
UNIVERSIDAD POLITÉCNICA DE MADRID
FACULTAD DE INFORMÁTICA

Técnicas Avanzadas de
Compilación

para Programación Lógica
Advanced Compilation Techniques

for Logic Programming

Tesis Doctoral

José F. Morales
Julio de 2010

Técnicas Avanzadas de Compilación
para Programación Lógica

Tesis doctoral

presentada en la Facultad de Informática

de la Universidad Politécnica de Madrid

para la obtención del título de

Doctor en Informática

Candidato: José Morales

Ingeniero en Informática
Universidad Politécnica de Madrid
España

Director: Manuel Carro
Profesor Titular de Universidad

Co-Director: Manuel Hermenegildo
Catedrático de Universidad

Madrid, Julio de 2010

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543

Howard Street, 5th Floor, San Francisco, California, 94105, USA.

A mis padres y hermano,
a Estefanía y a nuestra hija Natalia.

Agradecimientos

Me gustaría expresar mi más sincero y profundo agredecimiento a mi director
de tesis, Manuel Carro, por su continua ayuda en mi doctorado e investigación,
compartir conmigo su talento y conocimientos y darme la oportunidad de trabajar
en este área. Quisiera hacer público mi agradecimiento a Manuel Hermenegildo,
director del grupo CLIP, por su sabiduría e incomparable energía.

También me gustaría agradecer a los miembros actuales y pasados del gru-
po CLIP, que han hecho posible y contribuido al desarrollo de los sistemas Ciao
Prolog y el preprocesador CiaoPP, sin los cuales mi trabajo no hubiera posible:
Francisco Bueno, Germán Puebla, Elvira Albert, Puri Arenas, Pedro López, Da-
niel Cabeza, Jesús Correas, Claudio Vaucheret, Claudio Ochoa, Edison Mera,
Astrid Beascoa y muchos otros.

Este trabajo no habría sido posible sin la teoría, herramientas y sistemas fruto
de muchos otros investigadores. Quisiera agradecer a los los autores y desarrolla-
dores de otros sistemas Prolog y de programación lógica, especialmente aquellos
que conocí durante mi investigación de doctorado: Jan Wielemaker, Bart Demoen,
Kostis Sagonas, Vitor Santos Costa... Todavía tengo muchas cosas que aprender
de ellos.

Como nota personal, estoy en deuda con mis padres y hermano, que siempre
han apoyado y entendido en cada decisión que he tomado en mi vida, incluyendo
este doctorado. y a mi compañera e hija, cuyo amor incondicional me animó a
terminar esta tesis.

Finalmente, me gustaría agradecer a las instituciones y proyectos de inves-
tigación que han financiado mis actividades investigadoras como estudiante de
postgrado: la Universidad Politécnica de Madrid (UPM), el Ministerio de Educa-
ción a través de los proyectos de investigación MERIT y CUBICO, la Comunidad
de Madrid a través del proyecto PROMESAS y al programa Information Society
Technologies de la European Commission, Future and Emerging Technologies, a
través de los proyectos ASAP y MOBIUS.

Sinopsis

Los lenguajes de programación declarativos permiten expresar programas en un
lenguaje que es más cercano al problema que a los detalles de implementación. A
pesar de la genericidad de esta definición, Lloyd propone una noción más clara
de la declaratividad [Llo94], definiendo los programas como teorías en una lógica
adecuada y la computación deducción en base a la teoría.

Prolog es uno de los lenguajes de programación del paradigma lógico más im-
portantes, cuya teoría es la de la la deducción lógica. Implementaciones eficientes
capaces de competir con muchos otros lenguajes de alto nivel y su flexibilidad, han
hecho de Prolog un importante punto de partida para desarrollar nuevas ideas,
como la programación con restricciones y multi-paradigma, mezclando programa-
ción funcional, orientada a objetos e imperativa.

Aunque el estado del arte de las implementaciones de Prolog esta altamente
optimizado para el tipo de problemas de busqueda para los que este está dise-
ñado y que puede competir con muchas implementaciones de otros paradigmas
— tanto lógico, funcional, como imperativo — su naturaleza caracteristicas di-
námicas y declarativas imponen una considerable limitación en eficiencia. Un
ambicioso objetivo para las implementaciones de Prolog, compartido por muchos
otros lenguajes declarativos, consiste en el desarrollo de téctnicas que superen
esta limitación sin sacrificar la expresividad del lenguaje.

El objetivo de esta tesis es el desarrollo y mejora de técnicas avanzadas de
compilacion para Prolog, en principio ortogonales a extensiones como la progra-
mación lógica con restricciones [JM87], Prolog con tabulación [War92] o CHR
sobre Prolog [SF08].

Las principales contribuciones presentadas en esta tesis pueden resumirse en:

• Un compilador optimizante de Prolog, donde predicados seleccionados son
compilados a C y diseñado para aceptar información de alto nivel, obtenida

mediante análisis automático y expresada en un lenguaje estandarizado de
aserciones.

• Un enfoce automático a la generación de máquinas abstractas, donde el
conjunto de instrucciones y la representación de código de byte y datos son
definidas de forma individual.

• Una descripción del conjunto de instrucciones completo de una máquina
abstract para Prolog, en un dialecto de Prolog extendido para manejar
cambios de estado (en forma de variables mutables) y adecuado para realizar
transformaciones automáticas de programa.

• Una representación de tagged words (palabras con etiquetas) en un lenguaje
de alto nivel, explorando variantes para los casos de 32 y 64 bit.

• Un marco de trabajo paramétrico para la generación de variaciones de má-
quinas abstractas, para explorar optimizaciones de forma general o enfoca-
das a un conjunto particular de programas.

• Un estudio de la combinación de técnicas de compilación optimizante en
código fuente y en código de bajo nivel, en un caso de prueba real para
sistemas ubícuos.

Resumen∗

Motivación

La programación, como esfuerzo matemático para diseñar un algoritmo que re-
suelva un problema específico, junto con la tarea de codificación en un lenguaje
ejecutable por un computador, puede definirse de forma precisa. Aun no sien-
do una tarea fácil, determinar si un programa es correcto y adecuado para una
problema dado puede realizarse mediante pruebas (formales) sobre la corrección,
la complejidad en uso de memoria y tiempo y datos empíricos en una máquina
particular sobre su rendimiento y tamaño de código.

Cuando el objetivo es encontrar una codificación óptima de un algoritmo,
el lenguaje de programación adecuado puede ser cuestionable. En términos de
computabilidad, la elección no permite escribir más algoritmos de aquellos ya
expresables en máquinas de Turing y tampoco permite escribir algoritmos que
superen las limitaciones del hardware. Para una plataforma determinada, la mejor
solución si nos centramos en el problema del rendimiento y el uso de memoria, será
siempre expresable en lenguaje máquina (pues cualquier otro lenguaje es directa
o indirectamente traducido a éste o interpretado mediante otro programa).

Sin embargo, los lenguajes máquina han pasado a ser usados sólo en dominios
muy concretos, viéndose desplazados por lenguajes de bajo nivel (como el len-
guaje C), que surgieron principalmente como una forma de aliviar los problemas
de portabilidad en diferentes arquitecturas, facilitar tareas de programación pe-
sadas y que gracias al desarrollo de la compilación optimizante ofrecen un buen
rendimiento.

∗Este resumen de la Tesis Doctoral, presentada en lengua inglesa para su defensa ante un
tribunal internacional, es preceptivo según la normativa de doctorado vigente en la Universidad
Politécnica de Madrid.

I

Aún así, en estos lenguajes el programador tiene un control estricto sobre los
recursos y las operaciones hardware. Los programas incluyen detalles muy precisos
sobre el flujo de control, el tamaño y las forma de los datos, lo que hace que los
programadores experimentados sean capaces de comprender que está ocurriendo
en la ejecución con gran precisión, incluso al nivel de registros máquina.

El punto de vista de la programación como ingeniería es muy diferente. Los
programadores, como seres humanos, están ligados a fechas de entrega, cometen
errores e introducen fallos (bugs) en la programación. Por otro lado, los requisi-
tos del software no siempre están especificados y pueden ser imprecisos, o verse
modificados durante el desarrollo, requiriendo cambios en los programas. Más
aún, el proceso de desarrollo no es lineal en la práctica, lo que significa que mu-
chas partes del código de un proyecto pueden ser esbozadas como prototipos y
refinadas más adelante. Incluso si estos problemas no fueran suficientes, existen
restricciones fuertes de seguridad, donde hay ciertos fallos que no son admisibles
en absoluto: por ejemplo, que una aplicación externa acceda directamente a los
recursos de la máquina. A ésto se añaden otros factores, como el balance entre
el coste humano de producir programas optimizados frente al coste de invertir
en recursos hardware para aliviar ineficencias (como usar, siempre que sea po-
sible, más procesadores, procesadores más rápidos y más memoria, en ocasiones
acompañandose de un mayor consumo energético).

En resumen, podemos observar una importante asimetría entre qué codifica-
ción de un programa es mejor de cara a la ejecución eficiente en una máquina y
cuál desde el punto de vista de los factores prácticos del desarrollo.

Esta asimetría es salvable en ocasiones. Por ejemplo, el tiempo de ejecución no
se dedica uniformemente al código: hay secciones que concentran la mayor parte
de la ejecución. Se acepta como una buen compromiso reescribir las partes críticas
de una aplicacion en lenguajes de bajo nivel (atendiendo a los detalles necesarios
para asegurar la eficiencia, incluso si se sacrifica la reutilización, claridad, etc.) y
preservar un estilo limpio en el resto del código.

Sin embargo, aunque existen técnicas de verificación de código que pueden
ayudar en probar la corrección u otras propiedades del código de bajo nivel,
en ocasiones se ha sacrificado las ventajas de una especificación más abstracta.
Poder preservar la abstracción del problema a lo largo de todo el programa,
mediante el desarrollo de lenguajes y el desarrollo de traducciones eficientes a

II

código ejecutable, es uno de los más temas de investigación más importantes en
este área.

De los Lenguajes de Bajo Nivel a la Programación Declarativa

Al contrario que en los lenguajes de bajo nivel, la abstracción en lenguajes de alto
nivel permiten expresar programas en un lenguaje que es más cercano al problema
que se pretende resolver. Uno de estos enfoques es la programación declarativa, que
intuitivamente — a veces de forma no muy precisa — es definida como un estilo de
programación donde los programas definen qué se ha de resolver, pero no cómo ha
de hacerse. Una explicación más profunda de esta frase es necesaria, como Lloyd
indica en [Llo94]. Usando la terminología de la equación de Kowalski algoritmo
= lógica + control [Kow79], que define un algoritmo como la combinación de una
lógica y un mecanismo de control, un lenguaje de programación declarativo sólo
necesita describir la lógica del programa y no su control.

Pero esta definición, que refleja la idea intuitiva del paradigma, puede ser equí-
voca dado que no todos los problemas que son expresables en la lógica pueden ser
resueltos automáticamente. Lloyd describe que la idea principal de la programa-
ción declarativa consiste en que los programas son teorías (en una lógica adecua-
da) y que la computación es la deducción en esa teoria. Una lógica adecuada debe
tener una teoría modelo, una teoría de prueba, teoremas de corrección (todas las
respuestas computadas deben ser correctas) y preferentemente, teoremas de com-
pletitud (todas las respuestas correctas son computadas). La visión de Lloyd es
suficientemente amplia para agrupar muchos paradigmas de programación bajo
el ámbito de la programación declarativa: programación funcional (computación
como evaluación de funciones matemáticas) programación lógica (computación
basada en pruebas de teoremas y lógica matemática) y otros métodos formales.

Retos de la Programación Declarativa

La lógica formal detrás de la programación declarativa a menudo simplifica el
razonamiento automático sobre los programas y los programas escritos en un lan-
guaje que está más cerca a la especificación son más fáciles de escribir y verificar.
Esto tiene algunas implicaciones profundas:

• Debido a la amplia expresividad del lenguaje, los mecanismos de ejecución

III

tienen un carácter muy general, lo que se traduce en ocasiones (especial-
mente en los sistemas menos maduros) en un rendimiento pobre, comparado
con aquél que ofrecen los lenguajes de bajo nivel. Por ejemplo, los lenguajes
donde la aritmética es por defecto de multiple precisión pueden ser menos
eficientes que aquellos donde el usuario hace explícito el tamaño máximo
de cada variable numérica, pero liberan al programador de esta tarea.

• Las transformaciones y los análisis de programas (como evaluación parcial
e interpretación abstracta) son en principio más fáciles de aplicar.

• No describir un problema a un nivel detallado y específico a la máquina im-
plica que existe más libertad por parte de los mecanismos de ejecución para
encontrar soluciones. Sin cambiar el programa original, es posible adaptarlo
a distintas plataformas hardware y aprovechar sus características especiales
(como paralelismo, instrucciones SIMD, etc.).

El Lenguaje Prolog

Prolog es un lenguaje basado en la lógica de primer orden. La historia del lenguaje
ha sido descrita en detalle en la literatura [Col93]. El uso de la deducción lógica
como computación fue propuesta en 1960 por Cordell Green y otros, pero no
fue hasta que Colmerauer y Kowalski crearon Prolog que comenzó a ser viable.
Prolog nació como un projecto dirigido al procesamiento del lenguaje natural,
cuya primera versión preliminar data de finales de 1971. A lo largo de los años se
convirtió en un lenguaje de propósito general.

Sin embargo, Prolog también ha sido considerado como un lenguaje de bajo
nivel entre el lenguaje lógico, debido a sus limitadas propiedades de terminación y
su uso frecuente de efectos laterales. No obstante, desde el nacimiento de Prolog,
han aparecido soluciones a la formalización de los efectos laterales en programa-
ción declarativa para su uso en aplicaciones reales, que han sido exploradas tanto
en programación funcional como lógica. Prolog ha demostrado ser un lenguaje
muy flexible para desarrollar nuevas ideas, como la programación con restriccio-
nes y lenguajes multiparadigmas que mezclan programación funcional, orientada
a objetos e imperativa. En general, los sistemas Prolog ofrecen un largo repertorio
de técnicas para conseguir buen rendimiento, como se muestra en el Capítulo 2.

IV

Importantes lenguajes que se derivan o heredan algunos aspectos de Prolog
son LIFE [AKP91] (lógico, functional, orientado a objetos), Mozart-Oz [HF00]
o Mercury [SHC96].

Objetivos de la Tesis

Como ya se ha mencionado antes, uno de los objetivos más ambiciosos de la
programación declarativa es la mejora de las técnicas de compilación para reducir
la diferencia de rendimiento, como lenguaje de programación general, respecto a
lenguajes más tradicionales como la programación imperativa.

En esta dirección, el objetivo de esta tesis es el desarrollo de técnicas avanzadas
de compilación para programación lógica, tanto a código nativo como a código de
byte emulado. Los primeros trabajos existentes en compilación de Prolog a código
nativo, a pesar su lentitud y grandes ejecutables, mostraron buenos resultados en
comparación con código emulado. Sin ambargo, estos trabajos fueron parcialmen-
te abandonados debido a importantes mejoras en técnicas de emulación y a los
problemas de portabilidad de los compiladores de código nativo.

No obstante, es claro que algunos algoritmos sólo pueden ser ejecutados de
forma eficiente como código muy especializado, que está fuera del ámbito de téc-
nicas de emulación genéricas y sólo disponible cuando se usa código de bajo nivel.
En esta tesis, exploramos soluciones a este problema, que aunque están enfocadas
a Prolog también son en principio aplicables a otros lenguajes o extensiones, co-
mo programación lógica con restricciones [JM87], Prolog con tabulación [War92]
o CHR sobre Prolog [SF08]. La relevancia de estos resultados también puede ex-
tenderse a otros lenguajes que comparten algunos mecanismos de ejecución (por
ejemplo, lenguajes dinámicamente tipados), ya que las técnicas de optimización
son similares.

Estructura de la Tesis

Esta tesis se divide en tres partes conceptuales. La primera parte (Capítulo 2)
ofrece una introducción a las técnicas de compilación de Prolog. La segunda parte
(Capítulos 3, 4, 5 y 6) desarrolla las técnicas de compilación descritas en esta tesis

V

y las evalúa. La parte final (Capítulo 7) muestra un caso de estudio que usa las
técnicas anteriormente desarrolladas.

