
UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS

Advanced Evaluation Techniques for
(Non)-Monotonic Reasoning
Using Rules with Constraints

PH.D. THESIS

Joaquı́n Arias

Copyright©2020 by Joaquı́n Arias

DEPARTAMENTAMENTO DE LENGUAJES Y SISTEMAS INFORMÁTICOS E
INGENIERIA DE SOFTWARE

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS

Advanced Evaluation Techniques for
(Non)-Monotonic Reasoning
Using Rules with Constraints

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF:
Doctor of Philosophy in Computer Science

Author: Joaquı́n Arias

Advisor: Dr. Manuel Carro

February 2020

Thesis Committee:
Chair: Dr. Gopal Gupta, University of Texas at Dallas, USA
Secretary: Dr. Julio Mariño Carballo, Universidad Politécnica de Madrid, Spain
Member: Dr. Agostino Dovier, Universita degli Studi di Udine
Member: Dr. José Pedro Cabalar Fernández, Universidad da Coruña, Spain
Member: Dr. José Francisco Morales Caballero, IMDEA Software Institute, Spain

Abstract of the Dissertation

Constraint Logic Programming (CLP) is a declarative paradigm that extends Logic
Programming (LP) with constraint solving capabilities over arbitrary domains that can
be combined to model the problem to be solved. CLP brings additional expressive power
to LP since constraints can very concisely capture complex relationships. That makes it
easier to write programs that solve problems where no effective algorithm exists, and/or
to adapt these programs when the problem specifications change. Additionally, the shift
from “generate-and-test” to “constrain-and-generate” reduces the search tree and brings
additional performance. CLP has been used in planning, scheduling, resource allocation,
logistics, circuit design, and verification, among others. However, a CLP top-down
execution strategy may enter loops in the presence of left recursion and/or non-stratified
negation while a bottom-up execution strategy limits the range of admissible constraint
domains, the places where constraints can appear, and the type (or number) of models
that can be returned.

This thesis contributes to the state of the art of Tabled Constraint Logic Programming
(TCLP), which suspends subsumed calls checking entailment (improving termination
properties of CLP programs), and of Constraint Answer Set Programming (CASP),
which computes the stable model semantics of CLP programs with negation.

First, we extend the theoretical foundation of TCLP by proving the soundness and
completeness of a top-down operational semantics of TCLP that uses a richer and
more flexible answer management strategy and we extend the proof of termination
including arbitrary constraint domains (e.g., the Herbrand domain) even if they are not
constraint-compact. Then, taking advantage of these extended properties we designed
and implemented a generic TCLP framework, called Mod TCLP, which provides a
clear and simple interface that facilitates the integration of different constraint domains
with a tabling engine. Mod TCLP fully implements the call and answer entailment
check improving performance and termination w.r.t. Prolog, tabling, CLP, and previous
TCLP implementations. We validated the expressiveness and flexibility of Mod TCLP
integrating several constraint solvers (one of them written in C) and we evaluated its
performance in several benchmarks. We also used Mod TCLP to incrementally compute
lattice-based aggregates providing a framework, ATCLP, based on a new semantics
that views the aggregates as constraints, and uses the entailment and join relations of

i

ABSTRACT OF THE DISSERTATION

the lattice to define the operations to compute and combine aggregates. Finally, we
applied Mod TCLP to re-implement the fixpoint algorithm of a state-of-the-art abstract
interpreter where the tabling engine computes the fixpoint and the TCLP interface
invokes the abstract domain to compute the LUB of the abstract substitutions. The
resulting code of the abstract interpreter is simpler and shorter than the initial one and,
in most cases, the resulting implementation is faster.

On the other hand, this thesis extends a goal-directed non-monotonic reasoner to
compute CASP programs without the grounding phase required by most CASP systems.
The resulting reasoner, called s(CASP), computes, given a query, the (partial) stable
models, that due to the presence of non-stratified negation in CASP programs, could
be more than one, and the justification tree with the terms and rules that support the
query. We prove, through several examples, the enhanced expressiveness of s(CASP)
system w.r.t. Prolog, ASP, CLP, and other ASP systems featuring constraints. We briefly
discuss the efficiency of s(CASP) (which in some benchmarks outperforms a mature,
highly optimized ASP system) and present a more complex application to exploit its
expressiveness. Then, we present a real application that exploits the expressiveness
of s(CASP). We present the implementation of an automated reasoner that uses Event
Calculus to model commonsense reasoning with a sound, logical basis. Previous
attempts to mechanize reasoning using EC faced difficulties in treating continuous
change in dense domains (e.g., time and other physical quantities), constraints between
variables, default negation, and the uniform application of different inference methods,
among others. We show how EC scenarios can be elegantly modeled using the goal-
directed execution model of s(CASP) and how its expressiveness makes it possible to
perform deductive reasoning tasks in domains featuring constraints involving dense
time and fluents with continuous properties.

Together, these results envision advantages on several fronts: complex queries and non-
trivial reasoning can be easier to express thanks to the higher-level of logic programming
and constraints; fewer computations are needed thanks to the automatic reuse of previous
inferences (which in some sense will automatically perform dynamic programming);
queries and associated actions (if any) can be programmed using the same formalism.
The use of the resulting tools, Mod TCLP and s(CASP), makes it easier the translation
of problem requirements into code and minimizes the amount of re-engineering needed
to comply with the requirements when they change.

ii

Resumen de la Tesis Doctoral

La programación lógica con restricciones (CLP) es un paradigma de programación
declarativa que extiende la programación lógica (LP) con capacidades para resolver
restricciones sobre diferentes dominios que puede combinarse para modelar el problema
a resolver. CLP aporta mayor expresividad a LP, ya que las restricciones pueden
representar relaciones complejas de manera concisa. Esto simplifica el desarrollo de
programas que resuelven problemas para los que no existe un algoritmo eficaz y/o la
adaptación de dichos programas cuando las especificaciones del problema cambian.
Además, al cambiar de ”generar y probar” a ”restringir y generar” se reduce el árbol de
búsqueda y se incrementa la eficiencia. CLP se ha utilizado, entre otras aplicaciones, en
planificación, asignación de recursos, logı́stica, diseño de circuitos y verificación. Sin
embargo, una estrategia de ejecución top-down de CLP puede entrar en bucle debido
a la recursión por la izquierda y/o la presencia de negación no estratificada, mientras
que una estrategia de ejecución bottom-up limita el rango de dominios de restricción
admisibles, donde pueden aparecer las restricciones y el tipo (o número) de modelos
que se pueden obtener.

Esta tesis contribuye al estado del arte de la programación lógica con restricciones y
tabulación (TCLP), que suspende llamadas más particulares comprobando entailment
(haciendo que los programas CLP terminen en más casos), y de la programación lógica
con restricciones con conjuntos de respuestas (Constraint Answer Set Programming,
CASP), que evalúa programas CLP con negación usando la semántica de modelos
estables.

En primer lugar, ampliamos los fundamentos teóricos de TCLP, demostrando corrección
y completitud de una semántica operacional top-down de TCLP que utiliza una estrate-
gia de gestión de respuestas más rica y flexible y extendemos las prueba de terminación
incluyendo algunos casos de dominios de restricciones, como el dominio de Herbrand,
que no son constraint-compact. Después, aprovechando estas propiedades extendi-
das, diseñamos e implementamos un entorno genérico de TCLP, llamado Mod TCLP,
que proporciona una interfaz clara y sencilla que facilita la integración de diferentes
dominios de restricciones con el módulo de tabulación. Mod TCLP implementa de
manera completa la comprobación mediante entailment de llamadas y respuestas mejo-
rando el rendimiento y la terminación con respecto a Prolog, tabulación, CLP e imple-

iii

RESUMEN DE LA TESIS DOCTORAL

mentaciones previas de TCLP. Validamos la expresividad y flexibilidad de Mod TCLP
integrando diferentes resolutores de restricciones (uno de ellos escrito en C) y evalu-
amos su rendimiento con varios benchmarks. También usamos Mod TCLP para calcular
agregados sobre retı́culos de manera incremental mediante un framework, ATCLP, que
se basa en una nueva semántica, y ve los agregados como restricciones y usa el entail-
ment y la relación join del retı́culo para definir los agregados. Finalmente, aplicamos
Mod TCLP para re-implementar el algoritmo de punto fijo de un intérprete abstracto de
última generación donde el modulo de tabulación calcula el punto fijo y la interfaz de
TCLP invoca el dominio abstracto para calcular el LUB de las sustituciones abstractas.
El código resultante del intérprete abstracto es más simple y corto que el inicial y, en la
mayorı́a de los casos, la implementación resultante es más rápida.

Por otro lado, esta tesis extiende un razonador no monótono y goal-directed para
evaluar programas CASP sin la fase de grounding requerida por la mayorı́a de los
sistemas CASP. El razonador resultante, llamado s(CASP), calcula, a partir de una
consulta, los modelos estables (parciales), que debido a la presencia de negación no
estratificada en programas CASP podrı́an ser mas de uno, y el árbol de justificación
con los términos y las reglas que soportan la consulta. Demostramos, mediante varios
ejemplos, la mejora en la expresividad de s(CASP) con respecto a Prolog, ASP, CLP, y
otros sistemas ASP con restricciones. Evaluamos brevemente la eficiencia de s(CASP)
(que en algunos casos supera a un perfeccionado y altamente optimizado sistema ASP).
A continuación, presentamos una aplicación real que se beneficia de la expresividad de
s(CASP). Presentamos la implementación de un razonador automático que usa Event
Caculus para modelar razonamiento de sentido común con una base lógica sólida.
Intentos anteriores de automatizar el razonamiento utilizando la IA se enfrentaron a
dificultades en el manejo de: cambios en dominios continuos y densos (por ejemplo,
tiempo y cantidades fı́sicas), restricciones entre variables, negación por defecto y una
utilización homogénea de diferentes métodos de inferencia, entre otros. Mostramos
cómo distintos escenarios de EC pueden ser modelados elegantemente usando el modelo
de ejecución goal-directed de s(CASP) y cómo su expresividad permite realizar tareas
de razonamiento deductivo en dominios que representan restricciones involucrando
tiempo denso y fluentes con propiedades continuas.

En conjunto, estos resultados arrojan ventajas en varios frentes: preguntas comple-
jas y razonamiento no trivial son más fáciles de expresar gracias al mayor nivel de
programación y restricciones lógicas; es necesaria una menor cantidad de cómputo
gracias a la reutilización automática de datos inferencias previas (que, en cierto sentido,
implementa automáticamente programación dinámicas); las consultas y las acciones
asociadas (si las hubiere) pueden ser programadas usando el mismo formalismo. El
uso de las herramientas resultantes, Mod TCLP y s(CASP), facilita la traducción de
los requisitos del problema en código y minimiza la cantidad de reingenierı́a que es
necesaria para adecuar los requisitos cuando estos cambian.

iv

A las mujeres más importantes de mi vida,
Ma Victoria, Barbara, Diana, Dafne,

y a mi padre.

v

Acknowledgments

This thesis collects the results of about five years of research, during which I have
learned, among other things, about scientific research and constraint logic programming.
The thesis would not have been possible without the help and advise of people I met
during this journey and to whom I am grateful.

To remember all the people that helped me with this thesis, I should first try to decide
when this journey started. Most likely it started in the summer of 2013 when Manuel
gave me “The art of Prolog” (Sterling and Shapiro, 1994) together with an exercise
statement: Let A and B be two sorted lists of pairs V-Pr, then the output is a sorted
list of pairs VC-PrC, such as VCk=VAi+VB j and PrCk=∑i, j(PrAi*PrB j), e.g., given the
query ?- sadd([1-0.3, 2-0.7], [2-0.25, 3-0.4, 4-0.35], C) the answer would
be C=[3-0.075,4-0.295,5-0.385,6-0.245].1 I was able to solve this exercise thanks
to the Functional Programming course I attended the previous semester, and I enjoyed
Prolog thanks to the Logic course I attended during my first semester in Mathematics &
Computer Science. Therefore, I could say that this journey started in 2011. However,
I decided to start a new degree as a consequence of the collapse of the Spanish real
estate bubble (I worked as an architect for 10 years) and Lehman Brothers in 2008, and
I chose Mathematics & Computer Science because I like programming since I was a
child and I learned the use of GoTo (later I read Dijkstra’s ”Go To Statement Considered
Harmful”). So it is not clear to me when it all really started.

In a similar way I do not clearly know which are the geographical limits of this journey
because during the work on the thesis, I have attended conferences and courses in many
cities around Europe and the USA (e.g., I stayed three months in Dallas). Everywhere I
made friends who helped me improve the thesis and exploiting the visits. All in all I
would like to thank everyone I have met on this long journey. As I could not name each
and every one and I do not want to choose a threshold (see Example 4.3), my greatest
thanks go to Manuel for the opportunity to work and learn with him these years and for
his steady guidance, patience and support.

1The first item 3-0.075 combines A1 with B1, 3=(1+2) and 0.075=(0.3*0.7). The second item
4-0.295 combines A1 with B2 and A2 with B1, 4=(1+3)=(2+2) and 0.295=(0.3*0.4 + 0.7*0.25). The
third item combines A1 with B3 and A2 with B2, and the last one combines A2 with B3.

vii

Contents

Abstract of the Dissertation i

Resumen de la Tesis Doctoral iii

Acknowledgments vii

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation and Overview . 1
1.2 State of the Art . 3

1.2.1 Tabled Constraint Logic Programming 3
1.2.2 Constraint Answer Set Programming 5

1.3 Thesis Contributions and Impact . 6
1.3.1 Mod TCLP . 7
1.3.2 s(CASP) . 8

1.4 Thesis Organization . 9

I Tabled Constraint Logic Programming 11

2 Top-Down TCLP: Semantics, Correctness, Completeness, and Termina-
tion 13
2.1 Motivation . 14

2.1.1 LP vs. CLP . 15
2.1.2 LP vs. Tabling . 16
2.1.3 TCLP vs. Tabling and vs. CLP 16

2.2 Constraint Logic Programming . 17

ix

CONTENTS

2.2.1 Syntax of Constraint Logic Programs 17
2.2.2 Constraint Solvers . 18

2.3 Top-down Semantics . 19
2.3.1 Fixpoint Semantics . 20
2.3.2 Operational Semantics . 21

2.4 CLP Trees and TCLP Forests . 25
2.4.1 CLP Tree of dist/3 with Right Recursion 26
2.4.2 CLP Tree of dist/3 with Left Recursion 28
2.4.3 TCLP Forest of dist/3 with Left Recursion 28
2.4.4 TCLP Forest of dist/3 with Right Recursion 31

2.5 Theorems and Proofs . 34
2.5.1 Soundness and Completeness 34
2.5.2 Termination . 36

2.6 The role of the Projection in TCLP 42
2.7 Discussion . 44

3 Design and Implementation of Mod TCLP 45
3.1 The Mod TCLP Framework . 46

3.1.1 Design of the Generic Interface 47
3.1.2 Implementation Sketch . 50
3.1.3 Step by Step Execution of dist/3 under TCLP(Q) 55
3.1.4 Implementation of the TCLP(Q) Interface 57
3.1.5 Two-Step Projection . 58

3.2 Other TCLP Interfaces . 60
3.2.1 Difference Constraints . 60
3.2.2 Constraints over Finite Lattices 61

3.3 Experimental Evaluation . 62
3.3.1 Absolute Performance of TCLP vs. LP vs. Tabling vs. CLP . . 63
3.3.2 The Cost of Modularity: Mod TCLP vs. Original TCLP . . . 64
3.3.3 Improved Answer Management Strategies 64
3.3.4 Improved Two-Step Projection 68
3.3.5 Comparison of Mod TCLP(R, Q vs D≤) 69
3.3.6 Abstract Interpretation: Tabling vs. TCLP(Lat) 71

3.4 Discussion . 74

4 Incremental Evaluation of Aggregates using Tabled CLP 77
4.1 Motivation . 78
4.2 Aggregates as Lattice Operations . 81

4.2.1 Entailment-Based Aggregates 81
4.2.2 Join-Based Aggregates . 82

x

CONTENTS

4.3 The ATCLP Framework . 83
4.3.1 Design of the ATCLP Interface 83
4.3.2 Implementation Sketch . 87
4.3.3 Adapting the Answer Management of TCLP 90

4.4 Non-Lattice Aggregates . 91
4.5 Experimental Evaluation . 93
4.6 Discussion . 96

5 Abstract Interpretation Fixpoint using Tabled CLP 97
5.1 The PLAI algorithm . 99

5.1.1 Domains in PLAI . 99
5.1.2 And-Or trees and substitutions 100
5.1.3 PLAI’s fix point algorithm 102

5.2 Implementations of the PLAI Algorithm: Prolog vs. Tabling 103
5.2.1 PLAI in CiaoPP . 103
5.2.2 The PLAI Algorithm in TCLP 105

5.3 Evaluation . 108
5.4 Discussion . 111

II Constraint Answer Set Programming 113

6 Constraint Answer Set Programming without Grounding 115
6.1 ASP and s(ASP) . 116

6.1.1 Dual of a Logic Program . 118
6.1.2 Constructive Disequality . 120
6.1.3 The forall Algorithm . 120
6.1.4 Non-Monotonic Checking Rules 121
6.1.5 Handling Loops . 122

6.2 s(CASP): Design and Implementation 123
6.2.1 s(CASP) Programs . 124
6.2.2 The Interpreter and the Disequality Constraint Solver 125
6.2.3 Integration of Constraint Solvers in s(CASP) 126
6.2.4 The C-forall Algorithm 126

6.3 Examples and Evaluation . 130
6.3.1 Stream Data Reasoning . 131
6.3.2 Yale Shooting Scenario . 132
6.3.3 The Traveling Salesman Problem (TSP) 133
6.3.4 Towers of Hanoi . 134

6.4 Discussion . 135

xi

CONTENTS

7 Modeling and Reasoning in Event Calculus using s(CASP) 137
7.1 Motivation and Related Work . 138
7.2 Event Calculus . 140
7.3 From Event Calculus to s(CASP) . 142

7.3.1 Modeling EC with s(CASP) 142
7.3.2 Translating the BEC Axioms into s(CASP) 143
7.3.3 Translation of the Narrative 145
7.3.4 Continuous Change: A Complete Encoding 147

7.4 Examples and Evaluation . 148
7.5 Discussion . 150

8 Conclusions and Future Work 153
8.1 Mod TCLP: Summary . 154
8.2 s(CASP): Summary . 155
8.3 Directions for Future Research . 155

Bibliography 161

Appendix A Incremental Evaluation of Aggregates 171
A.1 Prolog and tabling encoding of Minimax 171
A.2 Tabling encoding of Game . 172

Appendix B Abstract Interpretation Fixpoint 173
B.1 PLAI Algorithm Using TCLP . 173
B.2 PLAI Algorithm Using Ciao Prolog 178

Appendix C s(CASP) 195
C.1 s(CASP) interpreter . 195
C.2 Stream Data Reasoning Example . 196
C.3 Yale Scenario Example . 203
C.4 The Traveling Salesman Problem Example 204
C.5 Towers of Hanoi Example . 206

Appendix D Event Calculus 209
D.1 F2LP encoding of light scenario . 209
D.2 Adapted F2LP translation of light scenario with increased precision . 210

xii

List of Figures

2.1 Left-recursive distance traversal in a graph. 14
2.2 Right-recursive distance traversal in a graph. 15
2.3 Code of a cycled graph. 25
2.4 CLP tree of dist/3 with right recursion. 27
2.5 CLP tree and TCLP forest of dist/3 with left recursion. 29
2.6 TCLP forest of dist/3 with right recursion. 32
2.7 TCLP programs under H and Q. 39

3.1 Generic interface specification. 47
3.2 TCLP version of dist/3 and its transformation. 51
3.3 Flowchart of the execution algorithm of Mod TCLP. 52
3.4 Implementation of tabled_call/1. 53
3.5 Implementation of new_answer/0. 54
3.6 The Mod TCLP interface for CLP(Q) is a bridge to existing predicates. 59
3.7 The answer entailment check of the Mod TCLP(D≤) interface. 61
3.8 Code of sd/3 a shortest-distance program. 66
3.9 Code of fib/2 under TCLP (it runs forwards and backwards). 68
3.10 Lattice of the Signs abstract domain. 72
3.11 The n-dimensional Takeuchi function and code of takeuchi/m. 72
3.12 Code of sentinel/m program. 73

4.1 Code and interpretation of a predicate aggregated using minimum. . . 79
4.2 Code of path/2 set of reachable nodes from a given node. 87
4.3 Transformed code for the minimization of p/1. 88
4.4 Simplified ATCLP interface with the constraint tabling engine. 89
4.5 Extended implementation of new_answer/0. 90
4.6 Graph for the random walk problem. 92
4.7 Complete encoding for the random walk problem. 92
4.8 Minimax algorithm in ATCLP used in a TicTacToe implementation. . 94
4.9 Core algorithm for the Game benchmark. 95

5.1 Implementation of call_to_success/7 under the TCLP framework . 106

xiii

LIST OF FIGURES

5.2 Code of the operator abst_lub under the TCLP framework 107

6.1 (Very abridged) Code of the s(CASP) interpreter. 125
6.2 Two C-forall evaluation examples. 128
6.3 Implementation of forall/2 in the s(CASP) interpreter. 129
6.4 Code of a stream data reasoner under s(CASP). 131
6.5 Code of the Yale Shooting problem under s(CAPS). 132
6.6 Code of the Traveling Salesman problem under s(CASP). 133
6.7 Code of the Towers of Hanoi problem under s(CASP). 134

7.1 Formalization of Basic Event Calculus from (Mueller, 2014). 141
7.2 BEC axioms modeled in s(CASP) 143
7.3 Narrative of the light scenario modeled in s(CASP) 145
7.4 Encoding of an Event Calculus narrative with continuous change . . . 147

xiv

List of Tables

2.1 Termination properties comparison of LP, CLP, tabling and TCLP. . . 16
2.2 Soundness and completeness comparison of precise, over- and under-

approximation (‘≡’, ‘v’ and ‘w’) for the entailment phases. 43

3.1 Run time (ms) of LP, CLP(Q), tabling and TCLP(Q) for dist/3. . . . 63
3.2 Run time (ms) of CLP(D≤), original TCLP(D≤) and Mod TCLP(D≤)

for truckload/4 and step_bound/4. 65
3.3 Run time (ms) of answer management strategies under Mod TCLP(D≤)

for truckload/4 and step_bound/4. 66
3.4 Number of answers: saved (Sav.), discarded (Dis.), removed (Rem.)

and returned to the query (Ret.) for each answer management strategy. 67
3.5 Comparative table of One-Step and Two-Step projection design. 70
3.6 Run time (ms) of Mod TCLP(R,Q and D≤) for fib/2. 71
3.7 Run time (ms) of tabling and Mod TCLP(Lat) for analyze/1. 73
3.8 Run time (ms) of tabling and Mod TCLP(Lat) for (un)constrained calls

for analyze/1 . 74

4.1 Encoding example of entailment-based aggregates. 84
4.2 Encoding examples of join-based aggregates. 86
4.3 Encoding examples of non-lattice aggregates. 91
4.4 Run time (ms) and memory usage (between parentheses, in Mb) for

TicTacToe. 94
4.5 Run time (ms) comparison for Game with different scenarios. 96

5.1 CiaoPP fixpoint: Prolog vs. TCLP (Groundness domain). 110
5.2 CiaoPP fixpoint: Prolog vs. TCLP (Sh+Fr domain). 111

6.1 Run-time (ms) of s(CASP) and s(ASP) for different programs. 124
6.2 Run-time (ms) of s(CASP) and clingo (standard and incremental) for

hanoi/2 with n disks. 135

7.1 Run time (ms) comparison for the light scenario. 150

xv

Chapter 1

Introduction

This chapter gives a brief introduction to (Constraint) Logic Pro-
gramming (CLP) and motivates why it is relevant to improve its
expressiveness and efficiency. It describes the current state of the
art with respect to the research topics I was working on: Tabled
Constraint Logic Programming (to improve termination proper-
ties of CLP) and Constraint Answer Set Programming (to allow
non-monotonic reasoning). We also list the contributions of my
thesis, where they have been published, and applications of these
contributions. Finally, the structure of the thesis is outlined.

1.1 Motivation and Overview

High-level programming languages, in particular declarative programming languages,
make it easier for programmers to write and/or maintain software by providing a
language closer to the natural specification language of the problem to be solved.
Intuitively, declarative programming states what are the properties of the solution to a
problem, instead of how the problem has to be solved. The separation of control issues
and the logical specification is expressed by Kowalski’s equation from (Kowalski, 1979),
algorithm = logic+ control, where the logic component specifies the knowledge to
be used in solving problems and the control determines the problem-solving strategy.
More formally, the key idea of declarative programming languages (Lloyd, 1994), is
that a program is a theory (in some suitable logic), and computation is deduction from
the theory. A suitable logic should have a model theory, a proof theory, a soundness
theorem (i.e., computed answers should be correct) and a completeness theorem (i.e.,
all correct answers should be computed).

1

INTRODUCTION

Logic programming languages (LP) are declarative languages based on first-order logic
where the programs are sets of sentences in logical form (facts and rules) that charac-
terize the properties of the solution to a problem. Major logic programming language
families include Prolog, Datalog, and Answer Set Programming (ASP), which differ
not only in the control strategy used but also in their expressiveness. Prolog (Sterling
and Shapiro, 1994) is query-driven and uses a top-down strategy to deduce the answers
for a query following specific resolution steps. SLD-resolution (Emden and Kowalski,
1976; Robinson, 1965) is the strategy used in Prolog. It is however incomplete and
some logical consequences of a program may never be found (i.e., it may enter infinite
loops).

This problem is partially solved using tabling (Tamaki and Sato, 1986; Warren, 1992)
which is complete and ensure termination for definite programs (i.e., programs without
negation) with bounded term depth (i.e., programs which can only generate terms with
a finite depth). These programs include the class of Datalog programs. Datalog is
syntactically a subset of Prolog (e.g., non-interpreted functions are not allowed), often
used as a query language for deductive databases. Due to its finiteness properties,
queries on Datalog programs can be resolved by bottom-up computation.

ASP (Lifschitz, 2008) allows the representation of non-monotonic reasoning using
negation. ASP is based on the stable model semantics of logic programming (Gelfond
and Lifschitz, 1988) and uses a bottom-up strategy, which in principle always terminates,
to compute stable models of programs with negation. However, ASP programs with
variables have to be grounded (replaced by an equivalent program without variables),
with a concomitant combinatorial explosion, before they are solved. There are many
techniques which try to mitigate the impact of the grounding phase, and considerable
research has been conducted on deriving top-down execution models (Baselice and
Bonatti, 2010; Baselice et al., 2009; Dal Palù et al., 2009; Marple et al., 2017a) to avoid
the grounding phase.

Constraint logic programming (CLP) (Jaffar and Maher, 1994) represents relationships
among different parts of the solution of a problem as equations and/or constraints and
provides a common operational and declarative semantics where different equation
domains/solvers can be combined to model problems using the more adequate represen-
tation. It extends LP with variables that can belong to arbitrary constraint domains and
with constraint solvers that can incrementally simplify and solve equations set up during
program evaluation. CLP brings additional expressive power to LP, since constraints can
very concisely capture complex relationships. Also, the shift from “generate-and-test”
to “constrain-and-generate” code patterns reduces the search tree and therefore brings
additional performance, even if constraint solving is in general more expensive than
unification. This expressiveness has been used to model satisfiability and optimization
constraints (Marriott and Stuckey, 1993) for solving combinatorial search problems
that draws on a wide range of techniques from artificial intelligence, computer science,
databases, programming languages, and operations research. Currently, CLP is applied

2

1.2 State of the Art

with success to other problems, such as scheduling, planning, vehicle routing, networks,
and stream data analysis.

However, CLP inherits previous drawbacks that are not fully addressed in current
attempts: the integration of constraint and tabling execution avoid loops, but they are
inefficient and the integration of different constraint solvers is not easy; the extension
of ASP systems with constraints allows non-monotonic reasoning, but their execution
is not straightforward due to the grounding phase.

1.2 State of the Art

This section introduces the main concepts related to the techniques used to integrate
different constraint solvers with tabling engines and/or ASP models. Section 1.2.1
introduces tabling and the limitations of the systems that have been proposed to evaluate
Constraint Logic Programs under tabled execution. Section 1.2.2 introduces ASP, the
proposals to reduce the impact of the grounding phase, and the limitations of systems
proposed to evaluate (Constraint) Answer Set Programming under the stable model
semantics. More details related to the contributions of this thesis appear at the beginning
of each chapter.

1.2.1 Tabled Constraint Logic Programming

The initial ideas for the combination of tabling and constraints originate in (Kanellakis
et al., 1995), where a variant of Datalog featuring constraints was proposed. Data-
log (Maier and Warren, 1988) is a syntactical subset of logic programming and is used
to reason about the databases. The restrictions in the expressiveness of the language
ensure programs to have finite interpretations and also, queries on Datalog programs
are executed bottom-up rather than the top-down as in Prolog. The former has the
advantage that it always terminates for Datalog programs, whereas the latter may get
stuck in infinite loops. However, a goal-directed approach usually obtains the desired
result much faster and uses less space.

Tabling (Tamaki and Sato, 1986; Warren, 1992) is a top-down execution strategy for
logic programs that always terminates for calls / programs with the bounded term depth
property (e.g., Datalog programs) and can improve efficiency for terminating programs
which repeat computations, as it automatically implements a variant of dynamic pro-
gramming. The tabling execution suspends repeated calls that could cause infinite loops
and answers from non-looping branches are used to resume suspended calls that can, in
turn, generate more answers. Only new answers are saved, and evaluation finishes when
no new answers can be generated. Tabling has been successfully applied in a variety
of contexts, including deductive databases, program analysis, semantic Web reasoning,

3

INTRODUCTION

and model checking (Charatonik et al., 2002; Dawson et al., 1996; Ramakrishna et al.,
1997; Warren et al., 1988; Zou et al., 2005).

Just as Datalog is a syntactic subset of logic programming, DatalogD (Revesz, 1993;
Toman, 1995) is a syntactic subset of constraint logic programming. DatalogD has been
applied in Constraint Databases where assignments to atomic values are generalized
to constraints applied to variables, which provides more compact representations and
increased expressiveness. The time and space problems associated with the bottom-
up evaluation of Datalog were worked around in (Toman, 1997b) where a top-down
evaluation strategy featuring tabling was proposed to take advantages of the top-down
computation of CLP. Tabled CLP generalizes DatalogD, in the same way as tabled
LP generalizes Datalog, and has been applied in other areas, including verification of
timed automata and infinite systems (Charatonik et al., 2002), and abstract interpreta-
tion (Toman, 1997a).

XSB (Swift and Warren, 2012) was the first logic programming system that provided
tabled CLP as a generic feature, instead of resorting to ad-hoc adaptations. This was
done by extending XSB with attributed variables (Cui and Warren, 2000), one of the
most popular mechanism to implement constraint solvers in Prolog. However, one of its
drawbacks is that it only uses variant checking (even for goals with constraints), instead
of entailment and therefore it does not suspend more particular calls nor discards more
particular answers. This makes programs terminate in fewer cases than with entailment
and takes longer in other cases. This is similar to what happens in tabled logic programs
with and without subsumption (Swift and Warren, 2010).

A general framework for CHR under tabled evaluation is described in (Schrijvers et al.,
2008). It takes advantage of the flexibility that CHR provides for writing constraint
solvers, but it also lacks call entailment checking and enforces total call abstraction:
all constraints are removed from calls before executing them, which can result in
non-termination w.r.t. systems that use entailment. Besides, the need to change the
representation between CHR and Herbrand terms takes a toll in performance.

Failure Tabled CLP (Gange et al., 2013) is an execution technique which has several
points in common with TCLP. It executes CLP programs following a top-down execution
where for recursive clauses it uses iterative deepening search. The key idea is that it can
learn from failed derivations and uses interpolants instead of constraint projection to
generate conditions (i.e., the invariant) for reuse. It will however not terminate in some
cases even with the addition of counters to implement a mechanism akin to iterative
deepening. This technique has been applied in verification where you try to over-
approximate failures loosing completeness but ensuring correctness (i.e., successful
derivations are corrects).

Last, a previous Tabled CLP framework featuring a more complete treatment of con-
straint projection and entailment (Chico de Guzmán et al., 2012) focused on adapting
the implementation of a tabling algorithm to be used with constraints. As a result, and

4

1.2 State of the Art

although the ideas therein were generic, they are not easily extensible. Adding new
constraint domains to them is a difficult task that requires deep knowledge about the
particular tabling implementation and the constraint solver. The modifications done
to the tabling implementation for one particular constraint solver may very well be
not useful for another constraint solver; in turn, constraint solvers had to be modified
in order to make then aware of internal characteristics and capabilities of the tabling
algorithm. These adaptations generate a technical debt that made using the full potential
of TCLP challenging.

1.2.2 Constraint Answer Set Programming

Answer Set Programming (ASP) has emerged as a successful paradigm for developing
intelligent applications. It uses the stable model semantics (Gelfond and Lifschitz, 1988)
for programs with negation. ASP has attracted much attention due to its expressiveness
and ability to incorporate non-monotonic reasoning, represent knowledge, and model
combinatorial problems. However, most of the ASP systems require a ground phase to
remove the variables. To mitigate the impact of the exponential increase in the size of
the grounded programs, several approaches have been proposed. For example, in the
case of large data sets, magic set techniques have been used to improve grounding for
specific queries (Alviano et al., 2012). For programs that use uninterpreted function
symbols, techniques such as external sources (Calimeri et al., 2007) have been proposed.

As we mentioned before, constraints have been used both to enhance expressiveness
and to increase performance in logic programming. It is therefore natural to incorporate
constraints in ASP systems. For Constraint Answer Set Programming (CASP) systems
based on a bottom-up execution, the grounding is still an issue. The integration of
constraints with ASP is not as seamless as in standard constraint logic programming
(CLP), because during the grounding phase the variables disappear and, therefore, the
constraints linking them. The loss of communication due to elimination of variables
makes the execution methods for CASP systems complex and explicit hooks are needed
in the language. For example, EZCSP (Balduccini and Lierler, 2017) provides a builtin
to place constraints in the head of the rules that is used, during the grounding phase,
to convert these constraints into an intermediate language that communicates the ASP
solver and the constraint solver.

Moreover, variable domains induced by constraints can be unbound and, therefore,
infinite (e.g., X #> 0 with X ∈N or X ∈Q). Even if they are bound, they can contain an
infinite number of elements (e.g. X #> 0 ∧ X #< 1 in Q or R). The proposals to work
around this issue limit the range of admissible constraint domains (e.g., discrete instead
of dense), the places where constraints can appear, and the type (or number) of models
that can be returned.

These problems have been attacked using different techniques:

5

INTRODUCTION

• Translation-based methods (Balduccini and Lierler, 2017), which convert both
ASP and constraints into a theory that is executed by an SMT solver. Once the
input program is translated, they benefit from the features and performance of
the target ASP and SAP solvers. However, the translation may result in a large
propositional representation or weak propagation strength, negatively impacting
scalability and performance respectively.

• Extensions of ASP systems with constraint propagators (Banbara et al., 2017;
Janhunen et al., 2017) that generate and propagate new constraints during the
search and thus continuously check for consistency using external solvers featur-
ing, e.g., conflict-driven clause learning. However, they are restricted to finite
domain solvers (hence, dense domains cannot be appropriately captured) and
incrementally generate ground models, lifting the upper bounds for some parame-
ters. This, besides being a performance bottleneck, falls short of capturing the
true nature of variables in constraint programming.

On the other hand, to avoid the grounding phase, research has been conducted on
devising top-down execution models for ASP (Baselice and Bonatti, 2010; Baselice
et al., 2009; Dal Palù et al., 2009) that could be extended with constraints. One on
them is s(ASP) (Marple et al., 2017a), a goal-directed, top-down, SLD resolution-like
procedure that evaluates programs under the ASP semantics without a grounding phase
either before or during execution. s(ASP) supports predicate logic programs (also with
unsafe clauses and/or uninterpreted functions) and retains logical variables both during
execution and in the answer sets.

1.3 Thesis Contributions and Impact

This section discusses the theoretical and technical contributions of this thesis, and it
details where they have been published or presented. The main goal of this thesis is
the improvement of a high-level language rooted in logic and constraints to provide
customized solutions (using the more appropriated constraint domain) to different
problems and to make it easier to write and maintain the programs. From the analysis
of the State of the Art we have identified three main research challenges:

• The current results on correctness, completeness, and termination of Tabled
Constraint Logic Programming are based on a bottom-up execution of Datalog
and they only consider a constraint-compact constraint domain.

• Implementations of Tabled Constraint Logic Programming did not fully use
entailment to determine call/answer subsumption and/or did not provide a simple
and well-documented interface to facilitate the integration of constraint solvers in
existing tabling systems.

6

1.3 Thesis Contributions and Impact

• For non-monotonic reasoning, current bottom-up implementations of Constraint
Answer Set Programming restrict the range of admissible constrained variable
domains (e.g., discrete instead of dense), or the type (or number) of models that
can be returned. And none of the current top-down proposals integrate constraint
solvers.

To address the aforementioned problems, we propose two frameworks: Mod TCLP,
a modular framework that facilitates the integration of constraint solvers with tabling
engines and s(CASP), a top-down non-monotonic reasoner that evaluates Constraint
ASP programs.

1.3.1 Mod TCLP

The first main contribution is a modular framework of Tabled CLP, that implements
extended theoretical foundations for generic constraint domains (including the Herbrand
domain), and facilitates the integration of different constraint solvers in a tabling engine.

We have studied the role of projection and entailment in the termination, soundness,
and completeness of TCLP systems to characterize the properties required by the
constraint domain in order to, e.g., ensure termination. Then, we have generalized the
theoretical foundations of Tabled CLP for arbitrary constraint solvers in the top-down
operational semantics. Based on this theoretical foundations we designed, implemented
and evaluated Mod TCLP, a framework that eases the integration of additional constraint
solvers. Mod TCLP views constraint solvers as clients of the tabling system, which is
generic w.r.t. the solver and only requires a clear interface from the latter. This work has
been presented in the 18th International ACM Symposium on Principles and Practice of
Declarative Programming (Arias and Carro, 2016) and published in the journal Theory
and Practice of Logic Programming1 (Arias and Carro, 2019a).

To demonstrate the expressiveness and flexibility provided by Mod TCLP, and the
improvement in terms of performance (e.g., due to a more comprehensive answer
management strategy design) w.r.t. Prolog, tabling and CLP:

• We integrated four constraint solvers: a previously existing constraint solver for
difference constraints, written in C; the standard versions of Holzbaur’s CLP(Q)
and CLP(R), written in Prolog; and a new constraint solver for equations over
finite lattices. And we evaluated the performance of our framework in several
benchmarks using the aforementioned solvers.

• We used Mod TCLP to define a framework to incrementally compute aggregates
for elements in a lattice. We use the entailment and join relations of the lattice to

1Theory and Practice of Logic Programming (TPLP) is ranked in Q1 in JCR.

7

INTRODUCTION

define (and compute) aggregates and decide whether some atom is compatible
with (entails) the aggregate. The semantics of the aggregates defined in this
way is consistent with the LFP semantics of tabling with constraints. This work
has been presented in the 21st International Symposium on Practical Aspects of
Declarative Languages (Arias and Carro, 2019c) and is under submission for a
journal version.

• We adapted the existing PLAI implementation in CiaoPP using Mod TCLP.
The tabling engine is used to compute the fixpoint and the constraint interface
computes the LUB of the abstract substitutions of different clauses. That provides,
on one hand, a much simpler code as the fixpoint computation is taken care of by
the underlying tabling machinery, and, in most cases, it also brings performance
gains, since some crucial operations (such as branch switching and resumption)
are executed by the tabling engine. This work has been presented at the 35th

International Conference on Logic Programming and published in the journal
Theory and Practice of Logic Programming (Arias and Carro, 2019b).

1.3.2 s(CASP)

The second main contribution is a novel top-down system to evaluate constraint answer
set programs with the ability to express non-monotonic programs à la ASP and the
possibility of expressing control in a way similar to traditional logic programming. This
work has been (partially) done during my stay at the University of Texas at Dallas, under
the supervision of Dr. Gopal Gupta and in collaboration with Kyle, Elmer, and Zhuo,
and has been presented at the 34th International Conference on Logic Programming
and published in the journal Theory and Practice of Logic Programming (Arias et al.,
2018). I am the main contributor to this work. We have also reported a very substantial
performance increase w.r.t. the original s(ASP) implementation and thanks to the
possibility of writing pieces of code with control in mind, it can also beat state-of-the-
art ASP systems in certain programs.

To demonstrate the expressiveness and flexibility of s(CASP) and the improvement in
terms of performance (e.g., ASP programs can be written with control in mind), w.r.t.
s(ASP), CLP, and mature ASP systems that it provides:

• We used s(CASP) to write programs/queries that cannot be written in [C]ASP
without resorting to a complex, unnatural encoding. The resulting programs
can use structures/functors directly and their answers are more expressive than
those given by ASP. Additionally, the constraints and the goal-directed evaluation
strategy of s(CASP) makes it possible to use directly algorithms that can not be
immediately coded in CASP and to reduce the search space.

8

1.4 Thesis Organization

• We used s(CASP) as the underlying reasoning infrastructure to model and reason
in Event Calculus. This reasoner shows how Event Calculus scenarios can be
elegantly modeled in s(CASP) and how its expressiveness makes it possible
to perform deductive and abductive reasoning tasks in domains featuring, for
example, constraints involving dense time and fluents. This work has been
presented at the 3rd International Workshop Datalog 2.0 (Arias et al., 2019b)
and at the 29th International Symposium on Logic-based Program Synthesis and
Transformation (Arias et al., 2019a).

1.4 Thesis Organization

This section summarizes the contents of the different chapters:

• Chapter 1 motivates the work presented in this thesis, describes the state of the
art, and outlines the contributions of the thesis and its organization.

• Chapter 2 extends the theoretical foundations of Tabled TCLP with a top-down ex-
ecution parametric w.r.t. constraint domains by proving soundness, completeness,
and termination for generic constraint domains.

• Chapter 3 describes the design and implementation of Mod TCLP, gives examples
integrating different constraint solvers, and evaluates its performance w.r.t. Prolog,
tabling, and CLP.

• Chapter 4 presents the intended semantics and the implementation of a framework
to incrementally compute aggregates based on Mod TCLP (extended to allow the
combination of answers).

• Chapter 5 presents the re-implementation of the existing PLAI algorithm used by
CiaoPP under Mod TCLP, reducing the complexity and the size of the code.

• Chapter 6 describes the design and the implementation of s(CASP), which im-
proves and extends s(ASP) with constraints.

• Chapter 7 presents and evaluates a reasoner of Event Calculus written using
s(CASP).

• Chapter 8 draws some conclusions and outlines some of the new research direc-
tions that can extend the research presented in this thesis.

9

Part I

Tabled Constraint Logic Programming

11

Chapter 2

Top-Down TCLP: Semantics,
Correctness, Completeness, and
Termination

Tabled Constraint Logic Programming (TCLP) basis was defined
for a bottom-up evaluation of Datalog (a syntactic subset of Prolog),
and constraint-compact constraint domains (e.g., the gap-order con-
straints). This chapter extends the theoretical foundations of TCLP
supporting generic constraint domains (including the Herbrand
domain used by Prolog), and giving a top-down operational seman-
tics based on CLP. It also studies the role of entailment check and
projection of the constraint stores in the design of TCLP systems
(i.e., relaxing their precision impacts efficiency and correctness).

The theoretical basis of TCLP (Toman, 1997b) were established in the framework of
bottom-up evaluation of Datalog systems and presents the basic operations (projection
and entailment checking) that are necessary to ensure completeness w.r.t. the declarative
semantics. Database evaluation in principle proceeds bottom-up, which ensures termi-
nation in this context. However, in order to speed up query processing and spend fewer
resources, top-down evaluation is also applied, where tabling can be used to avoid loops.
In this setting, TCLP is necessary to capture the semantics of the constraint database.

In this chapter, we complete previous work on conditions for termination of TCLP, we
provide a richer, more flexible answer management mechanism, and with a study on
how the implementation of a relaxed projection impacts soundness, completeness and
termination. On the other hand, we generalize the design of a tabling implementation so
that it can use the projection and entailment operations provided by a constraint solver
presented to the tabling engine as a server, and we define a set of operations that the

13

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

1 dist(X, Y, D) :-

2 dist(X, Z, D1),

3 edge(Z, Y, D2),

4 D is D1 + D2.

5 dist(X, Y, D) :-

6 edge(X, Y, D).

7

8 ?- dist(a,Y,D), D < K.

(a) LP version.

1 :- use_package(clpq).

2

3 dist(X, Y, D) :-

4 D1 #> 0, D2 #> 0,

5 D #= D1 + D2,

6 dist(X, Z, D1),

7 edge(Z, Y, D2).

8 dist(X, Y, D) :-

9 edge(X, Y, D).

10

11 ?- D #< K, dist(a,Y,D).

(b) CLP version.

Figure 2.1: Left-recursive distance traversal in a graph.
Note: The symbols #> and #= are (in)equalities in CLP.

constraint solver has to provide to the tabling engine. These operations are natural to
the constraint solver, and when they are not already present, they should be easy to
implement by extending the solver.

In Section 2.1 we highlight some of the advantages of TCLP versus LP, tabling, and
CLP. In Section 2.2 we present the syntax and some properties of CLP. In Section 2.3
we define a more general TCLP semantics based on the operational semantics of CLP
under a top-down execution and in Section 2.4 we compare their behaviour using CLP
trees and TCLP forests. In Section 2.5 we generalize previous soundness, completeness
and termination proofs for this extended TCLP semantics. In Section 2.6 we explain the
benefits of using entailment checking with a precise implementation of the projection.

2.1 Motivation

In order to highlight some of the advantages of TCLP versus LP, tabling, and CLP with
respect to declarativeness and logical reading, we will compare how different versions
of a program to compute distances between nodes in a graph behave under these three
approaches. Each version will be adapted to a different paradigm, but trying to stay
as close as possible to the original code, so that the additional expressiveness can be
attributed to the semantics of the programming language rather than to differences in
the code itself.

14

2.1 Motivation

1 dist(X, Y, D) :-

2 edge(X, Z, D1),

3 dist(Z, Y, D2),

4 D is D1 + D2.

5 dist(X, Y, D) :-

6 edge(X, Y, D).

(a) LP version.

1 :- use_package(clpq).

2

3 dist(X, Y, D) :-

4 D1 #> 0, D2 #> 0,

5 D #= D1 + D2,

6 edge(X, Z, D1),

7 dist(Z, Y, D2).

8 dist(X, Y, D) :-

9 edge(X, Y, D).

(b) CLP version.

Figure 2.2: Right-recursive distance traversal in a graph.
Note: The symbols #> and #= are (in)equalities in CLP.

2.1.1 LP vs. CLP

The code in Fig. 2.1, left, is the Prolog version of a program used to find nodes in a
graph within a distance K from each other.1 Fig. 2.1, right, is the CLP version of the
same code. The queries used to find the nodes Y from the node a within a maximum
distance K appear in the figures themselves.

In the Prolog version, the distance between two nodes is calculated by adding variables
D1 and D2, corresponding to distances to and from an intermediate node, once they are
instantiated. In the CLP version, addition is modeled as a constraint and placed at the
beginning of the clause. Since the total distance is bound, this constraint is expected to
prune the search in case it tries to go beyond the maximum distance K. These checks are
not added to the Prolog version, since they would not be useful for termination: they
would have to be placed after the calls to edge/3 and dist/3, when it is too late to avoid
infinite loops. In fact, none of the queries shown before terminates as left recursion
makes the recursive clause enter an infinite loop even for acyclic graphs.

If we convert the program to a right-recursive version by swapping the calls to edge/3

and dist/3 (Fig. 2.2), the LP execution will still not terminate in a cyclic graph. The
right-recursive version of the CLP program will however finish because the initial bound
to the distance eventually causes the constraint store to become inconsistent, which
provokes a failure in the search. This behavior is summarized in columns “LP” and
“CLP” of Table 2.1.

Note that this transformation is easy in this case, but in other cases, such as language
interpreters or tree / graph traversal algorithms, left (or double) recursion is much more
natural. While there are techniques to remove left / double recursion, most Prolog
compilers do not feature them. Therefore, we assume that the original source code
is straightforwardly mapped to the low-level runtime system, and, if necessary, left /

1This is a typical query for the analysis of social networks (Swift and Warren, 2010).

15

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

Table 2.1: Termination properties comparison of LP, CLP, tabling and TCLP.

Graph LP CLP TAB TCLP

Without cycles Left recursion × × X X

Right recursion X X X X

With cycles Left recursion × × × X

Right recursion × X × X

double recursion has to be manually removed by adding extra arguments implementing,
for example, explicit stacks — precisely the kind of manual program transformation that
we would like to avoid due to the difficulties that it brings with respect to maintenance
and clarity.

2.1.2 LP vs. Tabling

Tabling records the first occurrence of each call to a tabled predicate (the generator)
and its answers. In variant tabling, the most usual form of tabling, when a call equal
up to variable renaming to a previous generator is found (a variant), its execution is
suspended, and it is marked as a consumer of the generator. For example, dist(a,Y, D)

is a variant of dist(a,Z, D) if Y and Z are free variables. When a generator finitely
finishes exploring all of its clauses and its answers are collected, its consumers are
resumed and are fed the answers of the generator. This may make consumers produce
new answers that will in turn cause more resumptions.

Tabling is a complete strategy for all programs with the bounded term-depth property,
which in turn implies that the Herbrand model is finite. Therefore, left- or right-recursive
reachability terminates in finite graphs with or without cycles. However, the program in
Fig. 2.1, left, has an infinite minimum Herbrand model for cyclic graphs: every cycle
can be traversed an unbounded number of times, giving rise to an unlimited number
of answers with a different distance each. The query ?- dist(a,Y, D), D < K will
therefore not terminate under variant tabling.

2.1.3 TCLP vs. Tabling and vs. CLP

The program in Fig. 2.1, right, can be executed with tabling and using constraint entail-
ment to suspend calls which are more particular than previous calls and, symmetrically,
to keep only the most general answers returned.

Entailment can be seen as a generalization of subsumption for the case of general

16

2.2 Constraint Logic Programming

constraints; in turn, subsumption was shown to enhance termination and performance
in tabling (Swift and Warren, 2010). For example, the goal G0 ≡ dist(a,Y, D) is sub-
sumed by G1 ≡ dist(X,Y, D) because the former is an instance of the latter (G0 vG1).
All the answers for G1 where X=a are valid answers for G0; on the other hand, all the
answers for G0 are also answers for G1.

The main idea behind the use of entailment in TCLP is that more particular calls
(consumers) can suspend and later reuse the answers collected by more general calls
(generators). In order to make this entailment relationship explicit, we define a TCLP
goal as 〈g,cg〉 where g is the call (a literal) and cg is the projection of the current
constraint store onto the variables of the call. Then, 〈dist(a,Y, D), D < 150〉 is en-
tailed by the goal 〈dist(a,Y, D), D > 0 ∧ D < 75〉 because D > 0 ∧ D < 75vD < 150. We
also say that the former (the generator) is more general than the latter (the consumer).
All the solutions of the consumer are solutions of the generator or, in other words,
the space of solutions of the consumer is a subset of that of the generator. How-
ever, not all the answers from a generator are valid for its consumers. For example
Y=b ∧ D > 125 ∧ D < 135 is a solution for our generator, but not for our consumer, since
the consumer call was made under a constraint store more restrictive than the generator.
Therefore, the tabling engine should check and filter, via the constraint solver, that the
answer from the generator is consistent w.r.t. the constraint store of the consumer.

The use of entailment in calls and answers enhances termination properties and can
also increase speed (Section 3.3.1). The column “TCLP” in Table 2.1 summarizes
the termination properties of dist/3 under TCLP, and shows that a full integration of
tabling and CLP makes it possible to find all the solutions and finitely terminate in all
the cases. Our TCLP framework not only facilitates the integration of constraint solvers
with the tabling engine thanks to its simple interface (Section 3.1.1), but also minimizes
the effort required to execute existing CLP programs under tabling (Fig. 3.2), since the
changes required to the source code are minimal.

2.2 Constraint Logic Programming

In Section 2.2.1 we present the syntax of constraint logic programs, and in Section 2.2.2
we define the properties of a constraint solver required to be used under a TCLP
top-down execution (see Chapter 3).

2.2.1 Syntax of Constraint Logic Programs

A constraint logic program consists of clauses of the form:

h :- ch, l1, . . . , lk.

17

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

where h is an atom, ch is a constraint or conjunction of constraints, and li are literals.
The head of the clause is h and the rest is called the body. The clauses where the body
is always true, h :- true, are called facts and usually written omitting the body (h.). We
will use L to denote the set of li in a clause. We will assume throughout this chapter that
the program has been rewritten so that clause heads are linearized (all the variables are
different) and all head unifications take place in ch. We will assume that we are dealing
with definite programs, i.e., programs where the literals in the body are always positive
(non-negated) atoms. Normal programs require a different treatment.

A query to a CLP program is a clause without head ?- cq, q1, . . . , qk, where cq is a
conjunction of constraints, qi are the literals of the query. We denote the set of qi as Q.

2.2.2 Constraint Solvers

We follow (Jaffar and Maher, 1994) in this section. Constraint logic programming
introduces constraint solving methods in logic-based systems. During the evaluation
of a CLP program, the inference engine generates constraints whose consistency with
respect to the current constraint store is checked by the constraint solver. If the check
fails, the engine backtracks to a previous state and takes a pending branch of the search
tree. In the next sections we will review the fixpoint and operational semantics of CLP
and will extend them to TCLP.

Definition 2.1. A constraint solver, CLP(X), is a (partial) executable implementation
of a constraint domain (D,L). The parameter X stands for the 4-tuple (Σ, D, L, T)
where:

– Σ is a signature which determines the predefined predicates and function symbols
and their arities.

– D is a Σ-structure: the constraint domain over which the computation is performed.
– L is the class of Σ-formulas: all the constraints that can be expressed with Σ.
– T is a first-order Σ-theory: an axiomatization of the properties of D, which deter-

mines what constraints hold and what constraints do not hold. D and T should agree
on satisfiability of constraints, and every unsatisfiability in D has to be detected by
T , i.e., for every constraint c ∈ L, D � c iff T � c.

A constraint can be a singleton constraint or a conjunction of simpler constraints. We
denote constraints with lower case letters, e.g. c, and sets of constraints with uppercase
letters, e.g. S.

Example 2.1.
The Herbrand domain CLP(H) used in logic programming is the constraint domain
over finite trees, where Σ contains constants, function symbols, and the predicate
=/2; D is the set of finite trees, where each node is labeled by a constant (if it does

18

2.3 Top-down Semantics

no have children) or function symbol of arity n (if it has n children). L is the set
of constraints generated by the primitive constraints (i.e., equality) between trees
(terms). Typical constraints are X=g(a) and X=f(Z, Y) ∧ Z=a.

Definition 2.2 (Valuation). Let S = {X1, . . . ,Xn} be a set of variables. A valuation v is
a mapping from variables in S to values in D. We write v = {X1 7→ d1, . . . ,Xn 7→ dn} to
indicate that the value di is assigned to variable Xi. We determine the value assigned to
a variable as v(Xi) = di.

Definition 2.3 (Solution of a constraint). Let c be a constraint, vars(c) the set of
variables occurring in c, and v a valuation over vars(c) on the constraint domain D.
Then v is a solution of c if v(c), obtained by replacing each variable in c by the value
assigned to it by v, holds in the constraint domain.

The minimal set of operations that we expect a constraint solver to support, in order to
interface it successfully with our tabling system, are:

• Test for consistence or satisfiability. A constraint c is consistent on the constraint
domain D, denoted D � c, if it has a solution in D.

• Test for entailment (vD).2 We say that a constraint c0 is entailed by another
constraint c1 (c0 vD c1) if any solution of c0 is also a solution of c1. We extend
the notion of constraint entailment to a set of constraints: a set of constraints
C0 is entailed (or covered) by another set of constraints C1 (and we write it as
C0 vD C1) if ∀ci ∈C0∃c j ∈C1.ci vD c j.

• An operation to compute the projection of a constraint c onto a set of variables S
to obtain a constraint cS involving only variables in S such that: any solution of
c is also a solution of cS, and a valuation v over S which is a solution of cS is a
partial solution of c (i.e., there exists an extension of v which is a solution of c).
We denote the projection as Pro j(S,c).

2.3 Top-down Semantics

In this section we extend the theoretical basis of Tabled Constraint Logic Programming
for a top-down evaluation. In Section 2.3.1 we generalize the fixpoint semantics
of (Schrijvers et al., 2008; Toman, 1997b) with the S-semantics (Falaschi et al., 1989;
Jaffar and Maher, 1994). In Section 2.3.2 we define the operational semantics of TCLP,
based on the operational semantics of CLP.

2We may omit the subscript D if there is no ambiguity.

19

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

2.3.1 Fixpoint Semantics

The canonical model of a Prolog program is the minimal Herbrand model. Similarly, the
logical semantics of a CLP program P over a constraint domain D is the least D-model
/ D-S-model, which we define next.

Definition 2.4 (D-interpretation). Let L be a set of literals. Then a D-interpretation is
the set of the valuations for the literals in L on the constraint domain D. It is a subset of
the Herbrand base B = {v(l) | l ∈ L is a literal, v is a valuation on D}.

Definition 2.5 (D-model). Let P be a program. A D-model of P is a D-interpretation
such that all the clauses of P are consistent on D under this interpretation.

We can define the least D-S-model of a program using the S-semantics (Falaschi et al.,
1989; Jaffar and Maher, 1994) for languages with constraints (Gabbrielli and Levi,
1991). It differs from the standard model (Emden and Kowalski, 1976) essentially due
to the presence of variables in interpretations and models.

Definition 2.6 (D-S-interpretation). Let the pair (l,c) be a constraint literal where l is
a literal and c ∈D a constraint such that vars(c)⊆ vars(l). A D-S-interpretation is a
set of constraint literals.

Definition 2.7 (D-S-model). Let P be a program. A D-S-model of P is a D-S-
interpretation such that all the clauses of P are consistent on D under this interpretation.

The CLP fixpoint semantics (resp., S-semantics) is defined as usual as the smallest
fixpoint of the immediate consequence operators TDP (resp., SDP) where all the operations
behave as defined in the constraint domain D. Function TDP maps D-interpretations
onto D-interpretations:

Definition 2.8 (Operator TDP (Jaffar and Maher, 1994)). Let P be a CLP program and I
a D-interpretation. The immediate consequence operator TDP is defined as:

TDP (I) = I ∪ { v(h) | h :- ch, l1, . . . , lk is a clause of P,

v is a valuation on D s.t. D � v(ch),

v(li) ∈ I, 0 < i≤ k }

The function SDP does the same over D-S-interpretations:

Definition 2.9 (Operator SDP (Falaschi et al., 1989; Toman, 1997b)). Let P be a CLP
program and I aD-S-interpretation. The immediate consequence operator SDP is defined

20

2.3 Top-down Semantics

as:

SDP (I) = I ∪ { (h,c) | h :- ch, l1, . . . , lk is a clause of P,

(ai,ci) ∈ I, 0 < i≤ k,

c′ = Pro j(vars(h), ch ∧
∧k

i=1(ai = li ∧ ci)),

D � c′,

if c′ v c′′ for some (h,c′′) ∈ I then c = c′′ else c = c′ }

Note that, unlike the TDP operator, SDP may not add a pair (literal, constraint) when a
more general constraint is already present in the interpretation being enlarged. However,
to guarantee monotonicity, it does not remove existing more particular constraints. The
operational semantics (Section 2.3.2) will however be able to do that.

We denote the least fixpoint of a function f by lfp(f). This fixpoint exists for TDP and SDP
because both are monotonic functions on complete lattices: the set ofD-models of a pro-
gram P forms a complete lattice under the subset ordering, with a unique leastD-model,
and the set of D-S-models of a program P forms a complete lattice under ≤S, the order-
ing on S-interpretations defined in (Falaschi et al., 1989), with a unique leastD-S-model.
We can take as semantics lfp(TDP) or lfp(SDP), because [SDP (I)]D = TDP ([I]D) and con-
sequently [lfp(SDP)]D = lfp(TDP). The S-semantics, returned by lfp(SDP), allows the
intensional definition of models, and the standard semantics can be easily obtained
from it: if X is a D-S-interpretation, a D-interpretation is the set of valuations such that
[X]D = {v(l) | (l,c) ∈ X ,D � v(c)}.

2.3.2 Operational Semantics

In this section we extend the operational semantics for CLP programs under a top-
down execution scheme (Jaffar and Maher, 1994) to TCLP programs. The operational
semantics is given in terms of a transition system which computes the least model
defined by the CLP fixpoint semantics (Section 2.3.1). The evaluation of a query is a
sequence of steps from one state to the next.

Definition 2.10. A state is a tuple 〈R, c〉 where:

– R, the resolvent, is a multiset of literals and constraints that contains the collection
of as-yet-unseen literals and constraints of the program. For brevity, when the set is
a singleton we will write its only element, e.g., t instead of [t].

– c, the constraint store, is a constraint or conjunction of constraints. It is acted upon
by the constraint solver.

In (Jaffar and Maher, 1994) the constraint store c is divided in a collection of awake

21

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

constraints and a collection of asleep constraints. This separation is ultimately motivated
by implementation issues.

