conducted globally for all approaches 
and locally in each partition. Pure SQMMs are able to express QSDs and QSMs. 
SLA-enabled SQMMs are additionally able to express SLAs. On the other hand, 
security-based SQMMs focus on particular aspects of service quality description. 
All SQMMs were evaluated based on a set of criteria capturing the aspects of 
formality, expressiveness, complexity, and applicability. 

Concerning formality, the results have shown that the majority of the approaches 
use either ontologies or informal formalisms. The former formalism is widely se
lected in pure SQMMs, while the latter is the best modeling choice in the other 



two partitions, i.e., the SLA-enabled and security-based ones. Moreover, a recend 
trend has been revealed for the pure and SLA-enabled SQMMs in using ontologies 
as their formalism. The adoption of ontologies can be explained by their ability to 
provide unambiguous semantics to quality terms and, thus, to enable machines to 
automatically process and reason on ontology-specified QSDs in order to support 
service life-cycle activities like discovery and negotiation. 

Three main criteria were used to evaluate the richness of the approaches. The first 
criterion evaluated the SQM richness of the SQMM. The evaluation results have 
shown that no SQMM is able to provide a rich SQM. Fortunately, pure SQMMs 
are starting to improve on this aspect over the last years. However, SLA-enabled 
and security-based SQMMs do not perform very well on this matter. The second 
criterion evaluated the richness of the quality metric model and its evaluation re
sults were better with respect to those of the previous one. Indeed, the majority 
of SQMMs is encompassing an adequately rich quality metric model. Moreover, 
pure SQMMs are again improving on this matter over the last years. Finally, the 
third criterion evaluated the richness in constraint description. Here, the evalua
tion results are even more better as the majority of the approaches encompasses 
a rich constraint model. In fact, there are some pure and SLA-enabled SQMMs 
that encompass a very rich (excellent) constraint model. Moreover, pure SQMMs 
are improving on this matter over the years. Security-based SQMMs perform mod
erately in this aspect. By closely inspecting the results of these three criteria, it 
can be inferred that pure SQMMs are continuously increasing their expressiveness, 
while the approaches of the other two partitions are more or less stable. 

It was extremely difficult to assess the SQMM complexity by using good mea
sures based on various practical reasons. So it was decided to use a simple measure 
on the number of concepts/entities included in the SQMM and specific thresholds 
in order to evaluate the SQMMs in particular categories. The results have shown 
that most of the SQMMs have low complexity. Moreover, the trend that pure and 
SLA-enabled SQMMs of higher complexity are proposed lately is revealed. By con
sidering also the fact that SLA-enabled SQMMs are increasing their expressiveness 
in pure SLA-based aspects, this actually means that modelers are trying to increase 
the expressiveness of their SQMMs and, in result, the complexity of their SQMMs 
increases with respect to the number of concepts/entities. 

The aspect of applicability was assessed based on two criteria. The first crite
rion evaluated the connection of an SQMM with a Service Functional Specification 
Language (SFSL) in order to assess if the SQMM can be used in registries that are 
bound to specific SFSLs. The results have shown that the majority of the SQMMs is 
connected to an SFSL. Moreover, the most referenced language was WSDL followed 
by OWL-S. The second criterion assessed if any service discovery and negotiation 
framework has adopted the SQMM under inspection. By inspecting the function
ality of existing frameworks that use pure SQMMs and considering the fact that 
these SQMMs do not model some critical information for service monitoring and 
assessment, it is inferred that pure SQMMs are used until the service negotiation 
activity. The same result goes for security-based SQMMs. On the other hand, if 
the SLA-enabled SQMMs are improved on some modeling aspects, then they can 
be used across the whole service life-cycle. 



Based on the above analysis, there is no SQMM that scores the best value in all 
criteria. This drawback prevents the wide usage of SQMMs in service management 
systems. Indeed, as it was already shown, there are no SQMMs that are used in 
service discovery, negotiation, and SLA description and enforcement. Thus, there is 
actually a gap that must be closed by introducing either a new SQMM or extending 
an appropriate existing one. 