Implementación y Optimización Sequencial de Prolog: una (Breve) Intro-
ducción [Capítulo 2]

En este capítulo se introducen varias de las técnicas para la implementación de
Prolog que han sido propuestas desde el sistema original escrito por Colmerauer
y Roussel [Col93]. Una forma interesante de clasificar los sistemas Prolog (que
de hecho es extensible a muchos otros lenguajes) divide las implementaciones en
interpretes, compiladores a código de byte y compiladores a código de bajo nivel.
En los intérpretes la ejecución suele ser precedida de un leve preproceso o tra-
ducción, pero la mayor parte del trabajo es realizado en tiempo de ejecución. En
compiladores a código de bajo nivel, el código generado es ejecutable directamen-
te (o indirectamente a través de un compilador de bajo nivel) por la máquina.
Alternativamente, la semántica de un lenguaje puede hacerse corresponder a una
máquina abstracta con un conjunto de instrucciones y un esquema de compila-
ción predefinidos, de tal forma que el lenguaje fuente es simplificado a este código
antes de la ejecución. Este código simplificado puede usarse como representación
intermedia para generación de código de bajo nivel o codificado como código de
byte y ejecutado por un intérprete, llamado emulador.

En este capítulo se revisan las máquinas abstractas más extendidas para Pro-
log, la Máquina Abstracta de Warren (Warren Abstract Machine, WAM) [War83,
AK91], algunas variantes y alternativas y se introducen los avances más rele-
vantes de implementación, junto con la descripción de los sistemas Prolog más
significativos que las introducen o utilizan: los primeros intérpretes (como C-
Prolog [Per87]), emuladores de código de byte, compiladores de código nativo y
propuestas híbridas que combinan varias técnicas.

Compilación de Prolog a Código Nativo [Capítulo 3]

La emulación de código de byte puede ser muy útil y eficiente, en los casos donde se
necesitan programas ejecutables pequeños y tiempos de compilación reducidos,
así como para partes donde el rendimiento no es crítico y/o tienen una fuerte
componente simbólica. Por otro lado, la emulación limita el grado de optimización

VI

que puede realizarse, por ejemplo, al no permitir la especialización muy detallada
del código de las instrucciones. En algunos casos, generar el código más eficiente
necesita optimizaciones en todos los niveles y eventualmente traducir a código
nativo.

En este capítulo se describen los resultados de un prototipo de compilador de
Prolog a C, ciaocc. A través de un análisis automático del programa Prolog y ha-
ciendo uso de un lenguaje estandarizado de aserciones, ciaocc está diseñado para
aceptar diferente tipo de información de alto nivel, que es usada posteriormente
para optimizar el código C resultante. El código no interpretado es directamente
ejecutado por la máquina gracias a compiladores de C estándar. El fundamento
principal del proceso de traducción consiste en el desplegado (unfolding) del emu-
lador de código de byte respecto a un código de byte concreto. Este diseño tiene
algunas consecuencias obvias: permite reutilizar gran parte de la maquinaria del
emulador de código de byte. Por ejenplo, predicados ya escritos en C, definiciones
de datos, áreas de memoria y las rutinas de recolección de basura, etc. Este diseño
también está preparado para combinar código de byte emulado con código nativo
de una forma relativamente sencilla.

Este capítulo estudia el rendimiento de programas compilados a C frente a
los que usan código de byte, usando y sin usar las optimizaciones que se pueden
obtener mediante la información de análisis.

Un Generador Genérico de Emuladores [Capítulo 4]

Las primeras decisiones en el diseño de una máquina abstracta pueden afectar
al rendimiento de un emulador y al tamaño los programas de código de byte de
formas que son en ocasiones difíciles de prever. Entre estas decisiones se incluye
la representación de los datos e instrucciones en memoria, así como el juego de
instrucciones y su nivel de especialización (a través de instrucciones que, aunque
no son imprescidibles, se introducen por representar casos específicos que pueden
ejecutarse de forma más eficiente que por medio de instrucciones genéricas). Una
vez se establecen y el sistema es implementado, algunos de estos parámetros
son extremadamente difíciles de alterar. Esto hace que el estudio de diferentes
alternativas de la máquina abstracta, o la generación de versiones específicas
de ésta con propósitos específicos, sea bastante arduo. Incluso si esta tarea es
realizada por programadores experimentados, si se trabaja con sistemas muy

VII

optimizados necesita gran cantidad de tiempo y es propensa a errores debido al
nivel de complejidad del código.

Con el objetivo de hacer más fácil estas tareas, este capítulo propone un
enfoque sistemático para la generación automática de máquinas abstractas. Este
nuevo enfoque consiste en la separación conceptual del juego de instrucciones
de la codificación de datos y del código de byte. Es decir, las instrucciones son
simplificadas para definir sólamente la semántica de la máquina abstracta y la
representación de datos e instrucciones es proporcionada por una serie de reglas.
Dichas definiciones se combinan automáticamente para obtener el código que una
vez compilado da lugar a un emulador. A su vez, las reglas de representación son
usadas por el compilador para generar, a partir de la representación intermedia,
el código de byte.

Ilustramos la viabilidad de este enfoque mediante la implementación de un
generador de máquinas abstractas (comparables en eficiencia y arquitectura con
otras consideradas como parte del “estado del arte”) basadas en la WAM. Basado
en este generador, se ha experimentado con esquemas de especialización de la
máquina abstracta para un conjunto particular de programas. Como ejemplo
práctico, se estudió la reducción del tamaño del emulador mediante la eliminación
de instrucciones no usadas.

Descripción y Optimización de Máquinas Abstractas en un Dialecto de
Prolog [Capítulo 5]

Incluso si los inconvenientes de las representaciones de bajo nivel son separados
en una capa de abstracción diferente, como se describe en el capítulo anterior, las
máquinas abstractas para Prolog (o lenguajes relacionados) siguen siendo grandes
e intrincadas.

En este capítulo mostramos como la semántica de la mayor parte de los com-
ponentes básicos de las máquinas virtuales (eficientes) para Prolog pueden ser
descritos usando (una variante de) Prolog que preserva gran parte de su semán-
tica. Este lenguaje está diseñado para ser ejecutado de forma eficiente una vez
compilado, pero a su vez ser de mayor nivel de abstracción que el lenguaje C.

Desde este lenguaje, las descripciones de los componentes básicos (como las
instrucciones) son compiladas a C y ensambladas para construir un emulador

VIII

de código de byte completo. Gracias al mayor nivel de abstracción del lenguaje
utilizado y su cercanía a Prolog, la descripción de la máquina abstracta puede
ser manipulada usando técnicas de compilación y optimización de Prolog con
relativa facilidad. También se ve simplificada la incorporación de optimizaciones
más sofisticadas. Se muestra como, trás la aplicación selectiva de transformaciones
en el juego de instrucciones, podemos obtener implementaciones de máquinas
abstractas cuyo rendimiento es comparable al de implementaciones realizadas a
mano y cuidadosamente optimizadas. En nuestro caso, fue posible incluso mejorar
la máquina de partida mediante la exploración automática de un gran número
combinaciones, que habría sido muy difícil realizar de forma manual.

Comparación de Variaciones de Esquemas de Tags Usando un Generador
de Máquinas Abstractas [Capítulo 6]

En este capítulo se estudia, en el contexto de máquinas abstractas basadas en la
WAM, como variaciones en la codificación de información de tipos en palabras
etiquetadas (tagged words) y sus operaciones básicas asociadas afectan el rendi-
miento y el uso de memoria. La codificación de este tipo de datos y las operaciones
asociadas son realizadas en el dialecto de Prolog descrito en el capítulo anterior
y un generador automático construye tanto la máquina abstracta que utiliza esta
codificación como el compilador asociado a código de byte. Las anotaciones que
acepta el lenguaje hacen posible imponer restricciones en la representación final
de las palabras etiquetadas, como el espacio de direccionamiento efectivo (fijando,
por ejemplo, el tamaño de la palabra del procesador/arquitectura destino), la
disposición de los bits de etiqueta y valor dentro de la palabra etiquetada y como
las operaciones básicas son implementadas.

En cuanto a lo resultados experimentales, en este capítulo se sigue una me-
todología similar al Capítulo 5, consiguiendo generar automáticamente código
que presenta optimizaciones relativas a la representación de palabras etiquetadas,
equivalentes a las utilizadas en máquinas escritas a mano y altamente optimiza-
das. En nuestro caso, se ha sido capaz de mejorar una configuración inicial que
representa la máquina de partida y obtener un mayor espacio de direccionamien-
to y rendimiento. Adicionalmente, evaluamos un gran número de combinaciones
de párametros en dos escenarios. En el primero, se intenta obtener una máqui-

IX

na de propósito general. En el segundo, se generan automáticamente máquinas
abstractas ajustadas para un programa particular.

Caso de Estudio: Procesamiento de Sonido en Tiempo Real [Capítulo 7]

Este capítulo recapitula y hace uso de algunos de los resultados presentados en los
capítulos anteriores a través del estudio, en un caso concreto, de la viabilidad del
los lenguajes de programación lógica de alto nivel en el diseño e implementación
de aplicaciones dirigidas a computación ubicua.

El caso estudio es un espacializador de sonido (“sound spatializer”), que da-
das las señales en tiempo real de posición y sonido monoaural, generan sonido
biaural que simula originarse en una posición determinada del espacio. El uso
de transformaciones avanzadas en tiempo de compilación y optimizaciones han
hecho posible ejecutar código escrito en un estilo claro de alto nivel, ajustandose
las limitaciones de tiempo de ejecución y memoria impuestas por un dispositivo
ubicuo. El ejecutable final es comparado positivamente frente a implementacio-
nes similares escritas en C. Creemos que este caso es representativo de un amplia
clase de problemas para computación ubicua y que las técnicas que mostramos
aquí pueden usarse en un gran número de escenarios. Esto apunta a la posibili-
dad de usar lenguajes de alto nivel, con su flexibilidad asociada y herramientas
de compilación y análisis sofisticadas, al área de sistemas ubicuos y de tiempo
real sin detrimento de eficiencia.

X

UNIVERSIDAD POLITÉCNICA DE MADRID
FACULTAD DE INFORMÁTICA

Advanced Compilation
Techniques

for Logic Programming

PhD Thesis

José F. Morales
July 2010

Advanced Compilation Techniques
for Logic Programming

A PhD Thesis

presented at the Computer Science School

of the Technical University of Madrid

in partial fulfillment of the degree of

Doctor in Computer Science

PhD Candidate: José Morales

Ingeniero en Informática
Universidad Politécnica de Madrid
España

Advisor: Manuel Carro
Profesor Titular de Universidad

Co-Advisor: Manuel Hermenegildo
Catedrático de Universidad

Madrid, July 2010

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543

Howard Street, 5th Floor, San Francisco, California, 94105, USA.

To my parents and brother,
Estefanía, and our daughter Natalia.

Acknowledgments

I would like to express my deep and sincere gratitude to my supervisor, Manuel
Carro, for the continuous support of my Ph.D study and research and who gave
me the opportunity to work in this fantastic topic. He shared with me a lot of
his expertise and research insight. I owe gratitude to Manuel Hermenegildo, for
leading the CLIP group with incomparable wisdom and energy.

I wish to thank current and past members of the CLIP group who made Ciao
Prolog and the CiaoPP preprocessor possible, and have contributed in its devel-
opment: Francisco Bueno, Germán Puebla, Elvira Albert, Puri Arenas, Pedro
López, Daniel Cabeza, Jesús Correas, Claudio Vaucheret, Claudio Ochoa, Edison
Mera, Astrid Beascoa, and others.

This work would not have been possible without the theory, tools and systems
that many other researchers did before me. For their openness to share their
problems, solutions, ideas, comments, and suggestions, I am in great debt with the
authors and developers of other Prolog and logic programming systems, specially
those that I met during my Ph.D research: Jan Wielemaker, Bart Demoen, Kostis
Sagonas, Vitor Santos Costa... I still have many things to learn from them.

Last, I am in debt with my parents and brother, who always supported and
understood me in every decision I took in my life, including this Ph.D, and my
partner and daughter, whose unconditional love encouraged me to complete this
thesis.

Finally, I am grateful to the institutions and projects which have funded
my postgraduate research activities, such as the Technical University of Madrid
(UPM), the Spanish Ministry of Education under the MERIT and CUBICO
projects, the Madrid Regional Government under the PROMESAS project, the
Information Society Technologies programme of the European Commission, Fu-
ture and Emerging Technologies under the ASAP and MOBIUS projects, and the
Universidad Complutese de Madrid (UCM).

Abstract

Declarative programming languages allow the expression of programs in a lan-
guage that is closer to the problem than to the implementation details. Regardless
the generality of that definition, a more clear idea of declarativeness is proposed
by Lloyd[Llo94], who proposes that programs are theories in some suitable logic,
and computation is deduction from the theory. In logic programming, where
Prolog is one of the most popular incarnations of that paradigm, the theory is
that of logical deduction. Efficient implementations able to compete with many
other high-level languages, and its flexibility, made Prolog a very good framework
to develop new ideas, such as constraint programming, and multi-paradigm pro-
gramming merging functional programming, object oriented programming, and
imperative programming.

Although the state of the art of Prolog implementations is highly optimized for
the kind of search problems it is designed, and it can compete with many language
implementations for other paradigms — both logic, functional, and imperative —
its dynamism and declarative nature imposes a considerable efficiency gap. An
ambitious goal for Prolog implementations, shared with many other declarative
languages, is closing this gap while not sacrificing expressivity.

The objective of this thesis is the development and improvement of advanced
techniques for compilation of Prolog, orthogonal to many extensions such as con-
straint logic programming [JM87], Prolog with tabling [War92], CHR over Pro-
log [SF08].

The main contributions presented in this thesis can be summarized as:

• An optimizing compiler of Prolog, where selected predicates can be com-
piled to C, and designed to accept high-level information, obtained from
automatic analysis, and expressed in a standardized language of assertions.

• An automatic approach to the generation of abstract machines, where the
instruction set, and the bytecode and data representation can be defined
individually.

• Description of the full instruction set of a Prolog abstract machine in a
Prolog dialect extended with state-changes (as mutable variables), amenable
to program transformations.

• Representation of tagged words in the higher-level language, exploring many
alternatives for the 32 and 64 bit cases.

• A parametric framework to generate variations of abstract machines, to
explore optimizations in general or targeting a particular set of programs.

• Study of the combination of the source-level and low-level optimization
compilation techniques in a real test case for embedded devices.

