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Abstract

Resource analysis aims at inferring the cost of executing programs for any possible in-
put, in terms of a given resource, such as the traditional execution steps, time or mem-
ory, and, more recently energy consumption or user defined resources (e.g., number of
bits sent over a socket, number of database accesses, number of calls to particular pro-
cedures, etc.). This is performed statically, i.e., without actually running the programs.

Resource usage information is useful for a variety of optimization and verifica-
tion applications, as well as for guiding software design. For example, programmers
can use such information to choose different algorithmic solutions to a problem; pro-
gram transformation systems can use cost information to choose between alternative
transformations; parallelizing compilers can use cost estimates for granularity control,
which tries to balance the overheads of task creation and manipulation against the
benefits of parallelization.

In this thesis we have significatively improved an existing prototype implementa-
tion for resource usage analysis based on abstract interpretation, addressing a number
of relevant challenges and overcoming many limitations it presented. The goal of that
prototype was to show the viability of casting the resource analysis as an abstract do-
main, and how it could overcome important limitations of the state-of-the-art resource
usage analysis tools. For this purpose, it was implemented as an abstract domain in the
abstract interpretation framework of the CiaoPP system, PLAI. We have improved both
the design and implementation of the prototype, for eventually allowing an evolution
of the tool to the industrial application level.

The abstract operations of such tool heavily depend on the setting up and finding
closed-form solutions of recurrence relations representing the resource usage behav-
ior of program components and the whole program as well. While there exist many
tools, such as Computer Algebra Systems (CAS) and libraries able to find closed-form
solutions for some types of recurrences, none of them alone is able to handle all the
types of recurrences arising during program analysis. In addition, there are some types
of recurrences that cannot be solved by any existing tool. This clearly constitutes a bot-
tleneck for this kind of resource usage analysis. Thus, one of the major challenges we
have addressed in this thesis is the design and development of a novel modular frame-
work for solving recurrence relations, able to combine and take advantage of the re-
sults of existing solvers. Additionally, we have developed and integrated into our novel
solver a technique for finding upper-bound closed-form solutions of a special class of
recurrence relations that arise during the analysis of programs with accumulating pa-
rameters.
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Finally, we have integrated the improved resource analysis into the CiaoPP general
framework for resource usage verification, and specialized the framework for verifying
energy consumption specifications of embedded imperative programs in a real appli-
cation, showing the usefulness and practicality of the resulting tool.
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Resumen

El Análisis de recursos tiene como objetivo inferir el coste de la ejecución de progra-
mas para cualquier entrada posible, en términos de algún recurso determinado, como
pasos de ejecución, tiempo o memoria, y, más recientemente, el consumo de energía
o recursos definidos por el usuario (por ejemplo, número de bits enviados a través de
un socket, el número de accesos a una base de datos, cantidad de llamadas a determi-
nados procedimientos, etc.). Ello se realiza estáticamente, es decir, sin necesidad de
ejecutar los programas.

La información sobre el uso de recursos resulta muy útil para una gran variedad
de aplicaciones de optimización y verificación de programas, así como para asistir en
el diseño de los mismos. Por ejemplo, los programadores pueden utilizar dicha infor-
mación para elegir diferentes soluciones algorítmicas a un problema; los sistemas de
transformación de programas pueden utilizar la información de coste para elegir entre
transformaciones alternativas; los compiladores paralelizantes pueden utilizar las es-
timaciones de coste para realizar control de granularidad, el cual trata de equilibrar el
coste debido a la creación y gestión de tareas, con los beneficios de la paralelización.

En esta tesis hemos mejorado de manera significativa la implementación de un
prototipo existente para el análisis del uso de recursos basado en interpretación ab-
stracta, abordando diversos desafíos relevantes y superando numerosas limitaciones
que éste presentaba. El objetivo de dicho prototipo era mostrar la viabilidad de definir
el análisis de recursos como un dominio abstracto, y cómo se podían superar las lim-
itaciones de otras herramientas similares que constituyen el estado del arte. Para ello,
se implementó como un dominio abstracto en el marco de interpretación abstracta
presente en el sistema CiaoPP, PLAI. Hemos mejorado tanto el diseño como la im-
plementación del mencionado prototipo para posibilitar su evolución hacia una her-
ramienta utilizable en el ámbito industrial.

Las operaciones abstractas de dicha herramienta dependen en gran medida de la
generación, y posterior búsqueda de soluciones en forma cerrada, de relaciones recur-
rentes, las cuales modelizan el comportamiento, respecto al consumo de recursos, de
los componentes del programa y del programa completo. Si bien existen actualmente
muchas herramientas capaces de encontrar soluciones en forma cerrada para ciertos
tipos de recurrencias, tales como Sistemas de Computación Algebraicos (CAS) y libr-
erías de programación, ninguna de dichas herramientas es capaz de tratar, por sí sola,
todos los tipos de recurrencias que surgen durante el análisis de recursos. Existen in-
cluso recurrencias que no las puede resolver ninguna herramienta actual. Esto consti-
tuye claramente un cuello de botella para este tipo de análisis del uso de recursos. Por
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lo tanto, uno de los principales desafíos que hemos abordado en esta tesis es el diseño
y desarrollo de un novedoso marco modular para la resolución de relaciones recur-
rentes, combinando y aprovechando los resultados de resolutores existentes. Además
de ello, hemos desarrollado e integrado en nuestro nuevo resolutor una técnica para
la obtención de cotas superiores en forma cerrada de una clase característica de rela-
ciones recurrentes que surgen durante el análisis de programas lógicos con parámetros
de acumulación.

Finalmente, hemos integrado el nuevo análisis de recursos con el marco general
para verificación de recursos de CiaoPP, y hemos instanciado dicho marco para la ver-
ificación de especificaciones sobre el consumo de energía de programas imperativas
embarcados, mostrando la viabilidad y utilidad de la herramienta resultante en una
aplicación real.

iv



INDEX

1 Introduction 1

1.1 State of the Art and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Abstract Interpretation and the PLAI Framework 7

2.1 Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Abstraction and Concretization . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Fixpoints and Operation Abstraction . . . . . . . . . . . . . . . . . . 10

2.2 Top-down Abstract Interpretation of Logic Programs in PLAI . . . . . . . . 11

2.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Resource Analysis by Abstract Interpretation 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 State of the Art in Resource Analysis . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Sized Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 The Resources Abstract Domain . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 Cardinality Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.2 The Abstract Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.3 Improvements in Design and Implementation . . . . . . . . . . . . . 30

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 A Modular Solver Framework 33

4.1 The Need for Finding Closed-form Expressions . . . . . . . . . . . . . . . . 33

4.2 Finding Closed-form Solutions in the Previous Approach . . . . . . . . . . 35

4.3 Goals of the Modular Solver Framework . . . . . . . . . . . . . . . . . . . . . 36

4.4 The Modular Solver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.1 Algebraic Expression Syntax . . . . . . . . . . . . . . . . . . . . . . . . 37

v



4.4.2 Interface to Back-End Solvers . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Using Ranking Functions for Upper-bounding Special Recurrences . . . . 39

4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Applying the Improved Analysis to Energy Consumption Verification 45

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Overview of the Energy Verification Tool . . . . . . . . . . . . . . . . . . . . 46

5.3 The Assertion Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 The Ciao Assertion Language . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.2 The XC Assertion Language . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 ISA/LLVM IR to HC IR Transformation . . . . . . . . . . . . . . . . . . . . . . 53

5.5 The General Resource Usage Verification Framework . . . . . . . . . . . . . 54

5.6 Using the Tool: Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusions and Future Work 65

Bibliography 69

vi



Chapter 1

Introduction

Static resource analysis aims at inferring the cost of executing programs for any pos-
sible input (without actually running them), in terms of a given resource, such as the
traditional execution steps, time or memory, and, more recently energy consumption
or user defined resources (e.g., number of bits sent over a socket, number of database
accesses, number of calls to particular procedures, etc.).

A very interesting resource, which is getting increasing attention in the last few
years, is energy. Energy consumption and the environmental impact of computing
technologies have become a major worldwide concern. Energy consumption is now a
major issue in high-performance computing, distributed applications, and data cen-
ters. The growth of cloud computing-related energy consumption and Internet traffic
is not sustainable with the current energy efficiency levels. There is also an increas-
ing demand for small complex computing systems which have to operate on batteries,
such as implantable/portable medical devices, smartphones or smart watches.

Resource usage information is useful for a variety of purposes. For example, pro-
grammers can use it to choose different algorithmic solutions to a problem; program
transformation systems can use cost information to choose between alternative trans-
formations; parallelizing compilers can use cost estimates for granularity control, which
tries to balance the overheads of task creation and manipulation against the benefits
of parallelization.

Also, the specification of a system could impose, for example, bounds on the amount
of energy consumed, the execution time or the memory allocated for the execution of
a program for arbitrary input data. If a system does not meet these non-functional re-
quirements, it will not be considered correct at all. This becomes crucial in the embed-
ded systems area, where meeting real-time constraints is critical. In order to automat-
ically check this kind of specifications, a resource analysis tool must infer statically an
approximation of the resource usage of the program, and then this information must
be compared against the specification. In this verification application, it is particularly
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important that the analysis be performed statically, because it is necessary to obtain
sound information regarding all possible inputs in order to prove that a given specifi-
cation is met.

The resource consumption behavior of a program depends in practice mainly on
the sizes or values of certain input arguments. For example, for a program that per-
forms some particular operation on the elements of a list, its resource consumption
will be a function on the length of the list (and possibly the size of the elements of the
list, as we will see later). In this sense, one of the objectives of this thesis is to come
up with an effective and practical tool that statically infers functions representing up-
per and lower bounds on the amount of resources that each of the components of the
program will consume (and the whole program as well). Such functions will be pa-
rameterized by the sizes of the input data to the topmost piece of code being analyzed.
The input to the tool will be the source code, as well as basic information about the
resource consumed by elementary operations (given once and for all for a particular
hardware platform and language, by using assertions).

1.1 State of the Art and Challenges

The approach to cost analysis based on setting up and solving recurrence relations
was proposed in [Wegbreit, 1975] and has been developed significantly in subsequent
work. For example, in [Rosendahl, 1989] an automatic upper-bound analysis was pre-
sented based on an abstract interpretation of a step-counting version of a functional
program, in order to infer both execution time and execution steps. However, size
measures could not automatically be inferred and the experimental section showed
few details about the practicality of the analysis. The cost analysis in [Vasconcelos
and Hammond, 2003] deals with recursive, polymorphic and higher-order functional
programs. In the context of Logic Programming, a semi-automatic analysis was pre-
sented in [Debray et al., 1990, Debray and Lin, 1993] that inferred upper-bounds on
the number of execution steps, given as functions on the input data sizes. It also pro-
posed techniques to address the additional challenges posed by the Logic Program-
ming paradigm, as for example, dealing with the generation of multiple solutions via
backtracking. However, a shortcoming of the approach was its loss in precision in the
presence of divide-and-conquer programs in which the sizes of the output arguments
of the “divide” predicates are dependent. This approach was later fully automated (by
integrating it into the CiaoPP system and automatically providing modes and size mea-
sures) and extended to inferring both upper- and lower-bounds on the number of exe-
cution steps (which is non-trivial because of the possibility of failure) in [Debray et al.,
1997,Hermenegildo et al., 2005b]. In addition, [Debray et al., 1997] introduced the set-
ting up of non-deterministic recurrence relations for the class of divide-and-conquer
programs mentioned above, and proposed a technique for computing approximated
closed form bound functions for some of them. Such a technique was based on bound-
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ing the number of terminal and non-terminal nodes in the set of computation trees
corresponding to the evaluation of the non-deterministic recurrence relations, and
bounding the cost of such nodes. Non-deterministic recurrence relations were also
used and further developed in [Albert et al., 2008, Albert et al., 2011a] (named Cost Re-
lations).

The approach in [Debray et al., 1990, Debray and Lin, 1993, Debray et al., 1997]
was generalized in [Navas et al., 2007a] to infer user-defined resources (by using an ex-
tension of the Ciao assertion language [Hermenegildo et al., 2012a]), and was further
improved in [Serrano et al., 2014a], which is our starting point.

The novel general resource analysis for logic programs presented in [Serrano et al.,
2014a] was entirely based on abstract interpretation (see Chapter 2 for an introduction
to the abstract interpretation technique). The abstract operations of such approach
heavily depend on setting up and finding closed-form solutions of recurrence relations
representing the resource usage behavior of program components and the whole pro-
gram as well. Nowadays, there exist many tools, such as Computer Algebra Systems
(CAS) and libraries able to find closed-form solutions for some types of recurrences
(e.g., Mathematica® or Maxima). However, none of those tools alone is able to solve or
bound all the types of recurrences that can arise during analysis. In addition, there are
some types of recurrences that cannot be solved by any existing tool. As a result, recur-
rence relation solving has become a bottleneck in [Serrano et al., 2014a] and other re-
source analysis systems. Thus, a major challenge that we have addressed in this thesis
is the design and development of a component for solving recurrence relations, over-
coming important limitations of existing resource analysis, and offering good quality
features such as robustness and extensibility. This is crucial for obtaining a practical
resource analysis tool that can be used in real industrial applications.

Moreover, the goal of [Serrano et al., 2014a] was to show the viability of casting the
resource analysis as an abstract interpretation, the benefits of using such approach,
and the important limitations of state-of-the-art resource usage analysis tools that
can be overcome. To achieve this, an initial design of the abstract domain for re-
source analysis, as well as a prototype implementation, was developed and integrated
into the CiaoPP abstract interpretation framework, PLAI [Hermenegildo et al., 2005a,
Hermenegildo et al., 2012b]. As the prototype implementation was a proof-of-concept,
its design was not completely appropriate and its functionality not completely imple-
mented. For example, the integration with other abstract domains and with the re-
source usage verification framework present in CiaoPP was not totally implemented
and well-defined. Thus, a challenge that we address in this thesis is to come up with a
better design and integration of such resource analysis into the CiaoPP system, in or-
der to enhance its effectiveness, practicality, maintainability, extensibility and allow an
easier combination with other supporting analysis present in the CiaoPP system. This
will also eventually allow an evolution of the tool the industrial application level.
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Finally, as mentioned before, an important application of static analysis is resource
usage verification. Although CiaoPP provides a general framework for resource usage
verification [Lopez-Garcia et al., 2010b, Lopez-Garcia et al., 2012], it is a challenge,
which we also have addressed in this thesis, to use it for verifying energy consump-
tion specifications of embedded imperative programs in a real world scenario, where
energy models of the particular hardware platform have to be used and translations
from the source language to the (block-based) internal representation language (Horn
Clauses), including assertions representing specifications, have to be developed. In
addition, it is also necessary to reflect the verification results up to the source code.

1.2 Contributions

The main contributions of this thesis, in order to address the challenges mentioned
before, are the following:

• Improvements to the design and implementation of the resource usage analysis
based on abstract interpretation present in the CiaoPP preprocessor. The goal
of these improvements is a better integration of the analysis with the rest of the
system, in order to make it more effective and practical, and allow its evolution
to industrial level applicability. This contribution is explained in Chapter 3.

• Design and implementation of a modular component in charge of solving recur-
rence relations. It is a modular solver framework offering a well-defined interface
to the analyzer, and providing all the algebraic-related services, being the most
important one, the finding of closed-form functions for recurrences. In turn, our
solver communicates with a set of external solvers using a common interface
that we have also defined. Our proposed architecture has two main advantages.
Firstly, it establishes a good and clear separation between the analysis and the
mathematical machinery. Secondly, results from different external solvers can
be combined in order to obtain better solutions. Finally, it makes easier to add
new external solvers in order to handle more classes of recurrences and solv-
ing other mathematical problems that can arise during analysis. The use of our
new solver component has resulted in a significant improvement of the whole
resource analysis. This contribution is detailed in Chapter 4.

• Design and implementation of a specialized solver for a common class of recur-
rence relations that arise in the analysis of programs with accumulating param-
eters. This solver has been integrated into the modular framework mentioned
above. The details of this contribution can be found in Chapter 4.
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• Integration of the new abstract-interpretation based resource analysis into the
CiaoPP general framework for resource verification, so that the resource usage
information inferred by the new analysis can be compared with program speci-
fications (Chapter 5).

• Finally, we have leveraged the CiaoPP resource verification framework and spe-
cialized it for verifying energy consumption specifications of embedded imper-
ative programs in a concrete industry case study: the energy verification of em-
bedded programs written in the XC language [Watt, 2009] and running on the
XMOS XS1-L architecture (XC is a high-level C-based programming language
that includes extensions for communication, input/output operations, real-time
behavior, and concurrency). The specifications can include both lower and up-
per bounds on energy usage, and they can express intervals within which energy
usage is to be certified to be within such bounds. The verification process pro-
duces preconditions (related to input data sizes) under which a given specifica-
tion is met or not. The use of the improved resource analysis has also resulted in
an improvement of the verification application. This contribution has produced
a publication [Lopez-Garcia et al., 2015] and is explained in Chapter 5.