7.3 Discussion on Service Level Agreement Meta-Models 

Two agreement language types have been proposed in the literature: SLAs and 
service contracts. The former mainly focus on quality aspects, while the latter 
have been designed to accommodate for any electronic contract type. Both language 
types were evaluated on a set of criteria that were grouped along the SLA life-cycle 
activities. These criteria assessed these languages along the lines of the information 
they can describe which is required for supporting the SLA life-cycle activities. In 
this way, by supporting the SLA life-cycle activities, the service life-cycle is also 
supported. 

By inspecting the overall evaluation results, there is no language supporting in 
a satisfactory way all activities. On the contrary, for many activities a different 
language is awarded as the most appropriate one, while only few languages properly 
support a subset of all activities. In addition, there are some SLA management 
activities which are not properly supported by any language, including those of 
SLA description, matchmaking, and negotiation. 

Concerning SLA languages, the analysis has shown that all SLA languages, in
cluding the two most widely used languages, namely WSLA [Keller and Ludwig 
2003] and WS-Agreement [WS-AGREEMENT 2003], do not possess all appropriate 
modeling capabilities. Moreover, the capabilities of the WSLA and WS-Agreement 
languages are complementary with respect to the SLA management activities sup
port. For this reason, there are some approaches that try to unify the best charac
teristics of these two languages, such as TrustCom [TrustCoM Consortium 2007]. 
However, this unification is not enough as those features that are inadequate should 
be improved and those that are missing should be additionally modeled. 

SCLs are not capable of fully supporting most of the SLA management activities 
apart from those of SLA Monitoring & Assessment and Settlement. This can be 
explained by the focus of SCL design on service functionality, which was inevitable 
during SCL modeling time. Thus, although these languages were designed to ac
commodate for any electronic contract type, they cannot be used to specify SLAs 
unless they are extended appropriately. 

Based on the above analysis, there is a need for a new language able to express 
SLAs in a satisfactory way. Apart from satisfying all the criteria of all the SLA 
life-cycle management activities, this language should be able to explicitly define 
SLs, their respective SLOs, and appropriate settlement actions when these SLs 
are violated or surpassed. The encoding used in this language should enable it 
to be platform-independent, simple, easy to use, and both machine and human 
understandable and processable. However, the formalism adopted should enable 
the analysis and the syntactic, semantic, and quality validation of the language's 
produced SLA specifications, either explicitly or through its transformation to an
other more powerful formalism. Finally, the high goal of automatability should be 



achieved with the creation of several assisting tools or SLA management compo
nents for this new SLA language that could be used by prospective SPs and SRs 
or incorporated in their management systems. 

ACKNOWLEDGMENTS 

The research leading to these results has received funding from the European Com
munity's Seventh Framework Programme FP7/2007-2013 under grant agreement 
215483 (S-Cube) 

APPENDIX 

T h e A c r o n y m s U s e d A c r o s s t h e P a p e r and the ir E x p a n s i o n 

REFERENCES 

ALLEN, P . 2006. Service Orientation, winning strategies and best practices. C a m b r i d g e Univers i ty 

P res s , C a m b r i d g e , UK. 

ANDRIEUX, A. , D A N , A. , KEAHY, K., LUDWIG, H., AND ROFRANO, J . 2004. Negot iab i l i ty Con-



straints in WS-Agreement. Technical report, GRAAP-WG. January. Submitted - Version 
0.1. 

BRANDIC, I., BUYYA, R., MATTESS, M., AND VENUGOPAL, S. 2009. Towards a Meta-Negotiation 
Architecture for SLA-Aware Grid Services. In Proceedings of the 2nd International Workshop 
on Service-Oriented Engineering and Optimization (SENOPT 2008) in conjunction with HiPC 
2008. Bangalore, India, 1-9. 

BRANDIC, I., PLLANA, S., AND BENKNER, S. 2006. An Approach for the High-level Specification 
of QoS-aware Grid Workflows Considering Location Affinity. Scientific Programming Jour
nal 14, 3-4, 231-250. 

CAPPIELLO, C. 2006. Mobile Information Systems - Infrastructure and Design for Adaptivity 
and Flexibility. Springer-Verlag, Chapter The Quality Registry, 307-317. 