Contents

1 Introduction 1
1.1 Overview and Motivation . 1

1.1.1 From Low Level to Declarative Programming 3
1.1.2 Challenges of Declarative Programming 3
1.1.3 The Prolog Language . 4

1.2 Thesis Objectives . 5
1.3 Structure of the Thesis . 6

1.3.1 Sequential Implementation and Optimization of Prolog: a
(Short) Survey [Chapter 2] 6

1.3.2 Compiling Prolog to Native Code [Chapter 3] 7
1.3.3 A Generic Emulator Generator [Chapter 4] 8
1.3.4 Description and Optimization of Abstract Machine in a Di-

alect of Prolog [Chapter 5] 9
1.3.5 Comparing Tag Scheme Variations Using an Abstract Ma-

chine Generator [Chapter 6] 9
1.3.6 A Case Study: Real-Time Sound Processing [Chapter 7] . 10

1.4 Main Contributions . 10

2 Sequential Implementation and Optimization of Prolog: a (Short)
Survey 15
2.1 Introduction . 15
2.2 From Early Interpreters to the WAM 16

2.2.1 Abstract Machines: from the PLM to the WAM 17
2.2.2 The WAM at a Glance . 18
2.2.3 Alternatives to the WAM 21

2.3 Further Optimizing the WAM . 23

i

Contents

2.4 Advanced Emulator Implementations 25
2.4.1 Mapping Hardware and WAM Registers 25
2.4.2 Cheaper Instruction Fetching 26
2.4.3 Augmented Instruction Set 26

2.5 Compilers to Native and Low-Level Code 27
2.5.1 Global Static Analysis . 29
2.5.2 Low-granularity Instruction Set 29
2.5.3 WAM-level Multiple Specialization 30
2.5.4 Static Typing . 30
2.5.5 Back-ends for Native and Low-level Code 32

2.6 Hybrid Compilation . 34
2.6.1 Partial Translation . 35
2.6.2 Exo-compilation . 36

3 Compiling Prolog to Native Code 37
3.1 Introduction . 37
3.2 Basic Compilation Scheme . 39

3.2.1 Typing WAM Instructions 40
3.2.2 Generation of the Intermediate Low Level Code 42
3.2.3 Compilation to C . 44
3.2.4 Examples . 44

3.3 Optimized Compilation via Moded Types and Determinism 45
3.3.1 Extended Typing of WAM Instructions 46
3.3.2 Generation of Optimized C Code 48
3.3.3 Examples . 49

3.4 Unboxing of Constants . 51
3.4.1 Overview of The Algorithm 52
3.4.2 Example . 53

3.5 Experimental Results . 54
3.6 Conclusions . 59

4 A Generic Emulator Generator 61
4.1 Introduction . 62
4.2 Algorithm for the Generation of Emulators 66

4.2.1 Scheme of a Basic Interpreter 66

ii

Contents

4.2.2 Parameterizing the Interpreter 67
4.2.3 A More Specialized Intermediate Language and Its Inter-

preter . 69
4.2.4 A Final Emulator . 73

4.3 An Example Application: Minimal and Alternative Emulators . . 75
4.3.1 Obtaining Specialized Emulators 76
4.3.2 Some Examples of Opportunities for Simplification 78
4.3.3 Experimental Evaluation 79

4.4 Conclusions . 83

5 Description and Optimization of Abstract Machines in a Dialect
of Prolog 85
5.1 Introduction . 86
5.2 Overview of our Compilation Architecture 89
5.3 The imProlog Language . 92

5.3.1 Efficient Mechanisms for Data Access and Update 94
5.3.2 Compilation Strategy and imProlog Subset Considered . . 98
5.3.3 Data Representation and Operations 104
5.3.4 Code Generation Rules . 108

5.4 Extensions for Emulator Generation in imProlog 116
5.4.1 Defining WAM Instructions in imProlog 116
5.4.2 An Emulator Specification in imProlog 118
5.4.3 Assembling the Emulator 119

5.5 Automatic Generation of Abstract Machine Variations 123
5.5.1 Instruction Set Transformations 124
5.5.2 Transformations of Instruction Code 129
5.5.3 Experimental Evaluation 133

5.6 Conclusions . 147

6 Comparing Tag Scheme Variations Using an Abstract Machine
Generator 159
6.1 Introduction . 160
6.2 Implementation of Dynamic Typing 161

6.2.1 Performance of Different Encoding Schemes 162
6.3 Describing Types in imProlog . 163

iii

Contents

6.3.1 Types in imProlog . 164
6.3.2 Feature Terms and Disjunctions of Types 166
6.3.3 Defining a Hierarchy of Types 166

6.4 Specifying the Tagged Data Type 167
6.4.1 The Tagged Hierarchy . 167

6.5 Optimizing Type Encodings . 170
6.5.1 Bit-level Encoding . 170
6.5.2 Trade-off: Limited Address Space 171
6.5.3 More Control over Tag Representation 172
6.5.4 Extending Garbage-collector for External and Internal GC

Bits . 174
6.5.5 Interactions with Bytecode 175

6.6 Evaluation of Tag Scheme Variations 176
6.6.1 Address Limits and Memory Usage 178
6.6.2 General Speed-up Analysis 181
6.6.3 General-purpose Abstract Machine 183
6.6.4 Per-program Abstract Machines 186

6.7 Final Remarks . 187

7 A Case Study: Real-Time Sound Processing 191
7.1 Introduction . 191
7.2 The Sound Spatializer . 196

7.2.1 Sound Spatialization Basics 197
7.2.2 Sound Quality and Spatial Localization 198
7.2.3 Hardware Characteristics of the Platform 198
7.2.4 Hard Real-time . 199
7.2.5 Compass and Concurrency 200

7.3 Program Code and Source-Level Transformations 200
7.3.1 Naive implementation . 200
7.3.2 High-level Code for the Sound Spatializer 202
7.3.3 Compile-time Checking . 205
7.3.4 Partially Evaluating the Program 206

7.4 Compilation to Native Code . 207
7.4.1 Naive Compilation to Native Code 208

iv

Contents

7.4.2 Optimized Compilation . 208
7.5 Summary of the Experiments . 211

7.5.1 Basic Results . 211
7.5.2 Increasing the Sampling Frequency 212
7.5.3 A Comparison with C . 213

7.6 Conclusions . 214

8 Conclusions and Future Work 215
8.1 Conclusions . 215
8.2 Future Work . 217

v

Contents

vi

List of Figures

3.1 Lattice of WAM types. 40
3.2 The C execution loop and block scheme. 42
3.3 Original and normalized code of the factorial example. 45
3.4 Low level code for the fact/2 example (see also Section 3.3). . . . 47
3.5 Extended init subdomain. 47
3.6 Annotated factorial (using type information). 50
3.7 Unboxing optimization. 53

4.1 “Big Picture” view of the generation of emulators 65
4.2 An example of a simple La-level interpreter 67
4.3 Parametric interpreter for La . 67
4.4 Definition ofM for our example 70
4.5 Pass separation . 71
4.6 New parts of the abstract machine definition 72
4.7 Parametric interpreter for Lb . 72
4.8 Emulator compiler . 73
4.9 Sample program . 74
4.10 From symbolic code to bytecode and back 74
4.11 Generated emulator . 75
4.12 Relationship between stripped bytecode size (x axis) and emulator

size (y axis) . 82

5.1 Traditional compilation architecture. 89
5.2 Extended compilation architecture. 90
5.3 Rules for the implicit mutable store (operations and logical con-

nectives). 96
5.4 Syntax of normalized programs. 100

vii

List of Figures

5.5 Control compilation rules. 109
5.6 Compilation of calls. 111
5.7 Unification compilation rules. 111
5.8 Compilation rules for mutable operations. 112
5.9 Predicate compilation rules. 113
5.10 imProlog compilation example . 115
5.11 Unification with a constant and auxiliary definitions. 117
5.12 From imProlog definitions to Lb emulator in Lc. 119
5.13 Emulator compiler. 122
5.14 Code generated for a simple instruction. 124
5.15 Application of an instruction set transformation (ptrans, etrans). 125
5.16 Geometric average of all benchmarks (with a dot per emulator) —

Intel. 137
5.17 Arithmetic average of all benchmarks (with a dot per emulator) —

Intel. 137
5.18 Size (in bytes) of WAM emulator with respect to the generation

options (i86). 139
5.19 Factorial involving large numbers — Intel. 140
5.20 Queens (with 11 queens to place) — Intel. 140
5.21 Cryptoarithmetic puzzle — Intel. 141
5.22 Computation of the Takeuchi function — Intel. 141
5.23 Symbolic derivation of polynomials — Intel. 142
5.24 Naive reverse — Intel. 142
5.25 Symbolic exponentiation of a polynomial — Intel. 143
5.26 Version of Boyer-Moore theorem prover — Intel. 143
5.27 QuickSort — Intel. 144
5.28 Calculate primes using the sieve of Eratosthenes — Intel. 144
5.29 Natural language query to a geographical database — Intel. . . . 145
5.30 Chess knights tour — Intel. 145
5.31 Simply recursive Fibonacci — Intel. 146
5.32 Geometric average of all benchmarks (with a dot per emulator) —

PowerPC. 151
5.33 Arithmetic average of all benchmarks (with a dot per emulator) —

PowerPC. 151

viii

List of Figures

5.34 Factorial involving large numbers — PowerPC. 152
5.35 Queens (with 11 queens to place) — PowerPC. 152
5.36 Cryptoarithmetic puzzle — PowerPC. 153
5.37 Computation of the Takeuchi function — PowerPC. 153
5.38 Symbolic derivation of polynomials — PowerPC. 154
5.39 Naive reverse — PowerPC. 154
5.40 Symbolic exponentiation of a polynomial — PowerPC. 155
5.41 Version of Boyer-Moore theorem prover — PowerPC. 155
5.42 QuickSort — PowerPC. 156
5.43 Calculate primes using the sieve of Eratosthenes — PowerPC. . . 156
5.44 Natural language query to a geographical database — PowerPC. . 157
5.45 Chess knights tour — PowerPC. 157
5.46 Simply recursive Fibonacci — PowerPC. 158

6.1 Tagged hierarchy. 168
6.2 Some generic nodes in the hierarchy. 169
6.3 Some leaf nodes in the tagged hierarchy. 170
6.4 Obtaining indexing code. 173
6.5 Code generation using sw0. 174
6.6 Arithmetic average of speedups (sparc64). 181
6.7 Arithmetic average of speedups (p4-64). 182
6.8 Arithmetic average of speedups (xeon-32) 182
6.9 Arithmetic average of speedups (coreduo-32) 183

7.1 Sound spatializer prototype, with Gumstix (bottom left) and com-
pass (right) attached to headphone. 196

7.2 Sound samples reaching the ears. 198
7.3 Single-loop algorithm for the spatializer. 201
7.4 A nested-loop sound spatializer. 201
7.5 Main loop for the sound spatializer reading from a compass. . . . 202
7.6 Physical model in the sound spatializer. 204
7.7 Part of the information inferred for the compass program. 209
7.8 Global view of the experiments. 211

ix

List of Figures

x

List of Tables

3.1 Representation of some WAM unification instructions with types. 41
3.2 Control and data instructions. 43
3.3 WAM code and internal representation without and with external

types information. Underlined instruction changed due to addi-
tional information. 46

3.4 Bytecode emulation vs. unoptimized, optimized (types), and op-
timized (types and determinism) compilation to C. Arithmetic –
Geometric means are shown. 54

3.5 Speed of other Prolog systems and Mercury 55
3.6 Compared size of object files (bytecode vs. C) including Arithmetic

- Geometric means. 59

4.1 Series of interpreters and emulators in this chapter 65
4.2 Benchmark descriptions. 80
4.3 Emulator sizes for different instruction sets 81

5.1 Operation and translation table for different mapping modes of
imProlog variables . 107

5.2 Speed comparison with other Prolog systems. 135
5.3 Meaning of the bits in the plots. 136
5.4 Options which gave best/worst performance (x86). 149
5.5 Options which gave best/worst performance (PowerPC). 150

6.1 Benchmark descriptions. 177
6.2 Speed comparison (coreduo-32). 179
6.3 Options related to the address space. 179
6.4 Memory growth ratio. 180

xi

List of Tables

6.5 Effective addressable limits (and ratio w.r.t. default case) for ad-
dress space options. 181

6.6 Schulze winner for each address space and machine (GC time not
taken into account). 188

6.7 Schulze winner for each address space and machine (GC time in-
cluded). 189

6.8 Speedup results using the best options for each benchmark. 190

7.1 Speed results and processor utilization for a benchmark with dif-
ferent compilation regimes. 204

7.2 Results with a higher compass polling rate. 212

xii

1
Introduction

Summary

An overview of this thesis is presented in this chapter. It puts in perspective
the result of this work and how it contributes to the state of the art of modern
compiler technology for declarative languages. We outline the thesis structure
and briefly describe each chapter, the related publication and the collaboration
with other authors.

1.1 Overview and Motivation

Programming, as a mathematical effort to design an algorithm that solves an
specific problem and implementing it in a particular computer language, can be
precisely defined. If we can provide (formal) proofs about its correctness, time,
and memory complexity, and on a particular machine, about its performance,
memory usage, and code size, then we can determine whether we succeeded and
we have written a program that accomplish the desired task.

Let us focus on performance and memory usage, and ignore that modern
hardware is able to run inefficient programs in a reasonable time, since it only
means that it could do the same task using less energy. We also ignore that
the cost of employing good programmers may exceed that of deploying faster
hardware. If we are looking for the best solutions for a problem, one might
question the role of developing new language abstractions, since they will not
represent more programs than those already expressible in machine languages.1

1Even if we finally encode part of the program as data and write an interpreter.

1

1.1. Overview and Motivation

Machine languages are rarely used, today’s low-level languages2 primarily
arised as a way to alleviate portability problems among different architectures
and ease tedious programming tasks, and good compilation techniques and opti-
mizations made those languages, such as the C language, a great replacement for
hand-written machine code. Still, in those languages the programmer has a tight
control on the resources and hardware operations, and programs include precise
details about the control flow, and data size and shape. There exists for those lan-
guages a well defined translation algorithm. A clear example of a language tightly
bound to machine code is C: experienced programmers often accurately imagine
what is happening during execution with quite precision, even at register-level.

The engineering view of programming is quite different. Programmers, as
human beings, are bound to deadlines, prone to commit errors and introduce
bugs. On the other hand, the requirements are not always speficied in a formal
language, and they can be imprecise, or be modified over time, requiring changes
in the programs. Moreover, the development process is not linear in practice,
which means that some pieces of code are often sketched as prototypes and refined
later, writting larger code by aggregating smaller program units (components).
The smaller code units are often reused, specialized, and modified. Even if those
problems were not complex enough by themselves, there exists another constraint:
for execution of untrusted code, it is not possible or desirable to allow a program
to directly access the machine resources, for security reasons.

Summarizing, we can see here an important asymmetry between what en-
coding of a program is better for a machine (that prefers efficient code) and for
a human (that has enough problems managing the code and making sure that
the code is correct). Given that execution time is not spent uniformly across
all the program source, well engineered programs often distinguishes parts where
inefficiency is not an issue, written in a clean (closer to the problem) and flex-
ible (easier to manage) style, from the speed-critical ones written in terms of
machine operations. Advanced software verification techniques may even help
in automatically proving correctness or other desirable properties of that code.
However, it is still written in terms of machine operations even in cases where it
is known a simpler executable specification. This motivates a very active branch

2Note that the classification of low-level and high-level languages has changed through the
history of computing as new abstractions have appeared and proved useful and practical.

2

Chapter 1. Introduction

of computer science focused on improving language abstractions, and the most
efficient translations to executable code.

1.1.1 From Low Level to Declarative Programming

Contrary to low-level languages, abstraction in high-level languages allow the ex-
pression of programs in a language that is closer to the problem to be solved. A
promising and maturing approach is declarative programming, intuitively — and
sometimes inaccurately — defined as a programming style where programs state
what is to be solved, but not how it is done. We feel that a deeper explanation of
that sentence is required, as Lloyd points out in [Llo94]. Using the terminology
of Kowalski’s equation algorithm = logic + control [Kow79], which informally
states that an algorithm is the combination of some logic and control, a declar-
ative programming language only describes the logic of the program and not its
control. But that definition, which reflects the intuitive idea of the paradigm,
can be completelly misleading since not every problem expressible in the logic
could be automatically solved. Lloyd describes that the key idea of declarative
programming is that programs are theories (in some suitable logic), and com-
putation is deduction from the theory. A suitable logic has a model theory, a
proof theory, soundness theorems (all the computed answers should be correct),
and, preferably, completeness theorems (all the correct answers should be com-
puted). Lloyd’s view is wide enough to group many programming paradigms
under the scope of declarative programming: functional programming (compu-
tation as evaluation of mathematical function), logic programming (computation
based on theorem proving and mathematical logic), and other formal methods.

1.1.2 Challenges of Declarative Programming

The formal logics behind declarative programming often simplifies automated
reasoning about programs, and programs written in a language that are close to
the specification are easier both to write and verify. However a main drawback is
that the programmer is implicitly forced to know how close is the programming
language to its logic and how costly is its execution. That has some profound
implications:

3

1.1. Overview and Motivation

• Generality often translates (specially in earlier or naive language imple-
mentations) in poor performance when compared with the same problem
encoded in a low-level language (e.g. languages with unbounded arithmetic
may be more costly than those where the user specifies the maximum size of
each cell - but frees the programmer from concerns about precission limits).

• Correct, and interesting, program transformations and analysis (e.g. like
partial evaluation or abstract interpretation) and easier to engineer.

• Not describing a problem at a very detailed and machine specific level means
that there is more freedom in the implementation of the language logic.
Without changes in the original problem, it can be adapted to different
hardware platforms, and take advantage of their special features (e.g. par-
allelism, SIMD).

Note that how different program units are designed, organized, and interact
with each other, defines different programming styles such as structured pro-
gramming, object-oriented programming (e.g. modules, classes, etc.). We will
not treat those aspects in this work, since they can be often applied in a language
independently of whether it has native support for those techniques.