Given a query (Q,cq), the initial state of the evaluation is 〈Q, cq〉. Every transition step
between states resolves literals of the resolvent against the clauses of the program and
adds constraints to the constraint store. A derivation is successful if it is finite and the
final state has the form 〈 /0, c〉 (i.e., the resolvent becomes empty). The answer for the
query is Pro j(vars(Q),c).

The transitions due to constraint handling are deterministic (there is only one possible
offspring per node), while the transitions due to literal matching are non-deterministic
(there are as many offsprings as clauses match with the node literal). This is usually
represented as a search tree, constructed following the definition below. The order in
which the literals/constraints are selected is decided by the computation rule.

Definition 2.11 (CLP tree). Let P be a CLP definite program and (Q,cq) a query. A
CLP tree of (Q,cq) for P, denoted by τP(Q,cq), is a tree such that:

1. the root of τP(Q,cq) is 〈Q, cq〉 , the initial state.
2. the nodes of τP(Q,cq) are labeled with its corresponding state 〈L, c〉 .
3. the child/children of a node 〈l∪L, c〉 , where l is a literal selected by the computa-

tion rule, is/are:

• a node/nodes 〈body(hi)∪L, c∧ (l = hi)〉 obtained by resolution of l against
the matching clause(s) hi :- body(hi) in P where l = hi is an abbreviation for
the conjunction of equations between the arguments of l and hi. There is one
node for each matching clause. Matching clauses are assumed to be renamed
apart.

• or a leaf node fail if there are no clauses in P which matching heads for the
literal l.

4. the child of a node 〈c′∪L, c〉 , where c′ is a constraint selected by the computation
rule, is:

• the node 〈L, c∧ c′〉 , such that D � c∧ c′.

• or a leaf node fail if D 6� c∧ c′.

5. a leaf node 〈 /0, c〉 is the final state of a successful derivation, where c is the final
constraint store.

6. the set of answers of τP(Q,cq) (i.e., the answers to the query (Q,cq)), denoted
by Ans(Q,cq), is the set of constraints c′i obtained as the projection of the final
constraint stores ci onto vars(Q):

Ans(Q,cq) = {c′i | c′i = Pro j(vars(Q),ci).〈 /0, ci〉 ∈ τP(Q,cq)}

In a TCLP program (a CLP program executed under tabling), the set of tabled predi-
cates is denoted by TabP. In Def. 2.12 we define the forest (a set of trees) generated

22

2.3 Top-down Semantics

during the computation of a TCLP program where there are two main phases: the call
entailment phase (Def. 2.12.3c) and the answer entailment phase (Def. 2.12.3g). The
call entailment phase checks if a new goal is entailed/subsumed by a previous goal
(called its generator).3 The set of generators is denoted by GenP.

Tabled literals (literals which match heads of tabled predicates) are not resolved against
program clauses. Instead, they are resolved consuming the answer constraints from
a generator; this is termed answer resolution. The answer constraints of a generator
are collected in the answer entailment phase in such a way that an answer which is
entailed by another more general answer is discarded/removed. As a result, the forest
obtained as the derivation of a query w.r.t. a TCLP program is the set containing the
tree corresponding to the initial query and the trees corresponding to the generators (see
some example in Section 2.4).

Definition 2.12 (TCLP forest). Let P be a TCLP definite program, TabP the set of
tabled predicates, and (Q,cq) a query. A TCLP forest of (Q,cq) for P, denoted as
FP(Q,cq), the set of TCLP trees such that:

1. the initial tree, τP(Q,cq), is the TCLP tree of the query, and the rest of trees,
τP(gi,cgi) are the TCLP trees of the generators (gi,cgi) ∈ Gen(Q,cq):

FP(Q,cq) = {τP(Q,cq), τP(gi,cgi), . . .} with i≥ 0

2. the set of generators of FP(Q,cq), denoted as Gen(Q,cq), is ordered with respect to
the “age” of the generator such that for a given generator (gi,cgi) with gi ∈ TabP,
there are no younger generators, denoted as (g j,cg j) with j < i, which are more
general:

Gen(Q,cq) = {(gi,cgi) | ∀ j < i,@(g j,cg j) ∈ Gen(Q,cq).(gi,cgi)vD (g j,cg j) }

3. A TCLP tree, denoted by τP(Q,cq) or τP(gi,cgi), is similar to a CLP tree where:
(a) the root of the TCLP tree τP(Q,cq) is 〈Q, cq〉, the initial state.
(b) the root of a TCLP tree τP(g,cg) is the state 〈g, cg〉 corresponding to a

generator (g,cg) ∈ Gen(Q,cq). The child/children of this node is/are:
• a node/nodes 〈body(hi), c∧(g = hi)〉 obtained by resolution of g against

matching clauses hi :- body(hi) in P, where g = hi is an abbreviation for
the conjunction of equations between the corresponding arguments of g
and hi. There is one child node for each matching clause.

• or a leaf node fail if there are no clauses in P with matching heads for
the literal g.

(c) the child/children of a node 〈t ∪L, c〉 which is not the root of a generator and
where t is a tabled literal (t ∈ TabP) selected by the computation rule, is/are
obtained by answer resolution consuming the answers ci such that:

3Note that this entailment check includes subsumption in the Herbrand domain.

23

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

– ci ∈ Ans(g,cg), where Ans(g,cg) is the set of answers of the oldest
generator (g, t) ∈ Gen(Q,cq), such that g and t are equal upon variable
renaming, and c∧ (t = g)vD cg, where t = g is an abbreviation for the
conjunction of equations between corresponding arguments of t and
g, i.e., (g,cg) is more general than (t,c). In this case the goal (t,c) is
marked as a consumer of (g,cg).

– or ci ∈ Ans(t,c′), where c′ = Pro j(vars(t),c) and Ans(t,c′) is the set
of answers of a new TCLP FP(t,c′) which is created and added to the
current forest. In this case the goal (t,c′) is marked as a generator and is
added to Gen(Q,cq), the set of generators of FP(Q,cq).

resulting:
• a node/nodes 〈ci∪L, c〉 , one for each answer ci.
• or a leaf fail if there are no answer ci.

(d) the transitions for non tabled literal and for constraints are as in the CLP tree
(Def. 2.11.3 and Def. 2.11.4).

(e) a leaf node 〈 /0, c〉 is the final state of a successful derivation, where c is the
final constraint store.

(f) the set of answers of τP(Q,cq), the TCLP tree of the query, are obtained as
in the CLP tree (Def. 2.11.6).

(g) the set of answers of τP(g,cg), the TCLP tree of the generator (g,cg), denoted
by Ans(g,cg), is the set of more general (w.r.t. vD) constraints c′i obtained
as the projection of the final constraint stores ci onto vars(L):

Ans(g,cg) = {c′i | c′i = Pro j(vars(g),ci).〈 /0, ci〉 ∈ τP(g,cg),

∀ j 6= i, @c′j ∈ Ans(g,cg).c′i vD c′j }

4. the set of the answers of the forest FP(Q,cq), denoted by Ans(Q,cq), is the set of
answers of τP(Q,cq).

The order in which we search in the TCLP forest for a previous generator during the
call entailment phase (Def. 2.12.3c) does not impact the completeness, soundness, or
termination properties of the execution, but it can change its efficiency. Generators are
naturally sorted from more particular ones (older) to more general (younger) ones —
note that a younger, more particular call would be a consumer. Searching for a generator
for a call can be performed in any direction. Starting at older, more particular generators,
may need to examine several generators and perform potentially expensive entailment
checks before finding one that suits the needs of the call. On the other hand, starting at
younger, more general generators, should allow us to locate a suitable generator faster.
However, this more general generator would have more answers associated which need
to be filtered than what a more particular generator would have. Therefore, there is no
definitive general strategy: either more generators have to be traversed, or more answers
have to be filtered.

The answer management strategy used in the answer entailment phase (Def. 2.12.3g)

24

2.4 CLP Trees and TCLP Forests

1 edge(a, b, 50).

2 edge(b, a, D) :-

3 D #> 25,

4 D #< 35.

a

b

50

(25,35)

Figure 2.3: Code of a cycled graph. (25,35) is the open interval from 25 to 35.

aims at keeping only the more general answers by discarding/removing more particular
answers. This is specified by the quantification ∀ j 6= i. Simpler answer management
strategies are possible: the implementations in (Chico de Guzmán et al., 2012; Cui
and Warren, 2000), following (Toman, 1997b), only discard answers which are more
particular than a previous one, i.e., they implement ∀ j < i, and keep previously saved
answers. A third possibility is to remove previous answers that are more particular than
a new one, implementing ∀ j > i. The choice among them does not impact soundness or
completeness properties. However, discarding and removing redundant answers can
greatly increase the efficiency of the implementation (see Chapter 3).

2.4 CLP Trees and TCLP Forests

Prolog and CLP follow a depth-first search strategy with chronological backtracking.
The computation rule selects constraints and literals from the resolvent from left to
right. Literals are resolved against the clauses of the program, selected from top to
bottom. When a literal unifies with a clause head, it is substituted by the body of
the clause after applying the unifier obtained from the literal-head unification. If a
derivation branch fails because there are no more matching clauses or the constraint
store is inconsistent, the evaluation backtracks to the youngest literal that has a candidate
matching clause. Depth-first search is incomplete and in general not all answers can
be computed. Moreover, there are programs with finite derivations for which logically
equivalent programs produce infinite derivations. The use of TCLP can work around
this issue in many cases.

We will show the CLP trees and the TCLP forests for the query ?- D #< 150, dist(a,

Y, D) for two logically equivalent versions of the dist/3 program: with left recursion
(Fig. 2.1, right) and with right recursion (Fig. 2.2, right). We use the graph in Fig. 2.3,
where the length of one of the edges is defined with constraints.

Fig. 2.4 and Fig. 2.5 (top) are the CLP trees of the right- / left-recursive programs
respectively. Fig. 2.5 (bottom) and Fig. 2.6 are the TCLP forest of the left- / right-
recursive programs respectively. In these figures, the nodes of the trees represent the
states (Def. 2.10) of the computation. A state is a tuple 〈R,c〉, where R is a sequence
of goals, [g1,g2, . . . ,gn] and c is a conjunction of constraints. The numbers attached to
each state indicates the order in which they are created.

25

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

On the one hand, Fig. 2.4 shows a finite CLP tree which finds all the answers and
Fig. 2.5 (top) shows an infinite CLP tree caused by the left recursion. On the other
hand, Fig. 2.5 (bottom) and Fig. 2.6 show that the TCLP forest for both programs are
finite and all the answers to the query are found, since the combination of tabling and
entailment makes it terminate with left recursion as well.

2.4.1 CLP Tree of dist/3 with Right Recursion

Fig. 2.4 shows the CLP tree of the query using the version of dist/3 with right recursion
(Fig. 2.2, right). We see that the evaluation of the recursive clause generates similar
states (s1, s4, s7 and s10), but in each iteration the domain of the constrained variable
D2i is reduced. As a consequence, the constraint store in state s13 is inconsistent
and the evaluation of this derivation fails. The pending branches are evaluated upon
backtracking. We explain now how we obtain some of the states; the rest are obtained
similarly, so we will skip them:

s1 the initial state is the representation of the query.

s2i/ii are obtained by resolving the literal dist(a,Y, D) against the two clauses of
the program. The constraints Y1=Y ∧ D1=D are added to the constraint store.

s3 is obtained from the leftmost state s2i by adding the constraints of the resolvent
[D11 #> 0, D21 #> 0, D1 #= D11+D21] to the constraint store.

s4 is obtained by resolving the literal edge(a,Z1,D11). The constraint
Z1=b ∧ D11=50 reduces the domain4 of D21 to D21 > 0 ∧ D21 < 100.

s7 is obtained by resolving the literal edge(b,Z2,D12). The constraint
Z2=a ∧ D12 > 25 ∧ D12 < 35 reduces the domain of D22 to D22 > 0 ∧ D22 < 75.

s10 is obtained by resolving the literal edge(a,Z3,D13). The constraint
Z3=b ∧ {D13=50 reduces the domain of D23 to D23 > 0 ∧ D23 < 25.

s13 is obtained by resolving the literal edge(b,Z4,D14). The constraint
Z4=a ∧ D14 > 25 ∧ D14 < 35 is inconsistent with the current constraint store,
D < 150 ∧ D > 125+D14+D24 ∧ D24 > 0 ∧ Its child is a fail node.

s14 is obtained, upon backtracking to the state s11b by resolving the literal edge(b,
Y, D23). However, it is also a failed derivation because the resulting constraint
store is inconsistent.

4We are considering a linear constraint solver over the rational numbers that from
D < 150 ∧ D=D11+D21 ∧ D11=50 it infers that D21 < 100

26

2.4 CLP Trees and TCLP Forests

s1

s2
i

s3 s4

s5
i

s6 s7

s8
i

s9 s1
0

s1
1
i

s1
2

s1
3

fa
il

s1
1
ii

s1
4

fa
il

s8
ii

s1
5

a
1
Y
=
b
∧

D
>
1
2
5
∧
D
<
1
3
5s5
ii

s1
6

a2
Y
=
a
∧

D
>
7
5
∧
D
<
8
5s2

ii

s1
7

a3
Y
=
b
∧

D
=
5
0

s1
〈[
d
i
s
t
(
a
,
Y
,
D
)
],
D
<
1
5
0
〉

s2
i
〈[
D
1
1
#
>
0
,
D
2
1
#
>
0
,
D
1
#
=
D
1
1
+
D
2
1
,
e
d
g
e
(
a
,
Z
1
,
D
1
1
)
,
d
i
s
t
(
Z
1
,
Y
1
,
D
2
1
)
],
D
<
1
5
0
∧
Y
1
=
Y
∧
D
1
=
D
〉

s3
〈[
e
d
g
e
(
a
,
Z
1
,
D
1
1
)
,
d
i
s
t
(
Z
1
,
Y
,
D
2
1
)
],
D
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
D
=
D
1
1
+
D
2
1
〉

s4
〈[
d
i
s
t
(
b
,
Y
,
D
2
1
)
],
D
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
D
=
D
1
1
+
D
2
1
∧
Z
1
=
b
∧
D
1
1
=
5
0
〉

s5
i
〈[
D
1
2
#
>
0
,
D
2
2
#
>
0
,
D
2
#
=
D
1
2
+
D
2
2
,
e
d
g
e
(
b
,
Z
2
,
D
1
2
)
,
d
i
s
t
(
Z
2
,
Y
2
,
D
2
2
)
],

D
<
1
5
0
∧
D
2
1
>
0
∧
D
=
5
0
+
D
2
1
∧
Y
2
=
Y
∧
D
2
=
D
2
1
〉

s6
〈[
e
d
g
e
(
b
,
Z
2
,
D
1
2
)
,
d
i
s
t
(
Z
2
,
Y
,
D
2
2
)
],
D
<
1
5
0
∧
D
=
5
0
+
D
2
1
∧
D
1
2
>
0
∧
D
2
2
>
0
∧
D
2
1
=
D
1
2
+
D
2
2
〉

s7
〈[
d
i
s
t
(
a
,
Y
,
D
2
2
)
],
D
<
1
5
0
∧
D
=
5
0
+
D
1
2
+
D
2
2
∧
D
1
2
>
0
∧
D
2
2
>
0
∧
Z
2
=
a
∧
D
1
2
>
2
5
∧
D
1
2
<
3
5
〉

s8
i
〈[
D
1
3
#
>
0
,
D
2
3
#
>
0
,
D
3
#
=
D
1
3
+
D
2
3
,
e
d
g
e
(
a
,
Z
3
,
D
1
3
)
,
d
i
s
t
(
Z
3
,
Y
3
,
D
2
3
)
],

D
<
1
5
0
∧
D
>
7
5
+
D
2
2
∧
D
<
8
5
+
D
2
2
∧
D
2
2
>
0
∧
Z
2
=
a
∧
Y
3
=
Y
∧
D
3
=
D
2
2
〉

s9
〈[
e
d
g
e
(
a
,
Z
3
,
D
1
3
)
,
d
i
s
t
(
Z
3
,
Y
,
D
2
3
)
],

D
<
1
5
0
∧
D
>
7
5
+
D
2
2
∧
D
<
8
5
+
D
2
2
∧
D
2
2
>
0
∧
D
1
3
>
0
∧
D
2
3
>
0
∧
D
2
2
=
D
1
3
+
D
2
3
〉

s1
0
〈[
d
i
s
t
(
b
,
Y
,
D
2
3
)
],
D
<
1
5
0
∧
D
>
7
5
+
D
1
3
+
D
2
3
∧
D
<
8
5
+
D
1
3
+
D
2
3
∧
D
2
3
>
0
∧
D
1
3
=
5
0
〉

s1
1
i
〈[
D
1
4
#
>
0
,
D
2
4
#
>
0
,
D
4
#
=
D
1
4
+
D
2
4
,
e
d
g
e
(
b
,
Z
4
,
D
1
4
)
,
d
i
s
t
(
Z
4
,
Y
4
,
D
2
4
)
],

D
<
1
5
0
∧
D
>
1
2
5
+
D
2
3
∧
D
<
1
3
5
+
D
2
3
∧
D
2
3
>
0
∧
Y
4
=
Y
∧
D
4
=
D
2
3
〉

s1
2
〈[
e
d
g
e
(
b
,
Z
4
,
D
1
4
)
,
d
i
s
t
(
Z
4
,
Y
,
D
2
4
)
],

D
<
1
5
0
∧
D
>
1
2
5
+
D
1
4
+
D
2
4
∧
D
<
1
3
5
+
D
1
4
+
D
2
4
∧
D
1
4
>
0
∧
D
2
4
>
0
〉

s1
3
〈[
d
i
s
t
(
a
,
Y
,
D
2
4
)
],

D
<
1
5
0
∧
..
.∧

..
.∧

D
2
4
>
0
∧
Z
4
=
a
∧
D
1
4
>
2
5
∧
D
1
4
<
3
5
〉

fa
il

s1
1
ii
〈[
e
d
g
e
(
b
,
Y
,
D
2
3
)
],
D
<
1
5
0
∧
D
>
1
2
5
+
D
2
3
∧
D
<
1
3
5
+
D
2
3
∧
D
2
3
>
0
〉

s1
4
〈[
],
D
<
1
5
0
∧
D
>
1
2
5
+
D
2
3
∧
D
<
1
3
5
+
D
2
3
∧
D
2
3
>
0
∧
Y
=
a
∧
D
2
3
>
2
5
∧
D
2
3
<
3
5
〉

fa
il

s8
ii
〈[
e
d
g
e
(
a
,
Y
,
D
2
2
)
],
D
<
1
5
0
∧
D
=
5
0
+
D
1
2
+
D
2
2
∧
D
2
2
>
0
∧
D
1
2
>
2
5
∧
D
1
2
<
3
5
〉

s1
5
〈[
],
D
<
1
5
0
∧
D
=
5
0
+
D
2
1
∧
D
2
2
>
0
∧
D
2
1
=
D
1
2
+
D
2
2
∧
D
1
2
>
2
5
∧
D
1
2
<
3
5
∧
Y
=
b
∧
D
2
2
=
5
0
〉

a
1
Y
=
b
∧
D
>
1
2
5
∧
D
<
1
3
5

s5
ii
〈[
e
d
g
e
(
b
,
Y
,
D
2
1
)
],
D
<
1
5
0
∧
D
2
1
>
0
∧
D
=
5
0
+
D
2
1
〉

s1
6
〈[
],
D
<
1
5
0
∧
D
=
5
0
+
D
2
1
∧
Y
=
a
∧
D
2
1
>
2
5
∧
D
2
1
<
3
5
〉

a2
Y
=
a
∧
D
>
7
5
∧
D
<
8
5

s2
ii
〈[
e
d
g
e
(
a
,
Y
,
D
)
],
D
<
1
5
0
〉

s1
7
〈[
],
Y
=
b
∧
D
=
5
0
〉

a3
Y
=
b
∧
D
=
5
0

Figure 2.4: CLP tree of ?- D #< 150, dist(a,Y, D) with right recursion.

27

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

s15 is a final state of a successful derivation, obtained upon backtracking to
the state s8b by resolving the literal edge(a,Y, D22). The constraint
Y=a ∧ D23 > 25 ∧ D23 < 35 is consistent with the constraint store.

a1 is the first answer Y=a ∧ D > 125 ∧ D < 315, projected onto the variables of the
query (vars(Q)={Y, D}).

s16 is a final state obtained upon backtracking to the state s5b.

a2 is the second answer, Y=a ∧ D > 75 ∧ D < 85.

s17 is a final state obtained upon backtracking to the state s2ii.

a3 is the third and last answer, Y=b ∧ D=50.

2.4.2 CLP Tree of dist/3 with Left Recursion

Fig. 2.5 (top) shows the CLP tree of the query to dist/3 with left recursion (Fig. 2.1,
right). We see that the recursive clause also generates similar states (s1, s3, s5, . . .) but
in this example the domain of the constrained variable D1i remains unchanged, and the
evaluation therefore enters a loop. As before, we only explain how we obtain some of
the states:

s3 is obtained from the leftmost state s2i. The domain of D11 is D11 > 0 ∧ D11 < 150.

s5 is obtained from the leftmost node s4i. The domain of D12 is D12 > 0 ∧ D12 < 150.

. . . the evaluation enters a loop.

Although the program that generates this CLP tree is logically equivalent to the previous
one, this tree is infinite and no answers are found.

2.4.3 TCLP Forest of dist/3 with Left Recursion

Fig. 2.5 (bottom) shows the TCLP forest for the query we have been using with
the dist/3 program written using left recursion (Fig. 2.1, right), where the set of
tabled predicates is TabP={dist/3}. The main point is that at state s3 the tabling
engine detects that the evaluation of 〈dist(a,Z1,D11), D11 > 0 ∧ D11 < 150〉 entails the
generator 〈dist(a,V0, V1), V1 < 150〉 and therefore it suspends the execution and waits
until another generator feeds the suspended goal with answers. The evaluation of the
state s2ii generates the first answer a1 upon backtracking. Then, the tabling engine
resumes the consumer with a1 and generates a2 which is used to generate a3. Finally,

28

2.4 CLP Trees and TCLP Forests

s1

s2
i

s3

s4
i

s5

s6
i

..
.

s6
ii

s4
ii

s2
ii

s1
〈[
d
i
s
t
(
a
,
Y
,
D
)
],
D
<
1
5
0
〉

s2
i
〈[
D
1
1
#
>
0
,
D
2
1
#
>
0
,
D
#
=
D
1
1
+
D
2
1
,
d
i
s
t
(
a
,
Z
1
,
D
1
1
)
,
e
d
g
e
(
Z
1
,
Y
,
D
2
1
)
],
D
<
1
5
0
∧
Y
1
=
Y
∧
D
1
=
D
〉

s3
〈[
d
i
s
t
(
a
,
Z
1
,
D
1
1
)
,
e
d
g
e
(
Z
1
,
Y
,
D
2
1
)
],
D
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
D
=
D
1
1
+
D
2
1
〉

s4
i
〈[
D
1
2
#
>
0
,
D
2
2
#
>
0
,
D
1
1
#
=
D
1
2
+
D
2
2
,
d
i
s
t
(
a
,
Z
2
,
D
1
2
)
,
e
d
g
e
(
Z
2
,
Z
1
,
D
2
2
)
,
e
d
g
e
(
Z
1
,
Y
,
D
2
1
)
],

D
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
D
=
D
1
1
+
D
2
1
∧
Y
2
=
Z
1
∧
D
2
=
D
1
1
〉

s5
〈[
d
i
s
t
(
a
,
Z
2
,
D
1
2
)
,
e
d
g
e
(
Z
2
,
Z
1
,
D
2
2
)
,
e
d
g
e
(
Z
1
,
Y
,
D
2
1
)
],

D
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
D
=
D
1
1
+
D
2
1
∧
D
1
2
>
0
∧
D
2
2
>
0
∧
D
1
1
=
D
1
2
+
D
2
2
〉

s6
i

..
.

s6
ii

s4
ii
〈[
e
d
g
e
(
a
,
Z
1
,
D
1
1
)
,
e
d
g
e
(
Z
1
,
Y
,
D
2
1
)
],
D
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
D
=
D
1
1
+
D
2
1
∧
Y
2
=
Z
1
∧
D
2
=
D
1
1
〉

s2
ii
〈[
e
d
g
e
(
a
,
Y
,
D
)
],
D
<
1
5
0
∧
Y
1
=
Y
∧
D
1
=
D
〉

s1

s2
i

s3

A
n
s(

s1
)

s5 s6

a
2
V
0
=
a
∧

V
1
>
7
5
∧
V
1
<
8
5

s7 s8

a
3
V
0
=
b
∧

V
1
>
1
2
5
∧
V
1
<
1
3
5

s9 s1
0

fa
il

s2
ii

s4

a
1
V
0
=
b
∧

V
1
=
5
0

(a
1
)

(a
2
)

(a
3
)

s1
〈[
d
i
s
t
(
a
,
V
0
,
V
1
)
],
V
1
<
1
5
0
〉

s2
i
〈[
D
1
1
#
>
0
,
D
2
1
#
>
0
,
D
1
#
=
D
1
1
+
D
2
1
,
d
i
s
t
(
a
,
Z
1
,
D
1
1
)
,
e
d
g
e
(
Z
1
,
Y
1
,
D
2
1
)
],
V
1
<
1
5
0
∧
Y
1
=
V
0
∧
D
1
=
V
1
〉

s3
〈[
d
i
s
t
(
a
,
Z
1
,
D
1
1
)
,
e
d
g
e
(
Z
1
,
V
0
,
D
2
1
)
],
V
1
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
V
1
=
D
1
1
+
D
2
1
〉

A
n
s(
d
is
t(
a
,V

0
1
,V

1
1
),

V
1 1

<
15

0)
is

en
ta
il
ed

b
ec
a
u
se

V
1 1

>
0
∧

V
1 1

<
15

0
v

V
1 1

<
15

0

s5
〈[
e
d
g
e
(
b
,
V
0
,
D
2
1
)
],
V
1
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
V
1
=
D
1
1
+
D
2
1
∧
Z
1
=
b
∧
D
1
1
=
5
0
〉

s6
〈[
],
V
1
<
1
5
0
∧
D
2
1
>
0
∧
V
1
=
5
0
+
D
2
1
∧
V
0
=
a
∧
D
2
1
>
2
5
∧
D
2
1
<
3
5
〉

a
2
V
0
=
a
∧
V
1
>
7
5
∧
V
1
<
8
5

s7
〈[
e
d
g
e
(
a
,
V
0
,
D
2
1
)
],
V
1
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
V
1
=
D
1
1
+
D
2
1
∧
Z
1
=
a
∧
D
1
1
>
7
5
∧
D
1
1
<
8
5
〉

s8
〈[
],
V
1
<
1
5
0
∧
D
2
1
>
0
∧
V
1
>
7
5
+
D
2
1
∧
V
1
<
8
5
+
D
2
1
∧
V
0
=
b
∧
D
2
1
=
5
0
〉

a
3
V
0
=
b
∧
V
1
>
1
2
5
∧
V
1
<
1
3
5

s9
〈[
e
d
g
e
(
b
,
V
0
,
D
2
1
)
],
V
1
<
1
5
0
∧
D
1
1
>
0
∧
D
2
1
>
0
∧
V
1
=
D
1
1
+
D
2
1
∧
Z
1
=
b
∧
D
1
1
>
1
2
5
∧
D
1
1
<
1
3
5
〉

s1
0
〈[
],
V
1
<
1
5
0
∧
D
2
1
>
0
∧
V
1
>
1
2
5
+
D
2
1
∧
V
1
<
1
3
5
+
D
2
1
∧
V
0
=
a
∧
D
2
1
>
2
5
∧
D
2
1
<
3
5
〉

fa
il

s2
ii
〈[
e
d
g
e
(
a
,
V
0
,
V
1
)
],
V
1
<
1
5
0
∧
Y
1
=
V
0
∧
D
1
=
V
1
〉

s4
〈[
],
V
1
<
1
5
0
∧
V
0
=
b
∧
V
1
=
5
0
〉

a
1
V
0
=
b
∧
V
1
=
5
0

w
it
h
re
n
a
m
in
g

Z
1
=

V
0 1
∧

D
1 1

=
V

1 1

(a
1
)

(a
2
)

(a
3
)

Figure 2.5: CLP tree (top) and TCLP forest (bottom) of
?- D #< 150, dist(a,Y, D) with left recursion.

29

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

the evaluation fails after consuming a3 and, since all the clauses have been evaluated and
there are no more consumers to be resumed or answers to be consumed, the generator is
marked as complete and all the answers are returned. We explain below how some of
the states are obtained. The rest of the states are obtained similarly, so we skip them for
brevity:

s0 We omit the representation of the TCLP tree for the query
τP(dist(a,Y,D),D< 150) and its answer resolution.

s1 the initial state of the TCLP tree τP(dist(a,V01,V11),V11 < 150) is the
renamed generator. (Def. 2.12.3c).

s2i/ii are obtained by resolving the literal dist(a,V0, V1) against the two clauses
of the program.

s3 is obtained from the leftmost state s2i by adding the constraints to the con-
straint store as in the CLP tree.

Ans(s1) the tabled literal dist(a,Z1,D11) has to be resolved by answer res-
olution (Def. 2.12.3c) using the answer from the current TCLP tree
τP(dist(a,V01,V11),V11 < 150) because, after renaming, the projection
of the current constraint store onto the variables of the literal entails the
projected constraint store of the generator: V11 > 0 ∧ V11 < 150vV11 < 150.
Since the current TCLP tree is under construction and depends on itself, this
branch derivation is suspended.

s4 is a final state of a successful derivation. It is obtained, upon backtrack-
ing to the state s2ii, by resolving with edge(a,V0, V1). The equations
V0=b ∧ V1=50 are consistent with the constraint store.

a1 is the first answer, V0=b ∧ V1=50 (Def. 2.12.3g). Since is the first one, it is
also the more general one.

s5 is obtained from the state s3 (because there are no more branches) by answer
resolution consuming a1 (Def. 2.12.3g).

s6 is a final state obtained by resolving the literal edge(b,V0, D21).

a2 is the second answer, V0=a ∧ V1 > 75 ∧ V1 < 85. It is neither more particular
nor more general than a1.

s7 is obtained from the state s3 by consuming a2.

s8 is a final state.

a3 is the third answer, V0=b ∧ V1 > 125 ∧ V1 < 135. It is neither more particular
nor more general than a1 or a2.

30

2.4 CLP Trees and TCLP Forests

s9 is obtained from the state s3 by consuming, a3.

s10 is a failed derivation because the resulting constraint store is inconsistent,
V1 < 150 ∧ . . . ∧ V1 > 125+D21 ∧ D21 > 25. Its child is a fail node.

Note that the CLP execution entered a loop when resolving the state s3. Under TCLP,
answer resolution avoids looping and the resulting TCLP forest is finite and complete
(i.e., the leaves of the trees are either fail nodes or answers).

2.4.4 TCLP Forest of dist/3 with Right Recursion

Fig. 2.6 shows the TCLP forest corresponding to querying the right recursive dist/3

program (Fig. 2.2, right). This example is useful to show how the algorithm works with
mutually dependent generators5 and to see why not all the answers from a generator
may be directly used by its consumers.

Unlike the left-recursive version, which shows only one TCLP tree (Fig. 2.5, bottom),
Fig. 2.6 has two TCLP trees (one for each generator). That is because the left recursive
version only sought paths from the node a, but the right recursive version creates a new
TCLP tree at the state s4 to collect the paths from the node b, since edge(a,b) had
been previously evaluated at state s3. As before we only explain how we obtain some
of the states:

s1 the TCLP tree τP(dist(a,V0,V1), V1< 150) is created.

s4 is obtained by resolving the literal edge(a,Z1,D11).

Ans(s5) the tabled literal dist(b,V0, D21) is a new generator and a new TCLP tree
τP(dist(b,V2,V3), V3> 0∧V3< 100) is created (Def. 2.12.3c).

s5 is the root node of the new TCLP tree.

s6i/ii are obtained by resolving the literal dist(b,V2, V3) against the clauses of
the program.

s8 is obtained by resolving the literal edge(b,Z1,D11).

In the state s8, the call 〈dist(a,V2, D21), D21 > 0 ∧ D21 < 75〉 is suspended
because it entails the former generator 〈dist(a,V01,V11), V11 < 150〉.

Ans(s1) the tabled literal dist(a,V2, D21) is resolved with answer resolu-
tion (Def. 2.12.3g) using the answers from the previous TCLP tree

5I.e., generators which consume answers from each other.

31

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

s1

s2i

s3

s4

Ans(s5)

s11

a2 V0=a ∧
V1>75∧V1<85

s14

a3 V0=b ∧
V1>125∧V1<135

s2ii

s10

a1 V0=b ∧
V1=50

(b1) (b2)

s5

s6i

s7

s8

Ans(s1)

s12

b2 V2=b ∧
V3>75∧V3<85

s13

fail

s15

fail

s6ii

s9

b1 V2=a ∧
V3>25∧V3<35

(a1) (a2)(a3)

s1 〈[dist(a,V0,V1)], V1<150〉

s2i 〈[D11#>0, D21#>0, V11#=D11+D21, edge(a,Z1,D11), dist(Z1,Y1,D21)],
V1<150∧Y1=V0∧D1=V1〉

s3 〈[edge(a,Z1,D11), dist(Z1,V0,D21)], V1<150∧D11>0∧D21>0∧V1=D11+D21〉

s4 〈[dist(b,V0,D21)], V1<150∧D11>0∧D21>0∧V1=D11+D21∧Z1=b∧D11=50〉

Ans(dist(b,V2,V3), V 3 > 0∧V 3 < 100)

s11 〈[], V1<150∧D21>0∧V1=50+D21∧V0=a∧D21>25∧D21<35〉

a2 V0=a∧V1>75∧V1<85
s14 〈[], V1<150∧D21>0∧V1=50+D21∧V0=b∧D21>75∧D21<85〉

a3 V0=b∧V1>125∧V1<135
s2ii 〈[edge(a,V0,V1)], V1<150∧Y1=V0∧D1=V1〉

s10 〈[], V1<150∧V0=b∧V1=50〉

a1 V0=b∧V1=50

with renaming V 0 =V 2 ∧ D21 =V 3

(b1)

(b2)

s5 〈[dist(b,V2,V3)], V3>0∧V3<100〉

s6i 〈[D11#>0, D21#>0, D1#=D11+D21, edge(b,Z1,D11), dist(Z1,Y1,D21)],
V3>0∧V3<100∧Y1=V2∧D1=V3〉

s7 〈[edge(b,Z1,D11), dist(Z1,V2,D21)], V3>0∧V3<100∧D11>0∧D21>0∧V3=D11+D21〉

s8 〈[dist(a,V2,D21)], V3>0∧V3<100∧D11>0∧D21>0∧V3=D11+D21∧Z1=a∧D11>25∧D11<35〉

Ans(dist(a,V01,V11), V 11 < 150) is entailed because V 11 > 0∧V 11 < 75 v V 11 < 150

s12 〈[], V3>0∧V3<100∧D21>0∧V3>25+D21∧V3<35+D21∧V2=b∧D21=50〉

b2 V2=b∧V3>75∧V3<85
s13 〈[], V3>0∧V3<100∧D21>0∧V3>25+D21∧V3<35+D21∧V2=a∧D21>75∧D21<85〉

fail
s15 〈[], V3>0∧V3<100∧D21>0∧V3>25+D21∧V3<35+D21∧V2=b∧D21>125∧D21<135〉

fail
s6ii 〈[edge(b,V2,V3)], V3>0∧V3<100∧Y1=V2∧D1=V3〉

s9 〈[], V3>0∧V3<100∧V2=a∧V3>25∧V3<35〉

b1 V2=a∧V3>25∧V3<35

with renaming V 2 =V 01 ∧ D21 =V 11

(a1)

(a2)

(a3)

Figure 2.6: TCLP forest of ?- D #< 150, dist(a,Y, D) with right recursion.

32

2.4 CLP Trees and TCLP Forests

τP(dist(a,V01,V11),V11 < 150) because the renamed projection6 of the
current constraint store onto the variable of the literal entails the projected
constraint store of the generator: (V11 > 0 ∧ V11 < 75) v V11 < 150. Since the
initial TCLP forest is under construction and depends on itself, the current
branch derivation is suspended.

This suspension also causes the former generator to suspend at the state s4.

s9 is a final state obtained upon backtracking to the state s6ii.

b1 is the first answer of the second generator.

At this point the suspended calls can be resumed by consuming the answer
b1 or by evaluating s2ii. The algorithm first tries to evaluate s2ii and then it
will resume s4 consuming b1.

s10 is a final state obtained upon backtracking to the state s2ii.

a1 is the first answer of the first generator: V0=b ∧ V1=50.

s11 is a final state obtained from the state s4 by consuming b1.

a2 is the second answer of the first generator: V0=a ∧ V1 > 75 ∧ V1 < 85.

s12 is a final state obtained from the state s8 by consuming a1.

b2 is the second answer of the second generator.

s13 is a failed derivation obtained from s8 by consuming a2. It fails because
the constraints V0=a ∧ V1 > 75 ∧ V1 < 85 are inconsistent with the current
constraint store. Note that the projection of the constraint store of s8 onto V1

is V1 > 0 ∧ V1 < 75. Its child is a fail node.

s14 is a final state obtained from the state s4 by consuming b2.

a3 is the third answer of the first generator: V0=b ∧ V1 > 125 ∧ V1 < 135.

s15 is a failed derivation obtained from s8 by consuming a3. Its child is a fail

node.

This example illustrates why left recursion reduces the execution time and memory
requirements when using tabling / TCLP: left recursion will usually create fewer
generators. We have also seen that using answers from a more general call, as in the
answer resolution of state s8 (i.e., the constraint store of the consumer V11 > 0 ∧ V11 < 75

6The projection of V3 > 0 ∧ V3 < 100 ∧ D11 > 0 ∧ D21 > 0 ∧ V3=D11+D21 ∧ Z1=a ∧ D11 > 25 ∧
D11 < 35 onto D21 is D21 > 0 ∧ D21 < 75. After renaming D21=V11, the resulting projection is
V11 > 0 ∧ V11 < 75.

33

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

is more particular than the constraint store of the generator V11 < 150), makes it necessary
to filter the correct ones (i.e., answer resolution for a2 and a3 failed). This is not
required in variant tabling because the answers from a generator are always valid for its
consumers.

2.5 Theorems and Proofs

In this section we prove the soundness and completeness of TCLP (Section 2.5.1), and
present some results on termination properties (Section 2.5.2) for general constraint
solvers.

2.5.1 Soundness and Completeness

(Toman, 1997b) proves soundness and completeness of SLGC for TCLP Datalog pro-
grams by reduction to soundness and completeness of bottom-up evaluation. It is
possible to extend these results to prove soundness and completeness of our proposal:
they only differ in the answer management strategy and the construction of the TCLP
forest. The strategy used in SLGC only discards answers which are more particular than
a previous answer, while in our proposal we in addition remove previously existing
more particular answers (Def. 2.12.3g). The result of this is that only the most general
answers are kept. In SLGC, the generation of the forest is modeled as the application
of rewriting rules. In our proposal, the TCLP forest is defined as a transition system
(Def. 2.12), where the different cases in the definition can be seen as rules which make
the TCLP forest evolve.

The lemma and theorems and their proofs are adapted taking in consideration these
differences. First we prove that answer resolution using entailment is correct w.r.t. SLD
resolution; and although only the most general answers are kept, answer resolution
using entailment is complete w.r.t. SLD resolution. Then we use these results to
prove soundness and completeness of TCLP with entailment w.r.t. the least fixed point
semantics.

Lemma 2.1 (Application of derivations with more general constraint stores). Let 〈[li,
. . . , lk], csi〉 〈[li+1, . . . , lk], csi+1〉 be a derivation and 〈li, c〉 a goal with csi v c.
Then:

∃〈li, c〉 〈 /0, c′〉. csi+1 = csi∧ c′

Proof. We will see that there exists a derivation 〈li, c〉 〈 /0, c′〉 that follows the same
steps as 〈[li, . . . , lk], csi〉 〈[li+1, . . . , lk], csi+1〉:

34

2.5 Theorems and Proofs

(1) if 〈[li, . . . , lk], csi〉 is resolved against a clause li :- ch, then its resulting constraint
store is csi+1 = csi ∧ ch. Since csi v c, we can apply the same rule to 〈li, c〉 and its
resulting constraint store is c′ = c∧ ch. Since csi v c, we have csi⇔ csi∧ c. Therefore,
csi+1 = csi∧ c∧ ch (expanding csi) and csi+1 = csi∧ c′ (contracting c∧ ch).

(2) if 〈[li, . . . , lk], csi〉 is resolved against a clause li :- ch, a1, . . . , am, the next state is
〈[a1, . . . , am, li+1, . . . , lk], csi ∧ ch〉 (resp. 〈[a1, . . . , am], c∧ ch〉). By induction, since
csi v true (resp. c v true), there exist m derivations 〈a j, true〉 〈 /0, c′a j

〉 such that
the resulting constraint store of the path is csi+a1 = csi∧ ch∧

∧m
j=1 c′a j

(resp. c′ = c∧
ch∧

∧m
j=1 c′a j

). Since csi v c, we have csi⇔ csi∧ c. Therefore, csi+1 = csi∧ c∧ ch∧∧m
j=1 c′a j

(expanding csi) and csi+1 = csi∧ c′ (contracting c∧ ch∧
∧m

j=1 c′a j
).

Corollary 2.1. [Correctness of answer resolution using entailment] As an immediate
consequence of Lemma 2.1, using answer resolution with entailment (Def. 2.12.3c) gives
correct results. Answer resolution of 〈[li, . . . , lk], csi〉 consumes an answer c′ from a
previous derivation 〈li, c〉 〈 /0, c′〉 where 〈li, c〉 is the generator of the derivation and,
by the definition of generator, csi v c. When D � csi∧c′ (Def. 2.12.3d), it generates the
state 〈[li+1, . . . , lk], csi∧ c′〉.

Corollary 2.2. [Completeness of answer resolution using entailment] Recall that
Ans(l,c) is the set containing the more general answers for a generator goal 〈l, c〉
(Def. 2.12.3g), and if there are two goals 〈l, ca〉 and 〈l, cb〉 with ca v cb, only the
answers for the more general goal cb need to be kept. Therefore, for any derivation
of a generator 〈li, c〉 〈 /0, ci〉 we have that ∃c′i ∈ Ans(li,c′).ci v c′i for some c′ s.t.
cv c′. Let us take a (partial) clause derivation 〈[li, . . . , lk], c〉 〈[li+1, . . . , lk], c∧ci〉. If
c′i ∈ Ans(li,c′) for some c′ s.t. cv c′ (which is the entailment condition necessary to use
the saved answer constraints), then ci v c′i. If we use c′i to perform answer resolution
with 〈li, c〉, we have 〈[li, . . . , lk], c〉 〈[li+1, . . . , lk], c∧ c′i〉. Given that ci v c′i, we have
that c∧ ci v c∧ c′i, and any answer returned by clause resolution is contained in some
answer returned by answer resolution with entailment. The same reasoning can be
applied to the derivation of li+1 and so on. Therefore, answer resolution with entailment
does not lose answers w.r.t. clause resolution even if not all the goals and answers are
memorized.

Theorem 2.1 (Soundness w.r.t. the fixpoint semantics). Let P be a TCLP definite
program and (q,cq) a query. Then for any answer c′ of the TCLP forest FP(q,cq)

c′ ∈ Ans(q,cq) ⇒∃(q,c) ∈ lfp(SDP (/0)). c′ = cq∧ c

I.e., all the answers derived from the forest construction are also derived from the
bottom-up computation.

Proof. For any answer c′ ∈ Ans(q,cq) there exists a successful derivation 〈q, cq〉 〈 /0,
c′〉. Since cq v true, by Lemma 2.1 there exists 〈q, true〉 〈 /0, c〉. c′ = cq ∧ c. We

35

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

know that for any successful derivation 〈q, true〉 〈 /0, c〉 against the clauses of the
program there is an answer derived from the bottom-up computation (q,c)∈ lfp(SDP (/0)).
Therefore, by Corollary 2.1 if answer resolution is used instead of clause reso-
lution, the result is also correct and for any answer c′ ∈ Ans(q,cq) there exists
(q,c) ∈ lfp(SDP (/0)). c′ = cq∧ c.

Theorem 2.2 (Completeness w.r.t. the fixpoint semantics). Let P be a TCLP definite
program and (h, true) a query. Then for every (h,c) in lfp(SDP):

(h,c) ∈ lfp(SDP (/0)) ⇒ ∃c′ ∈ Ans(h, true). cv c′

I.e., all the answers derived from the bottom-up computation are also derived by the
forest construction or entailed by answers inferred in the forest.

Proof. We know that for any answer derived from the bottom-up computation
(h,c) ∈ lfp(SDP (/0)) there exists a successful derivation 〈h, true〉 〈 /0, c〉 against the
clauses of the program. By Corollary 2.2 if answer resolution is used instead of
clause resolution, the results is also complete. Therefore, since the answer man-
agement strategy only keeps the more general answers (Def. 2.12.3g), we have that
∃c′ ∈ Ans(h, true). cv c′.

2.5.2 Termination

The next definition is a fundamental property of some constraint domains that plays
a key role in the termination of the evaluation of queries to TCLP programs (Toman,
1997b).

Definition 2.13 (Constraint-compact). Let D be a constraint domain, and D the set of
all constraints expressable in D. Then D is constraint-compact iff:

– for every finite set of variables S, and
– for every subset C ⊆ D such that ∀c ∈C.vars(c)⊆ S,

there is a finite subset C f in ⊆C such that ∀c ∈C.∃c′ ∈C f in.cvD c′

This definition establishes sufficient conditions for the termination of any TCLP evalua-
tion under a compact constraint domain. Intuitively speaking, a constraint domain D is
constraint-compact if for any (potentially infinite) set of constraints C expressable in D,
there is a finite set of constraints C f in ⊆C that covers (in the sense of vD) C. In other
words, C f in is as general as C. Additionally, in a constraint-compact constraint domain,
if an infinite set of constraints is unsatisfiable, then there is a finite subset which is
unsatisfiable, therefore guaranteeing the existence of finite unsatisfiability proofs.

36

2.5 Theorems and Proofs

Example 2.2.
The gap-order constraints (Revesz, 1993) is a constraint-compact constraint domain
generated from the set C<Z = {x< u : u∈A}∪{u< x : u∈A}∪{x+k < y : k∈ Z+}
where A is a finite set of constants. First, we see that the set Cx<u (resp. Cu<x) of
possible constraints of the form x < u (resp. u < x), for a finite set of variables S,
is finite, because A and S are finite. Therefore, it is trivial to define the finite set
which covers them (Cx<u∪Cu<x). Second, for every pair of variables x,y ∈ S, the
set Cx+k<y of possible constraint of the form x+ k < y, k ∈ Z+ can be covered by a
finite subset of itself. Since S is finite, we only have to check it for two given x, y;
we can repeat the same process for every pair of variables, since there is only a finite
number of them. Although for a given pair of variables x, y one can generate an
infinite number of constraints x+ ki < y choosing different ki ∈ Z+, the constraint
x+ k0 < y having the smallest k0 among all the ki (∀ki.k0 ≤ ki) subsumes all the
rest of the constraints (x+ ki < y v x+ k0 < y). Note that k0 always exists, since
ki ∈ Z+, which has a minimum. Therefore, the infinite set Cx+k<y has a finite subset
C f in = {x+ k0 < y} which covers it (Cx+k<y vC f in).

Example 2.3.
The Herbrand constraint domain is not constraint-compact. Take the infinite set of
constraints C = {X = a, X = f (a), X = f (f (a)), . . .}. No finite subset of C using
only constraints in C can cover C.

(Toman, 1997b) proves termination of TCLP Datalog programs under a top-down
strategy when the constraint domain is constraint-compact. In that case, the evaluation
will suspend the exploration of a call whose constraint store is less general or comparable
to a previous call. Eventually, the program will generate a set of call constraint stores
which can cover any infinite set of constraints in the constraint domain, therefore
finishing evaluation.

Most TCLP applications require constraint domains which are not constraint-compact
because constraint-compact constraint domains are not very expressive. Therefore, we
refined the termination theorem (Theorem 23 in (Toman, 1997b)) for Datalog programs
with constraint-compact constraint domains to cover cases where a program, during the
evaluation, generates only a constraint-compact subset of all constraints expressable in
the constraint domain.

Theorem 2.3 (Termination). Let P be a TCLP(D) definite program and (Q,cq) a query.
Then the TCLP execution terminates iff:

• For every literal g, the set Cg is constraint-compact, where Cg is the set of all the
constraint stores ci, projected and renamed w.r.t. the arguments of g, s.t. 〈g, ci〉 is in
the forest F(Q,cq).

• For every goal 〈g, cg〉, the set A〈g,cg〉 is constraint-compact, where A〈g,cg〉 is the set
of all the answer constraints c′, projected and renamed w.r.t. the arguments of g, s.t.

37

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

c′ is a successful derivation in the forest F(Q,cq).

Proof. (Toman, 1997b) proves termination by observing that the SLGC rewriting rules
can be applied only finitely many times. We extend this proof to ensure that the TCLP
forest generated is finite and therefore the program execution terminates.

1. The execution can only generate a finite number of literals because they are lin-
earized (unifications take place in the constraints in the body) and the number of
predicates in the program is finite.

2. The execution can only generate a finite number of TCLP forests τP(g,cg) because
the number of possible literals is finite (by point 1 the number of literals is finite)
and for each literal g, the set Cg of its possible active constraint stores is constraint-
compact. That means that, for every subset of active constraint stores C v Cg,
there exists a finite subset, C f in ⊆ C of possible more general calls, such that
∀c ∈C.∃c′ ∈C f in.cvD c′. Therefore, at some point every new call will be entailed
by some previous generator. This is checked in Def. 2.12.3c.

3. The set of answers Ans(g,cg) (Def. 2.12.3g) is finite because the set A f in of possible
more general answer constraints is finite. Similar justification to that in point 2.

4. The number of children from a node resolved against clauses in P (Def. 2.12.3b
and 2.12.3d) is finite. The number of clauses in P is finite.

5. The number of children from a node resolved by answer resolution (Def. 2.12.3c)
is finite because, by point 3, the set of answer Ans(g,cg) is finite.

The intuition here is that for every subset C from the set of all possible constraint stores
Cg that can be generated when evaluating a call to P, if there is a finite subset C f in ⊆C
that covers (i.e., is as general as) C, then, at some point, any call will be entailed by
previous calls, thereby allowing its suspension to avoid loops. Similarly, for every
subset A from the set of all possible answer constraints A〈g,cg〉 that can be generated by
a call, if there is a finite subset A f in ⊆ A that covers A, then, at some point, any answer
will be entailed by a previous one, ensuring that the class of answers Ans(g,cg) which
entail any other possible answer returned by the program is finite.7

Example 2.4.
The Herbrand domain (with constants and function symbols) and syntactic equality is not
constraint-compact, and therefore termination of TCLP(H) programs is not guaranteed.
However, in the case of programs which have only constants, the number of constraints
that can be generated is finite, and therefore termination is ensured. Termination is also
ensured (even with variant tabling) when a program can only generate terms with a

7Note that a finite answer set does not imply a finite domain for the answers: the set of answers
Ans(Q, cq)={V > 5} is finite, but the answer domain of V is infinite.

38

2.5 Theorems and Proofs

1 p(X) :-

2 Y = f(X),

3 p(Y).

4 p(a).

(a) Program which finishes
under TCLP(H).

1 nat(X) :-

2 X #= Y+1,

3 nat(Y).

4 nat(0).

(b) Natural numbers
in TCLP(Q).

1 nat(X) :-

2 X #= Y+1,

3 nat(Y).

4 nat(0).

5 nat(X) :- X #> 1000.

(c) Describing infinitely
many numbers in TCLP(Q).

Figure 2.7: TCLP programs under H and Q.

bounded depth. In this case, the number of distinct terms (and therefore of equality
constraints) that can be generated is finite as well.

Example 2.5.
Fig. 2.7, left, shows a program which loops in Prolog and under variant tabling. The
unification explicitly appear in the body to make them apparent in the constraint stores.
Although CLP(H) is not constraint-compact, the constraints generated by that program
under the query ?- p(X) can make it finish. Let examine its behavior from two points
of view:

Compactness of call/answer constraint stores The set of all the constraint
stores generated for the predicate p/1 under the query 〈p(X), true〉 is
Cp(V) = {true, V= f(X), V= f(f(X)), . . .}.8 It is constraint-compact because for
every subset C there is a finite set, e.g. C f in = {true}, that covers C. The set of all
answer constraint for the query, A〈p(V), true〉 = {V= a}, is also constraint-compact
because it is finite. Since they both are constraint-compact the execution terminates.

Suspension due to entailment The first recursive call is 〈p(Y1), Y1=f(X)〉 and its
projected and renamed constraint store is entailed by the initial store: V=f(X) v
true. Therefore, TCLP evaluation suspends the recursive call, shifts execution to
the second clause, and generates the answer X=a. This answer is given to the sus-
pended recursive call, results in the inconsistent constraint store Y1=f(X) ∧ Y1=a,
and the execution terminates.

Example 2.6.
Using the previous example (Fig. 2.7, left), under the query ?- p(a), the set of all
the generated constraint stores is Cp(V) = {V= a, V= f(a), V= f(f(a)), . . .}. It is not
constraint-compact and the execution does not terminate. Let us examine its behavior:

8The syntax Cp(V) means that (i) we are projecting all the calls to predicate p/1 on the variables that
call, and (ii) we are renaming these variables to be V in all the calls. We could associate with every
constraint store the names of the variables in the call in order to be able to compare different constraints
stores (which is unnecessary after projection if there is only one variable in the call, but it would be
needed if more than one variable is involved). In order to avoid such an overload, and without loss of
generality, we preferred to project and rename to a unique set of variables.

39

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

The first recursive call is 〈p(Y1), X=a ∧ Y1=f(X)〉 and the projection of its con-
straint store, Y1=f(a), is not entailed by the initial one after renaming V=f(a) 6v
V=a. Then this call is evaluated and produces the second recursive call, 〈p(Y2),
X=a ∧ Y1=f(X) ∧ Y2=f(f(X))〉. Its projected constraint store, Y2=f(f(a)), is not
entailed by any of the previous constraint stores, and so on with the rest of the
recursive calls. Therefore, the evaluation loops without terminating.

Example 2.7.
Fig. 2.7, center, shows a program which generates all the natural numbers using
TCLP(Q). Although CLP(Q) is not constraint-compact, the constraint stores generated
by that program for the query ?- X #< 10, nat(X) are constraint-compact and the
program finitely finishes. Let us look at its behavior from two points of view:

Compactness of call/answer constraint stores The set of all active constraint
stores generated for the predicate codenat/1 under the query 〈nat(X), X < 10〉 is
Cnat(V) = {V< 10, V< 9, . . . , V<−1,V<−2, . . .}. It is constraint-compact be-
cause every subset C ∈ Cnat(V) is covered by C f in = {V< 10}. The set of all
possible answer constraint for the query, A〈nat(V), V < 10〉 = {V= 0, . . . , V= 9}, is
also constraint-compact because it is finite. Therefore, the program terminates.

Suspension due to entailment The first recursive call is 〈nat(Y1),
X < 10 ∧ Y1=X+1〉 and the projection of its constraint store after renaming
is entailed by the initial one since V < 9 v V < 10. Therefore, TCLP evaluation
suspends in the recursive call, shifts execution to the second clause and generates
the answer X=0. This answer is given to the recursive call, which was suspended,
produces the constraint store X < 10 ∧ Y1=X+1 ∧ Y1=0, and generates the answer
X=1. Each new answer Xn=n is used to feed the recursive call. When the answer X=9
is given, it results in the (inconsistent) constraint store X < 10 ∧ Y1=X+1 ∧ Y1=9

and the execution terminates.

Example 2.8.
The program in Fig. 2.7, center, does not terminate for the query ?- X #> 0, X #< 10,

nat(X). Let us examine its behaviour:

The constraint stores are not compact The set of all constraint stores gen-
erated by the query 〈nat(X), X > 0 ∧ X < 10〉 is Cnat(V) = {V> 0∧V< 10,
V>−1∧V< 9, . . . , V>−n∧V< (10−n), . . .}, which it is not constraint-
compact. Note that V is, in successive calls, restricted to a sliding interval [k, k+10]

which starts at k=0 and decreases k in each recursive call. No finite set of intervals
can cover any subset of the possible intervals.

The evaluation loops The first recursive call is 〈nat(Y1),
X > 0 ∧ X < 10 ∧ Y1=X+1〉 and the projection of its constraint store is not
entailed by the initial one after renaming since (V > -1 ∧ V < 9) 6v (X > 0 ∧ X < 10).

40

2.5 Theorems and Proofs

Then this call is evaluated and produces the second recursive call, 〈nat(Y2),
X > 0 ∧ X < 10 ∧ Y1=X+1 ∧ Y2=Y1+1〉. Again, the projection of its constraint store,
Y2 > -2 ∧ Y2 < 8, is not entailed by any of the previous constraint stores, and so on.
The evaluation therefore loops.

Example 2.9.
Let us examine again Fig. 2.7, center, with the query ?- nat(X). Now, the set
of all constraint stores generated by the query 〈nat(X), true〉 is Cnat(V) = {true}
which is finite and constraint-compact. However, the answer constraint set
A〈nat(V), true〉 = {V= 0, V= 1, . . . , V= n, . . .} is not constraint-compact, and therefore,
the program does not terminate.

Call suspension with an infinite answer constraint set The first recursive call is
〈nat(Y1), X = Y1+1〉 and the projection of its constraint store9 is entailed by the
initial store. Therefore, the TCLP evaluation suspends the recursive call, shifts
execution to the second clause, and generates the answer X=0. This answer is used
to feed the suspended recursive call, resulting in the constraint store X=Y1+1 ∧ Y1=0

which generates the answer X=1. Each new answer X=n is used to feed the suspended
recursive call. Since the projection of the constraint stores on the call variables is
true, the execution tries to generate infinitely many natural numbers.

Example 2.10.
Unlike the situation that happens in pure Prolog/variant tabling, adding new clauses
to a program under TCLP can make it terminate.10 As an example, Fig. 2.7, right, is
the same as Fig. 2.7, center, with the addition of the clause nat(X) :- X #> 1000. Let us
examine its behavior under the query ?- nat(X):

Compactness of call/answer constraint stores The set of all constraint stores
generated remains Cnat(V) = {true}. But the new clause makes the answer
constraint set becomes A〈nat(V), true〉 = {V= 0, V= 1, . . . , V= n, . . . , V> 1000,
V> 1001, . . . , V> n, . . .}, which is constraint-compact because a constraint of the
form V > n entails infinitely many constraints, i.e. it covers the infinite set {V=n+1,
. . .,V > n+1,. . .}. Therefore, since both sets are constraint-compact, the program
terminates.

First search, then consume The first recursive call 〈nat(Y1), X = Y1+1〉 is sus-
pended and the TCLP evaluation shifts to the second clause which generates the
answer X=0. Then, instead of feeding the suspended call, the evaluation continues
the search and shifts to the added clause, nat(X) :- X #> 1000, and generates the

9The equation in the body of the clause X=Y1+1 defines a relation between the variables but, since the
domain of X is not restricted, its projection onto Y1 returns no constraints (i.e., Proj(Y1, X=Y1+1)= true).

10This depends on the strategy used by the TCLP engine to resume suspended goals. An implementa-
tion that gathers all the answers for goals that can produce results first, and then these answers are used
to feed suspended goals, makes the exploration of the forests proceed in a breadth-first fashion.

41

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

answer X > 1000. Since no more clauses remain to be explored, the answer X=0
is used, generating X=1. Then X > 1000 is used, resulting in the constraint store
X=Y1+1 ∧ Y1 > 1000, which generates the answer X > 1001. However, during the
answer entailment phase, X > 1001 is discarded because X > 1001 v X > 1000. Then,
one by one each answer X=n is used, generating X=n+1. But when the answer
X=1000 is used, the resulting answer X=1001 is discarded, during the answer entail-
ment phase, because X=1001 v X > 1000. At this point the evaluation terminates
because there are no more answers to be consumed. The resulting set of answers is
Ans(nat(X),true)= {X=0, X > 1000, X=1, . . .,X=1000}.

2.6 The role of the Projection in TCLP

The detection of more particular calls and answers is performed during the call and
answer entailment phases, respectively and perform entailment check against the pro-
jected constraint store of previous calls/answers. Allegedly due to performance issues
and implementation issues, some frameworks (Cui and Warren, 2000; Schrijvers et al.,
2008) did not implement precise projection. Given that in some cases approximate
projections can be more efficient and/or considerably easier to implement, it is worth
revisiting how relaxing projection impacts soundness, completeness, and termination.
Three variants of projection can be distinguished:

Precise projection (c≡ cs) The projected constraint cs is equivalent to the constraint
store c. Any solution of c is also a solution of cs, and a valuation v over S which
is a solution of cs is a partial solution of c.

Over-approximated projection (cv cs) The projected constraint cs is more general
than the constraint store c. Any solution of c is also a (partial) solution of cs.

Under-approximated projection (cw cs) The projected constraint cs is more particu-
lar than the constraint store c. A valuation v over S which is a solution of cs is a
(partial) solution of c.