CAPPIELLO, C , KRITIKOS, K., METZGER, A., PARKIN, M., PERNICI, B., PLEBANI, P., AND TREIBER, 

M. 2008. A quality model for service monitoring and adaptation. In Workshop on Monitoring, 
Adaptation and Beyond (MONA+) at the ServiceWave 2008 Conference. Springer. 

COLOMBO, M., N I T T O , E. D., PENTA, M. D., DISTANTE, D., AND ZUCCALA, M. 2005. Speaking a 

Common Language: A Conceptual Model for Describing Service-Oriented Systems. In ICSOC. 
48-60. 

COMUZZI, M., KRITIKOS, K., AND PLEBANI, P. 2009. A semantic based framework for supporting 
negotiation in Service Oriented Architectures. In Proceedings of 11th IEEE Conference on 
Commerce and Enterprise Computing (CEC09). IEEE Computer Society Press. 

CORTES, A. R., MARTIN-DIAZ, O., T O R O , A. D., AND T O R O , M. 2005. Improving the Auto

matic Procurement of Web Services Using Constraint Programming. Int. J. Cooperative Inf. 
Syst. 14, 4, 439-468. 

CRANOR, L., DOBBS, B., EGELMAN, S., HOGBEN, G., HUMPHREY, J., LANGHEINRICH, M., MAR-

CHIORI, M., PRESLER-MARSHALL, M., REAGLE, J., SCHUNTER, M., STAMPLEY, D. A., AND W E N -

NING, R. 2006. Platform for Privacy Preferences (P3P). Working group note, W3C. November. 

D E PAOLI, F., PALMONARI, M., COMERIO, M., AND MAURINO, A. 2008. A Meta-model for Non
functional Property Descriptions of Web Services. In ICWS '08: Proceedings of the 2008 IEEE 
International Conference on Web Services. IEEE Computer Society, Beijing, China, 393-400. 

DlKAIAKOS, M. D., PALLIS, G., KATSAROS, D., MEHRA, P., AND VAKALI, A. 2009. Cloud Com
puting: Distributed Internet Computing for IT and Scientific Research. IEEE Internet Com
puting 13, 5, 10-13. Guest Editorial. 

DOBSON, G., LOCK, R., AND SOMMERVILLE, I. 2005. QoSOnt: a QoS Ontology for Service-Centric 
Systems. In EUROMICRO '05: Proceedings of the 31st EUROMICRO Conference on Software 
Engineering and Advanced Applications. IEEE Computer Society, Porto, Portugal, 80-87. 

FARRELL, A. D. H., SERGOT, M. J., TRASTOUR, D., AND CHRISTODOULOU, A. 2004. Performance 
Monitoring of Service-Level Agreements for Utility Computing Using the Event Calculus. In 
WEC '04: Proceedings of the First IEEE International Workshop on Electronic Contracting. 
IEEE Computer Society, San Diego, CA, USA, 17-24. 

FOSBROOK, D. AND LAING, A. C. 1996. The A-Z of Contract Clauses. Sweet & Maxwell. 

FR0LUND, S. AND KoiSTINEN, J. 1998. Quality of services specification in distributed object 
systems design. COOTS'98: Proceedings of the 4th conference on USENIX Conference on 
Object-Oriented Technologies and Systems 5, 4, 179-202. 

FRUTOS, H. M., KOTSIOPOULOS, I., GONZALEZ, L. M. V., AND MERINO, L. R. 2009. Enhancing 

Service Selection by Semantic QoS. In ESWC 565-577. 

GEORGAKOPOULOS, D. AND PAPAZOGLOU, M. P. 2008. Service-Oriented Computing. Cooperative 
Information Systems. MIT Press. 

GlALLONARDO, E. AND ZlMEO, E. 2007. More Semantics in QoS Matching. In International Con
ference on Service-Oriented Computing and Applications. IEEE Computer Society, Newport 
Beach, CA, USA, 163-171. 

GREFEN, P. AND ANGELOV, S. 2002. On r-, /1-, 7T-, and e-contracting. In WES. Vol. 2512. Springer, 
Toronto,Canada, 68-77. 