1.1.3 The Prolog Language

Prolog is a language whose logic, using the Kowalski view, is (unsorted) first order
logic. The history of the language has been described in detail in the literature
[Col93]. The use of logical deduction as computation was devised in the 1960 by
Cordell Green and others, but it was not until Colmerauer and Kowalski’s creation
of Prolog that it started to become feasible. Prolog was born of a project aimed
at processing natural languages. Its first preliminary version dated at the end of
1971, and over the years, it became a full fledged language.

However, Prolog has been seen as a low level language among the logical
paradigm, due to its poor termination properties, and frequent use of side-effects.
Notwithstanding, since the birth of Prolog, solutions to the formalization of side-
effects in declarative programming have appeared, that has been explored in both
functional and logic programming when trying to use declarative programming
in real world applications. Prolog has proved to be a very flexible language and

4

Chapter 1. Introduction

framework to develop new ideas, such as constraint programming, and multi-
paradigm programming merging functional programming, object oriented pro-
gramming, and imperative programming. In general, Prolog systems offers large
repertoire of techniques to achieve good performance, as it will be reviewed in
Chapter 2.

Notable languages that derivate or inherit some aspects from Prolog, are LIFE
[AKP91] (logic, functional, object-oriented, contraint of a calculus of order-orted
feature approximations), Mozart-Oz [HF00], or Mercury [SHC96].

1.2 Thesis Objectives

An ambitious goal in declarative programming is the enhancement of the imple-
mentation techniques to close the efficiency gap, as a general purpose language,
with more traditional paradigms, such as imperative programming.

In that direction, the objective of this thesis is the development of advanced
compilation techniques for logic programming, both to native code and to byte-
code. Earlier works on optimized compilation of Prolog to native code showed im-
pressive results when compared to emulated code, albeit large compilation times,
with non-homogeneous speed-ups for the benchmarked programs, and generating
very large executables. Modern implementations of Prolog improved emulation
techniques so much that the idea of native code generation was partially aban-
doned. Other problems include portability issues among different architectures,
but it is clear that some algorithms can only be efficiently executed as very spe-
cialized code, which is out of the scope of pure emulation techniques and only
available at the native level. We explored solutions to those problem in this
thesis. Note that the techniques developed in this thesis are not in odds with
other extensions that preserve Prolog unification of logical variables and non-
deterministic control implemented as backtracking, such as constraint logic pro-
gramming [JM87], Prolog with tabling [War92], CHR over Prolog [SF08]. How
those results are relevant to other languages that share some execution mecha-
nisms (for example, dynamically typed languages) is not negligible, since opti-
mization techniques are similar.

A list of the goals that has been addressed in this work are decribed below:

• Develop a compilation scheme that translates Prolog to low level code, in

5

1.3. Structure of the Thesis

a portable way, and allowing execution of programs that mix native code
and emulated bytecode.

• A modular low level specialization algorithm that uses program annotations
obtained by means of program analysis (e.g. information about shape of
data and control flow).

• A scheme to share instruction and data definitions between the compiler
to low-level code and the abstract machine definition. The approach we
followed automatizes the generation of abstract machine generation.

• As a special instance of the compilation techniques to low-level code, reflect
in a variant of Prolog the semantics of the abstract machine instructions
and the Prolog data types, minimizing the amount of required hand-written
C code, allowing more automatic transformations and further extending the
portability.

• Evaluate the techniquies in a variety of platforms (servers, desktop ma-
chines, and embedded devices).

We will now describe the thesis structure and briefly comment each chapter.

1.3 Structure of the Thesis

This thesis is divided in three conceptual parts. The first part (Chapter 2) pro-
vides a background on the compilation techniques for Prolog, as a survey of past
and modern systems and their contributions. The middle part (Chapters 3,4,5,6)
elaborate on the compilation techniques and evaluates them. The final part
(Chapter 7) shows a case study using the developed techniques. We introduce
each chapter below.

1.3.1 Sequential Implementation and Optimization of Prolog: a (Short)
Survey [Chapter 2]

This chapter surveys several techniques for implementing Prolog that have been
devised since the original system written by Colmerauer and Roussel [Col93]. An

6

Chapter 1. Introduction

interesting classification for Prolog (which is, in fact, extensible to many other
languages) divides the implementations in interpreters, compilers to bytecode, and
compilers to a lower-level language. In interpreters a slight preprocessing or trans-
lation might be done before program execution, but the bulk of the work is done
at runtime by the interpreter. In compilers to low-level code, the generated code
is directly executable. Alternatively, a language can be mapped to an abstract
machine with a predefined instruction set and a compilation scheme, so that in-
terpreted language is simplified before the actual execution. This simplified code
can be used as an intermediate representation for low-level code generation, or
encoded as bytecode and executed by an interpreter, called emulator. This chap-
ter surveys the most relevant advances in those compilation techniques through
the description of current and past Prolog and logic-programming systems, from
early interpreters (such as C-Prolog [Per87]), to emulators of bytecode, native
code generators, and hybrid approaches. We will review the most extended ab-
stract machine for Prolog, the Warren Abstract Machine (WAM) [War83, AK91],
some variations and alternatives, and many implementation and optimization
techniques, updating existing surveys [Van94] with more recent developments.

1.3.2 Compiling Prolog to Native Code [Chapter 3]

Bytecode emulation can be very useful and efficient, with small executable pro-
grams and quick compile times, and in any case for non-performance bound por-
tions of large symbolic data sets and programs. On the other hand, it puts a
limit on the level at which optimizations can be performed, e.g. by not allowing
the fine-grained specialization of the instructions code. In order to generate the
highest performance code it seems appropriate to perform optimizations at all
levels and to eventually translate to machine code. This chapter will describe
the results for a prototype compiler of Prolog to C, ciaocc. Via an automatic
analysis of the initial Prolog program, and expressed in a standardized language
of assertions, ciaocc is designed to accept different kinds of high-level informa-
tion, which is later used to optimize the resulting C code. Uninterpreted code is
directily executed by the machine by making use an off-the-shelf C compiler. The
unfolding of a bytecode emulator with respect to the particular bytecode corre-
sponding to the Prolog program is the basis of the involved translation process.
That simple design has some obvious consequences: it allows reusing a sizable

7

1.3. Structure of the Thesis

amount of the machinery of the bytecode emulator. For example, the predicates
already written in C, data definitions, memory management routines and areas,
etc. Its design is as well prepared to mix emulated bytecode with native code in a
relatively straightforward way. We report on the performance of programs com-
piled to C, both with and without making use of simplifications made possible
by analysis information.

1.3.3 A Generic Emulator Generator [Chapter 4]

Early decisions in the design of abstract machines may affect the performance
of the emulator and the size of the bytecode programs in ways that are often
difficult to foresee. That is, abstract machines face complex, and often inter-
acting, decisions regarding data representation, instruction design, instruction
encoding, or instruction specialization levels. Once settled down, some of those
parameters can hardly be changed. This makes it hard studying different alter-
natives by implementing abstract machine variants, or the generation of specific
implementations for particular purposes. Even if this task can be achieved by
experienced programmers, it is a time-consuming and error-prone task because of
the level of complexity and optimization of competitive implementations. With
the goal of making alternative versions of the abstract machine easier to pro-
duce, this chapter proposes a systematic approach to the automatic generation
of implementations of abstract machines. The novel approach is the conceptual
separation of the instruction set from the data and bytecode representation, and
the description of an algorithm to combine them together automatically. That
is, instructions define the semantics of the machine, but do not provide the de-
tails to encode bytecode instructions at low level. Complementary definitions
give the representation definitions. We illustrate the practicality of the approach
by reporting on an implementation of a generator of production-quality WAMs
which are specialized for executing a particular fixed (set of) program(s). The
experimental results show that the approach is can also be effective in reducing
emulator size.

8

Chapter 1. Introduction

1.3.4 Description and Optimization of Abstract Machine in a Dialect of
Prolog [Chapter 5]

Even if low-level representation issues are moved in a separate abstraction layer, as
it is described in the previous chapter, abstract machines for Prolog and related
languages end up being large and intricate. In this chapter we show how the
semantics of most basic components of an efficient virtual machine for Prolog
can be described using (a variant of) Prolog which retains much of its semantics,
but is of higher-level than C. These descriptions are then compiled to C and
assembled to build a complete bytecode emulator. Thanks to the high level of the
language used and its closeness to Prolog, the abstract machine description can
be manipulated using standard Prolog compilation and optimization techniques
with relative ease. Incorporating sophisticated optimizations, both at the design
and at the implementation levels, is simplified. We also show how, by applying
program transformations selectively, we obtain abstract machine implementations
whose performance can match and even exceed that of state-of-the-art, highly-
tuned, hand-crafted emulators.

1.3.5 Comparing Tag Scheme Variations Using an Abstract Machine
Generator [Chapter 6]

In this chapter we study, in the context of a WAM-based abstract machine for
Prolog, how variations in the encoding of type information in tagged words and
in their associated basic operations impact performance and memory usage. We
use a high-level language, described in the previous chapter, to specify encod-
ings and the associated operations. An automatic generator constructs both the
abstract machine using this encoding and the associated Prolog-to-bytecode com-
piler. Annotations in this language make it possible to impose constraints on the
final representation of tagged words, such as the effectively addressable space (fix-
ing, for example, the word size of the target processor / architecture), the layout
of the tag and value bits inside the tagged word, and how the basic operations
are implemented. We evaluate a large number of combinations of the different
parameters in two scenarios. In the first one, it tries to obtain an optimal general-
purpose abstract machine. In the second one, specially-tuned abstract machine
are automatically generated for a particular program. We conclude that we are

9

1.4. Main Contributions

able to automatically generate code featuring all the optimizations present in a
hand-written, highly-optimized abstract machine and we can also explore em-
ulators with larger addressable space and better performance than the original
starting point.

1.3.6 A Case Study: Real-Time Sound Processing [Chapter 7]

This chapter summarizes and puts to good use some of the results presented in the
previous chapters through the study, on a concrete case of the feasibility of using
a high-level, general-purpose logic language in the design and implementation of
applications targeting wearable computers. The case study is a “sound spatializer”
which, given real-time signals for monaural audio and heading, generates stereo
sound which appears to come from a position in space. The use of advanced
compile-time transformations and optimizations made it possible to execute code
written in a clear style without efficiency or architectural concerns on the target
device, while meeting strict existing time and memory constraints. The final
executable compares very well with a similar implementation written in C. We
believe that this case is representative of a wider class of common pervasive
computing applications, and that the techniques we show here can be put to good
use in a range of scenarios. This points to the possibility of applying high-level
languages, with their associated flexibility, conciseness, ability to be automatically
parallelized, sophisticated compile-time tools for analysis and verification, etc., to
the embedded systems field without paying an unnecessary performance penalty.

1.4 Main Contributions

The main contributions of this thesis are enumerated below.

• The main contribution in this work is a compilation framework for executing
Prolog code compiled by mixing interpreted, bytecode emulated, native
code, and optimized native code:

– It is designed to accept different kinds of high-level information, typ-
ically obtained via automatic analysis of the initial Prolog program
and expressed in a standardized assertion language.

10

Chapter 1. Introduction

– It uses high-level information, which models how the program behave
at runtime, to optimize the resulting C code, which is then processed
by an off-the-shelf C compiler.

– It is based on translation process that essentially mimics the unfolding
of a bytecode emulator with respect to the particular bytecode corre-
sponding to the Prolog program.

– A flexible design of the instructions and their lower-level components,
which allows reusing a sizable amount of the bytecode emulator ma-
chinery.

Another contribution for this framework is a performance report of pro-
grams compiled by using bytecode and native code (with and without anal-
ysis information).

• Contributions to automatize the building process of abstract machines:

– A systematic approach to the automatic generation of implementations
of abstract machines.

– Separation of the abstract machine definition in different parts: in-
struction set, and the representation of internal data and bytecode
representation.

– Alternative versions of the abstract machine are therefore easier to
produce, and variants of their implementation can be created me-
chanically. This even allows generating implementations tailored to
a particular context.

– We illustrate the practicality of the approach by reporting on an imple-
mentation of a generator of WAMs which are specialized for executing
a particular fixed (set of) program(s). The experimental results show
that the approach is effective in reducing emulator size.

• Contributions to the use of a Prolog derivate as the language to describe
the instruction set of a Prolog abstract machine:

– Design of a Prolog derivate that can describe the most basic compo-
nents of an efficient virtual machine (in this case, for Prolog).

11

1.4. Main Contributions

– A compilation algorithm that can generate C code from that language
and build a complete bytecode emulator.

– Thanks to the high level of the language used and its closeness to
Prolog the abstract machine descriptions can be manipulated using
standard Prolog compilation and optimization techniques with relative
ease.

– We also show how, by applying program transformations selectively,
we obtain abstract machine implementations whose performance can
match and even exceed that of highly-tuned, hand-crafted emulators.

• Contributions to the use of a Prolog derivate as the language to describe
the basic data types of a Prolog abstract machine:

– Annotations in this language make it possible to impose constraints
on the final representation of tagged words, such as the effectively
addressable space (fixing, for example, the word size of the target
processor / architecture), the layout of the tag and value bits inside
the tagged word, and how the basic operations are implemented.

– We evaluate a large number of combinations of the different parame-
ters in two scenarios: a) trying to obtain an optimal general-purpose
abstract machine and b) automatically generating a specially-tuned
abstract machine for a particular program.

– Results that indicate that we are able to automatically generate code
featuring all the optimizations present in a hand-written, highly-
optimized abstract machine and we can also obtain emulators with
larger addressable space and better performance.

• Contributions to the study of the feasibility of high-level, general-purpose
logic language in the design and implementation of applications targeting
wearable computers:

– The use of advanced compile-time transformations and optimizations
in a “sound spatializer” which, given real-time signals for monaural
audio and heading, generates stereo sound which appears to come from
a position in space.

12

Chapter 1. Introduction

– Experimental tests that show that the final executable compares fa-
vorably with a similar implementation written in C.

All of these results has been published and presented at international confer-
ences with peer-to-peer review. Some of these contributions have been made in
collaboration with other researchers:

• Chapter 3 is mainly based on [MCH04], co-authored with Manuel Carro,
and Manuel Hermenegildo, and was published and presented at the 6th In-
ternational Symposium on Practical Aspects of Declarative Languages
(PADL 2004). Minor parts of the chapter are based on optimizations pre-
sented in [CMM+06] (on which is based the Chapter 7, as explained below).

• Chapter 4 is based on [MCPH05], written jointly with Manuel Carro, Ger-
mán Puebla, and Manuel Hermenegildo. It was published and presented at
the 21st International Conference on Logic Programming (ICLP 2005).

• Chapter 5 is based on [MCH07] and an extended version [MCH09,
MCH10]. The first paper is co-authored with Manuel Carro and Manuel
Hermenegildo, and has been published and presented at the 2006 Interna-
tional Symposium on Logic-Based Program Synthesis and Transformations
(LOPSTR 2006).

• Chapter 6 is based on [MCH08], written jointly with Manuel Carro and
Manuel Hermenegildo, and published and presented at the 10th ACM-
SIGPLAN International Symposium on Principles and Practice of Declar-
ative Programming (PPDP’08).

• Chapter 7 is based on [CMM+06], co-authored with Manuel Carro, Henk
L. Muller, Germán Puebla, and Manuel Hermenegildo. It was published in
the International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES) in 2006.

13

1.4. Main Contributions

14

2
Sequential Implementation and

Optimization of Prolog: a (Short) Survey

Summary

An interesting classification for Prolog, extensible to many other languages,
divides the implementations in interpreters, compilers to bytecode, and compil-
ers to a lower-level language. In this chapter we will have a quick historical
view from the first interpreters to the birth of the Warren’s Abstract Machine
to alternative designs and advanced implementation and optimization tech-
niques, for both bytecode emulation, compilation to native code, and hybrid
compilation schemes that combine both techniques.

2.1 Introduction

Many of the advances that appeared in the area of sequential Prolog execution,
are interesting not only for Prolog, but also for the implementation of other
logic and non-logic languages, and are compatible with other efforts focused on
parallel execution [San00] or improved expressivity (such as tabling [War92]). To
completely understand the design and optimizations of modern Prolog systems
we need to take into account that language implementations are full of subtle
details, sometimes stemming from of a long process of trial and error, with many
decisions based on the uses of the language but also on the evolution of the
available hardware.

