
TECHNICAL REPORT: CLIP-1/2023.0

A Methodology for Designing and Composing
Abstract Domains Using Rewriting Rules ⋆

Daniel Jurjo1,2, Jose F. Morales1,2,
Pedro Lopez-Garcia1,3, and Manuel V. Hermenegildo1,2

1 IMDEA Software Institute, Spain
2 Universidad Politécnica de Madrid (UPM), Spain

3 Spanish Council for Scientific Research (CSIC), Spain

Abstract. Abstract interpretation allows constructing sound static
analysis tools by safely approximating program semantics. Frameworks
for abstract interpretation typically provide an implementation of a spe-
cialized iteration strategy to compute an abstract fixpoint, as well as
a number of abstract domains in order to approximate different pro-
gram properties. However, the design and implementation of additional
domains, as well as their combinations, is eventually necessary to suc-
cessfully prove arbitrary program properties. We propose a rule-based
methodology for rapid design and prototyping of new domains and com-
bining existing ones, with a focus on the analysis of logic programs.
We provide several examples for domains combining numerical properties
and data types and apply them to proving complex program properties.

Keywords: Abstract Domain Development, Abstract Domain Combination,
Abstract Interpretation, Static Analysis, Logic Programming, Prolog.

1 Introduction
The technique of Abstract Interpretation [10] allows constructing sound pro-
gram analysis tools which can extract properties of a program by safely approx-
imating its semantics. Abstract interpretation proved practical and effective in
the context of (Constraint) Logic Programming ((C)LP) [17,24,25,31,32,39,40],
which was one of its first application areas [18], and the techniques developed
in this context have also been applied to the analysis and verification of other
programming languages by using semantic translation into (Constraint) Horn
Clauses (CHCs) [13,19,27]. Frameworks for abstract interpretation (such as
⋆ Partially funded by MICINN projects PID2019-108528RB-C21 ProCode, TED2021-

132464B-I00 PRODIGY, and FJC2021-047102-I, and by the Tezos foundation. We
also thank the anonymous reviewers for their very useful feedback.

2 D. Jurjo, J.F. Morales, P. Lopez-Garcia, M.V. Hermenegildo

PLAI/CiaoPP [20] or Astrée [12]) provide efficient implementations of algorithms
for computing abstract fixpoints as well as several abstract domains, which ap-
proximate different program properties. Moreover, due to undecidability [7,10],
loss of precision is inevitable, which makes the design (and implementation) of
more domains, as well as their combinations, eventually necessary to successfully
prove arbitrary program properties. In order to facilitate this task, we propose
a rule-based approach for the design and rapid prototyping of new domains,
as well as composing and combining existing ones. Our techniques are partially
inspired in logic-based languages for implementing constraint domains [14]. We
provide several examples for domains combining numerical properties and data
types, and apply them to proving complex properties of Prolog programs.

Related work. The challenges of designing sound, precise, and efficient analyses
have made static analysis designers search for ways to simplify these tasks, and
logic programming-related technologies such as Datalog (see, e.g., [4,8,41]) have
in fact become quite popular recently in this context. However, these approaches
are quite different from the abstract interpretation framework -based approaches
that we address herein, where significant parts of the analysis (such as abstract-
ing execution paths) are taken care of by the framework. In addition, the lack of
data structures makes the Datalog approach less natural for defining domains in
our context. Some more general, Datalog-derived languages have been proposed
that are more specifically oriented to the implementation of analyses, such as
FLIX [26], a form of Datalog with lattices, which has been used to define several
types of analyses for imperative programs, and other work generalizes Datalog
with constraints (see again [13]). However, these approaches do not provide per
se a specific formalism for defining the abstract domains as in our work. Another
promising approach to performing static analysis of complex programs involving
algebraic data types is [1], which introduces a transformation technique to con-
vert programs to deal only with basic data types (integers, booleans) that can
be handled with other CHC solvers. This method can analyze CHC programs
with data types and infer properties like sortedness, but the approach is very
different from ours (which works directly on the original program using abstract
interpretation). A previous rule-based approach to defining abstract domains
was proposed in [29], using Constraint Handling Rules (CHR) [14] but this work
only handled conjunctions of constraints in a simple dependency domain, and
did not address other fundamental operations such as the least upper bound, nor
the application for combining domains. Finally, rewriting systems have also been
used to prove the correctness of abstract unifications [5].

2 Preliminaries
Lattices. A partial order on a set X is a binary relation ⊑ that is reflexive,
transitive and anti-symmetric. The least upper bound (lub) or join of two ele-
ments of a set a, b ∈ X, denoted by a ⊔ b is the smallest element in X greater
than both of them (a ⊑ a⊔ b ∧ b ⊑ a⊔ b). If it exists, it is unique. Similarly, the
greatest lower bound (glb) or meet is defined as the greatest element less than
both. A partially ordered set or poset is a pair (X,⊑) where X is a set and ⊑

Title Suppressed Due to Excessive Length 3

is a partial order relation on X. X is a lattice if (X,⊑) is a poset and for every
two elements of X there exist a meet and a join. A lattice is complete if every
subset S ⊆ X has both a supremum and an infimum (which are unique). The
maximum element of a complete lattice is called top and the minimum bottom
(denoted by ⊤ and ⊥ resp.).

Abstract interpretation. The standard, collecting semantics of a program can
be described in terms of a concrete domain that contains sets of execution states,
e.g., in the case of Logic Programming it typically consists of sets of variable
substitutions that may occur at run time. The main idea behind abstract in-
terpretation is to interpret the program over a special, abstract domain whose
elements are finite representations of possibly infinite sets of actual substitutions
in the concrete domain. We denote the concrete domain as D and the abstract
domain as Dα. We denote the functions that relate sets of concrete substitutions
with abstract substitutions as the abstraction function α : D → Dα and the con-
cretization function γ : Dα → D. The concrete domain is typically a complete
lattice with the set inclusion order which induces an ordering relation in the ab-
stract domain that we represent by ⊑. Under this relation the abstract domain is
usually a complete lattice and (D,α,Dα, γ) is a Galois insertion/connection [10].

The Top-down Algorithm. Top-down analyses build an analysis graph start-
ing from a series of program entry points. This approach was first used in an-
alyzers such as MA3 and Ms [40], and matured in the PLAI analyzer [31,32],
now also referred to as the top-down algorithm or solver, using an optimized
fixpoint algorithm. It was later applied to the analysis of CLP/CHCs [17] and
imperative programs [13,19,27,28], and used in analyzers such as GAIA [25], the
CLP(R) analyzer [24], or Goblint [37,38]. The graph inferred by PLAI is a finite,
abstract object whose concretization approximates the (possibly infinite) set of
(possibly infinite) maximal AND-trees of the concrete semantics. The PLAI ap-
proach separates the abstraction of the structure of the concrete trees (the paths
through the program) from the abstraction of the substitutions at the nodes in
those concrete trees (the program states in those paths). The first abstraction
(Tα) is typically built-in, as an abstract domain of analysis graphs. The frame-
work is parametric on a second abstract domain, Dα, whose elements appear
as labels in the nodes of the analysis graph. We refer to such nodes with tu-
ples ⟨p(V1, . . . , Vn), λ

c, λs⟩, where p is a predicate in the program under analysis,
and λc, λs (both elements of Dα), are respectively, the abstract call and success
substitutions over the variables V1, . . . , Vn. Such tuples represent the set of (con-
crete) call and success substitutions of the nodes in the concrete AND-trees. A
more detailed recent discussion can be found in [13]. Many other PLAI extensions
have been proposed, such as incremental and modular versions [15,16,22,34].

Example 1. Fig. 1 (from [16]) shows a possible analysis graph (center) for a set
of CHCs (left) that encode the computation of the parity of a binary message
using the exclusive or, denoted xor. E.g., the parity of message [1,0,1] is 0.
We consider an abstract domain (right) with the following abstract values: ⊥

s.t. γ(⊥) = ∅, z (zero) s.t. γ(z) = {0}, o (one) s.t. γ(o) = {1}, b (bit) s.t.

4 D. Jurjo, J.F. Morales, P. Lopez-Garcia, M.V. Hermenegildo

main(Msg,P) :-

par(Msg,0,P).

par([],P,P).

par([C|Cs],P0,P) :-

xor(C,P0,P1),

par(Cs,P1,P).

xor(0,0,0).

xor(0,1,1).

xor(1,0,1).

xor(1,1,0).

⊤

b

z o

⊥

⟨ main(Msg,P),
A: (Msg/⊤, P/⊤),

(Msg/⊤, P/b) ⟩

⟨ par(Msg,X,P),
B: (Msg/⊤, X/z, P/⊤),

(Msg/⊤, X/z, P/b) ⟩

⟨ par(Msg,X,P),
C: (Msg/⊤, X/b, P/⊤),

(Msg/⊤, X/b, P/b) ⟩

⟨ xor(C,P0,P1),
D: (C/⊤, P0/z, P1/⊤),

(C/b, P0/z, P1/b) ⟩

⟨ xor(C,P0,P1),
E: (C/⊤, P0/b, P1/⊤),

(C/b, P0/b, P1/b) ⟩

Fig. 1. A set of CHCs for computing parity (left) and a possible analysis graph (right).

γ(b) = {0, 1}, and ⊤ such that γ(⊤) is the set of all concrete values. Consider an
initial abstract goal Gα = ⟨ main(Msg,P), (Msg/⊤, P/⊤) ⟩, representing that the
arguments of main can be bound to any concrete value (see node A in the figure).
Node B = (⟨ par(Msg,X,P), (Msg/⊤, X/z, P/⊤), (Msg/⊤, X/z, P/b) ⟩) captures the
fact that par may be called with X bound to 0 in γ(z) and, if such a call succeeds,
the third argument P will be bound to any value in γ(b) = {0, 1}. Note that
node C captures the fact that, after this call, there are other calls to par where
X/b. Edges in the graph capture calls and paths. For example, two such edges
exist from node B, denoting that par may call xor (edge from B to D) or par itself
with a different call description (edge from B to C).