1.3 Structure of the Thesis

The rest of this thesis is organized as follows. In Chapter 2 we recall some concepts
and results about abstract interpretation, and give a detailed description of the PLAI
abstract interpretation framework, which is the basis for our resource analysis imple-
mentation. In Chapter 3 we present the resource analysis for logic programs (Horn
Clauses) implemented as an abstract domain in the PLAI framework, showing the im-
provements we have incorporated to its design and implementation. In Chapter 4 we
describe the architecture of our modular solver, which improves the solving of recur-
rences, and hence the applicability, extensibility and practicability of the whole re-
source analysis. In Chapter 5 we show the application of our improved resource anal-
ysis tool to the verification of energy consumption specifications of embedded imper-
ative programs in a real industrial scenario. Finally, in Chapter 6 we give some final
conclusions and mention directions for future work.

5



6



Chapter 2

Abstract Interpretation and the PLAI
Framework

In this chapter we give a detailed description of the PLAI abstract interpretation frame-
work, upon which our resource analysis is implemented as an abstract domain. In
Section 2.1, we enumerate the main concepts of the theory of abstract interpretation
developed by [Cousot and Cousot, 1977]. In Section 2.2, we explain in depth the top-
down algorithm of abstract interpretation for logic programs that is implemented in
PLAI. This algorithm is based on the framework of abstract interpretation for logic pro-
grams proposed in [Bruynooghe, 1987], with the optimizations proposed in [Muthuku-
mar and Hermenegildo, 1990] for an efficient fixpoint computation.

2.1 Abstract Interpretation

Abstract interpretation [Cousot and Cousot, 1977] is a theory that allows approximat-
ing program semantics by abstracting its concrete semantics in a sound and systematic
way. This technique has allowed the development of sophisticated program analyses
which are at the same time provably correct and practical. It provides a framework for
deriving an approximation of the properties of programs, and a static analyzer based
on that approximation that is sound by construction.

Abstract interpretation often represents semantics as fixpoints of operators. It pro-
vides a systematic method to derive computable abstract approximate semantics which
we can summarize in the following general steps [Miné, 2012]:

• A first step is to choose a level of abstraction. The set of objects of the concrete
domain (e.g., the set of integers, in the case of a numerical domain), is replaced

7



by a partially ordered set of elements that abstract the concrete ones, although
loosing information (e.g., the set of integer intervals, ordered with set inclusion).

• Operators on the concrete domain are abstracted as operators on the abstract
domain (e.g., + :Z→Z is abstracted as +♯ : I(Z) → I(Z), where I(Z) represents
the set of integer intervals). Sometimes, it is necessary to over-approximate this
abstract operators for the sake of efficiency.

• Fixpoints of concrete operators are replaced with fixpoints of abstract operators,
using extrapolation operators to ensure termination, in those cases where the
partial order in the abstract set has infinite chains.

The semantic approximations produced by the abstract-interpretation based anal-
yses have been traditionally applied to high- and low-level optimizations during pro-
gram compilation, including program transformation. More recently, novel and promis-
ing applications of semantic approximations have been proposed in the more general
context of program development, such as verification and debugging.

In the following, we start by presenting some basic concepts commonly used in
abstract interpretation. Then, we briefly present the main definitions and results of
abstract interpretation. We refer the reader to [Miné, 2013] for a more extensive intro-
duction on this topic, and to [Cousot and Cousot, 1992, Cousot and Cousot, 1977] for
an in-depth explanation.

2.1.1 Lattices

Definition 1 (Pre-order and partial order). A pre-order on a set S is a binary relation ⊑
that is:

1. Reflexive: ∀x ∈ X : (x ⊑ x); and

2. Transitive: ∀x, y, z ∈ X : (x ⊑ y ∧ y ⊑ z) ⇒ x ⊑ z.

A partial order is a pre-order that is antisymmetric, i.e.,

∀x, y ∈ S : (x ⊑ y ∧ y ⊑ x) ⇒ x = y.

Definition 2 (Least upper bound and greatest lower bound). Let ⊑ be a partial order on
a set S. We say that u is an upper bound of a subset X of S if and only if ∀x ∈ X : x ⊑ u.
We say that u is the least upper bound of X if and only if u is an upper bound of X, and
for any u’ that is an upper bound of X, then u ⊑ u′. If it exists, the least upper bound
of X is represented as ⊔X . The definition of lower bound and greatest lower bound of X
(represented as⊓X ) are obtained by using the dual version of ⊑ (i.e., ⊒) in the definitions
of upper bounds and least upper bounds.
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Definition 3 (Poset and complete lattice). A partially ordered set (poset for short) (A,⊑)
is a set equipped with a partial order relation. A tuple (L,⊑,⊥,⊤,⊔,⊓) is a complete lat-
tice if and only if (L,⊑) is a poset such that any subset X of L has a least upper bound ⊔X
and a greatest lower bound ⊓X , where ⊥=⊔;=⊓L and ⊤=⊓;=⊔L are the smallest
and greatest element of L respectively.

Definition 4 (Linear order, increasing chains, and complete partial order). A linear or-
der ⊑ on a set A is a partial order on A such that ∀x, y ∈ A : (x ⊑ y∨y ⊑ x). An increasing
chain is a set X ⊆ A such that ⊑ is a linear order on X . A complete partial order is a poset
such that every increasing chain has a least upper bound.

2.1.2 Abstraction and Concretization

In the context of abstract interpretation, posets are used as sets of elements carrying
information about programs. The order relation quantifies the relative amount of in-
formation of those elements, i.e., given the poset (A,⊑), a ⊑ b means that b carries less
information than a, with a,b ∈ A.

Having the previous observation in mind, let us assume in the following that the
concrete program properties are described by elements of a given poset (D,⊑), and
that the abstract program properties are represented by elements of a poset (D♯,⊑♯).

Definition 5 (Abstraction and concretization functions). A concretization function is a
monotonic function γ ∈ D♯ → D that maps abstract descriptions of program properties
into their corresponding concrete properties. It is monotonic because it has to respect the
information order, i.e., ∀a,b ∈ D♯ : a ⊑♯ b =⇒ γ(a) ⊑ γ(b).

The approximation of a property is formalized by an abstraction function α ∈ D →
D♯ that gives the best abstraction for a concrete property.

If a♯ = α(a) and a♯ ⊑ b♯, then b♯ is also a correct abstract approximation of a, al-
though less precise. This soundness can be expressed by α(a) ⊑ b♯. If p = γ(p♯) and
q ⊑ p then p♯ is also a correct approximation of the concrete property q although this
concrete property q provides more accurate information about the program than p.
This soundness condition can be expressed by q ⊑ γ(p♯). When these two soundness
conditions are equivalent, α and γ form a Galois connection.

Definition 6 (Galois connection). Given the posets (P,⊑) and (P ♯,⊑♯), a Galois connec-
tion is a pair of maps such that

α ∈ P → P ♯

γ ∈ P ♯→ P

∀a ∈ P : ∀b ∈ P ♯ :α(a) ⊑♯ b ⇐⇒ a ⊑ γ(b)

in which case we write
(P,⊑) −−→←−−

α

γ
(P ♯,⊑♯)
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2.1.3 Fixpoints and Operation Abstraction

The operations on the concrete domain have to be abstracted as operations on the
abstract domain in a sound way.

Definition 7. Given a concrete operation f ∈ A → A, an abstraction of f is a function
f ♯ ∈ A♯→ A♯ such that

∀a♯ ∈ A♯ : f (γ(a♯)) ⊑ γ( f ♯(a♯))

Many objects or properties in a concrete domain needs to be expressed as fixpoints
of operators. We recall the definition of this concept and two important results for
abstract interpretation.

Definition 8 (Fixpoint). A fixpoint of a function f ∈ A → A is any element a ∈ A such
that f (a) = a. If f (a) ⊑ a, we say that a is a post-fixpoint. Analogously, if a ⊑ f (a),
we say that a is a pre-fixpoint. When it exists, we denote the least fixpoint of f as lfp f .
Moreover, lfpa f denotes the least fixpoint of f greater than a.

Theorem 1 (Tarski’s theorem). The set of fixpoints of a monotonic function f ∈ A → A
in a complete lattice A is a non-empty complete lattice.

Theorem 2 (Cousot and Cousot). If f ∈ A → A is a monotonic function in a complete
partial order A, and a is a pre-fixpoint of A, then the following sequence:

f (n) =


a if δ= 0

f (xβ) if δ=β+1

⊔{xβ|β< δ} if δ is a limit ordinal

converges towards lfpa f . Moreover, if f is a join-morphism, then lfpa f = xω (i.e., the
iteration converges after a countable number of steps).

This theorem suggests an iterative way of computing fixpoints, being necessary to
ensure that the involved sequences converge in finite time.

Once we have expressed a property in the concrete domain as a fixpoint of a partic-
ular function, the natural step is to abstract it as a least fixpoint of an abstract version
of the function. The following theorem shows us that we can abstract a concrete least
fixpoint as an abstract post-fixpoint.

Theorem 3. If f ♯ is a sound abstraction of f , a ⊑ γ(a♯), and x♯ satisfies f ♯(x♯) ⊑♯ x♯ and
a♯ ⊑♯ x♯, then lfpa f ⊑ γ(x♯).

In order to enforce termination of a fixpoint computation, when there exist infi-
nite increasing chains in the lattice, Cousot and Cousot proposed the use of widening
operators that perform an extrapolation to accelerate the computation.
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Definition 9 (Widening operator). A widening operator is a binary operator ▽ ∈ (D♯×
D♯) → D♯ satisfying:

• ∀x♯, y ♯ : x♯ ⊑♯ x♯▽y ♯ and y ♯ ⊑♯ x♯▽y ♯;

• for any sequence (y ♯i )i∈N, the sequence defined as x♯0
de f= y ♯0 and x♯i+1

de f= x♯i▽y ♯i is
not strictly increasing.

With this operators, the following theorem shows us that we can approximate lfpa f
with a finite number of iterations.

Theorem 4. If f ♯ is a sound abstraction of f and a ⊑ γ(a♯), then the sequence x♯0
de f=

a♯, x♯i+1

de f= x♯i▽ f ♯(x♯i ) reaches a stable iterate x♯
β
= x♯

β+1 for someβ<ω. Moreover, lfpa f ⊑
γ(x♯

β
).

2.2 Top-down Abstract Interpretation of Logic Programs
in PLAI

PLAI is an abstract interpretation-based framework for static analysis that implements
the algorithms proposed by [Bruynooghe, 1991a] with the optimizations described
in [Muthukumar and Hermenegildo, 1990]. In logic programming, all possible pro-
gram states can be represented by an infinite set of proof trees (AND trees, SLD deriva-
tions). The core idea proposed in [Bruynooghe, 1991a] is to represent this infinite set
of AND trees by a finite abstract AND-OR graph, constructed by following an abstract
interpretation-based procedure. PLAI is domain-independent, in the sense that new
abstract domains can be easily implemented and integrated, by using a particular in-
terface. In this section we present an overview of the core algorithms of PLAI, and
how a new abstract domain can be integrated into the framework. For a complete de-
scription of this framework and abstract interpretation of logic programs in general,
we refer the reader to [Bruynooghe, 1991a,Muthukumar and Hermenegildo, 1990]. For
good examples of abstract domains integrated into PLAI, we refer the reader to [Bueno
et al., 2004, Muthukumar and Hermenegildo, 1989].

2.2.1 Algorithm

Goal dependent abstract interpretation takes as input a program P , an abstract domain
D♯, and a description Q♯ of the possible initial queries to P, given as a set of abstract
queries. An abstract query is a pair (L,λ), where L is an atom (corresponding to one of
the exported predicates) and λ ∈ D♯ describes the initial calls to L. A set Q♯ represents
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the set of queries γ(Q♯), which is defined as γ(Q♯) = {(L,θ)|(L,λ) ∈Q♯∧θ ∈ γ(λ)}. The re-
sult of the analysis is a set of triples Anal y si s(P,Q♯,D♯) = {〈Lp ,λc ,λs〉| p is a predicate of P },
where Lp is a (program) atom for predicate p.

Consider a clause h : −p1, · · · , pn . Let λi and λi+1 be the abstract substitutions to
the left and right of the subgoal pi ,1 ≤ i ≤ n in this clause. Thenλi andλi+1 are, respec-
tively, the abstract call substitution and the abstract success substitution for the subgoal
pi . For this same clause, λ1 is the abstract entry substitution (denoted βentr y when it
is projected onto the variables of h) and λn+1 is the abstract exit substitution (denoted
βexi t when it is projected onto the variables of h).

λcal l p λsuccess

β1,entr y h1 β1,exi t . . . βm,entr y hm βm,exi t

βentr y h βexi t

λ1 p1 λ2 . . . λn pn λn+1

Figure 2.1: The top-down abstract interpretation process of PLAI.

Computing the success substitution (λsuccess) from the call substitution (λcal l ) is
done as follows (see Figure 2.1, left-hand side). Given a call substitution λcal l for a
subgoal p, let h1, · · · ,hm be the heads of the clauses defining p. First, the entry sub-
stitutions β1

entr y , · · · ,βm
entr y for these clauses are computed. Then, we compute their

success substitutions λ1
success , · · · ,λm

success from their corresponding exit substitutions
(the algorithm for computing the exit substitutions is explained later in this section).
At this point, all different success substitutions can be considered for the rest of the
analysis, or a single success substitution λsuccess for subgoal p can be computed by us-
ing the LUB (least upper bound) operation of the abstract domain. In the first case, we
say that the analysis is multi-variant on successes1, in the second case it is not.

Computing the exit substitution from the entry substitution of a clause is straight-
forward (see Figure 2.1, right-hand side). Given a clause h:-p1, · · · , pn and an entry
substitution βentr y for the clause head h, first, the call substitution for p1, λ1, is ob-
tained by adding to βentr y an abstraction for the free variables in the clause. Then, the
success substitution λ2 for p1 is computed as explained above (essentially, by repeat-
ing this same process for the clauses whose heads unify with p1). In the same way,
λ3, · · · ,λn+1 are computed. The exit substitution βexi t for this clause is λn+1 projected
onto the variables of the head h.

It is possible to compute different entry substitutions for the same clause, which
are originated from different subgoals.

Thus, different call substitutions for the subgoals in the body of the clause can ap-
pear. These substitutions can be collapsed using the LUB operation, or, alternatively a
different node in the graph can be created. In the latter solution, different nodes exist

1This behavior is configurable with a flag in CiaoPP.
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in the graph for each call substitution and subgoal, and the analysis becomes multi-
variant on calls.

The framework is domain-independent. To use it for a particular domain, we need
to define the abstract elements and some operations that are called from the general
analysis. These operations implement the abstract unification, the order relation ⊑,
and the least upper bound (⊔). The domain dependent functions are:

• cal l _to_entr y(p(u),C ,λ) which gives an abstract substitution describing the ef-
fects on var s(C ) of unifying p(u) with head(C ) given an abstract substitution λ

describing u,

• exi t_to_success(λ, p(u),C ,β) which gives an abstract substitution describing u
accordingly to β (which describes var s(head(C ))) and the effects of unifying
p(u) with head(C ) under the abstract substitution λ describing u,

• extend(λ,λ′) which extends abstract substitution λ to incorporate the informa-
tion in λ′ in a consistent way,

• pr o j ect_i n(v ,λ) which extends λ so that it refers to all of the variables v ,

• pr o j ect_out (v ,λ) which restricts λ to only the variables v .

The process described so far is schematized in algorithm 1 and 2, assuming the
mono-variant on success version, i.e., by combining all the success substitutions using
the LUB operation.

Algorithm 1: entry_to_exit: Computes the exit substitution for a clause.

Data: A clause C ≡ h : −q1(u1), · · · , qm(um); an entry substitution βentr y

Result: An exit substitution βexi t

A1 := project_in(vars(C),βentr y ) ;
for i:= 1 to m do

Ai+1 := call_to_success(qi (ui ), Ai )

return project_out(vars(h), An+1) ;

Recursion

The algorithm described so far generates an infinite AND-OR graph in the presence of
recursive predicates. In order to handle recursion, a fixpoint computation is required.
In [Muthukumar and Hermenegildo, 1990] a fixpoint algorithm was proposed. This
algorithm localizes fixpoint computations to only strongly connected components of
(mutually) recursive predicates. Additionally, an initial approximation to the fixpoint is
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Algorithm 2: call_to_success: Computes the success substitution for a partic-
ular call.

Data: A goal p(u); an abstract call substitution λcal l

Result: A success substitution λsuccess

λ := project_out(u,λcal l ) ;
λ′ := ⊥ ;
for each clause C which matches p(u) do

βexi t := entry_to_exit(C, call_to_entry(p(u),C,λ)) ;
λ′:=λ′⊔ exit_to_success(λ, p(u),C ,βexi t ) ;

return extend(λcal l ,λ′) ;

computed from the non-recursive clauses of the recursive predicate. The convergence
of the fixpoint is accelerated by updating this value with the information obtained just
after each clause is analyzed. The algorithms 3 and 4 show a high-level description of
this fixpoint computation.

Algorithm 3: call_to_success_recursive: Computes the success substitution for
a particular call, handling recursive predicates.