We use s, t to denote the constraint store before a call; s′, s′′, t ′ to denote the constraint
store after the execution of a call (i.e., the constraint answer); sp, s′p, s′′p, t ′p to denote
the projection of its respective constraint store/answer; and s̃, t̃ to denote the constraint
answer obtained from its generators by answer resolution. The execution of a generator
g is denoted by {sp}g{s′′}{s′′p} which means that the execution of g with the constraint
store sp generates the constraint store s′′ which is projected to obtain s′′p. The answer
resolution of the generator and its consumers are denoted by {s}g{s̃} and {t}c{t̃},
where s̃ = s′′p∧ s and t̃ = s′′p∧ t. The resolution against the clauses of the generator and
its consumers are denoted by {s}g{s′}{s′p} and {t}c{t ′}{t ′p}.

42

2.6 The role of the Projection in TCLP

Table 2.2: Soundness and completeness comparison of precise, over- and under-
approximation (‘≡’, ‘v’ and ‘w’) for the entailment phases.

Call
Answer

≡ v w

≡ s′ ≡ s′p ≡ s̃ s′ ≡ s′p ≡ s̃ s′ ≡ s′p w s̃

t ′ ≡ t ′p ≡ t̃ t ′ ≡ t ′p ≡ t̃ t ′ ≡ t ′p ≡ t̃

w s′ w s′p ≡ s̃ s′ w s′p ≡ s̃ s′ w s′p w s̃

t ′ w t ′p ≡ t̃ t ′ w t ′p ≡ t̃ t ′ w t ′p ≡ t̃

v s′ v s′p ≡ s̃ s′ v s′p ≡ s̃ s′ v s′p w s̃{
t w s′′p
t 6w s′′p

{
t ′ v t ′p ≡ t̃
t ′ v t ′p v t̃

{
t ′ v t ′p ≡ t̃
t ′ v t ′p v t̃

{
t ′ v t ′p ≡ t̃
t ′ v t ′p v t̃

To check soundness and completeness, we compare s′, t ′ (the answer constraint obtained
by resolution against the clauses), versus s′p, t ′p (the projection of s′, t ′), and versus
s̃, t̃ (the answer constraint obtained by answer resolution). Table 2.2 summarizes the
results of these comparisons depending on which projection is used in the call/answer
entailment phase. For brevity, we comment only three of them:

≡ / ≡ Precise projection ‘≡’ in the call and answer entailment phase. This is the
optimal option (used in all the interfaces presented in Chapter 3) because it guarantees
soundness and completeness (s′ ≡ s′p ≡ s̃ and t ′ ≡ t ′p ≡ t̃) and it does not enlarge the
search space.

v /≡ Over-approximate projection ‘v’ for the calls and precise projection ‘≡’ for
the answers. Generators would be then bound to produce more possible answers with a
relaxed constraint store, which can turn terminating queries into non-terminating ones.
In the case of termination, it may produce more answers than necessary given the initial
generator constraints.

Example 2.11.
Call abstraction (Schrijvers et al., 2008) is an extreme example, where the constraint
store associated to the tabled call is not taken into account to execute it (i.e., the
projection of a constraint store is always the constraint true, note that cv true for
any constraint c). As we mentioned before, this loses many benefits of tabling with

43

TOP-DOWN TCLP: SEMANTICS, CORRECTNESS, COMPLETENESS, AND TERMINATION

constraints since it has to compute all the possible results for an unrestricted call
and then filter them through the call-time constraint store.

v /v Over-approximate projection ‘v’ for calls and answers. From our point of view
this option is relevant because applications such as abstract interpretation explicitly
over-approximate the results in order to ensure termination and completeness w.r.t. to
the real program execution. The over-approximate projection makes the result obtained
applying answer resolution to a generator sound w.r.t. the result obtained repeating the
execution, i.e., s′p ≡ s′′p. Applying answer resolution to a consumer, whose constraint
store before the call is more general that the answer constraint of its generator, t w s′′p,
is also sound w.r.t. the result obtained executing the consumer, i.e., t ′p ≡ t̃. However,
in cases where the constraint store of consumer is not more general than the answer
constraint of its generator, applying answer resolution is not sound w.r.t. the results
obtained execution the consumer, because extraneous answers may have been introduced
by the over-approximate projection of the answer constraint of the generator, i.e., t ′p v t̃.
As a result, accepting loss of precision, the over-approximate projection for answers
may increase performance because a more general answer would entail more number of
answers, without losing completeness.

2.7 Discussion

We have extended the theoretical basis of tabled constraint logic programming for a
top-down execution. We have characterized the properties that the constraint solver
should holds in order to guarantee soundness and completeness. Moreover, for non
constraint-compact constraint solvers we define the condition of programs/queries to
ensure termination.

Additionally, for constraint domain without a precise implementation of the projec-
tion of constraint stores, we evaluate how relaxing the projection impacts soundness,
completeness and termination.

44

Chapter 3

Design and Implementation of
Mod TCLP

Based on the operational semantics of TCLP presented in the previ-
ous chapter, we designed and implemented Mod TCLP, a modular
framework implemented in Ciao Prolog, that facilitates the integra-
tion of generic constraint solvers (even written in C) into the tabling
engine. We validated its flexibility and performance by integrating
several constraint solvers, and we evaluated the benefits of a new
(more complex) answer management strategy that not only discards
more particular answers but also removes them from the answer
store.

As we mentioned in Section 2.1, the combination of CLP and tabling brings several
advantages: it enhances termination properties, increases speed in a range of programs,
and provides additional expressiveness. It has been applied in several areas, including
constraint databases (Kanellakis et al., 1995; Toman, 1997b), verification of timed au-
tomata and infinite systems (Charatonik et al., 2002), and abstract interpretation (Toman,
1997a).

The theoretical basis of TCLP (Toman, 1997b) establishes the basic operations (pro-
jection and entailment checking) that are necessary to ensure completeness w.r.t. the
declarative semantics. However, previous implementation, such as XSB (Cui and War-
ren, 2000) and TCHR (Schrijvers et al., 2008), did not fully use these two operations,
likely due to performance issues and also to implementation difficulty; and from the
point of view of interfacing / adding additional CLP solvers to existing systems:

• The framework in (Cui and Warren, 2000) requires the constraint solver to provide
the projection/1 and entail/2 predicates, which are used to discard more

45

DESIGN AND IMPLEMENTATION OF MOD TCLP

particular answers, but only in one direction. It also requires the implementation
of the predicate abstract/3, which has to take care of the call abstraction.
However, it is not clear if this predicate is part of the constraint solver or of the
user program.

• The TCHR framework described in (Schrijvers et al., 2008) provides interest-
ing hooks: projection(PredName) specifies that predicate PredName/1 de-
termines how projection is to be performed, which makes it possible to, for
example, ignore arguments; canonical form(PredName) modifies the answer
store to a canonical form as defined by PredName/2, so that identical answers
can be detected (e.g. using sort/2 the constraints [leq(1,X),leq(X,3)]

and [leq(X,3),leq(1,X)] are reduced to the same canonical form); and
answer combination(PredName), if specified, applies PredName/3 in such
a way that two answers can be merged into one.

In this chapter we present the design and implementation of a generic framework
based on a previous Tabled TCLP framework (Chico de Guzmán et al., 2012) that
features a complete treatment of constraint projection and entailment. In this generic
framework (termed Mod TCLP), we provide a richer, more flexible answer management
mechanism and design a tabling implementation so that it can use the projection and
entailment operations provided by a constraint solver presented to the tabling engine as
a server. To facilitate the integration, we define a set of operations that the constraint
solver has to provide to the tabling engine. These operations are natural to the constraint
solver, and when they are not already present, the implementation of the solver could
be easily extended to provide them.

We have validated the expressiveness and efficiency of its implementation in Ciao
Prolog (Hermenegildo et al., 2012) by interfacing four non-trivial constraint solvers.
As a result, we provide four different TCLP system instances that we have experimen-
tally evaluated with several benchmarks against tabling, CLP, and Prolog. Additional
performance comparisons between them are also provided.

3.1 The Mod TCLP Framework

In this section we describe the Mod TCLP framework, the operations required by the
interface, and the program transformation that we use to compile programs with tabled
constraints (Section 3.1.1). We also provide a sketch of its implementation and we
describe step-by-step some executions at the level of the TCLP libraries (Sections 3.1.2
and 3.1.3). In Section 3.1.4 we present the implementation of the TCLP interface
for Holzbaur’s CLP(Q) solver and in Section 3.1.5 we present an optimization, the
Two-Step projection.

46

3.1 The Mod TCLP Framework

store_projection(+Vars,-ProjStore) Returns in ProjStore a representation of the projec-
tion of the current constraint store onto the list of variables Vars.

call_entail(+ProjStore,+ProjStoregen) Succeeds if the projection of the current constraint
store, ProjStore, entails the projected store, ProjStoregen, of a previous generator. It
fails otherwise.

answer_compare(+ProjStore,+ProjStoreans,-Res) Returns Res=' =< ' if the projected store
of the current answer, ProjStore, entails the projected store of a previous answer,
ProjStoreans, or Res=' > ' if ProjStore is entailed by ProjStoreans and they are not
equal. It fails otherwise.

apply_answer(+Vars,+ProjStore) Adds the projected constraint store ProjStore of the
answer to the current constraint store and succeeds if the resulting constraint store is
consistent.

Figure 3.1: Generic interface specification.

3.1.1 Design of the Generic Interface

Mod TCLP provides a generic interface (Fig. 3.1) designed to facilitate the integration
of different constraint solvers. The predicates of the interface use extensively two
objects: Vars, the list of constrained variables, provided by the tabling engine to the
constraint solver, and ProjStore, a representation of the projected constraint store,
opaque to the tabling engine, and which should be self-contained and independent (e.g.,
with fresh variables) from the main constraint store. For example, the constraint solver
CLP(D≤) (Section 3.2.1) is written in C and the projection of a constraint store is a C
structure whose representation is its memory address and length.

To implement these predicates, the constraint solver has to support the (minimal) set
of operations defined in Section 2.2.1: projection, test for entailment, and test for
consistency. The predicates that the constraint solver must provide in order to make its
interaction with the tabling engine possible are:

• store_projection(+Vars,-ProjStore), that is invoked before the call and the
answer entailment phases:

– It is used before the call entailment phase to generate the representation
of the goal as a tuple 〈G, ProjStore〉, where ProjStore represents the
projection of the constraint store at the moment of the call onto Vars, the
variables in G. Although a generic implementation should include the
Herbrand constraints of the call in the constraint store, our implementation
does not consider Herbrand constraints to be part of the constraint store by
default. Instead, calls are syntactically compared using variant checking, but

47

DESIGN AND IMPLEMENTATION OF MOD TCLP

the programmer can also choose to use subsumption, if required, by using a
package described below. There are some reasons for that decision: on the
one hand, programmers (even using tabling) are used to this behavior; on the
other hand, there are data structures highly optimized (Ramakrishnan et al.,
1995) to save and retrieve calls together with their input / output substitutions
which perform variant checking on the fly while taking advantage of the
WAM-level representation of substitutions.

– Similarly, before the answer entailment phase, the projection of the Her-
brand constraints onto the variables of the goal is directly taken care of by
their WAM-level representation. We use variant checking to detect when the
Herbrand constraints associated to two calls are equal. Therefore, an answer
constraint is internally represented by a tuple 〈S, ProjStore〉 where S cap-
tures the Herbrand constraints of the variables of the goal and ProjStore

represents the projection of the rest of the answer constraint onto Vars, the
variables of the answer.

• call_entail(+ProjStore,+ProjStoregen) is invoked during the call entailment
phase to check if a new call, represented by 〈G, ProjStore〉, entails a previous
generator, represented by 〈Ggen, ProjStoregen〉, where G is a variant of Ggen. The
predicate succeeds if ProjStorev ProjStoregen, and fails otherwise. If Herbrand
subsumption checking is needed, our implementation provides a package which
transforms calls to tabled predicates so that suspension is based on entailment in
H. This transformation moves Herbrand constraint handling away from the level
of the WAM by creating attributed variables (Cui and Warren, 2000) that carry
the constraints — i.e., the unifications. Later on, a Herbrand constraint solver is
used to check subsumption.1

• answer_compare(+ProjStore,+ProjStoreans,-Res) is invoked during the an-
swer entailment phase to check a new answer, represented by 〈S, ProjStore〉,
against a previous one, represented by 〈Sans, ProjStoreans〉, when the Her-
brand constraints S and Sans are equal. The predicate compares ProjStore

and ProjStoreans and returns ' =< ' in its last argument when ProjStore v
ProjStoreans, ' > ' when ProjStore A ProjStoreans, and fails otherwise. This
bidirectional entailment check, which is used to discard / remove more particular
answers, is a potentially costly process, but it brings considerable advantage
from saved resumptions (Section 3.3.3): when an answer is added to a generator,
consumers are resumed by that answer. These consumers in turn generate more
answers and cause further resumptions in cascade. Reducing the number of
redundant answers reduces the number of redundant resumptions, and we have
experimentally observed that it results in important savings in execution time.

1If there are several constraint domains involved, such as e.g. CLP(H) and CLP(Q), we assume that we
can distinguish them appropriately at run-time and the entailment is determined as variant(G,Ggen) ∧
ProjStorevH ProjStoregen ∧ ProjStorevQ ProjStoregen

48

3.1 The Mod TCLP Framework

• apply_answer(+Vars,+ProjStore) is invoked to consume an answer from a
generator. In variant tabling, since consumers are variants of generators, answer
substitutions from generators can always be applied to consumers. That is not the
case when using entailment in TCLP: consumers may be called in the realm of a
constraint store more restrictive than that of their generators, and answers from
the generator have to be filtered to discard those which are inconsistent with the
constraint store at the time of the call to the consumer. In our implementation, an
answer is represented by 〈S, ProjStore〉, where S, the set of Herbrand constraints,
is applied by the tabling engine and ProjStore, the projection of the constraint
answer, is added to the constraint store of the consumer by apply_answer/2,
which succeeds iff the resulting constraint store is consistent.

The design of the interface assumes that external constraint solvers are compatible with
Prolog operational semantics so that when Prolog backtracks to a previous state, the
corresponding constraint store is transparently restored. That can be done by adding a
Prolog layer which uses the trail to store undo information that is used to reconstruct
the previous constraint store when Prolog backtracks (this is a reasonable, minimal
assumption for any integration of constraint solving and logic programming). The TCLP
interface can use any constraint solver which follows this design, because the suspension
and resumption mechanisms of the tabling are based on the trailing mechanism of Prolog.
When a consumer suspends, backtracking takes place, the memory stacks are frozen,
and the variable bindings are saved on untrailing. They are reinstalled upon consumer
resumption.

However, the entailment operations call_entail/2 and answer_compare/3 need to
know the correspondence among variables in ProjStore and in ProjStoregen (resp.,
ProjStoreans). To this end, projections are (conceptually) a pair (VarList, Store),
where VarList is a list of fresh variables in Store that correspond to Vars, the variables
on which the projection was originally made. Different, independent constraint stores
can then be compared by means of these lists. This list is also necessary to apply the
ProjStore of an answer to the global store: it is used to determine the correspondence
of variables between the global and the projected store.

The actual implementation may differ among constraint solvers. For example, the
TCLP(Q) interface (Fig. 3.6) uses a list of fresh variables following the same order as
those in Vars, while the TCLP(D≤) interface (Section 3.2.1) uses a vector containing
the index in the matrix corresponding to every variable in Vars, again following the
same order.

49

DESIGN AND IMPLEMENTATION OF MOD TCLP

3.1.2 Implementation Sketch

We summarily describe now the implementation of Mod TCLP, including the global
table where generators, consumers, and answers are saved. We also present the transfor-
mation performed to execute tabled predicates and a (simplified) flowchart showing the
interactions between the tabling engine and the constraint solver through the generic
interface.

3.1.2.1 Global Table

Tries are the data structure of choice for the call / answer global table (Ramakrishnan
et al., 1995). In variant tabling, every generator Ggen is uniquely associated (modulo
variable renaming) to a leaf from where the Herbrand constraints for every answer
hangs. Generators are identified in Mod TCLP by the projection of the constraint
store on the variables of the generator, i.e., with a tuple 〈Ggen, ProjStoregen〉. We store
generators in a trie where each leaf is associated to a call pattern Ggen and a list with
a frame for each projected constraint store ProjStoregeni . Each frame identifies: (i)
the projected constraint store ProjStoregeni , (ii) the answer table where the generator’s
answers Ans(Ggen, ProjStoregeni) are stored, and (iii) the list of its consumers.

Answers are represented by a tuple 〈Sans, ProjStoreans〉 and are stored in a trie where
each leaf points to the Herbrand constraints Sans and to a list with the projected constraint
stores ProjStoreansi corresponding to answers whose Herbrand constraints are a variant
of Sans. The answers are stored in order of generation, since (as we mentioned before) it
is not clear that other orders eventually pay off in terms of speeding up the entailment
check of future answers.

3.1.2.2 TCLP Directives and Program Transformation

Executing a CLP program under the TCLP framework only needs to enable tabling
and import a package that implements the bridge CLP / tabling instead of the regular
constraint solver. Fig. 3.2a, shows the TCLP version of the left recursive distance
traversal program in Fig. 2.1, right. The constraint interface remains unchanged, and
the program code does not need to be modified to be executed under TCLP. The di-
rective :- use_package(tabling) initializes the tabling engine and the directive :-

use_package(t_clpq) imports TCLP(Q), the TCLP interface for the CLP(Q) solver
(Section 3.1.4). To select another TCLP interface (more examples in Section 3.2) we
just have to import the corresponding package. Finally, the directive :- table dist/3

specifies that the predicate dist/3 should be tabled.

Fig. 3.2b, shows the transformation applied to the program dist/3 which we used in
Section 2.1 and we reproduce in Fig. 3.2a. The original entry point to the predicate

50

3.1 The Mod TCLP Framework

1 :- use_package(tabling).

2 :- use_package(t_clpq).

3

4 :- table dist/3.

5 dist(X, Y, D) :-

6 D1 #> 0, D2 #> 0,

7 D #= D1 + D2,

8 dist(X, Z, D1),

9 edge(Z, Y, D2).

10 dist(X, Y, D) :-

11 edge(X, Y, D).

(a) TCLP version (with directives)

1 dist(A, B, C) :-

2 tabled_call(dist_aux(A,B,C)).

3

4 dist_aux(X, Y, D) :-

5 D1 #> 0, D2 #> 0,

6 D #= D1 + D2,

7 dist(X, Z, D1),

8 edge(Z, Y, D2),

9 new_answer.

10 dist_aux(X, Y, D) :-

11 edge(X, Y, D),

12 new_answer.

(b) Program transformation

Figure 3.2: TCLP version of dist/3 and its transformation.

is rewritten to call an auxiliary predicate through the meta-predicate tabled_call/1.
The auxiliary predicate corresponds to the original one with a renamed head and with
an additional new_answer/0 at the end of the body to collect the answers. An internal
global stack, called PTCP, is used to identify the generator under execution when
new_answer/0 is invoked.

3.1.2.3 Execution Flow

Fig. 3.3 shows a (simplified) flowchart to illustrate how the execution of a tabled call
proceeds. The calls to predicates in the interface with the constraint solver have a grey
background. We explain next the steps of an execution, using the labels in the nodes.

0. A call to a tabled predicate Call starts the tabled execution invoking tabled_call/1

(Fig. 3.4), which takes the control of the execution.

1. call_lookup_table/3 returns in Gen a reference to the trie leaf corresponding to the
current call pattern Call and in Vars a list with the constrained variables of Call.

2. The tabling engine calls store_projection/2, which returns in ProjStore the
projection onto Vars of the current constraint store.

3. The tabling engine uses member/2 to retrieve in ProjStore_G the projected constraint
stores from the list of frames associated to Gen. If it succeeds, the execution continues
in step 5. If it fails, it may be because Gen is the first occurrence of this call pattern,
or because it does not entail any of the previous generators (and it is therefore a new
generator).

51

DESIGN AND IMPLEMENTATION OF MOD TCLP

ta
bl

ed
ca

ll

0

ca
ll

lo
ok

up
ta

bl
e

1

st
or

e
pr

oj
ec

tio
n

2
re

tri
ev

e
pr

oj
ec

tio
n

3
sa

ve
ge

ne
ra

to
r

4

ca
ll

en
ta

il

5
su

sp
en

d
co

ns
um

er

6

ex
ec

ut
e

ge
ne

ra
to

r

7

an
sw

er
lo

ok
up

ta
bl

e

8

st
or

e
pr

oj
ec

tio
n

9
re

tri
ev

e
pr

oj
ec

tio
n

10

sa
ve

an
sw

er

11

an
sw

er
co

m
pa

re

12
re

m
ov

e
an

sw
er

13

re
tri

ev
e

an
sw

er

14

ap
pl

y
an

sw
er

15

no

ye
s

no

ye
s

ne
w

an
sw

er

no

ye
s

>

≤ fa
ils

re
su

m
e

co
m

pl
et

e

ye
s

no

fa
ils

su
cc

es
s

Figure 3.3: Flowchart of the execution algorithm of Mod TCLP.

52

3.1 The Mod TCLP Framework

1 tabled_call(Call) :-

2 call_lookup_table(Call, Vars, Gen),

3 store_projection(Vars, ProjStore),

4 (

5 projstore_Gs(Gen, List_GenProjStore),

6 member(ProjStore_G, List_GenProjStore),

7 call_entail(ProjStore, ProjStore_G) ->

8 suspend_consumer(Call)

9 ;

10 save_generator(Gen, ProjStore_G, ProjStore),

11 execute_generator(Gen, ProjStore_G),

12),

13 answers(Gen, ProjStore_G, List_Ans),

14 member(Ans, List_Ans),

15 projstore_As(Ans, List_AnsProjStore),

16 member(ProjStore_A, List_AnsProjStore),

17 apply_answer(Vars, ProjStore_A).

Figure 3.4: Implementation of tabled_call/1.

4. The tabling engine calls save_generator/3 to add a new frame to Gen, identifying
the new call as a generator. The projected store ProjStore is saved in this new frame
and the answer table and the consumer list are initialized. From this point on, the
generator is identified by 〈Gen, ProjStore_G〉 and the execution continues in step 7.

5. The constraint solver checks if the current store ProjStore entails the retrieved
projected constraint store ProjStore_G using call_entail/2. In that case, Call is
suspended in step 6. Otherwise, the tabling engine tries to retrieve another projected
constraint store in step 3.

6. If the generator is not complete, the tabling engine suspends the execution of Call
with suspend_consumer/1 and adds Call to the list of consumers of the generator.
Execution then continues by backtracking over the youngest generator. Otherwise,
Call continues the execution in step 14. A suspended consumer is resumed when its
generator produces new answers, and also continues in step 14.

7. The generator 〈Gen, ProjStore_G〉 is executed with execute_generator/2, which
calls the renamed tabled predicate, and its reference is pushed onto the PTCP stack.
If the execution reaches the end of a clause, a new answer has been found and
new_answer/0 continues the execution in step 8.

8. This is the entry point for new_answer/0 (Fig. 3.5). The tabling engine calls
answer_lookup_table/2, which retrieves a reference to the generator in execu-
tion from the PTCP stack. A reference to the Herbrand constraints of the current
answer in the generator’s answer table is returned in Ans, and the list of variables
from the call that are now/still constrained is returned in Vars.

53

DESIGN AND IMPLEMENTATION OF MOD TCLP

1 new_answer :-

2 answer_lookup_table(Vars, Ans),

3 store_projection(Vars, ProjStore),

4 (

5 projstore_As(Ans, List_AnsProjStore),

6 member(ProjStore_A, List_AnsProjStore),

7 answer_compare(ProjStore, ProjStore_A, Res),

8 (

9 Res == '=<'
10 ;

11 Res == '>',
12 remove_answer(ProjStore_A),

13 fail

14), !

15 ;

16 save_answer(Ans, ProjStore)

17), !,

18 fail.

19

20 new_answer :-

21 complete.

Figure 3.5: Implementation of new_answer/0.

9. The tabling engine invokes store_projection/2. This returns in ProjStore the
projection of the current constraint store onto the constrained variables of the answer,
Vars.

10. The tabling engine retrieves from Ans the list of projected constraint stores in
List_AnsProjStore and calls member/2 to return the stores one at a time in
ProjStore_A. If it succeeds, the execution continues in step 12; otherwise, it
continues in step 11. Failure can happen because all projected constraint stores were
already retrieved from List_AnsProjStore or because Ans is the first answer with
these Herbrand constraints.

11. The tabling engine adds ProjStore to the list of projected constraint stores
(List_AnsProjStore) of the corresponding Ans with save_answer/2, and resumes
one by one the consumers of the current generator which were suspended in step 6.
Since new_answer/0 always fails, the execution backtracks to complete the execution
of the generator (step 7).

12. The constraint solver checks if the current store ProjStore entails the retrieved
projected constraint store ProjStore_A using answer_compare/3. If this is the case,
it returns Res=' =< ', which makes new_answer/0 discard the current answer, and
the generator is re-executed in step 7. If ProjStore is entailed by ProjStore_A

and they are not equal, it returns Res=' > ' and ProjStore_A is removed in step 13.

54

3.1 The Mod TCLP Framework

Otherwise, it fails and the execution continues in step 10, where the tabling engine
tries to retrieve another projected constraint store.

13. The tabling engine marks the more particular answer as removed using
remove_answer/1. Then the execution continues in step 10.

14. Once the generator has exhausted all the answers and does not have more de-
pendencies, it is marked as complete using complete/0 and the generator’s refer-
ence is popped from the PTCP stack. The tabling engine retrieves answers 〈Ans,
ProjStore_A〉 from the generator 〈Gen, ProjStore_G〉 using member/2. If it suc-
ceeds and the answer is not marked as removed, the answer will be applied in step
15. Otherwise, the execution backtracks to retrieve another answer.

15. Applying the Herbrand constraints Ans always succeeds, because the generator
and its consumers have the same call pattern. Then the constraint solver adds
the projected constraint store of the answer to the current constraint store with
apply_answer/2, and checks if the resulting constraint store is consistent. If so,
execution continues; otherwise the execution goes back to step 14.

In Section 3.1.3, we examine step by step the execution of a program using the TCLP(Q)
interface described in Section 3.1.4.

3.1.3 Step by Step Execution of dist/3 under TCLP(Q)

The trace below shows the step by step execution of the TCLP version of the left
recursive distance traversal program in Fig. 3.2a, with the query ?- D #< 150, dist(a,

Y, D) using the graph in Fig. 2.3. In this example we are using the TCLP(Q) interface
(Section 3.1.4). Each step is annotated with the labels used in Fig. 3.3. The execution
starts with the query ?- D #< 150, dist(a, Y, D):

0 the constraint D #< 150 in the query is added to the current store (state s0). Then
〈dist(a,Y, D), D < 150〉 is called and the tabling engine takes the control of the
execution calling tabled_call(dist_aux(a,Y,D)).

1 call_lookup_table/3 initializes and saves (after renaming) dist_aux(a,V0, V1),
because it is the first occurrence, and returns Vars=[D] and Gen=$1, where $1 is the
reference for this generator.

2 store_projection([D],ProjStore) returns ProjStore=([V1],[V1 #< 150]).

3 member/2 fails because the list of projected constraint stores associated to Gen=$1 is
empty.

55

DESIGN AND IMPLEMENTATION OF MOD TCLP

4 save_generator/3 saves ([V1], [V1 #< 150]) in the list of projected constraint
stores associated to Gen=$1 (state s1).

7 execute_generator/2 evaluates the generator against the first clause of dist_aux/3
and adds the body of the clause to the resolvent of the state s2i. Then the constraints
of the resolvent, [D1 #> 0, D2 #> 0, D #= D1+D2], are added to the constraint store
(state s3) and 〈dist(a,Z, D1), D < 150 ∧ D1 > 0 ∧ D2 > 0 ∧ D=D1+D2〉 is called.

0 the tabling engine reenters the tabled execution with tabled_call(dist_aux(a,Z,

D1)).

1 call_lookup_table(dist_aux(a,Z,D1),Vars,Gen) returns Vars=[D1] and
Gen=$1, the reference to the previous generator, dist_aux(a,V0, V1).

2 store_projection([D1],ProjStore) returns ProjStore=([V1],[V1 #> 0,

V1 #< 150]). For clarification, the projection of the current constraint store
D < 150 ∧ D1 > 0 ∧ D2 > 0 ∧ D=D1+D2 onto D1 is D1 > 0 ∧ D1 < 150.

3 member/2 retrieves the projected constraint store ProjStore_G=([V1],[V1 #< 150]).

5 call_entail/2 succeeds because (D < 150 ∧ D1 > 0 ∧ D2 > 0 ∧ D=D1+D2) v
D1 < 150.

6 suspend_consumer/1 suspends the current call dist_aux(a,Z, D1) (state s3), wait-
ing for the answer of the current TCLP tree, Ans(s1).

7 The evaluation of the generator backtracks to evaluate the other clause (state s2ii).
Now the current constraint store is D #< 150 and the call 〈edge(a,Y, D), D < 150〉
unifies with edge(a,b, 50) (state s4). The first answer is found and new_answer/0

is invoked to collect the answer.

8 answer_lookup_table/2 stores the Herbrand constraints2 of the answer,
Y=b ∧ D=50, returning Vars=[] and Ans=$a1, where $a1 is the reference for this
answer.

9 store_projection/2 returns ProjStore=([],[]).

10 member/2 fails because the list of projected constraint stores associated to $a1 is
empty.

11 save_answer/2 saves ([], []) in the list of the answer constraints associated to
$a1 (state a1). The first answer is collected.

2In solvers written in Prolog and implemented using attributed variables, such as CLP(Q) and
CLP(R), it is usual that variables lose their association with the constraints where they appeared when
these variables become ground. As ground terms do not have attributes attached, D=50 is handled as part
of the Herbrand constraints.

56

3.1 The Mod TCLP Framework

14 the tabling engine resumes the goal suspended at state s3 and member/2 retrieves
the Herbrand constraints Y=b ∧ D=50 and the answer constraint ([], []).

15 apply_answer/2 adds the answer to the current constraint store (state s5).

7 the execution continues resolving 〈edge(b,Y, D2), . . . ∧ D2 < 100〉 which unifies
with the clause edge(b,a, D2) :- D2 #> 25, D2 #< 35 (state s6). The second answer
is found.

8 answer_lookup_table/2 stores the Herbrand constraints of the answer, V0=a, re-
turning Vars=[D] and Ans=$a2.

9 store_projection/2 returns ProjStore=([V1],[V1 #> 75,V1 #< 85]).

10 member/2 fails because the list of projected constraint stores associated to Ans=$a2
is empty.

11 save_answer/2 saves ([V1], [V1 #> 75, V1 #< 85]) in the list of answer constraints
associated to $a2 (state a2). The second answer is collected.

14, 15, 7 the tabling engine resumes the suspended goal at state s3 and consumes the
second answer following the same steps as with the first one and generating the
states s7 and s8. The third answer has been found.

8, 9, 10, 11 the answer is collected and ([V1], [V1 #> 125, V1 #< 135]) is saved in the
list of answer constraint associated to $a3 (state a3).

14, 15 the tabling engine resumes the suspended goal at state s3 and consumes the third
answer.

7 the execution fails resolving 〈edge(b,V0, D21), V1 < 150 ∧ . . . ∧ D11 < 135〉 (states
s9 and s10)

14, 15 the generator has exhausted all the answers and it does not have any more
dependencies, so complete/0 marks the generator as complete. The query retrieves
the answers from the generator one by one and returns them.

3.1.4 Implementation of the TCLP(Q) Interface

Fig. 3.6 shows the interface for Holzbaur’s CLP(Q) solver (Holzbaur, 1995) as an exam-
ple of integration of a constraint solver with Mod TCLP. This CLP(Q) implementation
already provides most of the functionality required by the tabling engine, and therefore
the TCLP(Q) interface actually acts as a bridge to existing predicates.

A Mod TCLP constraint interface starts with the declaration :- active_tclp. It makes
the compiler adjust the program transformation according to the available interface

57

DESIGN AND IMPLEMENTATION OF MOD TCLP

predicates and instructs the tabling engine to activate the TCLP framework. The
functionality required by the interface is implemented as follows:

• store_projection(+Vars,-st(F,Proj)) calls the CLP(Q) predicate
clpqr_dump_constraints(+Vars,-F,-Proj) to perform the projection. It
returns in Proj the projection of the current store onto the list of variables Vars.
The variables in Proj are fresh and are contained in the list F, following the same
order as those in Vars. F is used to restore the association between the variables
in Vars and the constraints in Proj, as mentioned in Section 3.1.1.

• call_entail(+st(F,Proj),+st(FGen,ProjGen)) calls the auxiliary predicate
check_entailment(F,FGen,Proj,ProjGen) which success if Proj v ProjGen.
First, check_entailment/4 unifies F and FGen, resp. the variables of the projec-
tion of the current store and the variables of the generator’s projection. Then, the
CLP(Q) predicate clpq_meta(+Proj) makes Proj part of the current constraint
store by executing it. This does not interact with the current store, because the
variables in F and FGen are fresh. And finally, clpq_entailed(+ProjGen) success
if ProjGen is entailed by the current constraint store (i.e., Proj v ProjGen).

• answer_compare(+st(F,Proj),+st(FAns,ProjAns),Res) calls the predicate
check_entailment(F,FAns,Proj,ProjAns) to check if Proj v ProjAns. If
it is the case, answer_compare/3 returns ' =< ' in Res. Otherwise, it calls
check_entailment(FAns,F,ProjAns,Proj) to check if ProjAns @ Proj. If it
is the case, it returns ' > ' in Res, otherwise it fails (i.e., there is no entailment in
any direction).

• apply_answer(+Vars,+st(FAns,ProjAns)) unifies FAns, the variables of
ProjAns with Vars, those in the pattern of the resumed call. Then, it uses
the CLP(Q) predicate clpq_meta(+ProjAns) to add the answer constraint store
ProjAns to the current constraint store. If the resulting constraint store is consis-
tent, execution continues, and it fails otherwise.

The TCLP interface for CLP(R) is similar to that of CLP(Q). CLP(R) uses floating-
point numbers and its performance is better than that of CLP(Q), which uses exact
fractions. However, floating-point rounding errors make CLP(R) (and TCLP(R))
inappropriate for some applications, as entailment is unsound and therefore termination
can be compromised.

3.1.5 Two-Step Projection

The design we have presented strives for simplicity. There is however an improvement
that can be used to obtain more performance / reduce memory usage, at the cost of a

58

3.1 The Mod TCLP Framework

1 :- active_tclp.

2

3 store_projection(Vars, st(F,Proj)) :-

4 clpqr_dump_constraints(Vars, F, Proj).

5 call_entail(st(F,Proj), st(FGen,ProjGen)) :-

6 check_entailment(F, FGen, Proj, ProjGen).

7 answer_compare(st(F,Proj), st(FAns,ProjAns), =<) :-

8 check_entailment(F, FAns, Proj, ProjAns), !.

9 answer_compare(st(F,Proj), st(FAns,ProjAns), >) :-

10 check_entailment(FAns, F, ProjAns, Proj).

11 apply_answer(Vars, st(FAns,ProjAns)) :-

12 Vars = FAns, clpq_meta(ProjAns).

13 check_entailment(Vars1, Vars2, Proj1, Proj2) :-

14 Vars1 = Vars2, clpq_meta(Proj1), clpq_entailed(Proj2).

Figure 3.6: The Mod TCLP interface for CLP(Q) is a bridge to existing predicates.

slightly more complex design. We present it now, with the understanding that it does
not change the general ideas we have presented so far.

store_projection/2 is usually the most expensive operation in the TCLP interface,
but it is only mandatory when a call is a generator, which we can determine from
entailment checking.3 We have however placed store_projection/2 before entail-
ment checking because constraint solvers can often use the projection operation
to compute some information needed by the entailment check. Instead of recom-
puting this information, the projection is divided in two parts: an initial operation
early_call_projection(+Vars,-EarlyProj), executed before the entailment phase,
that returns in EarlyProj the information needed to check entailment, and a second
operation final_call_projection(+Vars,+EarlyProj,-ProjStore) that is executed
after the entailment phase if the entailment check fails (and the call would then be
a generator). If it is executed, this operation returns the projected constraint store in
ProjStore using the information in EarlyProj.

For symmetry, a similar mechanism is used with answers. Instead of using
store_projection/2 (step 10 in Fig. 3.3), two specialized versions are used:
early_ans_projection/2 and final_ans_projection/3, respectively called before
and after the answer entailment check

Example 3.1.
The TCLP(Q) interface in Fig. 3.6 uses store_projection/2 to project the con-
straint store of every new call. But, since clpq_entailed/1 does not need the
projection of the current constraint store to check entailment w.r.t. the projected
constraint store of a previous generator, the execution of the projection can be

3For efficiency, we can check entailment using the current constraint store A instead of its projection
onto a set of variables S because Av B⇐⇒ Pro j(S,A)v B, where S = vars(B), as in our case.

59

DESIGN AND IMPLEMENTATION OF MOD TCLP

delayed:
1 early_call_projection(Vars, st(Vars,_)).

2 call_entail(st(Vars,_), st(FGen,ProjGen)) :-

3 Vars = FGen, clpq_entailed(ProjGen).

4 final_call_projection(_,st(Vars,_), st(F,Proj)) :-

5 clpqr_dump_constraints(Vars, F, Proj).

The performance impact of implementing the Two-Step projection is evaluated in
Section 3.3.4, using the TCLP(Q) interface.

3.2 Other TCLP Interfaces

The design we presented brings more flexibility to a system with tabled constraints
at a reasonable cost in implementation effort. To support this claim we present the
implementation of the TCLP interface for a couple of additional solvers: a constraint
solver for difference constraints (Section 3.2.1) completely written in C and ported
from (Chico de Guzmán et al., 2012), and a solver for constraints over finite lattices
(Section 3.2.2).

3.2.1 Difference Constraints

Difference constraints CLP(D≤) is a simple but relatively powerful constraint system
whose constraints are generated from the set CD≤ = {X−Y ≤ d : X ,Y,d ∈ Z}, where
X and Y are variables, and d is a constant.

A system of difference constraints can be modeled with a weighted graph, and it is
satisfiable if there are no cycles with negative weight. A solver for this constraint
system can be based on shortest-path algorithms (Frigioni et al., 1998) where the
constraint store is represented as an n× n matrix A of distances. The projection of a
constraint store A onto a set of variables V extracts a sub-matrix A' containing all pairs
(v1, v2) s.t. v1, v2 ∈ V . For efficiency, a projection can be represented as a vector of
length |V | containing the index of each vi in A. For example, if the indexes in A of the
variables [X, Y, Z, T, W] are (1, 2, 3, 4, 5), the projection onto the set of variables
[T, X, Y] is represented with the vector (4, 1, 2). The implementation uses attributed
variables to map Prolog variables onto their representation in the matrix by having as
attribute the index of each variable in the matrix. Therefore, calculating projection is
fast.

The TCLP(D≤) interface (Fig. 3.7) showcases that, as we mentioned in Section 3.1.1,
the representation of the projected constraint store depends on the constraint solver.
In this case, the projected constraint store is represented by a triple st(Id, Ln, Proj)

60

3.2 Other TCLP Interfaces

1 early_ans_projection(Vars, st(Id,Ln,_)) :-

2 diff_project_index(Vars,(Id,Ln)).

3 answer_compare(st(Id,Ln,_), st(_,_,ProjAns), =<) :-

4 diff_entailed((Id,Ln),ProjAns), !.

5 answer_compare(st(Id,Ln,_), st(_,_,ProjAns), >) :-

6 diff_entails((Id,Ln),ProjAns).

7 final_ans_projection(_, st(Id,Ln,_), st(Id,Ln,Proj)) :-

8 diff_projection((Id,Ln),Proj).

Figure 3.7: The answer entailment check of the Mod TCLP(D≤) interface.

where Id is the memory address of the vector with the indexes of the constrained
variables of the call / answer, Ln is its length (the number of constrained variables), and
Proj is the memory address of a copy of the sub-matrix which represents the projected
constraint store. The indexes of the vector Id follow the same order as the variables in
Vars and are used to restore the association between Vars and Proj when they have to
be compared or applied.

TCLP(D≤) checks entailment using diff_entailed((Id,Ln),ProjGen) and
diff_entails((Id,Ln),ProjGen), where Id and Ln identify the position of the
variables in the matrix A (the current constraint store), and ProjGen is the memory
address of a sub-matrix which represent the projection of a previous generator. Note
that the indexes of the sub-matrix from 1 to n follows the order of the indexes in Id, i.e.,
the kth column/row of the sub-matrix correspond to the variable identified by the kth

index in Id.

Therefore, the TCLP(D≤) interface increases performance and reduces memory foot-
print using the Two-Step projection (Section 3.1.5) because it only makes a copy of the
sub-matrix Proj when the entailment phase fails and the current call / answer becomes a
generator / new answer. Fig. 3.7 shows the implementation of the projection and answer
comparison operations using the Two-Step projection in the answer entailment check.

3.2.2 Constraints over Finite Lattices

A lattice is a triple (S, t, u) where S is a set of points and join (t) and meet (u) are
two internal operations that follow the commutative, associative and absorption laws.
(S, v) is a poset where ∀a,b ∈ S . av b if a = aub or b = atb and ∃⊥,> ∈ S such
that ∀ a ∈ S . ⊥v av>.

In the system of constraints over finite lattices CLP(Lat), the constraints between points
in the lattice arise from (1) the topological relationship of the lattice elements and (2)
any additional operations between the elements in the lattice. These two classes of
constraints are handled by two different layers.

61

DESIGN AND IMPLEMENTATION OF MOD TCLP

The external layer is concerned with the lattice topology and implements the constraint
Y v X with X ,Y ∈ S and the projection operation for variable elimination using Fourier’s
algorithm (Marriott and Stuckey, 1998): the projection of X v d ∧Y v X onto Y is
Y v d. This layer provides entailment checking and the operation to add a projected
constraint store to the current constraint store.

Further constraints on variables can be imposed by relationships derived from internal
operations other than those in the lattice. Compare, for example, Y v X with Y v X ∧
Y = X ⊕X for some operation ⊕ among elements of the lattice: the additional infor-
mation can be helpful to simplify (or prove inconsistent) the constraint store. In the
lattice solver, a second layer implements these additional operations (if they exist) and
communicates with the topology-related layer.

We have used this solver to implement a constraint tabling-based abstract interpreter
(Section 3.3.6), where the points of the lattice are the elements of the abstract domain.
The lattice implementation provides at least the operators t and u and the operations
among the elements of the lattice, which are the counterparts of the operations in the
concrete domain, as described above.

3.3 Experimental Evaluation

In this section we evaluate the performance of our framework using the four constraint
systems and interfaces we have summarily described (Q, R, D≤ and Lat).

In Section 3.3.1, we quantify the performance benefits of TCLP versus LP, tabling, and
CLP using the dist/3 program presented in Section 2.1 with the TCLP(Q) interface.
Then we explore the impact and advantages of a more flexible modular framework.
In Section 3.3.2 we evaluate the performance impact of the increased overhead w.r.t.
previous implementations with less flexibility (i.e., the previous TCLP implementation
of (Chico de Guzmán et al., 2012)), and in Section 3.3.3 we evaluate the benefits of a
more comprehensive answer management strategy, which is easier to implement due to
the flexibility of the new framework.

In Section 3.3.4, we evaluate the performance benefits of the Two Step projection using
TCLP(Q). These benefits are due to the reduction in the number of projections executed
during the evaluation. In 3.3.5, we compare the expressiveness and performance of
the TCLP(D≤), TCLP(R), and TCLP(Q) interfaces. In this case, the expressiveness
of CLP(R/Q) comes with an overhead (which is higher in CLP(Q) due to its higher
precision), but in certain problems this expressiveness can bring greats benefits using
TCLP (additionally, in some problems the precision could be determinant).

And finally, in Section 3.3.6, we use tabling and TCLP(Lat) to implement and bench-
mark a simple abstract interpreter. This evaluation shows the benefits brought not only

62

3.3 Experimental Evaluation

Table 3.1: Run time (ms) of LP, CLP(Q), tabling and TCLP(Q) for dist/3.
‘–’ means no termination.

Graph LP CLP(Q) Tab TCLP(Q)

Without cycles Left recursion – – 2311 1286
Right recursion > 5 min. 5136 3672 2237

With cycles Left recursion – – – 742
Right recursion – 10992 – 1776

by the entailment check instead of variant checking, but also by the integration of CLP
with tabling.

The Mod TCLP framework is implemented in Ciao Prolog and it is available, including
the libraries and interfaces presented in this chapter, as part of the Ciao Prolog distri-
bution at http://www.ciao-lang.org. All the experiments were performed on a Mac
OS-X 10.9.5 machine with a 2.66 GHz Intel Core 2 Duo processor and the benchmarks
are available at http://www.cliplab.org/papers/tplp2018-tclp/. Times are given
in milliseconds.

3.3.1 Absolute Performance of TCLP vs. LP vs. Tabling vs. CLP

Let us recall Table 2.1, where we used the dist/3 program (see Fig. 2.1 and 2.2) to
support the use of TCLP due to its better termination properties. We now want to check
whether, for those cases where LP or CLP also terminate, the performance of TCLP is
competitive and for those cases where only TCLP terminates, whether its performance
is reasonable. We have used a graph of 35 nodes without cycles (775 edges) and a graph
of 49 nodes with cycles (785 edges) and timed the results — see Table 3.1.

As we already saw in Table 2.1, TCLP not only terminates in all cases, but it is also
faster than the rest of the frameworks due to the combination of tabling (which avoids
entering loops and caches intermediate results) and constraint solving. It also suggests,
in line with the experience in tabling, that left-recursive implementations are usually
faster and preferable, as they avoid work by “suspending first” and reusing answers
when they are ready.

63

http://www.ciao-lang.org
http://www.cliplab.org/papers/tplp2018-tclp/

DESIGN AND IMPLEMENTATION OF MOD TCLP

3.3.2 The Cost of Modularity: Mod TCLP vs. Original TCLP

The original TCLP implementation (Chico de Guzmán et al., 2012) was deeply inter-
twined with the tabling engine and had a comparatively low overhead. Since it was
done on the same platform as ours (Ciao Prolog) and shares several components and
low-level implementation decisions, it seems a fair and adequate baseline to evaluate
the performance cost of the added modularity. We will evaluate both frameworks using
exactly the same implementation of difference constraints (Section 3.2.1) and two
benchmarks:

truckload(P,Load,Dest,Time) (Cui and Warren, 2000; Schrijvers et al., 2008): it
solves a shipment problem given a maximum Load for a truck, a destination Dest,
and a list of packages to ship (1 to P.) We set P=30, Dest=chicago and use
Load as parameter to vary its complexity. truckload/4 does not need tabling, but
tabling speeds it up.

step bound(Init,Dest,Steps,Limit): it is a left-recursive graph reachability pro-
gram similar to dist/3 that constrains the total number (Limit) of edge traversals.
step_bound/4 needs tabling in the case of graphs with cycles, as it is the case of
the graph we will use in this evaluation.

Table 3.2 shows that truckload/4 incurs a nearly three-fold increase in execution time
with respect to the initial non-modular TCLP(D≤) implementation. This is mainly
due to the overhead of the control flow. In the original implementation, execution
did not leave the level of C, as the tabling engine called directly the constraint solver,
also written in C. However, in Mod TCLP, the tabling engine (in C) calls the interface
level (written in Prolog), which calls back the constraint solver (in C). The additional
overhead is the price we pay to make it much easier to plug in additional constraint
solvers, which in the original TCLP needed ad-hoc, low level wiring.

However, step_bound/4 is less efficient in the original TCLP(D≤) implementation than
in Mod TCLP, and cannot be executed in CLP(D≤) due to the cycles in the graph. The
reason behind this improvement is the enhanced answer management strategy whose
implementation was made possible by our modular design. We will explore this point
in the next section.

3.3.3 Improved Answer Management Strategies

The modular design of Mod TCLP makes it possible to implement alternatives for
internal operations more easily. In particular, the solver interface can include the
answer_compare/3 operation which determines whether a new answer entails, is en-
tailed by, or none of them, some previous answer. This can be used to decide whether

64

3.3 Experimental Evaluation

Table 3.2: Run time (ms) of CLP(D≤), original TCLP(D≤) and Mod TCLP(D≤) for
truckload/4 and step_bound/4. ‘–’ means no termination.

CLP(D≤) Orig. TCLP(D≤) Mod TCLP(D≤)

truckload(300) 40452 2903 7268

truckload(200) 4179 1015 2239

truckload(100) 145 140 259

step_bound(30) - 2657 1469
step_bound(20) - 2170 1267
step_bound(10) - 917 845

to add or not a new answer and remove or not an existing answer. This is undoubt-
edly expensive in general, but as advanced in Section 3.1.1, it holds promise for
improving performance. To validate this intuition, we executed again truckload/4 and
step_bound/4 with TCLP(D≤) under four different answer management strategies:

/0 all the answers are stored.

← checks if new answers entail previous answers. If so, the new answer is discarded.
That is the strategy used in the original TCLP framework.

→ checks if new answers are entailed by previous answers. If so, the previous answers
are flagged as removed and ignored, and the new answer is stored.

↔ checks entailment in both directions, discarding new answers and removing more
particular answers.

The results in Table 3.3 confirm that, in the examples studied, and despite the cost of
these strategies, the computation time is reduced. The “↔” strategy proves to be the
best one, although by a small margin in some cases.

On the other hand, the worst strategy is ‘ /0’, which for the truckload/4 program
increases the execution time several orders of magnitude for large cases, while for the
step_bound/4 program the execution does not terminate because it runs out of memory
when trying to generate infinitely many repeated answers. While truckload/4 behaves
similarly for the other strategies, step_bound/4 varies drastically (i.e., ‘→’ runs out of
memory for the largest case).

Part of the reasons for these differences can be inferred from Table 3.4, where, for
each benchmark and strategy, we show how many of the generated answers were saved,
discarded before being inserted, or removed after insertion. Note that these results

65

DESIGN AND IMPLEMENTATION OF MOD TCLP

Table 3.3: Run time (ms) of answer management strategies under
Mod TCLP(D≤) for truckload/4 and step_bound/4.

Mod TCLP(D≤)

/0 ← → ↔

truckload(300) 742039 7806 7780 7268
truckload(200) 11785 2314 2354 2239
truckload(100) 300 263 263 259

step_bound(30) – 8450 – 1469
step_bound(20) – 6859 38107 1267
step_bound(10) – 2846 8879 845

1 :- table sd/3.

2

3 sd(X,Y,D) :-

4 edge(X,Y,D0),

5 D #>= D0.

6 sd(X,Y,D) :-

7 sd(X,Z,D1),

8 edge(Z,Y,D2),

9 D #>= D1+D2.

b

a c

d

3.0 3.0

1.0 2.0

1.0

1.3

Figure 3.8: Code of sd/3 a shortest-distance program.

are independent of the constraint solver used (i.e., executing the same programs using
CLP(Q) or CLP(R) instead of CLP(D≤) generates the same answers).

For truckload/4, the ‘→’ and the ‘←’ strategies generate, discard / remove, and return
a similar number of answers, which means that their impact in execution time is not
very important. It is notwithstanding interesting to note that there is no slowdown
when using the more complex strategy, ‘↔’. For step_bound/4, ‘→’ generates many
more candidate answers than either of the other two — in excess of one million for
step_bound(30) — but ‘←’ also generates one order of magnitude more candidates
answers than ‘↔’. Note that the number of generated answers is not always the same
since, as discussed before, fewer saved answers wake up fewer consumers.

As an additional example of the usefulness of obtaining the most general correct answer,
Fig. 3.8 shows a graph and the program sd/3, used in (Cui and Warren, 2000) to
calculate the “shortest distance” between the nodes in the graph. For a query such as
?- sd(X, Y, Dist) the system reported in (Cui and Warren, 2000) returns a sequence

of n answers of the form Dist #>= Nk. Each Nk is the current achievable shortest distance

66

3.3 Experimental Evaluation

Table 3.4: Number of answers: saved (Sav.), discarded (Dis.), removed (Rem.) and
returned to the query (Ret.) for each answer management strategy.

Answer
strategy

Sav. # Dis. # Rem. # Ret.

/0 truckload(300) 448538 0 0 14999

truckload(200) 52349 0 0 1520

truckload(100) 2464 0 0 58

← truckload(300) 67503 9971 0 41

truckload(200) 16456 1325 0 23

truckload(100) 1525 52 0 6

step_bound(30) 44549 716826 0 252

step_bound(20) 37548 599259 0 242

step_bound(10) 15625 242351 0 165

→ truckload(300) 75272 0 9460 30

truckload(200) 17568 0 1298 18

truckload(100) 1490 0 49 9

step_bound(30) >1145690 0 >1074071 –

step_bound(20) 946309 0 891078 441

step_bound(10) 294728 0 276867 221

↔ truckload(300) 48524 6596 1740 5

truckload(200) 13550 1046 240 5

truckload(100) 1343 45 10 3

step_bound(30) 9697 74528 4571 25

step_bound(20) 9352 71658 4371 25

step_bound(10) 6650 56935 3019 25

67

DESIGN AND IMPLEMENTATION OF MOD TCLP

1 fib(N,F) :-

2
...

3 F #= F1 + F2,

4 fib(N1, F1),

5 fib(N2, F2).

(a) Version using Q and R.

1 fib(N,F) :-

2
...

3 fib(N1, F1),

4 fib(N2, F2),

5 F #= F1 + F2.

(b) Version using D≤.

Figure 3.9: Code of fib/2 under TCLP (it runs forwards and backwards).

from X to Y, such as N1 > · · · > N_n, and the later Nn is the shortest distance from X

to Y. E.g., for the query ?- sd(a, c, Dist) it returns Dist #>= 6.0 and Dist #>= 3.0.
While using Mod TCLP under the ‘↔’ strategy the evaluation of the query ?- sd(a,

c, Dist) only returns the answer Dist #>= 3.0 (the most general) which corresponds
to the tightest bound for the shortest distance between the nodes a and c.

3.3.4 Improved Two-Step Projection

The design of Mod TCLP makes it possible to postpone the projection during the
call / answer entailment phase using the Two-Step projection. As we advanced in
Section 3.1.5, it holds promise for performance improvements. To validate this intuition,
we use two benchmarks:

fib(N,F) (Fig. 3.9) the doubly recursive Fibonacci program run backwards. It is
well-known that tabling reduces fib/2 complexity from exponential to linear. In
addition, CLP makes it possible to run exactly the same program backwards to
find the index of some Fibonacci number by generating a system of equations
whose solution is the index of the given Fibonacci number (e.g., for the query
?- fib(N, 89), the answer is N=11). Under CLP, the size of this system of

equations grows exponentially with the index of the Fibonacci number. However,
under TCLP, entailment makes redundant equations not to be added and solving
them becomes less expensive. Additionally, entailment makes it possible to
terminate (with failure) even when the query does not contain a non Fibonacci
number, e.g., fib(N, 10314).

dist(X,Y,D) (Fig. 3.2a) the program already used in Sections 2.1 and 3.3.1.

We executed each of them with Mod TCLP(Q) and the two designs for the call projec-
tion we discussed earlier:

One-Step: The projection of the call is executed before the call entailment phase
(Fig. 3.6). Note that CLP(Q) does not need this projection to check entailment of
the current call constraint store w.r.t. another constraint store.

68

3.3 Experimental Evaluation

Two-Step: The projection of the call is executed using final_call_projection/3 and,
therefore, it is only executed when the call turns out to be a generator.

The results in Table 3.5 (top) confirm that, in the examples studied, the Two-Step design
reduces the computation time, although only by a small margin in the case of dist/3
with left recursion. That is because, as we see in Table 3.5 (bottom), using the Two-Step
projection, dist/3 with left recursion executes the projection of a call only once while
using One-Step it executes the projection twice and therefore we only save the execution
of one projection. Since they are executed early in the evaluation, the constraint store is
small and their execution is faster than in the case of dist/3 with right recursion. Note
that using the Two-Step projection, dist/3 with right recursion executes up to 8 times
fewer call projections, and as consequence its execution has better performance.

On the other hand, fib/2 reduces drastically the computation time using Two-Step pro-
jection because, during the execution, call entailment is checked many times (although
the ratio of useless projections is similar to that of dist/3 with left recursion). Note that
the Fibonacci number F1500 and 10314 have the same size (315 digits), and the run-time
and number of projections, for fib(N, F1500) and for fib(N, 10314), are similar. That is
because the work needed to find the index of a Fibonacci number is similar to the work
needed to confirm whether a number is or is not a Fibonacci number.

3.3.5 Comparison of Mod TCLP(R, Q vs D≤)

This section highlights that the modularity of TCLP makes it possible to choose the most
adequate constraint solver for the specific problem, and that decision should not always
be based solely on the performance of the constraint solver, but also on its expressiveness
and/or precision. Since TCLP, unlike CLP, uses entailment checking extensively to
decide whether to suspend and save / discard answers or not, the performance of
entailment is more relevant than in CLP. It also makes its soundness (which can be
challenged by e.g. numerical accuracy) critical, as incorrect entailment results can lead
to non-termination or to unexpected termination.

We use the doubly recursive Fibonacci programs in Fig. 3.9 which runs forwards
and backwards, already used in Section 3.3.4. We have run this benchmark using
R, Q and D≤. Due to the characteristics of D≤ (Section 3.2.1), the program for this
constraint system is slightly different from the ones for Q and R (Section 3.1.4). In
these two, constraints are placed before the recursive calls (see Fig. 3.9a). However,
D≤ can have at most two variables per constraint, and therefore we had to move the
constraint F #= F1+F2 to the end of the clause (Fig. 3.9b). This can be detrimental to
the performance of Mod TCLP(D≤), as value propagation in the constraints is less
effective.

Table 3.6 shows the experimental results. First, note that the Mod TCLP(D≤) version

69

DESIGN AND IMPLEMENTATION OF MOD TCLP

Table 3.5: Comparative table of One-Step and Two-Step projection design.
Note: Fn is the nth Fibonacci number, and 10314 is not a Fibonacci number.

(a) Run time (ms) of Mod TCLP(Q) for fib/2 and dist/3.

Mod TCLP(Q)

One-Step Two-Step Ratio

fib(N, F1500) 206963 126461 1.63

fib(N, F1000) 89974 55183 1.63

fib(N, F500) 22133 13612 1.63

fib(N, 10314) 205638 125670 1.63

dist/3 right rec. Without cycles 2855 2506 1.14

With cycles 2399 1850 1.30

dist/3 left rec. Without cycles 1436 1428 1.01

With cycles 776 772 1.01

(b) Number of call projections for fib/2 and dist/3.

Mod TCLP(Q)

One-Step Two-Step Ratio

fib(N, F1500) 1129497 565500 2.00

fib(N, F1000) 502997 252000 2.00

fib(N, F500) 126497 63500 1.99

fib(N, 10314) 1126499 563252 2.00

dist/3 right rec. Without cycles 1563 181 8.64

With cycles 2144 443 4.84

dist/3 left rec. Without cycles 2 1 2.00

With cycles 2 1 2.00

70

3.3 Experimental Evaluation

Table 3.6: Run time (ms) of Mod TCLP(R,Q and D≤) for fib/2.

Mod TCLP(R) Mod TCLP(Q) Mod TCLP(D≤)

fib(N, 832040) 25 61 147

fib(N, 28657) 16 40 69

fib(N, 610) 8 19 24

fib(N, 89) 5 12 13

is slower than any of the other two. While the implementation of CLP(D≤) is com-
paratively faster than CLP(R) and CLP(Q), moving the F #= F1+F2 to the end of the
clause (which is necessary to satisfy the instantiation requirements of D≤) reduces its
usefulness to prune the generation of redundant constraints.

Additionally, note that although the solvers for R and Q are practically the same,
Mod TCLP(R) is fastest in all cases, since it uses directly CPU floating point numbers
while CLP(Q) implements rational numbers by software. However, there is a drawback:
floating point arithmetic is not accurate, and when CLP(R) approximates its results, it
can cause (depending on the particular program) non-termination. That would be the
case for a query such as ?- fib(N, 23416728348467685), which terminates correctly
with Mod TCLP(Q) but it does not (in under five minutes) with Mod TCLP(R), since
the termination condition never holds.

3.3.6 Abstract Interpretation: Tabling vs. TCLP(Lat)

We compare here tabling and TCLP using two versions of a simple abstract inter-
preter (Cousot and Cousot, 1977). The interpreter executes the programs to be analyzed
on an abstract domain, collecting the possible values at every point until a fixpoint is
reached. The result of the execution is a safe approximation of the run-time values of
the variables in the concrete domain. The abstract domain we have used in this example
is the signs abstract domain (Fig. 3.10).

The two versions of the abstract interpreter we have used are:

Tabling This version is a simple abstract interpreter written using tabling. This ensures
termination, as the abstract domain is finite.

TCLP This version is based on the previous abstract interpreter, but it uses the
TCLP(Lat) constraint solver interface (Section 3.2.2) to operate on the abstract
domain and set up constraints over the variables. The main differences with
the tabling version is that TCLP uses constraint entailment instead of variant

71

DESIGN AND IMPLEMENTATION OF MOD TCLP

top

num

±0− 0+

0− +

bottom

var str atom

Figure 3.10: Lattice of the Signs abstract domain.

t(x1, x2, . . . , xn) = if x1 ≤ x2 then x2
else t(t(x1−1, x2, . . . , xn), . . . , t(xn−1, x1, . . . , xn−1))

1 takeuchi(X1, X2, ..., _Xn, R) :- X1 < X2, R = X2.