As mentioned before, the abstract interpretation-based algorithms that we
are considering are parametric on the data-related abstract domain, i.e., they
are independent of the data abstractions used. Each such abstract domain is
then defined by providing (we follow the description in [15,22]): a number of
basic lattice operations (⊑,⊓,⊔ and, optionally, the widening ∇ operator); the
abstract semantics of the primitive constraints (representing the built-ins, or
basic operations of the source language) via abstract transfer functions (fα); and
the following additional instrumental operations over abstract substitutions:
– Aproj(λ,Vs): restricts the abstract substitution λ to the set of variables Vs.
– Aextend(Ak,n, λ

c, λs): propagates the abstract success substitution λs, de-
fined over the variables of the n-th literal of clause k (Ak,n), to λc, which is
defined over all the variables of clause k (which contains Ak,n in its body).

– Acall(A, λ,Ak): performs the abstract call, i.e., the unification (conjunction)
of a literal call ⟨A, λ⟩ with the head Ak of a clause k defining the predicate
of A. The result is a substitution in terms of the variables of clause k.

– Aproceed(Ak, λ
s
k, A): performs the abstract proceed, i.e., the reverse opera-

tion of Acall. It unifies the head of clause k (Ak) and the abstract substi-
tution at the end of clause k (λs

k) with the original call A to produce the
success substitution over the variables of A.

– Ageneralize(λ, {λ1, . . . , λk}): joins λ with the set of abstract substitutions
{λ1, . . . , λk}, all over the same variables. The result is an abstract substitu-
tion greater than or equal to λ. It either returns λ, when no generalization is

Title Suppressed Due to Excessive Length 5

needed; performs the least upper bound (⊔); or performs the widening (∇)
of λ together with {λ1, . . . , λk}, depending on termination, precision, and
performance needs.

Note that this general approach and operations are not specific to logic programs,
applying in general to a set of blocks that call each other, possibly recursively.

Combining Abstract Domains. The idea of combining abstract domains to
gain precision is already present in [11], showing that precision can be gained
by removing redundancies and introducing new basic operations. Let E be a
concrete domain and (E,αi, Di, γi), i ∈ {1, . . . , n} Galois insertions. The di-
rect product domain is a quadruple (E,αx, Dx, γx) where Dx = D1 × · · · ×Dn,
γx : Dx → E such that γx((d1, . . . , dn)) = γ1(d1) ⊓E · · · ⊓E γn(dn) and
αx : E → Dx where αx(e) = (α1(e), . . . , αn(e)). However the direct product
domain is not a Galois insertion, as shown in [9]. Consider a direct product
(E,αx, Dx, γx) and the relation ≡⊆ Dx×Dx defined by d ≡ d′ ⇔ γx(d) = γx(d

′).
The reduced product domain is a quadruple (E,α≡, D≡, γ≡) where α≡ : E → D≡
such that α≡(e) = [αx(e)]≡ and γ≡ : D≡ → E such that γ≡([d]≡) = γx(d). Let
µ : E → E be a concrete function and µi : Di → Di, for i ∈ {1, . . . , n}, its ap-
proximation via γi. The reduced product function, µ≡ : D≡ → D≡ is defined by
µ≡([d]≡) = [(µ1(d1)), . . . , µn(dn)]≡ where (d1, . . . , dn) = ⊓Dx

[d]≡. In [9] a prac-
tical approach to such domain combinations is presented, which simplifies proofs
and domain implementation reuse. It also shows that it is possible in practice
to benefit from such combinations, obtaining a high degree of precision. Many
domain combinations are used in the context of logic programs: groundness and
sharing, modes and types, sharing and freeness, etc.

3 The Approach

Using property literals/constraints. The CiaoPP framework includes, in
addition to the PLAI analysis algorithm, an assertion language [6,21,33] that
is used for multiple purposes, including reporting static analysis results to the
user. These results are expressed as assertions which contain conjunctions of
literals of special predicates that are labeled as properties, which we also refer
sometimes as constraints. An example of such a conjunction is “ground(X),
Y > 0,” where ground/1 and >/2 are examples of properties/constraints. This
allows representing the analysis information inferred by the different domains
available in the system syntactically as terms, independently of the internal
representations used by the domains. Often, the same properties are reused to
represent anaysis results from domains that infer similar types of information.
Also, every abstract domain defines operations for translating from the internal
representation of abstract elements into these properties, which thus constitute
in practice a common language among domains. A first key component of our
approach is to make use of such properties while defining the domain operations.

Abstract-Domain Rules. A second component of our approach is a specialized
language, which we call Abstract-Domain Rules (ADRs), aimed at easing the

6 D. Jurjo, J.F. Morales, P. Lopez-Garcia, M.V. Hermenegildo

Algorithm 1 AND-rewriting algorithm
1: function and-rewriting(Store,Context ,R∧)
2: R← ApplicableRule(Store,Context ,R∧)
3: if R = false then
4: return Store
5: else
6: (RmEls,NewEls)← ApplyRule(R,Store,Context)
7: Store ′ ← (Store \ RmEls) ∪NewEls
8: return and-rewriting(Store ′,Context ,R∧)

process of defining domain operations. It consists of AND- and OR-rules with
the following syntax:

AND-rules : l1, . . . , ln | g1, . . . , gl ⇒ r1, . . . , rm # label (1)
OR-rules : l1 ; l2 | g1, . . . , gl ⇒ r1, . . . , rm # label (2)

where l1, . . . , ln, r1, . . . , rm are elements of a set of properties L and each
g1, . . . , gl is an element of C1, . . . , Cs, which are also sets of properties. The el-
ements l1, . . . , ln constitute the left side of the rule; r1, . . . , rm the right side;
and g1, . . . , gl the guards. Intuitively, rules operate on a “store,” which contains
a subset of properties from L, while checking the contents of s stores containing
properties respectively from C1, . . . , Cs (the “context”).

Since the language is parameterized by the sets of properties being used, we
will use AND(L, (C1, . . . , Cs)) (resp. OR(L, (C1, . . . , Cs))) to refer to the language
of AND-rules (resp. OR-rules) where the left and right sides are elements of L
and the guards are elements of C1, . . . , Cs.

We say that an abstract substitution λ is in extended form iff for each program
variable x ∈ vars(λ) there is a unique element of λ which captures all the
information related to x. The extended form is frequently used in non-relational
domains (although usually elements for which there is no information may be
not shown).

Example 2. Consider a program with variables {X, Y, Z}.
– The abstract substitution {X/i(1, 2), Y/i(0, 1), Z/i(−∞,∞)} of the non-

relational domain of intervals is in extended form (as usual for this domain).
– The abstract substitutions of the bit domain in Fig. 1 are in extended form.
– The set representation ([[X, Y], [Z]]) of the sharing property [23,30] is

not in extended form, but it can be transformed into a (more verbose) ex-
tended form [sh(X, [Y]), sh(Y, [X]), sh(Z, [])], where the property
sh(A, ShSet) expresses that all the variables in ShSet share with A.

Let L, C1, . . . , Cn be lattices and Context an element of P(C1)×· · ·×P(Cn) where
P(S) denotes the powerset of S. We also assume that abstract substitutions are
in extended form representation.

AND semantics. Let R∧ ⊆ AND(L, (C1, . . . , Cn)) and Store ⊆ L. The op-
erational meaning of applying the set of rules R∧ over store Store in context

Title Suppressed Due to Excessive Length 7

Context is given by function and-rewriting(Store,Context ,R∧) defined in Al-
gorithm 1. Function ApplicableRule(Store,Context ,R∧) (Line 2), returns a rule
R ∈ R∧ of the form Left | Guard ⇒ Right such that Left unifies with elements
RmEls in Store with unifier θ, and Guard holds in Context , if such a rule exists,
otherwise it returns false. Then, function ApplyRule(R,Store,Context) (Line 6)
returns the pair (RmEls,NewEls), where NewEls are the elements in (Right)θ,
i.e., the instance of the right hand side of the unifying rule. Finally, a new store
Store′ is created by taking out RmEls from, and adding NewEls to Store, and
the process is continued.

Example 3. Consider the sets Store = {leq(X,+∞), leq(Y,+∞), leq(Z,+∞)},
Context = {X ≤ Y+ Z, Y ≤ Z+ 3, Z = 0} and R∧ = {

leq(A,+∞) | A = Val ⇒ leq(A, V al) # eq ,

leq(A,+∞), leq(B, V al1) | A ≤ B+Val2 ⇒
leq(A, V al1 + V al2), leq(B, V al1) # addVInt ,

leq(A,+∞), leq(B, V al1), leq(C, V al2) | A ≤ B+ C⇒
leq(A, V al1 + V al2), leq(B, V al1), leq(C, V al2) # addVarVar }

Then, Algorithm 1 (AND-rewriting) proceeds as follows:
– In Line 2, function ApplicableRule(Store,Context ,R∧) returns in R the rule

with eq label (if no rule were applicable it would return false).
– ApplyRule(R,Store,Context) returns the pair ({leq(Z,+∞)}, {leq(Z, 0)}).
– The new store is (Line 7) Store ′ = ({leq(X,+∞), leq(Y,+∞), leq(Z,+∞)}
\ {leq(Z,∞)}) ∪ {leq(Z, 0)} = {leq(X,∞), leq(Y,+∞), leq(Z, 0)}.

– The recursive call in Line 8 selects the addVInt rule and applies it, obtaining
Store ′ = {leq(X,+∞), leq(Y, 3), leq(Z, 0)}.

– The next recursive call in Line 8 selects the addVarVar rule, whose applica-
tion obtains Store ′ = {leq(X, 3), leq(Y, 3), leq(Z, 0)}.

– Finally, since there is no applicable rule in the next recursive call, R is
assigned false (Line 2) and the process finishes, returning the current store.

OR semantics. Let R∨ ⊆ OR(L, (C1, . . . , Cn)) and Storei ⊆ L, 1 ≤ i ≤ m.
The operational meaning of applying the set of rules R∨ over the set of
m stores {Store1, . . . ,Storem} in context Context is given by function or-
rewriting({Store1, . . . ,Storem},Context ,R∨), defined in Algorithm 2.