Data: A goal p(u); an abstract call substitution λcal l

Result: A success substitution λsuccess

λ := project_out(u,λcal l ) ;
λ′ := ⊥ ;
for each non-recursive clause C which matches p(u) do

βexi t := entry_to_exit(C, call_to_entry(p(u),C,λ)) ;
λ′:=λ′⊔ exit_to_success(λ, p(u),C ,βexi t ) ;

λ′′ := fixpoint(p(u),λ,λ′) ;
return extend(λcal l ,λ′′) ;

Algorithm 4: fixpoint: Computes the success substitution for a call to a recur-
sive predicate.

Data: A goal p(u); an initial abstract call substitution λ; a call substitution λ′

Result: A success substitution λsuccess

λ′′ := λ′; for each recursive clause C which matches p(u) do
βexi t := entry_to_exit(C, call_to_entry(p(u),C,λ)) ;
λ′′:=λ′′⊔ exit_to_success(λ, p(u),C ,βexi t ) ;

if λ′′ =λ′ then
return λ′′

else
return extend(λcal l ,λ′)

;
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Chapter 3

Resource Analysis by Abstract
Interpretation

In this chapter we present the resource analysis for logic programs implemented as an
abstract domain in the PLAI framework, together with the modifications, extensions
and improvements we have performed to it in this thesis. The analysis is based on
the sized types abstract domain. Sized types are regular types extended with structural
(shape) information that express both lower and upper bounds on the size of a set of
terms and their subterms at any position and depth. They also allow relating the sizes
of terms and subterms occurring at different argument positions in logic predicates.
With this information, the resource analysis can infer both lower and upper bounds on
the resources used by all the procedures in a program as functions on the sizes of input
terms (and subterms). The abstract domain operations are based on the setting up and
solving of recurrence equations for inferring both size and resource usage functions.

3.1 Introduction

Resource usage analysis infers the aggregation of some numerical properties (named
resources), like memory usage, time spent in computation, or bytes sent over a wire,
throughout the execution of a piece of code. This information is returned in the form
of functions of the sizes of some input arguments.

The starting point of this approach is the methodology outlined by [Debray et al.,
1990, Debray and Lin, 1993, Debray et al., 1997], characterized by the setting up of re-
currence equations. This methodology basically performs, previous to the resource
usage analysis, a size and cardinality analysis for inferring size relations and bounds
on the number of solutions computed by a predicate, respectively. This information is
ultimately used to obtain the resource usage bounds. The main limitation of this ap-
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proach is that it is able to cope with size information about subterms in a very limited
way. For example, consider a predicate which computes the factorials of a list:

1 % listfact (+L, -FL).
2 listfact ([], []).
3 listfact ([E|R],[F|FR]) :-
4 fact(E, F),
5 listfact(R, FR).

1 % fact(+N, -F).
2 fact (0,1).
3 fact(N,M) :- N1 is N - 1,
4 fact(N1, M1),
5 M is N * M1.

Intuitively, the best bound for the running time of this program for a list L is c1 +∑
e∈L

(
c2 + t i me f act (e)

)
, where c1 and c2 are constants related to unification and calling

costs. But with no further information, the upper bound for the elements of L must be
∞ to be on the safe side, and then the returned overall time bound must also be ∞.

The sized types analysis proposed in [Serrano et al., 2013] solve this problem by
giving information for all the dimensions of terms. Thus, the use of this analysis as a
basis of resource analysis is a clear advantage over the previous proposals. The ease
of the integration with this analysis is possible due to the use of a common abstract
interpretation framework (PLAI).

In this framework, the resource analysis is implemented as an abstract domain,
obtaining features such as multivariance, efficient fixpoints, and assertion-based veri-
fication and user interaction for free.

The rest of this chapter is organized as follows. First, in Section 3.2 we give a brief
state of the art of resource usage analysis. In Section 5.2 we present an overview of
the resource analysis. In section 3.4 we explain the sized type analysis which is a fun-
damental part of the resource analysis. Afterwards, Section 3.5 gives the details of the
resource usage analysis. Finally, in Section 3.6 we draw the conclusions of the chapter.

3.2 State of the Art in Resource Analysis

The approach to cost analysis based on setting up and solving recurrence equations
was proposed in [Wegbreit, 1975] and has been developed significantly in subsequent
work. For example, in [Rosendahl, 1989] an automatic upper-bound analysis was pre-
sented based on an abstract interpretation of a step-counting version of a functional
program, in order to infer both execution time and execution steps. However, size
measures could not automatically be inferred and the experimental section showed
few details about the practicality of the analysis. The cost analysis in [Vasconcelos
and Hammond, 2003] deals with recursive, polymorphic and higher-order functional
programs. In the context of Logic Programming, a semi-automatic analysis was pre-
sented in [Debray et al., 1990, Debray and Lin, 1993] that inferred upper-bounds on
the number of execution steps, given as functions on the input data sizes. It also pro-
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posed techniques to address the additional challenges posed by the Logic Program-
ming paradigm, as for example, dealing with the generation of multiple solutions via
backtracking. However, a shortcoming of the approach was its loss in precision in the
presence of divide-and-conquer programs in which the sizes of the output arguments
of the “divide” predicates are dependent. This approach was later fully automated (by
integrating it into the CiaoPP system and automatically providing modes and size mea-
sures) and extended to inferring both upper- and lower-bounds on the number of exe-
cution steps (which is non-trivial because of the possibility of failure) in [Debray et al.,
1997,Hermenegildo et al., 2005b]. In addition, [Debray et al., 1997] introduced the set-
ting up of non-deterministic recurrence relations for the class of divide-and-conquer
programs mentioned above, and proposed a technique for computing approximated
closed form bound functions for some of them. Such a technique was based on bound-
ing the number of terminal and non-terminal nodes in the set of computation trees
corresponding to the evaluation of the non-deterministic recurrence relations, and
bounding the cost of such nodes. Non-deterministic recurrence relations were also
used and further developed in [Albert et al., 2008, Albert et al., 2011a] (named Cost Re-
lations). The approach in [Debray et al., 1990,Debray and Lin, 1993,Debray et al., 1997]
was generalized in [Navas et al., 2007a] to infer user-defined resources (by using an ex-
tension of the Ciao assertion language [Hermenegildo et al., 2012a]), and was further
improved in [Serrano et al., 2014a] by defining the resource analysis itself as an abstract
domain that is integrated into the PLAI abstract interpretation framework [Muthuku-
mar and Hermenegildo, 1992, Puebla and Hermenegildo, 1996] of CiaoPP.

Other approaches to static analysis based on the transformation of the analyzed
code into an intermediate representation have been proposed for analyzing low-level
languages [Henriksen and Gallagher, 2006] and Java (by means of a transformation into
Java bytecode) [Albert et al., 2007]. In [Albert et al., 2007], a cost relation system is
obtained directly for these bytecode programs and solve it using a specialized solver,
finding upper bounds for such cost relations. In [Navas et al., 2008] the bytecode is first
transformed into Horn clauses.

The general resource analyzer in [Navas et al., 2007a] was also instantiated in [Mera
et al., 2008] for the estimation of execution times of logic programs running on a bytecode-
based abstract machine.

A number of static analyses are also aimed at worst case execution time (WCET),
usually for imperative languages in different application domains (see e.g., [Wilhelm
et al., 2008] and its references). The worst-case analysis presented in [Jayaseelan et al.,
2006], which is not based on recurrence equation solving, distinguishes instruction-
specific (not proportional to time, but to data) from pipeline-specific (roughly propor-
tional to time) energy consumption. However, these worst case analysis methods do
not obtain functions on input data sizes as result, but rather absolute maximum exe-
cution times, in general requiring annotations from the user indicating upper bounds
for the numbers of iterations of each loop.
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Abstract interpretation has been applied successfully for inferring useful informa-
tion about programs, such as in [Hermenegildo et al., 2005b], and also for run-time
error detection in sequential and concurrent embedded avionic systems [Miné, 2012].
It has also been proved useful for the implementation of resource consumption anal-
ysis on sequential logic programs [Serrano et al., 2014a]. In [Miné, 2012], abstract in-
terpretation is combined with Rely-guarantee proof methods to implement a thread-
modular static analyzer for run-time error detection on concurrent embedded sys-
tems. However, there is very few work done on static analysis of the resource usage
of concurrent programs using abstract interpretation.

3.3 Overview

We give now an overview of the approach for resource usage analysis by abstract inter-
pretation present in CiaoPP, showing the main ideas by using the classical append/3
predicate as a running example:

1 append ([], S, S).
2 append ([E|R], S, [E|T]) :- append(R, S, T).

The process starts by performing the regular type analysis present in the CiaoPP sys-
tem [Vaucheret and Bueno, 2002]. In our example, the system infers that for any call
to the predicate append(X, Y, Z) with X and Y bound to lists of numbers and Z a free
variable, if the call succeeds, then Z also gets bound to a list of numbers. The set of “list
of numbers” is represented by the regular type l i stnum, defined as follows:

1 listnum := [] | [num | listnum ].

From this regular type definition, sized type schemes are derived. The sized type
schema l i stnum-s is derived from l i stnum. This schema corresponds to a list whose
length is between α and β, containing numbers between γ and δ.

l i stnum-s → l i stnum(α,β)(num(γ,δ))

From now on, in the examples we will use ln and n instead of l i stnum and num for
the sake of conciseness. The next phase involves relating the sized types of the different
arguments to the append/3 predicate using recurrence (in)equations. Let si zeX de-
note the sized type schema for argument X in a call append(X, Y, Z) (from the regu-
lar type inferred by a previous analysis). We have that si zeX denotes ln(αX ,βX )(n(γX ,δX )).
Similarly, the sized type schema for the output argument Z is ln(αZ ,βZ )(n(γZ ,δZ )), de-
noted by si zeZ . We are interested in expressing bounds on the length of the output list
Z and the values of its elements as a function of size bounds for the input lists X and
Y (and their elements). For this, we set up a system of inequations. For instance, the
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inequations that are set up to express a lower bound on the length of the output argu-
ment Z, denoted αZ , as a function on the size bounds of the input arguments X and Y,
and their subarguments (αX , βX , γX , δX , αY , βY , γY , and δY ) are:

αZ

(
αX ,βX ,γX ,δX ,
αY ,βY ,γY ,δY

)
≥


αY if αX = 0

1+αZ

(
αX −1,βX −1,γX ,δX ,

αY ,βY ,γY ,δY

)
if αX > 0

Note that in the recurrence inequation set up for the second clause of append/3, the
expression αX −1 (respectively βX −1) represents the size relationship that a lower (re-
spectively upper) bound on the length of the list in the first argument of the recursive
call to append/3 is one unit less than the length of the first argument in the clause
head.

As the number of size variables grows, the set of inequations becomes too large.
Thus, in [Serrano et al., 2014a] the authors propose a compact representation, which
allows us to grasp all the relations in one view. The first change in this representation
is to write the parameters to size functions directly as sized types. Now, the parameters
to the αZ function are the sized type schemas corresponding to the arguments X and Y
of the append/3 predicate:

αZ

(
ln(αX ,βX )(n(γX ,δX ))
ln(αY ,βY )(n(γY ,δY ))

)
≥


αY if αX = 0

1+αZ

(
l n(αX −1,βX −1)(n(γX ,δX ))

ln(αY ,βY )(n(γY ,δY ))

)
if αX > 0

In a second step, all the relations of a single sized type are grouped together. Through-
out this chapter we use a representation using ≶ for the symbols ≥ and ≤ that are al-
ways paired, as the authors of [Serrano et al., 2014a] proposed. In the implementation,
constraints for each variable are kept apart and solved separatedly.

After setting up the corresponding system of inequations for the output argument
Z of append/3, and solving it, we obtain the following expression:

si zeZ (si zeX , si zeY )≶ ln(αX +αY ,βX +βY )(n(min(γX ,γY ),max(δX ,δY )))

that represents, among others, the relation αz ≥αX +αY (resp. βz ≤βX +βY ), express-
ing that a lower (resp. upper) bound on the length of the output list Z, denotedαz (resp.
βz), is the addition of the lower (resp. upper) bounds on the lengths of X and Y. It also
represents the relation γZ ≥ min(γX ,γY ) (resp. δZ ≤ max(δX ,δY )), which expresses
that a lower (resp. upper) bound on the size of the elements of the list Z, denoted γz

(resp. δz), is the minimum (resp. maximum) of the lower (resp. upper) bounds on the
sizes of the elements of the input lists X and Y.
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Resource analysis builds upon the sized type analysis and adds recurrence equa-
tions for each resource we want to analyze. Apart from that, when considering logic
programs, we have to take into account that they can fail or have multiple solutions
when executed, so we need an auxiliary cardinality analysis to get correct results.

Let sL and sU denote lower and upper bounds on the number of solutions for append/3.
Following the program structure we can infer:

sL
(
ln(0,0)(n(γX ,δX )), si zeY

) ≥ 1
sL

(
l n(αX ,βX )(n(γX ,δX )), si zeY

) ≥ sL
(
l n(αX −1,βX −1)(n(γX ,δX )), si zeY

)
sU

(
ln(0,0)(n(γX ,δX )), si zeY

) ≤ 1
sU

(
l n(αX ,βX )(n(γX ,δX )), si zeY

) ≤ sU
(
ln(αX −1,βX −1)(n(γX ,δX )), si zeY

)

Since sL ≤ sU , the solution to these inequations must be (sL , sU ) = (1,1). Thus, we have
inferred that append/3 has at least (and at most) one solution: it behaves like a func-
tion. When setting up the equations, the analysis uses the result of the non-failure
analysis to see that append/3 cannot fail when given lists as arguments. If not, the
lower bound is 0.

Now we move forward to the resource usage approximation. We are considering
the number of resolution steps performed by a call to append/3 (we will only focus on
upper bounds, rU , for brevity). For the first clause, it is clear that only one resolution
step is needed, so:

rU

(
ln(0,0)(n(γX ,δX )), ln(αY ,βY )(n(γY ,δY ))

)
≤ 1

The second clause performs one resolution step plus all the resolution steps performed
by all possible backtrackings over the call in the body of the clause. This number can
be bounded as a function of the number of solutions. Thus, the equation reads:

rU
(
ln(αX ,βX )(n(γX ,δX )), si zeY

) ≤ 1 + sU
(
ln(αX −1,βX −1)(n(γX ,δX )), si zeY

)
× rU

(
ln(αX −1,βX −1)(n(γX ,δX )), si zeY

)
= 1 + rU

(
ln(αX −1,βX −1)(n(γX ,δX )), si zeY

)

Solving these equations the analysis infers that an upper bound on the number of res-
olution steps is the (upper bound on) the length of the input list X plus one. This is
expressed as:

rU

(
ln(αX ,βX )(n(γX ,δX )), l n(αY ,βY )(n(γY ,δY ))

)
≤βX +1
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3.4 Sized Types

Sized types are symbolic representations that summarize the size of a set of terms,
similar to those found in [Hughes et al., 1996] for functional languages. In CiaoPP’s
size analysis, the sized types schemas are automatically built from the regular types in-
ferred by a previous analysis [Vaucheret and Bueno, 2002]. In this section we show an
overview of size analysis, which is the base of the resource analysis based on abstract
interpretation of CiaoPP. We refer the readers to [Serrano et al., 2013] for a detailed
explanation.

The sized types analysis is based, as we already mentioned, on regular types. Among
several representations of regular types used in the literature, this analysis is using one
based on regular term grammars, equivalent to [Dart and Zobel, 1992] but with some
adaptations. A type term is either a base type ηi (taken from a finite set), a type symbol
τi (taken from an infinite set), or a term of the form f (φ1, . . . ,φn), where f is a n-ary
function symbol (taken from an infinite set) and φ1, . . . ,φn are type terms. A type rule
has the form τ→φ, where τ is a type symbol andφ a type term. A regular term grammar
Υ is a set of type rules.

Sized types analysis is built as an abstract domain in the PLAI abstract interpreta-
tion framework of CiaoPP. The PLAI algorithm abstracts execution AND-OR trees sim-
ilarly to [Bruynooghe, 1991b] but represents the abstract executions implicitly and
computes fixpoints efficiently using memo tables, dependency tracking, etc. It takes
as input a pair (L,λc ) representing an entry point (predicate) along with an abstrac-
tion of the call patterns (in the chosen abstract domain) and produces an abstraction
λo which over-approximates information at all program points (for all procedure ver-
sions).

Formally speaking, a sized type is an abstraction of a set of Herbrand terms which
are a subset of some regular type τ and meet some lower- and upper-bound size con-
straints on the number of type rule applications needed to generate the terms. The
grammar for sized types is the following:

sized-type ::= ηbound s η base type
| τbound s(sized-args) τ recursive type symbol
| τ(sized-args) τ non-recursive type symbol

bounds ::= nob | (n,m) n,m ∈N,m ≥ n
sized-args ::= ϵ | sized-arg, sized-args
sized-arg ::= sized-typeposi t i on

position ::= ϵ | 〈 f ,n〉 f functor, 0 ≤ n ≤ arity of f

However, in the abstract domain it is necessary to refer to sets of sized types which
satisfy certain constraints on their bounds, i.e. it is necessary to have symbolic ex-
pressions as bounds instead of concrete ground values. For that purpose, the con-
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cept of sized type schemas is introduced: a schema is just a sized type with variables
in bound positions, i.e., where n and m in the pair (n,m) defining the symbol bounds
in the grammar above are variables (called bound variables), along with a set of con-
straints over those variables. Such variables are called bound variables. We will denote
si zed(τ) the sized type schema corresponding to a regular type τ where all the bound
variables are fresh.