GROSOF, B. N. AND POON, T. C. 2004. SweetDeal: Representing Agent Contracts with Ex
ceptions Using Semantic Web Rules, Ontologies, and Process Descriptions. Int. J. Electron. 
Commerce 8, 4, 61-97. 

HOFFNER, Y., FIELD, S., GREFEN, P., AND LUDWIG, H. 2001. Contract-driven creation and oper
ation of virtual enterprises. Computer Networks 37, 111-136. 

HWANG, C. AND YOON, K. 1981. Multiple Criteria Decision Making. Lecture Notes in Economics 
and Mathematical Systems. 

ISO/IEC 2001. ISO/IEC 9126-1 Software Engineering. Product Quality - Part 1: Quality model. 
ISO/IEC. 

JIANG, Y., SHAO, W., ZHANG, L., M A , Z., MENG, X., AND M A , H. 2004. On the classification of 

umls meta model extension mechanism. In UML. 54-68. 

KELLER, A. AND LUDWIG, H. 2003. The WSLA Framework: Specifying and Monitoring Service 
Level Agreements for Web Services. Journal of Network and Systems Management 11, 1, 
57-81. 

KRITIKOS, K. 2008. QoS-based Web Service Description and Discovery. Phd thesis, Computer 
Science Department, University of Crete, Heraklion, Greece. December. 

KRITIKOS, K. AND PLEXOUSAKIS, D. 2006. Semantic QoS Metric Matching. In ECOWS '06: 
Proceedings of the European Conference on Web Services. IEEE Computer Society, Zurich, 
Switzerland, 265-274. 

KRITIKOS, K. AND PLEXOUSAKIS, D. 2009. Requirements for QoS-based Web Service Description 
and Discovery. IEEE Transactions on Services Computing, accepted. 

LAMANNA, D. D., SKENE, J., AND EMMERICH, W. 2003. SLAng: A Language for Defining Service 
Level Agreements. In FTDCS 2003: Proceedings of the 9th IEEE International Workshop on 
Future Trends of Distributed Computing Systems. IEEE Computer Society, San Juan, Puerto 
Rico. 

LININGTON, P. F., MILOSEVIC, Z., COLE, J., GIBSON, S., KULKARNI, S., AND NEAL, S. 2004. A 

unified behavioural model and a contract language for extended enterprise. Data & Knowledge 
Engineering 51, I, 5-29. 

MABROUK, N. B., GEORGANTAS, N., AND ISSARNY, V. 2009. A Semantic End-to-End QoS Model 
for Dynamic Service Oriented Environments. In PESOS Workshop at ICSE 2009. IEEE. 

MAXIMILIEN, E. M. AND SINGH, M. P. 2002. Conceptual model of web service reputation. SIC-
MOD Rec. 31, 4, 36-41. 

MAXIMILIEN, E. M. AND SlNGH, M. P. 2004. A Framework and Ontology for Dynamic Web 
Services Selection. IEEE Internet Computing 8, 5, 84-93. 

MENS, T. AND LANZA, M. 2002. A graph-based metamodel for object-oriented software metrics. 
Electr. Notes. Theor. Comput. Sci. 72, 2. 

MOLINA-JIMENEZ, C , SHRIVASTAVA, S., SOLAIMAN, E., AND WARNE, J. 2003. Contract Representa
tion for Run-time Monitoring and Enforcement. In CEC 2003: IEEE International Conference 
on E-Commerce Technology. IEEE Computer Society, Newcastle upon Tyne, UK, 103-110. 

MULLER, C , CORTES, A. R., AND RESINAS, M. 2008. An Initial Approach to Explaining SLA 
Inconsistencies. In ICSOC 2008: Proceedings of the 6th International Conference on Service-
Oriented Computing. Lecture Notes in Computer Science, vol. 5364. Springer, 394-406. 

MULLER, N. J. 1999. Managing Service Level Agreements. International Journal of Network 
Management 9, 3, 155-166. 