Example 4. Consider the sets Store1 = {leq(X, Y), leq(Y,+∞), leq(Z, X)},
Store2 = {leq(X, 3), leq(Y,+∞), leq(Z, Y)}, Context = {Y >= 3}, and R∨ = {

leq(A, V al1) ; leq(A, V al2) |Val1 ≥ Val2 ⇒ leq(A, V al1) # grval ,

leq(A, V al1) ; leq(A, V al1)⇒ leq(A, V al1) # identical }
Then, or-rewriting({Store1,Store2},Context ,R∨) proceeds as follows:
– The condition in Line 2 holds, so that, after selecting the two stores (Line 3),

the call to or-rewriting-pair (Line 4) calls function apply-or-rules in
turn (Line 10), which selects the rule with label grval (Line 19). 4

4 In this context, functions ApplicableRule and ApplyRule are similar to the ones defined
for AND-rules, but the left hand side of the OR-rules is unified with two stores.

8 D. Jurjo, J.F. Morales, P. Lopez-Garcia, M.V. Hermenegildo

Algorithm 2 OR-rewriting algorithm
1: function or-rewriting(Stores,Context ,R∨)
2: if |Stores| > 1 then
3: (Store1,Store2)← takeTwo(Stores)
4: Store ← or-rewriting-pair(Store1,Store2,Context ,R∨)
5: Stores ′ ← (Stores \ {Store1,Store2}) ∪ {Store}
6: return or-rewriting(Stores ′,Context ,R∨)
7: else
8: return Stores
9: function or-rewriting-pair(Store1,Store2,Context ,R∨)

10: (St1,St2,RewSt)← apply-or-rules(Store1,Store2,Context ,R∨, ∅)
11: if St1 = St2 then
12: return St1 ∪ RewSt
13: else
14: Ints ← St1 ∩ St2
15: Diffs ← (St1 \ Ints) ∪ (St2 \ Ints)
16: TopInfo ← sendToTop(Diffs)
17: return RewSt ∪ Ints ∪ TopInfo

18: function apply-or-rules(Store1,Store2,Context ,R∨,AccStore)
19: R← ApplicableRule(Store1,Store2,Context ,R∨)
20: if Store1 = Store2 ∨R = false then
21: return (Store1,Store2,AccStore)
22: else
23: (MSt1,MSt2,RElems)← ApplyRule(R,Store1,Store2,Context)
24: St1 ← Store1 \MSt1
25: St2 ← Store2 \MSt2
26: AccSt ← AccStore ∪ RElems
27: return apply-or-rules(St1,St2,Context ,R∨,AccSt)

– The condition in Line 20 does not hold, so the rule is applied (Line 23) obtain-
ing: MSt1 = {leq(X, Y)}, MSt2 = {leq(X, 3)}, and RElems = {leq(X, Y)}.

– The stores are updated (Lines 24–26), obtaining St1 = {leq(Y,+∞),
leq(Z, X)}, St2 = {leq(Y,+∞), leq(Z, Y)}, and AccSt = {leq(X, Y)}.

– The recursive call to apply-or-rules is performed (Line 27). In this new
invocation, the rule with label identical is selected (Line 19), and since con-
dition in Line 20 does not hold either, such a rule is applied (Line 23).

– The stores are updated (Lines 24–26), obtaining: St1 = {leq(Z, X)}, St2 =
{leq(Z, Y)}, and AccSt = {leq(X, Y), leq(Y,+∞)}.

– A new recursive invocation of apply-or-rules is performed (Line 27). Now,
the condition in Line 20 does not hold because there is no applicable rule
(R = false in Line 19), so that the apply-or-rules “loop” finishes in
Line 21, returning control to Line 10 with result St1 = {leq(Z, X)}, St2 =
{leq(Z, Y)}, and RewSt = {leq(X, Y), leq(Y,+∞)}.

– Now, the updates in Lines 14–16 obtain: Ints = ∅, Diffs =
{leq(Z, X), leq(Z, Y)}, and TopInfo = {leq(Z,+∞)}. Note that function

Title Suppressed Due to Excessive Length 9

Algorithm 3 AND-rewriting fixpoint
1: function AND-FIXP(λ, ⟨R∧

1 , . . . ,R∧
l ⟩)

2: (λ1, . . . , λm)← λ
3: for i ∈ {1, . . . , l} do
4: Context i ← (λ1, . . . , λi−1, λi+1, . . . , λm)
5: λrew

i ← and-rewriting(λi,Context i,R∧
i)

6: λrew ← (λrew
1 , . . . , λrew

l , λl+1, . . . , λm)
7: if areEqual(λ, λrew) then
8: return λrew

9: else
10: return and-fixp(λrew , ⟨R∧

1 , . . . ,R∧
l ⟩)

sendToTop assigns the top (⊤) value (of the corresponding lattice) to the
variables corresponding to the elements in the set Diffs: only variable Z in
this case, the one on the left hand side of leq(_, _).

– The call to or-rewriting-pair in Line 4 finishes, returning store Store =
{leq(X, Y), leq(Y,+∞), leq(Z,+∞)}, and the recursive call in Line 6 also
finishes, returning {Store} (since condition in line 2 does not hold and such
a result is returned in Line 8).

Connecting rule-based domains to PLAI. We now sketch how the pre-
viously defined AND-rules and OR-rules are connected to the abstract domain
operations introduced in Section 2. Let D1, . . . , Dm be a collection of m abstract
domains with lattices L1, . . . ,Lm and λ = (λ1, . . . , λm) an abstract substitution
of the combined analysis with abstract domains D1, . . . , Dm, where each λi is an
abstract substitution of domain Di, i.e., λi ⊆ Li. We want to perform a rewrit-
ing over a collection of domains D1, . . . , Dl, for some l s.t. l ≤ m. For each i in
{1, . . . , l}, let RC i = (D1, . . . , Di−1, Di+1, . . . , Dm), R∧

i ⊆ AND(Di,RC i) and
R∨

i ⊆ OR(Di,RC i). Then, the application of the collection of sets of AND-rules
R∧

1 , . . . ,R∧
l over λ (i.e., applying R∧

i over each λi in the corresponding context)
is a fixpoint computation, defined in Algorithm 3.

Termination of this computation is in principle the responsibility of the rule
writer, i.e., the rules provided should be confluent. It would be interesting to
introduce heuristics for ensuring termination, but this is beyond of the scope of
this paper, and for simplicity we assume that the algorithm always terminates.
Note that a limit on the number of iterations can always be set up in practice to
ensure termination or to improve performance, possibly at the prize of accuracy
loss (but of course always ensuring the correctness of the results).

Note that the rules may have different objectives. We may just be interested
in combining some existing domains. In this case each domain has its own prede-
fined operations and the objective of the rules is only to propagate the informa-
tion in the abstract substitutions among domains in order to improve precision.
We may instead want the rules to define a collection of domains D1, . . . , Dl ex-
ploiting the information inferred by domains Dl+1, . . . , Dm. In this case the rules
will implement general domain operations (usually reduced to set operations and

10 D. Jurjo, J.F. Morales, P. Lopez-Garcia, M.V. Hermenegildo

unifications) and the information will be mainly gathered from the information
obtained by the domains Dl+1, . . . , Dm, after the given operation.
Finally, given a domain operation (for example Aproj), we denote the corre-
sponding operation for domain Di as Aproji. Now the operations for rule-based
domains are:
– Aproj(λ,Vs) = (Aproj1(λ1,Vs), . . . ,Aprojm(λm,Vs)).
– Aextend(Ak,n, λ

c, λs) = AND-FIXP(λext , ⟨R∧
1 , . . . ,R∧

l ⟩) where λext =
(λext

1 , . . . , λext
m) and λext

j =Aextendj(Ak,n, λ
c
j , λ

s
j) for j ∈ {1, . . . ,m}.

– Acall(A, λ,Ak) = AND-FIXP(λcall , ⟨R∧
1 , . . . ,R∧

l ⟩) where λcall =
(λcall

1 , . . . , λcall
m), λcall

j =Acallj(A, λj , Ak) for j ∈ {1, . . . ,m}.
– Aproceed(Ak, λ

s
k, A) = AND-FIXP(λpri , ⟨R∧

1 , . . . ,R∧
l ⟩) where λpri =

(λpri
1 , . . . , λpri

m), λpri
j =Aproceedj(Ak, λ

s
kj , A) for j ∈ {1, . . . ,m}.

– Ageneralize(λ, {λ1, . . . , λk}) = AND-FIXP(λgen , ⟨R∧
1 , . . . ,R∧

l ⟩) where
λ = (λ1, . . . , λm), λgen = (λgen

1 , . . . , λgen
m), and:

• If we are defining domains D1, . . . , Dl, then, for j ∈ {l + 1, . . . ,m},
λgen
j = Ageneralizej(λj , {λ1

j , . . . , λ
k
j }), and for j ∈ {1, . . . , l},

λgen
j = OR-REWRITING(λtmp

j , (λtmp
1 , . . . , λtmp

j−1, λ
tmp
j+1, . . . , λ

tmp
m),R∨

j),
where λtmp

t = {λt} ∪ {λ1
t , . . . , λ

k
t } for t ∈ {1, . . . , l}, and λtmp

t = λgen
t for

t ∈ {l + 1, . . . ,m}.
• If we are combining domains D1, . . . , Dm, then, for j ∈ {1, . . . ,m},
λgen
j = Ageneralizej(λj , {λ1

j , . . . , λ
k
j }).

When referring to some operation of a domain Dj with j ∈ {1, . . . , l} (for ex-
ample Aprojj), if there is no given definition, a default one (Aprojdef) is used.
These default operations (marked as def) are defined as follows:
– Aprojdef (ASub,Vars) = {elem ∈ ASub | ∃v ∈ varset(elem) s.t. v ∈ Vars}.
– Aextenddef (A,ASub1 ,ASub2) = ASub1 ∪ASub2 .
– Acalldef (A,ASub, Ak) = Aprojdef (ASubk, varset(Ak)) where ASubk is ASub

after the unification of A and Ak.
– Aproceeddef (Ak, λ

s
k, A) = λpri where λpri is λpri

k after the unification of Ak

with A and λpri
k = Aprojdef (λ

s
k, varset(Ak)).