The full abstract domain of sized types is an extension of sized type schemas to
several predicate variables. Each abstract element is a triple 〈t ,d ,r 〉 such that:

1. t is a set of v → (si zed(τ),c), where v is a variable, τ its regular type and c is its
classification. Subgoal variables can be classified as output, relevant, or irrele-
vant. Variables appearing in the clause body but not in the head are classified as
clausal;

2. d (the domain) is a set of constraints over the relevant variables;

3. r (the relations) is a set of relations among bound variables.

For example, the final abstract elements corresponding to the clauses of the listfact
example can be found below. The equations have already been normalized into their
simplest form, and the variables refer to the predicate arguments are in normal form.
l i st f act refers implicitly to the solution of the joint equations: it is the recurrence we
need to solve. The position element 〈.,1〉 has been dropped for readability from l n.

λ′
1 =

〈 {
L → (l n(α1,β1)(n(γ1,δ1)),r el .),F L → (ln(α2,β2)(n(γ2,δ2)),out .)

}
{α1 = 1,β1 = 1}, {l n(α2,β2)(n(γ2,δ2))≶ l n(1,1)(nnob)}

〉

λ′
2 =

〈


L → (l n(α1,β1)(n(γ1,δ1)),r el .),F L → (l n(α2,β2)(n(γ2,δ2)),out .),
E → (n(γ3,δ3),cl .),R → (ln(α4,β4)(n(γ4,δ4)),cl .),
F → (n(γ5,δ5),cl .),F R → (l n(α6,β6)(n(γ6,δ6)),cl .)


{α1 > 0,β1 > 0},{

l n(α2,β2)(n(γ2,δ2))≶ l n(α′+1,β′+1)(n(min(γ1!,γ′),max(δ1!,δ′))
ln(α′,β′)(n(γ′,δ′))≶ l i st f act

(
ln(α1−1,β1−1)(n(γ1,δ1))

) }
〉

3.5 The Resources Abstract Domain

The main advantage that exhibits the resource analysis based on abstract interpreta-
tion, implemented in CiaoPP, is that it uses the added power of sized types to develop
a better resource analysis which infers upper and lower bounds on the amount of re-
sources used by each predicate as a function of the sized type schemas of the input
arguments. For this reason, the abstract domain for resource analysis is in fact an ex-
tension of the sized types abstract domain. Regarding the resource consumption itself,
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there are two places that need to be taken into account in order to abstract the resource
consumption of a logic program (see [Navas et al., 2007a]):

• When entering a clause: some resources may be needed during unification of the
call (subgoal) and the clause head, the preparation of entering that clause, and
any work done when all the literals of the clause have been processed. This cost,
dependent on the head h, is called head cost, ϕ(h).

• Before calling a literal q : some resources may be used to prepare a call to a body
literal (e.g., constructing the actual arguments). The amount of these resources
is known as literal cost and is represented by ω(q).

Lets first make focus on the case of estimating upper bounds on resource usages.
For simplicity, lets assume first that the predicates we are dealing with are determin-
istic and do not fail. Then, we can bound the resource consumption of a clause C ≡
p(x̄) :− q1(x̄1), . . . , qn(x̄n), denoted rU ,cl ause :

rU ,cl ause (C ) ≤ϕ(p(x̄))+∑n
i=1

(
ω(qi (x̄i ))+ rU ,pr ed (qi (x̄i ))

)
As in sized type analysis, the sizes of some input arguments may be explicitly com-

puted, or, otherwise, they are represented with a generic expression, giving rise (in the
case of recursive clauses) to a recurrence equation that it is necessary to solve in order
to find closed-form resource usage functions.

The resource usage of a predicate, rU ,pr ed , depending on its input data sizes, is
obtained from the resource usage of the clauses defining it, by taking the maximum of
the equation expressions that meet the constraints on the input data sizes (i.e., have
the same domain).

Now, as we are analyzing logic programs, it is necessary to consider two extra fea-
tures that this paradigm presents:

• We may execute a literal more than once on backtracking. To bound the num-
ber of times a literal is executed, we need to know the number of solutions each
literal (to its left) can generate. Using the information provided by cardinality
analysis, the number of times a literal is executed is at most the product of the
upper bound on the number of solutions, sU , of all the previous literals in the
clause. We get:

rU ,cl ause
(
p(x̄) :− q1(x̄1), . . . , qn(x̄n)

)
≤ϕ(p(x̄))+∑n

i=1

(∏i−1
j=1 spr ed (q j (x̄ j ))

)(
ω(qi (x̄i ))+ rU ,pr ed (qi (x̄i ))

)
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• Also, in logic programming more than one clause may unify with a given sub-
goal. In that case it is incorrect to take the maximum of the resource usages of
each clause when setting up the recurrence equations. A correct solution is to
take the sum of every set of equations with a common domain, but the bound
becomes then very imprecise. Finer-grained possibilities can be considered by
using different aggregation procedures per resource. It is also possible to use the
information from the determinacy analysis [Lopez-Garcia et al., 2010a],also in-
cluded in CiaoPP as an abstract domain, to take the maximum of the resource of
each clause in the case that the predicate is deterministic.

Lower bounds analysis is similar, but needs to take into account the possibility of
failure, which stops clause execution and forces backtracking. Basically, no resource
usage should be added beyond the point where failure may happen. For this reason,
the resource analysis use the non-failure analysis already present in CiaoPP. Also, the
aggregation of clauses with a common domain must be different to that used in the
upper bounds case. The simplest solution is to just take the minimum of the clauses.
However, this again leads to very rough bounds.

3.5.1 Cardinality Analysis

We have already discussed why cardinality analysis (which estimates bounds on the
number of solutions) is instrumental in resource analysis of logic programs. We can
consider the number of solutions as another resource, but, due to its importance, we
treat it separately.

An upper bound on the number of solutions of a single clause could be gathered by
multiplying the number of solutions of its body literals:

sU ,cl ause
(
p(x̄) :− q1(x̄1), . . . , qn(x̄n)

)≤∏n
i=1 sU ,pr ed (qi (x̄i ))

For aggregation we need to add the equations with a common domain, to get a re-
currence equation system. These equations will be solved later to get a closed-form
function giving an upper-bound on the number of solutions.

It is important to remark that many improvements can be added to this simple car-
dinality analysis to make it more precise. Some of them are discussed in [Debray and
Lin, 1993], like maintaining separate bounds for the relation defined by the predicate
and the number of solutions for a particular input, or dealing with mutually exclusive
clauses by performing the max operation, instead of the addition operation when ag-
gregating. However, our focus here is the definition of an abstract domain, and see
whether a simple definition produces comparable results for the resource usage anal-
ysis.
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One improvement in the precision of cardinality analysis included in the resource
analysis is the use of the determinacy analysis present in CiaoPP [Lopez-Garcia et al.,
2010a]. If such analysis infers that a predicate is deterministic, the analysis set the
upper bound for the number of solutions to 1.

In the case of lower bounds, it is necessary to know for each clause whether it may
fail or not. For that reason the resources domain uses the non-failure analysis already
present in CiaoPP [Bueno et al., 2004]. In case of a possible failure, the lower bound on
cardinality is set to 0.

3.5.2 The Abstract Elements

Within the PLAI abstract interpretation framework [Muthukumar and Hermenegildo,
1992, Puebla and Hermenegildo, 1996] an analysis is defined by the abstract elements
involved in it and a set of operations. We refer the reader to the Section 2.2 for an
overview of the overall framework.

The abstract elements of the resource usage domain are derived from sized type
analysis by adding some extra components. In particular:

1. The current variable for solutions, and current variable for each resource.

2. A boolean element for telling whether we have already found a failing literal.

3. An abstract element from the non-failure domain.

4. An abstract element encoding information about determinacy.

The abstract elements are denoted by 〈(sL , sU ), vr esour ces , f ai led?,d ,r,n f ,det〉 where
(sL , sU ) are the lower and upper bound variables for the number of solutions, vr esour ces

is a set of pairs (rL ,rU ) giving the lower and upper bound variables for each resource,
f ai led? is a boolean element (true or false), d and r are defined as in the sized type
abstract domain, and n f and det can take values not_fails/fails and non_det/is_det
respectively, as explained in [Lopez-Garcia et al., 2010a, Bueno et al., 2004].

Lets assume that we are given the definition of a set of resources, which are fixed
throughout the whole analysis process. For each resource r we have: its head cost,
ϕr , which takes a clause head as parameter; its literal cost, ωr , which takes a literal
as parameter; its aggregation procedure, Γr , which takes the equations for each of the
clauses and creates a new set of recurrence equations from them; and the default upper
⊥r,U and lower ⊥r,L bound on resource usage.

We will continue with the analysis of listfact as a running example. We assume
that the only resource to be analyzed is the “number of resolution steps,” which uses
the following parameters:
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ϕ= 1, ω= 0, Γr =+, (⊥L ,⊥U ) = (0,0)

In what follows, we explain informally the operations that form the resource usage
abstract domain.

The ⊑, ⊔ Operations and the ⊥ Element.

There is no decidable definition for ⊑ or ⊔, because there is no general algorithm for
checking the inclusion or union of sets of integers defined by recurrence relations.
Instead, for the inequation components it is just checked whether one is a subset of
another one, up to variable renaming, or it is performed a syntactic union of the in-
equations. The ordering is finished by taking the product order with the non-failure
and determinacy parts. This is enough for having a correct analysis. For the bottom
element, ⊥, the analysis generates new variables for each of the resources and the car-
dinality. Then, new relations are added between them and the default cost for each
resource. For an unknown predicate, the cardinality should be [0,∞) and it may fail.
For example, the bottom element for the “number of resolution steps” resource will be:

〈(sL , sU ), {(nL ,nU )},true,;, {(sL , sU )≶ (0,∞), (nL ,nU )≶ (0,0)},fails,non_det〉

where fails and non_det are the bottom elements of their respective domains.

The λcal l to βentr y Operation

In this operation it needs to be created the initial structures for handling the bounds
on cardinality and resources. This implies the generation of fresh variables for each of
them, and setting them to their initial values. In the case of cardinality, the initial value
is 1 (which is the number of solutions generated by a fact). For a resource r , the initial
value is exactly ϕr . We will name new fresh variables by adding an integer subscript.
For example, sL,1,1 will be the first fresh variable related to the lower bound on solutions
on first clause.

The addition of constraints over sized types when the head arguments are partially
instantiated is inherited from the sized types domain.

Attaching Constraints to Recurrence Relations In this stage, we have introduced a
modification to the design of the abstract substitution, and extended the representa-
tion of recurrence relations in order to incorporate constraints on the input data to
clauses (referred as tests in determinacy and non-failure analysis). We take advantage
of the information inferred during determinacy analysis, and perform a query to the
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PLAI database through a well-defined interface implemented in CiaoPP, passing the
clause id as argument, and recovering the set of constraints of such clause from de-
terminacy information. Finally, we add such constraints to the domain component.
These constraints are attached to the relation that represent the cost of a clause, so
that it can be used by the solver and obtain solutions for many recurrences for which
the previous implementation did not find any solution. As a technical implementa-
tion issue, in order to perform such modification, we have changed the PLAI common
interface, which has required a lot of effort, given that it is used in may parts of the
system.

Finally, the f ai led? component is initialized with value false, as no literal has
been executed yet, so it cannot fail.

In the listfact example, the entry substitutions are:

βentr y,1 =
〈

(sL,1,1, sU ,1,1), {(nL,1,1,nU ,1,1)},false, {α1 = 0,β1 = 0},
{(sL,1,1, sU ,1,1)≶ (1,1), (nL,1,1,nU ,1,1)≶ (1,1)},not_fails,is_det

〉

βentr y,2 =
〈

(sL,2,1, sU ,2,1), {(nL,2,1,nU ,2,1)},false, {α1 > 0,β1 > 0},
{(sL,2,1, sU ,2,1)≶ (1,1), (nL,2,1,nU ,2,1)≶ (1,1)},not_fails,is_det

〉

The Extend Operation

operation, the current abstract substitution needs to be extended with the information
of the success substitution from the literal call. In this way, several components of
the abstract element have to be updated. First of all, a call to the function giving the
number of solutions and the resource usage from the called literal has to be added.

Afterwards, new variables need to be generated for the number of solutions and
resources, which will hold the bounds for the clause up to that point. New relations
must be added to the abstract element to give a value to those new variables:

• For the number of solutions, let sU ,c be the new upper bound variable, sU ,p the
previous variable defining an upper bound on the number of solutions, and sU ,λ

an upper bound on the number of solutions for the subgoal. Then we need to
include a constraint: sU ,c ≤ sU ,p × sU ,λ.

In the case of lower bound analysis, there are two phases. First of all, it is checked
whether the called literal can fail, looking at the output of the non-failure anal-
ysis. If it is possible for it to fail, the f ai led? component is updated to true. If
after this checking the f ai led? component is still false (meaning that neither
this literal nor any of the previous ones may fail) a relation is included, similar
to the one for the upper bound case: sL,c ≥ sL,p × sL,λ. Otherwise, the relation
sL,c ≥ 0 is included, because failing predicates produce no solutions.

27



• The approach for resources is similar. Let rU ,c be the new upper bound variable,
rU ,p the previous variable defining an upper bound on that resource and rU ,λ an
upper bound on resources from the analysis of the literal. The relation added in
this case is rU ,c ≤ rU ,p + sU ,p × (

ω+ rU ,λ
)
.

For lower bounds, the f ai led? component is already updated. Then, if the com-
ponent is still false, a new relation similar to the one for upper bounds is added.
If it is true, it means that failure may happen at some point, so we do not have
to add that resource any more. Thus the relation to be included is rL,c ≥ rL,p .

In our example, consider the extension of listfact after performing the analysis
of the fact literal, whose resource components of the abstract element will be:

〈
(sL , sU ), {(nL ,nU )},false, {α,β≥ 0}

{(sL , sU )≶ (1,1), (nL ,nU )≶ (α,β)},not_fails,is_det

〉

This literal is known not to fail, so the value of f ai led? is not changed in the abstract
element for the second clause. That means that it is still false, so complete calls are
added:

βentr y,2 =
〈 (sL,2,2, sU ,2,2), {(nL,2,2,nU ,2,2)},false, {. . . }

. . . ,
(sL,2,2, sU ,2,2)≶ (1× sL,2,1,1× sU ,2,1),

(nL,2,2,nU ,2,2)≶ (γ1 +nL,2,1,δ1 +nU ,2,1)

 ,

not_fails,is_det

〉

The βexi t to λ′ Operation

After all the extend operations, the variables appearing in the number of solutions and
resources positions will hold the correct value for their properties. As in the case of
sized types, at this point a normalization step takes place, based on [Debray and Lin,
1993]: replace each variable appearing in an expression with its definition in terms of
other variables, in reverse topological order. Following this process, we should reach
the variables in the sized types of the input parameters in the head.

Going back to listfact, the final substitutions are as follows. s′L , s′U ,n′
L and n′

U
refer to number of solutions and resolution steps from the recursive call to listfact.

λ′
1 =

〈
(sL,1,1, sU ,1,1), {(nL,1,1,nU ,1,1)},false, {α1 = 0,β1 = 0},

{(sL,1,1, sU ,1,1)≶ (1,1), (nL,1,1,nU ,1,1)≶ (1,1)},not_fails,is_det

〉
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λ′
entr y,2 =

〈 (sL,2,3, sU ,2,3), {(nL,2,3,nU ,2,3)},false, {α1 > 0,β1 > 0},
sL,2,3 ≥ 1× s′L(ln(α1−1,β1−1)(n(γ1,δ1))),
sU ,2,3 ≤ 1× s′U (ln(α1−1,β1−1)(n(γ1,δ1))),

nL,2,3 ≥ γ1 +n′
L(ln(α1−1,β1−1)(n(γ1,δ1))),

nU ,2,3 ≤ δ1 +n′
U (ln(α1−1,β1−1)(n(γ1,δ1)))

 ,

not_fails,is_det

〉

The Widening Operator ∇ and Closed Forms

As mentioned before, at this point there exists the possibility of having different aggre-
gation operators for different resources. Thus, when the analysis has the equations, it
needs to pass them to each of the corresponding Γr per each resource r to get the final
equations.

This process can be further refined in the case of solution analysis, using the infor-
mation from the non-failure and determinacy analyses. If the final output of the non-
failure analysis is fails, we know that the only correct lower bound is 0. So the anal-
ysis can just assign the relation sL ≥ 0 without further relations. Conversely, if the final
output of the determinacy analysis is is_det, it can be safely set the relation sU ≤ 1, be-
cause at most one solution will be produced in each case. Furthermore, we can refine
the lower bound on the number of solutions with the minimum between the current
bound and 1.