2 takeuchi(X1, X2, ..., _Xn, R) :- X1 =:= X2, R = X2.

3 takeuchi(X1, X2, ..., Xn, R) :- X1 > X2,
4 N1 is X1 - 1, takeuchi(N1, X2, ..., Xn, R1),
5 N2 is X2 - 1, takeuchi(N2, X3, ..., X1, R2),
6 ...,

7 Nn is Xn - 1, takeuchi(Nn, X1, ..., Xn−1, Rn),
8 takeuchi(R1, R2, ..., Rn, R).

Figure 3.11: The n-dimensional Takeuchi function and code of takeuchi/m.

checking for loop detection and, therefore, it can also use the answers to more
general goals to avoid computing more particular goals.

We applied our abstract interpreter to two programs:

takeuchi/m (Fig. 3.11): a Prolog implementation of the n-dimensional generalization
of the Takeuchi function (Knuth, 1991). The program is parametric on the number
of input arguments n and it returns the result in its last argument.

sentinel/m (Fig. 3.12): a variant of a synthetic program presented in (Genaim et
al., 2001). It receives as input its first argument (the Sentinel) and the next n
arguments A1, . . ., An is a ring-ordered4 series of numbers. The outputs are the
arguments B1, . . ., Bn, which correspond to a circular shift of A1, . . ., An such
that on success Bi < Bi+1 for all i < n and: if Sentinel=0, the first half of Bi are
negative and the second half are positive; if Sentinel < 0, Bi < Sentinel for all i;
and if Sentinel > 0, Bi > Sentinel for all i.

4I.e., there is a j such that Aj < Aj+1, Aj+1 < Aj+2, . . . , An < A1, A1 < A2, . . . , Aj−2 < Aj−1.

72

3.3 Experimental Evaluation

1 sentinel(Sentinel, A1, ..., An, B1, ..., Bn) :- Sentinel =:= 0,

2 ring(A1, ..., An, B1, ..., Bn),
3 B1 < B2, ..., Bn−1 < Bn, Bn/2 < Sentinel, Sentinel < Bn/2+1.

4 sentinel(Sentinel, A1, ..., An, B1, ..., Bn) :- Sentinel < 0,

5 ring(A1, ..., An, B1, ..., Bn),
6 B1 < B2, ..., Bn−1 < Bn, Bn < Sentinel.

7 sentinel(Sentinel, A1, ..., An, B1, ..., Bn) :- Sentinel > 0,

8 ring(A1, ..., An, B1, ..., Bn),
9 B1 < B2, ..., Bn−1 < Bn, B1 > Sentinel.

10

11 ring(A1, ..., An, B1, ..., Bn) :- B1 = A1, ..., Bn = An.

12 ring(A1, ..., An, B1, ..., Bn) :- A1 > A2,
13 ring(A2, ..., An, A1, B1, ..., Bn).
14 ring(A1, ..., An, B1, ..., Bn) :-

15 ring(An, A1, ..., An−1, B1, ..., Bn).

Figure 3.12: Code of sentinel/m program.

Table 3.7: Run time (ms) of tabling and Mod TCLP(Lat) for analyze/1.

Tabling Mod TCLP(Lat)

takeuchi/m (m = n+1) n=8 31.44 8.09
n=6 13.75 5.85
n=3 2.42 3.12

sentinel/m (m = 2n+1) n=8 1375.13 9.23
n=6 218.93 6.53
n=4 30.99 4.56

Table 3.7 shows the run time results of analyzing takeuchi/m parameterized by the
dimension of the function, n (m = n+ 1), and sentinel/m parameterized by n, the
length of the ring (m = 2n+1). In both examples the analysis with the TCLP version
of the interpreter is faster than the analysis with the interpreter without constraints: the
latter has to evaluate each permutation completely in the recursive predicates, while
the former can suspend and save computation time using results from a previous, more
general, call.

Let us examine an example. For a variable A, let us write Aabs to represent A v abs.
On the one hand, when an initial goal ring(A1top, . . . ,An

top,B1
top, . . . ,Bn

top) is in-
terpreted by the TCLP analyzer, the first clause of ring/2n produces the first an-
swer. Then the interpreter continues with the second clause, interprets the goal
A1 > A2 and starts the evaluation of ring(A2num, . . . ,An

top,A1
num,B1

top, . . . ,Bn
top). Since

numv top, this new call entails the previous one and TCLP suspends this execution.

73

DESIGN AND IMPLEMENTATION OF MOD TCLP

Table 3.8: Run time (ms) of tabling and Mod TCLP(Lat)
for (un)constrained calls for analyze/1 .

Tabling Mod TCLP(Lat)

constraints unconst. constraints unconst.

before call call before call call

sentinel/m

(m= 2n+1)

n=8 749.38 1375.13 5.29 9.23

n=6 98.80 218.93 3.31 6.53

n=4 6.53 30.99 2.85 4.56

Then the interpreter continues with the third clause, which starts the evaluation of
ring(An

top,A1
top, . . . ,An−1

top,B1
top, . . . ,Bn

top), and TCLP also suspends the execu-
tion. Since the generator does not have more clauses to evaluate, TCLP resumes the
suspended execution with the previously obtained answer. Each consumer produces
a new answer but since they are at least as particular as the previous one, they are
discarded.

On the other hand when the initial goal is evaluated in the tabling interpreter with
A1

top, . . . ,An
top,B1

top, . . . ,Bn
top as entry substitution, the first answer is also pro-

duced. Then the interpreter continues with the second clause, interprets the goal
A1 > A2 and starts the evaluation of the recursive call with the entry substitution
A1

num, . . . ,An
top,B1

num, . . . ,Bn
top. However, tabling does not suspend the execution

because it is not a variant call of the previous one, which results in increased computa-
tion time.

Table 3.8 shows the results of analyzing sentinel/m in two different scenarios: without
any constraints in the abstract substitution of the variables, or adding the constraint
Sentinel v+ before the analysis. Adding that domain restriction reduces analysis
times by approximately the same ratio in both cases. Note that this compares two
scenarios which are possible both for TCLP and for tabling without constraints. Addi-
tionally, the TCLP-based analyzer would be able to take into account constraints among
variables, which would not be directly possible using tabling without constraints.

3.4 Discussion

We have presented an approach to include constraint solvers in logic programming
systems with tabling. Our main goal is making the addition of new constraint solvers
easier while taking full advantage of entailment between constraint stores. In order to
achieve this, we determined the services that a constraint solver should provide to a

74

3.4 Discussion

tabling engine. This interface has been designed to give the constraint solver freedom
to implement them. To validate our design, we have interfaced one solver previously
written in C, CLP(D≤), two existing classical solvers, CLP(Q/R), and a new solver,
CLP(Lat), and we have found the integration to be easy — certainly easier than with
other designs —, validating the usefulness of the capabilities that our system provides.

We evaluated its performance in a series of benchmarks. In some of them large savings
are attained w.r.t. non-tabled/tabled executions, even taking into account the penalty to
pay for the additional flexibility and modularity. We are in any case confident that there
is still ample space to improve the efficiency of the implementation, since in the current
implementation we gave more importance to the cleanliness of the code and the design.

75

Chapter 4

Incremental Evaluation of Aggregates
using Tabled CLP

The previous chapters show that keeping only the more general
answers not only improves performance, reduces memory require-
ments, and improves performance but also preserves correctness.
In this chapter, we show that for some applications only the ag-
gregation of those answers is needed and we present ATCLP, a
framework to incrementally compute the aggregation of elements in
a lattice, that improves the efficiency of certain programs without
losing correctness. The framework is based on a new intended
semantics for lattice-based aggregates, consistent with the LFP se-
mantics, that guaranties soundness and completeness and improves
termination properties. The ATCLP framework is implemented us-
ing an extended version of Mod TCLP that allows the combination
of answers. Its design allows not only the definition of arbitrary
lattice-based aggregates, but also the definition of aggregates that
do not fit into a lattice structure.

As we show in Chapter 2, using Mod TCLP, it is possible to synthesize answers to a
logic programming query without generating all possible answers, i.e., by applying an
operational semantics that includes mechanisms to avoid repeating (some) redundant
computations. The operations that take a series of records in a database table or answers
to a query, and synthesize a result using them are called aggregates. The maximum,
minimum, the set of all answers, the number of (different) solutions, and the average of
the solutions are well-known examples of aggregates. They can be straightforwardly
computed by gathering all the solutions and then computing the aggregate as dictated
by its definition. However, this can be suboptimal or have drawbacks. An example
would be returning the shortest path in a graph: the search can be stopped whenever

77

INCREMENTAL EVALUATION OF AGGREGATES USING TABLED CLP

the current path is longer than the shortest one found so far. In other, more involved
cases, the computation of the aggregate may recursively involve the aggregate itself,
and computing first a model without aggregates with a fixpoint procedure and then
applying aggregation may be impossible or unsound.

In this chapter we introduce, implement, and evaluate a consistent least-fixed point
semantics for a class of common aggregates derived from an interpretation of their
meaning in a lattice. This interpretation makes it possible to give them a consistent
least fixed point semantics. We observe that existing implementations for tabled logic
programming (Santos Costa et al., 2012; Swift and Warren, 2012; Zhou, 2012) have
been extended to provide the machinery necessary to compute aggregates incrementally:
tabling needs to store the answers returned by the different branches of the computation,
which is a first step towards computing aggregates (e.g., the so-called modes makes it
possible to incrementally compute some specific aggregates). However, while being
very helpful in some situations, a careful examination of their behavior reveals inconsis-
tencies with the LFP semantics (Vandenbroucke et al., 2016) which makes reasoning
about simple programs unsound. We, therefore, added the necessary support in the form
of syntax and underlying infrastructure to incrementally compute aggregates based on
the answers that are added to the table. In particular, we extend the answer management
strategy of Mod TCLP with a more flexible answer management strategy in order to
make it possible the combination of answers.

In Section 4.1 we motivate and present an intended semantics, for lattice-based aggre-
gates that is consistent with the LFP semantics and supports programs with non-stratified
aggregates. In Section 4.2 we characterize the lattice-based aggregates that are con-
sistent with the intended semantics. In Section 4.3 we describe the design of the
interface provided to define aggregates, we give some examples, and we sketch some
implementation details of the framework In Section 4.4 we explain how to implement
some non-lattice aggregates, whose execution may not align with LFP semantics. In
Section 4.5 we evaluate the expressiveness and performance of ATCLP versus Prolog
and tabling and finally, in Section 4.6, we offer some conclusions.

4.1 Motivation

Tabling engines that implement mode-directed tabling (Guo and Gupta, 2008; Zhou
et al., 2010) and/or answer subsumption (Swift and Warren, 2010) can use policies other
than being a variant to decide whether an answer should be stored or discarded. These
are expressed by specifying the modes of some arguments: dist(_,_, min) specifies
the (aggregate) mode min for the third argument, and the query ?- dist(a,Y, D) will
terminate also for acyclic graphs because only the shortest distance will be returned.
These systems usually included a predefined, small collection of aggregates with ad-hoc
implementations.

78

4.1 Motivation

1 p(3).

2 p(2).

3 p(1) :- p(2).

4 p(0) :- p(3).

(a) Program P .

p(x)← 3≤ x.
p(x)← 2≤ x.

p(x)← 1≤ x∧ p(2).
p(x)← 0≤ x∧ p(3).

(b) A constraint-based intended meaning of Pmin.

Figure 4.1: Code and interpretation of a predicate aggregated using minimum.

However, as shown elsewhere (Kemp and Stuckey, 1991; Pelov et al., 2007; Van-
denbroucke et al., 2016), reconciling the standard least fixpoint semantics for logic
programming with a sensible semantics for aggregates in LP is not straightforward.

Example 4.1. Let us consider the standard LP program P in Fig. 4.1a, a variant
of an example from (Vandenbroucke et al., 2016). Its model would be {p(0),
p(1), p(2), p(3)}. Let us call Pmin the program that minimizes the argument to
predicate p/1; its model ought to be {p(0)}. That is a type of aggregate, since all
answers for P need to be taken into account to produce a single answer for Pmin.1

However, a straightforward reduction of the model of P to generate the model of
Pmin is at odds with the standard least fixpoint semantics: in order to apply the
immediate consequence operator TP of the fixpoint semantics, for p(0) to be in the
model of Pmin, p(3) needs to be also in that model, but we had stated before that
the model or Pmin only contains p(0).

The lattice semantics for stratified programs presented in (Vandenbroucke et al., 2016)
provides an interpretation for programs with aggregates consistent with the expected
aggregated answers. However, it distinguishes between predicates that imply and are
implied by aggregated values in such as way that the atoms subsumed by the aggregated
answer are only true during the evaluation of the aggregated predicates: p(3) is true
(and used) while computing ?- p(X). However, the query ?- p(3) fails. That is
somewhat misleading, and reasoning, transforming, debugging, etc. with a programming
language having that semantics can be challenging.

On top of that, the behavior of implementations featuring aggregates is sometimes
erratic. XSB and B-Prolog return p(1) for the query ?- p(X) to Pmin, while Yap,
which uses batch scheduling,2 returns, on backtracking, p(3), p(2), and p(1) the first
time the query is issued, and only p(1) in subsequent calls. These issues, already
mentioned in (Vandenbroucke et al., 2016), point to the need for a better semantics
and consistent implementations. We will present here what we think is an alternative,

1This is usually marked with a program declaration that specifies which predicate and which argument
is to be minimized. We delay introducing its precise syntax and just assume it appears in Pmin.

2Batch scheduling returns answers as soon as they are found.

79

INCREMENTAL EVALUATION OF AGGREGATES USING TABLED CLP

defensible meaning for a class of aggregates that is compatible with the least fixpoint
semantics.

Under the assumption that p(0) is the expected result for the query ?- p(X). to the
program Pmin, then we can expect that for any atom p(x) in the model of P , the
constraint 0 ≤ x holds. From this, we assume that minimizing the parameter to p/1

redefines its meaning to be: p(km) is in the model of Pmin iff for all ki such that p(ki) is
in the model of P , the constraint km≤ ki holds. In other words, we link the computation
of the minimum with the solution of the set of constraints km ≤ k1∧ km ≤ k2∧ ·· · ∧
km≤ kn where m∈ {1, . . . ,n} and we posit p(km) as the only atom of the model of Pmin.
With the knowledge that the minimum is induced by the constraint ≤, the value km acts
as a representative of the set of constraints. Fig. 4.1b shows a CLP program whose
(constraint) semantics model that of Pmin (but whose model is a set of constraints,
rather than a canonical representative, as in our case).

Under this semantics, the clause p(0) :- p(3) can be used without lack of consistency:
if the model {p(0)} is assumed to mean p(x) s.t. 0 ≤ x, the atom p(3) is consistent
with that because 0≤ 3. Therefore, p(3) can be used to support p(0). Furthermore, the
query ?- p(3) would also succeed.

Additionally, this makes the behavior of the program under modifications more rea-
sonable. Let us assume that we add the clause q :- p(2) to P . Its evaluation
would return the model {p(0), p(1), p(2), p(3), q}. If we are asked to evaluate the
corresponding Pmin, we would expect the model {p(0), q}. However, with the pro-
posal in (Vandenbroucke et al., 2016), the model would be just {p(0)}, while with our
proposal p(2) would be entailed by p(0) and therefore q would be part of the model.

One effect of this interpretation is to extend the model of Pmin to include some atoms
that were not in P . The model the latter {p(0), p(1), p(2), p(3)} and the intended
meaning of the model of Pmin is {p(x) | 0≤ x}. Therefore, the query ?- p(5) to
Pmin should also succeed. This may seem odd, but let us note that by aggregating (on
the minimum, in this case) we are effectively loosing information about P: there is an
infinite number of different programs similar to P whose model is {p(0)}. When p(0)

is returned as representative, we implicitly “forget” information about the model of P ,
and it makes sense to assume it to be as general as possible — i.e., {p(x) | 0≤ x}.

In the rest of the chapter we will explore the properties that should be satisfied by aggre-
gate operations so that they can follow a semantics similar to what we have presented,
and we will sketch an implementation that behaves according to this semantics.

80

4.2 Aggregates as Lattice Operations

4.2 Aggregates as Lattice Operations

Several useful aggregates can be expressed based on the repeated application of a
selection or composition operation. Moreover, the elements on which this operation
is defined can often be put in a lattice structure, with the base operation on which the
aggregate is defined being intimately related to operations or relations in the lattice itself.
This requires a notion of partial order between the results computed by the aggregates,
but in turn gives flexibility on how the aggregate can be computed. In particular, the
aggregate can be the result of a fixpoint computation on the lattice. As an intuitive
example, the minimum y of a finite set of elements S ordered by a relation ≤ can be
computed by iterating over the elements of S and selecting the y s.t. ¬∃x · x 6= y∧ x≤ y.

4.2.1 Entailment-Based Aggregates

The simplest type of aggregate functions can be defined using only the v relation of the
lattice. We will refer them as “aggregates based on entailment” since in our framework,
the relation v will be treated very similarly to how constraint entailment is treated in
constraint solvers.

Definition 4.1 (Entailment-Based Aggregates). Given a partial order relation v
(i.e., a relation that is reflexive, anti-symmetric, and transitive) over a multi-set3 S
that induces a lattice structure on it, the aggregate of S emanating from v, denoted
as Aggvv, is the set of maximals of S w.r.t. v:

Aggvv(S) = {x ∈ S | ¬∃ y ∈ S · y 6= x ∧ yv x}

The minimum and the maximum are widely used entailment-based aggregates: the
minimum of a multiset is the least upper bound of the lattice induced by ≤ (resp., the
maximum). The minimum of a set S, as an aggregate based on ≤, is defined as:

min(S) = Aggv≤(S) = {x ∈ S | ¬∃ y ∈ S · y 6= x ∧ y≤ x}

Note that, in general, different multisets can have the same aggregate:
Aggv≤({2,3,4,5,6}) = Aggv≤({2,3,4}) = {2} or, on the other direction, a single
aggregate can correspond to many initial sets. For example, Aggv≤(S) = {2} would
be valid for any set S such that ∀x ∈ S ·2≤ x. As noted before, we adopt the view that
an aggregate represents the S that meets this definition.

3This definition is usually based on a set instead of a multi-set. The reason to choose explicitly a
multi-set will be clear in Section 4.4, when we apply our implementation to operations that cannot be
embedded in a lattice.

81

INCREMENTAL EVALUATION OF AGGREGATES USING TABLED CLP

Since ≤ among numbers is a total order, the minimum is unique and its aggregate is a
singleton: Aggv≤({2,3,4}) = {2}. This is not always the case. Let us assume that our
domain is a pair of numbers (x,y) and we define

(a1,a2)≤p (b1,b2) ↔ a1 ≤ b1 ∧ a2 ≤ b2

Then, Aggv≤p({(4,4),(4,2),(3,3)}) = {(4,2),(3,3)}. This example can be seen as
a particular case of the aggregation of a tuple of n (n > 1) elements with a specific
entailment-based aggregate for each tuple element. Note that the aggregation of tu-
ples with multiple elements that are aggregated using different operators can return
a set of tuples that are not comparable with each other. In a similar way, the Pareto
Frontier (Pareto, 1964) is the set of Pareto-optimal solutions for multi-objective op-
timization problem, according to different objective functions. By using aggregates
instead of objective functions, we can define a relation between the elements (i.e., we
define the preferred element) instead of defining objective functions that have to be
maximized/minimized. Therefore, it is possible to encode Pareto frontiers in our setting
by defining a relationship vPF as x vPF y↔ f1(x) ≤ f1(y)∧ f2(x) ≤ f2(y) for two
optimization function f1 and f2.

It is interesting to note that some policies commonly used to determine whether an
answer (or a call) is or not a repetition of previously seen answer / call, such as variant
or subsumption, can be expressed as multi-objective entailment-based aggregates.

4.2.2 Join-Based Aggregates

Some applications benefit from aggregates that require operations richer than the
entailment, because they, for example, have to generate new elements based on previous
elements (see Chapter 5). For these cases, we propose using an aggregate similar to that
in Def. 4.1, but using the join operation instead of the entailment.

Definition 4.2 (Join-Based Aggregates). Given a join-semilattice domain D with a
join operation t (that is commutative, associative, and idempotent), the aggregated
value of a multi-set S ∈ D over t, denoted as Aggtt, is the least upper bound of S
w.r.t. t:

Aggtt(S) = LUBt(S)

There are two main differences w.r.t. entailment-based aggregates: Aggtt(S) returns a
single answer (not a set of answers) and the returned answer may not belong to S. In a
logic program, the result of using a join-based aggregate may not be a logical conse-
quence of the program without aggregates. For example, let us define an (infinite) lattice

82

4.3 The ATCLP Framework

whose elements are pairs of natural numbers and where the join operation is defined
as (a1,b1)tmin (a2,b2) = (min(a1,a2),min(b1,b2)). For a set S = {(ai,bi)}, i = 1 . . .n,
the aggregation over this join operator is:

Aggttmin(S) = LUBtmin({(ai,bi) ∈ S}) = (min(ai),min(bi)) for i = 1 . . .n

A simple call of this operation may yield a value outside the set to which it is applied:
Aggttmin({(4,4),(4,2),(3,3)}) = (3,2). In a similar way to what happened with
the entailment-based aggregates, the meaning of the atoms derived from a join-based
aggregate are expected to represent a sub-lattice through a minimal (w.r.t. @min) rep-
resentative, i.e., ∀(x,y) ∈ {(4,4),(4,2),(3,3)} · (x,y)vmin (3,2) for a suitable defined
vmin based on tmin: xvmin y↔ y = ytmin x.

4.3 The ATCLP Framework

We will now present some implementation details of the ATCLP framework. As
mentioned in Section 4.1, with the ideas presented in Section 4.2 we aim at working
around some of the inconsistencies found in systems such as XSB, B-Prolog, and Yap,
which also implement a notion of aggregates using tabling. We will first discuss here
the ATCLP interface used to declare aggregated predicates and how the predicates on
which these aggregates are based are written. We will then sketch the implementation
of the framework and how Mod TCLP was extended to make it possible to filter and
combine answers.

Our system is built upon the infrastructure that Mod TCLP uses to handle tabling with
constraints (see Chapter 3). A compelling reason to do so is that many key operations
are alike: from an implementation point of view, entailment and join in a lattice can be
handled similarly to how entailment (including removing redundant answers) and joins
(answer merging) are managed in a tabled constraint system.

4.3.1 Design of the ATCLP Interface

ATCLP provides a directive to declare which argument(s) of which predicate(s) are to
be aggregated and an interface to specify at user-level how these arguments have to be
filtered or combined.

The ATCLP framework is activated with the directive
:- use_package(tclp_aggregates), which loads the runtime ATCLP library

and installs a compile-time translation (Cabeza and Hermenegildo, 2000) to convert
the programs with aggregate declarations into the core language of Mod TCLP (see

83

INCREMENTAL EVALUATION OF AGGREGATES USING TABLED CLP

Table 4.1: Encoding example of entailment-based aggregates.

Aggregate Code for entailment checking

minimum among numbers =<

maximum among numbers >=

enclosing interval interval(A1-A2,B1-B2):- A1=<B1, A2>=B2.

containing set set(A,B):- ord_subset(B,A).

index / variant variant

answer subsumption sub(A,B):- instance(B,A).

Pareto-frontier(Op) frontier(Op,As,Bs):- maplist(Op,As,Bs).

n Pareto-frontier(Ops) n_frontier([],[],[]).
n_frontier([Op|Ops],[A|As],[B|Bs]):-

Op(A,B), n_frontier(Ops,As,Bs).

Chapter 3). Aggregated predicates are declared with directives similar to those used
by mode-directed tabling. For a predicate p/n, the general form is :- aggregate

p(mode1,. . .,moden), where modei denotes the aggregate used for the ith argument.
modei can be either entail(aggi) for entailment-based aggregates or join(aggi) for
join-based aggregates. The predicates aggi that implement the entailment and join
operation are expected to behave as follows:

Entailment: aggi is expected to be a predicate of arity 2 agg(A, B) that succeeds iff A
is more general than B, i.e., Bvagg A.

Join: aggi is expected to be a predicate of arity 3 agg(A, B, New) that computes the
LUB of A and B and leaves in New, i.e., New = AtB.

The arguments that are not aggregated are denoted using the mode '_'. These will
be evaluated under variant tabling, which means that extra answers that are equal
modulo variable renaming will be removed. Additionally, since exploring several
examples strongly suggest that the cases where join- and entailment-based aggregates
are used together seldom appear in practice, we provide two shorter notations: :-

agg_entail p(agg1,. . .,aggn) for entailment-based aggregates, and :- agg_join

p(agg1,. . .,aggn) for join-based aggregates. The markers aggi have the same meaning
as before.

Examples of Entailment-Based Aggregates The flexibility of ATCLP makes it pos-
sible to very concisely encode many (if not all) aggregate functions that have been
proposed in the database and logic programming literature. These are available in

84

4.3 The ATCLP Framework

many implementations, sometimes by ad-hoc, systems-level libraries. We note that
we aim at providing user-level code for aggregates and leave at systems-level only the
infrastructure operations. Table 4.1 gives implementations for some common aggregates
that can be defined based on entailment.

Some aggregates, such as minimum among numbers, can be expressed with already
existing predicates, and thus they do not require specific additional code. That is, for
example, the case of the minimum: in order to aggregate p/1 as shown in Fig. 4.1a, we
would use directly the directive :- agg_entail p(=<). The maximum (included for
completeness) would of course be similar.

The enclosing interval aggregate deals with continuous intervals: an interval [A1,A2]
is represented by a term A1-A2. The entailment checks, for any two intervals, that
one completely contains the other: interval B entails interval A if A contains B. There-
fore, the aggregate retains, for a set of intervals, only those that are not contained
in any of the others. Note that this builds on the (infinite) lattice of intervals, and it
is a case where the aggregate may not be a singleton: for the set of initial answers
{[1,5], [2,4], [0,3], [−1,4]}, its aggregate would be {[1,5], [−1,4]}, and the answers
would be returned one by one on backtracking. This, and similar aggregates on intervals,
are useful to code applications and frameworks using Allen’s algebra of intervals (Allen,
1983), such as the event calculus (Mueller, 2014; Shanahan, 1999).

The aggregate containing set is similar to enclosing interval but using discrete sets
instead. It is directly built on the data structures used by Richard O’Keefe ordered
sets library (ordered lists), that is available in many Prolog systems. Entailment is set
inclusion and, similarly to the enclosing interval aggregate, the aggregate can return
several answers.

index and subsumption are defined using library predicates. The aggregate index
removes repeated answers (modulo variable renaming) while subsumption keeps only
the most general answers.

As we mentioned in Section 4.2.1, it is possible to generalize the ≤p example by taking
tuples of an arbitrary number of components. frontier(Op) is an advanced example
that uses the higher-order capabilities of Ciao to write a parametric aggregate. Tuples are
represented using lists, where the order applied to the elements of the list is determined
by the parameter Op in the declaration itself. For a predicate p/1 that returns lists of
integers of a fixed length, the directive :- agg_entail p(frontier(=<)) will make
predicate p/1, defined as
1 p([4,4]). p([4,2]). p([3,3]).

work as follows:
1 ?- p(R).

2 R = [4,2] ;

3 R = [3,3]

85

INCREMENTAL EVALUATION OF AGGREGATES USING TABLED CLP

Table 4.2: Encoding examples of join-based aggregates.

Aggregate Code

least upper bound lub(A,B):- lub(A,B,A).

lub(a,b,c). lub(a,c,c). lub(a,d,d).

lub(b,a,c). lub(b,c,c). lub(b,d,d).

lub(c,d,d). lub(X,X,X).

widest enclosing interval interval(A1-A2,B1-B2,C1-C2):-

(A1=<B1 -> C1=A1; C1=B1),

(A2>=B2 -> C2=A2; C2=B2).

set set(A,B,C):- ord_union(A,B,C).

It is also possible to define an n-generic Pareto Frontier where each tuple compo-
nent is compared differently. The directive :- agg_entail p(n_frontier([=< , >= ,

sub])) together with the definition of n_frontier/3, will apply a different entailment
check to every member of the list: for a predicate of the form p([A, B, C]), A’s will
be compared using =< , B’s are compared using >= , and C’s will be compared using
subsumption. While this can be built by wrapping all arguments in a single structure
and writing a specific entailment check predicate that applies a different check to every
element in the structure, ATCLP frees the programmer from having to write such glue
code.

Example of Join-Based Aggregates Join-based aggregates require the definition of
a predicate to compute the LUB of two values and also the definition of a predicate
to check entailment, which ATCLP uses to improve termination. When a new answer
A entails a previous one B, joining existing answers with A will generate answers that
are entailed by previously generated answers. Therefore, both A and the answers that
joining it may have generated are superfluous and we can discard A immediately.

Table 4.2 shows the implementation of some join-based aggregates. The lub aggregate,
proposed in (Vandenbroucke et al., 2016) to join the values from the lattice {a, b, c,

d} with av c, bv c, and cv d, is implemented by defining agg/2 to check entailment
and agg/3 to compute the join. The entailment check is defined here in terms of the join
operation (i.e., lub(A, B) :- lub(A, B, A)). Although entailment can be defined so for
all lattice-based aggregates, ATCLP requires both the join and the entailment check to
be defined explicitly. This makes it possible to write entailment check predicates that
may be more efficient than those directly based on join.

Additionally, this design decision makes it possible to select the entail-based version of
join-based aggregates. For example, the aggregates interval and set which Table 4.1
presents as entail-based aggregates can be also be considered as join-based aggregates

86

4.3 The ATCLP Framework

1 path(X,Set):-

2 setof(Y, path_(X,Y), Set).

3 path_(X,Y):- edge(X,Y).

4 path_(X,Y):- edge(X,Z), path_(Z,Y).

(a) LP version.

1 :- agg_join path(_,set).

2 path(X,[Y]):- edge(X,Y).

3 path(X,Ys) :- edge(X,Z),

4 path(Z,Ys).

(b) Version with aggregates.

1 edge(a,b).

2 edge(b,c).

3 edge(b,a).

4 edge(c,d).

(c) Cyclic graph.

Figure 4.2: Code of path/2 set of reachable nodes from a given node.

by defining a join operator.

Example 4.2. Let us consider a program to compute the set of nodes that are
reachable from a given node in a graph. Fig. 4.2 shows, on the left, a simple Prolog
program and, on the right, an ATCLP program using the set aggregate. While both
seem to have the same expressiveness, the Prolog program would loop for graphs
with cycles and cannot answer some queries that the ATCLP program can (see at the
end of this example). Adding tabling to the Prolog program helps in this particular
case, but note that mixing all-solution predicates and tabling does not always work.
In particular, when table predicates and all-solution predicates call each other, the
suspension and resumption mechanism of tabling interacts with the usual failure-
and assert-driven implementations of setof/3 (and similar) predicates. This
example returns the set of nodes as an ordered list without repetitions: for the query
?- path(a,L), it answers L=[a, b, c, d]. Moreover, if we want to know from

which nodes we can reach a set of nodes, the query ?- path(X,[a, d]) returns
X=a and X=b under ATCLP, which neither Prolog nor tabling can if setof/3 is used.

4.3.2 Implementation Sketch

Programs with aggregates are transformed at compile-time into another program that
uses Mod TCLP as underlying infrastructure.

Mod TCLP: As we explained in Chapter 3, Mod TCLP is a tabling engine that
handles constraints natively. It can use constraint entailment to perform suspension
and to save and return only the most general answers to a query. Its modularity comes
from a generic interface between the tabling infrastructure and the constraint solver
that defines what operations must be provided by the solver. By extending the code
that deals with these solver operations, we piggybacked on the existing TCLP engine to
compute aggregates as previously described.

Program transformation: The program in Fig. 4.3 shows the result of the program
transformation when applied to the program in Fig. 4.1a after adding the directive

87

INCREMENTAL EVALUATION OF AGGREGATES USING TABLED CLP

1 :- include(aggregate_rt).

2 :- table '$p'/1.
3

4 p(Arg1) :- put(V1,(=</2,F1)),

5 '$p'(V1),
6 (var(Arg1) -> Arg1 = F1

7 ; '$entail'(=<,Arg1,F1)).

8 '$p'(V):- get(V,(=</2,A)), A=3.

9 '$p'(V):- get(V,(=</2,A)), A=2.

10 '$p'(V):- get(V,(=</2,A)), A=1, p(2).

11 '$p'(V):- get(V,(=</2,A)), A=0, p(3).

12

13 '$entail'(=<,B,A) :- =<(A,B).

Figure 4.3: Transformed code for the minimization of p/1.

:- agg_entail p(=<) to minimize the argument of p/1.

The predicate p/1 is rewritten to call an auxiliary predicate '$p'/1 where the arguments
to aggregate are substituted by attributed variables (Holzbaur, 1992). Their attributes
are tuples of the form (Modei,Fi), where Modei is the name of the predicate that encodes
the entailment check or computes the join of values and Fi is a fresh variable where
the aggregated value will be collected. Calls with attributed variables are captured
by the tabling engine and their execution is redirected to the constraint interface for
Mod TCLP. By catching these calls, the engine can retrieve the answers and apply the
appropriate aggregation predicate. The auxiliary predicate mimics the original one, but
the actual call arguments are retrieved from the attributed variables with get/2. Once
the auxiliary predicate collects the aggregated answer, it is either returned (if called with
an unbound variable) or checked for entailment against the value in the corresponding
argument (line 7). '$entail'/3 is a bridge predicate automatically generated by the
compiler to give access at runtime to the user-provided entailment check:
1 '$entail'(Agg,B,A) :- Agg(A,B).

where Agg will be statically instantiated to the name of the predicate that implements
the base operations of the aggregate (see line 14 of Fig. 4.3.) Similarly, the compiler
generates bridge predicates to access the join operation:
1 '$join'(Agg,A,B,New) :- Agg(A,B,New).

They are used to invoke the right entailment or join predicate for each aggregate.

ATCLP Internals The TCLP tabling engine calls interface predicates initially de-
signed to be provided by a constraint solver. When this interface is used by the aggregate
library, their implementation is always the same and is provided by the library runtime
— see Fig. 4.4, where we made the simplifying assumption that we are aggregating
over a single variable. This implementation merely recovers information related to
which aggregate is being used and which variables are involved, and passes it to and
from the join and entailment operations.

ATCLP uses two objects: the variable corresponding to the call argument on which
the aggregation is performed (V) and how this aggregation is performed. The latter

88

4.3 The ATCLP Framework

1 store_projection(V, (Agg/T,A)) :- get(V, (Agg/T,A)).

2 call_entail((_, _), (_, B)) :- var(B).

3 answer_compare((Agg/T,A), (Agg/T,B),'=<') :-'$entails'(Agg,A,B),!.
4 answer_compare((Agg/T,A), (Agg/T,B), '>') :-'$entails'(Agg,B,A),!.
5 answer_compare((Agg/3,A), (Agg/3,B),'$new'((Agg/3,New))) :-'$join'(Agg,A,B,New).
6 apply_answer(V, (Agg/T,B)) :- get(V,(Agg/T,A)), A=B.

Figure 4.4: Simplified ATCLP interface with the constraint tabling engine.

corresponds to the attribute mentioned before: a tuple (Mode, A) where Mode is of
the form Agg/2 or Agg/3 for an entailment or join aggregate, respectively, and Agg is
instantiated to the name of the corresponding predicate, and A is the original runtime
variable that was used to invoke the predicate to be aggregated. There are three main
phases in the execution of ATCLP:

Call entailment: for a new call NewCall, the TCLP engine invokes
store_projection(+V,-(Agg/T,A)) to retrieve the information corresponding
to the arguments to aggregate (V, in this case). Then, call_entail/2 is invoked
to check whether the current value on A entails the value of a previous generator.
When computing aggregates, this check will always succeed because the program
transformation makes A be a fresh variable.

Answer entailment: the TCLP engine invokes store_projection(+V,-(Agg/T,A))

to retrieve the information corresponding to a new answer. It then invokes
answer_compare(+(Agg/T,A),+(Agg/T,B),-Res) to compare this new answer
A against a previous answer B and returns Res=' =< ' or Res=' > ' if A vAgg B

or B @Agg A, respectively. This result is used to detect entailment with exist-
ing answers and either discard a new, more particular answer, or to remove
existing answers from the table. If entailment fails and there is a join aggre-
gate defined, a new lattice point New=A tAgg B is computed and returned with
Res='$new'(New). New is added to the answer table and A and B are removed.
Otherwise, answer_compare/3 fails and the new answer is stored in the answer
table of the generator.

Answer consumption: In tabled constraints, answers from a generator may not be
directly applicable to a consumer: if the environment of the consumer is more
restrictive than that of the generator, the generator’s answers have to be filtered
by applying the constraints in the consumer environment to generate compatible
answers. As we mentioned before, the program transformation introduces fresh
variables for the parameters on which we want to aggregate (see line 4 in Fig. 4.3),
so when the TCLP engine calls apply_answer(+V,+(Agg/T,B)), it will just return
the aggregated answer. Later on, if the aggregated predicate was called with a
ground terms then, '$entail'/3 is invoked to check entailment (see line 7 in
Fig. 4.3) and it succeeds if the ground term is subsumed by the aggregated answer.

89

INCREMENTAL EVALUATION OF AGGREGATES USING TABLED CLP

1 new_answer :-

2 answer_lookup_table(V, Ans),

3 store_projection(V, A),

4 (projstore_As(Ans, List_Ans),

5 member(B, List_Ans),

6 answer_compare(A, B, Res),

7 (Res == '=<' % Discard answer A

8 ; Res == '>', % Remove answer B

9 remove_answer(B),

10 fail

11 ; Res == '$new'(New), % Save New answer

12 remove_answer(B),

13 save_answer(Ans, New)

14), !

15 ; save_answer(Ans, A) % Save answer A

16), !, fail.

Figure 4.5: Extended implementation of new_answer/0.

4.3.3 Adapting the Answer Management of TCLP

The answer management strategies originally proposed in Mod TCLP only perform
entailment check and does not allow answer merging (Schrijvers et al., 2008). To make
it possible to combine answers for the join-based aggregates, we extended the predicate
new_answer/0 that is used by Mod TCLP to collect the stored answers. Fig. 4.5 shows
the current implementation of new_answer/0, where lines 11 to 13 were added to
make it possible to merge the answers A and B in a new answer New by returning
Res='$new'(New).

The tabling engine invokes new_answer/0 to collect the answers of a generator. First, it
retrieves Ans, the generator’s answer table (line 2). Then, store_projection/2 returns
in A the representation of the aggregated argument V of the current answer. In lines 4 to
5 it retrieves one by one the previous answers Bi stored in the answer table and invokes
answer_compare/3 to compare/combine them. As we mentioned before there are three
cases:

• if Res == ' =< ', A entails a previous answer, and then it is discarded and the
tabling engine continues the evaluation.

• if Res == ' > ', a previous answer Bi entails A and Bi is removed (line 9). Then
answer_compare/3 backtracks to retrieve the next previous answer Bi+1 (line 5).

• if Res == '$new'(New), the answers A and B has been merged in New. The
previous answer B is removed (line 12) and the merged answer New is stored (line
13).

90

4.4 Non-Lattice Aggregates

Table 4.3: Encoding examples of non-lattice aggregates.

Aggregate Code

first or nt first(_,_):- true.

last last(_,_):- fail. last(_,B,B).

all solutions all(_,_):- fail.

threshold(Epsilon) threshold(Epsilon,A,B):- A < Epsilon*B.

addition add(_,_):- fail. add(A,B,C):- C is A+B.

multiplication mlt(_,_):- fail. mlt(A,B,C):- C is A*B.

Finally, for the cases where member/2 (line 5) fails trying to reclaim a previous answer
Bi (i.e., the answer store is empty or all the previous answers has been checked) then the
current answer A is stored (line 15).

4.4 Non-Lattice Aggregates

We have presented aggregates that are defined over lattices where the entailment opera-
tion is reflexive, anti-symmetric, and transitive and the join operation is commutative,
associative, and idempotent. However, there are common aggregates that cannot be
expressed with operations on a lattice: counting answers, adding up numeric answers,
and computing an average, among many others. As a consequence, their execution may
not completely align with LFP semantics, but they can notwithstanding be implemented
using ATCLP with the understanding that they will not obey some of the properties for
lattice aggregates.

Table 4.3 shows some examples. The aggregate first, presented in YAP and equivalent
to the mode nt (meaning non tabled) in B-Prolog, returns the first answer found, and the
aggregate last returns the last answer found. These aggregates do not fit into a lattice
structure because by definition they are sensitive to the solution order. Furthermore,
the encoding of the join operation for last/3 uses the fact that its second argument
corresponds to the current answer, and the first argument corresponds to the aggregated
value, which in this case is the last but one answer.

The all answers aggregate returns all the answers by stating that no answer is entailed
by any other answer, e.g., by making the entailment check to always fail. This will
keep answers that are redundant even modulo variable renaming and is useful to, for
example, determine whether repeated answers are being generated, which may point to
possible problems in the code. These would go unnoticed if the standard elimination of

91

INCREMENTAL EVALUATION OF AGGREGATES USING TABLED CLP

1 edge(a,b,0.2).

2 edge(a,c,0.3).

3 edge(a,d,0.0002).

4 edge(b,d,0.0003).

5 edge(c,c,0.2).

6 edge(c,e,0.8).

a

b

c

d

e
.2

.3

0.0002

.2

0.0003
.8

Figure 4.6: Graph for the random walk problem.

1 :- use_package(tclp_aggregates).

2

3 :- agg_join reach(_,sum).

4 reach(N,P) :- path(a,N,P).

5

6 sum(_,_) :- fail.

7 sum(A, B, C) :- C is A + B.

8 :- agg_entail path(_,_,thr(0.001)).

9 path(X,Y,P) :- edge(X,Y,P).

10 path(X,Y,P) :- edge(X,Z,P1),

11 path(Z,Y,P2),

12 P is P1 * P2.

13

14 thr(Epsilon, A, B) :- A < Epsilon * B.

Figure 4.7: Complete encoding for the random walk problem.

variant answers is used.

The threshold aggregate, parametrized by Epsilon, can be used to discard a value A

whose relative value w.r.t. a value B falls below Epsilon. It does not define a lattice
structure because it is not reflexive. Finally, add and mlt, whose names should be
self-explanatory, are not aligned with the LFP semantics because their join operator is
not idempotent and entailment is not defined (i.e, entailment should always fail since its
semantics is based on multi-sets, rather than sets).

Example 4.3 (Random walk). Let us see now an additional, more complex, but
more interesting, example using non-lattice aggregates. Let us consider a possibly
(cyclic) graph where each edge has a transition probability (Fig. 4.6). We want to
compute the probability P of reaching a node N from some source node a considering
random walks/paths from a to N. P comes from adding the transition probabilities
of all possible paths from a to N. The probability of a path is computed as the
multiplication of the probability associated to every edge in the path. On the other
hand, in a cyclic graph we have an unbound number of different path of unbounded
length (corresponding to traversing the cycles an unbound number of times). Note
that the path probability decreases with every new edge added to the path, and
therefore with every time a cycle is traversed.

A feasible approach is to discard paths when their contribution goes below a certain
user-defined threshold. With a somewhat ad-hoc reading of this condition, we can
say that new solutions with a difference small enough w.r.t. existing solutions entail
these previous solutions and therefore they might not to be taken into account. This

92

4.5 Experimental Evaluation

can be expressed in our framework by defining another aggregate that decides, via
entailment, when further advancing in a path does not contribute enough.

To implement this approach, we use add to compute the addition of the different
path probabilities and an entailment aggregate threshold(Epsilon) to determine
whether paths should be added (if they differ from previously computed paths less
than Epsilon).

Fig. 4.7 shows the ATCLP code. For each node N, reach(_,sum) aggregates in its
second argument the sum of the transition probabilities of the paths from node a to
node N. Note that we want to add all distances; therefore we define the entailment
of add to be always false. The threshold aggregate, denoted by thr(Epsilon),
discards paths between X and Y whose relative contribution to the final result w.r.t.
the contribution of previous path falls below Epsilon=0.001. The results for the
query ?- reach(N,P) are:
1 N = d, P = 0.00026 ? ;

2 N = e, P = 0.2999039999999999 ? ;

where the probability of ending the random walk at node d, P=0.00026, coincides
with the expected probability (does not traverse cycles and no path has been dis-
carded) while the probability of ending at e is an approximation of the correct value
(0.3).

4.5 Experimental Evaluation

We will now evaluate the expressiveness and performance of ATCLP and we will com-
pare ourselves with what arguably are the closest languages, e.g., classical Prolog and
tabled Prolog. ATCLP is implemented as part of Ciao Prolog and it is available at
http://www.ciao-lang.org. The examples and benchmarks presented in this chapter
are available at http://www.cliplab.org/papers/tplp2020-atclp/. All the experi-
ments were performed on a Mac OS X 10.13.6 laptop with a 2 GHz Intel Core i5 and
all times are given in milliseconds.

Our first evaluation will use an implementation of the well-known minimax algorithm
applied to (an extended version of) TicTacToe. Our starting point is the Prolog version
from (Bratko, 2001), available at Appendix A.1 for the reader’s convenience. It relies
on bagof/3 to collect all the possible movements from a position and selects the best
one. The expressiveness of ATCLP makes it possible for the core minimax procedure
(Fig. 4.8) to be considerably more compact than the equivalent Prolog code.

The ATCLP code selects the best movement by applying the best aggregate which
discards movements with worst (resp., best, depending on the current player) score.
Gathering solutions and keeping track of the best one so far is done transparently. Note

93

http://www.ciao-lang.org
http://www.cliplab.org/papers/tplp2020-atclp/

INCREMENTAL EVALUATION OF AGGREGATES USING TABLED CLP

1 :- agg_entail minimax(_, first, best).

2 minimax(Pos, NextPos, (Pos,Val)) :-

3 move(Pos, NextPos),

4 minimax(NextPos, _, (NextPos,Val)).

5 minimax(Pos, Pos, (Pos,Val)) :-

6 \+ move(Pos, _), utility(Pos,Val).

7

8 % Chose first best option

9 first(_,_) :- true.

10 % Minimizing

11 best((Pos,ValA), (Pos,ValB)) :-

12 min_to_move(Pos),

13 ValA =< ValB.

14 % Maximizing

15 best((Pos,ValA), (Pos,ValB)) :-

16 max_to_move(Pos),

17 ValA >= ValB.

Figure 4.8: Minimax algorithm in ATCLP used in a TicTacToe implementation.

Table 4.4: Run time (ms) and memory usage (between parentheses, in Mb) for
TicTacToe.

LP tabling ATCLP

3x3 1051 167 (2) 359 (1)
4x4(a) > 5 min 10166 (130) 15194 (30)
4x4(b) > 5 min out of mem. 134918 (252)

that we are using two aggregates in the same predicate: best, to minimize/maximize
scores, and first to keep only the first solution found among those with the same
score.4

We compared the execution time and memory usage in two scenarios: determining the
best initial movement in a 3×3 board and determining the best movement in a 4×4
board, starting in two different positions. In all three cases the remaining game tree
was completely explored. The results (Table 4.4) show that the Prolog version is the
slowest, with the tabling version being faster than the ATCLP version for a couple of
cases. However, the ATCLP version uses less table memory (between parentheses, in
Mb). This is because viewing aggregates as constraints automatically stops the search
as soon as the value of an aggregate is worse than a previously found one. That makes
the ATCLP version to terminate for cases where regular tabling runs out of memory.

The second benchmark is the Game problem presented in the LP/CP contest of ICLP
2015 (http://picat-lang.org/lp_cp_pc/Games.html). The problem can be seen as
a graph traversal where the movements represent a decision regarding whether to repeat
the same game or play a different one. There are two parameters to optimize: M, the
remaining money, and F, the fun we have had (which can be negative). The final goal is
to have as much fun as possible, for which one has to keep as much money as possible.
Fig. 4.9 shows the core of the algorithm, where we again want to stress its succinctness.

4Using first is up to some point an arbitrary decision, since there is no additional information to
prefer one given movement among those tagged as best.

94

http://picat-lang.org/lp_cp_pc/Games.html

4.5 Experimental Evaluation

1 :- agg_entail total_fun(>=),

2 reach(_,_,>=,>=).

3

4 total_fun(F) :-

5 reach(initial,end,_,F).

6

7 reach(GameA,GameB,M,F) :-

8 edge(GameA,GameB,M,F).

9 reach(GameA,GameB,Mf,Ff) :-

10 reach(GameA,GameZ,M1,F1),

11 edge(GameZ,GameB,M2,F2),

12 Ff is F1 + F2,

13 Mm is M1 + M2, Mm >= 0,

14 (cap(Cap), Mm > Cap

15 -> Mf is Cap

16 ; Mf is Mm).

Figure 4.9: Core algorithm for the Game benchmark.

We developed three comparable versions of a program to solve this problem using
Prolog, tabling, and ATCLP. Table 4.5 shows that the ATCLP on-the-fly aggregate
computation performs better than either Prolog or tabling, since ATCLP does not try to
evaluate states where M and F are worse than in states already evaluated.

ATCLP performs better than tabling in Games, but this is not the case in TicTacToe.
That is because in the tabled version of TicTacToe the use of findall/3, to aggregate
the possible movements and select the best one, is sound, while in the tabled version
of Games not. Note that the tabled version of TicTacToe (encoding available in Ap-
pendix A.1) memorizes the best movement by tabling best/3, and therefore, it behaves
as the ATCLP version avoiding re-computations. However, in the tabled version of
Games it is not possible to aggregate and memorize the more convenient intermediate
states by using findall/3 in reach/4 because it interleaves recursive calls (encoding
available in Appendix A.2). It is important to note that ATCLP can be used in any
situation, but the correctness of using using findall/3 under tabling depends on the
program because tabling findall/3 in the presence of recursion produces wrong results.
Let us consider the program from (Swift et al., 2016):
1 :- table t/1.

2 t(X) :- findall(Y, t(Y), X).

3 t(0).

The query ?- t(X), which does not terminate in Prolog, terminates under tabling using
Ciao and XSB, but it will return two answers: X=[] and X=0. This result is hard to
defend semantically, because X=[] is not a valid answer and it is missing the answer
generated by the first clause (which is infinite). Trying to avoid this wrong execution,
Swi Prolog raises a “permission to append” runtime error inside tabled evaluations.
XSB provides the predicate tfindall/3 to call tabled predicates which, also in runtime,
throws an error indicating that a call to tfindall/3 is non-stratified.

95

INCREMENTAL EVALUATION OF AGGREGATES USING TABLED CLP

Table 4.5: Run time (ms) comparison for Game with different scenarios.

LP tabling ATCLP

game data 01 8062.49 14.66 2.89
game data 02 > 5 min. 37.59 4.87
game data 03 > 5 min. 1071.26 19.61
game data 04 > 5 min. 4883.00 23.21

4.6 Discussion

We have presented a framework to implement aggregates defined over a lattice structure
so that the returned values are representatives of a class of points in the lattice. We have
also given them an intuitive meaning that makes answers to queries be consistent the
usual least fixpoint semantics of logic programming. We provide a clean, easy-to-use
interface so that final users can define the basic operations on which the aggregates
are built. Notwithstanding, a library of common aggregates is provided with the
implementation of the framework.

We validated the flexibility and expressiveness of our framework through several exam-
ples. We also evaluated their performance in a couple of benchmarks, which showed a
positive balance between memory consumption and execution speed.

96

Chapter 5

Abstract Interpretation Fixpoint using
Tabled CLP

In this chapter, we present a real application of Tabled Constraint
Logic Programming using Mod TCLP and the extension introduced
in the previous chapter to combine answers. We used Mod TCLP
to adapt PLAI, the state-of-the-art abstract interpreter, and eval-
uate the benefits of tabling w.r.t. Prolog. Note that in 1987 it was
already shown the relationship between tabling and abstract inter-
pretation. PLAI is included in CiaoPP, an analyzer and optimizer
suite for logic programs, part of the Ciao development environment.
We preserved the interface of PLAI with the rest of the system to
make it possible a fear comparison. We evaluated the performance
by analysing several programs using different abstract domains
and the complexity in terms of lines of code. This is, to our best
knowledge, the first comparison with these characteristics. In the
adapted version using Mod TCLP, the tabling engine drives the
fixpoint computation using semantic equivalence, and the TCLP
interface invokes the LUB operator of the abstract domains to com-
bine the abstract substitutions. That reduces the lines of code to
one third and improves the performance in most of the benchmarks.

Abstract interpretation is a theory for approximation of the semantics of programs. The
semantics of a logic program is its least Herbrand model, and it defines the set of atoms
that are logical consequences of the program. The key idea of abstract interpretation is
to over-approximate the execution of a program using an abstraction of the concrete
semantics of the program. Abstract interpretation has always been seen as one of the
most clear applications of tabled logic programming. It requires a fixpoint procedure,
often implemented using memo tables and dependency tracking, which play a role very

97

ABSTRACT INTERPRETATION FIXPOINT USING TABLED CLP

similar to the internal data structures that tabling engines need to detect repeated calls,
store and reuse answers, and check for termination.

As we mentioned in Chapter 4, the integration of tabling with constraint solvers has been
proposed to improve abstract interpreters by invoking the constraint engine to aggregate
the abstract substitutions of different clauses, but the relationship between abstract
interpretation and tabling was recognized very early. Extension tables (Dietrich, 1987)
were proposed to record results from the execution of predicates and turn intensional
definitions into extensional definitions. Their applications included “improving the
termination and completeness characteristics of depth-first evaluation strategies in the
presence of recursion”. The idea of extension tables were applied as the embryo of
SLG resolution and the XSB system. At the same time, abstract interpretation was
then viewed as inefficient, and as part of the efforts to make it a practical technique to
implement analyzers, tables, but also other ideas such as dependency tracking, were
used (Warren et al., 1988), thus making it clear that a common underlying technology
could be used in both types of systems. These components, independently available in
tabling systems, were used to build abstract interpreters:

• The possibilities offered by OLDT (Tamaki and Sato, 1986) were used
in (Kanamori and Kawamura, 1993) to explore its application in abstract in-
terpretation. Using type inference as the guiding example, it suggests certain
changes to OLDT and concludes that it is feasible to do abstract interpretation with
OLDT. The paper neither describes an implementation nor reports performance,
but it states that the abstract interpreter was implemented and was available.

• In (Warren, 1999) an abstract interpreter written in XSB is presented as one of
the applications of tabled Prolog.

• Other abstract interpreters has been used as a benchmark to compare different
implementations and/or scheduling strategies of tabling (Demoen and Sagonas,
1998; Freire et al., 2001).

• Advanced tabled systems and techniques have been proposed to implement more
efficient abstract interpreters by using the least upper bound operator (Schrijvers
et al., 2008) to combine answers, numeric constraint solvers (Chico de Guzmán
et al., 2012) to implement the Octagon domain, and the partial order answer
subsumption with abstraction (Swift and Warren, 2010) for cases where, e.g., the
program computed does not have a finite model.

However, surprisingly none of them reports performance evaluation w.r.t. implemen-
tations without tabling. To the best of our knowledge, the only one is a frame-
work (Janssens and Sagonas, 1998), based on abstract compilation, that executes
the abstract version of the program under analysis, together with domain-dependent
abstract operations, which is evaluated using the tabling system XSB and compared with

98

5.1 The PLAI algorithm

the AMAI and PLAI systems (Janssens et al., 1995; Muthukumar and Hermenegildo,
1992). Both systems use abstract interpreters written in Prolog without tabling, but
they rely on very different underlying technologies, and with different representations
for the abstract domains. From that evaluation, the paper concludes that tabling is a
viable infrastructure for abstract interpretation, but concedes that the PLAI fixpoint
algorithm was the most efficient abstract interpreter for logic programming available at
the moment. The very different underlying infrastructure makes it difficult to use these
results to draw meaningful conclusions.

In this chapter we use Mod TCLP to exploit the synergy of the integration of tabling
and constraint solvers in abstract interpretation to adapt PLAI. PLAI is the fixpoint
algorithm implemented in the program analysis, optimization, and transformation tool
CiaoPP (Hermenegildo et al., 2005, 2012), available at www.ciao-lang.org. The
resulting re-implementation preserves the interface with the rest of CiaoPP in order to
compare some indicators of code complexity (e.g., comparing lines of code, with the
assumption that the tabled version is essentially a subset of the original version) and
performance on a completely equal footing. This is, to our best knowledge, the first
comparison that has these characteristics.

5.1 The PLAI algorithm

We assume that the reader is familiar with the basic principles of abstract interpreta-
tion (Bruynooghe, 1991; Cousot and Cousot, 1977; Nielson et al., 2005). The PLAI
algorithm used by the abstract interpreter of CiaoPP for static analysis extends the
fixpoint algorithms proposed by (Bruynooghe, 1991) with the optimizations described
in (Muthukumar and Hermenegildo, 1990). In logic programming, all possible concrete
substitutions in the program (i.e., terms to which the variables in that program will
be bound at run-time for a given query) can be infinite, which gives rise to an infinite
execution tree. The core idea of PLAI is to represent this infinite execution tree by an
abstract and-or tree using abstract substitutions to finitely represent the possibly infinite
sets of substitutions in the concrete domain. The set of all possible abstract substitutions
that a variable can be bound to is the abstract domain which is usually a complete lattice
(or a complete partial order of finite height).

5.1.1 Domains in PLAI

PLAI is domain-independent: new abstract domains can be easily implemented and
integrated by using a common interface. The operations required by the interface are:

• λ ′ t λ ′′, which gives the LUB of the abstract substitutions λ ′ and λ ′′. The LUB

99

www.ciao-lang.org

ABSTRACT INTERPRETATION FIXPOINT USING TABLED CLP

operation is defined in terms of the v relation of the abstract domain.

• call_to_entry(p(~u),C,λ), where C is a clause and p(~u) is a call. It gives an
abstract substitution describing the effects on vars(C) of unifying p(~u) with
head(C) given an abstract substitution λ for the variables in~u.

• exit_to_success(λ, p(~u), C, β) which returns an abstract substitution de-
scribing the effect of execution p(~u) against clause C. For this, the variables of
the abstract substitution β are renamed taking into account the unification with
the terms in head(C) and the variables in p(~u), and a new abstract substitution is
returned updating λ with the new information.

• extend(λ,λ ′) which extends abstract substitution λ to incorporate the informa-
tion in λ ’ in a way that it is still consistent.

• project_in(~u,λ) which extends the abstract substitution λ so that it refers to all
the variables in~u.

• project_out(~u,λ) which restricts the abstract substitution λ to refer only to the
variables in~u.

For additional examples of abstract domains integrated in CiaoPP, we refer the reader
to (Bueno et al., 2004; Muthukumar and Hermenegildo, 1989; Vaucheret and Bueno,
2002).

5.1.2 And-Or trees and substitutions

In PLAI, the abstract and-or tree is constructed using a top-down driven strategy (instead
of a bottom-up computation) so that the computation is restricted to what is required
for the given query. In the resulting and-or tree, an and-node is a clause head h whose
children are the literals in its body, p1,. . .,pn, and an or-node is a literal, pi, whose
children are the heads h1,. . .,hm of the clauses that unify with pi. Its construction starts
with the abstract call substitution for the query. Then, abstract substitutions at all points
of the abstract and-or tree are computed and finally, the success substitution for the
query is computed.

Inside a clause, abstract substitutions at every point are denoted depending on their
position among its literals. Given a clause h :- p1,. . .,pn, let λi and λi+1 be the abstract
substitutions to the left and right of the subgoal pi, 1 ≤ i ≤ n. Then, λi and λi+1 are,
respectively, the abstract call substitution and the abstract success substitution for the
subgoal pi. The projection of λ1 on vars(h) is the abstract entry substitution, βentry, of
the given clause, and, similarly, the projection of λn+1 on vars(h) is its abstract exit
substitution, βexit . The abstract substitutions for a clause are computed as follows:

100

5.1 The PLAI algorithm

Algorithm 1: entry_to_exit: Compute exit substitution from entry substitution.
Data: A clause C of the form h(~u):- p1(~u1),. . .,pm(~um); an entry substitution βentry

Result: An exit substitution βexit

1 λ1 := project_in(vars(C),βentry)

2 for i := 1 to m do
3 λi+1 := call_to_success(pi(~ui),λi)

4 end
5 return project_out(~u,λm+1)

Algorithm 2: call_to_success: Compute success substitution from call substi-
tution.

Data: A goal p(~u); an abstract call substitution λcall
Result: A success substitution λsuccess

1 λpro j := project_out(~u,λcall)

2 λ ′ := ⊥
3 for each clause C which unifies with p(~u) do
4 βexit := entry_to_exit(C,call_to_entry(p(~u),C,λpro j))

5 λ ′ := λ ′ t exit_to_success(λpro j,p(~u),C,βexit)

6 end
7 return extend(λcall,λ

′)

• Exit substitution from the entry substitution (Algorithm 1): Given a clause
h :- p1,. . .,pn and an entry substitution βentry for the clause head h, the call
substitution λ1 for p1 is computed by simply adding to βentry an abstraction for
the variables in the clause that do not appear in the head. The success substitution
for p1 is λ2, and it is computed as explained below (essentially, by repeating this
same process for the clauses which unify with p1). λ3, . . . ,λn+1 are computed
similarly. The exit substitution βexit for this clause is the projection of λn+1 onto
~u, the variables in h.