The built-ins are abstracted in each of the domains D1, . . . , Dn and then cap-
tured in the combined abstract substitution with the application of the corre-
sponding AND-rules. It is possible to define the abstraction predicates of given
built-ins if needed.

A motivating example: the Bit domain We return to the domain of Ex-
ample 1. We will use here the following abstract values (for a given variable X)
for additional readability: X/zero, X/one, X/bit , X/⊤, and X/⊥. In order to cor-
rectly capture this, our analysis should meet the following conditions, encoded
in the rules of Fig. 2: (i) If a unification X = 0 is encountered, then X should
be abstracted to X/zero; this behaviour is captured by Rule 3 (labeled abszero);
(ii) if a unification X = 1 is encountered, then X should be abstracted to X/one,
as is captured by Rule 4 (labeled absone); (iii) if a variable has been abstracted
to bot and also to any other element of the lattice, then it has to be kept as

Title Suppressed Due to Excessive Length 11

X/⊤ | X = 0⇒ X/zero # abszero (3)
X/⊤ | X = 1⇒ X/one # absone (4)
X/⊥ , X/Y⇒ X/⊥# glb1 (5)
X/⊤ , X/Y⇒ X/Y# glb2 (6)
X/one , X/zero ⇒ X/⊥# glb3 (7)
X/bit , X/zero ⇒ X/zero # glb4 (8)

X/bit , X/one ⇒ X/one # glb5 (9)

X/one ; X/zero ⇒ X/bit # lub1 (10)
X/⊥ ; X/Y⇒ X/Y# lub2 (11)
X/⊤ ; X/Y⇒ X/⊤# lub3 (12)
X/Y ; X/Y⇒ X/Y# lub4 (13)

Fig. 2. Sets of AND-rules and OR-rules capturing the behaviour of the bit domain.

bot , captured by Rule 5 (labeled glb1); (iv) if a variable has been abstracted
to ⊤ and to any other element of the lattice then it must be kept as the other
non-top element, captured by Rule 6 (labeled glb2); (v) if a variable X has been
abstracted to X/zero, and to X/one, then it has to be abstracted to X/⊥, cap-
tured by Rule 7 (labeled glb3); (vi) if a variable X has been abstracted to X/⊥
and to X/zero then it has to be kept as X/zero, captured by Rule 8 (labeled glb4);
(vii) if a variable X has been abstracted to X/bit and to X/one then it has to be
kept as X/one, captured by Rule 9 (labeled glb5).

In a similar fashion we need to describe the behaviour of the lub or join
of a pair of abstract substitutions. We do it as follows: (i) if a variable X has
been abstracted to X/zero in one sustitution and to X/one in other, then the
join is X/bit , captured by Rule 10 (labeled lub1); (ii) if a variable X has been
abstracted to X/⊥ in one sustitution and to anything else in the other, then the
lub is the latter, captured by Rule 11 (labeled lub2); (iii) if a variable X has been
abstracted to X/⊤ in one sustitution and to anything else in the other, then the
lub is X/⊤, this is captured by Rule 12 (labeled lub3); (iv) if a variable X has
been abstracted to the same value in both substitutions then the lub is such a
value, captured by Rule 13 (labeled lub4).

To also keep track of the structures that variables are bound to we will use
the depth-k domain, presented in Appendix A. So the rules presented in Fig 2
are subsets of AND(Bit ,Depth-k) and OR(Bit ,Depth-k) respectively.

Example 5. Consider the very simple Prolog program with two clauses:
is_a_bit(A) :- A=0. and is_a_bit(A) :- A=1., and the set of AND- and
OR-rules in Fig. 2 (R∧

bit and R∨
bit resp.). Fig. 3 shows the analysis flow of the

first clause for the combination of the bit and depth-3 domains. The anal-
ysis starts with a top entry ASub1= ({X/⊤}, {X=U}) for a call is_a_bit(X),
where X is abstracted to ⊤ in the bit domain and unified to a fresh free vari-
able U in the depth-3 domain (which means that no information about the
structure of X is given). Since we are carrying a substitution with information
about just one variable, projecting over that variable results in the same ab-
stract substitution. The execution of Acall performs the renaming of X to A.
Since no rule is applicable after such renaming, the analysis proceeds, and when
the built-in A=0 is processed, the available domain operations are performed.

12 D. Jurjo, J.F. Morales, P. Lopez-Garcia, M.V. Hermenegildo

ASub1 :
({X/⊤}, {X=U})

ASub2 :
({X/⊤}, {X=U})

ASub4 :
({A/zero}, {A = 0}).

ASub3 :
({A/⊤}, {A = W})

ASub5 :
({X/zero}, {X = 0})

ASub :
({X/zero}, {X = 0})

Aproj(ASub1, {X})

Acall(is_a_bit(X),ASub2,is_a_bit(A))

built-in

Aproceed(is_a_bit(A), ASub4,is_a_bit(X))

Aextend(is_a_bit(X),
ASub1, ASub5)

Fig. 3. Analysis flow for the clause is_a_bit(A):-A=0. with Bit domain.

Domain depth-3 has specific operation definitions, while bit has none, 5 so
nothing is done for the latter domain. In contrast, an updated abstract sub-
stitution {A = 0} is obtained for the former, depth-3. Now, the execution of
AND-FIXP({A/⊤}, {A = 0},R∧

bit), which applies Rule 3, results in ASub4=({A/
zero}, {A = 0}). Aproceed perfoms a back unification (renaming in this case),
obtaining ASub5= ({X/zero}, {X = 0}). Finally, Aextend extends the abstract
substitution before the Aproceed operation (ASub1) with ASub5. Since there is
no specific Aextendbit operation for the bit domain, the default Aextenddef is
used, obtaining the abstract substitution {X/zero, X/⊤} for such a domain. The
application of the corresponding, specific Aextend operation for the depth-3 do-
main (Aextenddepth-3) obtains {X = 0}. Now, the AND-FIXP operation applies
Rule 6 to obtain a (combined) abstract success substution: AND-FIXP({X/
⊤, X/zero}, {X = 0},R∧

bit)= ({X/zero, {X = 0}). Similarly, the anaysis of the
second clause, is_a_bit(A) :- A=1., obtains the abstract substitution ({X/
one, {X = 1}). Now, the global analysis applies the Ageneralize operation to
the abstract substitutions resulting from the analysis of the two clauses, by call-
ing Ageneralize(({X/one, {X = 1}), {({X/zero}, {X = 0})}), which, for the bit
domain, calls OR-REWRITING({{X/one}, {X/zero}}, {{X = 1}, {X = 0}}) in
turn, obtaining {X/bit}, due to the application of Rule 10. For the depth−3 do-
main, Ageneralize applies Ageneralizedepth-3 to abstract substituions {X = 1}
and {X = 0}, obtaining {X = V}, where V is a fresh free variable. The analy-
sis finishes with the execution of AND-FIXP(({X/bit}, {X = V}),R∧

bit), which
performs the AND-rewriting on the resulting abstract generalization for the com-
bined domain, obtaining the success abstract substitution ({X/bit}, {X = V}) for
the initial call is_a_bit(X).

5 As mentioned before, it is possible to give concrete operations for some built-ins,
but in this case we let the rules deal with unifications.

Title Suppressed Due to Excessive Length 13�
1 qsort([], []).
2 qsort([X|L], R) :-
3 partition(L, X, L1, L2),
4 qsort(L2, R2), qsort(L1, R1), append(R1, [X|R2], R).
5
6 partition([], _, [], []).
7 partition([E|R], C, Left, [E|Right1]) :- E >= C, partition(R, C, Left, Right1).
8 partition([E|R], C, [E|Left1], Right) :- E < C, partition(R, C, Left1, Right).
9

10 append([],Z, Z).
11 append([H|T], S, [H|Z]) :- append(T, S, Z).� �

Fig. 4. A classical implementation of quick sort in Prolog (using append/3).

inf(L,⊤) | L=[]⇒ inf(L,∞) # empty (14)
inf(L, X) | L=[H|T]⇒ inf(L, X), inf(T, X) # prop1 (15)
inf(T, X) | L=[H|T], X ≤ H⇒ inf(L, X), inf(T, X) # prop2 (16)
inf(T, X) | L=[H|T], H ≤ X⇒ inf(L, H), inf(T, X) # prop3 (17)
inf(L1, X) | L1=L2⇒ inf(L1, X), inf(L2, X) # unif (18)
inf(L, X) | Y ≤ X⇒ inf(L, Y) # reduce (19)
inf(L, X); inf(L, Y) | X ≤ Y⇒ inf(L, X) # lub (20)

Fig. 5. Sets of AND-rules (14–19) and OR-rules (20) for the inf domain.

4 Inferring program properties using rule-based
combined domains

We now show how the technique presented in the previous section can be used to
define abstract domains for non-trivial properties. Concretely, we present a rule-
based domain to infer sortedness. As an aid in defining this domain, consider the
classical implementation in Prolog of the quick sort algorithm in Fig. 4. Given
a query qsort(A, B) we aim at inferring that B is a sorted list. To do so we
first need to consider the lattice over which to abstract the sortedness property.
Let that lattice be {⊤, sorted , unsorted ,⊥} where ⊤ captures that is it unknown
whether the element is sorted or not, and ⊥ that some error has been found. The
structure of the lattice is given by the order relation such that ⊤ is greater or
equal than every other element, ⊥ is smaller or equal than every other element,
and sorted and unsorted cannot be compared. Now we start defining rules about

sup(L,⊤) | L=[]⇒ sup(L,−∞) # empty (21)
sup(L, X) | L=[H|T]⇒ sup(L, X), sup(T, X) # prop1 (22)
sup(T, X) | L=[H|T], H ≤ X⇒ sup(L, X), sup(T, X) # prop2 (23)
sup(T, X) | L=[H|T], X ≤ H⇒ sup(L, H), sup(T, X) # prop3 (24)
sup(L1, X) | L1=L2⇒ sup(L1, X), sup(L2, X) # unif (25)
sup(L, X) | X ≤ Y⇒ sup(L, Y) # reduce (26)
sup(L, X); sup(L, Y) | X ≤ Y⇒ sup(L, X) # lub (27)

Fig. 6. Sets of AND-rules (21–26) and OR-rules (27) for the sup domain.