15

2.2. From Early Interpreters to the WAM

We will briefly review in this chapter the state of the art in sequential Pro-
log implementations. It differs from existing surveys (such as [Van94]) in that it
takes into account recent contributions and advances. This chapter is organized
as follows: first, we quickly review the transition from the first interpreters to
the conception of an abstract machine (the WAM) that underlies most Prolog
systems, and we will describe some alternative designs (Section 2.2). Then, im-
provements for the WAM will be presented (Section 2.3), which are in principle
independent from whether the abstract machine is emulated or taken as reference
for native code generation. The rest chapter closes with the description of some
details related to WAM implementation. First, for WAM-based high-efficiency
bytecode emulators (Section 2.4), then for native code generators (Section 2.5),
and finally for the combination of both approaches (Section 2.6). All of them
where experimentally shown to positively impact on the performance of whole
systems.

2.2 From Early Interpreters to the WAM

Kowalski was one of the first proposing that a set of first order rules and axioms
has a procedural interpretation under a fixed proof procedure. In 1972, that
proposal became reality as the first Prolog interpreters, written in Algol-W and
Fortran by Colmerauer and Roussel [Col93]. Those early systems were still a long
way from what is now the state-of-the-art, mainly due to technological limitations
of the time, and because many decisions had to be taken not only about the best
way to encode and evaluate programs, but also on how to represent data and
terms. The fact that they were interpreted systems — by definition, programs
that evaluates other programs with almost no involved preprocessing — was not
an issue for early systems. Notwithstanding, they did major contributions in the
memory management techniques for Prolog and the design of efficient abstract-
machine based systems.

From the proposals that followed the interpreting approach, one of the most
successful implementations of Prolog was the C-Prolog intepreter [Per87], imple-
mented by Fernando Pereira in 1982 and based on an earlier interpreter written in
IMP for the EMAS operating system by Luis Damas. At that time, Prolog was al-
ready recognized as powerful, simple, clear, and readable programming language,

16

Chapter 2. Sequential Implementation and Optimization of Prolog: a (Short) Survey

especially suitable for high-level symbolic programming tasks. The interpreter
was written in C and designed for 32-bit machines with a large address space (for
the time). The full system, based on Edinburgh DEC-10 Prolog, contained the
interpreter and a wide range of builtins. The major advantage of C-Prolog was
its portability: it was available for UNIX and VAX/VMS operating systems and
was easy to port to other systems.

2.2.1 Abstract Machines: from the PLM to the WAM

In 1977, with the help of Fernando Pereira and Luis Pereira, David H. D. War-
ren wrote DEC-10 Prolog, the first Prolog compiler [War77]. Although DEC-10
Prolog was designed to generate DEC-10 assembly code, the main difference with
previous implementations being that Warren had in mind an abstract machine to
execute Prolog programs, which was called the Prolog Machine (PLM).1 2

The representation technique for terms was devised by Boyer and Moore
in [BM72], structure-sharing, where the fixed part of a term is separated from
the variable part. DEC-10 Prolog supported mode declarations, first argument
indexing, and its performance was similar to Lisp systems of the day. It was a
very influential system, since its syntax became the de-facto Edinburgh standard.
By 1980, it was the first system to have a heap garbage collector and last call
optimization.

In 1980, Bruynooghe [Bru82] and Mellish [Mel82] devised techniques for im-
proving the performance of Prolog execution. Their proposal consisted in aban-
doning the idea of sharing structures, and using structure copying, since it in-
creases locality of reference and simplifies memory management. Later, a ma-
chine with only seven instructions and using structure copying was proposed by
Bowen, Byrd, and Mellish [Bow83]. These techniques, along with tail recursion
optimization, where integrated by David H. D. Warren in a technical report de-
scribing what became the Warren Abstract Machine [War83, AK91]. With a

1Not to be confused with the Berkeley PLM microprogrammed microprocessor, a hardware
implementation of the yet to be invented WAM.

2Abstract machines has become one of the most successful techniques when efficently imple-
menting programming languages. Many popular languages such as Java and C#, or scripting
languages like JavaScript, Python, or Ruby, are executed by means of bytecode compilation, or
use it as an intermediate at some point in the compilation chain to generate native code.

17

2.2. From Early Interpreters to the WAM

design cleaner than the PLM,3 the WAM became the foundation for many Pro-
log implementations and is still present in the design of many highly optimized
systems [Swe99, Qui86, SCDRA00, BCC+02].

2.2.2 The WAM at a Glance

Intuitively, the operational semantics that the WAM describes reminds that of a
procedural language where assignment has been replaced by unification of terms
and conditional branching by backtracking. In its basic form, it contains many
subtle optimizations. The emphasis of the default optimizations proposed in the
WAM, and many others that appeared after the original design, are either re-
ducing the memory required to execute Prolog programs, reducing the evaluation
time, or both. A detailed description can be found in [AK91]. We will see a brief
description of the basic architecture of WAM-based emulators.

Term Representation: Terms are the most important data type in the WAM.
They are represented as tagged words, each word containing a tag field and a value.
The tag field allows discriminating at runtime the type of the value. Although
many kinds of tagged words may be defined, they can be reduced to atomic values
(such as numbers or constants), compound terms, and variables. The value field
is usually the value itself (the number or index to a symbol table) in atomic
values. In the other cases, like compound terms, the value field is interpreted as
a reference that points sequence of tagged words containing the name/arity and
the arguments. Unbound variables are implemented as self-referential pointers,
so that when two variables are unified, one of them is modified to point to the
other. Therefore, to access the value a variable is bound to, it is necessary to
follow a chain of pointers.

Memory Areas: Some registers and memory areas are common for register-
based machines for imperative languages and the WAM. There are a set of tem-
poral registers to pass arguments or store temporal values, a local stack to store
the enviroments (the local frames or activation records in standard compiler ter-
minology) to implement recursive procedure/predicate calls (and store variables

3A detailed description of the PLM and influence in the design of the WAM is explained
with great detail in [Hod90]

18

Chapter 2. Sequential Implementation and Optimization of Prolog: a (Short) Survey

that must survive across calls), and a global heap (to store data that survives the
exit from a procedure/predicate). In order to implement backtracking efficiently,
the WAM introduces some additions and modifications:

• The heap is able to keep a chronological order of the objects it holds, and
there is special register points to the top of the heap.

• The combination of a choice point stack and a trail stack keeps track of
saved execution states.4

The trail is used to store the address of every unbound variables that are
unified, and the choice stack is filled special enviroments called choice points.
Choice points are created whenever a predicate with more than one clause (more
than one execution alternative), to save the current execution state, by storing
pointers to the top of each stack (the heap, local stack, and trail), the argument
registers, and the pointer to the next execution alternative. Choice points also
protects frame environments of non-deterministic predicates from being overwrit-
ten: when computing the top of the frame stack to create a new environment,
the maximum of the address of the latest active frame and frame stored in the
latest choice point are considered. When a goal fails (e.g. unification fails) the
execution is recovered from the latest choice point in the choice point stack.
Backtracking to a saved state involves several operations: undoing the variable
bindings (untrailing), restoring the pointer to the current frame, restoring the
rest of the saved registers, and patching the choice point for the next alternative,
or removing it if no alternatives are left for the predicate. Setting the top of the
heap to a previous value automatically reclaims memory on backtracking.

Instruction Set: In its basic form, the WAM defines a reduced set of instruc-
tions, dealing with each of the emulator operations. The instructions represent
quite high-level operations that can easily be executed by general purpose ma-
chines. For illustration purposes we enumerate a simplified instruction set below,
omitting special optimized instructions that will be commented on later:

4Choice stacks and local stack may live in the same region, growing in opposite directions,
or be different stacks. Alternatively, a single stack may contain both choices and frame enviro-
ments, but this approach consumes more memory.

19

2.2. From Early Interpreters to the WAM

• Term creation and unification: passing goal arguments (put_variable Vn Ri,
put_value Vn Ri, put_constant C Ri, put_structure F/N Ri), unifying
head arguments (get_variable Vn Ri, get_value Vn Ri, get_constant C Ri,
get_structure F/N Ri), unifying structure arguments (unify_variable Vn,
unify_value Vn, unify_constant C Vn, unify_void N).

• Predicate call and environments: calling predicates (call P N), returning
successfully from a predicate (proceed), creating or destroying local frames
(allocate, deallocate)

• Choice point management (try, retry, trust).

Optimizations: The WAM introduces very relevant optimizations that play
a significant role in minimizing the memory consumption and execution time of
many programs by orders of magnitude. Two of the most important are:

• Indexing : Prolog backtracking explores all the clauses of a predicate are
in the order they appear in the code, even if some of them are mutually
exclusive. Indexing builds a tree based on the type of the arguments (usu-
ally, hash tables for the first argument value, up to the principal functor)
to discard clauses that are known to fail for the current calling pattern.
Predicate entries are modified with special instructions that jump to the
appropiate code for each clause (or list of clauses). This very important
optimization not only reduces memory usage (e.g. avoiding the creation of
choice points for calling patterns with which only one clause is known to be
compatible), but it also avoids linear search of alternatives in many cases.

• Tail recursion optimization: Another powerful optimization is the last-call
optimization, that removes the last local frame in tail-calls (that allows
using recursive predicates as loops with constant memory usage) before
jumping to the goal code.

In addition to the previous optimizations, other minor improvements — which
depending on the program may suppose a constant-factor improvement in speed
and memory savings — are specified in the WAM design:

20

Chapter 2. Sequential Implementation and Optimization of Prolog: a (Short) Survey

• Specialized Terms for Lists : Lists (e.g. [1,2,3] or [1|[2|[3|[]]]]) are data
structure so common in many programs that many emulators use a special-
ized representation for the list constructor ([_|_]), reserves a tag for that
purpose, and specialized instructions (put_nil Ri, put_list Ri, get_nil Ri,
get_list Ri, unify_nil).

• Unsafe Variables: Unbound variables can be created in the frame stack.
Those variables are called unsafe, since they may lead to dangling pointers.
Unifying potentially unsafe variables with structure arguments or goal ar-
guments, is performed with special unify instructions that globalizes (moves
to the heap) the unsafe variables.

• Conditional Trailing : Trailing is only done for variables that are older than
the most recent choice point. Variables newer than the choice point will be
automatically recovered from the memory on backtracking, which makes
trailing them superfluous. This optimization saves both time and memory,
at the cost of a trailing check.

2.2.3 Alternatives to the WAM

The WAM defines an architecure for executing Prolog with good performance.
However, as it will be seen in the following sections, there exists many variations
that lead to even better efficiency. We select here some major departures from
the WAM that, although may share many parts like term representation, deserve
being classified in their own section.

TOAM: The temporal registers in WAM-based emulators are used to pass
arguments in predicate invocation or to store temporary results. Despite being
called registers, they are usually mapped to memory in many implementations
for current architectures Neng-Fa Zhou proposed in his abstract machine, the
ATOAM (yet Another Tree-Oriented Abstract Machine) [Zho94], that saving
arguments directly in the stacks, would simplify many operations. In [CZ07], this
design is refined towards the TOAM Jr. (the current machine for B-Prolog), that
employs no registers for temporary data and offers variable-size instructions for
encoding unification and procedure calls. The main difference of the TOAM from
the WAM is that it is a stack machine instead of a register machine. Arguments

21

2.2. From Early Interpreters to the WAM

are passed through the stack in a frame, and one frame is used per procedure
call. This has the inconvenience that effective tail-recursion, which keeps the
stack usage, is harder to implement in the TOAM. To solve this problem, it
implemented several optimizations to do enviroment reuse.

The WAM cannot reuse enviroments, but it can avoid creating them. Envi-
ronment avoidance is useful not only for leaf procedures (e.g. inc(X,Y) :- Y is

X + 1), but also for clauses with only built-ins one last call (e.g. foo(X) :- Y is

X + 1, bar(Y)). Whether the two techniques could be merged was studied for a
limited set of benchmarks by Bart Demoen and Phoung-Lan Nguyen [DN08]. In
that paper, it is shown that enviroment reuse is useful for deterministic recursive
predicates such as tak/4, and that by emitting precisely fine-tuned bytecode, it
is possible to implement enviroment reuse in a register-based WAM.

The Vienna Abstract Machine (VAM): In [KNW90] an alternative to the
inference in the WAM is presented. In contrast to the WAM, inference in the VAM
is performed by unifying a goal and a head immediately. A detailed comparison
between the WAM and the VAM is described in [Kra94]. Two implementations
of the VAM existed. VAM2P required two instruction pointers, one for the goal
code and other for the head code. At execution, VAM2P fetches one instruction
from the goal code and one instruction from the head code and executes the
combined instruction. More optimizations were possible since more information
was available at the same time. An alternative VAM1P implementation was de-
signed for native code compilation, by unfolding goal calls. The main drawback
of that approach is the cost of potentially multiplying the code size. Notwith-
standing, the fact that many of the advantages of the VAM could be possibly
be obtained statically by source-to-source optimizations applied at the Prolog
level [PH03, Win92], and implementation issues which make optimizations diffi-
cult (such as taking into account two instruction opcodes at the same time), may
be a possible reason for not seeing VAM-related optimizations in modern Prolog
implementations.

22

Chapter 2. Sequential Implementation and Optimization of Prolog: a (Short) Survey

2.3 Further Optimizing the WAM

Other optimizations which are independent of whether bytecode or native code
is generated are possible.

Different Term Representations: In WAM-based systems, there are many
chooses that can be taken when representing terms. In [DN00], four different
term representations are tested:

• wam-vars : Allow unbound variables in local stack (that is, the unsafe vari-
able optimization).

• heap-vars : Unbound variables are always initialized in the heap.

• parma-vars : Use PARMA-style [Tay89] binding between variables (unifying
two variables create a cycle; although binding follows all variables in the
cycle and trailing needs two words, the cost of dereferencing is constant).

• tag-on-data: Tag-less pointers, a full word sized tag resides on data like in
[TN94] (but without term compression).

The results indicated that all of them were interesting in some cases, for perfor-
mance or flexibility. However, performance variations and the set benchmarks
in the paper are not enough to make final statements in large programs, except
the expected increase in heap usage for heap-vars (due to unbound variables),
tag-on-data (due to larger tags), and in trail usage for parma-vars. In [SD02], it
is proposed an improved trailing scheme that reduces trail usage in 50% for un-
conditional variable-variable trailing. Together with an analysis and optimization
technique it considerably reduces trail usage for some programs.

Term Matching/Building: In the WAM, the translation to instructions of
unification goals and head arguments (e.g. p(f([1,2], a, g(b))) :- Body) is
done as a flattening to elementary unifications (e.g. p(A1) :- A1 = f(X1, a,

X2), X1 = [1,2], X2 = g(b), Body), which is translated to get_∗ instructions
for the principal functor, followed by unify_∗ instructions for the arguments.
The get instruction switches the WAM to either read or write mode. Depending
on the mode, the instructions build new term or match against existing ones.

23

2.3. Further Optimizing the WAM

Schemes for generating optimal structures are presented in [MD91], along with
a description of several optimizations for minimizing the cost of checking the
read/write flag (i.e. two-stream unification, two emulator loops).

Shallow Backtracking: Backtracking is a fundamental Prolog mechanism to
implement search, but also conditional execution (if-then-else is defined as defini-
tion of disjunct alternative clauses). In [Car89], Mats Carlsson re-introduced an
optimization called shallow backtracking, that is still present in SICStus [Swe99]
and Ciao [HBC+08]. Unlike in the WAM, the PLM considered a distinction
between two kind of backtracking, depending on when the failure happens:

• Failure in unification of the head of a clause (or the first unifications before
execution of predicates or some builtins).

• Failure in deeper parts of the body.

The idea is to make the try and try_me_else instructions save only a small
part of the machine state, and postpone the completion of the choicepoint to the
execution of a neck instruction. The results in the paper showed that the speedup
gained by this optimisation was significant (7%-15%).

Dynamic indexing: First-argument indexing is implemented in most Prolog
systems (and part of the original WAM definition). However, programs have to
be modified to take advantage of indexing. As logic programming applications
grow in size, or larger data sets are used (for some applications), first-argument
indexing is not appropiate. Indexing on multiple arguments is an alternative,
but it is is unpractical due to the size of the indexing trees that can result. In
[SCSL07a] a proposal for building the indexing tree on demand at runtime is
shown. As a first step towards runtime optimization of Prolog programs, the
technique obtains considerable performance speed-ups (from a few percent to or-
ders of magnitude) and has the advantage of being much less costly than creating
the full multi-argument indexes.