In the example analyzed above there was an implicit assumption while setting up
the relations: that the recursive call in the body of listfact refers to the same pred-
icate call, so we can set up a recurrence. This fact is implicitly assumed in Hindley-
Milner type systems. But in logic programming it is usual for a predicate to be called
with different patterns (for example, modes). Fortunately, the CiaoPP framework al-
lows multivariance (support for different call patterns of the same predicate). For the
analysis to handle it, it is not enough just add calls with the bare name of the predicate,
because it will conflate all the versions. The solution is to add a new component to the
abstract element: a random name given to the specific instance of the predicate, and
generated in the λcal l to βentr y . In the widening step, all different versions of the same
predicate are conflated.

Even though the analysis works with relations, these are not as useful as func-
tions defined without recursion or calls to other functions. First of all, developers will
get a better idea of the sizes presented in such a closed form. Second, functions are
amenable to comparison as outlined in [Lopez-Garcia et al., 2010c], which is essential
in verification. There are several packages able to get bounds for recurrence equations:
computer algebra systems, such as Mathematica (which has been used in our exper-
iments) or Maxima; and specialized solvers such as PURRS [Bagnara et al., 2005] or
PUBS [Albert et al., 2011b]. In this implementation, this operation is applied after each
widening. For our example, the final abstract substitution is:
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λ′
1∇λ′

2 =
〈

(sL , sU ), {(nL ,nU )},false, {α1,β1 ≥ 0},{
(sL , sU )≶ (1,1), (nL ,nU )≶ (α1γ1,β1δ1)

}
,not_fails,is_det

〉

3.5.3 Improvements in Design and Implementation

We have taken the initial prototype implementation of the analysis performed in [Ser-
rano et al., 2014a] as a starting point, and have applied multiple code refactorizations
and design changes on it, in order to achieve a better integration into the CiaoPP sys-
tem, and also to prepare the analysis for its integration with the modular solver that we
have proposed in Chapter 4.

One of the first improvements we have made has been to decouple the solver-related
functionality from the resource abstract domain, in order to make the later indepen-
dent of the former. This allowed us to give the option to the user of choosing between
two different back-end algebraic solvers. Thus, the user can choose between an off-
the-shelf CAS system, and a specialized recurrence solver implemented in Ciao, which
we call built-in solver. This change has represented an important improvement. On
one hand, it was the first step towards the integration of a new, modular solver. On the
other hand, the resource analysis itself has resulted in a better modularization, with all
the advantages that entails (maintainability, extensibility, readability, etc.).

Another improvement was to implement a better way of communicating with other
abstract domains. Instead of including the information of determinacy and non-failure
analysis in the abstract substitution of the resource abstract domain, which requires
calling the abstract operations of these domains from each abstract operation of the
resource domain (as a sort of Cartesian product), we now use an interface, provided by
CiaoPP, to query the PLAI database and access all the information inferred by the rest
of the analysis. We can access such information both at predicate and program-point
level. For the later case, we have modified the interface between the abstract domains
and the PLAI main fixpoint algorithm in order to access, from the abstract domains,
the program-point key. This allows us, for example, to reuse the tests gathered for de-
terminacy analysis at each program point.

Regarding the solving of equations, we have modified the structure of the equa-
tions in order to include the constraints (which we can call applicability conditions)
associated to each equation. In the previous implementation these constraints were
used by the analyzer in order to set up the equations in a format suitable for the ex-
ternal CAS. Thus, the CAS received no information regarding applicability conditions.
With the new design we have proposed, where each equation/recurrence relation has
a set of associated applicability conditions, it is now possible to take advantage of that
information and apply more and better techniques for solving the equations (such as
the ones proposed in Chapter 4). In addition, this brings the possibility of performing
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transformations and operations at the equation level, independently of the analysis
itself (such as checking mutual exclusion, inferring loop invariants, etc.).

3.6 Conclusions

In this chapter we have given an overview of the resource analysis based on abstract
interpretation implemented in the PLAI abstract interpretation framework, which is
included in CiaoPP. This analysis has been defined as an abstract domain and uses the
sized types that have been developed in [Serrano et al., 2013]. This brings in useful fea-
tures such as multivariance for free. The approach overcomes important limitations
of other existing resource analyses and enhances their precision. We have taken the
initial prototype implementation of the analysis performed in [Serrano et al., 2014a] as
starting point, and have improved both, the design and implementation. In Chapter 4
we take a deeper look at the improvements of the operation for finding closed-form
functions for recurrences. The objective of these improvements is a better integration
of the analysis with the rest of the system, in order to enhance its effectiveness, prac-
ticality, maintainability, and extensibility, and allow an easier combination with other
supporting analysis present in the CiaoPP system. This will also eventually allow an
evolution of the tool the industrial application level.
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Chapter 4

A Modular Solver Framework

This chapter describes the work we have done in this thesis to significantly improve
the usefulness and applicability of the resource usage analysis, by defining a proper
architecture for the component in charge of mathematical operations. The most im-
portant of these operations is the finding of closed-form expressions for recurrence
(in-)equations or relations, either exact solutions or over-approximations (upper or
lower bounds) of them. Firstly, we give an overview of the problem of finding closed-
form expressions for the recurrence relations that arise in resource analysis, and why
this is important. Then, we describe how this problem is addressed in the current im-
plementation of the resource analysis within CiaoPP based on abstract interpretation,
pointing out its main limitations. Then, we present our proposal for a new compo-
nent in charge of this part of the analysis, including a modular architecture that brings
in many interesting features in terms of maintainability and extensibility. Finally, we
present the implementation of a technique we have developed for upper-bounding a
special class of recurrence relations that arise usually in the analysis of programs with
accumulating parameters.

4.1 The Need for Finding Closed-form Expressions

The traditional approach for static resource usage analysis dates back to the seminal
work by Wegbreit [Wegbreit, 1975], which consists of two general steps:

• Given the source code of the program and a cost model for basic operations,
the analysis sets up a system of equations that describe the cost of the program
in terms of the sizes of the input. In the presence of loops or recursion, these
equations have the form of recurrences.

• As recurrences are not useful in most situations, the second step is to replace
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these recurrences by equivalent closed-form functions.

Finding closed-form functions for recurrences is crucial for the usefulness of the
results of the analysis. Developers will get a better idea if this result is expressed with a
closed-form expression. Second, and most important, closed-form expressions are ap-
propiate for comparison of resource related information, as outlined in [Lopez-Garcia
et al., 2010c], which is essential for verification purposes. There are several systems to
get exact or over-approximated closed-forms for recurrence relations: Computer Al-
gebra Systems (CAS), such as Mathematica® or Maxima; and specialized solvers such
as PURRS [Bagnara et al., 2005] or PUBS [Albert et al., 2011a]. However, none of these
systems alone is able to solve or bound all the recurrences that can appear during anal-
ysis. Thus, it is very important to identify different classes of recurrence equations and
choose the right solver to handle them.

Algorithms for finding closed-form solutions for recurrence relations have been
studied in numerous previous work, such as [Ivie, 1978, Petkovšek, 1990, Cohen and
Katcoff, 1977]. It is always possible to reduce a system of linear recurrence relations to
a single linear recurrence relation in one variable, so it suffices to consider the solu-
tion of a single linear recurrence relation in one variable. The algorithms presented
in [Ivie, 1978, Petkovšek, 1990, Cohen and Katcoff, 1977] solve linear recurrence re-
lations with constant coefficients using either characteristic equations or generating
functions. However, nonlinear recurrences may arise in size or resource analysis, for
example from recursive programs with more than one recursive call in the body of a
clause, or from a divide-and-conquer program. The solution for this kind of recur-
rences is generally much more difficult than the solution of linear recurrences. A large
class of nonlinear recurrence relations can be transformed into linear equations by
variable transformations. There are also many well-known special nonlinear recur-
rence relations which have known solutions.

In order to automatize the whole resource usage analysis, it is necessary to have a
solver capable of finding closed-form solutions for any recurrence relation that could
arise from program analysis. As we already explained, there is no general method for
solving recurrence relations. At a first glance, this might be hopeless. However, we can
take some advantages of the specific requirements and features of resource analysis.
First of all, since we are interested in over-approximations of resource usage functions,
it is not absolutely necessary to find exact solutions for recurrences. It is enough to find
closed-form expressions that represent upper or lower bounds on the recurrences, for
any input. This can be done by simplifying the equations using transformations in a
way that a solution to the transformed equation is guaranteed to be an upper (or lower)
bound on the solution to the original equation.
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4.2 Finding Closed-form Solutions in the Previous Approach

In the previous implementation of the abstract interpretation-based resource usage
analysis of CiaoPP, the operation of finding a closed-form solution for each recurrence
relation is performed after every call to the widening operation. This process broadly
consists in the following steps:

1. The first step sets up the recurrences directly as functions on the size variables,
instead of on the size types schemas.

2. The second step consists on removing unnecessary arguments, taking into ac-
count how they are used in the equations.

3. The third step uses the constraints contained in the domain component of the
abstract substitution to finally set up the equations in an appropriate format for
the solver. This step strongly depends on which back-end solver is used.

4. The third step simplifies the expressions appearing in the right hand of the equa-
tions.

5. Finally, the equations are sent to the back-end solver, and the solutions returned
back replace the recurrences in the abstract substitution.

This previous implementation presents many problems and limitations. It is highly
dependent on the back-end CAS chosen for solving recurrences. The solver used in the
current implementation is Mathematica®, as already mentioned. The function RSolve,
that tries to solve recurrence equations, does not accept as a valid input, any recur-
rence relation where there is an argument not used in the right hand side of an equa-
tion. For example, the following recurrence relation:

f (1,D) = 1,

f (X ,D) = f (X −1,D)+D

is not a valid input for RSolve because in the first equation the second argument is not
used in its right side.

Another important limitation of RSolve is that it does not deal with constraints on
the variables of equations. For example, the following recurrence relation:

f (X ) = 1, if 0 ≤ X ≤ 2

f (X ) = f (X −1)+1, if X > 2

needs to be transformed into

f (0) = 1, f (1) = 1, f (2) = 1,

f (X ) = f (X −1)+1
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before sending it to the back-end solver.

Another limitation we can mention, is the fact that Mathematica® (or any other
CAS) tries to find exact solutions for the recurrences, while over-approximations would
be enough for our resource analysis application. Thus, by using the existing CASs, we
are limited to exact solutions only. Finally, the most important limitation of this imple-
mentation is that currently, there is no CAS or specialized solver capable of solving any
of the recurrence equations/relations that might arise in resource analysis. However,
in the previous implementation changing the solver was quite difficult.

4.3 Goals of the Modular Solver Framework

Given the above considerations, the main goals of the new solver component are the
following:

• We should be able to integrate easily new back-end solvers, such as existing CAS,
existing specialized solvers (e.g., PURRS or PUBS), or even new specialized solvers
for a limited set of special recurrences.

• We should be able to combine easily the results from different back-end solvers.

Integrating new off-the-shelf systems to solve a larger set of recurrences is crucial
for the extensibility and applicability of the whole resource analysis. The ability of com-
bining results from different back-end solvers allows to increase their power, and ana-
lyzing (increasingly) more complex programs.

4.4 The Modular Solver Architecture

We propose a new modular architecture for the resource analysis, defining a new com-
ponent in charge of the algebraic operations of the analysis. In particular, this com-
ponent will be in charge of finding closed-form functions that over-approximate the
recurrences set up during the analysis. This architecture is shown in Figure 4.1. The
main modules are:

• Solver_Strategies: This module defines the common interface of the different
strategies to solve recurrence relations.

• Str ati : These are the different strategies to solve or over-approximate recur-
rences, using the services of the back-end solvers and the classifier in order to
identify different characteristics of the recurrences.
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• Rec_Classifier: It associates a label to each input recurrence relation that identi-
fies the class of recurrence.

• Solver_Utils: Defines the common interface of the different back-end solvers.

• BSi : These are the modules that implement the interface defined by Solver_Utils,
connecting directly with the particular back-end solvers, such as Mathematica®,
CiaoPP’s built-in Solver, etc.

Figure 4.1: Architecture of the Modular Solver Framework.

4.4.1 Algebraic Expression Syntax

In order to use different back-end solvers from our architecture, and, more impor-
tantly, combine the results coming from different back-end solvers, it is necessary to
define a common expression syntax for the inputs and outputs of our solver compo-
nent, delegating the responsibility of translating this syntax, forth and back to the in-
ternal syntax of the back-end solvers, to each particular back-end solver interface. In
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Figure 4.2 we show this common syntax, both for arbitrary expressions and recurrence
relations, which we call Algebraic Expression Syntax.

〈expr〉 ::= ‘-’〈expr〉 | ‘fact(’〈expr〉‘)’ | ‘fibo(’〈expr〉‘)’ | ‘lucasl(’〈expr〉‘)’
| 〈expr〉 〈binop〉 〈expr〉
| ‘fun(’〈name〉‘,[’〈exprs〉‘])’
| ‘exp(’〈expr〉‘)’ | ‘log(’〈num〉 ‘,’ 〈expr〉‘)’
| ‘max(’〈expr〉‘,’〈expr〉‘)’ | ‘min(’〈expr〉‘,’〈expr〉‘)’
| 〈num〉 | 〈var〉
| ‘sum(’〈var〉‘,’ 〈expr〉‘,’ 〈expr〉‘,’ 〈expr〉‘)’
| ‘prod(’〈var〉‘,’ 〈expr〉‘,’ 〈expr〉‘,’ 〈expr〉‘)’

〈exprs〉 ::= ϵ | 〈expr〉 | 〈expr〉‘,’〈exprs〉

〈binop〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘**’

〈recrels〉 ::= 〈recrel〉 | 〈recrel〉‘,’ 〈recrels〉

〈recrel〉 ::= ‘equation(’〈name〉‘,’ 〈vars〉 ‘,’ 〈expr〉‘,’ ‘[’〈tests〉‘])’

〈tests〉 ::= ϵ | 〈test〉 | 〈test〉‘,’ 〈tests〉

〈test〉 ::= 〈expr〉 〈bincomp〉 〈expr〉

〈bincomp〉 ::= ‘>’ | ‘<’ | ‘>=’ | ‘=<’

Figure 4.2: Algebraic Expression Syntax

4.4.2 Interface to Back-End Solvers

The common interface that the different back-end_solvers have to implement is the
following (defined by Solver_Utils):

• translate_from_common_syntax(+Exp, -TExp): Translates any expression or
recurrence relation received as input, in the common algebraic expression syntax,
to the specific syntax of the corresponding back-end solver.

• translate_to_common_syntax(+TExp, -Exp): Translates expressions or re-
currences from the syntax of the back-end solver to the common algebraic ex-
pression syntax.

• simplify(+Exp, -Simp): Simplifies the expression or recurrence relation Exp.
If the input is a recurrence relation, it simplifies the right hand side of the equa-
tions.
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• expand(+Exp, -Simp): Expands out products and positive integer powers in
Exp.

• greater_than(+A,+B),equal_than(+A,+B),
less_than(+A,+B),greater_or_equal_than(+A,+B),less_or_equal_than(+A,+B):
Implements the comparison operators >,<,=,>= and =<, respectively.

• solve_rec_rel(+RecRel,+Bound,-ClosedForm): Tries to find an exact closed-
form solution for RecRel, or a correct approximation with respect to Bound, whose
value could be upper, if we want an upper bound for the recurrence, or lower if
we want a lower bound.

The translations forth and back to the common expression syntax are performed
from Solver_Utils, by calling the corresponding predicates of the back-end solvers.
Thus, from the point of view of an user of the solver, the solver receives and returns
elements in the common syntax, abstracting away all the translation details.

4.5 Using Ranking Functions for Upper-bounding Special
Recurrences

In order to show the advantages of the new architecture proposed for dealing with re-
currences, we present in this section how we can implement and integrate an special-
ized back-end solver for dealing with a special class of logic programs, that commonly
appear when the logic program is a translation, more or less direct, of an imperative
program with simple loops.

To illustrate the problem we are going to address, we will use a very naive running
example. Let us consider an imperative function that calculates the addition of the first
N natural numbers.

1 i n t nats( i n t N){
2 i n t add = 0;
3 f o r ( i n t i=1;i=<N;i++)
4 add += i;
5 r e t u r n add;
6 }

In order to analyze this program with our resource analysis, an automatic transla-
tion into a Horn clause representation is performed. Assume that this step has already
been performed, and the loop for this function is translated into the following logic
program (Horn clauses):
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1 nats(I, N, I):-
2 I >= N.
3 nats(I, N, S):-
4 I < N,
5 I1 is I + 1,
6 nats(I1, N, S1),
7 S is S1 + I.