• Success substitution from the call substitution (Algorithm 2): Given a call substi-
tution λcall for a subgoal p, let h1, . . . ,hm be the heads of clauses that unify with p.
Compute the entry substitutions β1entry, . . . ,βmentry for these clauses. Compute
their exit substitutions β1exit , . . . ,βmexit as explained above. Compute the success
substitutions λ1success, . . . ,λmsuccess from the exit substitutions corresponding to
these clauses. At this point, all different success substitutions can be considered
for the rest of the analysis, or a single success substitution λsuccess for subgoal p
computed by means of an aggregation operation for λ1success, . . . ,λmsuccess. This
aggregate is the least upper bound (LUB), denoted by t, of the abstract domain.

Note that these two procedures are mutually recursive and would not finish in case of
mutually recursive calls. They merely describe how abstract substitutions are generated

101

ABSTRACT INTERPRETATION FIXPOINT USING TABLED CLP

for the case of literals in a body (by carrying success abstract substitutions to call
abstract substitutions) and how entry and exit substitutions of several clauses are
composed together. For the general case of recursive predicates, where repeated calls
and termination have to be detected, PLAI implements a fixpoint algorithm that we
sketch below.

5.1.3 PLAI’s fix point algorithm

The core idea of PLAI’s fixpoint algorithm (Muthukumar and Hermenegildo, 1990) is
that the subtree corresponding to the abstract interpretation of a node with a recursive
predicate p should be finite. If the abstract domain is finite, a predicate p can only have a
finite number of distinct call substitutions and therefore the subtree can only have a finite
number of occurrences of nodes that have a variant of p and which themselves have
subtrees. In addition to that, all other nodes in the subtree with the same predicate name
p and with the same call substitutions (modulo variable renaming) use the approximate
value of the success substitution computed previously for the root node of the subtree
labeled with p, and hence they do not have any descendent nodes.

Based on this idea, the fixpoint algorithm iteratively refines the approximate values of
the success substitution of the recursive predicate p as follows:

• First, it computes an approximate value of the projected success substitution
using the LUB of the projected success substitutions corresponding to the non-
recursive clauses of p. This provides an initial, hopefully non-empty, abstract
substitution that is fast to compute (it does not need to check for repeated calls
or termination) and accelerates the convergence of the fixpoint algorithm. In
practice, it can be delegated to a specialized version of Algorithms 1 and 2
restricted to non-recursive calls / clauses. These can be determined beforehand
by a reachability analysis based on strongly connected components.

• Then, it traverses the (finite) subtree corresponding to p in a depth-first fashion.
When an entry-exit combination is needed for a call to p having the same call
substitution (modulo variable renaming), the existing approximation is used. For
a call to p with a different call substitution, a new (nested) fixpoint computation
is started. When the analysis returns to the root of the subtree, the success
substitution for p is updated as the LUB of the previous value and the value just
computed from the recursive clauses of p.

• If there is a change in the success substitution for p, the depth-first traversal is
restarted using the new success substitution, which is used for the subtree nodes
corresponding to p that have a compatible call substitution. These depth-first
traversal iterations can take place only a bounded number of times, since the

102

5.2 Implementations of the PLAI Algorithm: Prolog vs. Tabling

LUB operation is monotonic and the abstract substitutions form a lattice of finite
height.1 Therefore, a fixpoint will be reached in a finite number of steps.

• If there is no change in the success substitution for the root node of the subtree of
p for a given call substitution, then the analysis of that subtree is complete (for
that call substitution) and the fixpoint computation of the predicate p terminates.

For recursive predicates called from within recursive predicates, the dependencies
between nested calls have to be recorded to restart the traversal of the subtrees containing
predicate calls whose success substitution has been updated.

5.2 Implementations of the PLAI Algorithm: Prolog vs.
Tabling

We will now describe more in depth how the PLAI algorithm is implemented in CiaoPP
(sketch available in Appendix B.2) and highlight the differences w.r.t. the version that
uses Tabled CLP (sketch available in Appendix B.1).

5.2.1 PLAI in CiaoPP

The implementation of call_to_success is the entry point, as it relates the entry and
exit substitutions of a call (in particular, of the top-level call). During the analysis of a
goal p(~u), and for each clause that unifies with p(~u), the predicate call_to_success

invokes entry_to_exit which, for each subgoal in the body of the clause, invokes
again call_to_success. The abstract interpreter is able to stop the evaluation of a
part of the program and move to another part to evaluate calls to other predicates. The
implementation of PLAI is optimized to accelerate the convergence of the fixpoint and
reduce the computation by reusing previous results, among other techniques.

The PLAI algorithm is based on the construction of an and-or tree, described in Sec-
tion 5.1, with the nodes representing the predicate calls visited during the analysis. To
construct this tree, call_to_success identifies each goal with its corresponding and/or
node and with the specialized version of its father (i.e., the version of the literal that
originated the call) and carries around a list with the nodes on which the current goal
depends. The analysis starts with a query (a goal) and a call substitution. With this
information, call_to_success creates the root node of the tree and the list of clauses

1While it is true that abstract domains can be infinite, if convergence is not reached after some time, a
widening operation changes the representation of the abstract substitutions to a coarser domain that has
more chances to converge (or is sure to converge, if it is finite).

103

ABSTRACT INTERPRETATION FIXPOINT USING TABLED CLP

that unify with the goal. If the goal corresponds to a non-recursive predicate, it computes
the success substitution which is asserted in a memo-table to reuse the result later on.
Otherwise, the goal corresponds to a recursive predicate and it is dealt with by the fix-
point algorithm: first, it evaluates the non-recursive clauses obtaining an approximation
of the success substitution and, after this, it starts the fixpoint computation.

During the fixpoint computation, for a goal with a given call substitution:

• If complete information has been already inferred and saved, call_to_success
reuses it, to avoid re-computations.

• If it is already inside a fixpoint computation (some parent started a fixpoint with
the same call), call_to_success reuses the approximation stored for this call, to
avoid entering loops.

• If an analyzed call depends on other nodes whose fixpoint are not completed yet,
two cases are treated:

– If the information on which the predicate depends is updated, a local fixpoint
computation is started.

– Otherwise, nothing is done.

To decide whether updated information for a node is available, the information
inferred for it has a version number:

– When the information on a node is updated, its version number is increased
by one.

– When a node uses information from another node, it stores the version of
that information in the list of nodes on which it depends.

Version numbers are used to detect updates of the information on which a node
analysis depend. If the version number of the last information used from a node
does not match its current version number, there has been an update that needs to
be propagated.

When the fixpoint computation finishes and the list of dependent nodes is empty,
the current information for this call is asserted. Otherwise, if this list is not empty,
the information remains flagged as an approximation and the fixpoint restarts. As
it can easily be seen, while the algorithm can be conceptually not too complex, its
implementation is cumbersome and at points costly, since many interactions are done
through the database using identifiers for program points.

104

5.2 Implementations of the PLAI Algorithm: Prolog vs. Tabling

5.2.2 The PLAI Algorithm in TCLP

The PLAI code using tabling is a simplification of the corresponding Prolog implemen-
tation. The main points that were changed are:

• The handling of dependencies among nodes and the detection of termination
in the fixpoint computation, that were explicit in the Prolog version, are now
transferred to the underlying fixpoint of the tabling engine.

• The calculation of the LUB of the abstract substitutions generated by different
clauses unifying with a call is done via lattice-based constraint aggregation (which
is in turn built upon tabling).

5.2.2.1 Internal Database and Dependencies

In the Prolog implementation, the information related to the abstract substitutions is
kept in a dynamic database relating code, program points, entry/exit substitutions,
and dependencies. This makes it globally accessible and allows it to survive across
backtracking and calls, so that it does not need to be carried around the program and be
rebuilt every time there is a change in the substitution at a program point.

However, making the abstract interpreter update that information, switch among calls,
and re-analyze calls needs accessing and updating this database, which is costly and
mixes declarative and imperative styles. On top of that, the CiaoPP implementation has
been fine-tuned during many years to avoid unnecessary (re-)analyses and minimize the
overhead of accessing the database. All of these optimizations cause the code to have
to deal with specific cases for the sake of performance, hence adding to its complexity.
But despite the involved implementation, this machinery mimics, at Prolog level, an
infrastructure similar to a tabling engine, but specialized for a given program —the
abstract interpreter— and with optimizations specific for the task at hand.

This bookkeeping becomes unnecessary when using a tabling-based implementation. An
abstract interpreter written using tabling and equipped with the capability to detect when
two syntactically different substitutions represent the same object, can automatically
take care of termination, suspend analysis when repeated calls are detected, and resume
them when new information is available — all of it as part of the normal execution of a
tabled program, without having to explicitly update and check dependencies.

That makes the code much simpler (no dependencies, lists of pending goals, resuming,
etc. need to be explicitly coded) and shorter (we have obtained a threefold reduction
in code size). On the other hand, the tabling engine is generic and cannot decide
which suspension and/or resumption policy is better for a particular application. We on
purpose chose to (a) keep the TCLP code simple and not include any specific heuristic

105

ABSTRACT INTERPRETATION FIXPOINT USING TABLED CLP

1 call_to_success(SgKey,Call,Proj,Sg,Sv,AbsInt,Succ) :-

2 call_to_success_fixpoint(SgKey,Sg, st(Sv,Call,Proj,AbsInt,Prime)),

3 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

4

5 :- use_package(tclp_aggregate).

6 :- table call_to_success_fixpoint(_,_,abst_lub).

7 call_to_success_fixpoint(SgKey,Sg, st(Sv,Call,Proj,AbsInt,Prime)) :-

8 trans_clause(SgKey,_,Clause),

9 do_nr_cl(Clause,Sg,Sv,Call,Proj,AbsInt,Prime).

10 call_to_success_fixpoint(SgKey,Sg, st(Sv,_Call,Proj,AbsInt,Prime)) :-

11 \+ trans_clause(SgKey,_,_),

12 apply_trusted0(Proj,SgKey,Sg,Sv,AbsInt,_ClId,Prime).

Figure 5.1: Implementation of call_to_success/7 under the TCLP framework

in the code, (b) not to reimplement an analyzer from scratch, but simplify existing code,
and (c) keep exactly the same interfaces (both those offered to the rest of CiaoPP and
those required by the fixpoint code) so that the TCLP-based abstract interpreter can
interoperate with the rest of the CiaoPP machinery as a drop–in replacement with close
to zero effort. For these and other reasons, our performance figures (Section 5.3) are a
lower bound of what could be achieved.

As an example, the implementation of call_to_success/13 in Prolog checks several
cases: if the call being analyzed is complete, under evaluation in a fixpoint, a call to
a recursive predicate, a call to a non-recursive predicate, etc. to update information
accordingly. It eventually invokes proj_to_prime_nr/9, which starts the fixpoint com-
putation itself, and which recursively calls call_to_success/13. call_to_success/13
has eight clauses and proj_to_prime_nr/9 has six clauses (see Appendix B.2 or the
corresponding file at http://www.cliplab.org/papers/tclp-plai-iclp2019).

In the tabling implementation, the underlying engine and the calls to the abstract
domain operations through the constraint solver interface take care of these cases
and dependencies. This makes the implementation of call_to_success have just
one clause (Fig. 5.1). The counterpart to proj_to_prime_nr/9 (which we renamed
call_to_success_fixpoint/3 for clarity) has just two clauses: one for user predicates
and another one for library and builtin predicates.

Additionally, the use of tabling makes it unnecessary to save explicitly all the intermedi-
ate substitutions, database identifiers for calls and program points, dependencies among
goals, etc. This reduces the number of arguments, and call_to_success went from
thirteen used in Prolog:

call_to_success(RFlag,SgKey,Call,Proj,Sg,Sv,AbsInt,ClId,Succ,List,F,N,Id)

to seven in the tabling-based implementation:
call_to_success(SgKey,Call,Proj,Sg,Sv,AbsInt,Succ)

106

http://www.cliplab.org/papers/tclp-plai-iclp2019

5.2 Implementations of the PLAI Algorithm: Prolog vs. Tabling

1 call_entail(abst_lub, st(Sv,_,ProjA,AbsInt,_), st(Sv,_,ProjB,AbsInt,_)) :-

2 identical_abstract(AbsInt,ProjA,ProjB).

3 answer_entail(abst_lub, st(Sv,_,_,AbsInt,PrimeA), st(Sv,_,_,AbsInt,PrimeB)) :-

4 less_or_equal(AbsInt,PrimeA,PrimeB).

5 answer_join(abst_lub,st(Sv,_,_,Abs, A), st(Sv,_,_,Abs, B), st(Sv,_,_,Abs,New)) :-

6 compute_lub(Abs,[A,B],New).
7 apply_answer(abst_lub, st(Sv,_,_,AbsInt,Prime), st(Sv,_,_,AbsInt,Prime)).

Figure 5.2: Code of the operator abst_lub under the TCLP framework

5.2.2.2 Deciding Termination and Computing the LUB

In the PLAI algorithm, the different exit substitutions obtained from the clauses that
unify with a given call are combined using the LUB operator of the abstract domain
(Algorithm 2): exit substitutions βi exit , for every clause Ci are joined to return the
success substitution λsuccess.

The CiaoPP implementation uses bagof/3 to collect all the clauses in a list and then
traverses it and analyzes every clause to create another list of abstract substitutions that
are joined with the LUB. This processing is conceptually simple, but its implementation
obscures the code with low-level operations, does not match the idea of having an
interpreter executing on an abstract domain, and requires database accesses to retrieve
the substitution applicable at that point.

In our implementation, the use of lattice-based aggregates with the tabling engine (see
Chapter 4) simplifies the code. The abst_lub identifier in line 6 of Fig. 5.1 is the
name of an interface that has several missions: determine suspension of calls, detect
termination of the fixpoint, and perform aggregation of abstract substitutions. In the
same line, the underscores state that the corresponding arguments are to be checked for
equality (necessary to decide whether a fixpoint has been reached) using the variant
policy, i.e., syntactical equality modulo variable renaming.

The implementation of the interface named abst_lub in Fig. 5.2 tells the tabling
engine how to treat the argument selected previously with this identifier. In partic-
ular, the tabling engine checks the corresponding arguments for equality by calling
call_entail/3. In our case, two abstract substitutions are termed equal if the abstract
domain implementation (identical_abstract/3) decides so. This makes it possible to
detect that two different representations correspond to the same object in the lattice and,
if so, suspend a call or retrieve saved answers for it.

The code in Fig. 5.2 also aggregates the results returned in the third argument (the ab-
stract substitutions) by joining them with the LUB of the lattice. The tabling engine calls
answer_entail/3 to decide whether a new answer (a substitution) is or not more gen-
eral than an existing answer (less_or_equal/3). If its not comparable, answer_join/4
(which in turn invokes compute_lub/3) is called to compute the LUB of a previous

107

ABSTRACT INTERPRETATION FIXPOINT USING TABLED CLP

answer and the new one. With these definitions, lines 7 to 12 in Fig. 5.1 contain all the
code necessary to return the exit substitution of a call w.r.t. all its matching clauses. The
implementation of the LUB operation (abs_lub, Fig. 5.2) is based on the operations
provided by the abstract domain implementation.

This code also performs an incremental computation of the LUB as follows: upon
success, the first answer, corresponding to the exit substitution β1exit , is stored in
the answer table of the tabled predicate. Let us call this stored answer βexit . For the
subsequent exit substitutions β iexit , i > 1, there are two possible cases: if the saved
substitution is more general (β iexit v βexit), then β iexit is discarded; otherwise we make
βexit = βexit tβ iexit .

5.2.2.3 Connecting Abstract Substitutions with Lattice-Based Aggregates

The TCLP system handles entailment, aggregation, etc. by delegating operations to an
underlying constraint solver using a fixed interface (see Chapter 3). Since we purposely
did not change the representation of the CiaoPP abstract domains (they are used in other
parts of the system), we constructed a bridge between these abstract domains and the
interface that TCLP expects.

The original entry point of the fixpoint, proj_to_prime_nr/9 (renamed as
call_to_success_fixpoint/3 in the TCLP implementation), now tabled, is automati-
cally rewritten (by the package tclp_aggregate) to call an auxiliary predicate that, at
run time, substitutes the arguments carrying abstract substitutions by attributed vari-
ables (Holzbaur, 1992) that simulate having a constrained variable. Their attributes
are tuples that contain (a) the identifier (abst_lub, in our example) that determines the
interface to be used and (b) the abstract substitution and ancillary information necessary
by the abstract interpreter.

When one operation of the tabling engine involves a call with attributed variables,
the engine checks if it has an attribute with contents it recognizes. If so, it calls the
corresponding predicate from the interface that, in our case, operates on the substitution
stored in the attributes.

5.3 Evaluation

Besides simplifying code, the implementation of PLAI using TCLP gives performance
advantages in many cases. These come mainly because part of the bookkeeping related
to dependencies, saving the analysis state when restarting the analysis of a dependent
call, checking for termination, etc. are handled at a lower level. On the other hand, the
implementation currently in CiaoPP, as commented before, has been fine-tuned and

108

5.3 Evaluation

specialized during many years to minimize the overhead of the fixpoint implementation,
so that a large proportion of the analysis time is spent in abstract domain-related
operations. On top of that, the CiaoPP domain representation and abstract domain
operations are designed to work well with its current architecture and coding decisions
(e.g. saving and retrieving from the dynamic databases) and are suboptimal for a tabling-
based implementation: for example, redundant data is manipulated and/or stored. As
commented earlier, we did not change any of these so the TCLP fixpoint can seamlessly
interact with the rest of the CiaoPP tool, exposing and using exactly the same interfaces.

Even with these constraints, we observed speedups when analyzing most programs from
a benchmark set. We used the Groundness and Sharing+Freeness (Muthukumar and
Hermenegildo, 1991) domains due to their relevance (e.g., for program optimization
and correctness of parallelization). Groundness (see Table 5.1 for performance results)
determines if some program variable will be bound to a ground term. This is useful to
derive modes, optimize unification, and improve the precision of the Sharing+Freeness
analysis, among others.

Sharing+Freeness (see Table 5.2) determines if two (or more) program variables may
be bound to terms sharing a common variable. It is useful to determine, for example,
whether running two goals in parallel may try to bind the same variable, thus causing
races and compromising correctness. The benchmarks used are standard programs that
have been previously used to evaluate CiaoPP.

All the experiments in this chapter were performed on a Linux 5.0.0-13-generic machine
with an Intel Core i7 at 1.80GHz with 16Gb of memory and using gcc 8.3.0 to
compile the abstract machine of Ciao Prolog. In all cases, every program was analyzed
40 times and the 10 worst times were discarded, both when using the tabling and
the Prolog implementation, to try to minimize the effect of spurious interruptions,
O.S. scheduling, etc. that can introduce noise in the execution. The remaining times
were averaged. All the code and the system under evaluation is available at http:
//www.cliplab.org/papers/tclp-plai-iclp2019.

The average speedups in each table were calculated by adding up the (averaged) execu-
tion times for all the benchmarks and dividing the Prolog time by the TCLP time. This
shows that, on average, the analysis with the Groundness domain speeds up a bit more
than 30%, while the analysis with the Sharing+Freeness has experienced, on average, a
slight slowdown (about 3%).

By looking at every benchmark in isolation, we can observe that the speedups differ
greatly among them. We have sorted the benchmarks according to the speedup to
appreciate better the differences. In both cases, only a small part of the benchmarks
(three) experienced a slowdown, and even in these cases, the maximum slowdown was
about 10%. In the case of Sharing+Freeness, the slowest analysis corresponded as well
to the largest execution time (larger than the rest of the benchmarks combined). We
want to note that this benchmark (zebra) is probably not a representative of a typical

109

http://www.cliplab.org/papers/tclp-plai-iclp2019
http://www.cliplab.org/papers/tclp-plai-iclp2019

ABSTRACT INTERPRETATION FIXPOINT USING TABLED CLP

Table 5.1: Performance comparison: CiaoPP fixpoint
in Prolog and TCLP (Groundness domain).

Speedup TCLP (ms) Prolog (ms)

fibf alt 1.60 0.29 0.46

aiakl 1.56 2.45 3.82

boyer 1.50 7.31 10.97

pv queen 1.46 0.74 1.07

subst 1.41 0.25 0.35

pv gabriel 1.37 3.65 4.99

rdtok 1.32 7.03 9.25

mmatf 1.24 0.31 0.39

hanoi 1.22 0.53 0.65

revf lin 1.20 0.27 0.32

append 1.20 0.17 0.20

rev lin 1.19 0.26 0.31

prefix 1.16 0.27 0.31

revf 1.15 0.32 0.37

pv plan 1.15 1.94 2.23

sublist app 1.14 0.24 0.27

reverse 1.14 0.38 0.43

flatten 1.13 0.55 0.62

palindro 1.12 0.34 0.38

fact 1.08 0.25 0.27

rotate 1.06 0.46 0.49

maxtree 0.98 0.63 0.61
zebra 0.92 1.38 1.26
browse 0.89 1.76 1.57

AVG 1.31 31.78 41.59

110

5.4 Discussion

Table 5.2: Performance comparison: CiaoPP fixpoint
in Prolog and TCLP (Sh+Fr domain).

Speedup TCLP (ms) Prolog (ms)

fact 1.30 0.26 0.33

pv queen 1.23 1.21 1.49

mmatf 1.17 0.51 0.60

mmatrix 1.15 0.53 0.61

prefix 1.14 0.46 0.52

revf 1.12 0.47 0.53

revf lin 1.10 0.39 0.43

reverse 1.10 0.39 0.43

rev lin 1.10 0.38 0.42

rotate 1.06 0.72 0.76

pv pg 1.01 2.67 2.70

append 0.98 1.11 1.09
sublist app 0.96 0.87 0.84
zebra 0.91 16.34 14.80

AVG 0.97 26.31 25.55

program, as it is a combinatorial problem with many free variables in a single clause,
some of which are aliased with each other.

The source of the speed difference is not easy to determine. A profile of the number
of fixpoint calls in Prolog vs. fixpoint calls, entailment checks, joins, etc. in the TCLP
version does not seem to show a correlation with the observed speedups. We therefore
conjecture that the shape and size of the abstract substitution, and the relative cost of
checking entailment, has to be explored to have a better explanation of the differences
observed.

5.4 Discussion

We have presented a re-implementation of PLAI, a fixpoint computation algorithm
for abstract interpretation, using tabled constraint logic programming. The resulting
code is considerably shorter than the current Prolog implementation of PLAI in CiaoPP
(one-third of its size) and much simpler: all the bookkeeping necessary to keep track of

111

ABSTRACT INTERPRETATION FIXPOINT USING TABLED CLP

dependencies between predicates, analysis restarting, etc. is in charge of the tabling
engine, which increases the maintainability of the implementation of PLAI.

We have evaluated its performance using several benchmarks and abstract domains,
and compared it with the original implementation in CiaoPP. In most cases, the TCLP
implementation showed improved performance, sometimes with a speedup of 60%. In
a few cases there was a small slowdown, which we think is a reasonable price to pay for
the added code clarity, especially taking into account that there is room for improvement
in the current implementation.

Among the immediate future plans, we want to experiment re-implementing the abstract
domains with an optimized representation of the abstract substitutions, and also use
constraint logic programming techniques to propagate the effects of updates. We also
expect that, using constraints, we will be able to define widening heuristics indepen-
dently of the fixpoint algorithm thereby increasing the resulting flexibility, precision
and performance w.r.t. the state of the art.

Acknowledgements

We would like to thank Maximiliano Klemen, who helped us understand the intricacies
of the CiaoPP implementation of PLAI. Thanks are also due to Manuel Hermenegildo,
who gave us very valuable feedback on the manuscript and also a historical account on
the early relationship between tabling and efficient abstract interpreters.

112

Part II

Constraint Answer Set Programming

113

Chapter 6

Constraint Answer Set Programming
without Grounding

Constraint Answer Set Programming is a promising paradigm
thanks to its ability to incorporate non-monotonic reasoning. Most
of the proposed CASP systems require a grounding phase that re-
moves the variables and the links among them and also causes a
combinatorial explosion in the size of the program. In this chap-
ter, we present s(CASP), a goal-directed non-monotonic reasoner
whose top-down execution strategy avoids the grounding phase
and computes (partial) stable models of CASP programs while re-
taining the logical and constrained variables during the execution
and in the answer sets. It is implemented in Ciao Prolog and its
interpreter lets Prolog take care of all operations that it can han-
dle natively, especially those involving constraints. We designed
a generic interface to plug-in different constraint domains, and
a generic forall algorithm to evaluate goals with variables con-
strained under arbitrary constraint domains such as a new solver
for disequality constrains and CLP(Q/R). We show through several
examples its enhanced expressiveness and improved performance
w.r.t. state-of-the-art (C)ASP and (C)LP systems.

As we explained in Section 1.2.2, incorporating constraint in Answer Set Programming
systems is not straightforward because most of them require a grounding phase. During
the grounding phase of the programs, the variables are grounded and, therefore, the
constrains linking them disappear. The proposals to work around this issue require
explicit hooks in the language, limit the range of admissible constraint domains the
places where constraints can appear, and the type (or number) of models that can be
returned. On the other hand, there are top-down execution models for ASP, such as

115

CONSTRAINT ANSWER SET PROGRAMMING WITHOUT GROUNDING

s(ASP) (Marple et al., 2017a), a goal-directed SLD resolution-like procedure. s(ASP)
evaluates programs under the ASP semantics without a grounding phase either before
or during execution. Additionally, s(ASP) supports predicates and thus retains logical
variables both during execution and in the answer sets.

In this chapter we propose the integration of ASP with constraint by incorporating
constraints into the s(ASP) execution model. We have extended s(ASP)’s execution
model to make its integration with generic constraint solvers possible. The resulting
execution model and system, called s(CASP), makes it possible to express constraints
on variables and extends s(ASP)’s in the same way that CLP extends Prolog’s execution
model. Thus, s(CASP) inherits and generalizes the execution model of s(ASP) while
remaining parametric w.r.t. the constraint solver. Due to its basis in s(ASP), s(CASP)
avoids grounding the program and the concomitant combinatorial explosion. s(CASP)
can also handle answer set programs that manipulate arbitrary data structures as well as
reals, rationals, etc.

The s(CASP) system has been implemented in Ciao Prolog by integrating Holzbaur’s
CLP(Q) (Holzbaur, 1995), a linear constraint solver over the rationals.1 To validate the
advantages of s(CASP) we used it to solve a series of problems that would cause infinite
recursion in other top-down systems, but which in s(CASP) finitely finish, as well as
others that require constraints over dense and/or unbound domains. Thus, s(CASP) is
able to solve problems that cannot be straightforwardly solved in other systems. We
show, through several examples, its enhanced expressiveness w.r.t. ASP, CLP, and other
ASP systems featuring constraints. We briefly discuss s(CASP)’s efficiency: on some
benchmarks it can outperform mature, highly optimized ASP systems.

6.1 ASP and s(ASP)

ASP (Brewka et al., 2011; Gelfond and Lifschitz, 1988) is a logic programming and
modelling language. An ASP program Π is a finite set of rules. Each rule r ∈Π is of
the form:

a← b1∧ . . .∧bm∧not bm+1∧ . . .∧not bn.

where a and b1, . . . ,bn are atoms and not corresponds to default negation. An atom is an
expression of form p(t1, . . . , tn) where p is a predicate symbol of arity n and ti, are terms.
An atom is ground if no variables occur in it. The set of all constants appearing in Π

is denoted by CΠ. The head of rule r is h(r) = {a}2 and the body consists of positive
atoms b+(r) = {b1, . . . ,bm} and negative atoms b−(r) = {bm+1, . . . ,bn}. Intuitively,

1Note that while we used CLP(Q) in this chapter, CLP(R) could also have been used.
2Disjunctive ASP programs (i.e., programs with disjunctions in the heads of rules) can be transformed

into non-disjunctive ASP programs by using default negation (Ji et al., 2016).

116

6.1 ASP and s(ASP)

rule r is a justification to derive that a is true if all atoms in b+(r) have a derivation
and no atom in b−(r) has a derivation. An interpretation I is a subset of the program’s
Herbrand base and it is said to satisfy a rule r if h(r) can be derived from I. A model of
a set of rules is an interpretation that satisfies each rule in the set. An answer set of a
program Π is a minimal model (in the set-theoretic sense) of the program

Π
I = {h(r)← b+(r) | r ∈Π,b−(r)∩ I = /0}

which is called the Gelfond-Lifschitz reduct of Π with respect to I (Gelfond and Lifschitz,
1991). The set of all answer sets of Π is denoted by AS(Π). ASP solvers which compute
the answer sets of non-ground programs use the above semantics by first applying,
to each rule r ∈Π, all possible substitution from the variables in r to elements of CΠ

(this procedure is called grounding). To make this grounding possible, the rules of the
program should be safe, i.e., all variables that appear in a rule have to appear in some
positive literal in the body. The rule is termed unsafe otherwise.

A difference between ASP and Prolog-style (i.e., SLD resolution-based) languages is
the treatment of negated literals. Negated literals in a body are treated in ASP using
their logical semantics based on computing stable models. The negation as failure rule
of Prolog, SLDNF resolution (Clark, 1978), makes a negated call succeed (respectively,
fail) iff the non-negated call fails (respectively, succeeds). To ensure soundness, SLDNF
has to be restricted to ground calls, as a successful negated goal cannot return bindings.
However, SLDNF increases the cases of non-termination w.r.t. SLD.

s(ASP) (Marple et al., 2017a,b) is a top-down, goal-driven interpreter of ASP programs
written in Prolog (http://sasp-system.sourceforge.net). The top-down evaluation
makes the grounding phase unnecessary. The execution of an s(ASP) program starts
with a query, and each answer is the resulting mgu of a successful derivation, its
justification, and a (partial) stable model. This partial stable model is a subset of the
ASP stable model (Gelfond and Lifschitz, 1988) including only the literals necessary to
support the query with its output bindings.3

Example 6.1. Assuming an extended Herbrand Base.
Given the program below:

1 married(john). 2 :- not married(X).

most ASP systems are not able to compute its stable model (not even an empty one),
because the global constraint is unsafe. On the other hand, s(ASP) is able to compute
queries to programs with unsafe rules by assuming that the unsafe variables take
values in an extended Herbrand Universe, and not just that of the terms which can

3Note that the subset property holds only when the Gelfond–Lifschitz transformation is applied
assuming an extended Herbrand Base obtained by extending the set of constants in the program, CΠ,
with an infinite number of new elements.

117

http://sasp-system.sourceforge.net

CONSTRAINT ANSWER SET PROGRAMMING WITHOUT GROUNDING

be constructed from the symbols in the program. Therefore, using this alternative se-
mantics :- not married(X). corresponds to ¬∃x.¬married(x)≡ ∀x.married(x)
and since the program only has evidence of one married individual (john), there
is no stable model (i.e., it cannot be derived that all possible individuals are mar-
ried). However, if we add the (unsafe) fact married(X) (i.e., ∀x.married(x)) to the
program, the resulting stable model will be {married(X)}— every element of the
universe is married.

s(ASP) has two additional relevant differences w.r.t. Prolog: first, s(ASP) resolves
negated atoms not li against dual rules of the program (Section 6.1.1), instead of using
negation as failure. This makes it possible for a non-ground negated call not p(X)

to return the results for which the positive call p(X) would fail. Second, and very
important, the dual program is not interpreted under SLD semantics: a number of very
relevant changes related to how loops are treated (see later) are introduced.

6.1.1 Dual of a Logic Program

The dual of a predicate p/1 is another predicate that returns the X such that p(X) is
not true. It is used to give a constructive answer to a goal not p(X). The dual of a
logic program is another logic program containing the dual of each predicate in the
program (Alferes et al., 2004). To synthesize the dual of a logic program P we first
obtain Clark’s completion (Clark, 1978), which assumes that the rules of the program
completely capture all possible ways for atomic formulas to be true, and then we apply
De Morgan’s laws:

1. For each literal p/n that appears in the head of a rule, choose a tuple ~x of n
distinct, new variables x1, . . . , xn.

2. For each i-th rule of a predicate p/n of the form pi(~ti) ← Bi, with i = 1, . . . ,k,
make a list~yi of all variables that occur in the body Bi but do not occur in the head
pi(~ti), add ∃~yi to the body and rename the variables that appear in the head~ti with
the tuple ~x, obtained in the previous step, resulting in a predicate representing
∀~x (pi(~x) ← ∃~yi Bi). Note that~x are local, fresh variables. This step captures
the standard semantics of Horn clauses.

3. With all these rules and using Clark’s completion, we form the sentences:

∀~x (p(~x) ←→ p1(~x)∨·· ·∨ pk(~x))

∀~x (pi(~x) ←→ ∃~yi (bi.1∧ . . .∧bi.m∧¬ bi.m+1∧ . . .∧¬ bi.n))

4. Their semantically equivalent duals ¬p/n, ¬pi/n are:

118

6.1 ASP and s(ASP)

∀~x (¬p(~x) ←→ ¬(p1(~x)∨·· ·∨ pk(~x)))

∀~x (¬pi(~x) ←→ ¬ ∃~yi (bi.1∧ . . .∧bi.m∧¬ bi.m+1∧ . . .∧¬ bi.n))

5. Applying De Morgan’s laws we obtain:

∀~x(¬p(~x) ←→ ¬p1(~x)∧ . . .∧¬pk(~x))

∀~x (¬pi(~x) ←→ ∀~yi (¬bi.1∨·· ·∨¬ bi.m∨ bi.m+1∨·· ·∨ bi.n))

which generates a definition for ¬p(~x) and a separate clause with head ¬pi(~x) for
each positive or negative literal bi. j in the disjunction. Additionally, a construction
to implement the universal quantifier introduced in the body of the dual program
is necessary (Section 6.1.3).

Definitions for the initially negated literals ¬bi.m+1 . . .¬bi.n and for each of the new
negated literals ¬bi.1 . . .¬bi.m are similarly synthesized. At the end of the chain, uni-
fication has to be negated to obtain disequality, e.g., x = y is transformed into x 6= y
(Section 6.1.2).

Example 6.2.
Given the program below:

1 p(0).

2 p(X) :- q(X), not t(X,Y).

3 q(1).

4 t(1,2).

the resulting dual program is:

1 not p(X) :- not p1(X), not p2(X).

2 not p1(X) :- X \= 0.

3 not p2(X) :-

4 forall(Y, not p2_(X,Y)).

5 not p2_(X,Y) :- not q(X).

6 not p2_(X,Y) :- q(X), t(X,Y).

7 not q(X) :- not q1(X).

8 not q1(X) :- X \= 1.

9 not t(X,Y) :- not t1(X,Y).

10 not t1(X,Y) :- X \= 1.

11 not t1(X,Y) :- X=1, Y \= 2.

For efficiency, the generation of the dual diverges slightly from the previous scheme.
The dual of a body B≡ l1∧ . . . is the disjunction of its negated literals ¬B≡ ¬l1∨ . . . ,
which generates independent clauses in the dual program. To avoid redundant answers,
every clause for a negated literal ¬li includes calls to any positive literal l j with j < i.
E.g., clause 6 from the previous program, not p2(X,Y) :- q(X), t(X, Y), would
only need to be not p2(X,Y) :- t(X, Y). However, the literal q(X) is included to
avoid exploring solutions already provided by clause 5, not p2(X,Y) :- not q(X).
The same happens with clauses 10 and 11.

119

CONSTRAINT ANSWER SET PROGRAMMING WITHOUT GROUNDING

Algorithm 3: forall
1 forall receives V, a variable name, and Goal, a callable goal.
2 V starts unbound
3 Execute Goal.
4 if Goal succeeded then Let us check the bindings of V
5 if V is unbound then forall succeeds Goal’s success is independent of V
6 else if V is bound, then backtrack to step 4 and try other clauses
7 else V has been constrained to be different from a series of values
8 Re-execute Goal, successively substituting the variable V with each of these

values
9 if Goal succeeds for each value then forall succeeds

10 else forall fails There is at least one value for which Goal is not true
11 end
12 else forall fails There are infinitely many values for which Goal is not true

6.1.2 Constructive Disequality

Unlike Prolog’s negation as failure, disequality in s(ASP), denoted by “\=” , represents
the constructive negation of the unification and is used to construct answers from
negative literals. Intuitively, X \=a means that X can be any term not unifiable with a. In
the implementation reported in (Marple et al., 2017a) a variable can only be disequality-
constrained against ground terms, and the disequality of two compound terms may
require backtracking to check all the cases: p(1, Y) \= p(X, 2) first succeeds with
X\= 1 and then, upon backtracking, with Y \=2.

The former restriction reduces the range of valid programs, but this does not seem to be
a problem in practice: since positive literals are called before negative literals in the dual
program, the number of cases where this situation may occur is further reduced. Since
this is orthogonal to the implementation framework, it can be improved upon separately.
The second characteristic impacts performance, but can again be ameliorated with a
more involved implementation of disequality which carries a disjunction of terms.

6.1.3 The forall Algorithm

In (Marple et al., 2017a) the universal quantifier is evaluated by forall(V, Goal)

which checks if Goal is true for all the possible values of V. When forall/2 succeeds,
the evaluation continues with the quantified variable unbound. Multiple quantified
variables are handled by nesting: ∀v1,v2.Goal is executed as forall(V1,forall(V2,

Goal)). The underlying idea is to verify that for any solution with V \=a (for some a),
Goal also succeeds with V=a (Algorithm 3).

120

6.1 ASP and s(ASP)

Example 6.3.
Consider the following program with the dual rule for p/0:

1 p :- not q(X).

2 q(X) :- X=a.

3 q(X) :- X \= a.

4 not p :- forall(X, not p1(X)).

5 not p1(X) :- q(X).

Under the query ?- not p, the interpreter will execute forall(X, not p1(X))

with X unbound. First, not p1(X) is executed and calls q(X), succeeding with X=a.
Then, since X is bound, the interpreter backtracks and succeeds with X\= a (second
clause of q/1). Now, since X is constrained to be different from a, the interpreter
re-executes not p1(X) with X=a which succeeds (first clause of q/1). Since there
are no more constrained values to be checked, the evaluation of the query finishes
with success. Note that leaving X unbound after the success of forall(X, p(X)) is
consistent with the interpretation that the answer set {p(X)} corresponds to ∀x.p(x).

6.1.4 Non-Monotonic Checking Rules

Non-monotonic rules are used by s(ASP) to ensure that partial stable models are
consistent with the global constraints of the program. Given a consistency rule of the
form ∀~x(pi(~x)←∃~y Bi∧¬pi(~x)), and in order to avoid contradictory rules of the form
pi(~a)←¬pi(~a), all stable models must satisfy that at least one literal in Bi is false (i.e.,
¬Bi) or, for the values ~a where Bi is true, pi(~a) can be derived using another rule. To
ensure that the partial stable model is consistent, the s(ASP) compiler generates, for
each consistency rule, a rule of the form:

∀~x(chki(~x) ←→ ∀~yi(¬Bi∨ p(~x)))

To ensure that each sub-check (chki) is satisfied, the compiler introduces into the
program the rule nmr check← chk1∧ . . .∧ chkk, which is transparently called after the
program query.

Example 6.4.
Given the program below:

1 :- not s(1, X). 2 p(X):- q(X), not p(X).

the resulting NMR check rules are:

1 nmr_check :-

2 chk1,

3 forall(A, chk2(A)).

4 chk1 :- forall(X,s(1,X)).

5 chk2(X) :- not q(X).

6 chk2(X) :- q(X), p(X).

121

CONSTRAINT ANSWER SET PROGRAMMING WITHOUT GROUNDING

6.1.5 Handling Loops

Finally, in order to break infinite loops, s(ASP) uses three techniques to deal with odd
loops over negation, even loops over negation, and positive loops (Gupta et al., 2007;
Marple et al., 2017a).

Top-down evaluations may enter loops. Several techniques, notably tabling, have been
used to enhance the termination properties of LP systems. This is more relevant in
s(ASP) because the presence of negation introduces new types of loops:

• Odd loop over negation: it occurs when a cycle in the call graph contains an odd
number of intervening negations. These loops are important because they place
global constraints which restrict which literals can appear in a model. s(ASP)
ensures that these global constraints are satisfied by introducing non monotonic
rules (Section 6.1.4). The odd loops are detected with a static analysis of the call
graph checking the number of negations between recursive calls.

Example 6.5.
The rules below, which are equivalent if p/0 can not be added to the model by
another rule, generate odd loops and force the stable model to satisfy ¬ q(a).

1 p :- q(a), not p. 2 :- q(a).

Run-time check of odd loops When, during the execution, a call unifies with
its negation in the call path, the execution fails and backtracks. Had it succeeded,
it would have introduced a contradiction, and therefore the resulting partial stable
model would have been discarded.

• Even loop over negation: This happens when a call unifies with an ancestor in
the call path and there is an even, non-zero, number of intervening negated calls
between them. In this case, the execution succeeds assuming that the recursive
call (partially) supports the negation of those calls. The spirit underlying this
assumption is similar to coinductive SLD resolution (Gupta et al., 2007), used
to compute the greatest fixpoint of a program. Note that the Gelfond–Lifschitz
method computes the fixpoint of the residual program, which is between the
least fixpoint (computed by a top-down execution) and the greatest fixpoint.
This assumption is safe because in cases where the evaluation tries to make this
recursive call true, the non monotonic rules and the run-time detection of odd
loops will discard the model.

Example 6.6.
Consider the next program (with its dual) and the query ?- p(a).

122

6.2 s(CASP): Design and Implementation

1 p(X) :- not q(X).

2

3 q(X) :- not p(X).

4 q(b).

5

6 not p(X) :- not p1(X).

7 not p1(X) :- q(X).

8 not q(X) :- not q1(X), not q2(X).

9 not q1(X) :- p(X).

10 not q2(X) :- X \= b.

The call path p(a) not q(a) not q1(a) p(a), resulting from the query,
shows that assuming p(a) we support both negated calls (i.e., not q(a)

and not q1(a)). Note that not q(a) is only partially supported because
it succeeds only if also not q2(X) succeeds. Therefore, while the query
?- p(a) succeeds, the query ?- p(b) fails.

• Positive loops: when a call unifies with an ancestor in the call path and there
are no intervening negative calls between them, the original s(ASP) fails to
avoid infinite loops. However, this behaviour compromises completeness and
soundness. We work around this by checking that the call and its ancestor are
equal (Section 6.2.2).

Example 6.7.
The next program generates infinitely many answers to the query ?- nat(X).

1 nat(0). 2 nat(X) :- nat(Y), X is Y+1.

However, if it fails, when the recursive call nat(Y) unifies with its ancestor
in the call path (i.e., the query), it loses completeness as it only returns the
answer X=0, and therefore, due to the presence of negation, it also loses
soundness.

6.2 s(CASP): Design and Implementation

S(CASP) (available together with the benchmarks used in this chapter at https://
gitlab.software.imdea.org/joaquin.arias/sCASP) extends s(ASP) by computing
partial stable models of programs with constraints. This extension makes the following
contributions:

• The interpreter is reimplemented in Ciao Prolog (Hermenegildo et al., 2012). The
driving design decision of this reimplementation is to let Prolog take care of all
operations that it can handle natively, instead of interpreting them. Therefore, a
large part of the environment for the s(CASP) program is carried implicitly in the
Prolog environment. Since s(CASP) and Prolog shared many characteristics (e.g.,
the behavior of variables), this results in flexibility of implementation (see the

123

https://gitlab.software.imdea.org/joaquin.arias/sCASP
https://gitlab.software.imdea.org/joaquin.arias/sCASP

CONSTRAINT ANSWER SET PROGRAMMING WITHOUT GROUNDING

Table 6.1: Run-time (ms) of s(CASP) and s(ASP) for different programs.

s(CASP) s(ASP)

hanoi(8,T) 1,528 13,297

queens(4,Q) 1,930 20,141

One hamicycle 493 3,499

Two hamicycle 3,605 18,026

interpreter code sketched in Figure 6.1 and in full in Appendix C.1) and gives a
large performance improvement. Table 6.1 shows run-time comparison of s(ASP)
vs s(CASP) using ASP programs without constraint. All the experiments in this
chapter were performed on a MacOS 10.13 machine with an Intel Core i5 at
2GHz.

• A new solver for disequality constraints.

• The definition and implementation of a generic interface to plug-in different
constraint solvers. This required, in addition to changes to the interpreter, changes
to the compiler which generates the dual program. This interface has been used,
in this chapter, to connect both the disequality constraint solver and the CLP(Q)
solver.

• The design and implementation of C-forall (Algorithm 4), a generic algorithm
which extends the original forall algorithm (Algorithm 3) with the ability to
evaluate goals with variables constrained under arbitrary constraint domains. In
addition to being necessary to deal with constraints, this extension generalizes
and clarifies the design of the original one.

6.2.1 s(CASP) Programs

An s(CASP) program is a finite set of rules of the form:

a← ca∧b1∧ . . .∧bm∧not bm+1∧ . . .∧not bn.

where the difference w.r.t. an ASP program is ca, a simple constraint or a conjunction of
constraints. A query to an s(CASP) program is of the form← cq∧ l1∧ . . .∧ ln, where
cq is also a simple constraint or a conjunction of constraints. The semantics of s(CASP)
extends that of s(ASP) following (Jaffar and Maher, 1994). During the evaluation of
an s(CASP) program, the interpreter generates constraints whose consistency w.r.t. the

124

6.2 s(CASP): Design and Implementation

1 ??(Query) :-

2 solve(Query,[],Mid),
3 solve_goal(nmr_check,Mid,Out),

4 print_just_model(Out).

5 solve([], In, ['$success'|In]).
6 solve([Goal|Gs], In, Out) :-

7 solve_goal(Goal, In, Mid),

8 solve(Gs, Mid, Out).

9 solve_goal(Goal, In, Out) :-

10 user_defined(Goal), !,

11 pr_rule(Goal, Body),

12 solve(Body, [Goal|In], Out).

13 solve_goal(Goal, In, Out) :-

14 call(Goal),

15 Out=['$success',Goal|In].

Figure 6.1: (Very abridged) Code of the s(CASP) interpreter.

current constraint store is checked by the constraint solver. The existence of variables
both during execution and in the final models is intuitively justified by adopting an
approach similar to that of the S-semantics (Gabbrielli and Levi, 1991).

6.2.2 The Interpreter and the Disequality Constraint Solver

The s(CASP) interpreter carries the environment (the call path and the model) implicitly
and delegates to Prolog all operations that Prolog can do natively, such as handling the
bindings due to unification, the unbinding due to backtracking, and the operations with
constraints, among others. The clauses of the program, their duals, and the NMR-checks
are created by the compiler by generating rules of the predicate pr_rule(Head,Body),
where Head is an atom and Body is the list of literals. While the s(CASP) interpreter
performs better than s(ASP), little effort has been invested in optimizing it, and there is
ample room for improvement.

Figure 6.1 shows a highly simplified sketch of the code that implements the interpreter
loop in s(CASP), where:

• ??(+Query) receives a query and prints the successful path derivations.

• solve(+Goals,+PathIn,-PathOut) reproduces SLD resolution.

• solve_goal(+Goal,+PathIn,-PathOut) evaluates the user-defined predicates
and hands over to Prolog the execution of the builtins using call/1. The PathOut

argument encodes the derivation tree in a list.

Every ‘$success’ constant denotes the success of the goals in the body of a clause
and means that one has to go up one level in the derivation tree. Several ‘$success’
constants in a row mean, accordingly, that one has to go up the same number of levels.

In s(CASP), constructive disequality is handled by a disequality constraint solver,
called CLP(6=), implemented using attributed variables that makes disequality handling
transparent to the user code. The current implementation of CLP(6=) does not address

125

CONSTRAINT ANSWER SET PROGRAMMING WITHOUT GROUNDING

the restrictions described in Section 6.1.2; however, as mentioned before, since the
solver is independent of the interpreter, its improvements are orthogonal to the core
implementation of s(CASP).

The interpreter checks the call path before the evaluation of user-defined predicates
to prevent inconsistencies and infinite loops (Marple et al., 2017a), as we mentioned
before in Section 6.1.5. The call path is a list constructed with the calls, and the bindings
of the variables in these calls are automatically updated by Prolog.

• When a positive loops occurs, the interpreter fails only if the looping goal and its
ancestor are equal (i.e., p(X) :- . . .,p(X)). Termination properties are enhanced
if a tabling system featuring variant calls or entailment (see Chapters 2 and 3)
is used as implementation target, so that all programs with a finite grounding or
with the constraint-compact property terminate.

• However, when the current call is equal to an already-proven ancestor, the evalua-
tion succeeds to avoid its re-computation and to reduce the size of the justification
tree.

6.2.3 Integration of Constraint Solvers in s(CASP)

Holzbaur’s CLP(Q) (Holzbaur, 1995) solver was integrated in the current implementa-
tion of s(CASP). Since the interpreter already deals with the CLP(6=) constraint solver,
only two details have to be taken in consideration:

• The compiler is extended to support CLP(Q) relations {<,>,=,≥,≤, 6=} during
the construction of the dual program and the NMR rules.

• Since it is not possible to decide at compile time whether equality will be called
with CLP(Q) or Herbrand variables, its dual \= is extended to decide at run-time
whether to call the CLP(Q) solver or the disequality solver.

Finally, to make integrating further constraint solvers easier, the operations that the
s(CASP) interpreter requires from the CLP(Q) solver are encapsulated in a single
module that provides the interface between the interpreter and the constraint solver.
Additional constraint solvers only need to provide the same interface.

6.2.4 The C-forall Algorithm

Extending s(ASP) to programs with constraints requires a generalization of forall
(Algorithm 3) which we will call C-forall (Algorithm 4). A successful evaluation of

126

6.2 s(CASP): Design and Implementation

Algorithm 4: C-forall
1 C-forall receives a variable V, a callable goal Goal, and a constraint store, Ci (i = 1).
2 V starts unbound. The constraint store of V is empty, CV.i =>
3 Execute Goal with Ci as the current constraint store. Its first answer constraint store is A1
4 if the execution of Goal succeeds then Check AV.i, the domain of V in the answer

constraint
5 if AV.i ≡CV.i then There was no refinement in the domain of V
6 C-forall succeeds V is not relevant for the success of Goal
7 else The domain of V has been restricted, AV.i @CV.i

8 Ci+1 =Ci∧AV .i∧¬AV.i Remove from V the elements for which Goal succeeds
9 Return to step 3 and re-execute Goal under Ci+1

Check whether Goal is true for the rest of the elements of V
10 end
11 else C-forall fails There is a non-empty domain for which Goal is not true

Goal in s(CASP) returns, on backtracking, a (potentially infinite) sequence of models
and answer constraint stores A1,A2, Each Ai relates variables and constants by
means of constraints and bindings (i.e., syntactical equality constraints). The execution
of forall(V,Goal) is expected to determine if Goal is true for all possible values of V
in its constraint domain.

In what follows we will use V to denote the set variables in Goal that are not V:
vars(Goal) = {V}∪V∧V 6∈ V. The core idea is to iteratively narrow the store C under
which Goal is executed by selecting one answer A and re-executing Goal under the con-
straint store C∧AV∧¬AV, where AV is the projection of A on V and AV is the projection
of A on V. The iterative execution finishes with a positive or negative outcome.

Example 6.8. C-forall terminates with success.
Figure 6.2a shows an example where the answers A1, . . . ,A4 to Goal cover the
whole domain, represented by the square. Therefore, C-forall should succeed. The
answer constraints that the program can generate are depicted on picture (1). For
simplicity in the pictures, we will assume that the answers Ai only restrict the
domain of V, so it will not be necessary to deal with V and V separately since AV will
always be empty, and therefore AV.i = Ai. Picture (2) shows the result of the first
iteration of C-forall starting with C1 =>: answer A1 is more restrictive than C1 and
therefore C2 =C1∧¬A1 (in grey) is constructed. Picture (3) shows the result of the
second iteration: the domain is further reduced. Finally, in picture (4) the algorithm
finishes successfully because A3 ≡C3, i.e., A3 covers the remaining domain. Note
that we did not need to generate A4.

Termination for an infinite number of answer sets The previous example points to
a nice property: even if there were an infinite number of answer sets to Goal, as long as

127

CONSTRAINT ANSWER SET PROGRAMMING WITHOUT GROUNDING

A1 A2

A3 A4

A′1

C2 =>∧¬A′1

A′2

C3 =C2∧¬A′2 A′3 ≡C3

(1) (2) (3) (4)

(a) C-forall terminates with success.

A1 A2

A3 A4

A′1

C2 =>∧¬A′1

A′2

C3 =C2∧¬A′2 A′3

C4

(1) (2) (3) (4)

(b) C-forall terminates with failure.

Figure 6.2: Two C-forall evaluation examples.

a finite subset of them covers the domain of V and this subset can be finitely enumerated
by the program, the algorithm will finish. This is always true for constraint-compact
constraint domains, such as disequality over a finite set of constants or the gap-order
constraints (Revesz, 1993). Note that this happens as well in the next example, where
C-forall fails.

Example 6.9. C-forall terminates with failure.
Figure 6.2b shows an example where the answer constraints do not cover the domain
and therefore C-forall ought to fail. Again, we assume that the answers Ai only
restrict the domain of V. Picture (1) depicts the answer constraints that Goal can
generate. Note the gap in the domain not covered by the answers. Pictures (2) to (4)
proceed as in the previous example. Picture (4) shows the final step of the algorithm:
the execution of Goal under the store C4 =C3∧¬A′3 fails because the solution A4
of Goal does not have any element in common with C4, and then C-forall also fails.

Figure 6.3 shows a sketch of the code that implements C-forall in the s(CASP) inter-
preter, written in Prolog/CLP. In this setting, Goal carries the constraint stores Ci and the
answer stores Ai implicitly in its execution environment. We know that the interpreter

128

6.2 s(CASP): Design and Implementation

1 forall(V, Goal) :-

2 empty_store(Store), % V has no attached constraints

3 eval_forall(V, Goal, [Store]). % start the evaluation of Goal

4 eval_forall(_, _, []). % it's done, forall succeeds

5 eval_forall(V,Goal,[Store|Sts]):-
6 copy(V, Goal, NV, NGoal), % copy to keep V unbound

7 apply(NV, V, Store), % add the constraint to NV

8 once(NGoal), % if fails, the forall fails

9 dump(NV, V, AnsSt), % project the answer store

10 (equal(AnsSt, Store) % if there is no refinement in NV

11 -> true % then, it's done, continue

12 ; dual(AnsSt, AnsDs), % else, the answer's dual/duals

13 add(AnsDs, Store, NSt), % is/are added to Store

14 eval_forall(V, Goal, NSt) % to evaluate Goal

15),

16 eval_forall(V, Goal, Sts). % continue the evaluation

Figure 6.3: Implementation of forall/2 in the s(CASP) interpreter.

will call forall(V,Goal) with a fresh, unconstrained V, because the executed code is
generated by the s(CASP) compiler. Therefore, the projection of C1 onto V is an empty
constraint store, which we introduce explicitly to start the computation.

The call copy(V,Goal, NV, NGoal) copies Goal in NGoal sharing only V, while V is
substituted in NGoal by a fresh variable, NV. In the main body of eval_forall/3, Store
always refers to V, while NGoal does not contain V, but NV. The call apply(NV,V,
Store) takes the object Store and makes it part of the global store but substituting V

for NV so that the execution of NGoal can further constrain NV while V remains untouched.
Note, however, that in the first iteration, NV will always remain unconstrained, since the
constraint store that apply(NV,V, Store) applies to it is empty (CV.1 =>). However,
in the following iterations, Store will contain the successive constraint stores CV.i+1.

When once(NGoal) succeeds, the constraint store Ci∧AV.i is implicit in the binding of V.
Therefore, the execution of eval_forall(V,Goal,Store) carries this constraint store
implicitly because Goal and NGoal share V. Finally, the predicate dump(NV,V, AnsSt)

projects the constraint store after the execution of NGoal on NV, rewrites this projection
to substitute NV for V, and leaves the final result in AnsSt, generating AV.i. Note that,
in some sense, it is transferring constraints in the opposite direction to what dump/3
did before. If the call equal(AnsSt, Store) succeeds, it means that AV.i ≡ CV.i and
therefore the forall succeeds (for the branch that was being explored, see below).

Otherwise, we have to negate the projection of the answer onto V, i.e., construct
¬AV.i. The negation of a conjunction generates a disjunction of constraints and
most constraint solvers cannot handle disjunctions natively. Therefore, the predicate
dual(AnsSt,AnsDs) returns in AnsDs a list with the components ¬AV.i. j of this disjunc-
tion, j = 1,2, . . . , length(AnsDs). Then, add(AnsDs,Store, NSt) returns in NSt a list

129

CONSTRAINT ANSWER SET PROGRAMMING WITHOUT GROUNDING

of stores, each of which is the conjunction of Store with one of the components of the
disjunction in AnsDs, i.e., a list of CV.i∧¬AV.i. j, for a fixed i. There may be cases where
this conjunction is inconsistent; add/3 captures them and returns only the components
which are consistent. Note that if a conjunction CV.i∧¬AV.i. j is inconsistent, it means
that ¬AV.i. j has already been (successfully) checked.

Each of the resulting constraint stores will be re-evaluated by eval_forall/3, where
apply/3 will apply them to a new variable NV, in order to complete the implicit con-
struction of Ci+1 before the execution of once(NGoal). forall/2 finishes with success
when there are no pending constraint stores to be processed (line 4).

Example 6.10. C-forall execution negating a constraint conjunction.
Given the program below, consider the evaluation of forall(A, p(A)):

1 p(X) :- X #>= 0, X #=< 5.

2 p(X) :- X #> 1.

3 p(X) :- X #< 3.

4 p(X) :- X #< 1.

In the first iteration C1 =>. The first answer is A1 = {X ≥ 0∧X ≤ 5}, which is
more restrictive than C1, so we compute ¬A1 = {X < 0∨X > 5}. First, p/1 is
evaluated with C2.a = {>∧X < 0} obtaining A2.a = {X < 0} using the third clause.
Since A2.a ≡C2.a, we are done with C2.a. But we also have to evaluate p/1 with
C2.b = {>∧X > 5}. Using the second clause, A2.b = {X > 5} is obtained and since
A2.b ≡C2.b, the evaluation succeeds.

6.3 Examples and Evaluation

The expressiveness of s(CASP) allows the programmer to write programs / queries
that cannot be written in [C]ASP without resorting to a complex, unnatural encoding.
Additionally, the answers given by s(CASP) are also more expressive than those given
by ASP. This arises from several points:

• s(CASP) inherits from s(ASP) the use of unbound variables during the execution
and in the answers. This makes it possible to express constraints more compactly
and naturally (e.g., ranges of distances can be written using constraints)

• s(CASP) can use structures / functors directly, thereby avoiding the need to
encode them unnaturally (e.g., giving numbers to Hanoi movements to represent
what in a list is implicit in the sequence of its elements).

• The constraints and the goal-directed evaluation strategy of s(CASP) makes it
possible to use direct algorithms and to reduce the search space (e.g., by putting
bounds on a path’s length).

130

6.3 Examples and Evaluation

1 valid_stream(P,Data) :-

2 stream(P,Data),

3 not cancelled(P, Data).

4

5 cancelled(P, Data) :-

6 higher_prio(P1, P),

7 stream(P1, Data1),

8 incompt(Data, Data1).

9

10 higher_prio(PHi, PLo) :-

11 PHi #> PLo.

12 incompt(p(X), q(X)).

13 incompt(q(X), p(X)).

14

15 stream(1,p(X)).

16 stream(2,q(a)).

17 stream(2,q(b)).

18 stream(3,p(a)).

Figure 6.4: Code of a stream data reasoner under s(CASP).

6.3.1 Stream Data Reasoning

Let us assume that we deal with data streams, some of whose items may be contradic-
tory (Arias, 2016). Moreover, different data sources may have a different degree of
trustworthiness which we use to prefer a given data item in case of inconsistency. Let us
assume that p(X) and q(X) are contradictory and we receive p(X) from source S1 and
q(a) from source S2. We may decide, depending on how reliable are S1 and S2, that:
(i) p(X) is true because S1 is more reliable than S2; (ii) q(a) is true since S2 is more
reliable than S1, and for any X different from a (i.e., X\= a), p(X) is also true; (iii) or,
if both sources are equally reliable, them we have (at least) two different models: one
where q(a) is true and another where p(X) is true.

Figure 6.4 shows the code for a stream data reasoner using s(CASP). Data items
are represented as stream(Priority,Data), where Priority tells us the degree of
confidence in Data; higher_prio(PHi,PLo) hides how priorities are encoded in the
data (in this case, the higher the priority, the more level of confidence); and incompt/2

determines which data items are contradictory (in this case, p(X) and q(X)). Note
that p(X) (for all X) has less confidence than q(a) and q(b), but p(a) is an exception,
as it has more confidence than q(a) or q(b). Lines 1-8, alone, define the reasoner
rules: valid_stream/2 states that a data stream is valid if it is not cancelled by another
contradictory data stream with more confidence.

The confidence relationship uses constraints, instead of being checked afterwards.
C-forall, introduced by the compiler in the dual program (available in Appendix C.2.1),
will check its consistency. For the query ?- valid_stream(Pr,Data), it returns:
{Pr=1,Data=p(A),A\=a, A \=b} because q(a) and q(b) are more reliable than p(X);
{Pr=2,Data=q(b)}; and {Pr=3,Data=p(a)}. The justification tree and the model are in
Appendix C.2.2.