Variable Shunting during Garbage Collection: The WAM garbage collec-
tor can be extended to shunt (short-circuit) chains of bound variables [SC91].
That saves space, by making it possible to allocate intermediate cells, and speeds

24

Chapter 2. Sequential Implementation and Optimization of Prolog: a (Short) Survey

up code since dereferencing those cells is cheaper. This optimization is imple-
mented in SICStus and Ciao Prolog. Variants of variable shunting have been
implemented in Yap [CC01].

2.4 Advanced Emulator Implementations

While some WAM-based systems were actually implemented directly in hardware,
the most successful implementations are based on bytecode emulators, where the
bytecode is an binary encoding of the abstract machine instructions. A clear
advantage of emulators is its portability and compact code representation. Byte-
code emulators, most of them written in low-level languages like C5, are usually
as portable as interpreters and offer very good performance and reduced program
size, a crucial issue for very large programs and symbolic data sets. Basically,
emulators are built as loops that run continously fetching bytecode instructions
and executing them. We will comment (mostly) on portable implementation tech-
niques (without remodeling the abstract machine) that have successfully helped
in improving the performance of emulators. Although many of them appeared in
other systems, Yap Prolog was one of the first systems combining most of them,
as reported in [SCDRA00].

2.4.1 Mapping Hardware and WAM Registers

In emulators written in C, it is possible to hint C compiler for better register
assignment than what it is able to do automatically, based on knowledge about
the control flow inside the emulator itself. Usually, this optimization consists of
directly mapping hardware registers (which in some architectures may be limited)
to WAM registers; for example, the WAM program counter is a clear candidate.
This is even more important if WAM registers are declared as global variables
or fields of a WAM state structure. A related optimization consists of using
the C register modifier, which is used as a hint by the C compiler to keep the
variable in a register when possible. Note that reserving a fixed register for all
the emulation loop may affect negatively the performance. A common solution

5A notable exception is Quintus Prolog implemented in a generic RTL language (“PRO-
GOL”).

25

2.4. Advanced Emulator Implementations

is keeping the WAM register in a normal variable and caching in a local variable
of the emulation loop for reasonable sections of code.

2.4.2 Cheaper Instruction Fetching

Instruction fetching is another source of overhead for bytecode emulators. The
following techniques alleviate it:

Threaded Code Emulation: The opcode field in instructions is replaced by a
pointer to the actual machine code which implements the instruction. Executing
an instruction thus fetches the opcode field and just jumps to it.

Threaded-operands: The encoding of a bytecode instruction with an arbi-
trary temporal X register as opcode, is usually represented as a number. For
example, the Xi register can be represented as i. During instruction decoding,
i is read and the actual C variable containg the register is expressable as X[i].
It is also possible to encode directly in the opcode a relative or absolute address
of the register (e.g. patch &X[i] for every X operand with value i in bytecode),
which depending on the architecture may save some assembler instructions and
cycles.

Prefetching: Threaded code removes the overhead of a switch statement, but
it still generates a CPU stall. To jump to the next instruction, the program
counter must be incremented, the new opcode fetched, the CPU will stall waiting
for the opcode, and then the jump will be done once the data has arrived. To
avoid this problem, the new opcode can be prefetched in a hardware register
allowing the CPU to know the jump address in advance.

2.4.3 Augmented Instruction Set

The WAM defines a very simple instruction set that may however be counterpro-
ductive in bytecode emulators. Many optimizations can be applied by enriching
the emulator with special cases or instructions that group complex operations.

26

Chapter 2. Sequential Implementation and Optimization of Prolog: a (Short) Survey

Instruction Specialization: When some information is known at compile time
about some of the instruction operands, it is possible to choose a specialized
instruction. Although this technique is more useful for native compilation (since
the number of specialized instruction may be very large), many instructions in
modern systems are just specializations of more general cases (e.g. put_nil is a
special case of put_constant C, where C is []).

Built-ins as Instructions: Some very common predicates, like meta-predicates,
integer arithmetic, unification, term manipulation built-ins (e.g. functor/3,
arg/3) can appear directly as instructions. Not only this may skip the creation of
frame environments but built-ins are special predicates that do not always require
a complete frame or choice point.

Instruction Merging: By joining several instructions into a single one, the
emulation overheads are reduced since only one instruction fetching is required.
In [NCS01] may combinations and specialization of WAM instructions (done by
hand) is tested against standard benchmarks for Prolog. In the context of the
SICStus emulator, they found a 10% gain, while the bytecode size reduction was
about 15%. In the TOAM Jr. [CZ07] not only parameters are passed through the
stacks, but it also temporary results. This makes common instruction sequences
more frequent and merging of long instruction sequences easier. The introduction
of merging in B-Prolog version 7.0 made the code more compact and showed
significant (between 48% and 77%, depending in the architecture) speedups. Note
that merging also plays an important role on the optimizations made by the C
compiler. For merged instructions, the C compiler can propagate information
between two pieces of code that are now adjacent and optimize them (e.g. reuse
temporal results).

2.5 Compilers to Native and Low-Level Code

In bytecode emulators, a major hurdle when implementing the semantics of the
abstract machine instructions is minimizing the emulation costs. In general,
source code is translated to bytecode and bytecode is executed by the emulator.
As seen in Section 2.4.3, more efficiency can be obtained by reducing the costs of

27

2.5. Compilers to Native and Low-Level Code

emulation, but depending on the application requirements, the gain may not be
enough.

A different approach that tries to achieve more efficiency than emulation is
native compilation, which is based on a different principle: the Prolog source is
translated to an intermediate code (equivalent to the abstract machine instruc-
tions, but which may be of different granularity than that of WAM emulators),
and that code is translated to native code (which is platform-specific and di-
rectly executable) or a low-level language for which native code compilers are
available. Performance is potentially enhanced, since no emulation component is
involved, at the cost of sacrifying not only portability but also the flexibility of
bytecode emulation (for example, dynamic patching of bytecode is not possible
or very complicated, by e.g. performing native code recompilation at runtime or
patching assembler code).

Depending on how the translation of the WAM (or other machine) to the host
language (assembly code or a low-level language) is performed, we will distinguish
two cases:

Direct translation to native code: the entire WAM (term representation,
stacks, control mechanism) is fully implemented. That often requires quite
low-level operations.

Indirect translation through a lower level language: emitted code emulates
the desired operational semantics, although it uses some indirect path (e.g.
passing continuations) that would not be necessary in a direct translation.
This approach is suitable when targeting imperative languages like C or Java
bytecode. The reasons for taking this approach are grounded on portabil-
ity issues (e.g. adhering to C standard) or taking advantage of the target
language compiler (e.g. C compiler optimizations that should be rewritten
if assembler code is emitted by hand).

Native direct compilation of Prolog has been used since the early times of the
DECsystem-10 Prolog, and in other systems like SICStus (only for the Sparc ar-
chitecture). However, the symbolic nature of Prolog, advances in emulation, and
hardware changes makes the idea of plain compilation obsolete in most cases. For
example, performance evaluations showed that well-tuned emulators can beat for
some programs Prolog compilers which generate machine code directly but which

28

Chapter 2. Sequential Implementation and Optimization of Prolog: a (Short) Survey

do not perform extensive optimization [DC01]. However, the strongest point of
native compilation and its main advantage over emulators is that different, fine-
grain optimizations can be applied to each chunk of code depending on its usage.
We will see some of the more effective proposals.

2.5.1 Global Static Analysis

Global analysis statically (i.e. without running the program) infers program in-
formation related to the posssible program executions. This information can be
used to simplify optimize programs, by e.g. simplifying general execution mecha-
nisms to better suit the situation at hand. In [HWD92], the issue of practicality
of global flow analysis in logic programing is addressed, concluding that the over-
head of global flow analysis, quite precise and useful, are not prohibitive in terms
of speed of analysis.6 Other works yielded preliminary results to sustain the idea,
like the VAMAI abstract machine for abstract interpretation of Prolog [KB95],
that indicated that dataflow analysis could be performed very efficiently. So far,
abstract interpretation has proved to be a very precise technique for global flow
analysis of Prolog and existing analyzers [HPBG05] and systems use abstract
interpretation to implement and drive code optimizations.

However, taking advantage of those optimizations requires either a large
amount of specialized instructions or fine-grained instructions that can be sim-
plified individually. The WAM-based instruction sets employed in emulators are
not the best candidates as target for an optimizing compiler.

2.5.2 Low-granularity Instruction Set

One of the first systems to exploit dataflow analysis in compilation was Aquarius
Prolog [VR90]. By using global analysis, it derived type information, to specialize
unifications, and determininism information to optimize control structures like
conditional branches.

Since, as we said before, the high-level compact instructions in the WAM were
too coarse grained to do bytecode-based analysis and optimizations, Van Roy used
a system derived from the WAM, the BAM or Berkeley Abstract Machine, that
retained good features of the WAM, but was more easily optimized and closer

6It was applied in reducing run-time checks in independent and-parallelism.

29

2.5. Compilers to Native and Low-Level Code

to the actual underlying physical machine, since its instruction granularity was
smaller.

In [Deb92] a low-granulary WAM for low-level optimizations is proposed, that
can be used to express low-level optimizations that reduce tag manipulation,
dereferencing, trail testing, environment allocation, redundant bound checks.
That work is presented as a source-to-source solution to for WAM optimization.

Doing native code compilation, many specializations were possible. Unifica-
tion in Prolog is the general mechanism to implement simpler operations in other
languages, like pattern-matching, parameter passing, assigning values to vari-
ables, allocate memory, and do conditional branching. Van Roy identified how
global information could be used to simplify unification and gain performance,
trying to specialize unification to the simplest possible code. Another system that
used similar techniques was Parma Prolog [Tay91a], that targeted the MIPS ar-
chitecture. Both systems showed promising results for some programs, exceeding
the performance of previous Prolog implementations by an order of magnitude.

2.5.3 WAM-level Multiple Specialization

The WAMCC compiler was extended by M. Ferreira and L. Damas in [FD99] with
program specialization, and later refined in [FD02]. the analysis that was done
in Prolog to WAM compilation and generating local specialized instructions, and
propagating that information through the entire program. It used an abstract
interpretation-based local analysis at the predicate level and generated different
versions for each detected entry pattern. The poly-variant unfolding of predicates
allowed the predicate-level (local) analysis to propagate inter-procedurally rele-
vant information. Code expansion was controlled by limiting the specialization
to some (controlled) pertentage of the predicates. The average speedup was of
50% over WAMCC.

2.5.4 Static Typing

Prolog is a dynamically typed language. The WAM uses tag bits to distinguish
the type of each term at run-time. It is known that keeping track of tag bits adds
some overhead in most architectures (some bits are reserved to store bits, address
space may be limited, tag bits have to be removed and inserted, etc.) Tag bits

30

Chapter 2. Sequential Implementation and Optimization of Prolog: a (Short) Survey

can be avoided in languages with static polymorphic typechecking [App89], with
the only exception of the runtime information required for user-defined variant
records, but in most cases this lead to improvements in space and time efficiency.

A way to improve the efficiency of Prolog is by making the language stat-
ically typed. That means a drastic departure from the language: since some
programs are no longer well-typed, it restricts the definition of valid programs.
This constraint has some repercussions for analysis:

• More information at compile time about program behaviour is usualy ob-
tained.

• Analysis is cheaper than for dynamically typed languages (e.g. those based
on abstract interpretation).

The most notable current proposal to add static type checking in a logic
language with Prolog-style nondeterminism is Mercury.7

Mercury: The Mercury language [SHC96] is a declarative logic programming
language. Although Mercury differs considerably from Prolog in some aspects
(e.g. typing system, goal reordering, etc.), many of its implementation and opti-
mization techniques are applicable also to Prolog. It is statically typed and has
mode and determinism annotations. It emits different code for each predicate
with different modes and determinism. That restricts the language semantics,
but it has a simple execution model that takes advantage of the information
available to generate efficient code, significantly faster than other logic program-
ming languages.

Typed Prolog: Using dynamic and static typing in a language is often mo-
tivated by the trade-off between the flexibility offered by the former and the
correctness properties inferred from the latter. In [SSCWD08] Tom Schrijvers
proposed an integration of static and dynamically typed systems for Prolog. It
places a portable Hindley-Milner type system on top of dynamically typed Prolog
implementations (working for Yap, SWI and ported with minor effects to other
systems like Ciao). Typing is not mandatory in that system. Typed and untyped

7Other strongly-typed languages in the logic paradigm are Gödel [HL94] or λProlog [NM88].

31

2.5. Compilers to Native and Low-Level Code

code can be mixed, 8 and the type checker can insert dynamic type checks at the
boundaries between typed and untyped code. Although this extension only con-
cerns code safety, and code optimization has not been attempted, the integration
with static Hindley-Milner typing, which is cheaper than abstract interpretation,
is interesting.

2.5.5 Back-ends for Native and Low-level Code

As previously said in the beginning of this section, native code compilers for
Prolog produce directly executable programs by generating — in what is usally
called the compiler back-end — native code from an intermediate representation
(either specialized WAM instructions, or an instruction set with lower granularity,
like the BAM for Aquarius Prolog). A main issue with native compilers is that
the output code is architecture-dependent, which makes porting and maintaining
a non-trivial task. Some examples of early systems that emitted native code are
DECsystem-10 Prolog, Aquarius [VD92], versions of SICStus Prolog [Swe99] for
some architectures, and BIM-Prolog [Mar93].

Common Intermediate Representations: Developing back-ends to native
code can be simplified by using an intermediate register transfer language (RTL),
although different translations of this code are needed for different architectures.
GNU Prolog [DC01] is a complete Prolog system with many advanced features
(such as finite domain constraints) that is implemented in this way. Instead
of supporting a rich language able to generate very optimized code, its back-
end is limited to a subset of the assembler language. The code for very simple
instructions is expanded (e.g. moving data between registers), but for the more
complex ones (e.g. unifications), procedure calls are emitted. It results in reduced
compilation times and small executables.

Other intermediate languages for the native compilation of Prolog programs
is presented in [LSC94], that designs a compiler for Yap Prolog able to maintain
both emulated and native code. The goal of that proposal was improving the
performance of Prolog using native-code compilation for user-defined predicates,

8A similar approach is usualy taken to interface foreign typed code (C) and untyped Prolog
code: runtime type checks are mandartory in the boundaries between both languages

32

Chapter 2. Sequential Implementation and Optimization of Prolog: a (Short) Survey

and achieve the same (or better) performance than other systems using native
code generation (like Aquarius or native SICstus Prolog).

Low-level Languages: The alternative to generating assembler code is using
a (lower-level) language, such as, e.g., C-- [JRR99] or C, for which compilers are
readily available. Translating to a low-level language such as C is interesting
because it makes portability easier, as C compilers exist for most architectures
and C is low-level enough as to express a large class of optimizations which cannot
be captured solely by means of Prolog-to-Prolog transformations.

The WAMCC [CD95] system, a predecessor of GNU Prolog, translated Prolog
to C via the WAM. It was simple, efficient and portable. It did not incorporate
complex optimizations, but it was as efficient as emulated Quintus Prolog 2.5 and
30% slower than SICStus running via native code compilation.

A typical translation scheme maps clauses or procedures to C functions. That
causes considerable overhead during function call and return and makes last call
optimization difficult. In WAMCC, this overhead is alleviated by assembler direc-
tives that bypass function calls. Unfortunately, this solution was highly depen-
dant on the specific architecture, needed modifications when being ported, and
still suffers from code explosion. It made some delicate assumptions about how
the control flow is implemented in assembler, sometimes invalidating analysis and
optimizations performed by the C compiler. It required GCC in order to generate
native code, which made compilation slower than in its successor GNU Prolog
(that provided compilation times between 5 and 10 times faster).

A similar technique is implemented in several Mercury back-ends (the asm
compilation grades).

Higher-level C: Alternatively, in some logic languages it is possible to avoid
the use of non-portable assembler directives while not sacrificing performance,
as it is done for Mercury in its higher-level C back-end [HS02]. This back-end
is based on continuation passing (forward execution is implemented as tail calls,
consecutive statements represent alternatives, and returning from a function im-
plements failure). By using a translation scheme that is not based on language
tricks, and where predicate arguments and local variables are mapped to C argu-
ments and variables, the back-end is more portable (to languages other than C),

33

2.6. Hybrid Compilation

and the compiler is able to perform more optimizations.
A drawback of relying on mapping source language elements to C (e.g. logic

variables to C variables) is that the implementation of some features, like garbage
collection (GC), is complicated. Mercury makes use of the external Boehm
GC [BW88] to reclaim memory automatically. However, not being connected
with any kind of type information, this kind of GC algorithms has the disad-
vantage of being conservative.9 Although explicit techniques have been devised
to make the GC type-accurate in the case of Mercury [Hen02], other optimiza-
tions, for example, fast heap unrolling on backtracking or memory optimizations
(like variable shunting in the WAM), are very hard to implement without a tight
cooperation with the external GC.