14 D. Jurjo, J.F. Morales, P. Lopez-Garcia, M.V. Hermenegildo

the behaviour that we expect from our domain. Clearly, given an empty list we
can abstract that element as sorted (which we represent as L/sorted); this prop-
erty is captured by Rule 28 (labeled absEmpty) in Fig. 7. We can also define
rules to capture the expected behaviour of the glb, taking into account the order
that we introduced before: if a variable has been abstracted to sorted and also to
unsorted the glb is ⊥; if the variable has been abstracted to ⊤ and to any other
element, then the latter is the glb; finally, if it has been abstracted to ⊥ and to
something else the result is ⊥. These behaviors are captured by Rules 33, 34,
and 35 respectively. If a list L is known to be sorted, and L=[H|T], then clearly T
must be sorted, which is represented by Rule 32. Conversely, if we know that T is
a sorted list, and H is smaller or equal than any element in T then we can infer that
L is sorted. To this end, it is clear the need to introduce (in Figs. 5 and 6) two new
abstract domains, inf and sup, which abstract the property of an element X be-
ing lower or equal (resp., greater or equal) than any element in a given list L. This
is represented by property inf(L, X) (resp. sup(L, X)). With the help of the new
inf domain, we can now represent the previous inference reasoning with Rule 30.
In these domains we not only need to capture the unifications occurring during
the program execution/analysis but also the arithmetic properties involved. To
this end, we use CiaoPP’s polyCLPQ, a polyhedra domain based on [2]. The
sets of AND- and OR-rules for the inf and sup domains are in fact subsets of
AND(inf, (depth-k,polyCLPQ)) and OR(inf, (depth-k,polyCLPQ)), shown in
Fig. 5, and AND(sup, (depth-k,polyCLPQ)) and OR(sup, (depth-k,polyCLPQ)),
shown in Fig. 6, respectively. The sets of AND- and OR-rules for the sort
domain that are presented in Fig. 7 are subsets of AND(sort, (inf, depth-
k,polyCLPQ)) and OR(sort, (inf, depth-k, polyCLPQ)) respectively. However
the previously defined rules may not be enough to infer sortedness. With the do-
mains inf and sup the analysis after partition(L, X, L1, L2) in the qsort
algorithm in Fig. 4 would have inferred that sup(L1, X) and inf(L2, X) (the com-
plete analysis of the partition/4 predicate with the inf domain can be found
in Appendix C but even assuming that after the qsort(L2, R2), qsort(L1,
R1) recursive calls R2/sorted and R1/sorted are inferred, we would not be able
to propagate that the element [X|R2] is a sorted list; nor that X is greater than
all elements in R1, which would be key to obtain the sortedness of R. What we
are missing is the fact that, given a query qsort(A, B), A is a permutation of B.
And that if an element X satisfies inf(A, X), then clearly inf(B, X). To deal with
this we introduce a new abstract domain, mset, to abstract properties between
multisets of the lists in the program. This domain is discussed in Appendix B.
The abstraction is represented by the property mset(A = B) capturing that B
is a permutation of A and mset(A = B+C) meaning that the multiset A is a
permutation of the union of the multisets B and C.

Consider the goal append(R1, S, R) together with the informa-
tion inferred on call ({R1/sorted , R2/sorted}, {A=[X|L], S=[X|R2]}, {},
{inf(L2, X), inf(R2, X)}, {sup(L1, X), sup(R1, X)}, {mset(L = L1+L2), mset(L1 =
R1), mset(L2 = R2)}). In the first case we get the unifications: C1 =
({R1 = [], S = Z}, {R1/sorted , S/sorted , Z/sorted}, {inf(S, X)}, {sup(R1, X)})

Title Suppressed Due to Excessive Length 15

L/⊤ | L=[]⇒ L/sorted # absEmpty (28)
L/X | L=S⇒ L/X, S/X # unif (29)
T/sorted | L=[H|T], inf(T, X), H ≤ X⇒ T/sorted , L/sorted # sortProp (30)
T/sorted | L=[H|T], inf(T, X), X < H⇒ T/sorted , L/unsorted # unsortPrp (31)
L/sorted | L=[H|T]⇒ L/sorted , T/sorted # sortInh (32)
L/sorted , L/unsorted ⇒ L/⊥# glb1 (33)
L/⊤, L/X⇒ L/X# glb2 (34)
L/⊥, L/X⇒ L/⊥# glb3 (35)
L/sorted ; L/unsorted ⇒ L/⊤# lub1 (36)
L/⊤; L/X⇒ L/⊤# lub2 (37)
L/⊥; L/X⇒ L/X# lub3 (38)

Fig. 7. Sets of AND-rules (28–35) and OR-rules (36–38) for the sort domain.

after applying Rules absEmpty 28 and unif 29. In the second case
we have the entry: C2 = ({R1 = [H|L], Z = [H|T]}, {R1/sorted , S/
sorted}, {inf(S, X)}, {sup(R1, X)}). However, after append(X, Y, Z) we have to
apply the lub and we get: ({}, {R1/sorted , S/sorted}, {{inf(S, X)}, {sup(R1, X)})
which is not proving that R is sorted. This is because if Z is sorted and inf(Z, X)
(which is inferred in the recursive call) since R=[H|Z], what we need for R to
be sorted is that H≤X holds. polyCLPQ is not able to prove that, but it can be
enhanced to use sup by adding a purely combinatorial rule:

true | sup(L, X), L=[H|T]⇒ H ≤ X# combinePoly (39)
Note that this rule is enhancing the precision of a previously defined domain in
CiaoPP, by exploiting properties that have been defined using rules. In this sense
a number of other rules could be introduced to enhance the precision of polyCLPQ
as for example true | L/sorted , L=[H|T], inf(T, X)⇒ H ≤ X, which exploits both
the sortedness and the inf property to get better abstractions for polyCLPQ.
Now, with this new information, we can infer that, since H≤X, then inf(Z, H).
With this, since Z is sorted and R = [H|Z], then R is sorted and inf(R, H), and
therefore we infer that the second argument of qsort/2 is sorted.

Thus, we have shown how the rule language presented in Section 3 can be used
to define a number of new domains complementing each other and enhancing the
precision of some predefined domains as polyCLPQ. Moreover they are powerful
enough to prove that given a query qsort(A, B) of the quicksort implementation
presented in Fig. 4, B is a sorted list and a permutation of A. CiaoPP outputs
the analysis result as the following assertion:�

1 :- true pred qsort(A,B)
2 : (asub([s(A,top),s(B,top)]),

↪→ asub(([inf(A,top),inf(B,top)],[sup(A,top),sup(B,top)])), true, true)
3 => (asub([s(A,top),s(B,sorted)]),

↪→ asub(([inf(A,top),inf(B,top)],[sup(A,top),sup(B,top)])), mset([A=B]),
↪→ true).� �

16 D. Jurjo, J.F. Morales, P. Lopez-Garcia, M.V. Hermenegildo

The complete program-point analysis information for the analysis, as produced
by CiaoPP, can be found in Appendix D.

Variable Scope. It is important to point out that we have to take into account
the fact that the scope of the variable X that we carry around in the abstract sub-
stitutions goes beyond the argument and local variables of append/3. In order
not to lose precision, the domain projection operation must preserve the relation
between program variables and X in the form of “existential” variables. That is,
to capture that “there exists a variable that holds a given property” (for example
the inf property). This kind of issues are common when trying to capture prop-
erties of data structures, and they are more involved when combining domains,
since a projection for one domain must be aware of the relevant variables for
the others. In our current implementation, we rely for simplicity on syntactic
transformations that include "extra" arguments to the required predicates (see
the call to append/4 in Appendix D, similar to cell morphing proposed in [3].
We are working on fixing this limitation and extending the combination frame-
work to share the information about “existential” variables among the combined
domains without syntactic transformations nor losses of precision.

5 Conclusions

We have presented a rule-based methodology for rapid design and prototyping of
new domains, as well as for combining existing ones. We have demonstrated the
power of our approach by showing how several domains and their combinations
can be defined with reduced effort. We have also shown how these techniques can
be used to develop domains for interesting properties, using list sortedness (a
property not supported by the previously existing CiaoPP domains) as an exam-
ple. We have also shown how our prototype implementation infers this property
for the classical Prolog implementation of the quick sort algorithm. From our ex-
perience using this implementation, the proposed approach seems promising for
prototyping and experimenting with new domains, adding domain combinations,
and enhancing precision for particular programs, without the need for a deep
understanding of the analysis framework internals. Our current implementation
is focused on the feasibility and usefulness of the approach, and lacks many
possible optimizations. However, given the promising results so far, we plan to
optimize the implementation and to use it to define new domains, exploring the
trade-offs between rule-based and native, hand-tuned domains. Other avenues
for future work are exploring the use of rules both as an input language for
abstract domain compilation and as a specification language for debugging or
verifying properties of hand-written domains.