The constraints and the goal-directed strategy of s(CASP) make it possible to re-
solve queries without evaluating the whole stream database. For example, the rule
incompt(p(X),q(X)) does not have to be grounded w.r.t. the stream database, and if
timestamps were used as trustworthiness measure, for a query such as ?- T #> 10,

131

CONSTRAINT ANSWER SET PROGRAMMING WITHOUT GROUNDING

1 duration(load,25).

2 duration(shoot,5).

3 duration(wait,36).

4 spoiled(Armed) :- Armed #> 35.

5 prohibited(shoot,T) :- T #< 35.

6

7 holds(0,St,[]) :- init(St).

8 holds(F_Time, F_St, [Act|As]) :-

9 F_Time #> 0,

10 F_Time #= P_Time + Duration,

11 duration(Act, Duration),

12 not prohibited(Act, F_Time),

13 trans(Act, P_St, F_St),

14 holds(P_Time, P_St, As).

15 init(st(alive,unloaded,0)).

16

17 trans(load, st(alive,_,_),

18 st(alive,loaded,0)).

19 trans(wait, st(alive,Gun,P_Ar),

20 st(alive,Gun,F_Ar)) :-

21 F_Ar #= P_Ar + Duration,

22 duration(wait,Duration).

23 trans(shoot, st(alive,loaded,Armed),

24 st(dead,unloaded,0)) :-

25 not spoiled(Armed).

26 trans(shoot, st(alive,loaded,Armed),

27 st(alive,unloaded,0)) :-

28 spoiled(Armed).

Figure 6.5: Code of the Yale Shooting problem under s(CAPS).

valid_stream(T,p(A)) the reasoner would validate streams received after T=10 re-
gardless how long they extend in the past.

6.3.2 Yale Shooting Scenario

In the spoiling Yale shooting scenario (Janhunen et al., 2017), there is a gun and three
possible actions: load, shoot, and wait. If we load the gun and shoot within 35 minutes,
the turkey is killed. Otherwise, the gun powder is spoiled. The executable plan must
ensure that we kill the turkey within 100 minutes, assuming that we are not allowed to
shoot in the first 35 minutes.

The ASP + constraint code, in (Janhunen et al., 2017) and Appendix C.3.1, uses
clingo[DL/LP], an ASP incremental solver extended for constraints. The program is
parametric w.r.t. the step counter n, used by the solver to iteratively invoke the program
with the expected length of the plan. In each iteration, the solver increases n, grounds
the program with this value (which, in this example, specializes it for a plan of exactly
n actions) and solves it. The execution returns two plans for n = 3: {do(wait,1),
do(load,2), do(shoot,3)} and {do(load,1), do(load,2), do(shoot,3)}.

The s(CASP) code (Figure 6.5) does not need a counter. The query ?-

T #< 100, holds(T,st(dead,_, _), Actions), sets an upper bound to the du-
ration T of the plan, and returns in Actions the plan with the actions
in reverse chronological order: {T=55, Actions=[shoot, load, load]}, {T=66,
Actions=[shoot, load, wait]}, {T=80, Actions=[shoot, load, load, load]},
{T=91, Actions=[shoot, load, load, wait]}, {T=91, Actions=[shoot, load,

wait, load]}, {T=96, Actions=[shoot, load, shoot, wait, load]}.

132

6.3 Examples and Evaluation

1 % Every node must be reachable.

2 :- node(U), not reachable(U).

3 reachable(a) :- cycle(V,a).

4 reachable(V) :- cycle(U,V),

5 reachable(U).

6

7 % Only one edge to each node.

8 :- cycle(U,W), cycle(V,W), U \= V.

9

10 % Only one edge from each node.

11 cycle(U,V) :-

12 edge(U,V), not other(U,V).

13 other(U,V) :-

14 node(U), node(V), node(W),

15 edge(U,W), V \= W, cycle(U,W).

16

17 travel_path(S,Ln,Cycle) :-

18 path(S,S,S,Ln,[],Cycle).
19 path(_,X,Y,D,Ps,[X,[D],Y|Ps]) :-

20 cycle_dist(X,Y,D).

21 path(S,X,Y, D, Ps,Cs) :-

22 D #= D1 + D2,

23 cycle_dist(Z,Y,D1), Z \= S,

24 path(S,X,Z,D2,[[D1],Y|Ps],Cs).
25

26 edge(X,Y) :- distance(X,Y,D).

27 cycle_dist(U,V,D) :-

28 cycle(U,V), distance(U,V,D).

29

30 node(a). node(b).

31 node(c). node(d).

32

33 distance(b,c,31/10).

34 distance(c,d,L):-

35 L #> 8, L #< 21/2.

36 distance(d,a,1).

37 distance(a,b,1).

38 distance(a,d,1).

39 distance(c,a,1).

40 distance(d,b,1).

Figure 6.6: Code of the Traveling Salesman problem under s(CASP).

6.3.3 The Traveling Salesman Problem (TSP)

Let us consider a variant of the traveling salesman problem (visiting every city in a
country only once, starting and ending in the same city, and moving between cities using
the existing connections) where we want to find out only the Hamiltonian cycles whose
length is less than a given upper bound. Solutions for this problem, with comparable
performance, using ASP and CLP(FD) appear in (Dovier et al., 2005) (also available at
Appendix C.4.1 and Appendix C.4.2). The ASP encoding is more compact, even if the
CLP(FD) version uses the non-trivial library predicate circuit/1, which does the bulk
of the work. We will show that s(CASP) is more expressive also in this problem.

Finding the (bounded) path length in ASP requires using a specific, ad-hoc builtin that
accesses the literals in a model and calls it from within a global constraint. Using
clasp (Hölldobler and Schweizer, 2014), it would be as follows:
1 cycle_length(N) :- N = #sum [cycle(X,Y) : distance(X, Y, C) = C].

2 :- cycle_length(N), N >= 10. % Cycles whose length is less than 10

where #sum is a builtin aggregate operator that here is used to add the distances between
nodes in some Hamiltonian cycle.

The s(CASP) code in Figure 6.6 solves this TSP variant by modeling the Hamiltonian
cycle in a manner similar to ASP and using a recursive predicate, travel_path(S,Ln,
Cycle), that returns in Cycle the list of nodes in the circuit (with the distance between

133

CONSTRAINT ANSWER SET PROGRAMMING WITHOUT GROUNDING

1 #show move/3. %s(CASP) directive

2

3 hanoi(N,T):-

4 move_(N,0,T,a,b,c).

5 move_(N,Ti,Tf,Pi,Pf,Px) :-

6 N #> 1, N1 #= N - 1,

7 move_(N1,Ti,T1,Pi,Px,Pf),

8 move_(1,T1,T2,Pi,Pf,Px),

9 move_(N1,T2,Tf,Px,Pf,Pi).

10 move_(1,Ti,Tf,Pi,Pf,_) :-

11 Tf #= Ti + 1,

12 move(Pi,Pf,Tf).

13

14 move(Pi,Pf,T):-

15 not negmove(Pi,Pf,T).

16 negmove(Pi,Pf,T):-

17 not move(Pi,Pf,T).

Figure 6.7: Code of the Towers of Hanoi problem under s(CASP).

every pair of nodes also in the list), starting at node S, and the total length of the circuit
in Ln.

This example highlights the marriage between ASP encoding (to define models of
the Hamiltonian cycle using the cycle/2 literal) and traditional CLP (which uses
the available cycle/2 literals to construct paths and return their lengths). Note as
well that we can define node distances as intervals (line 35) using a dense domain
(rationals, in this case). This would not be straightforward (or even feasible) if only
CLP(FD) was available: while CLP(FD) can encode CLP(Q), the resulting program
would be cumbersome to maintain and much slower than the CLP(Q) version, since
Gaussian elimination has to be replaced by enumeration, which actually compromises
completeness (and, in the limit, termination). Additionally, in our proposal, constraints
can appear in bindings and as part of the model. For example, the query ?- D #< 10,

travel_path(b,D, Cycle) returns the model {D=61/10, Cycle=[b, [31/10], c,

[1], a, [1], d, [1], b]}. For reference, Appendix C.4.3 shows the complete
output.

6.3.4 Towers of Hanoi

We will not explain this problem here as it is widely known. Let us just remind the
reader that solving the puzzle with three towers (the standard setup) and n disks requires
at least 2n−1 movements.

Known ASP encodings, for a standard solver, set a bound to the number of moves that
can be done, as proposed in (Gebser et al., 2008) (available for the reader’s convenience
at Appendix C.5.1, for 7 disks and up to 127 movements) or for an incremental solver,
increasing the number n of allowed movements (from the clingo 5.2.0 distribution, also
available at Appendix C.5.2).

s(CASP)’s top down approach can use a CLP-like control strategy to implement the
well-known Towers of Hanoi algorithm (Figure 6.7). Predicate hanoi(N,T) receives in
N the number of disks and returns in T the number of movements needed to solve the

134

6.4 Discussion

Table 6.2: Run-time (ms) of s(CASP) and clingo (standard and incremental)
for hanoi/2 with n disks.

s(CASP) clingo 5.2.0 clingo 5.2.0
standard incremental

n = 7 479 3,651 9,885

n = 8 1,499 54,104 174,224

n = 9 5,178 191,267 > 5 min

puzzle. The resulting partial stable model will contain all the movements and the time
in which they have to be performed. For reference, Appendix C.5.3 shows the partial
stable model for ?- hanoi(7,T).

Table 6.2 compares execution time (in milliseconds) needed to solve the Towers of
Hanoi with n disks by s(CASP) and clingo 5.2.0 with the standard and incremental
encodings. s(CASP) is orders of magnitude faster than both clingo variants because it
does not have to generate and test all the possible plans; instead, as mentioned before,
it computes directly the smallest solution to the problem. The standard variant is
less interesting than s(CASP)’s, as it does not return the minimal number of moves
— it merely checks if the problem can be solved in a given number of moves. The
incremental variant is by far the slowest, because the program is iteratively checked
with an increasing number of moves until it can be solved.

6.4 Discussion

We have reported on the design and implementation of s(CASP), a top-down system
to evaluate constraint answer set programs, based on s(ASP). Its ability to express
non-monotonic programs à la ASP is coupled with the possibility of expressing control
in a way similar to traditional logic programming — and, in fact, a single program can
use both approaches simultaneously, achieving the best of both worlds. We have also
reported a very substantial performance increase w.r.t. the original s(ASP) implemen-
tation. Thanks to the possibility of writing pieces of code with control in mind, it can
also beat state-of-the-art ASP systems in certain programs.

135

Chapter 7

Modeling and Reasoning in Event
Calculus using s(CASP)

In this chapter we present an AI application of Constraint Answer
Set Programming using s(CASP). Event Calculus (EC) is a sound
formalism for modelling commonsense reasoning, which is essen-
tial for building AI systems featuring human-like reasoning. Logic
programs that implement EC can not be easily executed directly
by Prolog, and implementations using ASP and/or SAT solvers
are limited to Discrete Event Calculus (DEC). Using s(CASP) the
resulting translation is more expressive thanks to its ability to rep-
resent classical and default negation. Additionally, it is able to
represent continuous change (e.g., time and other physical quan-
tities) thanks to the integration of constraint solvers over dense,
unbound domains such as CLP(Q). We present two simple exam-
ples to highlight the expressiveness of the resulting reasoner, which
besides allowing deductive reasoning also paves the way to abduc-
tive reasoning. We also show that s(CASP) with dense domains
outperforms a state-of-the-art DEC reasoner executed in a mature
highly optimized ASP system.

The ability to model continuous characteristics of the world is essential for Common-
sense Reasoning (CR) in many domains that require dealing with continuous change:
time, the height of a falling object, the gas level of a car, the water level in a sink, etc.
Event Calculus (EC) is a formalism based on many-sorted predicate logic (Kowalski
and Sergot, 1989; Mueller, 2014) that can represent continuous change and capture the
commonsense law of inertia, whose modeling is a pervasive problem in CR. In EC,
time-dependent properties and events are seen as objects and reasoning is performed on
the truth values of properties and the occurrences of events at a point in time.

137

MODELING AND REASONING IN EVENT CALCULUS USING S(CASP)

Answer Set Programming (ASP) has also been used to model the Event Calculus (Lee
and Palla, 2012, 2019). But as we mentioned before, classical implementations of EC
under ASP are limited to variables ranging over discrete and bound domains and use
mechanisms such as grounding and SAT solving to find out models (called answer sets)
of ASP programs. However, EC reasoning often needs variables ranging over dense
domains (e.g., those involving time or physical quantities) to faithfully represent the
properties of these domains.

In this chapter we use s(CASP) as the underlying reasoning infrastructure to model
and reason in Event Calculus. As we explain in Chapter 6, the s(CASP) system is
an implementation of Constraint Answer Set Programming over first-order predicates
which combines ASP and constraints. It features predicates, constraints among non-
ground variables, uninterpreted functions, and, most importantly, a top-down, query-
driven execution strategy. These features make it possible to return answers with non-
ground variables (possibly including constraints among them) and to compute partial
models by returning only the fragment of a stable model that is necessary to answer
a given query. Thanks to its interface with constraint solvers, sound non-monotonic
reasoning with constraints is possible.

The EC reasoner based on s(CASP) achieves more conciseness and expressiveness than
other related implementations. This is because continuous quantities can be faithfully
modeled as dense domains, while in other proposals (Lee and Palla, 2019; Mellarkod
et al., 2008) such quantities had to be discretized, and therefore, they lose precision or
even soundness. Additionally, in our approach the amalgamation of ASP and constraints
and its realization in s(CASP) is considerably more natural: under s(CASP), answer set
programs are executed in a goal-directed manner so constraints encountered along the
way are collected and solved dynamically as execution proceeds — this is very similar
to the way in which Prolog has been extended with constraints. The implementation of
other ASP systems featuring constraints is considerably more complex.

7.1 Motivation and Related Work

Previous work translated discrete EC into ASP (Lee and Palla, 2012, 2019) by reformu-
lating the EC models as first-order stable models and translating the (almost universal)
formulas of EC into a logic program that preserves stable models. Given a finite domain,
EC2ASP (and its evolution, F2LP) compile (discrete) Event Calculus formulas into
ASP programs (Lee and Palla, 2012, 2019). This translation scheme relies on two
facts: second order circumscription and first order stable model semantics coincide
on canonical formulas, and almost-universal formulas can be transformed into a logic
program while preserving the stable models. As a result, computing models of Event
Calculus descriptions can be done by computing the stable models of an appropriately
generated program.

138

7.1 Motivation and Related Work

Clearly, approaches featuring discrete domains cannot faithfully handle continuous
quantities such as time. In addition, because of their reliance on SAT solvers to find the
stable models, they can only handle safe programs. In contrast, the s(CASP) system (see
Chapter 6), because of its direct support for predicates with arbitrary terms, constructive
negation, and the novel forall mechanism, program safety is not a requirement. Thus,
s(CASP) can model Event Calculus axioms much more directly and elegantly.

The approaches mentioned above assume discrete quantities and do not support reason-
ing about continuous time or change. As long as SAT-based ASP systems are used to
model Event Calculus, continuous fluents cannot be straightforwardly expressed since
they require unbounded, dense domains for the variables. The work closest to incor-
porating continuous time makes use of SMT solvers. In this approach, constraints are
incorporated into ASP and the grounded theory is executed using an SMT solver (Lee
and Meng, 2013a). However, this approach has not been directly applied to modeling
the Event Calculus. The closest tool chain is ASPMT2SMT (Bartholomew and Lee,
2014) that uses gringo to partially ground the ASPMT theories and generate constraints
that are processed by Z3. However, regular, discrete ASP variables are at the heart of
the model, and these are grounded and used to generate the constraints. Therefore, if
these discrete variables approximate continuous variables in the model, the constraints
generated will only approximate the conditions of the original problem and therefore
their solutions will also be an approximation (or a subset) of the solutions for the real
problem. In other words, the initial discretization done for the ASP variables will be
propagated via the generated constraints to the final solutions that will, in the best case,
be a discretized version of the actual solutions. As an example, if time is discretized,
the solutions to the model will suffer from this discretization.

Other ASP-based approaches to deal with planning in continuous domains include,
for example, action languages (Gelfond and Lifschitz, 1993) which were developed to
model the elements of natural language that are used to describe the effects of actions,
and PDDL+ (Fox and Long, 2002), which was developed to allow reasoning with
continuous time-dependent effects. Action languages have been implemented using
answer set programming (Gelfond and Kahl, 2014) and there have been extensions of
action languages to accommodate time: for example, the action language C+ has been
extended to accommodate continuous time (Lee and Meng, 2013a). PPDL+ models
temporal behavior in terms of the initiation and termination of processes, which in
turn act upon the numeric components of states. Processes are initiated and terminated
instantaneously by actions or exogenous events. Continuous changes are made by
concurrent processes. In PDDL+, reasoning is monotonic and thus the degree of
elaboration tolerance is low. There are implementations of PDDL+ using constraint
answer set programming (CASP) (Balduccini et al., 2016) though these have not been
applied to modeling the Event Calculus and requires the use of discrete variables to
model some quantities, e.g., time.

EC can be written as a (Horn-clause) logic program, but it cannot be executed directly

139

MODELING AND REASONING IN EVENT CALCULUS USING S(CASP)

by Prolog (Shanahan, 2000), as it lacks some necessary features, such as constructive
negation, deduction of negative literals, and (to some extent) detection of infinite
failure (Mueller, 2008a). A common approach is to write a metainterpreter specific to
the EC variant at hand. This can be as complex as writing a (specialized) theorem prover
or, more often, a specialized interpreter whose correctness is difficult to ascertain (see
the code at (Chittaro and Montanari, 1996)). Therefore, some Prolog implementations
of EC do not completely formalize the calculus or implement a reduced version. In
our case, we leverage on the capabilities of s(CASP) to provide constructive, sound
negation, negative rule heads, and loop detection (see Chapter 6).

7.2 Event Calculus

EC is a formalism for reasoning about events and change (Mueller, 2014), of which
there are several axiomatizations. There are three basic, mutually related, concepts in
EC: events, fluents, and time points (see Fig. 7.1a). An event is an action or incident that
may occur in the world: for instance, a person dropping a glass is an event. A fluent
is a time-varying property of the world, such as the altitude of a glass. A time point
is an instant in time. Events may happen at a time point; fluents have a truth value at
any time point or over an interval, and their truth values are subject to change upon the
occurrence of an event. In addition, fluents may have (continuous) quantities associated
with them when they are true. For example, the event of dropping a glass initiates the
fluent that captures that the glass is falling, and perhaps its height above the ground,
and the event of holding a glass terminates the fluent that the glass is falling. An EC
description consists of a universal theory and a domain narrative. The universal theory
is a conjunction of EC axioms and the domain narrative consists of the causal laws of
the domain and the known events and fluent properties.

Circumscription (McCarthy, 1980) is applied to EC domain narratives to minimize
the extension of predicates and has two effects: the only events that happen are those
defined and the only effects of events are those defined.

The original EC (OEC) was introduced by Kowalski and Sergot in 1986 (Kowalski
and Sergot, 1989). OEC has sorts for event occurrences, fluents, and time periods. In
this chapter we use the Basic Event Calculus (BEC) formulated by Shanahan (Mueller,
2008a). Fig. 7.1b summarizes the seven BEC axioms. An explanation of these axioms
follows:

• Axiom BEC1. A fluent f is stopped between time points t1 and t2 iff it is
terminated or released by some event e that occurs after t1 and before t2.

• Axiom BEC2. A fluent f is started between time points t1 and t2 iff it is initiated
or released by some event e that occurs after t1 and before t2.

140

7.2 Event Calculus

Predicate Meaning
InitiallyN(f) fluent f is false at time 0
InitiallyP(f) fluent f is true at time 0
Happens(e, t) event e occurs at time t
Initiates(e, f , t) if e happens at time t, f is true and not released

from the commonsense law of inertia after t
Terminates(e, f , t) if e occurs at time t, f is false and not released

from the commonsense law of inertia after t
Releases(e, f , t) if e occurs at time t, f is released from the com-

monsense law of inertia after t
Tra jectory(f1, t1, f2, t2) if f1 is initiated by an event that occurs at t1, then

f2 is true at t2

StoppedIn(t1, f , t2) f is stopped between t1 and t2
StartedIn(t1, f , t2) f is started between t1 and t2

HoldsAt(f , t) fluent f is true at time t

(a) BEC predicates (e = event, f , f1, f2 = fluents, t, t1, t2 = timepoints).

BEC1. StoppedIn(t1, f , t2) ≡
∃e, t (Happens(e, t)∧ t1 < t < t2∧ (Terminates(e, f , t)∨Releases(e, f , t)))

BEC2. StartedIn(t1, f , t2) ≡
∃e, t (Happens(e, t)∧ t1 < t < t2∧ (Initiates(e, f , t)∨Releases(e, f , t)))

BEC3. HoldsAt(f2, t2) ←
Happens(e, t1)∧ Initiates(e, f1, t1)∧Tra jectory(f1, t1, f2, t2)∧¬StoppedIn(t1, f1, t2)

BEC4. HoldsAt(f , t) ← InitiallyP(f)∧¬StoppedIn(0, f , t)

BEC5. ¬HoldsAt(f , t) ← InitiallyN(f)∧¬StartedIn(0, f , t)

BEC6. HoldsAt(f , t2) ←
Happens(e, t1)∧ Initiates(e, f , t1)∧ t1 < t2∧¬StoppedIn(t1, f , t2)

BEC7. ¬HoldsAt(f , t2) ←
Happens(e, t1)∧Terminates(e, f , t1)∧ t1 < t2∧¬StartedIn(t1, f , t2)

(b) BEC axioms.

Figure 7.1: Formalization of Basic Event Calculus from (Mueller, 2014).

141

MODELING AND REASONING IN EVENT CALCULUS USING S(CASP)

• Axiom BEC3. A fluent f2 is true at time t2 if a fluent f1 initiated at t1 does not
finish before t2 and it makes fluent f2 be true.1

• Axiom BEC4. A fluent f is true at time t if it is true at time 0 and is not stopped
on or before t.

• Axiom BEC5. A fluent f is false at time t if it is false at time 0 and it is not
started on or before t.

• Axiom BEC6. A fluent f is true at time t2 if it is initiated at some earlier time t1
and it is not stopped before t2.

• Axiom BEC7. A fluent f is false at time t2 if it is terminated at some earlier time
t1 and it is not started on or before t2.

7.3 From Event Calculus to s(CASP)

7.3.1 Modeling EC with s(CASP)

Two key factors contribute to s(CASP)’s ability to model Event Calculus: the preserva-
tion of non-ground variables during the execution and the integration with constraint
solvers.

Treatment of variables in s(CASP): Thanks to the usage of non-ground variables,
s(CASP) is able to directly model Event Calculus axioms that would otherwise require
“unsafe” rules. In classical ASP, a rule is safe when every variable that appears in its
head or in a negated literal in its body also appears in a positive literal in the body of the
rule, and it is unsafe otherwise. Safety guarantees that every variable can be grounded.
For example, BEC4 is unsafe since parameter t, which appears in the head, does not
appear in a positive literal in the body (i.e., it only appears in ¬StoppedIn(0, f , t)). A
SAT-based ASP solver such as clingo (Gebser et al., 2014) will not be able to directly
process unsafe rules like this. However, the top-down execution strategy of s(CASP)
makes it possible to keep logical variables both during execution and in answer sets and
therefore free (logical) variables can be handled in heads and in negated literals.

Integration with constraint solvers: The s(CASP) system has a generic interface to
enable plugging in constraint solvers. s(CASP) currently uses Holzbaur’s CLP(Q) linear
constraint solver (Holzbaur, 1995), that supports the constraints <,>,=, 6=,≤,≥. As
we saw, the definitions and axioms of BEC require inequality comparisons over time

1For implementation convenience, and without loss of expressiveness, we assume that argument t2 in
Tra jectory(f1, t1, f2, t2) is not a time difference w.r.t. t1, but an absolute time after t1.

142

7.3 From Event Calculus to s(CASP)

1 %% BEC1

2 stoppedIn(T1,F,T2) :-

3 T1 #< T, T #< T2,

4 terminates(E,F,T),

5 happens(E,T).

6 stoppedIn(T1,F,T2) :-

7 T1 #< T, T #< T2,

8 releases(E,F,T),

9 happens(E,T).

10 %% BEC2

11 startedIn(T1,F,T2) :-

12 T1 #< T, T #< T2,

13 initiates(E,F,T),

14 happens(E,T).

15 startedIn(T1,F,T2) :-

16 T1 #< T, T #< T2,

17 releases(E,F,T),

18 happens(E,T).

19 %% BEC3

20 holdsAt(F2,T2) :-

21 initiates(E,F1,T1),

22 happens(E,T1),

23 trajectory(F1,T1,F2,T2),

24 not stoppedIn(T1,F1,T2).

25 %% BEC4

26 holdsAt(F,T) :-

27 0 #< T,

28 initiallyP(F),

29 not stoppedIn(0,F,T).

30 %% BEC5

31 -holdsAt(F,T) :-

32 0 #< T,

33 initiallyN(F),

34 not startedIn(0,F,T).

35 %% BEC6

36 holdsAt(F,T) :-

37 T1 #< T,

38 initiates(E,F,T1),

39 happens(E,T1),

40 not stoppedIn(T1,F,T).

41 %% BEC7

42 -holdsAt(F,T) :-

43 T1 #< T,

44 terminates(E,F,T1),

45 happens(E,T1),

46 not startedIn(T1,F,T).

47 %% Consistency

48 :- -holdsAt(F,T), holdsAt(F,T).

Figure 7.2: BEC axioms modeled in s(CASP)

points, and the ability of s(CASP) to make use of constraint solvers makes it ideal to
model continuous time in EC.

7.3.2 Translating the BEC Axioms into s(CASP)

Our translation of the BEC axioms into s(CASP) is similar to that of the systems
EC2ASP and F2LP (Lee and Palla, 2012, 2019), but we differ in some key aspects that
improve performance and are relevant for expressiveness: the treatment of rules with
negated heads, the possibility of generating unsafe rules, and the use of constraints
over rationals. We describe below, with the help of a running example, the translation
that turns logic statements (as found in BEC) into an s(CASP) program. The code
corresponding to the translations of the axioms of BEC in Fig. 7.1b can be found in
Fig. 7.2. s(CASP) code follows the syntactical conventions of logic programming:
constants (including function names) and predicate symbols start with a lowercase letter
and variables start with an uppercase letter. In addition, logic constraints are written
as constraints in s(CASP), (e.g., #<) to make it clear that they do not correspond to
Prolog’s arithmetic comparisons:

143

MODELING AND REASONING IN EVENT CALCULUS USING S(CASP)

• Atoms and Constants: Their names are preserved. Uniqueness of Names (Shana-
han, 1999) is assumed by default (and enforced) in logic programming.

• Constraints: Predicates that represent constraints (e.g., on time) are directly
translated to their counterparts in s(CASP). E.g., t1 < t2 becomes T1 #< T2,
which is handled by CLP(Q), one of the available constraint solvers. The transla-
tion (and s(CASP) itself) is parametric on the constraint domain.

• Definitions: The axiomatization of BEC uses definitions of the form
D(x) ≡ ∃yB(x,y), where B(x,y) is a conjunction of (negated) atoms, disjunc-
tions of atoms, and constraints (e.g., BEC1). The use of definitions makes it
easier to build conceptual blocks out of basic predicates. However, for perfor-
mance reasons we treat them as if they were written as ∀x(D(x)← ∃yB(x,y)),
following (Lee and Palla, 2019). Intuitively, if we ignore the truth value of D in
the (partial) models that s(CASP) generates, the models returned using implica-
tion and/or equivalence are the same, and the literal D can be ignored because if
were expanded where it is used, it would have disappeared. Additionally, s(CASP)
internally performs Clark’s completion (Clark, 1978) to the s(CASP) program,
and therefore, we can assume that s(CASP) rules expresses all possible ways in
which heads can be true.

• Rules with Positive Heads: A rule (e.g., BEC6)

∀x(H(x)←∃y(A(y)∧¬B(x,y)∧ x < y))

where x < y is a constraint, is translated into
1 h(X) :- X #< Y, a(Y), not b(X,Y).

s(CASP) performs left-to-right evaluation, and since constraint solvers are deter-
ministic, constraining variables as soon as possible helps reduce the size of the
search tree.

• Rules with Negated Heads: BEC rules 5 and 7 infer negated heads
¬HoldsAt(f , t) while rules 4 and 6 infer positive heads HoldsAt(f , t), i.e., they
follow, respectively, the scheme

∀x(H(x)←∃yA(x,y)) ∧ ∀x(¬H(x)←∃yB(x,y))

The standard approach to translate rules with negated heads is to convert them
into global constraints (Lee and Palla, 2012):
1 :- b(X,Y), h(X).

Our approach is to define instead a rule for the literal -h(X) that captures the
explicit evidence that h(X) is false:
1 -h(X) :- b(X,Y).

144

7.3 From Event Calculus to s(CASP)

1 happens(turn_on, 2).

2 happens(turn_off, 4).

3 happens(turn_on, 6).

4

5 initiates(turn_on, on, T).

6 terminates(turn_off, on, T).

7 trajectory(on, T1, red, T2) :-

8 T1 #< T2, T2 #< T1+1.

9 trajectory(on, T1, green, T2) :-

10 T2 #>= T1+1.

11 releases(turn_on, red, T).

12 releases(turn_on, green, T).

Figure 7.3: Narrative of the light scenario modeled in s(CASP)

which makes it possible to call -h(X) in a top-down execution. This construct
was termed classical negation in (Marple et al., 2017a) and behaves as a regular
predicate, except that the s(CASP) compiler, to ensure that -h(X) and h(X) cannot
be simultaneously true, automatically adds the global constraint :- -h(X), h(X).
Therefore, s(CASP) can detect an inconsistency (and will return an empty model)
if both HoldsAt(f , t) and ¬HoldsAt(f , t) can be simultaneously derived from an
BEC narrative. Since circumscription is not applied to the EC theory, not being
able to derive HoldsAt(f , t) does not immediately determine that its negation is
true. We will see how this is connected with the translation of the narrative.

• Rules with Disjunctive Bodies: A rule (e.g., BEC1)

∀x[H(x)←∃y((A(x,y)∨B(x,y))∧C(x,y))]

is translated into two separate clauses:
1 h(X) :- a(X,Y), c(X,Y).

2 h(X) :- b(X,Y), c(X,Y).

7.3.3 Translation of the Narrative

The definition of a given scenario (its narrative part) states the basic actions and effects
using the predicates in Fig. 7.1a. EC assumes circumscription of the predicates defined
in the narrative: the events (resp., effects) known to occur are the only events (resp.,
effects) that occur. Note that this is automatic in s(CASP), since it produces the Clark’s
completion of s(CASP) programs when generating the dual program. In addition, global
constraints can restrict the admissible states of the system.

Every basic BEC predicate P(x) (where P can stand for an event occurrence, an effect
of an event on a fluent, etc.) is translated into an s(CASP) rule P(x)← γ , where γ states
all the cases where P(x) is true. In many cases, these are facts, but in other cases γ

captures the conditions for P(x) to hold.

Let us consider example 14 in (Mueller, 2014), which reasons about turning a light
switch on and off. Fig. 7.3 shows the encoding of this example under s(CASP).

145

MODELING AND REASONING IN EVENT CALCULUS USING S(CASP)

• Events: The description below (translated in lines 1-3 of Fig. 7.3):

Happens(e, t) ≡ (e = TurnOn∧ (t = 2∨ t = 6)) ∨
(e = TurnO f f ∧ t = 4)

states that the TurnOn event will happen at time t = 2 and t = 6, and that
TurnO f f will happen at t = 4.

• Event effects: When the event TurnOn happens, the light is put in on status; sim-
ilarly, when the event TurnO f f happens, the on status of the light is terminated.
In both cases, this can happen at any time t (lines 5 and 6 in Fig. 7.3)

• Release from Inertia: When turned on, the light emits red light within the first
second, and then green light is emitted. Tra jectory expresses how this change
depends on the time elapsed since an event occurrence. The Tra jectory formula
has the shape P(x)← γ , as we need to state the (time) conditions for the fluent to
become activated (see lines 7-10 in Fig. 7.3). Releases states that the color of the
light is released from the commonsense law of inertia. After a fluent is released,
its truth value is not determined by BEC and it can change. Thus, there may be
models in which the fluent is true, and models in which the fluent may be false.
Releasing a fluent (see lines 11 and 12 in Fig. 7.3) frees it up so that other axioms
in the domain description can be used to determine its truth value, thus allowing
us to represent continuous change of the fluent.

• State Constraints: State constraints usually contain HoldsAt(f , t) or
¬HoldsAt(f , t) and represent restrictions on the models. In our running ex-
ample, a light cannot be red and green at the same time: ∀t.¬(HoldsAt(Red, t)∧
HoldsAt(Green, t)). This is translated as :- holdsAt(red,T), holdsAt(green,T).
Adding this constraint to the program in Fig. 7.3 does not change its models.
However, if we change line 8 stating that the light is red for 2 seconds (i.e.,
T2 #< T1+2), the state constraint is violated and therefore there are no valid
models.

• A Note on using ¬HoldsAt(f , t) in γ: The basic BEC predicates may depend
on what the BEC theory can deduce, e.g., γ may depend on HoldsAt(f , t)
or ¬HoldsAt(f , t) (see Fig. 7.4). HoldsAt(f , t) can be invoked directly, but
¬HoldsAt(f , t) ought to be called using classical negation, e.g., -holdsAt(F,T).
The reason is that since BEC does not apply circumscription to its axioms, we
can deduce only the truth (or falsehood) of a predicate when we have direct
evidence of either of them — i.e., what the positive (holdsAt(F,T)) and negative
(-holdsAt(F,T)) heads provide.

146

7.3 From Event Calculus to s(CASP)

1 #include bec_theory.

2

3 max_level(10):- not max_level(16).

4 max_level(16):- not max_level(10).

5

6 initiallyP(level(0)).

7 happens(overflow,T).

8 happens(tapOn,5).

9

10 initiates(tapOn,filling,T).

11 terminates(tapOff,filling,T).

12 initiates(overflow,spilling,T):-

13 max_level(Max),

14 holdsAt(level(Max), T).

15 releases(tapOn,level(0),T):-

16 happens(tapOn,T).

17

18 trajectory(filling,T1,level(X2),T2):-

19 T1 #< T2, X2 #= X+T2-T1,

20 max_level(Max), X2 #=< Max,

21 holdsAt(level(X),T1).

22 trajectory(filling,T1,level(overflow),T2):-

23 T1 #< T2, X2 #= X+T2-T1,

24 max_level(Max), X2 #> Max,

25 holdsAt(level(X),T1).

26 trajectory(spilling,T1,leak(X),T2):-

27 holdsAt(filling, T2),

28 T1 #< T2, X #= T2-T1.

Figure 7.4: Encoding of an Event Calculus narrative with continuous change

7.3.4 Continuous Change: A Complete Encoding

We consider now an example from (Shanahan, 1999): a water tap fills a vessel, whose
water level is subject to continuous change. When the level reaches the bucket rim, it
starts spilling. We will present the main ideas behind its encoding (Fig. 7.4) and will
show some queries we can ask about its state and behavior.

• Continuous Change: The fluent Level(x) represents that the water is at level x
in the vessel. The first Tra jectory formula (lines 18-21) determines the time-
dependent value of the Level(x) fluent,2 which is active as long as the Filling
fluent is true and the rim of the vessel is not reached. Additionally, the second
Tra jectory formula (lines 22-25) allows us to capture the fact that the water
reached the rim of the vessel and overflowed.

• Triggered Fluent: The fluent Spilling is triggered (lines 12-14) when the water
level reaches the rim of the vessel. As a consequence, the Tra jectory formula
in lines 26-28 starts the fluent Leak(x) and captures the amount of water leaked
while the fluent Spilling holds.

• Different Worlds: The clauses in lines 3-4 force the vessel capacity to be
either 10 or 16, i.e., they create two possible worlds/models: {max_level(10),
not max_level(16), . . .} and {max_level(16), not max_level(10),. . .}.
The same mechanism can be used to state whether an event happens or not. For
this, a keyword #abducible is provided as a shortcut in s(CASP). We will use it
in the Abduction subsection later on.

2For simplicity the amount of water filled/leaked correspond directly to how long the water has been
pouring in / spilling from the vessel.

147

MODELING AND REASONING IN EVENT CALCULUS USING S(CASP)

7.4 Examples and Evaluation

The benchmarks used in this section are available as part of the s(CASP) distribution
at https://gitlab.software.imdea.org/ciao-lang/sCASP/. They were run on a
MacOS 10.14.3 laptop with an Intel Core i5 at 2GHz.

Deduction: Deduction determines whether a state of the world is possible given a
theory (in our case, BEC) and an initial narrative. We can perform deduction in BEC
for the previous examples through queries to the corresponding s(CASP) program. For
the lights scenario (Fig. 7.3):

?- holdsAt(on,3) succeeds: it deduces that the light is on at time 3.

?- -holdsAt(on,5) succeeds: the light is not on at time 5.

?- holdsAt(F,3) is true in one stable model containing holdsAt(green,3) and
holdsAt(on,3), meaning that at time 3, the light is on and green.

In the water level scenario (Fig. 7.4) we can make queries involving time and the water
level:

?- holdsAt(level(H),15/2) is true when H=5/2.

?- holdsAt(level(5/2),T) is true when T=15/2.

Note that, as explained with more detail in the Evaluation subsection below, s(CASP)
can operate and answer correctly queries involving rationals without having to modify
the original program to introduce domains for the relevant variables or to scale the
constants to convert rationals into integers.

Abduction: Abductive reasoning tries to determine a sequence of events/actions that
reaches a final state. In the case of ASP, actions are naturally captured as the set of atoms
that are true in a model which includes the initial and final states and are consistent
with BEC. For the water scenario, (Fig. 7.4), let us assume we want to reach water level
14 at time 19. The query ?- holdsAt(level(14),19)will return a single model with
a vessel size of 16 and the rest of the atoms in the model capturing what must (not)
happen to reach this state.

More interesting abductive tasks can be performed: adding the line #abducible

happens(tapOff,U) to the program, we specify that it is possible (but not necessary) for

148

https://gitlab.software.imdea.org/ciao-lang/sCASP/

7.4 Examples and Evaluation

the tap to close at some time U. As we mentioned in Section 7.3.4, this directive is trans-
lated into code that creates different worlds/models. The query ?- holdsAt(spilling,

T) determines if the water may overspill and under which conditions. s(CASP) returns
two models:

• One containing T > 15, holdsAt(spilling,T), happens(tapOn,5),

5 < U < 15, not happens(TapOff,U), max_level(10) meaning that the
water will spill at T=15 if the vessel has a capacity of 10, the tap is open at T=5,
and it is not closed between times 5 and 15.

• Another similar model, with the water spilling at T=21 in a vessel with capacity
of 16 and where the tap was not closed before U=21.

Note that s(CASP) determined the truth value of Happens and, more importantly,
performed constraint solving to infer the time ranges during which some events ought
(and ought not) to take place, represented by the negated atoms in the models inferred
by constructive negation. Since all relevant atoms have a time parameter, they actually
represent a timed plan. Due to the expressiveness of constraints, this plan contains
information on time points when events must (not) happen and also on time windows
(sometimes in relation with other events) during which events must (not) take place.
Note that it would be impossible to (finitely) represent this interval with ground atoms,
as it corresponds to an infinite number of points.

Evaluation: Comparing directly our implementation of BEC in s(CASP) with imple-
mentations in other systems is not easy: most previous systems implemented discrete
Event Calculus (DEC) and they do not support continuous quantities. One of them is
F2LP (Lee and Palla, 2019), an ASP-based system that according to (Lee and Palla,
2012) outperforms DEC reasoner (Mueller, 2008b), reported by (Lee and Palla, 2012)
as the more efficient SAT-based implementation. F2LP is a tool that executes DEC by
turning first order formulas under the stable model semantics into a logic program w.o.
constraints that is evaluated using an ASP solver.

We compared the light scenario in Fig. 7.3 running under s(CASP) with the F2LP
translation under clingo 5.1.1, the current version of the state-of-the-art ASP system.
Since the directive #domain is no longer available in clingo, we had to adapt the
translation of F2LP adding timestep(1..10) and timestep/1 to make the clauses
safe (Appendix D.1). While under s(CASP) we can reason about time points in an
unbounded continuous domain, the previous encoding of F2LP will make time belong
to the integers from 1 to 10. Therefore, since the light is red for t > 2, t < 3 and for
t > 6, t < 7, there are no integer time points from 1 to 10 when the emitted light is
red. I.e., for the query ?- holdsAt(red,T) the execution under clingo fails and the
execution under s(CASP) returns the constraint T #> 2, T #< 3 and T #> 6, T #< 7.

149

MODELING AND REASONING IN EVENT CALCULUS USING S(CASP)

Table 7.1: Run time (ms) comparison for the light scenario.

Queries s(CASP) F2LP+clingo

?- holdsAt(red,6.9). 216 73
?- holdsAt(red,6.99). 217 8,798

?- holdsAt(red,6.999). 213 > 5 min.

In order to find at what time point the light red is on under clingo, we had
to modify the program generated by F2LP to refine the timestep domain with
timestep(1..10*P) :- precision(P), where the new predicate precision(P) makes
it possible to have a finer grain for the possible values of timestep by increasing the
value of P. E.g, for P=10 it is possible to check if the light is red at time t = 6.9 by
querying ?- holdsAt(red,69), for P=100 it is possible to check for t = 6.99 by query-
ing ?- holdsAt(red,699), and so on. This modification (Appendix D.2) obfuscates
the resulting encoding (and for more complex narratives it would be harder or even
infeasible) and also impact negatively its performance. Table 7.1 shows that additional
precision in the F2LP encoding (to handle each of the queries) increases the execution
run-time of clingo by orders of magnitude. On the other hand, s(CASP) does not have
to adapt its encoding/queries and its performance does not change.

7.5 Discussion

We showed how Event Calculus can be modeled in s(CASP), a goal-directed imple-
mentation of constraint answer set programming with predicates, with much fewer
limitations than other approaches. s(CASP) can capture the notion of continuous time
(and, in general, fluents) in Event Calculus thanks to its grounding-free top-down evalu-
ation strategy. It can also represent complex models and answer queries in a flexible
manner thanks to the use of constraints.

The main contribution of the chapter is to show how Event Calculus can be directly
modeled using s(CASP), an ASP system that seamlessly supports constraints. The
modeling of Event Calculus using s(CASP) is more elegant and faithful to the original
axioms compared to other approaches such as F2LP, where time has to be discretized.
While other approaches such as ASPMT do support continuous domains, their reliance
on SMT solvers makes their implementation really complex as associations among
variables are lost during grounding. The use of s(CASP) brings other advantages: for
example, the justification for the answers to a query is obtained for free, since in a query-
driven system, the justification is merely the trace of the proof. Likewise, explanations
for observations via abduction are also generated for free, thanks to the goal-directed,

150

7.5 Discussion

top-down execution of s(CASP).

To the best of our knowledge, this approach is the only one that faithfully models
continuous-time Event Calculus under the stable model semantics. All other approaches
discretize time and thus do not model EC in a sound manner. Our approach supports
both deduction and abduction with little or no additional effort.

The work reported in this chapter can be seen as the first serious application of s(CASP)
(see Chapter 6). It illustrates the advantages that goal-directed ASP systems have over
grounding and SAT solver-based ones for certain applications. Our future work includes
applying the s(CASP) system to solving planning problems where a generated plan
must obey real-time constraints.

151

Chapter 8

Conclusions and Future Work

This thesis presents approaches to improving constraint logic programming by ad-
dressing the main research challengers described in Chapter 1: (i) extend theoretical
foundations and provide a flexible Tabled Constraint Logic Programming framework,
(ii) design a goal-directed non-monotonic reasoner to compute Constraint Answer Set
Programming.

Although other frameworks have been proposed for Tabled Constraint Logic Program-
ming, they limited the use of entailment and/or projection and they do not provide a
clear interface to facilitate the integration of different constraint solvers. Moreover,
mainly due to those limitations, they have not been used in real applications. Our
proposal provides a modular interface that we used to re-implement the fixpoint algo-
rithm of CiaoPP, an analyzer and optimizer suite for logic programs, part of the Ciao
development environment.

Concerning the evaluation of Constraint Answer Set Programs we re-implemented and
extended a goal-directed non-monotonic reasoner that does not require the grounding
phase. The re-implemented interpreter lets Prolog handle natively operations such
as those involving constraint and the extended compiler and forall algorithm make
it possible the evaluation of CASP programs using arbitrary constraint domains and,
therefore, it does not restrict the constraint domains or the type and number of models
that can be computed.

Let us review the contributions of this thesis, advanced in Chapter 1.3, in the light of
the evaluation results and other validation showed throughout the previous chapters.

153

CONCLUSIONS AND FUTURE WORK

8.1 Mod TCLP: Summary

The first contributions are the foundations and implementation of Mod TCLP, a generic
framework that consists in a modular framework that facilitates the integration of differ-
ent constraint solvers through a simple interface, and performs a full implementation of
the entailment and projection of constraint stores. In particular, we made the specific
following contributions:

• We extended the theoretical basis of Tabled Constraint Logic Programming for
a top-down execution in Chapter 2. We proved soundness and completeness of
TCLP under a more efficient answer management strategy, and we formulated
refined termination properties by stating additional conditions of programs/queries
using non constraint-compact constraint domains to ensure termination (including
the Herbrand domain).

• We designed and implemented Mod TCLP, a modular framework that provides a
simple interface to integrate different constraint solvers and fully implement the
call/answer entailment phase of TCLP. Details of Mod TCLP and the integration
of different constraint solver are described in Chapter 3.

• We validated the flexibility of Mod TCLP and its performance with the integration
of a solver previously written in C, CLP(D≤), two existing classical solvers,
CLP(Q/R), and a new solver, CLP(Lat). In some of the benchmarks large
savings are attained w.r.t. non-tabled/tabled executions, even taking into account
the penalty to pay for the additional flexibility and modularity.

• In Chapter 4 we proposed the use of Mod TCLP to implement a framework
for incremental evaluation of lattice-based aggregates under a new semantics
consistent with the fixpoint semantics.

• Finally, in Chapter 5 we re-implemented PLAI, a fixpoint computation algorithm
for abstract interpretation using Mod TCLP, which, to the best of our knowledge,
is the first real application of Tabled Constraint Logic Programming. The resulting
encoding size is one-third of the original code and, since the dependencies
between predicates and analysis restarts are kept by the tabling engine, the TCLP
version is much simpler than the current implementation in CiaoPP. Additionally,
we evaluate its performance by analysing several programs with two relevant
abstract domains (Groundness and Sharing+Freeness) and, in most cases, the
TCLP implementation showed improved performance (with speedups of up to
1.6×).

154

8.2 s(CASP): Summary

8.2 s(CASP): Summary

We addressed the limitation of bottom-up implementations of Constraint Answer Set
Programming with s(CASP), a goal-directed, non-monotonic reasoner which com-
putes CASP programs without grounding. In particular, we have made the following
contributions:

• We designed and implemented s(CASP), a top-down system to compute CASP
programs based on s(ASP). Its ability to evaluate non-monotonic programs is
coupled with the possibility of writing algorithms using the execution strategies
similar to Prolog’s. The details of s(CASP) model and implementation are
described in Chapter 6.

• We validated the expressiveness of s(CASP) w.r.t. ASP, CLP, and other ASP
systems featuring constraints with several examples, and showed it has better
performance than highly optimized ASP systems in Chapter 6.

• Finally, in Chapter 7 we described a framework to model and reason in Event
Calculus, the first serious application of s(CASP). This framework can capture
the notion of continuous time (and, in general, continuous fluents) thanks to
the grounding-free top-down evaluation strategy of s(CASP). To the best of our
knowledge, this approach is the only one that faithfully models continuous time
calculus under the stable model semantics. Note that all other approaches we are
aware of discretize time and thus do not model the EC accurately and faithfully.

8.3 Directions for Future Research

The resulting proposals, presented in this thesis, contribute to improving the expressive-
ness and performance of Constraint Logic Programming and the applications presented
constitute an evidence of a step forward. Nevertheless, we have already identified some
future research directions and issues that, in some cases, we have started to explore.

• The first main future work line is the extension of s(CASP) with tabling featuring
call and answer entailment. A preliminary attempt to incorporate tabling uses
Mod TCLP to detect repeated call by checking entailment between their respective
call paths (due to the non-monotonic reasoning subsumed calls may belong to
different models). To reduce the memory footprint, it would require a more
compact representation of the call path and/or tracking only the active derivation.

The extended theoretical foundation, in terms of soundness, completeness, and termina-
tion, of Tabled Constraint Logic Programming, and the modular design of Mod TCLP,
pave the way to new research directions:

155

CONCLUSIONS AND FUTURE WORK

• Design and implement a TCLP interface for CLP(FD) (Dı́az and Codognet,
1993; Dincbas et al., 1988; Van Hentenryck, 1989), a constraint solver over
finite domains. CLP(FD) is widely used to model discrete problems such as
scheduling, planning, packing, and timetabling. The implementation is not
straightforward due to the cost of expressing projection and check entailment
inside CLP(FD) (Carlson et al., 1994). But as seen in Section 2.6, we can use
partial projections to check call entailment. In the case of CLP(FD), the partial
projection could use the domains of the constrained variables of the call and
discard the constraints between these variables.

• Evolve CLP(Lat), the constraint solver over lattices, to allow reasoning on on-
tologies, a TCLP-based reasoner would be able to feature automatic reuse of
properties from more general concepts and to combine and/or aggregate answers
into a more general element of the ontology.

• Explore richer, faster, and more flexible implementations of abstract interpretation-
based analyzers. We already show the improvement in terms of simplicity of
PLAI under Mod TCLP w.r.t. its Prolog version. The next steps would be:

– A re-implementation of the abstract domains, with an optimized representa-
tion of the abstract substitutions, that uses CLP techniques to propagate the
effects of updates.

– The use of constraints to define widening heuristics independently of the
fixpoint algorithm in order to improve the flexibility, precision, and perfor-
mance w.r.t. the state-of-the-art implementation available in CiaoPP.

– Implement a backward analysis based on the tabled fixpoint. Apply it on
static analysis, verification of energy/resources consumption, optimization
of dynamic scheduling (concurrency), testing and/or debugging.

Additionally, as pointed out before, the implementation of s(CASP) can still be substan-
tially improved:

• Static analysis can be used to optimize the compilation of non-monotonic check
rules, being able to interleave them with the top-down execution strategy to
discard models as soon as they are shown inconsistent. That can be done using
the Groundness abstract domain, extended to handle dual rules and the c-forall.

• The disequality constraint solver should be improved to handle the pending cases
(see Section 6.1.2). Its integration with the tabling engine will improve the
performance by suspending more particular calls and reusing previous results.

• Dependency analysis could be used to improve the generation of the dual pro-
grams. The application of partial evaluation can remove (part of) the overhead
brought about by the interpreting approach.

156

8.3 Directions for Future Research

• Finally, another significant research direction includes applying s(CASP) system
to solving planning problems where a generated plan must obey time constraints
over continuous domains.

157

Funding Acknowledgments

This research was partially supported by EIT Digital (https://eitdigital.eu),
MINECO project TIN2015-67522-C3-1-R (TRACES), Comunidad de Madrid project
S2013/ICE-2731 N-Greens Software, Comunidad de Madrid project S2018/TCS-4339
BLOQUES-CM, co-funded by EIE Funds of the European Union, and USA NFS projects
NSF IIS 1718945 and NSF IIS 1423419.

159

https://eitdigital.eu

Bibliography

Alferes, J. J., Pereira, L. M., and Swift, T. (2004). Abduction in Well-Founded Se-
mantics and Generalized Stable Models via Tabled Dual Programs. Theory and
Practice of Logic Programming 4.4, pp. 383–428 (cited on p. 118).

Allen, J. F. (1983). Maintaining Knowledge about Temporal Intervals. Communica-
tions of the ACM 26.11, pp. 832–843 (cited on p. 85).

Alviano, M., Faber, W., Greco, G., and Leone, N. (2012). Magic Sets for Disjunctive
Datalog Programs. Artificial Intelligence 187, pp. 156–192 (cited on p. 5).

Arias, J. (2016). Tabled CLP for Reasoning over Stream Data. In: Technical Com-
munications of the 32nd Int’l. Conference on Logic Programming. Vol. 52. Doctoral
Consortium. OASIcs, pp. 1–8 (cited on p. 131).

Arias, J., Chen, Z., Carro, M., and Gupta, G. (2019a). Modeling and Reasoning in
Event Calculus Using Goal-Directed Constraint Answer Set Programming. In:
Pre-Proc. of the 29th Int’l. Symposium on Logic-based Program Synthesis and
Transformation (cited on p. 9).

Arias, J. and Carro, M. (2016). Description and Evaluation of a Generic Design
to Integrate CLP and Tabled Execution. In: 18th Int’l. ACM Symposium on
Principles and Practice of Declarative Programming. ACM Press, pp. 10–23 (cited
on p. 7).

— (2019a). Description, Implementation, and Evaluation of a Generic Design for
Tabled CLP. Theory and Practice of Logic Programming 19.3, pp. 412–448 (cited
on p. 7).

— (2019b). Evaluation of the Implementation of an Abstract Interpretation Al-
gorithm using Tabled CLP. Theory and Practice of Logic Programming 19.5-6.
Special Issue on ICLP’19, pp. 1107–1123 (cited on p. 8).

— (2019c). Incremental Evaluation of Lattice-Based Aggregates in Logic Pro-
gramming Using Modular TCLP. In: 21st Int’l. Symposium on Practical Aspects
of Declarative Languages. Ed. by J. J. Alferes and M. Johansson. Vol. 11372. LNCS.
Springer, pp. 98–114 (cited on p. 8).

161

BIBLIOGRAPHY

Arias, J., Carro, M., Salazar, E., Marple, K., and Gupta, G. (2018). Constraint Answer
Set Programming without Grounding. Theory and Practice of Logic Program-
ming 18.3-4. Special Issue on ICLP’18, pp. 337–354 (cited on p. 8).

Arias, J., Carro, M., Chen, Z., and Gupta, G. (2019b). Constraint Answer Set Pro-
gramming without Grounding and its Applications. In: 3rd Int’l. Workshop on
the Resurgence of Datalog in Academia and Industry (Datalog 2.0). Ed. by M.
Alviano and A. Pieris. Vol. 2368. CEUR-WS, pp. 22–26 (cited on p. 9).

Balduccini, M. and Lierler, Y. (2017). Constraint Answer Set Solver EZCSP and
why Integration Schemas Matter. Theory and Practice of Logic Programming
17.4, pp. 462–515 (cited on pp. 5, 6).

Balduccini, M., Magazzeni, D., and Maratea, M. (2016). PDDL+ Planning via Con-
straint Answer Set Programming. In: 9th Workshop on Answer Set Programming
and Other Computing Paradigms. http://arxiv.org/abs/1609.00030 (cited on p. 139).

Banbara, M., Kaufmann, B., Ostrowski, M., and Schaub, T. (2017). Clingcon: The
Next Generation. Theory and Practice of Logic Programming 17.4, 408–461 (cited
on p. 6).

Bartholomew, M. and Lee, J. (2014). System aspmt2smt: Computing ASPMT Theo-
ries by SMT Solvers. In: 14th European Conference on Logics in Artificial Intelli-
gence. Vol. 8761. LNCS. Springer, pp. 529–542 (cited on p. 139).

Baselice, S. and Bonatti, P. A. (2010). A Decidable Subclass of Finitary Programs.
Theory and Practice of Logic Programming 10.4-6, pp. 481–496 (cited on pp. 2, 6).

Baselice, S., Bonatti, P. A., and Criscuolo, G. (2009). On Finitely Recursive Programs.
Theory and Practice of Logic Programming 9.2, pp. 213–238 (cited on pp. 2, 6).

Bratko, I. (2001). Prolog programming for artificial intelligence. Pearson education
(cited on pp. 93, 171).

Brewka, G., Eiter, T., and Truszczyński, M. (2011). Answer Set Programming at a
Glance. Communications of the ACM 54.12, pp. 92–103 (cited on p. 116).

Bruynooghe, M. (1991). A Practical Framework for the Abstract Interpretation of
Logic Programs. Journal of Logic Programming 10, pp. 91–124 (cited on p. 99).

Bueno, F., Lopez-Garcia, P., and Hermenegildo, M. V. (2004). Multivariant Non-
Failure Analysis via Standard Abstract Interpretation. In: 7th Int’l. Symposium
on Functional and Logic Programming. Vol. 2998. LNCS. Springer-Verlag, pp. 100–
116 (cited on p. 100).

Cabeza, D. and Hermenegildo, M. V. (2000). A New Module System for Prolog. In:
International Conference on Computational Logic, CL2000. LNAI 1861. Springer-
Verlag, pp. 131–148 (cited on p. 83).

162

BIBLIOGRAPHY

Calimeri, F., Cozza, S., and Ianni, G. (2007). External Sources of Knowledge and
Value Invention in Logic Programming. Annals of Mathematics and Artificial
Intelligence 50.3-4, pp. 333–361 (cited on p. 5).

Carlson, B., Carlsson, M., and Diaz, D. (1994). Entailment of Finite Domain Con-
straints. In: 11th International Conference on Logic Programming. The MIT Press,
pp. 339–353 (cited on p. 156).

Charatonik, W., Mukhopadhyay, S., and Podelski, A. (2002). Constraint-Based Infi-
nite Model Checking and Tabulation for Stratified CLP. In: 18th Int’l. Confer-
ence on Logic Programming. LNCS, pp. 115–129 (cited on pp. 4, 45).

Chico de Guzmán, P., Carro, M., Hermenegildo, M. V., and Stuckey, P. (2012). A
General Implementation Framework for Tabled CLP. In: 15th Int’l. Symposium
on Functional and Logic Programming. Ed. by T. Schrijvers and P. Thiemann.
Vol. 7294. LNCS. Springer Verlag, pp. 104–119 (cited on pp. 4, 25, 46, 60, 62, 64,
98).

Chittaro, L. and Montanari, A. (1996). Efficient Temporal Reasoning in the Cached
Event Calculus. Computational Intelligence 12, pp. 359–382 (cited on p. 140).

Clark, K. L. (1978). Negation as Failure. In: Logic and Data Bases. Ed. by H. Gallaire
and J. Minker. Springer, pp. 293–322 (cited on pp. 117, 118, 144).

Cousot, P. and Cousot, R. (1977). Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fix-
points. In: 4th Int. ACM Symposium on Principles of Programming Languages.
ACM Press, pp. 238–252 (cited on pp. 71, 99).

Cui, B. and Warren, D. S. (2000). A System for Tabled Constraint Logic Program-
ming. In: Int’l. Conference on Computational Logic. Vol. 1861. LNCS. Springer,
pp. 478–492 (cited on pp. 4, 25, 42, 45, 48, 64, 66).

Dal Palù, A., Dovier, A., Pontelli, E., and Rossi, G. (2009). GASP: Answer Set
Programming with Lazy Grounding. Fundamenta Informaticae 96.3, pp. 297–
322 (cited on pp. 2, 6).

Dawson, S., Ramakrishnan, C. R., and Warren, D. S. (1996). Practical Program Anal-
ysis Using General Purpose Logic Programming Systems – A Case Study. In:
Proc. 9th ACM Conference on Programming Language Design and Implementation.
New York, USA: ACM Press, pp. 117–126 (cited on p. 4).

Demoen, B. and Sagonas, K. (1998). CAT: The Copying Approach to Tabling. In:
Programming Language Implementation and Logic Programming. Vol. 1490. Lec-
ture Notes in Computer Science. Springer-Verlag, pp. 21–35 (cited on p. 98).

Dı́az, D. and Codognet, P. (1993). A Minimal Extension of the WAM for clp(FD).
In: 10th International Conference on Logic Programming. Budapest. MIT press,
pp. 774–790 (cited on p. 156).

163

BIBLIOGRAPHY

Dietrich, S. W. (1987). Extension Tables: Memo Relations in Logic Programming.
In: Fourth IEEE Symposium on Logic Programming, pp. 264–272 (cited on p. 98).

Dincbas, M., Hentenryck, P. V., Simonis, H., and Aggoun, A. (1988). The Constraint
Logic Programming Language CHIP. In: 2nd International Conference on Fifth
Generation Computer Systems, pp. 249–264 (cited on p. 156).

Dovier, A., Formisano, A., and Pontelli, E. (2005). A Comparison of CLP(FD) and
ASP Solutions to NP-Complete Problems. In: 21st International Conference on
Logic Programming. Springer, pp. 67–82 (cited on pp. 133, 204).

Emden, M. H. van and Kowalski, R. A. (1976). The Semantics of Predicate Logic as
a Programming Language. Journal of the ACM 23, pp. 733–742 (cited on pp. 2,
20).

Falaschi, M., Levi, G., Martelli, M., and Palamidessi, C. (1989). Declarative Modeling
of the Operational Behaviour of Logic Programs. Theoretical Computer Science
69, pp. 289–318 (cited on pp. 19–21).

Fox, M. and Long, D. (2002). PDDL+: Modeling continuous time dependent ef-
fects. In: Proceedings of the 3rd International NASA Workshop on Planning and
Scheduling for Space. Vol. 4, p. 34 (cited on p. 139).

Freire, J., Swift, T., and Warren, D. S (2001). Beyond Depth-First: Improving Tabled
Logic Programs through Alternative Scheduling Strategies. In: International
Symposium on Programming Language Implementation and Logic Programming.
LNCS 1140. Springer-Verlag, pp. 243–258 (cited on p. 98).