Assuming execution steps as the resource to measure, our resource analysis based
on abstract interpretation (presented in Chapter 3) will set up following recurrence
relation representing an upper bound on the resource usage of a call to that program
(predicate):

1 equation(g, [I,N], fun(g,[I + 1,N])+1,[I < N]),
2 equation(g, [I,N], 1 ,[I >= N]),

As we can see, this recurrence relation has not a proper form to be handled by a
CAS. Mathematica®, for example, can not deal with it properly because it does not
support the constraints associated to each equation, and moreover, the second argu-
ment only appears in constraints. However, we can transform this recurrence into a
common, one variable recurrence equation by performing some variable substitution
and using the information present in the constraints. Let us define Y = N − I +1. If we
rewrite the previous recurrence in terms of Y , we obtain:

1 equation(g, [Y], fun(g,[Y - 1])+1,[Y > 1]),
2 equation(g, [Y], 1 ,[Y =< 1]),

which can be easily solved now by almost any recurrence solver. Its solution, Y ,
needs to be replaced by its definition, N − I + 1. This is a valid upper-bound for the
recurrence if I ≤ N . If I > N the result should be C , because the base case condition
applies. For that reason, as a last step, we need to use the max operator in order to
obtain a valid upper bound for all the possible values of I and N . Therefore, we obtain
the following closed-form upper-bound expression for g :

max(C , N − I +1) (4.1)

We just have shown how to solve, in a very intuitive way, a tricky but simple kind
of recurrence relation. As programs with this characteristics are very common, it is
important to automatize this technique. If we pay attention to the reasoning we just
followed, we can notice that we looked for a variable replacement that transform the
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recurrence in a form amenable for traditional solvers. That means we need the recur-
rence in a decremental way, expressing the n-th term as a function of some i-th term,
obtaining i < n. Therefore, what we need for the variable replacement is an expres-
sion that we know decrease in each step of the recurrence. The automatic termination
community have studied in depth this particular kind of expressions for loops (we can
see a recurrence as a loop), because they are instrumental for proving termination.
They usually prove that there exists a function that maps the arguments of the loop to
a well-founded partial order, such that this function decreases in each step. This kind
of functions are called ranking functions [Floyd, 1967]. In [Podelski and Rybalchenko,
2004] a complete method for obtaining linear ranking functions is presented.

The use of ranking functions for finding closed-form upper bounds for recursive re-
source usage expressions (called cost relations) was presented in [Albert et al., 2011a].
In such work, the authors first define a set of evaluation trees for a system of cost equa-
tions and a given initial call. Then, they try to find an upper bound on the number
of nodes, both internal nodes and leaves. Each of this kind of node have a local cost
that need to be multiplied by the corresponding bound on the number of nodes in or-
der to obtain a closed-form expression. These local costs are also over-approximated
by using linear programming techniques, and the result is finally obtained. This idea
of over-approximating the number of nodes of any possible evaluation tree was previ-
ously given in [Debray et al., 1997], but for inferring both lower and upper bounds for
divide-and-conquer predicates.

In our case, we are going to limit this technique to simple cases, as the one that we
showed above. By simple, we mean recurrences with one single recursive call, possibly
multiplied by a constant coefficient, and no other equation call. Even more, we are go-
ing to support recurrences (under this technique) with mutually exclusive equations,
and only one base case. As we are going to use the algorithm proposed in [Podelski and
Rybalchenko, 2004], we also need to limit ourselves to linear arithmetic expressions as
input.

In this thesis we follow an approach similar to the ones in [Albert et al., 2011a, De-
bray et al., 1997].

Definition 10 (Simple recurrence relation). We call simple recurrence relation to a re-
currence of the form:

f (u) =C , if ϕ(u)

f (u) = K ∗ f (u′)+ g (u), if ϕ′(u)

where

• C ,K ∈Z+ are constants,

• g is an expression that does not contain any call to f or any other functions except
built-ins.

41



• ϕ(u)∧ϕ′(u) is unsatisfiable (mutual exclusion),

• u is a sequence of arguments, and u′ is a sequence of linear arithmetic expressions
over u, such that |u| = |u′|

Definition 11 (Ranking function for a simple recurrence relation). A ranking function
for the following simple recurrence relation

f (u) =C , if ϕ(u)

f (u) = K ∗ f (u′)+ g (u), if ϕ′(u)

is a function h :Z|u| →Z+ such that ϕ′(u) |= h(u) > h(u′).

Now that we have already defined the class of recurrences we are going to handle,
and what a ranking function is for those recurrences, we can show how to obtain a safe
closed-form over-approximation for them. Given an initial input u0, let us first observe
what is the result of applying the recursive case several times, before reaching the base
case:

f (u0) =
K f (u1)+ g (u0) =

K (K f (u2)+ g (u1))+ g (u0) = K 2 f (u2)+K g (u1)+ g (u0) =
·· ·

K i−1 f (ui−1)+K i−2g (ui−2)+·· ·+ g (u0) =
K i C +K i−1g (ui−1)+·· ·+ g (u0)

As we can see, the last expression, where the base case is finally reached, is in
closed-form, with i being the number of applications of the recursive case. We can
replace i by a ranking function h(u) for f , because it is also an upper bound of the
number of times a recursive case is applied (see for example [Albert et al., 2011a]). We
also need to find a general form for all the expressions g (u j ). In order to do that, and
to ensure we are going to obtain a correct upper-bound, we can replace each of such
subexpressions by the result of maximizing g (u) under the constraints ϕ′(u). Let M be
the result of this operation. Finally, as we explained before, it is necessary to wrap the
resulting expression with the max operator and the base case constant C as argument.
In conclusion, we obtain the following closed-form expression:

f̂ (u) = max(C , (
h(u)−1∑

i=0
K i M)+K h(u)C ) ≥ f (u) (4.2)

Comming back to our running example, we can see that the recurrence is a sim-
ple recurrence relation with K = 1,C = 1 and ∀u : g (u) = 1. If we apply the algorithm
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in [Podelski and Rybalchenko, 2004] (interpreting the recurrence as a single loop), we
obtain the ranking function h(I , N ) = N − I + 1. Finally, by applying the formula we
have just derived, we obtain the following upper-bound closed-form expression:

max(1, (N − I +1)∗1+1 = max(1, N − I +2) (4.3)

which is a correct upper-bound and is consistent with our first intuition (equation 4.1).

4.6 Implementation

We have implemented a prototype of the proposed architecture taking advantage of
the module system of Ciao. We have also performed some refactorizations on the ab-
stract interpretation-based resource analysis in order to integrate our prototype of the
solver into it. In this prototype, we have developed a strategy called chain, as a proof of
concept. This strategy simply tries to solve a recurrence relation by calling in sequence
each available back-end solver. The first solution found is the one that is returned, ob-
tained from one of the back-end solvers. A simple but significant improvement of this
strategy would be to compare all of these results and get the maximum or minimum of
them, depending on which kind of approximation we are looking for.

The implementation of the method showed in this section mainly requires a pro-
cedure for finding (linear) ranking functions. The Parma Polyhedra Library (PPL) pro-
vides numerical abstractions especially targeted at applications in the field of analysis
and verification of complex systems, including implementations of methods for the
synthesis of linear ranking functions [Bagnara et al., 2002, Bagnara et al., 2010]. Thus,
we have integrated PPL as a back-end solver in our proposed architecture, implement-
ing the operation solve_rec_rel in such a way that it: (a) identifies the different parts
of the recurrence relation; (b) obtains a ranking function for the given recurrence; and
(c) sets up the closed-form expression of Equation (4.2), using the ranking function ob-
tained in (b) and the components of the recurrence obtained in (a). We also require an
operation that performs the maximization of an expression under a set of constraints.
Fortunately, we can use any CAS (in our case Mathematica®), or even PPL to perform
such operation.

4.7 Conclusions and Future Work

In this chapter we have presented a new modular architecture for performing all of
the algebraic operations required by the resource usage analysis. The most impor-
tant one among these operations is the obtention of closed-form solutions or over-
approximations of recurrence relations. This architecture is based on the integration
of many back-end solvers, such as CAS and specialized solvers, and in the definition of
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a common algebraic expression syntax, allowing the combination of results from dif-
ferent back-end solvers. As for the combination of the results, the architecture allows
to easily incorporate different strategies, i.e., modules with an algorithm for solving
recurrences, but in a higher level, using the services provided by the set of back-end
solvers.

In order to show the advantages of the new architecture proposed for dealing with
recurrences, we have presented a technique for solving a special class of recurrence re-
lations that can appear during the analysis of some programs. This technique is based
on finding a closed-form ranking function for the recurrence relation. In turn, the tech-
nique presented in this case is also a contribution of this thesis.

As future work, we can mention the integration of more specialized back-end solvers,
such as PURRS or PUBS, in order to take advantage of the architecture and improve the
applicability of the resource usage analysis. We also define new and smarter strategies
for solving recurrence relations.
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Chapter 5

Applying the Improved Analysis to
Energy Consumption Verification

In this chapter we describe how we have applied our improved resource analysis tool
for verifying energy consumption specifications of imperative embedded programs.
We first have integrated it into the CiaoPP resource verification framework, so that the
framework can access the information inferred by our improved resource analysis, and
use it for comparison with specifications. Then, we have instantiated the resulting ver-
ification framework for verifying specifications about the energy consumed by embed-
ded imperative programs.

Such specifications can include both lower and upper bounds on energy usage, and
they can express intervals within which energy usage is to be certified to be within such
bounds. The bounds of the intervals can be given in general as functions on input data
sizes. Our verification system can prove whether such energy usage specifications are
met or not. It can also infer the particular conditions under which the specifications
hold. To this end, these conditions are also expressed as intervals of functions of in-
put data sizes, such that a given specification can be proved for some intervals but
disproved for others. The specifications themselves can also include preconditions ex-
pressing intervals for input data sizes.

Finally, we report on the prototype implementation of our approach that we have
performed within the CiaoPP system for an industrial case study, the XC language and
XS1-L architecture, and illustrate with a real example how embedded software devel-
opers can use this tool, in different scenarios, and in particular for determining values
for program parameters that ensure meeting a given energy budget while minimizing
the loss in quality of service. This work has been published in [Lopez-Garcia et al.,
2015].
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5.1 Introduction

In an increasing number of applications, particularly those running on devices with
limited resources, it is very important and sometimes essential to ensure conformance
with respect to specifications expressing non-functional global properties such as en-
ergy consumption, maximum execution time, memory usage, or user-defined resources.
For example, in a real-time application, a program completing an action later than
required is as erroneous as a program not computing the correct answer. The same
applies to an embedded application in a battery-operated device (e.g., a portable or
implantable medical device, an autonomous space vehicle, or even a mobile phone) if
the application makes the device run out of batteries earlier than required, making the
whole system useless in practice.

In general, high performance embedded systems must control, react to, and sur-
vive in a given environment, and this in turn establishes constraints about the system’s
performance parameters including energy consumption and reaction times. There-
fore, a mechanism is necessary in these systems in order to prove correctness with
respect to specifications about such non-functional global properties.

To address this problem we leverage our improved resource usage analysis frame-
work, integrate it with the verification framework of CiaoPP [Lopez-Garcia et al., 2010b,
Lopez-Garcia et al., 2012], and specialize it for verifying energy consumption specifi-
cations of embedded programs. As a case study, we focus on the energy verification
of embedded programs written in the XC language [Watt, 2009] and running on the
XMOS XS1-L architecture (XC is a high-level C-based programming language that in-
cludes extensions for communication, input/output operations, real-time behavior,
and concurrency). However, the approach presented here can also be applied to the
analysis of other programming languages and architectures. We will illustrate with an
example how embedded software developers can use this tool, and in particular for de-
termining values for program parameters that ensure meeting a given energy budget
while minimizing the loss in quality of service.

5.2 Overview of the Energy Verification Tool

In this section we give an overview of the prototype tool for energy consumption ver-
ification of XC programs running on the XMOS XS1-L architecture, which we have
implemented within the CiaoPP system [Hermenegildo et al., 2005a]. As in previous
work [Liqat et al., 2014b, Méndez-Lojo et al., 2007], we differentiate between the input
language, which can be XC source, LLVM IR [Lattner and Adve, 2004], or Instruction Set
Architecture (ISA) code, and the intermediate semantic program representation that the
CiaoPP core components (e.g., the analyzer) take as input. The latter is a series of con-
nected code blocks, represented by Horn Clauses, that we will refer to as “HC IR” from
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Figure 5.1: Energy consumption verification tool using CiaoPP.
.

now on. We perform a transformation from each input language into the HC IR and
pass it to the corresponding CiaoPP component. The main reason for choosing Horn
Clauses as the intermediate representation is that it offers a good number of features
that make it very convenient for the analysis [Méndez-Lojo et al., 2007]. For instance,
it supports naturally Static Single Assignment (SSA) and recursive forms, as will be ex-
plained later. In fact, there is a current trend favoring the use of Horn Clause programs
as intermediate representations in analysis and verification tools [Bjørner et al., 2014].

Figure 5.1 shows an overview diagram of the architecture of the prototype tool we
have developed. Hexagons represent different tool components and arrows indicate
the communication paths among them.

The tool takes as input an XC source program (left part of Figure 5.1) that can op-
tionally contain assertions in a C-style syntax. As we will see later, such assertions are
translated into Ciao assertions, the internal representation used in the Ciao/CiaoPP
system.

The energy specifications that the tool will try to prove or disprove are expressed
by means of assertions with check status. These specifications can include both lower
and upper bounds on energy usage, and they can express intervals within which energy
usage is to be certified to be within such bounds. The bounds of the intervals can be
given in general as functions on input data sizes. Our tool can prove whether such
energy usage specifications are met or not. It can also infer the particular conditions
under which the specifications hold. To this end, these conditions are also expressed as
intervals of functions of input data sizes, such that a given specification can be proved
for some intervals but disproved for others.

In addition, assertions can also express trusted information such as the energy us-
age of procedures that are not developed yet, or useful hints and information to the
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tool. In general, assertions with status trust can be used to provide information about
the program and its constituent parts (e.g., individual instructions or whole procedures
or functions) to be trusted by the analysis system, i.e., they provide base information
assumed to be true by the inference mechanism of the analysis in order to propagate it
throughout the program and obtain information for the rest of its constituent parts.

In our tool the user can choose between performing the analysis at the ISA or LLVM
IR levels (or both). We refer the reader to [Liqat et al., 2014a] for an experimental study
that sheds light on the trade-offs implied by performing the analysis at each of these
two levels, which can help the user to choose the level that fits the problem best.

The associated ISA and/or LLVM IR representations of the XC program are gener-
ated using the xcc compiler. Such representations include useful metadata. The HC
IR translator component (described in Section 5.4) produces the internal representa-
tion used by the tool, HC IR, which includes the program and possibly specifications
and/or trusted information (expressed in the Ciao assertion language [Puebla et al.,
2000, Hermenegildo et al., 2012b]).

The tool performs several tasks:

1. Transforming the ISA and/or LLVM IR into HC IR. Such transformation preserves
the resource consumption semantics, in the sense that the resource usage infor-
mation inferred by the tool is applicable to the original XC program.

2. Transforming specifications (and trusted information) written as C-like asser-
tions into the Ciao assertion language.

3. Transforming the energy model at the ISA level [Kerrison and Eder, 2015], ex-
pressed in JSON format, into the Ciao assertion language. Such assertions ex-
press the energy consumed by individual ISA instruction representations, infor-
mation which is required by the analyzer in order to propagate it during the static
analysis of a program through code segments, conditionals, loops, recursions,
etc., in order to infer analysis information (energy consumption functions) for
higher-level entities such as procedures, functions, or loops in the program.

4. In the case that the analysis is performed at the LLVM IR level, the HC IR trans-
lator component produces a set of Ciao assertions expressing the energy con-
sumption corresponding to LLVM IR block representations in HC IR. Such in-
formation is produced from a mapping of LLVM IR instructions with sequences
of ISA instructions and the ISA-level energy model. The mapping information
is produced by the mapping tool that was first outlined in [Lopez-Garcia, 2014]
(Section 2 and Attachments D3.2.4 and D3.2.5) and is described in detail in [Geor-
giou et al., 2014].
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Then, our improved resource analyzer (presented in Chapter 3), specialized for en-
ergy consumption based on the approach described in [Liqat et al., 2014b], takes the
HC IR, together with the assertions which express the energy consumed by LLVM IR
blocks and/or individual ISA instructions, and possibly some additional (trusted) in-
formation, and processes them, producing the analysis results, which are expressed
also using Ciao assertions. Such results include energy usage functions (which depend
on input data sizes) for each block in the HC IR (i.e., for the whole program and for all
the procedures and functions in it.). The analysis can infer different types of energy
functions (e.g., polynomial, exponential, or logarithmic). The procedural interpreta-
tion of the HC IR programs, coupled with the resource-related information contained
in the (Ciao) assertions, together allow the resource analysis to infer static bounds on
the energy consumption of the HC IR programs that are applicable to the original LLVM
IR and, hence, to their corresponding XC programs. Analysis results are given using the
assertion language, to ensure interoperability and make them understandable by the
programmer.

The verification of energy specifications is performed by a specialized component
which compares the energy specifications with the (safe) approximated information
inferred by the static resource analysis. Such component is based on our previous work
on general resource usage verification presented in [Lopez-Garcia et al., 2010b, Lopez-
Garcia et al., 2012], where we extended the criteria of correctness as the conformance of
a program to a specification expressing non-functional global properties, such as up-
per and lower bounds on execution time, memory, energy, or user defined resources,
given as functions on input data sizes. We also defined an abstract semantics for re-
source usage properties and operations to compare the (approximated) intended se-
mantics of a program (i.e., the specification) with approximated semantics inferred by
static analysis. These operations include the comparison of arithmetic functions (e.g.,
polynomial, exponential, or logarithmic functions) that may come from the specifica-
tions or from the analysis results. As a possible result of the comparison in the output
of the tool, either:

1. The original (specification) assertion (i.e., with status check) is included with sta-
tus checked (resp. false), meaning that the assertion is correct (resp. incorrect)
for all input data meeting the precondition of the assertion,

2. the assertion is “split” into two or three assertions with different status (checked,
false, or check) whose preconditions include a conjunct expressing that the
size of the input data belongs to the interval(s) for which the assertion is correct
(status checked), incorrect (status false), or the tool is not able to determine
whether the assertion is correct or incorrect (status check), or

3. in the worst case, the assertion is included with status check, meaning that the
tool is not able to prove nor to disprove (any part of) it.