References

1. de Angelis, E., Proietti, M., Fioravanti, F., Pettorossi, A.: Verifying catamorphism-
based contracts using constrained horn clauses. Theory and Practice of Logic Pro-
gramming 22(4), 555–572 (2022). https://doi.org/10.1017/S1471068422000175

https://doi.org/10.1017/S1471068422000175
https://doi.org/10.1017/S1471068422000175

Title Suppressed Due to Excessive Length 17

2. Benoy, F., King, A., Mesnard, F.: Programming pearl: Computing convex hulls
with a linear solver. TPLP 5, 259–271 (01 2005). https://doi.org/10.1017/
S1471068404002261

3. Braine, J., Gonnord, L., Monniaux, D.: Data Abstraction: A General Framework
to Handle Program Verification of Data Structures. In: SAS 2021 - 28th Static
Analysis Symposium. LNCS, vol. 12913, pp. 215–235. Chicago, United States (Oct
2021). https://doi.org/10.1007/978-3-030-88806-0_11, https://inria.hal.
science/hal-03321868

4. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. SIGPLAN Not. 44(10), 243–262 (October 2009). https://doi.
org/10.1145/1639949.1640108

5. Bruynooghe, M., Codish, M.: Freeness, sharing, linearity and correctness–all at
once. In: Proc. Third International Workshop on Static Analysis. pp. 153–164.
No. 724 in LNCS, Springer (1993)

6. Bueno, F., Cabeza, D., Hermenegildo, M.V., Puebla, G.: Global Analysis
of Standard Prolog Programs. In: ESOP (1996). https://doi.org/10.1007/
3-540-61055-3_32

7. Campion, M., Preda, M.D., Giacobazzi, R.: Partial (in)completeness in abstract
interpretation: limiting the imprecision in program analysis. Proc. ACM Program.
Lang. 6(POPL), 1–31 (2022). https://doi.org/10.1145/3498721

8. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE TKDE 1(1), 146–166 (1989). https://doi.org/
10.1109/69.43410

9. Codish, M., Mulkers, A., Bruynooghe, M., García de la Banda, M., Hermenegildo,
M.: Improving Abstract Interpretations by Combining Domains. ACM TOPLAS
17(1), 28–44 (January 1995)

10. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: ACM
Symposium on Principles of Programming Languages (POPL’77). pp. 238–252.
ACM Press (1977). https://doi.org/10.1145/512950.512973

11. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
POPL’79. pp. 269–282. ACM (1979)

12. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ analyzer. In: ESOP 2005. pp. 21–30 (2005)

13. De Angelis, E., Fioravanti, F., Gallagher, J.P., Hermenegildo, M.V., Pettorossi,
A., Proietti, M.: Analysis and Transformation of Constrained Horn Clauses for
Program Verification. TPLP (2021)

14. Frühwirth, T.: Theory and Practice of Constraint Handling Rules. JLP, Special
Issue on CLP 37(1–3) (October 1998)

15. Garcia-Contreras, I., Morales, J.F., Hermenegildo, M.V.: Incremental and Modular
Context-sensitive Analysis. TPLP 21(2), 196–243 (January 2021)

16. Garcia-Contreras, I., Morales, J., Hermenegildo, M.V.: Incremental Analysis of
Logic Programs with Assertions and Open Predicates. In: LOPSTR’19. LNCS,
vol. 12042, pp. 36–56. Springer (2020)

17. García de la Banda, M., Hermenegildo, M.V., Bruynooghe, M., Dumortier, V.,
Janssens, G., Simoens, W.: Global Analysis of Constraint Logic Programs. ACM
Trans. on Programming Languages and Systems 18(5), 564–615 (1996)

18. Giacobazzi, R., Ranzato, F.: History of abstract interpretation. IEEE Ann. Hist.
Comput. 44(2), 33–43 (2022), https://doi.org/10.1109/MAHC.2021.3133136

https://doi.org/10.1017/S1471068404002261
https://doi.org/10.1017/S1471068404002261
https://doi.org/10.1017/S1471068404002261
https://doi.org/10.1017/S1471068404002261
https://doi.org/10.1007/978-3-030-88806-0_11
https://doi.org/10.1007/978-3-030-88806-0_11
https://inria.hal.science/hal-03321868
https://inria.hal.science/hal-03321868
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1007/3-540-61055-3_32
https://doi.org/10.1007/3-540-61055-3_32
https://doi.org/10.1007/3-540-61055-3_32
https://doi.org/10.1007/3-540-61055-3_32
https://doi.org/10.1145/3498721
https://doi.org/10.1145/3498721
https://doi.org/10.1109/69.43410
https://doi.org/10.1109/69.43410
https://doi.org/10.1109/69.43410
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1109/MAHC.2021.3133136

18 D. Jurjo, J.F. Morales, P. Lopez-Garcia, M.V. Hermenegildo

19. Henriksen, K.S., Gallagher, J.P.: Abstract Interpretation of PIC Programs through
Logic Programming. In: SCAM ’06. pp. 184–196. IEEE Computer Society (2006).
https://doi.org/10.1109/SCAM.2006.1

20. Hermenegildo, M., Puebla, G., Bueno, F., Garcia, P.L.: Integrated Program De-
bugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming 58(1–2), 115–140
(2005)

21. Hermenegildo, M.V., Puebla, G., Bueno, F.: Using Global Analysis, Partial Specifi-
cations, and an Extensible Assertion Language for Program Validation and Debug-
ging. In: The Logic Programming Paradigm: a 25–Year Perspective, pp. 161–192.
Springer-Verlag (1999)

22. Hermenegildo, M.V., Puebla, G., Marriott, K., Stuckey, P.: Incremental Analysis of
Constraint Logic Programs. ACM TOPLAS 22(2), 187–223 (March 2000). https:
//doi.org/10.1145/349214.349216

23. Jacobs, D., Langen, A.: Accurate and Efficient Approximation of Variable Aliasing
in Logic Programs. In: North American Conference on Logic Programming (1989)

24. Kelly, A., Marriott, K., Søndergaard, H., Stuckey, P.: A Practical Object-Oriented
Analysis Engine for CLP. Software: Practice and Experience 28(2), 188–224 (1998)

25. Le Charlier, B., Van Hentenryck, P.: Experimental Evaluation of a Generic Ab-
stract Interpretation Algorithm for Prolog. ACM TOPLAS 16(1), 35–101 (1994)

26. Madsen, M., Yee, M., Lhoták, O.: From Datalog to FLIX: a Declarative Language
for Fixed Points on Lattices. In: PLDI, ACM. pp. 194–208 (2016)

27. Méndez-Lojo, M., Navas, J., Hermenegildo, M.: A Flexible (C)LP-Based Ap-
proach to the Analysis of Object-Oriented Programs. In: LOPSTR. LNCS,
vol. 4915, pp. 154–168. Springer-Verlag (August 2007). https://doi.org/10.
1007/978-3-540-78769-3_11

28. Méndez-Lojo, M., Navas, J., Hermenegildo, M.V.: An Efficient, Parametric Fix-
point Algorithm for Analysis of Java Bytecode. In: ETAPS Workshop on Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE’07) (2007)

29. Mesnard, F., Neumerkel, U.: CHR for Protoyping Abstract Interpretation
(1997), http://lim.univ-reunion.fr/staff/fred/Publications/00-MesnardN.
pdf, unpublished note

30. Muthukumar, K., Hermenegildo, M.: Determination of Variable Dependence In-
formation at Compile-Time Through Abstract Interpretation. In: NACLP’89. pp.
166–189. MIT Press (October 1989)

31. Muthukumar, K., Hermenegildo, M.: Deriving A Fixpoint Computation Algorithm
for Top-down Abstract Interpretation of Logic Programs. Technical Report ACT-
DC-153-90, Microelectronics and Comp. Tech. Corp. (MCC) (April 1990), http:
//cliplab.org/papers/mcctr-fixpt.pdf

32. Muthukumar, K., Hermenegildo, M.: Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. JLP 13(2/3), 315–347 (July 1992)

33. Puebla, G., Bueno, F., Hermenegildo, M.V.: An Assertion Language for Constraint
Logic Programs. In: Analysis and Visualization Tools for Constraint Programming,
pp. 23–61. No. 1870 in LNCS, Springer-Verlag (2000). https://doi.org/10.1007/
10722311_2

34. Puebla, G., Hermenegildo, M.V.: Optimized Algorithms for the Incremental Anal-
ysis of Logic Programs. In: SAS’96. pp. 270–284. Springer LNCS 1145 (1996).
https://doi.org/10.1007/3-540-61739-6_47

35. Ruiz-Reina, J.L., Alonso, J.A., Hidalgo, M.J., Martín-Mateos, F.J.: Termination
in ACL2 Using Multiset Relations, pp. 217–245. Springer Netherlands, Dordrecht

https://doi.org/10.1109/SCAM.2006.1
https://doi.org/10.1109/SCAM.2006.1
https://doi.org/10.1145/349214.349216
https://doi.org/10.1145/349214.349216
https://doi.org/10.1145/349214.349216
https://doi.org/10.1145/349214.349216
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/978-3-540-78769-3_11
http://lim.univ-reunion.fr/staff/fred/Publications/00-MesnardN.pdf
http://lim.univ-reunion.fr/staff/fred/Publications/00-MesnardN.pdf
http://cliplab.org/papers/mcctr-fixpt.pdf
http://cliplab.org/papers/mcctr-fixpt.pdf
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/10722311_2
https://doi.org/10.1007/3-540-61739-6_47
https://doi.org/10.1007/3-540-61739-6_47

Title Suppressed Due to Excessive Length 19

(2003). https://doi.org/10.1007/978-94-017-0253-9_9, https://doi.org/10.
1007/978-94-017-0253-9_9

36. Sato, T., Tamaki, H.: Enumeration of success patterns in logic programs. In: Diaz,
J. (ed.) Automata, Languages and Programming. pp. 640–652. Springer Berlin
Heidelberg, Berlin, Heidelberg (1983)

37. Seidl, H., Vogler, R.: Three improvements to the top-down solver. Math.
Struct. Comput. Sci. 31(9), 1090–1134 (2021). https://doi.org/10.1017/
S0960129521000499

38. Tilscher, S., Stade, Y., Schwarz, M., Vogler, R., Seidl, H.: The Top-Down
Solver—An Exercise in A2I. In: Arceri, V., Cortesi, A., Ferrara, P., Olliaro, M.
(eds.) Challenges of Software Verification, vol. ISRL 238, chap. 9, pp. 157–179.
Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-9601-6_9

39. Van Roy, P., Despain, A.M.: The Benefits of Global Dataflow Analysis for an
Optimizing Prolog Compiler. In: North American Conf. on Logic Programming.
pp. 501–515. MIT Press (October 1990)

40. Warren, R., Hermenegildo, M., Debray, S.K.: On the Practicality of Global Flow
Analysis of Logic Programs. In: JICSLP. pp. 684–699. MIT Press (August 1988)

41. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: PLDI. pp. 131–144. ACM (2004)

https://doi.org/10.1007/978-94-017-0253-9_9
https://doi.org/10.1007/978-94-017-0253-9_9
https://doi.org/10.1007/978-94-017-0253-9_9
https://doi.org/10.1007/978-94-017-0253-9_9
https://doi.org/10.1017/S0960129521000499
https://doi.org/10.1017/S0960129521000499
https://doi.org/10.1017/S0960129521000499
https://doi.org/10.1017/S0960129521000499
https://doi.org/10.1007/978-981-19-9601-6_9
https://doi.org/10.1007/978-981-19-9601-6_9

20 D. Jurjo, J.F. Morales, P. Lopez-Garcia, M.V. Hermenegildo

A Depth-k Abstraction
We present here some basics of the Depth-k domain [36]: given a term t, t is
a level 0 subterm of t. If f(t1, . . . , tn) is a subterm of t with level k then each
ti, i ∈ {1, . . . , n} has level k + 1 and its said to be a level k + 1 subterm of
t. Given a term t and an integer k, the depth-k abstraction of t is the result
of replacing every level k subterm of t by a newly created variable. E.g., given
t = f(g(x, y), z) and u, v new variables, the depth-0 abstraction of t is u; depth-1
is f(u, v); depth-2 is f(g(u, v), z); and depth-3 is t. The order relation over the
depth-k lattice is defined as follows: t1 ≤ t2 ⇔ instance(t1, t2), i.e., iff there
exists a substitution θ such that t1 = t2θ. For example, the lub (most specific
generalization) of f(a, b) and f(X, b) is f(Y, b), where Y is a free variable.