NADALIN, A., GOODNER, M., GUDGIN, M., BARBIR, A., AND GRANQVIST, H. 2007. WS-Trust speci

fication, http://www.ibm.com/developerworks/webservices/library/specification/ws-trust/. In 
Technical report. OASIS Working Draft. 

NEJDL, W., OLMEDILLA, D., AND WlNSLETT, M. 2004. PeerTrust: Automated Trust Negotiation 
for Peers on the Semantic Web. In SDM 2004: Proceedings of the VLDB 2004 International 
Workshop on Secure Data Management in a Connected World. LNCS, vol. 3178. Springer, 
Toronto, Canada, 118-132. 

NESSI OPEN FRAMEWORK. 2009. Quality Model for NEXOF-RA Pattern Designing. Tech. rep. 

http://www.ibm.com/developerworks/webservices/library/specification/ws-trust/


OLDHAM, N., VERMA, K., SHETH, A., AND HAKIMPOUR, F. 2006. Semantic WS-Agreement Partner 
Selection. In WWW '06: Proceedings of the 15th International conference on World Wide Web. 
ACM Press, Edinburgh, Scotland, 697-706. 

OREN, N., PREECE, A., AND NORMAN, T. 2005. Service level agreements for semantic web agents. 
In AAAI Fall Symposium Series. AAAI, Virginia,USA. 

O'SULLIVAN, J., EDMOND, D., AND TER HOFSTEDE, A. 2002. What 's in a service? Towards Accu
rate Description of Non-Functional Service Properties. Distributed and Parallel Databases 12, 2-
3, 117-133. 

PARKIN, M., BADIA, R. M., AND MARTRAT, J. 2008. A Comparison of SLA Use in Six of the 
European Commissions FP6 Projects. Tech. rep., TR-0129, Institute on Resource Management 
and Scheduling, CoreGRID - Network of Excellence. April. 

PASCHKE, A. 2005. RBSLA: A declarative Rule-based Service Level Agreement Language based 
on RuleML. In Proceedings of the International Conference on Computational Intelligence for 
Modelling, Control and Automation and International Conference on Intelligent Agents, Web 
Technologies and Internet Commerce Vol-2 (CIMCA-IAWTIC'06). IEEE Computer Society, 
Vienna, Austria, 308-314. 

PASCHKE, A. AND SCHNAPPINGER-GERULL, E. 2006. A Categorization Scheme for SLA Metrics. 
In Service Oriented Electronic Commerce: Proceedings zur Konferenz im Rahmen der Multi-
konferenz Wirtschaftsinformatik. LNI, vol. 80. GI, Passau, Germany, 25-40. 

RAN, S. 2003. A model for web services discovery with QoS. SIGecom Exch. 4, 1, 1-10. 

REDMAN, T. C. 1997. Data Quality for the Information Age. Artech House, Inc., Norwood, MA, 
USA. Foreword By-A. Blanton Godfrey. 

ROSSI, F., VAN BEEK, P., AND WALSH, T. 2006. Handbook of Constraint Programming (Founda
tions of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA. 

SABATA, B., CHATTERJEE, S., DAVIS, M., SYDIR, J., AND LAWRENCE, T. 1997. Taxonomy for QoS 

Specifications. In Object-Oriented Real-Time Dependable Systems, 1997. Proceedings., Third 
International Workshop on. 100-107. 

SAKELLARIOU, R. AND YARMOLENKO, V. 2008. High Performance Computing and Grids in Action. 
Chapter Job Scheduling on the Grid: Towards SLA-Based Scheduling. 

SKENE, J. 2007. Language Support for Service-Level Agreements for Application-Service Provi
sion. Phd thesis, Department of Computer Science, University College London, London, UK. 
November. 

SKOGSRUD, H., BENATALLAH, B., AND CASATI, F. 2004. Trust-Serv: Model-Driven Lifecycle Man
agement of Trust Negotiation Policies for Web Services. In Proc. 13th World Wide Web Conf. 

STRONG, D. M., LEE, Y. W., AND WANG, R. Y. 1997. 10 Pitholes in the Road to Information 
Quality. Computer 30, 8, 38-46. 