If all assertions are checked then the program is verified. Otherwise, for assertions
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(or parts of them) that get false status, a compile-time error is reported. Even if a pro-
gram contains no assertions, it can be checked against the assertions contained in the
libraries used by the program, potentially catching bugs at compile time. Finally, and
most importantly, for assertion (or parts of them) left with status check, the tool can
optionally produce a verification warning (also referred to as an “alarm”). In addition,
optional run-time checks can also be generated.

5.3 The Assertion Language

Two aspects of the assertion language are described here: the front-end language in
which assertions are written and included in the XC programs to be verified, and the
internal language in which such assertions are translated into and passed, together
with the HC IR program representation, to the core analysis and verification tools, the
Ciao assertion language.

5.3.1 The Ciao Assertion Language

We describe here the subset of the Ciao assertion language which allows expressing
global “computational” properties and, in particular, resource usage. We refer the
reader to [Puebla et al., 2000, Hermenegildo et al., 2005a, Hermenegildo et al., 2012b]
and their references for a full description of this assertion language.

For brevity, we only introduce here the class of pred assertions, which describes a
particular predicate and, in general, follows the schema:

:- pred Pred [: Precond] [=> Postcond] [+ Comp-Props].

where Pred is a predicate symbol applied to distinct free variables while Precond and
Postcond are logic formulae about execution states. An execution state is defined by
variable/value bindings in a given execution step. The assertion indicates that in any
call to Pred, if Precond holds in the calling state and the computation of the call suc-
ceeds, then Postcond also holds in the success state. Finally, the Comp-Props field is
used to describe properties of the whole computation for calls to predicate Pred that
meet Precond. In our application Comp-Props are precisely the resource usage proper-
ties.

For example, the following assertion for a typical append/3 predicate:

1 :- pred append(A,B,C)
2 : (list(A,num),list(B,num),var(C))
3 => (list(C,num),
4 rsize(A,list(ALb ,AUb ,num(ANl ,ANu))),
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5 rsize(B,list(BLb ,BUb ,num(BNl ,BNu))),
6 rsize(C,
7 list(ALb+BLb ,AUb+BUb ,
8 num(min(ANl ,BNl),max(ANu ,BNu)))))
9 + resource(steps ,ALb+1, AUb +1).

states that for any call to predicate append/3 with the first and second arguments
bound to lists of numbers, and the third one unbound, if the call succeeds, then the
third argument will also be bound to a list of numbers. It also states that an upper
bound on the number of resolution (execution) steps required to execute any of such
calls is AUb +1, a function on the length of list A. The rsize terms are the sized types
derived from the regular types, containing variables that represent explicitly lower and
upper bounds on the size of terms and subterms appearing in arguments. See Chap-
ter 3 for an overview of the general resource analysis framework and how sized types
are used.

The global non-functional property resource/3 (appearing in the “+” field), is used
for expressing resource usages and follows the schema:

resource(Res_Name, Low_Arith_Expr, Upp_Arith_Expr)

where Res_Name is a user-provided identifier for the resource the assertion refers to,
Low_Arith_Expr and Upp_Arith_Expr are arithmetic functions that map input data sizes
to resource usage, representing respectively lower and upper bounds on the resource
consumption.

Each assertion can be in a particular status, marked with the following prefixes,
placed just before the pred keyword: check (indicating the assertion needs to be checked),
checked (it has been checked and proved correct by the system), false (it has been
checked and proved incorrect by the system; a compile-time error is reported in this
case), trust (it provides information coming from the programmer and needs to be
trusted), or true (it is the result of static analysis and thus correct, i.e., safely approxi-
mated). The default status (i.e., if no status appears before pred) is check.

5.3.2 The XC Assertion Language

The assertions within XC files use instead a different syntax that is closer to the stan-
dard C notation and friendlier for C developers. These assertions are transparently
translated into Ciao assertions when XC files are loaded into the tool. The Ciao as-
sertions output by the analysis are also translated back into XC assertions and added
inline to a copy of the original XC file.

More concretely, the syntax of the XC assertions accepted by our tool is given by the
following grammar, where the non-terminal 〈identifier〉 stands for a standard C iden-
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tifier, 〈integer〉 stands for a standard C integer, and the non-terminal 〈ground-expr〉
for a ground expression, i.e., an expression of type 〈expr〉 that does not contain any C
identifiers that appear in the assertion scope (the non-terminal 〈scope〉).

〈assertion〉 ::= ‘#pragma’ 〈status〉 〈scope〉 ‘:’ 〈body〉

〈status〉 ::= ‘check’ | ‘trust’ | ‘true’ | ‘checked’ | ‘false’

〈scope〉 ::= 〈identifier〉 ‘(’ ‘)’
| 〈identifier〉 ‘(’ 〈arguments〉 ‘)’

〈arguments〉 ::= 〈identifier〉 | 〈arguments〉 ‘,’ 〈identifier〉

〈body〉 ::= 〈precond〉 ‘==>’ 〈cost-bounds〉 | 〈cost-bounds〉

〈precond〉 ::= 〈upper-cond〉 | 〈lower-cond〉
| 〈lower-cond〉 ‘&&’ 〈upper-cond〉

〈lower-cond〉 ::= 〈ground-expr〉 ‘<=’ 〈identifier〉

〈upper-cond〉 ::= 〈identifier〉 ‘<=’ 〈ground-expr〉

〈cost-bounds〉 ::= 〈lower-bound〉 | 〈upper-bound〉
| 〈lower-bound〉 ‘&&’ 〈upper-bound〉

〈lower-bound〉 := 〈expr〉 ‘<=’ ‘energy’

〈upper-bound〉 := ‘energy’ ‘<=’ 〈expr〉

〈expr〉 := 〈expr〉 ‘+’ 〈mult-expr〉
| 〈expr〉 ‘-’ 〈mult-expr〉

〈mult-expr〉 := 〈mult-expr〉 ‘*’ 〈unary-expr〉
| 〈mult-expr〉 ‘/’ 〈unary-expr〉

〈unary-expr〉 := 〈identifier〉
| 〈integer〉
| ‘sum’ ‘(’ 〈identifier〉 ‘,’ 〈expr〉 ‘,’ 〈expr〉 ‘,’ 〈expr〉 ‘)’
| ‘prod’ ‘(’ 〈identifier〉 ‘,’ 〈expr〉 ‘,’ 〈expr〉‘,’ 〈expr〉 ‘)’
| ‘power’ ‘(’ 〈expr〉 ‘,’ 〈expr〉 ‘)’
| ‘log’ ‘(’ 〈expr〉 ‘,’ 〈expr〉 ‘)’
| ‘(’ 〈expr〉 ‘)’
| ‘+’ 〈unary-expr〉
| ‘-’ 〈unary-expr〉
| ‘min’ ‘(’ 〈identifier〉 ‘)’
| ‘max’ ‘(’ 〈identifier〉 ‘)’
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XC assertions are directives starting with the token #pragma followed by the asser-
tion status, the assertion scope, and the assertion body. The assertion status can take
several values, including check, checked, false, trust or true, with the same mean-
ing as in the Ciao assertions. Again, the default status is check.

The assertion scope identifies the function the assertion is referring to, and pro-
vides the local names for the arguments of the function to be used in the body of the
assertion. For instance, the scope biquadCascade(state, xn, N) refers to the func-
tion biquadCascade and binds the arguments within the body of the assertion to the
respective identifiers state, xn, N. While the arguments do not need to be named in
a consistent way w.r.t. the function definition, it is highly recommended for the sake
of clarity. The body of the assertion expresses bounds on the energy consumed by the
function and optionally contains preconditions (the left-hand side of the ==> arrow)
that constrain the argument sizes.

Within the body, expressions of type 〈expr〉 are built from standard integer arith-
metic functions (i.e., +, -, *, /) plus the following extra functions:

• power(base, exp) is the exponentiation of base by exp;
• log(base, expr) is the logarithm of expr in base base;
• sum(id, lower, upper, expr) is the summation of the sequence of the values

of expr for id ranging from lower to upper;
• prod(id, lower, upper, expr) is the product of the sequence of the values

of expr for id ranging from lower to upper;
• min(arr) is the minimal value of the array arr;
• max(arr) is the maximal value of the array arr.

Note that the argument of min and maxmust be an identifier appearing in the assertion
scope that corresponds to an array of integers (of arbitrary dimension).

5.4 ISA/LLVM IR to HC IR Transformation

In this section we describe briefly the HC IR representation and the transformations
into it that we have developed in order to achieve the verification tool presented in
Section 5.2 and depicted in Figure 5.1. The transformation of ISA code into HC IR was
described in [Liqat et al., 2014b]. We provide herein an overview of the LLVM IR to HC
IR transformation.

The HC IR representation consists of a sequence of blocks where each block is rep-
resented as a Horn clause:

< bl ock_i d > (< par ams >) :− S1, . . . ,Sn .
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Each block has an entry point, that we call the head of the block (to the left of the
:− symbol), with a number of parameters < par ams >, and a sequence of steps (the

body, to the right of the :− symbol). Each of these Si steps (or literals) is either (the
representation of) an LLVM IR instruction, or a call to another (or the same) block. The
analyzer deals with the HC IR always in the same way, independent of its origin.

LLVM IR programs are expressed using typed assembly-like instructions. Each func-
tion is in SSA form, represented as a sequence of basic blocks. Each basic block is a
sequence of LLVM IR instructions that are guaranteed to be executed in the same or-
der. Each block ends in either a branching or a return instruction. In order to represent
each of the basic blocks of the LLVM IR in the HC IR, we follow a similar approach as
in the ISA-level transformation [Liqat et al., 2014b]. However, the LLVM IR includes an
additional type transformation as well as better memory modelling. It is explained in
detail in [Liqat et al., 2014a]. The main aspects of this process, are the following:

1. Infer input/output parameters to each block.

2. Transform LLVM IR types into HC IR types.

3. Represent each LLVM IR block as a HC IR block and each instruction in the LLVM
IR block as a literal (Si ).

4. Resolve branching to multiple blocks by creating clauses with the same signature
(i.e., the same name and arguments in the head), where each clause denotes one
of the blocks the branch may jump to.

The translator component is also in charge of translating the XC assertions to Ciao
assertions and back. Assuming the Ciao type of the input and output of the function
is known, the translation of assertions from Ciao to XC (and back) is relatively straight-
forward. The Pred field of the Ciao assertion is obtained from the scope of the XC
assertion to which an extra argument is added representing the output of the func-
tion. The Precond fields are produced directly from the type of the input arguments:
to each input variable, its regular type and its regular type size are added to the pre-
condition, while the added output argument is declared as a free variable. Finally the
Comp-Props field is set to the usage of the resource energy, i.e., a literal of the form
resource(energy, Lower, Upper) where Lower and Upper are the lower and upper
bounds from the energy consumption specification.

5.5 The General Resource Usage Verification Framework

In this section we describe the general framework for (static) resource usage verifica-
tion [Lopez-Garcia et al., 2010b, Lopez-Garcia et al., 2012] that we have specialized for
verifying energy consumption specifications of XC programs.
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The framework, that we introduced in [Lopez-Garcia et al., 2010b], extends the
criteria of correctness as the conformance of a program to a specification expressing
non-functional global properties, such as upper and lower bounds on execution time,
memory, energy, or user defined resources, given as functions on input data sizes.

Both program verification and debugging compare the actual semantics [[P ]] of a
program P with an intended semantics for the same program, which we will denote
by I . This intended semantics embodies the user’s requirements, i.e., it is an expres-
sion of the user’s expectations. In the framework, both semantics are given in the form
of (safe) approximations. The abstract (safe) approximation [[P ]]α of the concrete se-
mantics [[P ]] of the program is actually computed by (abstract interpretation-based)
static analyses, and compared directly to the (also approximate) specification, which is
safely assumed to be also given as an abstract value Iα. Such approximated specifica-
tion is expressed by assertions in the program. Program verification is then performed
by comparing Iα and [[P ]]α.

In this chapter, we assume that the program P is in HC IR form (i.e., a logic pro-
gram), which is the result of the transformation of the ISA or LLVM IR code correspond-
ing to an XC program. As already said, such transformation preserves the resource
consumption semantics, in the sense that the resource usage information inferred by
the static analysis (and hence the result of the verification process) is applicable to the
original XC program.

Resource usage semantics Given a program p, let Cp be the set of all calls to p. The
concrete resource usage semantics of a program p, for a particular resource of interest,
[[P ]], is a set of pairs (p(t̄ ),r ) such that t̄ is a tuple of data (either simple data such
as numbers, or compound data structures), p(t̄ ) ∈ Cp is a call to procedure1 p with
actual parameters t̄ , and r is a number expressing the amount of resource usage of the
computation of the call p(t̄ ). The concrete resource usage semantics can be defined as
a function [[P ]] : Cp 7→Rwhere R is the set of real numbers (note that depending on the
type of resource we can take other set of numbers, e.g., the set of natural numbers).

The abstract resource usage semantics is a set of 4-tuples:

(p(v̄) : c(v̄),Φ, i nputp , si zep )

where p(v̄) : c(v̄) is an abstraction of a set of calls. v̄ is a tuple of variables and c(v̄) is
an abstraction representing a set of tuples of data which are instances of v̄ . c(v̄) is an
element of some abstract domain expressing instantiation states. Φ is an abstraction
of the resource usage of the calls represented by p(v̄) : c(v̄). We refer to it as a resource
usage interval function for p, defined as follows:

• A resource usage bound function for p is a monotonic arithmetic function, Ψ :
S 7→ R∞, for a given subset S ⊆ Rk , where R is the set of real numbers, k is the

1Also called predicate in the HC IR.
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number of input arguments to procedure p and R∞ is the set of real numbers
augmented with the special symbols ∞ and −∞. We use such functions to ex-
press lower and upper bounds on the resource usage of procedure p depending
on input data sizes.

• A resource usage interval function for p is an arithmetic function, Φ : S 7→ IR,
where S is defined as before and IR is the set of intervals of real numbers, such
that Φ(n̄) = [Φl (n̄),Φu(n̄)] for all n̄ ∈ S, where Φl (n̄) and Φu(n̄) are resource usage
bound functions that denote the lower and upper endpoints of the interval Φ(n̄)
respectively for the tuple of input data sizes n̄. Although n̄ is typically a tuple of
natural numbers, we do not want to restrict our framework. We require thatΦ be
well defined so that ∀n̄ (Φl (n̄) ≤Φu(n̄)).

i nputp is a function that takes a tuple of data t̄ and returns a tuple with the input
arguments to p. This function can be inferred by using the existing mode analysis or
be given by the user by means of assertions. si zep (t̄ ) is a function that takes a tuple of
terms t̄ and returns a tuple with the sizes of those data under the size measure used by
our improved analysis described in Chapter 3).

In order to make the presentation simpler, we will omit the i nputp and si zep func-
tions in abstract tuples, with the understanding that they are present in all such tuples.

Intended meaning The intended approximated meaning Iα of a program is an ab-
stract semantic object with the same kind of tuples: (p(v̄) : c(v̄),Φ, i nputp , si zep ), rep-
resented by using Ciao assertions (which are part of the HC IR) of the form:

:- check Pred [: Precond ] + ResUsage.
where p(v̄) : c(v̄) is defined by Pred and Precond, and Φ is defined by ResUsage. The
information about i nputp and si zep is implicit in Precond and ResUsage. The con-
cretization of Iα, γ(Iα), is the set of all pairs (p(t̄ ),r ) such that t̄ is a tuple of terms
and p(t̄ ) is an instance of Pred that meets precondition Precond, and r is a number
that meets the condition expressed by ResUsage (i.e., r lies in the interval defined by
ResUsage) for some assertion.

Example 5.5.1. Consider the following HC IR program that computes the factorial of
an integer.

1 fact(N,Fact) :- N=<0, Fact =1.
2 fact(N,Fact) :- N>0, N1 is N-1,
3 fact(N1,Fact1), Fact is N*Fact1.