In depth-k analyses, the value of k can be chosen for each execution of the
domain. The appropriate k-depth that allows obtaining the desired structural
information at a given program point is in general program-dependent. Further-
more, there are programs for which no finite k depth can capture their complete
meaning. However, for many programs, relatively small values of k can often
produce very useful results in practice, compared to not keeping any structural
information.

B Set properties
It is very usual in many verification tasks to verify properties of multisets. An
also very common need is, given a function (or a predicate in the context of logic
programming) operating over sets or lists, to be able to verify that a new list
shares all its elements with the older one. Here we show how to derive a domain
which abstracts lists to multisets of their elements.

A multiset M over a set A is a function from A to the set of natural numbers.
This is, a set with repeated elements. Given an element x ∈ A we say that M(x)
is the number of copies of x in M. With some abuse of notation we will use the
usual set operations to define the operations over multisets. For example given
multisets M = {a, b, b} and N = {a, c} the union will take into account the
multiple occurrences of each element M ∪N = {a, a, b, b, c}. Notice that given a
list we can naturally abstract its elements to a multiset. For example given the
list [a,b,c] its multiset is {a,b,c}. Now, given multisets M , N , S over a set A
the following properties hold:
– M ⊆ N ⇔M(x) ≤ N(x)∀x ∈ A
– S = M ∪N ⇔ S(x) = M(x) +N(x)∀x ∈ A
– S = M\N ⇔ S(x) = M(x)−. N(x)∀x ∈ A

where x −. y is x − y if x ≥ y and 0 otherwise. These equivalences allow us to

true | L=[]⇒ mset(X = 0) # emptyset (40)
true | L=[H|T]⇒ mset(X = H+ T) # listConst (41)
true | X=Y⇒ mset(X = Y) # unif (42)

Fig. 8. Sets of AND-rules used to define the mset domain.

Title Suppressed Due to Excessive Length 21�
1 :- true pred partition(L,X,L1,L2) => mset([L=L2+L1]).
2
3 partition(L,X,L1,L2) :-
4 true(true),
5 L=[],
6 true(mset([L=0])),
7 L1=[],
8 true(mset([L=0,L1=0])),
9 L2=[],

10 true(mset([L=L1+L2])).
11 partition(L,X,L1,L2) :-
12 true(true),
13 L=[Y|Temp],
14 true(mset([L=Y+Temp])),
15 Y=<X,
16 true(mset([L=Temp+Y])),
17 partition(Temp,X,Temp1,L2),
18 true(mset([L=Y+Temp,Temp1= L-Y-L2])),
19 L1=[Y|Temp1],
20 true(mset([L2=L-L1,Temp=L-Y,Temp1=L1-Y])).
21 partition(L,X,L1,L2) :-
22 true(true),
23 L=[Y|Temp],
24 true(mset([L=Y+Temp])),
25 X=<Y,
26 true(mset([L=Temp+Y])),
27 partition(Temp,X,L1,Temp2),
28 true(mset([L1= -Y+L-Temp2,Temp= -Y+L])),
29 L2=[Y|Temp2],
30 true(mset([L1=L-L2,Temp=L-Y,Temp2=L2-Y])).� �

Fig. 9. Analysis result of applying the mset analysis over the partition/4 predicate.

describe multiset properties as constraint relations with few changes. This ap-
proach has been used to prove properties of multisets in different contexts (see
for example [35]). With this approach we try to derive an abstract domain that
abstracts the lists in a program as multisets in order to capture their relations. In
the following, with some abuse of notation, we will use the standard mathemat-
ical operations, and M = N + S will denote that M(x) = N(x) + S(x)∀x ∈ A,
where A will be the set of all the elements contained in the union of M , N , and
S (with no repetitions). These properties will be encapsulated inside an mset
term to denote that they are abstracting multiset operations and avoid confus-
ing them with the polyhedra properties. The empty multiset corresponds to zero
because ∀x ∈ AM(x) = 0 for any set A. The main difference with the derivation
of this domain is that this time we will take advantage of CiaoPP’s polyCLPQ
domain (an implementation of polyhedra using CLP(Q) based on [2]) and run
its lub obtaining a very precise operation with almost no cost on the implemen-
tation side. only having to worry in the abstraction side which will be carried
by the set of AND-rules presented in Figure 8. Notice that in this case we are
not using the default operations presented in Section 3 but the corresponding
polyCLPQ operations. It is also important to note that since we are not defining
OR-rules we can relax the constraints added over the structure of the abstract
substitution and the representation in extended form is not needed. This domain
however has some limitations due to its simplicity. We are considering always
that we are abstracting plain lists (i.e., lists containing atoms, variables, or num-
bers but no more complex structures as other lists). Fig. 9 shows the result of

22 D. Jurjo, J.F. Morales, P. Lopez-Garcia, M.V. Hermenegildo

analyzing the partition/4 predicate with the mset analysis derived before (the
analysis results are contained in the true/1 program-point assertions).

C Inferred info for partition/4 using inf

�
1 :- module(_1,[partition/4],[assertions]).
2
3 :- true pred partition(L,_X,L1,L2)
4 : (asub([inf(L,’$top’),inf(_X,’$top’),inf(L1,’$top’),inf(L2,’$top’)]), true)
5 => (asub([inf(L,’$top’),inf(_X,’$top’),inf(L1,’$top’),inf(L2,_X)]), true).
6
7 partition(L,_X,L1,L2) :-
8 true((
9 asub([inf(L,’$top’),inf(_X,’$top’),inf(L1,’$top’),inf(L2,’$top’)]),

10 true
11)),
12 L=[],
13 true((
14 asub([inf(L,0.Inf),inf(_X,’$top’),inf(L1,’$top’),inf(L2,’$top’)]),
15 ’terms_check:instance’(L,[]),
16 true
17)),
18 L1=[],
19 true((
20 asub([inf(L,0.Inf),inf(_X,’$top’),inf(L1,0.Inf),inf(L2,’$top’)]),
21 ’terms_check:instance’(L,[]),
22 ’terms_check:instance’(L1,[]),
23 true
24)),
25 L2=[],
26 true((
27 asub([inf(L,0.Inf),inf(_X,’$top’),inf(L1,0.Inf),inf(L2,0.Inf)]),
28 ’terms_check:instance’(L,[]),
29 ’terms_check:instance’(L1,[]),
30 ’terms_check:instance’(L2,[]),
31 true
32)).
33 partition(L,X,L1,L2) :-
34 true((
35 asub([inf(L,’$top’),inf(X,’$top’),inf(L1,’$top’),inf(L2,’$top’),
36 inf(Y,’$top’),inf(Temp,’$top’),inf(Temp1,’$top’)]),
37 true
38)),
39 L=[Y|Temp],
40 true((
41 asub([inf(L,’$top’),inf(X,’$top’),inf(L1,’$top’),inf(L2,’$top’),
42 inf(Y,’$top’),inf(Temp,’$top’),inf(Temp1,’$top’)]),
43 ’terms_check:instance’(L,[Y|Temp]),
44 true
45)),
46 X>=Y,
47 true((
48 asub([inf(L,’$top’),inf(X,’$top’),inf(L1,’$top’),inf(L2,’$top’),
49 inf(Y,’$top’),inf(Temp,’$top’),inf(Temp1,’$top’)]),
50 ’terms_check:instance’(L,[Y|Temp]),
51 ’native_props:constraint’([Y=<X])
52)),
53 partition(Temp,X,Temp1,L2),
54 true((
55 asub([inf(L,’$top’),inf(X,’$top’),inf(L1,’$top’),inf(L2,X),
56 inf(Y,’$top’),inf(Temp,’$top’),inf(Temp1,’$top’)]),
57 ’terms_check:instance’(L,[Y|Temp]),
58 ’native_props:constraint’([X>=Y])
59)),