Frigioni, D., Marchetti-Spaccamela, A., and Nanni, U. (1998). Fully Dynamic Shortest
Paths and Negative Cycles Detection on Digraphs with Arbitrary Arc Weights.
In: 6th International European Symposium on Algorithms, pp. 320–331 (cited on
p. 60).

Gabbrielli, M. and Levi, G. (1991). Modeling Answer Constraints in Constraint
Logic Programs. In: Proc. 8th Int’l Conference on Logic Programming, pp. 238–
252 (cited on pp. 20, 125).

Gange, G., Navas, J. A., Schachte, P., Søndergaard, H., and Stuckey, P. J. (2013). Failure
Tabled Constraint Logic Programming by Interpolation. Theory and Practice
of Logic Programming 13.4-5, pp. 593–607 (cited on p. 4).

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., and Thiele, S.
(2008). A User’s Guide to gringo, clasp, clingo, and iclingo. Available at: http:
//potassco.sourceforge.net. Accessed on December, 2019 (cited on pp. 134,
206).

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. (2014). Clingo = ASP +
Control: Preliminary Report. arXiv preprint arXiv:1405.3694 (cited on p. 142).

164

http://potassco.sourceforge.net
http://potassco.sourceforge.net

BIBLIOGRAPHY

Gelfond, M. and Kahl, Y. (2014). Knowledge Representation, Reasoning, and the
Design of Intelligent Agents: The Answer-Set Programming Approach. Cam-
bridge University Press (cited on p. 139).

Gelfond, M. and Lifschitz, V. (1988). The Stable Model Semantics for Logic Pro-
gramming. In: 5th International Conference on Logic Programming, pp. 1070–
1080 (cited on pp. 2, 5, 116, 117).

— (1991). Classical Negation in Logic Programs and Disjunctive Databases. New
Generation Computing 9.3/4, pp. 365–386 (cited on p. 117).

— (1993). Representing Action and Change by Logic Programs. The Journal of
Logic Programming 17.2-4, pp. 301–321 (cited on p. 139).

Genaim, S., Codish, M., and Howe, J. (2001). Worst-Case Groundness Analysis
Using Definite Boolean Functions. Theory and Practice of Logic Programming
1.05, pp. 611–615 (cited on p. 72).

Guo, H.-F. and Gupta, G. (2008). Simplifying Dynamic Programming via Mode-
directed Tabling. Software: Practice and Experience 1, pp. 75–94 (cited on p. 78).

Gupta, G., Bansal, A., Min, R., Simon, L., and Mallya, A. (2007). Coinductive Logic
Programming and its Applications. In: 23rd Int’l. Conference on Logic Program-
ming. Springer, pp. 27–44 (cited on p. 122).

Hermenegildo, M. V., Puebla, G., Bueno, F., and Lopez-Garcia, P. (2005). Integrated
Program Debugging, Verification, and Optimization Using Abstract Interpre-
tation (and The Ciao System Preprocessor). Science of Computer Programming
58.1–2, pp. 115–140 (cited on p. 99).

Hermenegildo, M. V., Bueno, F., Carro, M., Lopez-Garcia, P., Mera, E., Morales, J.,
and Puebla, G. (2012). An Overview of Ciao and its Design Philosophy. Theory
and Practice of Logic Programming 12.1–2, pp. 219–252 (cited on pp. 46, 99, 123).

Hölldobler, S. and Schweizer, L. (2014). Answer Set Programming and clasp, a
Tutorial. In: Young Scientists’ International Workshop on Trends in Information
Processing, pp. 77–95 (cited on p. 133).

Holzbaur, C. (1992). Metastructures vs. Attributed Variables in the Context of
Extensible Unification. In: Int’l. Symposium on Programming Language Imple-
mentation and Logic Programming. LNCS 631. Springer Verlag, pp. 260–268 (cited
on pp. 88, 108).

— (1995). OFAI CLP(Q,R) Manual, Edition 1.3.3. Tech. rep. TR-95-09. Vienna:
Austrian Research Institute for Artificial Intelligence (cited on pp. 57, 116, 126,
142).

Jaffar, J. and Maher, M. (1994). Constraint Logic Programming: A Survey. Journal
of Logic Programming 19/20, pp. 503–581 (cited on pp. 2, 18–21, 124).

165

BIBLIOGRAPHY

Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P., and Schaub,
T. (2017). Clingo goes Linear Constraints over Reals and Integers. Theory and
Practice of Logic Programming 17.5-6, pp. 872–888 (cited on pp. 6, 132, 203).

Janssens, G. and Sagonas, K. (1998). On the Use of Tabling for Abstract Interpreta-
tion: An Experiment with Abstract Equation Systems. In: Tabulation in Parsing
and Deduction (cited on p. 98).

Janssens, G., Bruynooghe, M., and Dumortier, V. (1995). A Blueprint for an Abstract
Machine for Abstract Interpretation of (Constraint) Logic Programs. In: ILPS,
pp. 336–350 (cited on p. 99).

Ji, J., Wan, H., Wang, K., Wang, Z., Zhang, C., and Xu, J. (2016). Eliminating Dis-
junctions in Answer Set Programming by Restricted Unfolding. In: 25th Int’l.
Joint Conference on Artificial Intelligence, pp. 1130–1137 (cited on p. 116).

Kanamori, T. and Kawamura, T. (1993). Abstract Interpretation Based on OLDT
Resolution. Journal of Logic Programming 15, pp. 1–30 (cited on p. 98).

Kanellakis, P. C., Kuper, G. M., and Revesz, P. Z. (1995). Constraint Query Lan-
guages. Journal of Computer and System Sciences 51.1, pp. 26–52 (cited on pp. 3,
45).

Kemp, D. B. and Stuckey, P. J. (1991). Semantics of Logic Programs with Aggregates.
In: Int’l. Simposium on Logic Programming. Citeseer, pp. 387–401 (cited on p. 79).

Knuth, D. E. (1991). Textbook Examples of Recursion. Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 207–
230 (cited on p. 72).

Kowalski, R. (1979). Algorithm = Logic + Control. Communications of the ACM 22.7,
pp. 424–436 (cited on p. 1).

Kowalski, R. and Sergot, M. (1989). A Logic-Based Calculus of Events. In: Foun-
dations of knowledge base management. Springer, pp. 23–55 (cited on pp. 137,
140).

Lee, J. and Meng, Y. (2013a). Answer Set Programming Modulo Theories and Rea-
soning about Continuous Changes. In: 23rd Int’l. Joint Conference on Artificial
Intelligence, pp. 990–996 (cited on p. 139).

— (2013b). Answer Set Programming Modulo Theories and Reasoning about
Continuous Changes. In: IJCAI 2013, pp. 990–996.

Lee, J. and Palla, R. (2012). Reformulating the Situation Calculus and the Event
Calculus in the General Theory of Stable Models and in Answer Set Program-
ming. Journal of Artificial Intelligence Research 43, pp. 571–620 (cited on pp. 138,
143, 144, 149).

166

BIBLIOGRAPHY

— (2019). F2LP: Computing Answer Sets of First Order Formulas.
http://reasoning.eas.asu.edu/f2lp/. Accessed on December, 2019 (cited on
pp. 138, 143, 144, 149).

Lifschitz, V. (2008). What Is Answer Set Programming? In: 23rd National Con-
ference on Artificial Intelligence. Vol. 3. AAAI Press, pp. 1594–1597 (cited on
p. 2).

Lloyd, J. (1994). Practical Advantages of Declarative Programming. In: Proc. Joint
Conference on Declarative Programming GULP-PRODE’94, pp. 18–30 (cited on
p. 1).

Maier, D. and Warren, D. S. (1988). Computing with Logic: Logic Programming
with Prolog. Menlo Park, CA 94025: Benjamin/Cummings Publishing Co., Inc.
(cited on p. 3).

Marple, K., Salazar, E., and Gupta, G. (2017a). Computing Stable Models of Normal
Logic Programs Without Grounding. CoRR eprint arXiv:1709.00501 (cited on
pp. 2, 6, 116, 117, 120, 122, 126, 145).

Marple, K., Salazar, E., Chen, Z., and Gupta, G. (2017b). The s(ASP) Predicate An-
swer Set Programming System. The Association for Logic Programming Newslet-
ter (cited on p. 117).

Marriott, K. and Stuckey, P. J. (1993). Semantics of Constraint Logic Programs with
Optimization. LOPLAS 2.1-4, pp. 197–212 (cited on p. 2).

— (1998). Programming with Constraints: an Introduction. MIT Press (cited on
p. 62).

McCarthy, J. (1980). Circumscription - A Form of Non-Monotonic Reasoning. Ar-
tificial Intelligence 13.1-2, pp. 27–39 (cited on p. 140).

Mellarkod, V. S., Gelfond, M., and Zhang, Y. (2008). Integrating Answer Set Pro-
gramming and Constraint Logic Programming. Annals of Mathematics and
Artificial Intelligence 53.1-4, pp. 251–287 (cited on p. 138).

Mueller, E. T. (2008a). Chapter 17: Event Calculus. In: Handbook of Knowledge Rep-
resentation. Ed. by F. van Harmelen, V. Lifschitz, and B. Porter. Vol. 3. Foundations
of AI. Elsevier, pp. 671 –708 (cited on p. 140).

Mueller, E. T. (2008b). Discrete event calculus reasoner documentation. Software
documentation, IBM Thomas J. Watson Research Center, PO Box 704. Available at:
http://decreasoner.sourceforge.net/. Accessed on December, 2019 (cited on
p. 149).

Mueller, E. T. (2014). Commonsense reasoning: an event calculus based approach.
Morgan Kaufmann (cited on pp. 85, 137, 140, 141, 145).

167

http://decreasoner.sourceforge.net/

BIBLIOGRAPHY

Muthukumar, K. and Hermenegildo, M. (1989). Determination of Variable De-
pendence Information at Compile-Time Through Abstract Interpretation. In:
1989 North American Conference on Logic Programming. MIT Press, pp. 166–189
(cited on p. 100).

— (1990). Deriving A Fixpoint Computation Algorithm for Top-down Abstract
Interpretation of Logic Programs. Technical Report ACT-DC-153-90. Microelec-
tronics and Computer Technology Corporation (MCC), Austin, TX 78759 (cited on
pp. 99, 102).

— (1991). Combined Determination of Sharing and Freeness of Program Vari-
ables Through Abstract Interpretation. In: 8th Int’l. Conference on Logic Pro-
gramming. MIT Press, pp. 49–63 (cited on p. 109).

— (1992). Compile-time Derivation of Variable Dependency Using Abstract In-
terpretation. Journal of Logic Programming 13.2/3. Ed. by S. Debray, pp. 315–347
(cited on p. 99).

Nielson, F., Nielson, H. R., and Hankin, C. (2005). Principles of Program Analysis.
Second Ed. Springer (cited on p. 99).

Pareto, V. (1964). Cours d’économie politique. Vol. 1. Librairie Droz (cited on p. 82).

Pelov, N., Denecker, M., and Bruynooghe, M. (2007). Well-Founded and Stable
Semantics of Logic Programs with Aggregates. Theory and Practice of Logic
Programming 3, pp. 301–353 (cited on p. 79).

Ramakrishna, Y., Ramakrishnan, C., Ramakrishnan, I., Smolka, S., Swift, T., and War-
ren, D. (1997). Efficient Model Checking Using Tabled Resolution. In: Computer
Aided Verification. Vol. 1254. LNCS. Springer Verlag, pp. 143–154 (cited on p. 4).

Ramakrishnan, I., Rao, P., Sagonas, K., Swift, T., and Warren, D. (1995). Efficient
Tabling Mechanisms for Logic Programs. In: 12nd Int’l. Conference on Logic
Programming. MIT Press, pp. 697–711 (cited on pp. 48, 50).

Revesz, P. Z. (1993). A Closed-Form Evaluation for Datalog Queries with Inte-
ger (Gap)-Order Constraints. Theoretical Computer Science 116.1, pp. 117–149
(cited on pp. 4, 37, 128).

Robinson, J. A. (1965). A Machine Oriented Logic Based on the Resolution Princi-
ple. Journal of the ACM 12.23, pp. 23–41 (cited on p. 2).

Santos Costa, V., Rocha, R., and Damas, L. (2012). The YAP Prolog system. Theory
and Practice of Logic Programming 1-2, pp. 5–34 (cited on p. 78).

Schrijvers, T., Demoen, B., and Warren, D. S. (2008). TCHR: a Framework for
Tabled CLP. Theory and Practice of Logic Programming 4, pp. 491–526 (cited on
pp. 4, 19, 42, 43, 45, 46, 64, 90, 98).

Shanahan, M. (1999). The Event Calculus Explained. In: Artificial Intelligence Today.
Springer, pp. 409–430 (cited on pp. 85, 144, 147).

168

BIBLIOGRAPHY

— (2000). An Abductive Event Calculus Planner. The Journal of Logic Program-
ming 44.1-3, pp. 207–240 (cited on p. 140).

Sterling, L. and Shapiro, E. (1994). The Art of Prolog. MIT Press, second edition
(cited on pp. vii, 2).

Swift, T. and Warren, D. S. (2010). Tabling with Answer Subsumption: Imple-
mentation, Applications and Performance. In: Logics in Artificial Intelligence.
Vol. 6341, pp. 300–312 (cited on pp. 4, 15, 17, 78, 98).

— (2012). XSB: Extending Prolog with Tabled Logic Programming. Theory and
Practice of Logic Programming 1-2, pp. 157–187 (cited on pp. 4, 78).

Swift, T., Warren, D. S., Sagonas, K., Freire, J., Rao, P., Cui, B., Johnson, E., Castro,
L. de, Marques, R. F., Saha, D., Dawson, S., and Kifer, M. (2016). The XSB
System Version 3.7.x. Volume 1: Programmer’s Manual. Available at: http:
//xsb.sourceforge.net/manual1/manual1.pdf. Accessed on December, 2019.
Stony Brook University, Universidade Nova de Lisboa, XSB Inc., and Coherent
Knowledge Systems, Inc. (cited on p. 95).

Tamaki, H. and Sato, M. (1986). OLD Resolution with Tabulation. In: 3rd Int’l.
Conference on Logic Programming. Vol. 111. London: Springer-Verlag, pp. 84–98
(cited on pp. 2, 3, 98).

Toman, D. (1995). Top-Down beats Bottom-Up for Constraint Based Extensions
of Datalog. In: 1995 Int’l Symposium on Logic Programming. Ed. by J. W. Lloyd.
MIT Press, pp. 98–112 (cited on p. 4).

— (1997a). Constraint Databases and Program Analysis Using Abstract Inter-
pretation. In: Constraint Databases and Their Applications. Vol. 1191. LNCS.
Springer, pp. 246–262 (cited on pp. 4, 45).

— (1997b). Memoing Evaluation for Constraint Extensions of Datalog. Con-
straints 2.3/4, pp. 337–359 (cited on pp. 4, 13, 19, 20, 25, 34, 36–38, 45).

Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. MIT
Press (cited on p. 156).

Vandenbroucke, A., Pirog, M., Desouter, B., and Schrijvers, T. (2016). Tabling with
Sound Answer Subsumption. Theory and Practice of Logic Programming, 32nd
Int’l. Conference on Logic Programming 5-6, pp. 933–949 (cited on pp. 78–80, 86).

Vaucheret, C. and Bueno, F. (2002). More Precise yet Efficient Type Inference
for Logic Programs. In: 9th Int’l. Static Analysis Symposium. Vol. 2477. LNCS.
Springer-Verlag, pp. 102–116 (cited on p. 100).

Warren, D. S. (1992). Memoing for Logic Programs. Communications of the ACM
35.3, pp. 93–111 (cited on pp. 2, 3).

169

http://xsb.sourceforge.net/manual1/manual1.pdf
http://xsb.sourceforge.net/manual1/manual1.pdf

BIBLIOGRAPHY

Warren, D. S. (1999). Programming in Tabled Prolog. https : / / www3 . cs .

stonybrook.edu/~warren/xsbbook/book.html. Unpublished manuscript. Ac-
cessed on December, 2019 (cited on p. 98).

Warren, R., Hermenegildo, M., and Debray, S. K. (1988). On the Practicality of Global
Flow Analysis of Logic Programs. In: 5th Int’l. Conference and Symposium on
Logic Programming. MIT Press, pp. 684–699 (cited on pp. 4, 98).

Zhou, N. (2012). The Language Features and Architecture of B-Prolog. Theory and
Practice of Logic Programming 1-2, pp. 189–218 (cited on p. 78).

Zhou, N., Kameya, Y., and Sato, T. (2010). Mode-Directed Tabling for Dynamic
Programming, Machine Learning, and Constraint Solving. In: Int’l. Conference
on Tools with Artificial Intelligence. 2. IEEE, pp. 213–218 (cited on p. 78).

Zou, Y., Finin, T., and Chen, H. (2005). F-OWL: An Inference Engine for Semantic
Web. In: Formal Approaches to Agent-Based Systems. Vol. 3228. LNCS. Springer
Verlag, pp. 238–248 (cited on p. 4).

170

https://www3.cs.stonybrook.edu/~warren/xsbbook/book.html
https://www3.cs.stonybrook.edu/~warren/xsbbook/book.html

Appendix A

Incremental Evaluation of Aggregates

A.1 Prolog and tabling encoding of Minimax

The next figure shows the Prolog encoding for the minimax algorithm applied to (an
extended version of) TicTacToe described in Section 4.5. The encoding for the minimax
algorithm is from (Bratko, 2001). The tabling version tabled the predicate best/3

adding the directive :- tabled best/3.
1 % Pos has successors

2 minimax(Pos, BestNextPos, Val) :-

3 findall(NextPos, move(Pos, NextPos), NextPosList),

4 best(NextPosList, BestNextPos, Val), !.

5 % Pos has no successors

6 minimax(Pos, _, Val) :-

7 utility(Pos, Val).

8

9 % There is no more position to compare

10 best([Pos], Pos, Val) :-

11 minimax(Pos, _, Val), !.

12 % There are other positions to compare

13 best([Pos1 | PosList], BestPos, BestVal) :-

14 minimax(Pos1, _, Val1),

15 best(PosList, Pos2, Val2),

16 betterOf(Pos1, Val1, Pos2, Val2, BestPos, BestVal).

17

18 betterOf(Pos0, Val0, _, Val1, Pos0, Val0) :- % Pos0 better than Pos1

19 min_to_move(Pos0), % MIN to move in Pos0

20 Val0 > Val1, !. % MAX prefers the greater value

21 betterOf(Pos0, Val0, _, Val1, Pos0, Val0) :- % Pos0 better than Pos1

22 max_to_move(Pos0), % MAX to move in Pos0

23 Val0 < Val1, !. % MIN prefers the lesser value

24 betterOf(_, _, Pos1, Val1, Pos1, Val1). % Otherwise Pos1 better than Pos0

171

INCREMENTAL EVALUATION OF AGGREGATES

A.2 Tabling encoding of Game

The next figure shows the tabling encoding for the game problem described in Sec-
tion 4.5. The tabling version tabled the predicate reach/4 but as we mentioned before,
it is not possible to optimize it with an intermediate predicate that using findall/3

would collects the optimal paths, because its interleaving recursion with reach/4 will
produce wrong results.
1 :- module(game_tabling_01, _).

2

3 :- use_package(tabling).

4

5 total_fun(Fun) :-

6 findall(F, reach(initial, end, _, F), Fs)

7 max_list(Fs,Fun).

8

9 max_list([X|Xs],Max) :- max_list_(Xs,X,Max).

10 max_list_([],Max,Max).
11 max_list_([X|Xs],Prev,Max) :- X > Prev, max_list_(Xs,X,Max).

12 max_list_([X|Xs],Prev,Max) :- X =< Prev, max_list_(Xs,Prev,Max).

13

14 :- tabled reach/4.

15 reach(GameA, GameB, Tf, Ff) :-

16 reach(GameA, GameZ, T1, F1),

17 edge(GameZ, GameB, T2, F2),

18 Ff is F1 + F2,

19 Tm is T1 + T2, Tm >= 0,

20 cap(Cap), (Tm > Cap -> Tf is Cap ; Tf is Tm).

21 reach(GameA, GameB, T, F) :-

22 edge(GameA, GameB, T, F).

23

24 edge(initial, g(1, no), T, 0) :- cap(T).

25 edge(g(Game, yes), end, 0, 0) :- num_g(Game).

26 edge(g(Game, _), g(Game, yes), -1, F) :- fun(Game, F).

27 edge(g(Game, yes), g(Game1, no), T, 0) :-

28 Game1 is Game + 1, num_g(Games), Game1 =< Games, refill(T).

172

Appendix B

Abstract Interpretation Fixpoint

B.1 PLAI Algorithm Using TCLP

In this appendix we include, for reference for the reviewers, the code corresponding to
the reimplementation of PLAI using TCLP. It is not expected to be used to understand
the code (we did not add any facility or improve its functionality), but rather to compare
the code length and complexity with that of the original PLAI in CiaoPP, which we
include in Appendix B.2. Therefore, we have removed the comments that appear in the
original files. The files with comments can be accessed at http://www.cliplab.org/
papers/tclp-plai-iclp2019.

1 /* Copyright (C)1990-2019 UPM-CLIP */

2

3 :- module(fixpo_plai_tabling,

4 [

5 query/8,

6 init_fixpoint/0,

7 cleanup_fixpoint/1,

8 entry_to_exit/9

9],

10 [assertions, datafacts]).

11

12 % Ciao library

13 :- use_module(engine(io_basic)).

14

15 :- use_module(library(aggregates), [bagof/3, (^)/2]).

16 :- use_module(library(lists), [member/2, append/3]).

17 :- use_module(library(terms_vars), [varset/2]).

18 :- use_module(library(terms_check)).

19 :- use_module(library(sets), [merge/3, ord_subtract/3]).

20 :- use_module(library(sort), [sort/2]).

21 :- use_module(library(messages)).

173

http://www.cliplab.org/papers/tclp-plai-iclp2019
http://www.cliplab.org/papers/tclp-plai-iclp2019

ABSTRACT INTERPRETATION FIXPOINT

22 :- use_module(library(write)).

23

24 % CiaoPP library

25 :- use_module(ciaopp(preprocess_flags), [current_pp_flag/2, set_pp_flag/2]).

26

27 % Plai library

28 :- use_module(ciaopp(plai/fixpo_ops), [inexistent/2, variable/2, bottom/1,

29 singleton/2, fixpoint_id_reuse_prev/5, fixpoint_id/1, fixp_id/1,

30 each_abs_sort/3,

31 % each_concrete/4,

32 each_extend/6, each_project/6, each_exit_to_prime/8, each_unknown_call/4,

33 each_body_succ_builtin/12, body_succ_meta/7, reduce_equivalent/3,

34 each_apply_trusted/7, widen_succ/4, decide_memo/6,clause_applies/2,

35 abs_subset_/3]).

36

37 :- use_module(ciaopp(plai/domains)).

38 :- use_module(ciaopp(plai/trace_fixp), [fixpoint_trace/7, cleanup/0]).

39 :- use_module(ciaopp(plai/plai_db),

40 [complete/7, memo_call/5, memo_table/6, cleanup_plai_db/1, patch_parents/6]).

41 :- use_module(ciaopp(plai/psets), [update_if_member_idlist/3]).

42 :- use_module(ciaopp(plai/re_analysis), [erase_previous_memo_tables_and_parents/4]).

43 :- use_module(ciaopp(plai/transform), [body_info0/4, trans_clause/3]).

44 :- use_module(ciaopp(plai/apply_assertions_old),

45 [apply_trusted0/7,

46 cleanup_trusts/1]).

47

48 :- doc(author,"Joaquin Arias").

49

50 :- doc(module,"This module adapt the implementation of the top-down

51 fixpoint algorithm of PLAI, under TCLP with aggregates and an

52 extension which also check call entailment.").

53

54 init_fixpoint.

55

56 cleanup_fixpoint(_AbsInt).

57

58 %--%

59 % call_to_success(+,+,+,+,+,+,-) %

60 %--%

61

62 call_to_success(SgKey,Call,Proj,Sg,Sv,AbsInt,Succ) :-

63 call_to_success_fixpoint(SgKey,Sg, st(Sv,Call,Proj,AbsInt,Prime)),

64 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

65

66 %%%%%%%%%%%% TCLP interface %%%%%%%%%%%%%

67 :- use_package(tclp_aggregate).

68 :- table call_to_success_fixpoint(_,_,abst_lub).

69

70 call_entail(abst_lub, st(V,_,ProjA,AbsInt,_), st(V,_,ProjB,AbsInt,_)) :-

71 identical_abstract(AbsInt,ProjA,ProjB), !.

72

73 answer_entail(abst_lub, st(V,_,_,AbsInt,PrimeAs), st(V,_,_,AbsInt,PrimeBs),1) :-

174

B.1 PLAI Algorithm Using TCLP

74 singleton(PrimeA,PrimeAs),

75 singleton(PrimeB,PrimeBs),

76 less_or_equal(AbsInt,PrimeA,PrimeB), !.

77

78 answer_join(abst_lub,st(V,_,_,AbsInt,PrimeAs), st(V,_,_,AbsInt,PrimeBs),

79 st(V,_,_,AbsInt,PrimeNews)) :-

80 singleton(PrimeA,PrimeAs),

81 singleton(PrimeB,PrimeBs),

82 singleton(PrimeNew,PrimeNews),

83 compute_lub(AbsInt,[PrimeA,PrimeB],PrimeNew), !.

84

85 apply_answer(abst_lub, st(V,_,_,Ab,A), st(V,_,_,Ab,B)) :- A = B.

86

87 call_to_success_fixpoint(SgKey,Sg,st(Sv,Call,Proj,AbsInt,Primes)) :-

88 trans_clause(SgKey,_,Clause),

89 do_nr_cl(Clause,Sg,Sv,Call,Proj,AbsInt,Primes).

90 call_to_success_fixpoint(SgKey,Sg,st(Sv,_Call,Proj,AbsInt,Primes)) :-

91 \+ trans_clause(SgKey,_,_),

92 apply_trusted0(Proj,SgKey,Sg,Sv,AbsInt,_ClId,Prime),

93 singleton(Prime,Primes).

94

95 do_nr_cl(Clause,Sg,Sv,Call,Proj,AbsInt,Primes):-

96 Clause = clause(Head,Vars_u,K,Body),

97 clause_applies(Head,Sg), !,

98 varset(Head,Hv),

99 sort(Vars_u,Vars),

100 ord_subtract(Vars,Hv,Fv),

101 process_body(Body,K,AbsInt,Sg,Hv,Fv,Vars_u,Head,Sv,Call,

102 Proj,Primes,_Id).

103 do_nr_cl(_Clause,_Sg,_Sv,_Call,_Proj,_AbsInt,[[]]).

104

105 process_body(Body,K,AbsInt,Sg,Hv,_Fv,_,Head,Sv,Call,Proj,LPrime,_Id):-

106 Body = g(_,[],'$built'(_,true,_),'true/0',true), !,

107 singleton(Prime,LPrime),

108 call_to_success_fact(AbsInt,Sg,Hv,Head,K,Sv,Call,Proj,Prime,_Succ).

109 process_body(Body,K,AbsInt,Sg,Hv,Fv,Vars_u,Head,Sv,_,Proj,Prime,Id):-

110 call_to_entry(AbsInt,Sv,Sg,Hv,Head,K,Fv,Proj,Entry,ExtraInfo),

111 singleton(Entry,LEntry),

112 entry_to_exit(Body,K,LEntry,Exit,[],_,Vars_u,AbsInt,Id),

113 each_exit_to_prime(Exit,AbsInt,Sg,Hv,Head,Sv,ExtraInfo,Prime).

114

115 %--%

116 % entry_to_exit(+,+,+,-,+,-,+,+,+) %

117 %--%

118

119 entry_to_exit((Sg,Rest),K,Call,Exit,OldList,NewList,Vars_u,AbsInt,NewN):- !,

120 body_succ(Call,Sg,Succ,OldList,IntList,Vars_u,AbsInt,K,NewN,_),

121 entry_to_exit(Rest,K,Succ,Exit,IntList,NewList,Vars_u,AbsInt,NewN).

122 entry_to_exit(true,_,Call,Call,List,List,_,_,_):- !.

123 entry_to_exit(Sg,Key,Call,Exit,OldList,NewList,Vars_u,AbsInt,NewN):-

124 body_succ(Call,Sg,Exit,OldList,NewList,Vars_u,AbsInt,Key,NewN,_),

125 true.

175

ABSTRACT INTERPRETATION FIXPOINT

126

127 body_succ(Call,_Atom,Succ,List,List,_HvFv_u,_AbsInt,_ClId,_ParentId,no):-

128 bottom(Call), !,

129 Succ = Call.

130 body_succ(Call,Atom,Succ,List,NewList,HvFv_u,AbsInt,ClId,ParentId,Id):-

131 Atom=g(Key,Sv,Info,SgKey,Sg),

132 body_succ_(Info,SgKey,Sg,Sv,HvFv_u,Call,Succ,List,NewList,AbsInt,

133 ClId,Key,ParentId,Id).

134

135 body_succ_(Info,SgKey,Sg,Sv,HFv,Call,Succ,L,NewL,AbsInt,ClId,Key,PId,Id):-

136 Info = [_|_], !,

137 split_combined_domain(AbsInt,Call,Calls,Domains),

138 map_body_succ(Info,SgKey,Sg,Sv,HFv,Calls,Succs,L,NewL,Domains,

139 ClId,Key,PId,Id),

140 split_combined_domain(AbsInt,Succ,Succs,Domains).

141 body_succ_(Info,SgKey,Sg,Sv,HFv,Call,Succ,L,NewL,AbsInt,ClId,Key,PId,Id):-

142 body_succ0(Info,SgKey,Sg,Sv,HFv,Call,Succ,L,NewL,AbsInt,

143 ClId,Key,PId,Id).

144

145 map_body_succ([],_SgKey,_Sg,_Sv,_HFv,[],[],L,L,[],_ClId,_Key,_PId,no).

146 map_body_succ([I|Info],SgKey,Sg,Sv,HFv,[Call|Calls],[Succ|Succs],L,NewL,

147 [AbsInt|Domains],ClId,Key,PId,Id):-

148 body_succ0(I,SgKey,Sg,Sv,HFv,Call,Succ,L,_NewL,AbsInt,

149 ClId,Key,PId,_Id), !,

150 map_body_succ(Info,SgKey,Sg,Sv,HFv,Calls,Succs,L,NewL,Domains,

151 ClId,Key,PId,Id).

152

153 body_succ0('$var',SgKey,Sg,_Sv_u,HvFv_u,Calls,Succs,List0,List,AbsInt,
154 _ClId,F,_N,_Id):-

155 !,

156 (Calls=[Call],

157 concrete(AbsInt,Sg,Call,Concretes),

158 concretes_to_body(Concretes,SgKey,AbsInt,B)

159 -> meta_call(B,HvFv_u,Calls,[],Succs,List0,List,AbsInt,_ClId,_Id,_Ids)

160 ; List=List0,

161 each_unknown_call(Calls,AbsInt,[Sg],Succs) % Sg is a variable

162).

163 body_succ0('$meta'(T,B,_),SgKey,Sg,Sv_u,HvFv_u,Call,Succ,List0,List,AbsInt,
164 _ClId,_F,_N,_Id):-

165 !,

166 meta_call(B,HvFv_u,Call,[],Exits,List0,List,AbsInt,ClId,Id,_Ids),

167 (body_succ_meta(T,AbsInt,Sv_u,HvFv_u,Call,Exits,Succ) ->

168 true

169 ; % for the trusts, if any:

170 varset(Sg,Sv_r), % Sv_u contains extra vars (from meta-term)

171 % which will confuse apply_trusted

172 body_succ0(nr,SgKey,Sg,Sv_r,HvFv_u,Call,Succ,[],_List,AbsInt,

173 _ClId,_F,_N,_Id0)

174).

175 body_succ0('$built'(T,Tg,Vs),SgKey,Sg,Sv_u,HvFv_u,Call,Succ,List0,List,AbsInt,
176 _ClId,_F,_N,_Id):-

177 !,

176

B.1 PLAI Algorithm Using TCLP

178 List=List0,

179 sort(Sv_u,Sv),

180 each_body_succ_builtin_(Call,AbsInt,T,Tg,Vs,SgKey,Sg,Sv,HvFv_u,Succ).

181 body_succ0(_RFlag,SgKey,Sg,Sv_u,HvFv_u,Call,Succ,_List0,_List,AbsInt,

182 _ClId,_F,_N,_Id):-

183 sort(Sv_u,Sv),

184 each_call_to_success(Call,SgKey,Sg,Sv,HvFv_u,AbsInt,Succ).

185

186 %% predicate adapted from fixpo_ops

187 each_body_succ_builtin_([],_,_T,_Tg,_,_,_Sg,_Sv,_HvFv_u,[]).

188 each_body_succ_builtin_([Call|Calls],AbsInt,T,Tg,Vs,SgKey,Sg,Sv,HvFv_u,[Succ|Succs]):-

189 project(AbsInt,Sg,Sv,HvFv_u,Call,Proj),

190 body_succ_builtin(T,AbsInt,Tg,Vs,Sv,HvFv_u,Call,Proj,Succ),!, %% Doamin call

191 each_body_succ_builtin_tabling_(Calls,AbsInt,T,Tg,Vs,SgKey,Sg,Sv,HvFv_u,Succs).

192

193 each_call_to_success([Call],SgKey,Sg,Sv,HvFv_u,AbsInt,Succ):-

194 !,

195 project(AbsInt,Sg,Sv,HvFv_u,Call,Proj),

196 call_to_success(SgKey,Call,Proj,Sg,Sv,AbsInt,Succ).

197

198 each_call_to_success(LCall,SgKey,Sg,Sv,HvFv_u,AbsInt,LSucc):-

199 each_call_to_success0(LCall,SgKey,Sg,Sv,HvFv_u,AbsInt,

200 LSucc).

201

202 each_call_to_success0([],_SgK,_Sg,_Sv,_HvFv,_AbsInt,[]).

203 each_call_to_success0([Call|LCall],SgKey,Sg,Sv,HvFv_u,AbsInt,

204 LSucc):-

205 project(AbsInt,Sg,Sv,HvFv_u,Call,Proj),

206 call_to_success(SgKey,Call,Proj,Sg,Sv,AbsInt,LSucc0),

207 append(LSucc0,LSucc1,LSucc),

208 each_call_to_success0(LCall,SgKey,Sg,Sv,HvFv_u,AbsInt,

209 LSucc1).

210

211 meta_call([],_HvFv_u,Call,[],Call,List,List,_AbsInt,_ClId,_Id,[]).

212 meta_call([Body|Bodies],HvFv_u,Call,Succ0,Succ,L0,List,AbsInt,ClId,Id,Ids):-

213 meta_call_([Body|Bodies],HvFv_u,Call,Succ0,Succ,L0,List,AbsInt,ClId,Id,Ids).

214 meta_call_([Body|Bodies],HvFv_u,Call,Succ0,Succ,L0,List,AbsInt,ClId,Id,Ids):-

215 meta_call_body(Body,ClId,Call,Succ1,L0,L1,HvFv_u,AbsInt,Id,Ids0),

216 widen_succ(AbsInt,Succ0,Succ1,Succ2),

217 append(Succ0,Succ1,Succ2),

218 append(Ids0,Ids1,Ids),

219 meta_call_(Bodies,HvFv_u,Call,Succ2,Succ,L1,List,AbsInt,ClId,Id,Ids1).

220 meta_call_([],_HvFv_u,_Call,Succ,Succ,List,List,_AbsInt,_ClId,_Id,[]).

221

222 meta_call_body((Sg,Rest),K,Call,Exit,OldList,NewList,Vars_u,AbsInt,PId,CIds):-

223 !,

224 CIds=[Id|Ids],

225 body_succ(Call,Sg,Succ,OldList,IntList,Vars_u,AbsInt,K,PId,Id),

226 meta_call_body(Rest,K,Succ,Exit,IntList,NewList,Vars_u,AbsInt,PId,Ids).

227 meta_call_body(true,_,Call,Call,List,List,_,_,_,[no]):- !.

228 meta_call_body(Sg,Key,Call,Exit,OldList,NewList,Vars_u,AbsInt,PId,[Id]):-

229 body_succ(Call,Sg,Exit,OldList,NewList,Vars_u,AbsInt,Key,PId,Id).

177

ABSTRACT INTERPRETATION FIXPOINT

230

231 concretes_to_body([],_SgKey,_AbsInt,[]).

232 concretes_to_body([Sg|Sgs],SgKey,AbsInt,[B|Bs]):-

233 body_info0(Sg:SgKey,[],AbsInt,B),

234 concretes_to_body(Sgs,SgKey,AbsInt,Bs).

235

236 %--%

237 % query(+,+,+,+,+,+,+,-) %

238 %--%

239

240 :- doc(query(AbsInt,QKey,Query,Qv,RFlag,N,Call,Succ),

241 "The success pattern of @var{Query} with @var{Call} is

242 @var{Succ} in the analysis domain @var{AbsInt}. The predicate

243 called is identified by @var{QKey}. The goal @var{Query} has

244 variables @var{Qv}.").

245

246

247 query(AbsInt,QKey,Query,Qv,_RFlag,_N,Call,Succ) :-

248 project(AbsInt,Query,Qv,Qv,Call,Proj),

249 call_to_success(QKey,Call,Proj,Query,Qv,AbsInt,Succ), !.

250

251 query(_AbsInt,_QKey,_Query,_Qv,_RFlag,_N,_Call,_Succ):-

252 % should never happen, but...

253 error_message("SOMETHING HAS FAILED!").

B.2 PLAI Algorithm Using Ciao Prolog

We include here the Ciao Prolog implementation of PLAI. As mentioned before, we
have removed the comments from the file since the goal of this appendix it to make
it easier for the reader to compare the Ciao Prolog code w.r.t. the code using TCLP,
which we include in B.1. The original version is available at http://www.cliplab.
org/papers/tclp-plai-iclp2019.

1 /* Copyright (C)1990-2002 UPM-CLIP */

2

3 :- module(fixpo_plai_with_comments,

4 [query/8,

5 init_fixpoint/0,

6 cleanup_fixpoint/1,

7 entry_to_exit/9

8],

9 [assertions, datafacts]).

10

11 % Ciao library

12 :- use_module(library(aggregates), [bagof/3, (^)/2]).

13 :- use_module(library(lists), [member/2, append/3]).

178

http://www.cliplab.org/papers/tclp-plai-iclp2019
http://www.cliplab.org/papers/tclp-plai-iclp2019

B.2 PLAI Algorithm Using Ciao Prolog

14 :- use_module(library(terms_vars), [varset/2]).

15 :- use_module(library(sets), [merge/3, ord_subtract/3]).

16 :- use_module(library(sort), [sort/2]).

17 :- use_module(library(messages)).

18

19 % CiaoPP library

20 :- use_module(ciaopp(preprocess_flags), [current_pp_flag/2, set_pp_flag/2]).

21

22 % Plai library

23 :- use_module(ciaopp(plai/fixpo_ops), [inexistent/2, variable/2, bottom/1,

24 singleton/2, fixpoint_id_reuse_prev/5, fixpoint_id/1, fixp_id/1,

25 each_abs_sort/3,

26 % each_concrete/4,

27 each_extend/6, each_project/6, each_exit_to_prime/8, each_unknown_call/4,

28 each_body_succ_builtin/12, body_succ_meta/7, reduce_equivalent/3,

29 each_apply_trusted/7, widen_succ/4, decide_memo/6,clause_applies/2,

30 abs_subset_/3]).

31

32 :- use_module(ciaopp(plai/domains)).

33 :- use_module(ciaopp(plai/trace_fixp), [fixpoint_trace/7, cleanup/0]).

34 :- use_module(ciaopp(plai/plai_db),

35 [complete/7, memo_call/5, memo_table/6, cleanup_plai_db/1, patch_parents/6]).

36 :- use_module(ciaopp(plai/psets), [update_if_member_idlist/3]).

37 :- use_module(ciaopp(plai/re_analysis), [erase_previous_memo_tables_and_parents/4]).

38 :- use_module(ciaopp(plai/transform), [body_info0/4, trans_clause/3]).

39 :- use_module(ciaopp(plai/apply_assertions_old),

40 [apply_trusted0/7,

41 cleanup_trusts/1]).

42

43 :- doc(author,"Kalyan Muthukumar").

44 :- doc(author,"Maria Garcia de la Banda").

45 :- doc(author,"Francisco Bueno").

46

47 :- doc(module,"This module implements the top-down fixpoint

48 algorithm of PLAI, both in its mono-variant and multi-variant

49 on successes versions. It is always multi-variant on calls.

50 The algorithm is parametric on the particular analysis domain.").

51

52

53 :- data '$depend_list'/3.
54 :- data ch_id/2.

55

56 :- data approx/6.

57 :- data fixpoint/6.

58 :- data fixpoint_variant/6.

59 :- data approx_variant/7.

60

61 init_fixpoint:-

62 retractall_fact(approx(_,_,_,_,_,_)),

63 retractall_fact(fixpoint(_,_,_,_,_,_)),

64 retractall_fact('$depend_list'(_,_,_)),
65 retractall_fact(ch_id(_,_)),

179

ABSTRACT INTERPRETATION FIXPOINT

66 retractall_fact(fixpoint_variant(_,_,_,_,_,_)),

67 retractall_fact(approx_variant(_,_,_,_,_,_,_)),

68 trace_fixp:cleanup.

69

70 cleanup_fixpoint(AbsInt):-

71 cleanup_plai_db(AbsInt),

72 cleanup_trusts(AbsInt),

73 retractall_fact(fixp_id(_)),

74 asserta_fact(fixp_id(0)), % there is no way to recover this

75 init_fixpoint. % if several analysis coexist!

76

77 approx_to_completes(AbsInt):-

78 current_fact(approx(SgKey,Sg,Proj,Prime,Pid,Fs),Ref),

79 asserta_fact(complete(SgKey,AbsInt,Sg,Proj,Prime,Pid,Fs)),

80 erase(Ref),

81 fail.

82 approx_to_completes(AbsInt):-

83 current_fact(approx_variant(_Id,Pid,SgKey,Sg,Proj,Prime,Fs),Ref),

84 asserta_fact(complete(SgKey,AbsInt,Sg,Proj,Prime,Pid,Fs)),

85 erase(Ref),

86 fail.

87 approx_to_completes(_AbsInt).

88

89

90 %--%

91 % call_to_success(+,+,+,+,+,+,+,-,-,+,+,+) %

92 %--%

93

94 call_to_success(_RFlag,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id):-

95 % ClId = number identifying the clause?... for an entry point is 0...

96 % F = program point of the call. clauseId+/0 for an entry call

97 current_fact(complete(SgKey,AbsInt,Subg,Proj1,Prime1,Id,Fs),R),

98 identical_proj(AbsInt,Sg,Proj,Subg,Proj1), !,

99 patch_parents(R,complete(SgKey,AbsInt,Subg,Proj1,Prime1,Id,Ps),F,N,Ps,Fs),

100 List = [],

101 each_abs_sort(Prime1,AbsInt,Prime),

102 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

103 call_to_success(r,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id) :-

104 current_fact(approx(SgKey,Subg,Proj1,Prime1,Id,Fs),Ref),

105 identical_proj(AbsInt,Sg,Proj,Subg,Proj1), !,

106 each_abs_sort(Prime1,AbsInt,TempPrime),

107 current_fact('$depend_list'(Id,SgKey,IdList)),
108 call_to_success_approx(SgKey,Subg,Call,Proj,Proj1,Sg,Sv,AbsInt,F,N,Fs,

109 Id,Ref,IdList,Prime1,TempPrime,List,Prime),

110 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

111 call_to_success(r,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id):-

112 current_fact(fixpoint(SgKey,Subg,Proj1,Prime1,Id,Fs),Ref),

113 identical_proj(AbsInt,Sg,Proj,Subg,Proj1), !,

114 patch_parents(Ref,fixpoint(SgKey,Subg,Proj1,Prime1,Id,Ps),F,N,Ps,Fs),

115 current_fact(ch_id(Id,Num)),

116 List = [Id/Num],

117 each_abs_sort(Prime1,AbsInt,Prime),

180

B.2 PLAI Algorithm Using Ciao Prolog

118 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

119 call_to_success(_RFlag,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id):-

120 current_pp_flag(variants,on),

121 current_fact(complete(SgKey,AbsInt,Subg,Proj1,Prime1,_Id1,_Fs),_R),

122 identical_proj_1(AbsInt,Sg,Proj,Subg,Proj1,Prime1,Prime2), !,

123 format("call to success tipe _RFlag SgKey",[]),

124 (current_pp_flag(reuse_fixp_id,on) ->

125 fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

126 ;

127 fixpoint_id(Id)

128),

129 each_abs_sort(Prime2,AbsInt,Prime),

130 List = [],

131 asserta_fact(complete(SgKey,AbsInt,Sg,Proj,Prime,Id,[(F,N)])),

132 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

133 call_to_success(r,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id) :-

134 current_pp_flag(variants,on),

135 current_fact(approx(SgKey,Subg,Proj1,Prime1,Id1,Fs),Ref),

136 identical_proj_1(AbsInt,Sg,Proj,Subg,Proj1,Prime1,Prime2), !,

137 each_abs_sort(Prime2,AbsInt,TempPrime),

138 current_fact('$depend_list'(Id1,SgKey,IdList)),
139 call_to_success_approx_variant(SgKey,Subg,Call,Proj,Proj1,Sg,Sv,AbsInt,F,N,Fs,

140 Id,Id1,Ref,IdList,Prime1,TempPrime,List,Prime),

141 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

142 call_to_success(r,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id):-

143 current_pp_flag(variants,on),

144 current_fact(fixpoint(SgKey,Subg,Proj1,Prime1,Id1,_Fs),_Ref),

145 identical_proj_1(AbsInt,Sg,Proj,Subg,Proj1,Prime1,Prime2), !,

146 (

147 current_fact(fixpoint_variant(Id1,Id,SgKey,Sgv,Projv,Fsv),Refv),

148 identical_proj(AbsInt,Sg,Proj,Sgv,Projv) ->

149 patch_parents(Refv,fixpoint_variant(Id1,Id,SgKey,Sgv,Projv,Ps),F,N,Ps,Fsv)

150 ;

151 (

152 current_pp_flag(reuse_fixp_id,on) ->

153 fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

154 ;

155 fixpoint_id(Id)

156),

157 asserta_fact(fixpoint_variant(Id1,Id,SgKey,Sg,Proj,[(F,N)]))

158),

159 each_abs_sort(Prime2,AbsInt,Prime),

160 current_fact(ch_id(Id1,Num)),

161 List = [Id1/Num],

162 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

163 call_to_success(r,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id) :-

164 init_fixpoint0(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,[(F,N)],Id,List,Prime),

165 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

166 call_to_success(nr,SgKey,Call,Proj,Sg,Sv,AbsInt,ClId,Succ,[],F,N,Id):-

167 (current_pp_flag(reuse_fixp_id,on) ->

168 fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

169 ;

181

ABSTRACT INTERPRETATION FIXPOINT

170 fixpoint_id(Id)

171),

172 proj_to_prime_nr(SgKey,Sg,Sv,Call,Proj,AbsInt,ClId,Prime,Id),

173 asserta_fact(complete(SgKey,AbsInt,Sg,Proj,Prime,Id,[(F,N)])),

174 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

175

176 call_to_success_approx(SgKey,Subg,_Call,Proj,Proj1,Sg,_Sv,_AbsInt,F,N,Fs,

177 Id,Ref,IdList,Prime1,TempPrime,List,Prime):-

178 not_modified(IdList), !,

179 patch_parents(Ref,approx(SgKey,Subg,Proj1,Prime1,Id,Ps),F,N,Ps,Fs),

180 Prime = TempPrime,

181 List = IdList.

182 call_to_success_approx(SgKey,_Subg,Call,Proj,_Proj1,Sg,Sv,AbsInt,F,N,Fs,

183 Id,Ref,_IdList,_Prime1,TempPrime,List,Prime):-

184 erase(Ref),

185 init_fixpoint_(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,

186 TempPrime,List,Prime).

187

188 aproxs_to_fixpoint_variant(Id):-

189 current_fact(approx_variant(Id,Idv,SgKey,Sgv,Projv,_Primev,Fs),Ref),!,

190 erase(Ref),

191 asserta_fact(fixpoint_variant(Id,Idv,SgKey,Sgv,Projv,Fs)),

192 aproxs_to_fixpoint_variant(Id).

193 aproxs_to_fixpoint_variant(_).

194

195

196 call_to_success_approx_variant(SgKey,_Subg,_Call,Proj,_Proj1,Sg,_Sv,AbsInt,F,N,_Fs,

197 Id,Id1,_Ref,IdList,_Prime1,TempPrime,List,Prime):-

198 not_modified(IdList), !,

199 (

200 current_fact(approx_variant(Id1,Id,SgKey,Sgv,Projv,Primev,Fsv),Refv),

201 identical_proj(AbsInt,Sg,Proj,Sgv,Projv) ->

202 patch_parents(Refv,approx_variant(Id1,Id,SgKey,Sgv,Projv,Primev,Ps),F,N,Ps,Fsv)

203 ;

204 (

205 current_pp_flag(reuse_fixp_id,on) ->

206 fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

207 ;

208 fixpoint_id(Id)

209),

210 asserta_fact(approx_variant(Id1,Id,SgKey,Sg,Proj,TempPrime,[(F,N)]))

211),

212 Prime = TempPrime,

213 List = IdList.

214 call_to_success_approx_variant(SgKey,Subg,Call,Proj,Proj1,Sg,Sv,AbsInt,F,N,Fs,

215 Id,Id1,Ref,_IdList,Prime1,_TempPrime,List,Prime):-

216 (

217 current_fact(approx_variant(Id1,Id,SgKey,Sgv,Projv,_Primev,Fsv),Refv),

218 identical_proj(AbsInt,Sg,Proj,Sgv,Projv) ->

219 erase(Refv),

220 (member((F,N),Fsv) -> NewFs = Fsv ; NewFs = [(F,N)|Fsv] %)

221 ;

182

B.2 PLAI Algorithm Using Ciao Prolog

222 (

223 current_pp_flag(reuse_fixp_id,on) ->

224 fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

225 ;

226 fixpoint_id(Id)

227),

228 NewFs = [(F,N)]

229),

230 aproxs_to_fixpoint_variant(Id1),

231 erase(Ref),

232 asserta_fact(fixpoint_variant(Id1,Id,SgKey,Sg,Proj,NewFs)),

233 varset(Subg,Subv),

234 init_fixpoint_(SgKey,Call,Proj1,Subg,Subv,AbsInt,F,N,Fs,Id1,

235 Prime1,List,Prime0),

236 each_exit_to_prime(Prime0,AbsInt,Sg,Subv,Subg,Sv,(no,Proj),Prime).

237

238 init_fixpoint0(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,List,Prime):-

239 init_fixpoint2(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,List,Prime).

240

241 init_fixpoint1(SgKey,_Call,Proj,Sg,_Sv,AbsInt,F,N,_Fs0,Id,List,Prime):-

242 current_fact(complete(SgKey,AbsInt,Subg,Proj1,Prime1,Id,Fs),R),

243 identical_proj(AbsInt,Sg,Proj,Subg,Proj1), !,

244 patch_parents(R,complete(SgKey,AbsInt,Subg,Proj1,Prime1,Id,Ps),F,N,Ps,Fs),

245 List = [],

246 each_abs_sort(Prime1,AbsInt,Prime).

247 init_fixpoint1(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,_Fs0,Id,List,Prime):-

248 current_fact(approx(SgKey,Subg,Proj1,Prime1,Id,Fs),Ref),

249 identical_proj(AbsInt,Sg,Proj,Subg,Proj1), !,

250 each_abs_sort(Prime1,AbsInt,TempPrime),

251 current_fact('$depend_list'(Id,SgKey,IdList)),
252 call_to_success_approx(SgKey,Subg,Call,Proj,Proj1,Sg,Sv,AbsInt,F,N,Fs,

253 Id,Ref,IdList,Prime1,TempPrime,List,Prime).

254 init_fixpoint1(SgKey,_,Proj,Sg,_Sv,AbsInt,F,N,_Fs0,Id,List,Prime):-

255 current_fact(fixpoint(SgKey,Subg,Proj1,Prime1,Id,Fs),Ref),

256 identical_proj(AbsInt,Sg,Proj,Subg,Proj1), !,

257 patch_parents(Ref,fixpoint(SgKey,Subg,Proj1,Prime1,Id,Ps),F,N,Ps,Fs),

258 current_fact(ch_id(Id,Num)),

259 List = [Id/Num],

260 each_abs_sort(Prime1,AbsInt,Prime).

261 init_fixpoint1(SgKey,_Call,Proj,Sg,_Sv,AbsInt,F,N,_Fs0,Id,List,Prime):-

262 current_pp_flag(variants,on),

263 current_fact(complete(SgKey,AbsInt,Subg,Proj1,Prime1,_Id1,_Fs),_R),

264 identical_proj_1(AbsInt,Sg,Proj,Subg,Proj1,Prime1,Prime2), !,

265 (current_pp_flag(reuse_fixp_id,on) ->

266 fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

267 ;

268 fixpoint_id(Id)

269),

270 each_abs_sort(Prime2,AbsInt,Prime),

271 List = [],

272 asserta_fact(complete(SgKey,AbsInt,Sg,Proj,Prime,Id,[(F,N)])).

273 init_fixpoint1(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,_Fs0,Id,List,Prime):-

183

ABSTRACT INTERPRETATION FIXPOINT

274 current_pp_flag(variants,on),

275 current_fact(approx(SgKey,Subg,Proj1,Prime1,Id1,Fs),Ref),

276 identical_proj_1(AbsInt,Sg,Proj,Subg,Proj1,Prime1,Prime2), !,

277 each_abs_sort(Prime2,AbsInt,TempPrime),

278 current_fact('$depend_list'(Id1,SgKey,IdList)),
279 call_to_success_approx_variant(SgKey,Subg,Call,Proj,Proj1,Sg,Sv,AbsInt,F,N,Fs,

280 Id,Id1,Ref,IdList,Prime1,TempPrime,List,Prime).

281 init_fixpoint1(SgKey,_,Proj,Sg,_Sv,AbsInt,F,N,_Fs0,Id,List,Prime):-

282 current_pp_flag(variants,on),

283 current_fact(fixpoint(SgKey,Subg,Proj1,Prime1,Id1,_Fs),_Ref),

284 identical_proj_1(AbsInt,Sg,Proj,Subg,Proj1,Prime1,Prime2), !,

285 (

286 current_fact(fixpoint_variant(Id1,Id,SgKey,Sgv,Projv,Fsv),Refv),

287 identical_proj(AbsInt,Sg,Proj,Sgv,Projv) ->

288 patch_parents(Refv,fixpoint_variant(Id1,Id,SgKey,Sgv,Projv,Ps),F,N,Ps,Fsv)

289 ;

290 (

291 current_pp_flag(reuse_fixp_id,on) ->

292 fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

293 ;

294 fixpoint_id(Id)

295),

296 asserta_fact(fixpoint_variant(Id1,Id,SgKey,Sg,Proj,[(F,N)]))

297),

298 each_abs_sort(Prime2,AbsInt,Prime),

299 current_fact(ch_id(Id1,Num)),

300 List = [Id1/Num].

301 init_fixpoint1(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,List,Prime):-

302 init_fixpoint2(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,List,Prime).

303

304 init_fixpoint2(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,List,Prime):-

305 (current_pp_flag(reuse_fixp_id,on) ->

306 fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

307 ;

308 fixpoint_id(Id)

309),

310 asserta_fact(ch_id(Id,1)),

311 proj_to_prime_r(SgKey,Sg,Sv,Call,Proj,AbsInt,TempPrime,Id),

312 init_fixpoint_(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,

313 TempPrime,List,Prime).

314

315 init_fixpoint_(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,Prime0,List,Prime):-

316 normalize_asub0(AbsInt,Prime0,TempPrime),

317 asserta_fact(fixpoint(SgKey,Sg,Proj,TempPrime,Id,Fs)),

318 bagof(X, X^(trans_clause(SgKey,r,X)),Clauses),!,

319 fixpoint_compute(Clauses,SgKey,Sg,Sv,Call,Proj,

320 AbsInt,_LEntry,TempPrime,Prime1,Id,TempList),

321 each_apply_trusted(Proj,SgKey,Sg,Sv,AbsInt,Prime1,Prime),

322 current_fact(fixpoint(SgKey,Sg,_,_,Id,Fs2),Ref),

323 erase(Ref),

324 (current_fact('$depend_list'(Id,SgKey,_),RefDep) ->

325 erase(RefDep)

184

B.2 PLAI Algorithm Using Ciao Prolog

326 ; true

327),

328 update_if_member_idlist(TempList,Id,AddList),

329 (member((F,N),Fs2) -> NewFs = Fs2 ; NewFs = [(F,N)|Fs2]),

330 decide_approx(AddList,Id,NewFs,AbsInt,SgKey,Sg,Proj,Prime),

331 List = AddList.

332

333 widen_call(AbsInt,SgKey,Sg,F1,Id0,Proj1,Proj):-

334 (current_pp_flag(widencall,off) -> fail ; true),

335 widen_call0(AbsInt,SgKey,Sg,F1,Id0,[Id0],Proj1,Proj), !.

336

337 widen_call0(AbsInt,SgKey,Sg,F1,Id0,Ids,Proj1,Proj):-

338 widen_call1(AbsInt,SgKey,Sg,F1,Id0,Ids,Proj1,Proj).

339 widen_call0(AbsInt,SgKey,Sg,F1,Id0,Ids,Proj1,Proj):-

340 current_pp_flag(widencall,com_child),

341 widen_call2(AbsInt,SgKey,Sg,F1,Id0,Ids,Proj1,Proj).

342

343 widen_call1(AbsInt,SgKey,Sg,F1,Id0,Ids,Proj1,Proj):-

344 current_fact(fixpoint(SgKey0,Sg0,Proj0,_Prime0,Id0,Fs0)),

345 (SgKey=SgKey0,

346 % same program point:

347 member((F1,_NewId0),Fs0)

348 -> Sg0=Sg,

349 abs_sort(AbsInt,Proj0,Proj0_s),

350 abs_sort(AbsInt,Proj1,Proj1_s),

351 widencall(AbsInt,Proj0_s,Proj1_s,Proj)

352 ; % continue with the parents:

353 member((_F1,NewId0),Fs0),

354 \+ member(NewId0,Ids),

355 widen_call1(AbsInt,SgKey,Sg,F1,NewId0,[NewId0|Ids],Proj1,Proj)

356).

357

358 widen_call2(AbsInt,SgKey,Sg,F1,_Id,_Ids,Proj1,Proj):-

359 current_fact(complete(SgKey,AbsInt,Sg0,Proj0,_Prime0,_Id0,Fs0)),

360 member((F1,Id0),Fs0),

361 Sg0=Sg,

362 same_fixpoint_ancestor(Id0,[Id0],AbsInt),

363 abs_sort(AbsInt,Proj0,Proj0_s),

364 abs_sort(AbsInt,Proj1,Proj1_s),

365 widencall(AbsInt,Proj0_s,Proj1_s,Proj).

366

367 same_fixpoint_ancestor(Id0,_Ids,_AbsInt):-

368 current_fact(fixpoint(_SgKey0,_Sg0,_Proj0,_Prime0,Id0,_Fs0)), !.

369 same_fixpoint_ancestor(Id0,_Ids,_AbsInt):-

370 current_fact(approx(_SgKey0,_Sg0,_Proj0,_Prime0,Id0,_Fs0)), !.

371 same_fixpoint_ancestor(Id0,Ids,AbsInt):-

372 current_fact(complete(_SgKey0,AbsInt,_Sg0,_Proj0,_Prime0,Id0,Fs0)),

373 member((_F1,Id),Fs0),

374 \+ member(Id,Ids),

375 same_fixpoint_ancestor(Id,[Id|Ids],AbsInt).

376

377 fixpoint_variants_update(Id,AbsInt,Sg,Prime):-

185

ABSTRACT INTERPRETATION FIXPOINT

378 current_fact(fixpoint_variant(Id,Idv,SgKey,Sgv,Projv,Fs),Ref),!,

379 erase(Ref),

380 varset(Sg,Hv),

381 varset(Sgv,Hvv),

382 each_exit_to_prime(Prime,AbsInt,Sgv,Hv,Sg,Hvv,(no,Projv),Prime2),

383 asserta_fact(complete(SgKey,AbsInt,Sgv,Projv,Prime2,Idv,Fs)),

384 fixpoint_variants_update(Id,AbsInt,Sg,Prime).

385 fixpoint_variants_update(_,_,_,_).

386

387 approx_variants_update(Id,AbsInt,Sg,Prime):-

388 current_fact(fixpoint_variant(Id,Idv,SgKey,Sgv,Projv,Fs),Ref),!,

389 erase(Ref),

390 varset(Sg,Hv),

391 varset(Sgv,Hvv),

392 each_exit_to_prime(Prime,AbsInt,Sgv,Hv,Sg,Hvv,(no,Projv),Prime2),

393 asserta_fact(approx_variant(Id,Idv,SgKey,Sgv,Projv,Prime2,Fs)),

394 approx_variants_update(Id,AbsInt,Sg,Prime).

395 approx_variants_update(_,_,_,_).