One could use the assertion:

1 :- check pred fact(N,F)
2 : (num(N), v a r (F))
3 => (num(N), num(F),

56



4 r s i z e (N, num(Nmin , Nmax)),
5 r s i z e (F, num(Fmin , Fmax)))
6 + r e s o u r c e (steps , Nmin+1, Nmax +1).

to express that for any call to fact(N,F) with the first argument bound to a number
and the second one a free variable, the number of resolution steps performed by the
computation is always between Nmin+1 and Nmax+1, where Nmin and Nmax respec-
tively stand for a lower and an upper bound of N. In this concrete example, the lower
and upper bounds are the same, i.e., the number of resolution steps is exactly N+1, but
note that they could be different. □

Example 5.5.2. The assertion in Example 5.5.1 captures the following concrete seman-
tic tuples:

( fact(0, Y), 1 ) ( fact(8, Y), 9 )

but it does not capture the following ones:

( fact(N, Y), 1 ) ( fact(1, Y), 35 )

the left one in the first line above because it is outside the scope of the assertion (i.e.,
since N is a variable, it does not meet the precondition Precond), and the right one
because it violates the assertion (i.e., it meets the precondition Precond, but does not
meet the condition expressed by ResUsage). □

Partial correctness: comparing to the abstract semantics Given a program p and
an intended resource usage semantics I , where I : Cp 7→ R, we say that p is partially
correct w.r.t. I if for all p(t̄ ) ∈ Cp we have that (p(t̄ ),r ) ∈ I , where r is precisely the
amount of resource usage of the computation of the call p(t̄ ). We say that p is partially
correct with respect to a tuple of the form (p(v̄) : cI (v̄),ΦI ) if for all p(t̄ ) ∈Cp such that
r is the amount of resource usage of the computation of the call p(t̄ ), it holds that: if
p(t̄ ) ∈ γ(p(v̄) : cI (v̄)) then r ∈ΦI (s̄), where s̄ = si zep (i nputp (t̄ )). Finally, we say that p
is partially correct with respect to Iα if:

• For all p(t̄ ) ∈ Cp , there is a tuple (p(v̄) : cI (v̄),ΦI ) in Iα such that p(t̄ ) ∈ γ(p(v̄) :
cI (v̄)), and

• p is partially correct with respect to every tuple in Iα.

Let (p(v̄) : c(v̄),Φ) and (p(v̄) : cI (v̄),ΦI ) be tuples expressing an abstract seman-
tics [[P ]]α inferred by analysis and an intended abstract semantics Iα, respectively,
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such that cI (v̄) ⊑ c(v̄),2 and for all n̄ ∈ S (S ⊆ Rk ), Φ(n̄) = [Φl (n̄),Φu(n̄)] and ΦI (n̄) =
[Φl

I (n̄),Φu
I (n̄)]. We have that:

(1) If for all n̄ ∈ S, Φl
I (n̄) ≤Φl (n̄) and Φu(n̄) ≤Φu

I (n̄), then p is partially correct with
respect to (p(v̄) : cI (v̄),ΦI ).

(2) If for all n̄ ∈ S,Φu(n̄) <Φl
I (n̄) orΦu

I (n̄) <Φl (n̄), then p is incorrect with respect to
(p(v̄) : cI (v̄),ΦI ).

Checking the two conditions above requires the comparison of resource usage bound
functions.

Resource Usage Bound Function Comparison Since the resource analysis we use is
able to infer different types of functions (e.g., polynomial, exponential, and logarith-
mic), it is also desirable to be able to compare all of these functions.

For simplicity of exposition, consider first the case where resource usage bound
functions depend on one argument. Given two resource usage bound functions (one
of them inferred by the static analysis and the other one given in an assertion/specifi-
cation present in the program), Ψ1(n) and Ψ2(n), n ∈ R, the objective of the compari-
son operation is to determine intervals for n in whichΨ1(n) >Ψ2(n),Ψ1(n) =Ψ2(n), or
Ψ1(n) <Ψ2(n). For this, we define f (n) =Ψ1(n)−Ψ2(n) and find the roots of the equa-
tion f (n) = 0. Assume that the equation has m roots, n1, . . . ,nm . These roots are inter-
section points of Ψ1(n) and Ψ2(n). We consider the intervals S1 = [0,n1), S2 = (n1,n2),
Sm = . . . (nm−1,nm), Sm+1 = (nm ,∞). For each interval Si , 1 ≤ i ≤ m, we select a value
vi in the interval. If f (vi ) > 0 (respectively f (vi ) < 0), thenΨ1(n) >Ψ2(n) (respectively
Ψ1(n) <Ψ2(n)) for all n ∈ Si .

There exist powerful algorithms for obtaining roots of polynomial functions. In our
implementation we have used the GNU Scientific Library [Galassi et al., 2009], which
offers a specific polynomial function library that uses analytical methods for finding
roots of polynomials up to order four, and uses numerical methods for higher order
polynomials.

We approximate exponential and logarithmic resource usage functions using Tay-
lor series. In particular, for exponential functions we use the following formulae:

ex ≈Σ∞
n=0

xn

n!
= 1+x + x2

2!
+ x3

3!
+ . . . f or al l x

ax = ex ln a ≈ 1+x ln a + (x ln a)2

2!
+ (x ln a)3

3!
+ . . .

2Note that the condition cI (v̄) ⊑ c(v̄) can be checked using the CiaoPP capabilities for comparing
program state properties such as types.
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In our implementation these series are limited up to order 8. This decision has been
taken based on experiments we have carried out that show that higher orders do not
bring a significant difference in practice. Also, in our implementation, the computa-
tion of the factorials is done separately and the results are kept in a table in order to
reuse them.

Dealing with logarithmic functions is more complex, as Taylor series for such func-
tions can only be defined for the interval (−1,1).

For resource usage functions depending on more than one variable, the compari-
son is performed using constraint solving techniques.

Safety of the Approximations When the roots obtained for function comparison are
approximations of the actual roots, we must guarantee that their values are safe, i.e.,
that they can be used for verification purposes, in particular, for safely checking the
conditions presented above. In other words, we should guarantee that the error falls
on the safe side when comparing the corresponding resource usage bound functions.
For this purpose we developed an algorithm for detecting whether the approximated
root falls on the safe side or not, and in the case it does not fall on the safe side, per-
forming an iterative process to increment (or decrement) it by a small value until the
approximated root falls on the safe side.

5.6 Using the Tool: Example

As an illustrative example of a scenario where the embedded software developer has
to decide values for program parameters that meet an energy budget, we consider the
development of an equaliser (XC) program using a biquad filter. In Figure 5.2 we can
see what the graphical user interface of our prototype looks like, with the code of this
biquad example ready to be verified. The purpose of an equaliser is to take a signal, and
to attenuate / amplify different frequency bands. For example, in the case of an audio
signal, this can be used to correct for a speaker or microphone frequency response. The
energy consumed by such a program directly depends on several parameters, such as
the sample rate of the signal, and the number of banks (typically between 3 and 30 for
an audio equaliser). A higher number of banks enables the designer to create more
precise frequency response curves.

Assume that the developer has to decide how many banks to use in order to meet
an energy budget while maximizing the precision of frequency response curves at the
same time. In this example, the developer writes an XC program where the number
of banks is a variable, say N. Assume also that the energy constraint to be met is that
an application of the biquad program should consume less than 125 milli-joules (i.e.,
125000000 nano-joules). This constraint is expressed by the following check assertion:
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Figure 5.2: Graphical User Interface of the prototype with the XC biquad program.

#pragma check biquadCascade(state,xn,N):
(1 <= N) ==> (energy <= 125000000)

where the precondition 1 <= N in the assertion (left-hand side of ==>) expresses that
the number of banks should be at least 1.

Then, the developer makes use of the tool, by selecting the following menu options,
as shown in the right-hand side of Figure 5.2: check_assertions, for Action Group,
res_plai, for Resource Analysis, mathematica, for Solver, llvm, for Analysis
Level (which will tell the analysis to take the LLVM IR option by compiling the source
code into LLVM IR and transforming it into HC IR for analysis) and finally source, for
Output Language (the language in which the analysis / verification results are shown).
After clicking on the Apply button below the menu options, the analysis is performed,
which infers a lower and an upper bound function for the energy consumption of the
program. Concretely those bounds are represented by the following assertion, which
is included in the output of the tool:

#pragma true biquadCascade(state,xn,N):
(16502087*N + 5445103 <= energy &&
energy <= 16502087*N + 5445103)

In this particular case, both bounds are identical. In other words, the energy con-
sumed by the program is exactly characterized by the following function, depending
on N only:

Ebiquad(N) = 16502087×N+5445103 nJ
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Then, the verification of the specification (check assertion) is performed by com-
paring the energy bound functions above with the upper bound expressed in the spec-
ification, i.e., 125000000, a constant value in this case. As a result, the two following
assertions are produced (and included in the output file of the tool):

#pragma checked biquadCascade(state,xn,N):
(1 <= N && N <= 7) ==> (energy <= 125000000)

#pragma false biquadCascade(state,xn,N):
(8 <= N) ==> (energy <= 125000000)

The first one expresses that the original assertion holds subject to a precondition
on the parameter N, i.e., in order to meet the energy budget of 125 milli-joules, the
number of banks N should be a natural number in the interval [1, 7] (precondition
1 <= N && N <= 7). The second one expresses that the original specification is not
met (status false) if the number of banks is greater or equal to 8.

Since the goal is to maximize the precision of frequency response curves and to
meet the energy budget at the same time, the number of banks should be set to 7. The
developer could also be interested in meeting an energy budget but this time ensuring
a lower bound on the precision of frequency response curves. For example by ensuring
that N≥ 3, the acceptable values for N would be in the range [3, 7].

In the more general case where the energy function inferred by the tool depends
on more than one parameter, the determination of the values for such parameters is
reduced to a constraint solving problem. The advantage of this approach is that the pa-
rameters can be determined analytically at the program development phase, without
the need of determining them experimentally by measuring the energy of expensive
program runs with different input parameters.

5.7 Related Work

As mentioned before, this work adds verification capabilities to the improved resource
analysis developed in this thesis, which we have specialized for energy consumption
of XC programs running on the XS1-L architecture, based on previous work on energy
consumption [Liqat et al., 2014b] and on a general framework for resource usage anal-
ysis [Navas et al., 2007b, Navas et al., 2008, Serrano et al., 2014b, Hermenegildo et al.,
2005a,Méndez-Lojo et al., 2007] and its support for resource verification [Lopez-Garcia
et al., 2010b, Lopez-Garcia et al., 2012], and the energy models of [Kerrison and Eder,
2015].

Regarding the support for verification of properties expressed as functions, the
closest related work we are aware of presents a method for comparison of cost func-
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tions inferred by the COSTA system for Java bytecode [Albert et al., 2010]. The method
proves whether a cost function is smaller than another one for all the values of a given
initial set of input data sizes. The result of this comparison is a Boolean value. How-
ever, as mentioned before, in our approach [Lopez-Garcia et al., 2010b, Lopez-Garcia
et al., 2012] the result is in general a set of subsets (intervals) in which the initial set
of input data sizes is partitioned, so that the result of the comparison is different for
each subset. Also, [Albert et al., 2010] differs in that comparison is syntactic, using a
method similar to what was already being done in the CiaoPP system: performing a
function normalization and then using some syntactic comparison rules. Our tech-
nique goes beyond these syntactic comparison rules. Moreover, [Albert et al., 2010]
only covers (generic) cost function comparisons while we have addressed the whole
process for the case of energy consumption verification. Note also that, although we
have presented our work applied to XC programs, the CiaoPP system can also deal
with other high- and low-level languages, including, e.g., Java bytecode [Navas et al.,
2009, Méndez-Lojo et al., 2007].

In a more general context, using abstract interpretation in debugging and/or ver-
ification tasks has now become well established. To cite some early work, abstrac-
tions were used in the context of algorithmic debugging in [Lichtenstein and Shapiro,
1988]. Abstract interpretation has been applied by Bourdoncle [Bourdoncle, 1993] to
debugging of imperative programs and by Comini et al. to the algorithmic debugging
of logic programs [Comini et al., 1995] (making use of partial specifications in [Co-
mini et al., 1999]), and by P. Cousot [Cousot, 2003] to verification, among others. The
CiaoPP framework [Bueno et al., 1997, Hermenegildo et al., 1999, Hermenegildo et al.,
2005a] was pioneering in many aspects, offering an integrated approach combining
abstraction-based verification, debugging, and run-time checking with an assertion
language.

5.8 Conclusions

We have specialized an existing general framework for resource usage verification for
verifying energy consumption specifications of embedded programs. These specifica-
tions can include both lower and upper bounds on energy usage, expressed as intervals
within which the energy usage is supposed to be included, the bounds (end points of
the intervals) being expressed as functions on input data sizes. Our tool can deal with
different types of energy functions (e.g., polynomial, exponential or logarithmic func-
tions), in the sense that the analysis can infer them, and the specifications can involve
them. We have shown through an example, and using the prototype implementation
of our approach within the Ciao/CiaoPP system and for the XC language and XS1-L
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architecture, how our verification system can prove whether such energy usage speci-
fications are met or not, or infer particular conditions under which the specifications
hold. These conditions are expressed as intervals of input data sizes such that a given
specification can be proved for some intervals but disproved for others. The specifi-
cations themselves can also include preconditions expressing intervals for input data
sizes. We have illustrated through this example how embedded software developers
can use this tool, and in particular for determining values for program parameters that
ensure meeting a given energy budget while minimizing the loss in quality of service.
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Chapter 6

Conclusions and Future Work

In this thesis we have presented improvements and extensions to a prototype imple-
mentation of general resource usage analysis for logic programs, based on the frame-
work of abstract interpretation. This analysis statically infers upper and lower bounds
on the usage that a logic program makes of a set of predefined or user defined resources.
The inferred bounds are in general functions of input data sizes. The analysis is com-
pletely automatic, without requiring annotations from the user, more than (optionally)
the specification of the entry call of the program we want to analyze. This specification,
as well as the extra information we (optionally) can provide to the analysis, and the re-
sults of the analysis, are in the form of assertions in the source code.

The analysis is based on the setting up of recurrence relations that describe size
relations between input and output arguments, cardinality and resource consumption
of a set of predicates. As recurrence relations are not as useful as closed-form func-
tions, a key operation of the analysis is to solve or over-approximate these recurrences
with closed-form functions. While there exist several software tools able to solve or
bound recurrence relations, such as general Computer Algebra Systems (CAS), such
as Mathematica®, Maxima, etc., or specialized solvers (e.g., PURRS or PUBS), none
of these tools alone is able to handle all of the relations that could arise during the
analysis of a program. In this thesis we have designed and implemented a modular
solver architecture, in charge of all the algebraic operations, and, in particular of solv-
ing or bounding recurrence relations. This architecture overcomes many limitations
and problems of the current solvers. Firstly, it allows to integrate many existing solvers,
such as well-known CASs, and specialized solvers, deciding which one to use based on
a previous classification of recurrence relations. By using a common expression syn-
tax (called algebraic expression syntax), our architecture also allows to easily combine
results from different back-end solvers. Secondly, it can be easily extended, both by in-
tegrating a new back-end solver to the framework, or by defining a strategy for solving
relations. Strategies can be seen as meta-solvers, in the sense that they define particu-
lar algorithms for solving recurrence relations, by making use of the services provided
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by back-end solvers, through the common interface defined in the architecture.

Another contribution of this thesis has been the implementation of a specialized
solver for a particular class of recurrence relations that are very common in practice
(in the presence of programs with accumulating parameters), but cannot be handled
directly by most of the solvers. Our approach is based on the synthesis of linear ranking
functions for bounding the number of times the recursive case of a recurrence can be
applied, before reaching a base case.

We have also improved the design and implementation of the mentioned prototype
for resource usage analysis based on abstract interpretation, integrated in the CiaoPP
abstract interpretation framework, PLAI. The main benefits of the work we have done
in this thesis, have been a better integration of the analysis with the rest of the system,
and making it more effective, practical and maintainable, representing a step forward
to industrial level applicability.

Finally, we have leveraged the CiaoPP resource verification framework and spe-
cialized it for verifying energy consumption specifications of embedded imperative
programs written in the XC language (the work was published in [Lopez-Garcia et al.,
2015]), and tested it in a real industrial case study. To achieve this, we also have inte-
grated the new abstract interpretation-based resource analysis into the CiaoPP general
framework for resource verification, so that the resource usage information inferred by
the new analysis can be compared against specifications.

Regarding future directions of this research, we can mention resource usage anal-
ysis for concurrent programs. Concurrent programming is currently the mainstream
technique to improve system performance. Many chip manufacturers are turning to
multi-core processor designs as a way of increasing performance. Concurrency is in-
herently present in data centers applications, distributed systems and cloud services.
The amount of energy consumed by these kind of architectures, not only for computa-
tion and communication but also for cooling, is impressively high. Therefore, the use
of a resource analysis tool for estimating the energy consumption of concurrent pro-
grams will potentially contribute to reducing the footprint of energy usage worldwide,
and will have an important impact on the industry in terms of energy and economic
savings.

However, while resource usage analysis for sequential programming languages has
received considerable attention, in concurrent programming there are comparatively
much less results, due in part to the complexity that this paradigm adds to the prob-
lem. The execution of a concurrent program is achieved by interleaving the execution
of its threads, according to some scheduler algorithm. This results in a combinatorial
explosion of possible execution states, making the problem of exhaustive analysis in-
tractable. Thus, developing effective tools for inferring resource usage of concurrent
systems is an important challenge that will contribute to the applicability of the tool in
the industry. In this sense, as a future work we will study the use of abstract interpreta-
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tion as the theoretical framework for the development of a resource usage analysis for
concurrent programs, because of its successful application to the sequential case and
to the inference of some safety properties for concurrent programs. In order to tackle
down the problem of thread interaction, we plan to study the use of Rely-guarantee
proof methods, such as the ones described in in [Miné, 2012], for the representation of
such interactions.
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