TEBBANI, B. AND AlB, I. 2006. GXLA a Language for the Specification of Service Level Agree
ments. In AN 2006: Proceedings of the First International IFIP TC6 Conference on Autonomic 
Networking. Lecture Notes in Computer Science, vol. 4195. Springer, Paris, France, 201—214. 

THE OASIS GROUP. 2005. Quality Model for Web Services. Tech. rep., The Oasis Group. 
September. 

THE OMG GROUP. 2005. U M L ™ Profile for Modeling Quality of Service and Fault Tolerance 
Characteristics and Mechanisms. Tech. Rep. ptc/2005-05-02, The OMG Group. May. 

TIAN, M., GRAMM, A., NABULSI, M., RITTER, H., SCHILLER, J., AND VOIGT, T. 2003. QoS 

integration in web services. Gesellschaft fur Informatik DWS 2003, Doktorandenworkshop 
Technologien und Anwendungen von XML. 

TOSIC, V., ESFANDIARI, B., PAGUREK, B., AND PATEL, K. 2002. On requirements for ontologies in 
management of web services. In CAiSE '02/ WES '02: Revised Papers from the International 
Workshop on Web Services, E-Business, and the Semantic Web. Springer-Verlag, Toronto, 
Ontario, Canada, 237-247. 

TOSIC, V., M A , W., PAGUREK, B., AND ESFANDIARI, B. 2003. On the Dynamic Manipulation of 
Classes of Service for XML Web Services. Research Report SCE-03-15, Department of Systems 
and Computer Engineering, Carleton University, Ottawa, Canada. 



TOSIC, V. AND PAGUREK, B. 2005. On comprehensive contractual descriptions of web services. 
In EEE '05: Proceedings of the 2005 IEEE International Conference on e-Technology, e-
Commerce and e-Service (EEE'05) on e-Technology, e-Commerce and e-Service. IEEE Com
puter Society, Hong Kong, 444-449. 

TOSIC, V., PAGUREK, B., AND PATEL, K. 2003. WSOL - A Language for the Formal Specification 
of Classes of Service for Web Services. In ICWS, L.-J. Zhang, Ed. CSREA Press, Las Vegas, 
Nevada, USA, 375-381. 

TRUONG, H.-L., SAMBORSKI, R., AND FAHRINGER, T. 2006. Towards a Framework for Monitoring 
and Analyzing QoS Metrics of Grid Services. In International Conference on e-Science and 
Grid Computing. IEEE Computer Society Press, Amsterdam, The Netherlands. 

TRUSTCoM CONSORTIUM. 2007. TrustCom Framework V4 - Appendix A: Profiles. Report De
liverable D63, European Union. January. 

WANG, X., VITVAR, T., KERRIGAN, M., AND TOMA, I. 2006. A QoS-Aware Selection Model 

for Semantic Web Services. In ICSOC, A. Dan and W. Lamersdorf, Eds. Lecture Notes in 
Computer Science, vol. 4294. Springer, 390-401. 

WELTY, C , KALRA, R., AND CHU-CARROLL, J. 2003. Evaluating ontological analysis. In Proceed
ings of the ISWC-03 Workshop on Semantic Integration. 

WS-AGREEMENT. 2003. WS-Agreement Framework. h t t p s : / / f o r g e . g r i d f o r u m . o r g / 
projects /graap-wg. 

YANG, Z., ZHANG, D., AND Y E , C. 2006. Ontology Analysis on Complexity and Evolution Based 
on Conceptual Model. In DILS, Springer, Ed. Vol. 4075. 216-223. 

Yl, T., Wu, F., AND GAN, C. 2004. A comparison of metrics for uml class diagrams. SIGSOFT 
Softw. Eng. Notes 29, 5, 1-6. 

YOA, H., OREM, A. M., AND ETZKORN, L. 2005. Cohesion metrics for ontology design and 
application. Journal of Computer Science 1, 1, 107-113. 

ZHOU, C , CHIA, L.-T., AND LEE, B.-S. 2004. DAML-QoS Ontology for Web Services. In ICWS 
'04: Proceedings of the IEEE International Conference on Web Services. IEEE Computer So
ciety, San Diego, CA, USA, 472-479. 

https://forge.gridforum.org/