2.6 Hybrid Compilation

Traditionally, WAM-based systems compile all predicates are using the same byte-
code instructions. A notable exception are system predicates, which are imple-
mented in the target language (e.g. C), but callable as usual predicates. Most
systems allow this heterogeneous mix, but the compilation from Prolog always
produces bytecode, and non-bytecode predicates are limited to predicates inter-
facing foreign functions or built-ins. An interesting approach is the combination
of different kind of compilation techniques.

Benefits of Combining Techniques: It has been shown that for some ap-
plications, compilation to lower-level code can achieve faster programs by elim-
inating interpretation overhead and performing lower-level optimizations. This
difference gets larger as more sophisticated forms of code analysis are performed
as part of the compilation process and instructions — which can be unfolded mul-
tiple times — can be highly specialized and optimized, individually. Although
compilation to native code does not suffer from emulation overheads and offers
a much fine-grained optimization level, sometimes (e.g. when the definition of
many instructions is expanded) the executable size can be too large (with pos-

9It cannot distinguish the type of each memory cell, e.g. a natural number containing
0x123000 and a pointer referencing the 0x123000 address. It conservatively treates any number
as a possible pointer.

34

Chapter 2. Sequential Implementation and Optimization of Prolog: a (Short) Survey

sible negative impact on the processor instruction cache), or the optimization
opportunities too few (e.g. the inferred information during analysis may be too
general and of little help to specialize the code, resulting in limited performance
gains not worth a probably increased compilation time). Interpreters in turn
have potentially smaller load/compilation times and are often a good solution
due to their simplicity when speed is not a priority. Emulators occupy an in-
termediate point in complexity and cost, specially interesting when not enough
information is available about the program — or when the program exhibits such
a dynamic behaviour that all the information that can be collected is useless for
optimizations.

A major criticism to native code generation for Prolog was presented in
[DM92], stating that the performance differences between Aquarius and BIM4
were due to bias toward programs with a strong arithmetic component. For
other programs, native code compilation suffers from code explosion problems,
since the bytecode of a predicate (specially when containing large terms) is often
much more compact than plain translation to C. A better solution can be ob-
tained with a compromise which combines both techniques for selected program
parts.

2.6.1 Partial Translation

A general-purpose technique called partial translation was presented and studied
for translation of Prolog to C translation in [TDBD96]. It compiled selected,
potentially large, sequences of the simple emulator instructions to native code,
and left to the emulator the complex control structure, some large instructions,
and the management of the symbol table. The native code was linked with the
emulator itself to produce a stand-alone application, which was able to switch
between native and emulated code as required. Its performance ranged between
emulated code and native code, while supporting modular compilation, allowing
some control of the trade-off between speed and size, and beign fully portable (as
long as a C compiler was available).

35

2.6. Hybrid Compilation

2.6.2 Exo-compilation

The idea that the implementation of each predicate does not need to be uniform
is revisited in [DNSCS07], under the name of exo-compilation. It shows that
a new compilation scheme for large sets of wide, regular facts, frequent in the
context of ILP, is effective in reducing the memory footprint to about one third
of the normal WAM compilation without slowdowns. This is a special case when
specializing compilation for a particular class of code, where all arguments in
the facts are atoms, and queries often introduces lots of void variables, and is
very useful in practice for a certain type of programs. It was implemented in the
hProlog bytecode emulator , but the idea is applicable to the compilation to C
or native code.

36

3
Compiling Prolog to Native Code

Summary

We describe the current status of and provide performance results for a proto-
type compiler of Prolog to C, ciaocc. ciaocc is novel in that it is designed to
accept different kinds of high-level information, typically obtained via an au-
tomatic analysis of the initial Prolog program and expressed in a standardized
language of assertions. This information is used to optimize the resulting C
code, which is then processed by an off-the-shelf C compiler. The basic trans-
lation process essentially mimics the unfolding of a bytecode emulator with
respect to the particular bytecode corresponding to the Prolog program. This
is facilitated by a flexible design of the instructions and their lower-level com-
ponents. This approach allows reusing a sizable amount of the machinery of
the bytecode emulator: predicates already written in C, data definitions, mem-
ory management routines and areas, etc., as well as mixing emulated bytecode
with native code in a relatively straightforward way. We report on the perfor-
mance of programs compiled by the current version of the system, both with
and without analysis information.

3.1 Introduction

It is safe to say that different approaches in compilation (Chapter 2) are useful
in different situations and perhaps even for different parts of the same program.
The emulator approach can be very useful during development, and in any case
for non-performance bound portions of large symbolic data sets and programs.

37

3.1. Introduction

On the other hand, in order to generate the highest performance code it seems
appropriate to perform optimizations at all levels and to eventually translate to
machine code. The selection of a language such as C as an intermediate target
can offer a good compromise between opportunity for optimization, portability
for native code, and interoperability in multi-language applications.

In ciaocc we have taken precisely such an approach: we implemented a com-
pilation from Prolog to native code via an intermediate translation to C which
optionally uses high-level information to generate optimized C code. Our starting
point is the standard version of Ciao Prolog [BCC+02], essentially an emulator-
based system of competitive performance. Its abstract machine is an evolution
of the &-Prolog abstract machine [HG91], itself a separate branch from early
versions (0.5–0.7) of the SICStus Prolog abstract machine.

ciaocc adopts the same scheme for memory areas, data tagging, etc. as the
original emulator. This facilitates mixing emulated and native code (as done also
by SICStus) and has also the important practical advantage that many complex
and already existing fragments of C code present in the components of the emu-
lator (builtins, low-level file and stream management, memory management and
garbage collection routines, etc.) can be reused by the new compiler. This is
important because our intention is not to develop a prototype but a full compiler
that can be put into everyday use and developing all those parts again would be
unrealistic.

A practical advantage is the availability of high-quality C compilers for most
architectures. ciaocc differs from other systems which compile Prolog to C in
that that the translation includes a scheme to optionally optimize the code using
higher-level information available at compile-time regarding determinacy, types,
instantiation modes, etc. of the source program.

Maintainability and portability lead us also not to adopt other approaches
such as compiling to C--. The goal of C-- is to achieve portable high performance
without relinquishing control over low-level details, which is of course very desir-
able. However, the associated tools do not seem to be presently mature enough
as to be used for a compiler in production status within the near future, and not
even to be used as base for a research prototype in their present stage. Future
portability will also depend on the existence of back-ends for a range of architec-
tures. We, however, are quite confident that the backend which now generates C

38

Chapter 3. Compiling Prolog to Native Code

code could be adapted to generate C-- (or other low-level languages) without too
many problems.

The high-level information, which is assumed expressed by means of the pow-
erful and well-defined assertion language of [PBH00a], is inferred by automatic
global analysis tools. In our system we take advantage of the availability of
relatively mature tools for this purpose within the Ciao environment, and, in
particular the preprocessor, CiaoPP [HPBG05]. Alternatively, such assertions
can also be simply provided by the programmer.

Our approach is thus different from, for example, wamcc, which also generated
C, but which did not use extensive analysis information and used low-level tricks
which in practice tied it to a particular C compiler, gcc. Aquarius [VD92] and
Parma [Tay90] used analysis information at several compilation stages, but they
generated directly machine code, and it has proved difficult to port and maintain
them. Notwithstanding, they were landmark contributions that proved the power
of using global information in a Prolog compiler.

A drawback of putting more burden on the compiler is that compile times and
compiler complexity grow, specially in the global analysis phase. While this can
turn out to be a problem in extreme cases, incremental analysis in combination
with a suitable module system [CH00] can result in very reasonable analysis times
in practice.1 Moreover, global analysis is not mandatory in ciaocc and can be
reserved for the phase of generating the final, “production” executable. We expect
that, as the system matures, ciaocc itself (now in a prototype stage) will not be
slower than a Prolog-to-bytecode compiler.

3.2 Basic Compilation Scheme

The compilation process starts with a preprocessing phase which normalizes
clauses (i.e., aliasing and structure unification is removed from the head), and
expands disjunctions, negations and if-then-else constructs. It also unfolds calls
to is/2 when possible into calls to simpler arithmetic predicates, replaces the cut
by calls to the lower-level predicates metachoice/1 (which stores in its argument
the address of the current choicepoint) and metacut/1 (which performs a cut to
the choicepoint whose address is passed in its argument), and performs a sim-

1See [HPBG05] and its references for reports on analysis times of CiaoPP.

39

3.2. Basic Compilation Scheme

top

init

first local unsafe

uninit

bottom

Figure 3.1: Lattice of WAM types.

ple, local analysis which gathers information about the type and freeness state
of variables.2 Having this analysis in the compiler (in addition to the analyses
performed by the preprocessor) improves the code even if no external information
is available. The compiler then translates this normalized version of Prolog to
WAM-based instructions (at this point the same ones used by the Ciao emulator),
and then it splits these WAM instructions into an intermediate low level code and
performs the final translation to C.

3.2.1 Typing WAM Instructions

WAM instructions dealing with data are handled internally using an enriched
representation which encodes the possible instantiation state of their arguments.
This allows using original type information, and also generating and propagating
lower-level information regarding the type (i.e., from the point of view of the tags
of the abstract machine) and instantiation/initialization state of the variables
(which is not seen at a higher level). Unification instructions are represented as
〈TypeX, X 〉 = 〈TypeY, Y 〉, where TypeX and TypeY refer to the classification
of WAM-level types (see Figure 3.1), and X and Y refer to variables, which may
be later stored as WAM X or Y registers or directly passed on as C function
arguments. init and uninit correspond to initialized (i.e., free) and uninitialized

2In general, the types used throughout this chapter are instantiation types, i.e., they have
mode information built in (see [PBH00a] for a more complete discussion of this issue). Freeness
of variables distinguishes between free variables and the top type, “term”, which includes any
term.

40

Chapter 3. Compiling Prolog to Native Code

put_variable(I,J) ≡ 〈uninit,I〉 = 〈uninit,J〉

put_value(I,J) ≡ 〈init,I〉 = 〈uninit,J〉

get_variable(I,J) ≡ 〈uninit,I〉 = 〈init,J〉

get_value(I,J) ≡ 〈init,I〉 = 〈init,J〉

unify_variable(I[, J]) ≡ if (initialized(J)) then
〈uninit,I〉 = 〈init,J〉

else

〈uninit,I〉 = 〈uninit,J〉

unify_value(I[, J]) ≡ if (initialized(J)) then
〈init,I〉 = 〈init,J〉

else

〈init,I〉 = 〈uninit,J〉

Table 3.1: Representation of some WAM unification instructions with types.

variable cells. First, local, and unsafe classify the status of the variables according
to where they appear in a clause.

Table 3.1 summarizes the aforementioned representation for some selected
cases. The registers taken as arguments are the temporary registers x(I), the
stack variables y(I), and the register for structure arguments n(I). The last one
can be seen as the second argument, implicit in the unify_* WAM instructions.
A number of other temporal registers are available, and used, for example, to hold
intermediate results from expression evaluation. *_constant, *_nil, *_list and
*_structure instructions are represented similarly. Only x(·) variables are created
in an uninitialized state, and they are initialized on demand (in particular, when
calling another predicate which may overwrite the registers and in the points
where garbage collection can start). This representation is more uniform than
the traditional WAM instructions, and as more information is known about the
variables, the associated (low level) types can be refined and more specific code
generated. Using a richer lattice and initial information (Section 3.3), a more
descriptive intermediate code can be generated and used in the back-end.

41

3.2. Basic Compilation Scheme

while (code != NULL) {

code = ((Continuation (*)(State *))code)(state);

}

Continuation foo(State *state) {

...

state->cont = &foo_cont;

return &bar;

}

Continuation foo_cont(State *state) {

...

return state->cont;

}

Figure 3.2: The C execution loop and block scheme.

3.2.2 Generation of the Intermediate Low Level Code

WAM-like control and data instructions (Table 3.2) are then split into simpler
ones (Table 3.3) (of a level similar to that of the BAM [VR90]) which are more
suitable for optimizations, and which simplify the final code generation. The Type
argument in the unification instructions reflects the type of the their arguments:
for example, in the instruction bind, Type is used to specify if the arguments
contain a variable or not. For the unification of structures, write and read modes
are avoided by using a two-stream scheme [Van94] which is implicit in the uni-
fication instructions in Table 3.1 and later translated into the required series
of assignments and jump instructions (jump, cjump) in Table 3.2. The WAM
instructions switch_on_term, switch_on_cons and switch_on_functor are also
included, although the C back-end does not exploit them fully at the moment,
resorting to a linear search in some cases. A more efficient indexing mechanism
will be implemented in the near future.

Builtins return an exit state which is used to decide whether to backtrack or
not. Determinism information, if available, is passed on through this stage and
used when compiling with optimizations (see Section 3.3).

42

Chapter 3. Compiling Prolog to Native Code

Choice, stack and heap management instructions
no_choice Mark that there is no alternative
push_choice(Arity) Create a choicepoint
recover_choice(Arity) Restore the state stored in a choicepoint
last_choice(Arity) Restore state and discard latest choice point
complete_choice(Arity) Complete the choice point
cut_choice(Chp) Cut to a given choice point
push_frame Allocate a frame on top of the stack
complete_frame(FrameSize) Complete the stack frame
modify_frame(NewSize) Change the size of the frame
pop_frame Deallocate the last frame
recover_frame Recover after returning from a call
ensure_heap(Amount, Arity) Ensure that enough heap is allocated.

Unification
load(X, Type) Load X with a term
trail_if_conditional(A) Trail if A is a conditional variable
bind(TypeX, X, TypeY, Y) Bind X and Y
read(Type, X) Begin read of the structure arguments of X
deref(X, Y) Dereference X into Y
move(X, Y) Copy X to Y
globalize_if_unsafe(X, Y) Copy (safely) X to stack variable Y
globalize_to_arg(X, Y) Copy (safely) X to structure argument Y
jump(Label) Jump to Label
cjump(Cond, Label) Jump to Label if Cond is true
not(Cond) Negate the Cond condition
test(Type, X) True if X matches Type
equal(X, Y) True if X and Y are equal

Indexing
switch_on_type(X, Var, Str, List, Cons) Jump to the label that matches the type of X
switch_on_functor(X, Table, Else)
switch_on_cons(X, Table, Else)

Table 3.2: Control and data instructions.

43

3.2. Basic Compilation Scheme

3.2.3 Compilation to C

The final C code conceptually corresponds to an unfolding of the emulator loop
with respect to the particular sequence(s) of WAM instructions corresponding to
the Prolog program. Each basic block of bytecode (i.e., each sequence beginning
in a label and ending in an instruction involving a possibly non-local jump) is
translated to a separate C function, which receives (a pointer to) the state of the
abstract machine as input argument, and returns a pointer to the continuation.
This approach, chosen on purpose, does not build functions which are too large
for the C compiler to handle. For example, the code corresponding to a head
unification is a basic block, since it is guaranteed that the labels corresponding
to the two-stream algorithm will have local scope. A failure during unification
is implemented by (conditionally) jumping to a special label, fail, which actually
implements an exit protocol similar to that generated by the general C translation.
Figure 3.2 shows schematic versions of the execution loop and templates of the
functions that code blocks are compiled into.

This scheme does not require machine-dependent options of the C compiler or
extensions to ANSI C. One of the goals of our system — to study the impact of
optimizations based on high-level information on the program — can be achieved
with the proposed compilation scheme, and, as mentioned before, we give porta-
bility and code cleanliness a high priority. The option of producing more efficient
but non-portable code can always be added at a later stage.

3.2.4 Examples

We will illustrate briefly the different compilation stages using the well-known
factorial program, whose original and normalized code is shown in (Figure 3.3).
We have chosen it due to its simplicity, even if the performance gain is not very
high in this case. The WAM code corresponding to the recursive clause is listed
in the leftmost column of Table 3.3, while the internal representation of this code
appears in the middle column of the same table. Variables are annotated using
information which can be deduced from local clause inspection.