Title Suppressed Due to Excessive Length 23

60 L1=[Y|Temp1],
61 true((
62 asub([inf(L,’$top’),inf(X,’$top’),inf(L1,’$top’),inf(L2,X),
63 inf(Y,’$top’),inf(Temp,’$top’),inf(Temp1,’$top’)]),
64 ’terms_check:instance’(L,[Y|Temp]),
65 ’terms_check:instance’(L1,[Y|Temp1]),
66 ’native_props:constraint’([Y=<X])
67)).
68 partition(L,X,L1,L2) :-
69 true((
70 asub([inf(L,’$top’),inf(X,’$top’),inf(L1,’$top’),inf(L2,’$top’),
71 inf(Y,’$top’),inf(Temp,’$top’),inf(Temp2,’$top’)]),
72 true
73)),
74 L=[Y|Temp],
75 true((
76 asub([inf(L,’$top’),inf(X,’$top’),inf(L1,’$top’),inf(L2,’$top’),
77 inf(Y,’$top’),inf(Temp,’$top’),inf(Temp2,’$top’)]),
78 ’terms_check:instance’(L,[Y|Temp]),
79 true
80)),
81 X=<Y,
82 true((
83 asub([inf(L,’$top’),inf(X,’$top’),inf(L1,’$top’),inf(L2,’$top’),
84 inf(Y,’$top’),inf(Temp,’$top’),inf(Temp2,’$top’)]),
85 ’terms_check:instance’(L,[Y|Temp]),
86 ’native_props:constraint’([Y>=X])
87)),
88 partition(Temp,X,L1,Temp2),
89 true((
90 asub([inf(L,’$top’),inf(X,’$top’),inf(L1,’$top’),inf(L2,’$top’),
91 inf(Y,’$top’),inf(Temp,’$top’),inf(Temp2,X)]),
92 ’terms_check:instance’(L,[Y|Temp]),
93 ’native_props:constraint’([X=<Y])
94)),
95 L2=[Y|Temp2],
96 true((
97 asub([inf(L,’$top’),inf(X,’$top’),inf(L1,’$top’),inf(L2,X),
98 inf(Y,’$top’),inf(Temp,’$top’),inf(Temp2,X)]),
99 ’terms_check:instance’(L,[Y|Temp]),

100 ’terms_check:instance’(L2,[Y|Temp2]),
101 ’native_props:constraint’([Y>=X])
102)).
103 � �

D Inferred info for qsort/2�
1 :- true pred qsort(X,Y)
2 : (asub([s(X,’$top’), s(Y,’$top’)]), asub(([inf(X,’$top’),

↪→ inf(Y,’$top’)],[sup(X,’$top’), sup(Y,’$top’)])), true, true)
3 => (asub([s(X,’$top’), s(Y,sorted)]), asub([inf(X,’$top’),

↪→ inf(Y,’$top’)]),asub([sup(X,’$top’), sup(Y,’$top’)]), mset([X=Y]),
↪→ true).

4
5 qsort(X,Y) :-
6 true((
7 asub([s(X,’$top’), s(Y,’$top’)]),
8 asub([inf(X,’$top’), inf(Y,’$top’)]),
9 asub([sup(X,’$top’), sup(Y,’$top’)]),

10 true,
11 true
12)),
13 X=[],
14 true((

24 D. Jurjo, J.F. Morales, P. Lopez-Garcia, M.V. Hermenegildo

15 asub([s(X,sorted), s(Y,’$top’)]),
16 asub([inf(X,0.Inf), inf(Y,’$top’)]),
17 asub([sup(X,-0.Inf), sup(Y,’$top’)]),
18 mset([X=0]),
19 ’terms_check:instance’(X,[]),
20 true
21)),
22 Y=[],
23 true((
24 asub([s(X,sorted), s(Y,sorted)]),
25 asub([inf(X,0.Inf), inf(Y,0.Inf)]),
26 asub([sup(X,-0.Inf), sup(Y,-0.Inf)]),
27 mset([Y=X]),
28 ’terms_check:instance’(X,[]),
29 ’terms_check:instance’(Y,[]),
30 true
31)).
32 qsort(A,R) :-
33 true((
34 asub([s(A,’$top’), s(R,’$top’), s(X,’$top’), s(L,’$top’), s(L1,’$top’),

↪→ s(L2,’$top’), s(R2,’$top’), s(R1,’$top’), s(B,’$top’)]),
35 asub([inf(A,’$top’), inf(R,’$top’), inf(X,’$top’), inf(L,’$top’),
36 inf(L1,’$top’), inf(L2,’$top’), inf(R2,’$top’), inf(R1,’$top’),

↪→ inf(B,’$top’)]),
37 asub([sup(A,’$top’), sup(R,’$top’), sup(X,’$top’), sup(L,’$top’),

↪→ sup(L1,’$top’), sup(L2,’$top’),
38 sup(R2,’$top’), sup(R1,’$top’), sup(B,’$top’)]),
39 true,
40 true
41)),
42 A=[X|L],
43 true((
44 asub([s(A,’$top’), s(R,’$top’), s(X,’$top’), s(L,’$top’), s(L1,’$top’),

↪→ s(L2,’$top’),
45 s(R2,’$top’), s(R1,’$top’), s(B,’$top’)]),
46 asub([inf(A,’$top’), inf(R,’$top’), inf(X,’$top’), inf(L,’$top’),

↪→ inf(L1,’$top’), inf(L2,’$top’),
47 inf(R2,’$top’), inf(R1,’$top’), inf(B,’$top’)]),
48 asub([sup(A,’$top’), sup(R,’$top’), sup(X,’$top’), sup(L,’$top’),

↪→ sup(L1,’$top’), sup(L2,’$top’),
49 sup(R2,’$top’), sup(R1,’$top’), sup(B,’$top’)]),
50 mset([A=X+L]),
51 ’terms_check:instance’(A,[X|L]),
52 true
53)),
54 partition(L,X,L1,L2),
55 true((
56 asub([s(A,’$top’), s(R,’$top’), s(X,’$top’), s(L,’$top’), s(L1,’$top’),

↪→ s(L2,’$top’),
57 s(R2,’$top’), s(R1,’$top’), s(B,’$top’)]),
58 asub([inf(A,’$top’), inf(R,’$top’), inf(X,’$top’), inf(L,’$top’),

↪→ inf(L1,’$top’), inf(L2,X),
59 inf(R2,’$top’), inf(R1,’$top’), inf(B,’$top’)]),
60 asub([sup(A,’$top’), sup(R,’$top’), sup(X,’$top’), sup(L,’$top’),

↪→ sup(L1,X), sup(L2,’$top’),
61 sup(R2,’$top’), sup(R1,’$top’), sup(B,’$top’)]),
62 mset([L= -X+A,L1= -X+A-L2]),
63 ’terms_check:instance’(A,[X|L]),
64 true
65)),
66 qsort(L2,R2),
67 true((
68 asub([s(A,’$top’), s(R,’$top’), s(X,’$top’), s(L,’$top’), s(L1,’$top’),

↪→ s(L2,’$top’),
69 s(R2,sorted), s(R1,’$top’), s(B,’$top’)]),
70 asub([inf(A,’$top’), inf(R,’$top’), inf(X,’$top’), inf(L,’$top’),

↪→ inf(L1,’$top’), inf(L2,X),
71 inf(R2,X), inf(R1,’$top’), inf(B,’$top’)]),

Title Suppressed Due to Excessive Length 25

72 asub([sup(A,’$top’), sup(R,’$top’), sup(X,’$top’), sup(L,’$top’),
↪→ sup(L1,X), sup(L2,’$top’),

73 sup(R2,’$top’), sup(R1,’$top’), sup(B,’$top’)]),
74 mset([L=A-X,L2= -L1+A-X,R2= -L1+A-X]),
75 ’terms_check:instance’(A,[X|L]),
76 true
77)),
78 qsort(L1,R1),
79 true((
80 asub([s(A,’$top’), s(R,’$top’), s(X,’$top’), s(L,’$top’), s(L1,’$top’),

↪→ s(L2,’$top’),
81 s(R2,sorted), s(R1,sorted), s(B,’$top’)]),
82 asub([inf(A,’$top’), inf(R,’$top’), inf(X,’$top’), inf(L,’$top’),

↪→ inf(L1,’$top’), inf(L2,X),
83 inf(R2,X), inf(R1,’$top’), inf(B,’$top’)]),
84 asub([sup(A,’$top’), sup(R,’$top’), sup(X,’$top’), sup(L,’$top’),

↪→ sup(L1,X), sup(L2,’$top’),
85 sup(R2,’$top’), sup(R1,X), sup(B,’$top’)]),
86 mset([A=L+X,L1=L-R2,L2=R2,R1=L-R2]),
87 ’terms_check:instance’(A,[X|L]),
88 true
89)),
90 B=[X|R2],
91 true((
92 asub([s(A,’$top’), s(R,’$top’), s(X,’$top’), s(L,’$top’), s(L1,’$top’),

↪→ s(L2,’$top’),
93 s(R2,sorted), s(R1,sorted), s(B,sorted)]),
94 asub([inf(A,’$top’), inf(R,’$top’), inf(X,’$top’), inf(L,’$top’),

↪→ inf(L1,’$top’), inf(L2,X),
95 inf(R2,X), inf(R1,’$top’), inf(B,X)]),
96 asub([sup(A,’$top’), sup(R,’$top’), sup(X,’$top’), sup(L,’$top’),

↪→ sup(L1,X), sup(L2,’$top’),
97 sup(R2,’$top’), sup(R1,X), sup(B,’$top’)]),
98 mset([L=A-X,L1= -B+A,L2=B-X,R2=B-X,R1= -B+A]),
99 ’terms_check:instance’(A,[X|L]),

100 ’terms_check:instance’(B,[X|R2]),
101 true
102)),
103 append(R1,B,R,X),
104 true((
105 asub([s(A,’$top’), s(R,sorted), s(X,’$top’), s(L,’$top’), s(L1,’$top’),

↪→ s(L2,’$top’),
106 s(R2,sorted), s(R1,sorted), s(B,sorted)]),
107 asub([inf(A,’$top’), inf(R,’$top’), inf(X,’$top’), inf(L,’$top’),

↪→ inf(L1,’$top’), inf(L2,X),
108 inf(R2,X), inf(R1,’$top’), inf(B,X)]),
109 asub([sup(A,’$top’), sup(R,’$top’), sup(X,’$top’), sup(L,’$top’),

↪→ sup(L1,X), sup(L2,’$top’),
110 sup(R2,’$top’), sup(R1,X), sup(B,’$top’)]),
111 mset([A=L+X,R=L+X,L1=L-R2,L2=R2,R1=L-R2,B=R2+X]),
112 ’terms_check:instance’(A,[X|L]),
113 true
114)).� �

	 TECHNICAL REPORT: CLIP-1/2023.0 *2 A Methodology for Designing and Composing Abstract Domains Using Rewriting Rules