396

397 decide_approx([],Id,Fs,AbsInt,SgKey,Sg,Proj,Prime):- !,

398 current_fact(ch_id(Id,_),Ref3),

399 erase(Ref3),

400 % Not needed for correctness: only book-keeping

401 % update_depend_list_approx(Id,AbsInt),

402 asserta_fact(complete(SgKey,AbsInt,Sg,Proj,Prime,Id,Fs)),

403 (

404 current_pp_flag(variants,on) ->

405 each_abs_sort(Prime,AbsInt,Prime_s),

406 fixpoint_variants_update(Id,AbsInt,Sg,Prime_s)

407 ;

408 true

409).

410 decide_approx(AddList,Id,Fs,_AbsInt,SgKey,Sg,Proj,Prime):-

411 asserta_fact('$depend_list'(Id,SgKey,AddList)),
412 asserta_fact(approx(SgKey,Sg,Proj,Prime,Id,Fs),_),

413 (

414 current_pp_flag(variants,on) ->

415 each_abs_sort(Prime,AbsInt,Prime_s),

416 approx_variants_update(Id,AbsInt,Sg,Prime_s)

417 ;

418 true

419).

420

421 not_modified([]).

422 not_modified([Id/N|List]):-

423 current_fact(ch_id(Id,N)), !,

424 not_modified(List).

425

426 proj_to_prime_nr(SgKey,Sg,Sv,Call,Proj,AbsInt,_ClId,LPrime,Id) :-

427 bagof(X, X^(trans_clause(SgKey,nr,X)),Clauses), !,

428 proj_to_prime(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LPrime1,Id),

429 compute_clauses_lub(AbsInt,Proj,LPrime1,LPrime).

186

B.2 PLAI Algorithm Using Ciao Prolog

430 proj_to_prime_nr(SgKey,Sg,Sv,_Call,Proj,AbsInt,ClId,LPrime,_Id) :-

431 apply_trusted0(Proj,SgKey,Sg,Sv,AbsInt,ClId,Prime), !,

432 singleton(Prime,LPrime).

433 proj_to_prime_nr(_SgKey,Sg,Sv,Call,_Proj,AbsInt,_ClId,LSucc,_Id) :-

434 % In Java programs, mode and type information is known for any method.

435 % Therefore, in case of a method with unavailable code we can still

436 % infer useful information.

437 (current_pp_flag(prog_lang,java) ->

438 unknown_call(AbsInt,Sg,Sv,Call,Succ),

439 singleton(Succ,LSucc)

440 ;

441 fail

442).

443 proj_to_prime_nr(SgKey,_Sg,_Sv,_Call,_Proj,_AbsInt,ClId,Bot,_Id) :-

444 bottom(Bot),

445 inexistent(SgKey,ClId).

446

447 proj_to_prime_r(SgKey,Sg,Sv,Call,Proj,AbsInt,Prime,Id) :-

448 bagof(X, X^(trans_clause(SgKey,nr,X)),Clauses), !,

449 proj_to_prime(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,Prime,Id).

450 proj_to_prime_r(_SgKey,_Sg,_Sv,_Call,_Proj,_AbsInt,Bot,_Id):-

451 bottom(Bot).

452

453 proj_to_prime(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,Prime,Id) :-

454 proj_to_prime_loop(Clauses,Sg,Sv,Call,Proj,AbsInt,ListPrime0,Id),

455 reduce_equivalent(ListPrime0,AbsInt,ListPrime1),

456 each_apply_trusted(Proj,SgKey,Sg,Sv,AbsInt,ListPrime1,Prime).

457

458 proj_to_prime_loop([],_,_,_,_,_,[],_).

459 proj_to_prime_loop([Clause|Rest],Sg,Sv,Call,Proj,AbsInt,Primes,Id):-

460 do_nr_cl(Clause,Sg,Sv,Call,Proj,AbsInt,Primes,TailPrimes,Id),!,

461 proj_to_prime_loop(Rest,Sg,Sv,Call,Proj,AbsInt,TailPrimes,Id).

462

463 do_nr_cl(Clause,Sg,Sv,Call,Proj,AbsInt,Primes,TailPrimes,Id):-

464 Clause = clause(Head,Vars_u,K,Body),

465 clause_applies(Head,Sg), !,

466 varset(Head,Hv),

467 sort(Vars_u,Vars),

468 ord_subtract(Vars,Hv,Fv),

469 process_body(Body,K,AbsInt,Sg,Hv,Fv,Vars_u,Head,Sv,Call,

470 Proj,LPrime,Id),

471 append_(LPrime,TailPrimes,Primes).

472 do_nr_cl(_Clause,_Sg,_Sv,_Call,_Proj,_AbsInt,Primes,Primes,_Id).

473

474 append_([Prime],TailPrimes,Primes):- !, Primes=[Prime|TailPrimes].

475 append_(LPrime,TailPrimes,Primes):- append(LPrime,TailPrimes,Primes).

476

477 process_body(Body,K,AbsInt,Sg,Hv,Fv,_,Head,Sv,Call,Proj,LPrime,Id):-

478 Body = g(_,[],'$built'(_,true,_),'true/0',true), !,

479 Help=(Sv,Sg,Hv,Fv,AbsInt),

480 singleton(Prime,LPrime),

481 call_to_success_fact(AbsInt,Sg,Hv,Head,K,Sv,Call,Proj,Prime,_Succ),

187

ABSTRACT INTERPRETATION FIXPOINT

482 (current_pp_flag(fact_info,on) ->

483 call_to_entry(AbsInt,Sv,Sg,Hv,Head,K,[],Prime,Exit,_),

484 decide_memo(AbsInt,K,Id,no,Hv,[Exit])

485 ;

486 true

487).

488 process_body(Body,K,AbsInt,Sg,Hv,Fv,Vars_u,Head,Sv,_,Proj,Prime,Id):-

489 call_to_entry(AbsInt,Sv,Sg,Hv,Head,K,Fv,Proj,Entry,ExtraInfo),

490 singleton(Entry,LEntry),

491 entry_to_exit(Body,K,LEntry,Exit,[],_,Vars_u,AbsInt,Id),

492 each_exit_to_prime(Exit,AbsInt,Sg,Hv,Head,Sv,ExtraInfo,Prime).

493

494 fixpoint_compute(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,

495 Prime0,Prime,Id,List) :-

496 fixpoint_compute_(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,

497 Prime0,Prime1,Id,List),

498 compute_clauses_lub(AbsInt,Proj,Prime1,Prime).

499

500 fixpoint_compute_(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,

501 TempPrime,Prime,Id,List) :-

502 compute(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,

503 TempPrime,Prime1,Id,[],NewList,Flag),

504 fixpoint(NewList,Flag,Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,

505 Prime1,Prime,Id,List), !.

506

507 fixpoint([],_,_,_,_,_,_,_,_,_,Prime1,Prime,_,List):- !,

508 Prime = Prime1,

509 List = [].

510 fixpoint(NewList,Flag,_,_,_,_,_,_,_,_,Prime1,Prime,_,List):-

511 var(Flag),!,

512 Prime = Prime1,

513 List = NewList.

514 fixpoint(_,_,Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,Prime1,Prime,Id,List):-

515 fixpoint_compute_(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,

516 Prime1,Prime,Id,List).

517

518 % some domains need normalization to perform the widening:

519 normalize_asub0(AbsInt,Prime0,Prime):-

520 current_pp_flag(widen,on), !,

521 normalize_asub(AbsInt,Prime0,Prime).

522 normalize_asub0(_AbsInt,Prime,Prime).

523

524 compute([],_,_,_,_,_,_,[],Prime,Prime,_,List,List,_).

525 compute([Clause|Rest],SgKey,Sg,Sv,Call,Proj,AbsInt,[EntryInf|LEntryInf],

526 TempPrime,Prime,Id,List,NewList,Flag) :-

527 do_r_cl(Clause,SgKey,Sg,Sv,Proj,AbsInt,EntryInf,Id,List,IntList,

528 TempPrime,NewPrime,Flag),

529 compute(Rest,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,NewPrime,Prime,

530 Id,IntList,NewList,Flag).

531

532 do_r_cl(Clause,SgKey,Sg,Sv,Proj,AbsInt,EntryInf,Id,OldL,List,TempPrime,

533 NewPrime,Flag):-

188

B.2 PLAI Algorithm Using Ciao Prolog

534 Clause=clause(Head,Vars_u,K,Body),

535 clause_applies(Head,Sg), !,

536 erase_previous_memo_tables_and_parents(Body,AbsInt,K,Id),

537 varset(Head,Hv),

538 reuse_entry(EntryInf,Vars_u,AbsInt,Sv,Sg,Hv,Head,K,Proj,Entry,ExtraInfo),

539 singleton(Entry,LEntry),

540 entry_to_exit(Body,K,LEntry,Exit,OldL,List,Vars_u,AbsInt,Id),

541 each_exit_to_prime(Exit,AbsInt,Sg,Hv,Head,Sv,ExtraInfo,Prime1),

542 widen_succ(AbsInt,TempPrime,Prime1,NewPrime),

543 decide_flag(AbsInt,TempPrime,NewPrime,SgKey,Sg,Id,Proj,Flag).

544

545 do_r_cl(_,_,_,_,_,_,_,_,List,List,Prime,Prime,_).

546

547 widen_succ_off(AbsInt,Prime0,Prime1,LPrime):-

548 current_pp_flag(multi_success,on), !,

549 reduce_equivalent([Prime0,Prime1],AbsInt,LPrime).

550 widen_succ_off(AbsInt,Prime0,Prime1,Prime):-

551 singleton(P0,Prime0),

552 singleton(P1,Prime1),

553 singleton(P,Prime),

554 compute_lub(AbsInt,[P0,P1],P).

555

556 reuse_entry(EntryInf,Vars_u,AbsInt,Sv,Sg,Hv,Head,K,Proj,Entry,ExtraInfo):-

557 var(EntryInf), !,

558 sort(Vars_u,Vars),

559 ord_subtract(Vars,Hv,Fv),

560 call_to_entry(AbsInt,Sv,Sg,Hv,Head,K,Fv,Proj,Entry,ExtraInfo),

561 EntryInf = (Entry,ExtraInfo).

562 reuse_entry(EntryInf,_Vars_u,_AbsInt,_Sv,_Sg,_Hv,_Head,_K,_Proj,Entry,ExtraInfo):-

563 EntryInf = (Entry,ExtraInfo).

564

565 decide_flag(AbsInt,TempPrime,NewPrime,_SgKey,_Sg,_Id,_Proj,_Flag):-

566 abs_subset_(NewPrime,AbsInt,TempPrime), !.

567 decide_flag(_AbsInt,TempPrime,NewPrime,SgKey,Sg,Id,Proj,Flag):-

568 Flag = notend,

569 merge_(NewPrime,TempPrime,LPrime),

570 current_fact(fixpoint(SgKey,Sg,_,_,Id,Fs),Ref),

571 erase(Ref),

572 asserta_fact(fixpoint(SgKey,Sg,Proj,LPrime,Id,Fs)),

573 current_fact(ch_id(Id,Num),Ref3),

574 erase(Ref3),

575 Num1 is Num+1,

576 asserta_fact(ch_id(Id,Num1)).

577

578 merge_([NewPrime],_TempPrime,LPrime):- !, LPrime=[NewPrime].

579 merge_(NewPrime,TempPrime,LPrime):-

580 merge(NewPrime,TempPrime,LPrime).

581

582 %--%

583 % entry_to_exit(+,+,+,-,+,-,+,+,+) %

584 %--%

585

189

ABSTRACT INTERPRETATION FIXPOINT

586 entry_to_exit((Sg,Rest),K,Call,Exit,OldList,NewList,Vars_u,AbsInt,NewN):- !,

587 body_succ(Call,Sg,Succ,OldList,IntList,Vars_u,AbsInt,K,NewN,_),

588 entry_to_exit(Rest,K,Succ,Exit,IntList,NewList,Vars_u,AbsInt,NewN).

589 entry_to_exit(true,_,Call,Call,List,List,_,_,_):- !.

590 entry_to_exit(Sg,Key,Call,Exit,OldList,NewList,Vars_u,AbsInt,NewN):-

591 body_succ(Call,Sg,Exit,OldList,NewList,Vars_u,AbsInt,Key,NewN,_),

592 decide_memo(AbsInt,Key,NewN,no,Vars_u,Exit),!.

593

594 body_succ(Call,Atom,Succ,List,List,HvFv_u,AbsInt,_ClId,ParentId,no):-

595 bottom(Call), !,

596 Succ = Call,

597 Atom=g(Key,_Av,_I,_SgKey,_Sg),

598 asserta_fact(memo_table(Key,AbsInt,ParentId,no,HvFv_u,Succ)).

599 body_succ(Call,Atom,Succ,List,NewList,HvFv_u,AbsInt,ClId,ParentId,Id):-

600 Atom=g(Key,Sv,Info,SgKey,Sg),

601 body_succ_(Info,SgKey,Sg,Sv,HvFv_u,Call,Succ,List,NewList,AbsInt,

602 ClId,Key,ParentId,Id),

603 decide_memo(AbsInt,Key,ParentId,Id,HvFv_u,Call).

604

605 body_succ_(Info,SgKey,Sg,Sv,HFv,Call,Succ,L,NewL,AbsInt,ClId,Key,PId,Id):-

606 Info = [_|_], !,

607 split_combined_domain(AbsInt,Call,Calls,Domains),

608 map_body_succ(Info,SgKey,Sg,Sv,HFv,Calls,Succs,L,NewL,Domains,

609 ClId,Key,PId,Id),

610 split_combined_domain(AbsInt,Succ,Succs,Domains).

611 body_succ_(Info,SgKey,Sg,Sv,HFv,Call,Succ,L,NewL,AbsInt,ClId,Key,PId,Id):-

612 body_succ0(Info,SgKey,Sg,Sv,HFv,Call,Succ,L,NewL,AbsInt,

613 ClId,Key,PId,Id).

614

615 map_body_succ([],_SgKey,_Sg,_Sv,_HFv,[],[],L,L,[],_ClId,_Key,_PId,no).

616 map_body_succ([I|Info],SgKey,Sg,Sv,HFv,[Call|Calls],[Succ|Succs],L,NewL,

617 [AbsInt|Domains],ClId,Key,PId,Id):-

618 body_succ0(I,SgKey,Sg,Sv,HFv,Call,Succ,L,_NewL,AbsInt,

619 ClId,Key,PId,_Id), !,

620 map_body_succ(Info,SgKey,Sg,Sv,HFv,Calls,Succs,L,NewL,Domains,

621 ClId,Key,PId,Id).

622

623 body_succ0('$var',SgKey,Sg,_Sv_u,HvFv_u,Calls,Succs,List0,List,AbsInt,
624 ClId,F,_N,Id):-

625 !,

626 (Calls=[Call],

627 concrete(AbsInt,Sg,Call,Concretes),

628 concretes_to_body(Concretes,SgKey,AbsInt,B)

629 -> fixpoint_id(Id),

630 meta_call(B,HvFv_u,Calls,[],Succs,List0,List,AbsInt,ClId,Id,Ids),

631 assertz_fact(memo_call(F,Id,AbsInt,Concretes,Ids))

632 ; Id=no,

633 List=List0,

634 variable(F,ClId),

635 each_unknown_call(Calls,AbsInt,[Sg],Succs) % Sg is a variable

636).

637 body_succ0('$meta'(T,B,_),SgKey,Sg,Sv_u,HvFv_u,Call,Succ,List0,List,AbsInt,

190

B.2 PLAI Algorithm Using Ciao Prolog

638 ClId,F,N,Id):-

639 !,

640 (current_pp_flag(reuse_fixp_id,on) ->

641 (Call=[C]

642 -> sort(Sv_u,Sv),

643 project(AbsInt,Sg,Sv,HvFv_u,C,Proj),

644 fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

645 ; true

646)

647 ;

648 fixpoint_id(Id)

649),

650 meta_call(B,HvFv_u,Call,[],Exits,List0,List,AbsInt,ClId,Id,_Ids),

651 (body_succ_meta(T,AbsInt,Sv_u,HvFv_u,Call,Exits,Succ) ->

652 (Call=[C] ->

653 sort(Sv_u,Sv),

654 project(AbsInt,Sg,Sv,HvFv_u,C,Proj),

655 each_project(Exits,AbsInt,Sg,Sv,HvFv_u,Prime),

656 asserta_fact(complete(SgKey,AbsInt,Sg,Proj,Prime,Id,[(F,N)]))

657 ; true

658)

659 ; % for the trusts, if any:

660 varset(Sg,Sv_r), % Sv_u contains extra vars (from meta-term)

661 % which will confuse apply_trusted

662 body_succ0(nr,SgKey,Sg,Sv_r,HvFv_u,Call,Succ,[],_List,AbsInt,

663 ClId,F,N,Id0),

664 retract_fact(complete(SgKey,AbsInt,Sg,Proj,Prime,Id0,Ps)),

665 asserta_fact(complete(SgKey,AbsInt,Sg,Proj,Prime,Id,Ps))

666).

667 body_succ0('$built'(T,Tg,Vs),SgKey,Sg,Sv_u,HvFv_u,Call,Succ,List0,List,AbsInt,
668 _ClId,F,N,Id):-

669 !,

670 Id=no,

671 List=List0,

672 sort(Sv_u,Sv),

673 each_body_succ_builtin(Call,AbsInt,T,Tg,Vs,SgKey,Sg,Sv,HvFv_u,F,N,Succ).

674 body_succ0(RFlag,SgKey,Sg,Sv_u,HvFv_u,Call,Succ,List0,List,AbsInt,

675 ClId,F,N,Id):-

676 sort(Sv_u,Sv),

677 each_call_to_success(Call,RFlag,SgKey,Sg,Sv,HvFv_u,AbsInt,ClId,

678 Succ,List0,List,F,N,Id).

679

680 each_call_to_success([Call],RFlag,SgKey,Sg,Sv,HvFv_u,AbsInt,ClId,Succ,L0,L,

681 F,N,Id):-

682 !,

683 project(AbsInt,Sg,Sv,HvFv_u,Call,Proj),

684 call_to_success(RFlag,SgKey,Call,Proj,Sg,Sv,AbsInt,ClId,Succ,L1,F,N,Id),

685

686 merge(L1,L0,L).

687 each_call_to_success(LCall,RFlag,SgKey,Sg,Sv,HvFv_u,AbsInt,ClId,LSucc,L0,L,

688 F,N,Id):-

689 each_call_to_success0(LCall,RFlag,SgKey,Sg,Sv,HvFv_u,AbsInt,ClId,

191

ABSTRACT INTERPRETATION FIXPOINT

690 LSucc,L0,L,F,N,Id).

691

692 each_call_to_success0([],_Flag,_SgK,_Sg,_Sv,_HvFv,_AbsInt,_,[],L,L,_F,_N,_NN).

693 each_call_to_success0([Call|LCall],RFlag,SgKey,Sg,Sv,HvFv_u,AbsInt,ClId,

694 LSucc,L0,L,F,N,NewN):-

695 project(AbsInt,Sg,Sv,HvFv_u,Call,Proj),

696 call_to_success(RFlag,SgKey,Call,Proj,Sg,Sv,AbsInt,ClId,LSucc0,L1,F,N,_),

697 merge(L0,L1,L2),

698 append(LSucc0,LSucc1,LSucc),

699 each_call_to_success0(LCall,RFlag,SgKey,Sg,Sv,HvFv_u,AbsInt,ClId,

700 LSucc1,L2,L,F,N,NewN).

701

702 meta_call([],_HvFv_u,Call,[],Call,List,List,_AbsInt,_ClId,_Id,[]).

703 meta_call([Body|Bodies],HvFv_u,Call,Succ0,Succ,L0,List,AbsInt,ClId,Id,Ids):-

704 meta_call_([Body|Bodies],HvFv_u,Call,Succ0,Succ,L0,List,AbsInt,ClId,Id,Ids).

705

706 meta_call_([Body|Bodies],HvFv_u,Call,Succ0,Succ,L0,List,AbsInt,ClId,Id,Ids):-

707 meta_call_body(Body,ClId,Call,Succ1,L0,L1,HvFv_u,AbsInt,Id,Ids0),

708 widen_succ(AbsInt,Succ0,Succ1,Succ2),

709 append(Succ0,Succ1,Succ2),

710 append(Ids0,Ids1,Ids),

711 meta_call_(Bodies,HvFv_u,Call,Succ2,Succ,L1,List,AbsInt,ClId,Id,Ids1).

712 meta_call_([],_HvFv_u,_Call,Succ,Succ,List,List,_AbsInt,_ClId,_Id,[]).

713

714 meta_call_body((Sg,Rest),K,Call,Exit,OldList,NewList,Vars_u,AbsInt,PId,CIds):-

715 !,

716 CIds=[Id|Ids],

717 body_succ(Call,Sg,Succ,OldList,IntList,Vars_u,AbsInt,K,PId,Id),

718 meta_call_body(Rest,K,Succ,Exit,IntList,NewList,Vars_u,AbsInt,PId,Ids).

719 meta_call_body(true,_,Call,Call,List,List,_,_,_,[no]):- !.

720 meta_call_body(Sg,Key,Call,Exit,OldList,NewList,Vars_u,AbsInt,PId,[Id]):-

721 body_succ(Call,Sg,Exit,OldList,NewList,Vars_u,AbsInt,Key,PId,Id).

722

723 concretes_to_body([],_SgKey,_AbsInt,[]).

724 concretes_to_body([Sg|Sgs],SgKey,AbsInt,[B|Bs]):-

725 body_info0(Sg:SgKey,[],AbsInt,B),

726 concretes_to_body(Sgs,SgKey,AbsInt,Bs).

727

728 %--%

729 % query(+,+,+,+,+,+,+,-) %

730 %--%

731

732 :- doc(query(AbsInt,QKey,Query,Qv,RFlag,N,Call,Succ),

733 "The success pattern of @var{Query} with @var{Call} is

734 @var{Succ} in the analysis domain @var{AbsInt}. The predicate

735 called is identified by @var{QKey}, and @var{RFlag} says if it

736 is recursive or not. The goal @var{Query} has variables @var{Qv},

737 and the call pattern is uniquely identified by @var{N}.").

738

739 query(AbsInt,QKey,Query,Qv,RFlag,N,Call,Succ) :-

740 project(AbsInt,Query,Qv,Qv,Call,Proj),

741 call_to_success(RFlag,QKey,Call,Proj,Query,Qv,AbsInt,0,Succ,_,N,0,Id), !,

192

B.2 PLAI Algorithm Using Ciao Prolog

742 approx_to_completes(AbsInt).

743

744 query(_AbsInt,_QKey,_Query,_Qv,_RFlag,_N,_Call,_Succ):-

745 % should never happen, but...

746 error_message("SOMETHING HAS FAILED!").

193

Appendix C

s(CASP)

C.1 s(CASP) interpreter

The next figure shows a sketch of the s(CASP) interpreter’s code implemented in Ciao
Prolog.

1 ??(Query) :-

2 solve(Query,[],Mid),
3 solve_goal(nmr_check,Mid,Just),

4 print_just_model(Just).

5

6 solve([],In,['$success'|In]).
7 solve([Goal|Gs],In,Out) :-

8 solve_goal(Goal,In,Mid),

9 solve(Gs,Mid,Out).

10

11 solve_goal(Goal,In,Out) :-

12 user_defined(Goal),!,

13 check_loops(Goal,In,Out).

14 solve_goal(Goal,In,Out) :-

15 Goal=forall(Var,G),!,

16 forall(V,G,In,Out).

17 solve_goal(Goal,In,Out) :-

18 call(Goal),

19 Out=['$success',Goal|In].
20

21 check_loops(Goal,In Out) :-

22 type_loop(Goal,In,Loop),

23 solve_loop(Loop,Goal,In,Out).

24

25 solve_loop(odd,_,_,_) :- fail.

26 solve_loop(pos,_,_,_) :- fail.

27 solve_loop(eve,G,In,[chs(G)|In]).
28 solve_loop(pro,G,In,[pro(G)|In]).
29 solve_loop(cont,G,In,Out) :-

30 pr_rule(G, Body),

31 solve(Body,[G|In],Out).
32

33 forall(V,Goal,In,Out) :-

34 empty_store(Store),

35 eval_forall(V,Goal,[Store],In,Out).
36 eval_forall(_,_,[],In,In).
37 eval_forall(V,Goal,[Store|Sts],In,Out) :-

38 copy(V,Goal, NV,NGoal),

39 apply(NV, V,Store),

40 solve([NGoal],In,['$success'|Out_1]),
41 dump(NV, V,AnsSt),

42 (equal(AnsSt,Store)

43 -> Out_2 = Out_1

44 ; dual(AnsSt,AnsDs),

45 add(AnsDs,Store,NSt),

46 eval_forall(V,Goal,NSt,Out_1,Out_2)

47),

48 eval_forall(V,Goal,Sts,Out_2,Out).

195

S(CASP)

C.2 Stream Data Reasoning Example

C.2.1 s(CASP) encoding of stream.pl

The next figure shows the code of stream.pl with the dual program and the NMR
generated by the extended compiler of s(CASP).

1 valid_stream(P,Data) :-

2 stream(P,Data),

3 not cancelled(P,Data).

4

5 cancelled(P,Data) :-

6 higher_prio(P1,P),

7 stream(P1,Data1),

8 incompt(Data,Data1).

9

10 higher_prio(PHi,PLo) :-

11 PHi #> PLo.

12

13 incompt(p(X),q(X)).

14 incompt(q(X),p(X)).

15

16 stream(1,p(X)).

17 stream(2,q(a)).

18 stream(2,q(b)).

19 stream(3,p(a)).

20

21 not incompt1(A,_,X) :-

22 A \= p(X).

23 not incompt1(A,B,X) :-

24 A=p(X),

25 B \= q(X).

26

27 not incompt1(A,B) :-

28 forall(X,not incompt1(A,B,X)).

29

30 not incompt2(A,_,X) :-

31 A \= q(X).

32 not incompt2(A,B,X) :-

33 A=q(X),

34 B \= p(X).

35

36 not incompt2(A,B) :-

37 forall(X,not incompt2(A,B,X)).

38

39 not incompt(A,B) :-

40 not incompt1(A,B),

41 not incompt2(A,B).

42

43 not higher_prio1(PHi,PLo) :-

44 PHi #=< PLo.

45

46 not higher_prio(A,B) :-

47 not higher_prio1(A,B).

48

49 not cancelled1(P,_,P1,_) :-

50 not higher_prio(P1,P).

51 not cancelled1(P,_,P1,Data1) :-

52 higher_prio(P1,P),

53 not stream(P1,Data1).

54 not cancelled1(P,Data,P1,Data1) :-

55 higher_prio(P1,P),

56 stream(P1,Data1),

57 not incompt(Data,Data1).

58

59 not cancelled1(P,Data) :-

60 forall(P1,forall(Data1,not

61 cancelled1(P,Data,P1,Data1))).

62

63 not cancelled(A,B) :-

64 not cancelled1(A,B).

65

66 not stream1(A,_,X) :-

67 A \= 1.

68 not stream1(A,B,X) :-

69 A=1,

70 B \= p(X).

71

72 not stream1(A,B) :-

73 forall(X,not stream1(A,B,X)).

74

75 not stream2(A,_) :-

76 A \= 2.

77 not stream2(A,B) :-

78 A=2,

79 B \= q(a).

80

81 not o_stream3(A,_) :-

82 A \= 2.

83 not o_stream3(A,B) :-

84 A=2,

196

C.2 Stream Data Reasoning Example

85 B \= q(b).

86

87 not stream4(A,_) :-

88 A \= 3.

89 not stream4(A,B) :-

90 A=3,

91 B \= p(a).

92

93 not stream(A,B) :-

94 not stream1(A,B),

95 not stream2(A,B),

96 not stream3(A,B),

97 not stream4(A,B).

98

99 not valid_stream1(P,Data) :-

100 not stream(P,Data).

101 not valid_stream1(P,Data) :-

102 stream(P,Data),

103 cancelled(P,Data).

104

105 not valid_stream(A,B) :-

106 not valid_stream1(A,B).

107

108 not false.

109

110 nmr_check.

C.2.2 s(CASP) output of stream.pl

The next figure shows the output for the query ?- valid_stream(Pr,Data) when it
is made to the program stream.pl (see C.2.1). The output to a query consists of: (i)
a justification tree with the successful derivation (note that variables could be free,
ground, or constrained); (ii) a model with the positive atoms defined by the program
that support the successful derivation; and (iii) the bindings of variables in the query (in
this example, the bindings of Pr and Data). The constraint store active at each call is
shown close to each variable.

1 ?- valid_stream(Pr, Data).

2

3 Answer 1 (in 18.907 ms):

4

5 valid_stream(1,p({A \= [a,b]})) :-

6 stream(1,p({A \= [a,b]})),

7 not cancelled(1,p({A \= [a,b]})) :-

8 not o_cancelled1(1,p({A \= [a,b]})) :-

9 forall(B,forall(C,not o_cancelled1(1,p({A \= [a,b]}),B,C))) :-

10 forall(C,not o_cancelled1(1,p({A \= [a,b]}),{D #=< 1},C)) :-

11 not o_cancelled1(1,p({A \= [a,b]}),{D #=< 1},C) :-

12 not higher_prio({D #=< 1},1) :-

13 not o_higher_prio1({D #=< 1},1) :-

14 {D #=< 1} #=< 1.

15 forall(C,not o_cancelled1(1,p({A \= [a,b]}),{E #> 3},C)) :-

16 not o_cancelled1(1,p({A \= [a,b]}),{E #> 3},F) :-

17 higher_prio({E #> 3},1) :-

18 {E #> 3} #> 1.

19 not stream({E #> 3},F) :-

20 not o_stream1({E #> 3},F) :-

21 forall(G,not o_stream1({E #> 3},F,G)) :-

197

S(CASP)

22 not o_stream1({E #> 3},F,G) :-

23 {E #> 3} \= 1.

24 not o_stream2({E #> 3},F) :-

25 {E #> 3} \= 2.

26 not o_stream3({E #> 3},F) :-

27 {E #> 3} \= 2.

28 not o_stream4({E #> 3},F) :-

29 {E #> 3} \= 3.

30 forall(C,not o_cancelled1(1,p({A \= [a,b]}),{H #> 2, H #< 3},C)) :-

31 not o_cancelled1(1,p({A \= [a,b]}),{H #> 2, H #< 3},I) :-

32 higher_prio({H #> 2, H #< 3},1) :-

33 {H #> 2, H #< 3} #> 1.

34 not stream({H #> 2, H #< 3},I) :-

35 not o_stream1({H #> 2, H #< 3},I) :-

36 forall(J,not o_stream1({H #> 2, H #< 3},I,J)) :-

37 not o_stream1({H #> 2, H #< 3},I,J) :-

38 {H #> 2, H #< 3} \= 1.

39 not o_stream2({H #> 2, H #< 3},I) :-

40 {H #> 2, H #< 3} \= 2.

41 not o_stream3({H #> 2, H #< 3},I) :-

42 {H #> 2, H #< 3} \= 2.

43 not o_stream4({H #> 2, H #< 3},I) :-

44 {H #> 2, H #< 3} \= 3.

45 forall(C,not o_cancelled1(1,p({A \= [a,b]}),{K #> 1, K #< 2},C)) :-

46 not o_cancelled1(1,p({A \= [a,b]}),{K #> 1, K #< 2},L) :-

47 higher_prio({K #> 1, K #< 2},1) :-

48 {K #> 1, K #< 2} #> 1.

49 not stream({K #> 1, K #< 2},L) :-

50 not o_stream1({K #> 1, K #< 2},L) :-

51 forall(M,not o_stream1({K #> 1, K #< 2},L,M)) :-

52 not o_stream1({K #> 1, K #< 2},L,M) :-

53 {K #> 1, K #< 2} \= 1.

54 not o_stream2({K #> 1, K #< 2},L) :-

55 {K #> 1, K #< 2} \= 2.

56 not o_stream3({K #> 1, K #< 2},L) :-

57 {K #> 1, K #< 2} \= 2.

58 not o_stream4({K #> 1, K #< 2},L) :-

59 {K #> 1, K #< 2} \= 3.

60 forall(C,not o_cancelled1(1,p({A \= [a,b]}),2,C)) :-

61 not o_cancelled1(1,p({A \= [a,b]}),2,{N \= [q(a),q(b)]}) :-

62 higher_prio(2,1) :-

63 2 #> 1.

64 not stream(2,{N \= [q(a),q(b)]}) :-

65 not o_stream1(2,{N \= [q(a),q(b)]}) :-

66 forall(O,not o_stream1(2,{N \= [q(a),q(b)]},O)) :-

67 not o_stream1(2,{N \= [q(a),q(b)]},O) :-

198

C.2 Stream Data Reasoning Example

68 2 \= 1.

69 not o_stream2(2,{N \= [q(a),q(b)]}) :-

70 2 = 2,

71 {N \= [q(a),q(b)]} \= q(a).

72 not o_stream3(2,{N \= [q(a),q(b)]}) :-

73 2 = 2,

74 {N \= [q(a),q(b)]} \= q(b).

75 not o_stream4(2,{N \= [q(a),q(b)]}) :-

76 2 \= 3.

77 not o_cancelled1(1,p({A \= [a,b]}),2,q(a)) :-

78 proved(higher_prio(2,1)),

79 stream(2,q(a)),

80 not incompt(p({A \= [a,b]}),q(a)) :-

81 not o_incompt1(p({A \= [a,b]}),q(a)) :-

82 forall(P,not o_incompt1(p({A \= [a,b]}),q(a),P)) :-

83 not o_incompt1(p({A \= [a,b]}),q(a),{A \= [a,b]}) :-

84 p({A \= [a,b]}) = p({A \= [a,b]}),

85 q(a) \= q({A \= [a,b]}).

86 not o_incompt1(p({A \= [a,b]}),q(a),a) :-

87 p({A \= [a,b]}) \= p(a).

88 not o_incompt2(p({A \= [a,b]}),q(a)) :-

89 forall(P,not o_incompt2(p({A \= [a,b]}),q(a),P)) :-

90 not o_incompt2(p({A \= [a,b]}),q(a),P) :-

91 p({A \= [a,b]}) \= q(P).

92 not o_cancelled1(1,p({A \= [a,b]}),2,q(b)) :-

93 proved(higher_prio(2,1)),

94 stream(2,q(b)),

95 not incompt(p({A \= [a,b]}),q(b)) :-

96 not o_incompt1(p({A \= [a,b]}),q(b)) :-

97 forall(Q,not o_incompt1(p({A \= [a,b]}),q(b),Q)) :-

98 not o_incompt1(p({A \= [a,b]}),q(b),{A \= [a,b]}) :-

99 p({A \= [a,b]}) = p({A \= [a,b]}),

100 q(b) \= q({A \= [a,b]}).

101 not o_incompt1(p({A \= [a,b]}),q(b),a) :-

102 p({A \= [a,b]}) \= p(a).

103 not o_incompt1(p({A \= [a,b]}),q(b),b) :-

104 p({A \= [a,b]}) \= p(b).

105 not o_incompt2(p({A \= [a,b]}),q(b)) :-

106 forall(R,not o_incompt2(p({A \= [a,b]}),q(b),R)) :-

107 not o_incompt2(p({A \= [a,b]}),q(b),R) :-

108 p({A \= [a,b]}) \= q(R).

109 forall(C,not o_cancelled1(1,p({A \= [a,b]}),3,C)) :-

110 not o_cancelled1(1,p({A \= [a,b]}),3,{S \= [p(a)]}) :-

111 higher_prio(3,1) :-

112 3 #> 1.

113 not stream(3,{S \= [p(a)]}) :-

199

S(CASP)

114 not o_stream1(3,{S \= [p(a)]}) :-

115 forall(T,not o_stream1(3,{S \= [p(a)]},T)) :-

116 not o_stream1(3,{S \= [p(a)]},T) :-

117 3 \= 1.

118 not o_stream2(3,{S \= [p(a)]}) :-

119 3 \= 2.

120 not o_stream3(3,{S \= [p(a)]}) :-

121 3 \= 2.

122 not o_stream4(3,{S \= [p(a)]}) :-

123 3 = 3,

124 {S \= [p(a)]} \= p(a).

125 not o_cancelled1(1,p({A \= [a,b]}),3,p(a)) :-

126 proved(higher_prio(3,1)),

127 stream(3,p(a)),

128 not incompt(p({A \= [a,b]}),p(a)) :-

129 not o_incompt1(p({A \= [a,b]}),p(a)) :-

130 forall(U,not o_incompt1(p({A \= [a,b]}),p(a),U)) :-

131 not o_incompt1(p({A \= [a,b]}),p(a),{A \= [a,b]}) :-

132 p({A \= [a,b]}) = p({A \= [a,b]}),

133 p(a) \= q({A \= [a,b]}).

134 not o_incompt1(p({A \= [a,b]}),p(a),a) :-

135 p({A \= [a,b]}) \= p(a).

136 not o_incompt1(p({A \= [a,b]}),p(a),b) :-

137 p({A \= [a,b]}) \= p(b).

138 not o_incompt2(p({A \= [a,b]}),p(a)) :-

139 forall(V,not o_incompt2(p({A \= [a,b]}),p(a),V)) :-

140 not o_incompt2(p({A \= [a,b]}),p(a),V) :-

141 p({A \= [a,b]}) \= q(V).

142 add_to_query :- o_nmr_check.

143

144 [valid_stream(1,p({A \= [a,b]})), stream(1,p({A \= [a,b]})), higher_prio({E #> 3},1),

145 higher_prio({H #> 2, H #< 3},1), higher_prio({K #> 1, K #< 2},1), higher_prio(2,1),

146 stream(2,q(a)), stream(2,q(b)), higher_prio(3,1), stream(3,p(a)), o_nmr_check]

147

148 Pr = 1,

149 Data = p({A \= [a,b]}) ? ;

150

151 Answer 2 (in 49.191 ms):

152

153 valid_stream(2,q(b)) :-

154 stream(2,q(b)),

155 not cancelled(2,q(b)) :-

156 not o_cancelled1(2,q(b)) :-

157 forall(B,forall(C,not o_cancelled1(2,q(b),B,C))) :-

158 forall(C,not o_cancelled1(2,q(b),{A #=< 2},C)) :-

159 not o_cancelled1(2,q(b),{A #=< 2},D) :-

200

C.2 Stream Data Reasoning Example

160 not higher_prio({A #=< 2},2) :-

161 not o_higher_prio1({A #=< 2},2) :-

162 {A #=< 2} #=< 2.

163 forall(C,not o_cancelled1(2,q(b),{E #> 3},C)) :-

164 not o_cancelled1(2,q(b),{E #> 3},F) :-

165 higher_prio({E #> 3},2) :-

166 {E #> 3} #> 2.

167 not stream({E #> 3},F) :-

168 not o_stream1({E #> 3},F) :-

169 forall(G,not o_stream1({E #> 3},F,G)) :-

170 not o_stream1({E #> 3},F,G) :-

171 {E #> 3} \= 1.

172 not o_stream2({E #> 3},F) :-

173 {E #> 3} \= 2.

174 not o_stream3({E #> 3},F) :-

175 {E #> 3} \= 2.

176 not o_stream4({E #> 3},F) :-

177 {E #> 3} \= 3.

178 forall(C,not o_cancelled1(2,q(b),{H #> 2, H #< 3},C)) :-

179 not o_cancelled1(2,q(b),{H #> 2, H #< 3},I) :-

180 higher_prio({H #> 2, H #< 3},2) :-

181 {H #> 2, H #< 3} #> 2.

182 not stream({H #> 2, H #< 3},I) :-

183 not o_stream1({H #> 2, H #< 3},I) :-

184 forall(J,not o_stream1({H #> 2, H #< 3},I,J)) :-

185 not o_stream1({H #> 2, H #< 3},I,J) :-

186 {H #> 2, H #< 3} \= 1.

187 not o_stream2({H #> 2, H #< 3},I) :-

188 {H #> 2, H #< 3} \= 2.

189 not o_stream3({H #> 2, H #< 3},I) :-

190 {H #> 2, H #< 3} \= 2.

191 not o_stream4({H #> 2, H #< 3},I) :-

192 {H #> 2, H #< 3} \= 3.

193 forall(C,not o_cancelled1(2,q(b),3,C)) :-

194 not o_cancelled1(2,q(b),3,{K \= [p(a)]}) :-

195 higher_prio(3,2) :-

196 3 #> 2.

197 not stream(3,{K \= [p(a)]}) :-

198 not o_stream1(3,{K \= [p(a)]}) :-

199 forall(L,not o_stream1(3,{K \= [p(a)]},L)) :-

200 not o_stream1(3,{K \= [p(a)]},L) :-

201 3 \= 1.

202 not o_stream2(3,{K \= [p(a)]}) :-

203 3 \= 2.

204 not o_stream3(3,{K \= [p(a)]}) :-

205 3 \= 2.

201

S(CASP)

206 not o_stream4(3,{K \= [p(a)]}) :-

207 3 = 3,

208 {K \= [p(a)]} \= p(a).

209 not o_cancelled1(2,q(b),3,p(a)) :-

210 proved(higher_prio(3,2)),

211 stream(3,p(a)),

212 not incompt(q(b),p(a)) :-

213 not o_incompt1(q(b),p(a)) :-

214 forall(M,not o_incompt1(q(b),p(a),M)) :-

215 not o_incompt1(q(b),p(a),M) :-

216 q(b) \= p(M).

217 not o_incompt2(q(b),p(a)) :-

218 forall(N,not o_incompt2(q(b),p(a),N)) :-

219 not o_incompt2(q(b),p(a),{O \= [b]}) :-

220 q(b) \= q({O \= [b]}).

221 not o_incompt2(q(b),p(a),b) :-

222 q(b) = q(b),

223 p(a) \= p(b).

224 add_to_query :- o_nmr_check.

225

226

227 [valid_stream(2,q(b)), stream(2,q(b)), higher_prio({E #> 3},2), higher_

228 prio({H #> 2, H #< 3},2), higher_prio(3,2), stream(3,p(a)), o_nmr_check]

229

230 Pr = 2,

231 Data = q(b) ? ;

232

233 Answer 3 (in 1.606 ms):

234

235 valid_stream(3,p(a)) :-

236 stream(3,p(a)),

237 not cancelled(3,p(a)) :-

238 not o_cancelled1(3,p(a)) :-

239 forall(B,forall(C,not o_cancelled1(3,p(a),B,C))) :-

240 forall(C,not o_cancelled1(3,p(a),{A #=< 3},C)) :-

241 not o_cancelled1(3,p(a),{A #=< 3},D) :-

242 not higher_prio({A #=< 3},3) :-

243 not o_higher_prio1({A #=< 3},3) :-

244 {A #=< 3} #=< 3.

245 forall(C,not o_cancelled1(3,p(a),{E #> 3},C)) :-

246 not o_cancelled1(3,p(a),{E #> 3},F) :-

247 higher_prio({E #> 3},3) :-

248 {E #> 3} #> 3.

249 not stream({E #> 3},F) :-

250 not o_stream1({E #> 3},F) :-

251 forall(G,not o_stream1({E #> 3},F,G)) :-

202

C.3 Yale Scenario Example

252 not o_stream1({E #> 3},F,G) :-

253 {E #> 3} \= 1.

254 not o_stream2({E #> 3},F) :-

255 {E #> 3} \= 2.

256 not o_stream3({E #> 3},F) :-

257 {E #> 3} \= 2.

258 not o_stream4({E #> 3},F) :-

259 {E #> 3} \= 3.

260 add_to_query :- o_nmr_check.

261

262 [valid_stream(3,p(a)), stream(3,p(a)), higher_prio({E #> 3},3), o_nmr_check]

263

264 Pr = 3,

265 Data = p(a) ? ;

266

267 no

C.3 Yale Scenario Example

C.3.1 ASP + constraint encoding of yale shooting asp.pl

Nest figure shows the spoiled Yale shooting scenario model written in clingo + con-
straints using multi-shot solving (Janhunen et al., 2017).

1 #include "incmode_lc.lp".

2 #program base.

3 action(load).

4 action(shoot).

5 action(wait).

6 duration(load,25).

7 duration(shoot,5).

8 duration(wait,36).

9 unloaded(0).

10 &sum { at(0) } = 0.

11 &sum { armed(0) } = 0.

12

13 #program step(n).

14 1 { do(X,n) : action(X) } 1.

15 &sum { at(n),-1*at(N') } = D :-

16 do(X,n),

17 duration(X,D),

18 N' = n - 1.

19

20 loaded(n) :-

21 loaded(n-1),

22 not unloaded(n).

23 unloaded(n) :-

24 unloaded(n-1),

25 not loaded(n).

26 dead(n) :-

27 dead(n-1).

28

29 &sum { armed(n) } = 0 :-

30 unloaded(n-1).

31 &sum { armed(n),-1*armed(N') } = D :-

32 do(X,n),

33 duration(X,D),

34 N' = n - 1,

35 loaded(N').
36

37 loaded(n) :-

38 do(load,n).

39 unloaded(n) :-

40 do(shoot,n).

41 dead(n) :-

42 do(shoot,n),

203

S(CASP)

43 &sum { armed(n) } <= 35.

44

45 :- do(shoot,n), unloaded(n-1).

46

47 #program check(n).

48 :- not dead(n), query(n).

49 :- not &sum {at(n)} <= 100, query(n).

50 :- do(shoot,n), not &sum {at(n)} > 35.

C.4 The Traveling Salesman Problem Example

C.4.1 ASP encoding of hamicycle asp.pl

The next figure shows an ASP program for the Travelling Salesman Problem described
in Section 6.3.3. The encoding for the Hamiltonian cycle part is from (Dovier et al.,
2005) and the code of #sum is adapted to run using clingo. The bound on the total
distance is one of the global constraints in the program.
1 1 {cycle(X,Y) : edge(X,Y)} 1 :- node(X).

2 1 {cycle(Z,X) : edge(Z,X)} 1 :- node(X).

3

4 reachable(X) :- node(X), cycle(b,X).

5 reachable(Y) :- node(X), node(Y), reachable(X), cycle(X,Y).

6

7 :- not reachable(X), node(X).

8

9 cycle_length(N) :- N = #sum {C: cycle(X,Y), distance(X, Y, C)}.

10 :- cycle_length(N), N >= 10. % Cycles whose length is less than 10

11

12 edge(X,Y) :- distance(X,Y,D).

13 cycle_dist(U,V,D) :- cycle(U,V), distance(U,V,D).

14

15 node(a). node(b). node(c). node(d).

16 distance(b,c,3). %% ASP does not support rationals.

17 distance(c,d,8). %% ASP does not support intervals.

18 distance(d,a,1). distance(c,a,1). distance(d,b,1).

19 distance(a,b,1). distance(a,d,1).

C.4.2 CLP(FD) encoding of hamicycle clpfd.pl

The next figure shows the program in CLP(FD) for the Hamiltonian cycle problem
presented in (Dovier et al., 2005), using SICStus Prolog 3.11.2. Note that the library
predicate circuit/1 does the bulk of the work. Its implementation is non-trivial and
shares a lot of code with the implementation of all different, and it implicitly imposes
that constraint. It does not calculate cycle lengths, but even in this (simplified) case, the
code as a whole is much larger that either the ASP or s(CASP) code.

204

C.4 The Traveling Salesman Problem Example

1 hamiltonian_path(Path) :-

2 graph(Nodes,Edges),

3 length(Nodes,N),

4 length(Path,N),

5 domain(Path,1,N),

6 make_domains(Path,1,Edges,N),

7 circuit(Path),

8 labeling([ff],Path).
9

10 make_domains([],_,_,_).
11 make_domains([X|Y],Node,Edges,N) :-

12 findall(Z,

13 member([Node,Z],Edges),Succs),
14 reduce_domains(N,Succs,X),

15 Node1 is Node + 1,

16 make_domains(Y,Node1,Edges,N).

17

18 reduce_domains(0,_,_) :- !.

19 reduce_domains(N,Succs,Var) :-

20 N > 0,

21 member(N,Succs), !,

22 N1 is N - 1,

23 reduce_domains(N1,Succs,Var).

24 reduce_domains(N,Succs,Var) :-

25 Var # \= N,

26 N1 is N - 1,

27 reduce_domains(N1,Succs,Var).

C.4.3 s(CASP) output of hamicycle scasp.pl

The next figure shows the output to the query ?- D #< 10, cycle(a,D, Cycle) to the
program hamicycle_scasp.pl (Figure 6.6 in Section 6.3.3).

1 ?- D #< 10, travel_path(b, D, Cycle).

2

3 Answer 1 (in [2346.489] ms):

4

5 [travel_path(b,61/10,[b,[31/10],c,[1],a,[1],d,[1],b]), path(b,b,b,61/10,[],

6 [b,[31/10],c,[1],a,[1],d,[1],b]), cycle_dist(d,b,1), cycle(d,b), edge(d,b),

7 distance(d,b,1), node(d), node(b), node(a), edge(d,a), distance(d,a,1),

8 other(d,a), node(b), cycle(d,b), node(c), distance(d,b,1), path(b,b,d,51/10,

9 [[1],b],[b,[31/10],c,[1],a,[1],d,[1],b]), cycle_dist(a,d,1), cycle(a,d),

10 edge(a,d), distance(a,d,1), edge(a,b), distance(a,b,1), other(a,b), node(d),

11 cycle(a,d), distance(a,d,1), path(b,b,a,41/10,[[1],d,[1],b],[b,[31/10],c,[1],

12 a,[1],d,[1],b]), cycle_dist(c,a,1), cycle(c,a), edge(c,a), distance(c,a,1),

13 edge(c,d), distance(c,d,{A #> 8, A #< 21rat2}), other(c,d), node(a), cycle(c,a),

14 distance(c,a,1), path(b,b,c,31/10,[[1],a,[1],d,[1],b],[b,[31/10],c,[1],a,[1],

15 d,[1],b]), cycle_dist(b,c,31/10), cycle(b,c), edge(b,c), distance(b,c,3.1),

16 distance(b,c,31/10), o_nmr_check, reachable(a), cycle(c,a), edge(c,a),

17 distance(c,a,1), reachable(b), cycle(d,b), edge(d,b), distance(d,b,1),

18 reachable(d), cycle(a,d), edge(a,d), distance(a,d,1), reachable(c), cycle(b,c),

19 edge(b,c), distance(b,c,3.1), other(a,a), node(d), other(a,c), node(d),

20 other(b,a), node(c), other(b,b), node(c), other(b,d), node(c), other(c,b),

21 node(a), other(c,c), node(a), other(d,c), node(b), other(d,d), node(b)]

22

23 Cycle = [b,[31/10],c,[1],a,[1],d,[1],b],

24 D = 61/10 ?

205

S(CASP)

C.5 Towers of Hanoi Example

C.5.1 ASP encoding of toh asp.pl

The next figure shows an ASP program for the Towers of Hanoi Problem described in
Section 6.3.4. The encoding is from (Gebser et al., 2008), part of the clingo distribution
and is available at https://github.com/potassco/clingo/tree/master/examples/
gringo/toh.
1 % Instance

2 peg(a;b;c).

3 disk(1..7).

4 init_on(1..7,a).

5 goal_on(1..7,b).

6 moves(127).

7 % Generate

8 1 { move(D,P,T) : disk(D) : peg(P) } 1 :- moves(M), T = 1..M.

9 % Define

10 move(D,T) :- move(D,_,T).

11 on(D,P,0) :- init_on(D,P).

12 on(D,P,T) :- move(D,P,T).

13 on(D,P,T+1) :- on(D,P,T), not move(D,T+1), not moves(T).

14 blocked(D-1,P,T+1) :- on(D,P,T), disk(D), not moves(T).

15 blocked(D-1,P,T) :- blocked(D,P,T), disk(D).

16 % Test

17 :- move(D,P,T), blocked(D-1,P,T).

18 :- move(D,T), on(D,P,T-1), blocked(D,P,T).

19 :- goal_on(D,P), not on(D,P,M), moves(M).

20 :- not 1 { on(D,P,T) : peg(P) } 1, disk(D), moves(M), T = 1..M.

21 #hide.

22 #show move/3.

C.5.2 ASP incremental encoding of toh aspI.pl

The next figure shows an ASP program to incrementally solve the Towers of Hanoi
Problem described in Section 6.3.4 using the clingo’s inbuild incremental solving mode.
The encoding is from (Gebser et al., 2008), part of the clingo distribution and is available
at https://github.com/potassco/clingo/tree/master/examples/gringo/toh.

1 #include <incmode>.

2

3 #program base.

4 peg(a;b;c).

5 disk(1..7).

6 init_on(1..7,a).

7 goal_on(1..7,b).

8

9 on(D,P,0) :- init_on(D,P).

10

11 #program step(t).

12 1 {move(D,P,t): disk(D),peg(P)} 1.

13

14 move(D,t) :- move(D,P,t).

206

https://github.com/potassco/clingo/tree/master/examples/gringo/toh
https://github.com/potassco/clingo/tree/master/examples/gringo/toh
https://github.com/potassco/clingo/tree/master/examples/gringo/toh

C.5 Towers of Hanoi Example

15 on(D,P,t) :- move(D,P,t).

16 on(D,P,t) :- on(D,P,t-1),

17 not move(D,t).

18 blocked(D-1,P,t) :- on(D,P,t-1).

19 blocked(D-1,P,t) :- blocked(D,P,t),

20 disk(D).

21 :- move(D,P,t), blocked(D-1,P,t).

22 :- move(D,t), on(D,P,t-1), blocked(D,P,t).

23 :- not 1 { on(D,P,t) } 1, disk(D).

24

25 #program check(t).

26 :- query(t), goal_on(D,P), not on(D,P,t).

27

28 #show move/3.

C.5.3 s(CASP) output of hanoi.pl

The next figure shows the output to the query ?- hanoi(7,T) to the program hanoi.pl

(Figure 6.7 in Section 6.3.4).

1 ?- hanoi(7,T).

2

3 Answer 1 (in [420.343] ms):

4

5 [hanoi(7,127), move(a,b,1), move(a,c,2), move(b,c,3), move(a,b,4),

6 move(c,a,5), move(c,b,6), move(a,b,7), move(a,c,8), move(b,c,9),

7 move(b,a,10), move(c,a,11), move(b,c,12), move(a,b,13), move(a,c,14),

8 move(b,c,15), move(a,b,16), move(c,a,17), move(c,b,18), move(a,b,19),

9 move(c,a,20), move(b,c,21), move(b,a,22), move(c,a,23), move(c,b,24),

10 move(a,b,25), move(a,c,26), move(b,c,27), move(a,b,28), move(c,a,29),

11 move(c,b,30), move(a,b,31), move(a,c,32), move(b,c,33), move(b,a,34),

12 move(c,a,35), move(b,c,36), move(a,b,37), move(a,c,38), move(b,c,39),

13 move(b,a,40), move(c,a,41), move(c,b,42), move(a,b,43), move(c,a,44),

14 move(b,c,45), move(b,a,46), move(c,a,47), move(b,c,48), move(a,b,49),

15 move(a,c,50), move(b,c,51), move(a,b,52), move(c,a,53), move(c,b,54),

16 move(a,b,55), move(a,c,56), move(b,c,57), move(b,a,58), move(c,a,59),

17 move(b,c,60), move(a,b,61), move(a,c,62), move(b,c,63), move(a,b,64),

18 move(c,a,65), move(c,b,66), move(a,b,67), move(c,a,68), move(b,c,69),

19 move(b,a,70), move(c,a,71), move(c,b,72), move(a,b,73), move(a,c,74),

20 move(b,c,75), move(a,b,76), move(c,a,77), move(c,b,78), move(a,b,79),

21 move(c,a,80), move(b,c,81), move(b,a,82), move(c,a,83), move(b,c,84),

22 move(a,b,85), move(a,c,86), move(b,c,87), move(b,a,88), move(c,a,89),

23 move(c,b,90), move(a,b,91), move(c,a,92), move(b,c,93), move(b,a,94),

24 move(c,a,95), move(c,b,96), move(a,b,97), move(a,c,98), move(b,c,99),

25 move(a,b,100), move(c,a,101), move(c,b,102), move(a,b,103), move(a,c,104),

26 move(b,c,105), move(b,a,106), move(c,a,107), move(b,c,108), move(a,b,109),

27 move(a,c,110), move(b,c,111), move(a,b,112), move(c,a,113), move(c,b,114),

28 move(a,b,115), move(c,a,116), move(b,c,117), move(b,a,118), move(c,a,119),

29 move(c,b,120), move(a,b,121), move(a,c,122), move(b,c,123), move(a,b,124),

30 move(c,a,125), move(c,b,126), move(a,b,127)]

31

32 T = 127 ?

207

Appendix D

Event Calculus

D.1 F2LP encoding of light scenario

1 timestep(0..10).

2

3 % If a light is turned on, it will be on:

4 initiates(turn_on,on,T) :- timestep(T).

5

6 % If a light is turned on, whether it is red or green will be released

7 % from the commonsense law of inertia:

8 releases(turn_on,red,T) :- timestep(T).

9 releases(turn_on,green,T) :- timestep(T).

10

11 % If a light is turned off, it will not be on

12 terminates(turn_off,on,T) :- timestep(T).

13

14 % After a light is turned on, it will emit red for up to 1 second

15 % and green after at least 1 second

16 trajectory(on, T1, red, T2) :-

17 timestep(T1), timestep(T2),

18 T1 < T2, T2 < T1 + 1.

19 trajectory(on, T1, green, T2) :-

20 timestep(T1), timestep(T2),

21 T2 >= T1 + 1.

22

23 %% Actions

24 happens(turn_on,2).

25 happens(turn_off,4).

26 happens(turn_on,6).

27

28 %% Query

29 :- not query.

30 query :- holdsAt(red,_).

209

EVENT CALCULUS

D.2 Adapted F2LP translation of light scenario with in-
creased precision

1 timestep(0..10*P) :- precision(P).

2

3 % If a light is turned on, it will be on:

4 initiates(turn_on,on,T) :- timestep(T).

5

6 % If a light is turned on, whether it is red or green will be released

7 % from the commonsense law of inertia:

8 releases(turn_on,red,T) :- timestep(T).

9 releases(turn_on,green,T) :- timestep(T).

10

11 % If a light is turned off, it will not be on

12 terminates(turn_off,on,T) :- timestep(T).

13

14 % After a light is turned on, it will emit red for up to 1 second

15 % and green after at least 1 second

16 trajectory(on, T1, red, T2) :-

17 timestep(T1), timestep(T2), precision(P),

18 T1 < T2, T2 < T1 + (1*P).

19 trajectory(on, T1, green, T2) :-

20 timestep(T1), timestep(T2), precision(P),

21 T2 >= T1 + (1*P).

22

23 %% Actions

24 happens(turn_on,2*P) :- precision(P).

25 happens(turn_off,4*P) :- precision(P).

26 happens(turn_on,6*P) :- precision(P).

27

28 %% Query

29 :- not query.

30

31 precision(10).

32 query :- holdsAt(red,69).

210

	Abstract of the Dissertation
	Resumen de la Tesis Doctoral
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Overview
	1.2 State of the Art
	1.3 Thesis Contributions and Impact
	1.4 Thesis Organization

	I Tabled Constraint Logic Programming
	2 Top-Down TCLP: Semantics, Correctness, Completeness, and Termination
	2.1 Motivation
	2.2 Constraint Logic Programming
	2.3 Top-down Semantics
	2.4 CLP Trees and TCLP Forests
	2.5 Theorems and Proofs
	2.6 The role of the Projection in TCLP
	2.7 Discussion

	3 Design and Implementation of Mod TCLP
	3.1 The Mod TCLP Framework
	3.2 Other TCLP Interfaces
	3.3 Experimental Evaluation
	3.4 Discussion

	4 Incremental Evaluation of Aggregates using Tabled CLP
	4.1 Motivation
	4.2 Aggregates as Lattice Operations
	4.3 The ATCLP Framework
	4.4 Non-Lattice Aggregates
	4.5 Experimental Evaluation
	4.6 Discussion

	5 Abstract Interpretation Fixpoint using Tabled CLP
	5.1 The PLAI algorithm
	5.2 Implementations of the PLAI Algorithm: Prolog vs. Tabling
	5.3 Evaluation
	5.4 Discussion

	II Constraint Answer Set Programming
	6 Constraint Answer Set Programming without Grounding
	6.1 ASP and s(ASP)
	6.2 s(CASP): Design and Implementation
	6.3 Examples and Evaluation
	6.4 Discussion

	7 Modeling and Reasoning in Event Calculus using s(CASP)
	7.1 Motivation and Related Work
	7.2 Event Calculus
	7.3 From Event Calculus to s(CASP)
	7.4 Examples and Evaluation
	7.5 Discussion

	8 Conclusions and Future Work
	8.1 Mod TCLP: Summary
	8.2 s(CASP): Summary
	8.3 Directions for Future Research

	Bibliography
	Appendix A Incremental Evaluation of Aggregates
	A.1 Prolog and tabling encoding of Minimax
	A.2 Tabling encoding of Game

	Appendix B Abstract Interpretation Fixpoint
	B.1 PLAI Algorithm Using TCLP
	B.2 PLAI Algorithm Using Ciao Prolog

	Appendix C s(CASP)
	C.1 s(CASP) interpreter
	C.2 Stream Data Reasoning Example
	C.3 Yale Scenario Example
	C.4 The Traveling Salesman Problem Example
	C.5 Towers of Hanoi Example

	Appendix D Event Calculus
	D.1 F2LP encoding of light scenario
	D.2 Adapted F2LP translation of light scenario with increased precision