This WAM-like representation is translated to the low-level code as shown in
Figure 3.4 (ignore, for the moment, the framed instructions; they will be discussed
in Section 3.3). This code is what is finally translated to C.

44

Chapter 3. Compiling Prolog to Native Code

Original

fact(0, 1).

fact(X, Y) :-

X > 0,

X0 is X - 1,

fact(X0, Y0),

Y is X * Y0.

Normalized

fact(A, B) :- 0 = A, 1 = B.

fact(A, B) :-

A > 0,

builtin__sub1_1(A, C),

fact(C, D),

builtin__times_2(A, D, B).

Figure 3.3: Original and normalized code of the factorial example.

For reference, executing fact(100, N) 20000 times took 0.65 seconds running
emulated bytecode, and 0.63 seconds running the code compiled to C (a speedup
of 1.03). This did not use external information, used the emulator data structures
to store Prolog terms, and performed runtime checks to verify that the arguments
are of the right type, even when this is not strictly necessary. Since the loop in
Figure 3.2 is a bit more costly (by a few assembler instructions) than the WAM
emulator loop, the speedup brought about by the C translation alone is, in many
cases, not as relevant as one may think at first.

3.3 Optimized Compilation via Moded Types and Determin-
ism

In order to improve the generated code using global information, the compiler can
take into account types, modes, determinism and non-failure properties [HPBG05]
coded as assertions [PBH00a] — a few such assertions can be seen in the example
which appears later in this section. Automatization of the compilation process is
achieved by using the CiaoPP analysis tool in connection with ciaocc. CiaoPP
implements several powerful analysis (for modes, types, and determinacy, besides
other relevant properties) which are able to generate (or check) these assertions.
The program information that CiaoPP is currently able to infer automatically is
actually enough for our purposes (with the single exception stated in Section 3.5).

45

3.3. Optimized Compilation via Moded Types and Determinism

WAM code Without Types/Modes With Types/Modes
put_constant(0,2) 0 = 〈uninit,x(2)〉 0 = 〈uninit,x(2)〉
builtin_2(37,0,2) 〈init,x(0)〉 > 〈int(0),x(2)〉 〈int,x(0)〉 > 〈int(0),x(2)〉
allocate builtin__push_frame builtin__push_frame
get_y_variable(0,1) 〈uninit,y(0)〉 = 〈init,x(1)〉 〈uninit,y(0)〉 = 〈var,x(1)〉
get_y_variable(2,0) 〈uninit,y(2)〉 = 〈init,x(0)〉 〈uninit,y(2)〉 = 〈int,x(0)〉
init([1]) 〈uninit,y(1)〉 = 〈uninit,y(1)〉 〈uninit,y(1)〉 = 〈uninit,y(1)〉
true(3) builtin__complete_frame(3) builtin__complete_frame(3)
function_1(2,0,0) builtin__sub1_1(builtin__sub1_1(

〈init,x(0)〉, 〈uninit,x(0)〉) 〈int,x(0)〉, 〈uninit,x(0)〉)
put_y_value(1,1) 〈init,y(1)〉 = 〈uninit,x(1)〉 〈var,y(1)〉 = 〈uninit,x(1)〉
call(fac/2,3) builtin__modify_frame(3) builtin__modify_frame(3)

fact(〈init,x(0)〉, 〈init,x(1)〉) fact(〈init,x(0)〉, 〈var,x(1)〉)
put_y_value(2,0) 〈init,y(2)〉 = 〈uninit,x(0)〉 〈int,y(2)〉 = 〈uninit,x(0)〉
put_y_value(2,1) 〈init,y(1)〉 = 〈uninit,x(1)〉 〈number,y(1)〉 = 〈uninit,x(1)〉
function_2(9,0,0,1) builtin__times_2(〈init,x(0)〉, builtin__times_2(〈int,x(0)〉,

〈init,x(1)〉,〈uninit,x(0)〉) 〈number,x(1)〉, 〈uninit,x(0)〉)
get_y_value(0,0) 〈init,y(0)〉 = 〈init,x(0)〉 〈var,y(0)〉 = 〈init,x(0)〉
deallocate builtin__pop_frame builtin__pop_frame
execute(true/0) builtin__proceed builtin__proceed

Table 3.3: WAM code and internal representation without and with external types
information. Underlined instruction changed due to additional information.

3.3.1 Extended Typing of WAM Instructions

The generation of low-level code using additional type information makes use of
a lattice of moded types obtained by extending the init element in the lattice
in Figure 3.1 with the type domain in Figure 3.5. str(N/A) corresponds to (and
expands to) each of the structures whose name and arity are known at compile
time. This information enriches the Type parameter of the low-level code. Infor-
mation about the determinacy / number of solutions of each call is carried over
into this stage and used to optimize the C code.

46

Chapter 3. Compiling Prolog to Native Code

fact(x(0), x(1)) :-

push_choice(2)

ensure_heap(callpad,2)

deref(x(0),x(0))

cjump(not(test(var,x(0))),V3)

load(temp2,int(0))

bind(var,x(0),nonvar,temp2)

jump(V4)

V3:

cjump(not(test(int(0),x(0))),fail)

V4:

deref(x(1),x(1))

cjump(not(test(var,x(1))),V5)

load(temp2,int(1))

bind(var,x(1),nonvar,temp2)

jump(V6)

V5:

cjump(not(test(int(1),x(1))),fail)

V6:

complete_choice(2)

;

last_choice(2)

load(x(2),int(0))

>(x(0),x(2))

push_frame

move(x(1),y(0))

move(x(0),y(2))

init(y(1))

complete_frame(3)

builtin__sub1(x(0), x(0))

move(y(1),x(1))

modify_frame(3)

fact(x(0), x(1))

recover_frame

move(y(2),x(0))

move(y(1),x(1))

builtin__times(x(0), x(1), x(0))

deref(y(0),temp)

deref(x(0),x(0))

=(temp,x(0))

pop_frame

Figure 3.4: Low level code for the fact/2 example (see also Section 3.3).

init

var

first local unsafe

nonvar

str

str(N/A)

atomic

int

int(X)

large

large(X)

atom

atom(X)

bottom

Figure 3.5: Extended init subdomain.

47

3.3. Optimized Compilation via Moded Types and Determinism

3.3.2 Generation of Optimized C Code

In general, information about types and determinism makes it possible to avoid
some runtime tests. The standard WAM compilation also performs some opti-
mizations (e.g., classification of variables and indexing on the first argument), but
they are based on a per-clause (per-predicate, in the case of indexing) analysis,
and in general it does not propagate the deduced information (e.g. from arith-
metic builtins). A number of further optimizations can be done by using type,
mode, and determinism information:

Unify Instructions: Calls to the general unify builtin are replaced by the more
specialized bind instruction if one or both arguments are known to store variables.
When arguments are known to be constants, a simple comparison instruction is
emitted instead.

Two-Stream Unification: Unifying a register with a structure/constant re-
quires some tests to determine the unification mode (read or write). An addi-
tional test is required to compare the register value with the structure/constant.
These tests can often be removed at compile-time if enough information is known
about the variable.

Indexing: Index trees are generated by selecting literals (mostly builtins and
unifications), which give type/mode information, to construct a decision tree on
the types of the first argument.3 When type information is available, the search
can be optimized by removing some of the tests in the nodes.

Avoiding Unnecessary Variable Safety Tests: Another optimization per-
formed in the low level code using type information is the replacement of glob-
alizing instructions for unsafe variables by explicit dereferences. When the type
of a variable is nonvar, its globalization is equivalent to a dereference, which is
faster.

Uninitialized Output Arguments: When possible, letting the called pred-
icate fill in the contents of output arguments in pre-established registers avoids

3This is the WAM definition, which can of course be extended to other arguments.

48

Chapter 3. Compiling Prolog to Native Code

allocation, initialization, and binding of free variables, which is slower.

Selecting Optimized Predicate Versions: Calls to predicates can also be
optimized in the presence of type information. Specialized predicate versions (in
the sense of low level optimizations) can be generated and selected using call
patterns deduced from the type information. The current implementation does
not generate specialized versions of user predicates, since this can already be
done extensively by CiaoPP [PH03]. However it does optimize calls to internal
builtin predicates written in C (such as, e.g., arithmetic builtins), which results
in relevant speedups in many cases.

Determinism: These optimizations are based on two types of analysis. The
first one uses information regarding the number of solutions for a predicate call
to deduce, for each such call, if there is a known and fixed fail continuation.
Then, instructions to manage choicepoints are inserted. The resulting code is
then re-analyzed to remove these instructions when possible or to replace them by
simpler ones (e.g., to restore a choice point state without untrailing, if it is known
at compile time that the execution will not trail any value since the choice point
was created). The latter can take advantage of additional information regarding
register, heap, and trail usage of each predicate.4 In addition, the C back-end can
generate different argument passing schemes based on determinism information:
predicates with zero or one solution can be translated to a function returning a
boolean, and predicates with exactly one solution to a function returning void.
This requires a somewhat different translation to C (which we do not have space
to describe in full) and which takes into account this possibility by bypassing the
emulator loop, in several senses similarly to what is presented in [HS02].

3.3.3 Examples

Let us assume that it has been inferred that fact/2 (Figure 3.3) is always called
with its first argument instantiated to an integer and with a free variable in
its second argument. This information is written in the assertion language for

4This is currently known only for internal predicates written in C, and which are available
by default in the system, but the scheme is general and can be extended to Prolog predicates.

49

3.3. Optimized Compilation via Moded Types and Determinism

fact(A, B) :- true(int(A)), 0 = A, true(var(B)), 1 = B.

fact(A, B) :-

true(int(A)), A > 0,

true(int(A)), true(var(C)), builtin__sub1_1(A, C),

true(any(C)), true(var(D)), fact(C, D),

true(int(A)), true(int(D)), true(var(B)), builtin__times_2(A, D, B).

Figure 3.6: Annotated factorial (using type information).

example as:5

:- true pred fact(X, Y) : int * var => int * int.

which reflects the types and modes of the calls and successes of the predicate.
That information is also propagated through the normalized predicate producing
the annotated program shown in Figure 3.6, where program-point information is
also shown.

The WAM code generated for this example is shown in the rightmost column
of Table 3.3. Underlined instructions were made more specific due to improved
information — but note that the representation is homogeneous with respect to
the “no information” case. The impact of type information in the generation of
low-level code can be seen in Figure 3.4. Instructions inside the dashed boxes are
removed when type information is available, and the (arithmetic) builtins enclosed
in rectangles are replaced by calls to specialized versions which work with integers
and which do not perform type/mode testing. The optimized fact/2 program
took 0.54 seconds with the same call as in Section 3.2.4: a 20% speedup with
respect to the bytecode version and a 16% speedup over the compilation to C
without type information.

5The true prefix implies that this information is to be trusted and used, rather than to be
checked by the compiler. Indeed, we require the stated properties to be correct, and ciaocc

does not check them: this is a task delegated to CiaoPP. Wrong true assertions can, therefore,
lead to incorrect compilation. However, the assertions generated by CiaoPP are guaranteed
correct by the analysis process.

50

Chapter 3. Compiling Prolog to Native Code

3.4 Unboxing of Constants

The strategy for compilation to native code used so far preserves the original data
representation of the WAM: data is still stored in tagged words (i.e., boxed). This
does not incur a big performance penalty in most cases, since C compilers gen-
erate efficient code to do the tagging/untagging, and the overhead is, in general,
relatively small in comparison with what is done with the data itself.

This overhead is however comparatively large for operations which are simple
enough to be translated to a single assembler instruction. Arithmetic opera-
tions stand out, and floating-point arithmetic suffers from an additional over-
head: floating-point numbers are not carried around directly in a tagged word;
rather, the tagged word points to a structure which holds the floating-point num-
ber. Therefore, boxing and unboxing a floating-point number are comparatively
costly operations which, in principle, have to be repeated every time a floating-
point operation is performed. Additionally, keeping floating-point numbers boxed
needs more memory and garbage collection has to be called more often.

Another disadvantage of keeping numerical values in boxed form is that when
compiling to native code via C, the C compiler does not see native machine data
(e.g., ints, floats, doubles), since they are encoded inside tagged words. This
makes it difficult for the compiler to apply many useful optimizations (instruction
reordering, use of machine registers, inlining, etc.) devised for more idiomatic C
programs.

Unboxing has been studied and applied in functional programming [Ler92,
Pet89] with good speedup results. This is helped in part by the use of strict type
systems and the lack of different instantiation modes. Strict typing (and compul-
sory information about modes and determinism) applies also to the case for Mer-
cury, which does not need boxing and unboxing. An interesting related approach
is that of [PL91] for Haskell, where the kernel language was augmented with types
to denote explicitly unboxed values and the simplifications to remove redundant
operations were formalized as program transformations. However, language dif-
ferences and the issues that that work focuses on (strictness, polymorphism, etc.)
makes applying directly these techniques difficult in our case.

Unboxing for CLP systems, which are untyped and dynamically tagged, has
received comparatively little attention. For example, Aquarius [VR90] did not

51

3.4. Unboxing of Constants

perform boxing/unboxing, and mainstream CLP systems, such as SICStus, do
not use it when compiling to native code. The closest work is perhaps [BD95]
which proposes a compilation strategy for the concurrent, committed-choice logic
language Janus which, starting from a program annotated with type and mode
declarations, performs a series of analysis to determine the best representation of
each procedure argument and to avoid redundant boxing/unboxing operations.

3.4.1 Overview of The Algorithm

We share in fact some ideas with [BD95], although the languages are quite differ-
ent. Similar type and mode annotations are required, which are inferred automat-
ically in our case. However, we have to infer also information about determinism
and non-failure, which is implicit in the language design of Janus, as it does not
support backtracking or failure. A similarity with [PL91] is that we have formu-
lated the solution as a source-to-source transformation on an extended language
which includes boxing and unboxing operations. The implementation used in our
experiments supports unboxed representations for some basic, native types and
for temporal variables with a restricted lifetime, in order to ensure that there will
be no interaction with garbage collection.

Our approach to boxing/unboxing removal works by exposing the code of
builtins which inspect word tags. They typically share a similar structure: per-
form type checking on input arguments, unbox values, operate on them, box
output values, and unify with output arguments. Informally, the process we use
to detect and remove unneeded boxing/unboxing changes is:

1. Unfold builtin definitions to make type checking, unboxing, and boxing
visible.

2. Make a forward pass to remove redundant unboxing operations. An ab-
stract state relating boxed variables with their unboxed version is kept.
It is updated with each unbox operation by adding a pair of linked vari-
ables (corresponding to boxed/unboxed views of the same entity) and by
removing the pair when the versions become out-of-sync or, for temporal
variables, when they become out of scope. This state is consulted to check
for the availability of unboxed versions of variables when needed.

52

Chapter 3. Compiling Prolog to Native Code

u

c

u

float(T2),

float_unbox(T2, U2b),

sin_u(U2b, UC),

float_box(UC, C),

c

u

new_float_u(25.941, U3),

float_box(U3, T3),

float(C),

float_unbox(C, UCb),

float(T3),

float_unbox(T3, U3b),

*_u(U3b, UCb, U4),

float_box(U4, T4),

float(T4),

float_box(UB, B)

float_unbox(T4, U4b),

round_u(U4b, UB),

u

c

c

c

u

new_float_u(0.017, U1),

float_box(U1, T1),

float(A),

float_unbox(A, UA),

float_unbox(T1, U1b),

*_u(UA, U1b, U2),

float_box(U2, T2),

*_u(UA, U1, U2),

float_unbox(A, UA),

new_float_u(0.017, U1),

sin_u(U2, UC),

new_float_u(25.941, U3),

*_u(U3, UC, U4),

round_u(U4, UB),

float_box(UB, B)

new_float(0.017, T1),

*(A, T1, T2),

sin(T2, C),

new_float(25.941, T3),

*(T3, C, T4),

round(T4, B)

C is sin(A*0.017),

B is round(25.941*C)

U1 = 0.017;

U2 = U1 * UA;

UA = float_unbox(A);

double U1;

UC = sin(U2);

U3 = 25.941;

U4 = U3 * UC;

UB = round(U4);

double UA; double U2;

double U3; double U4;

double UB;

double UC;

bind(B, float_box(UB));

explicit box/unbox

built−in unfolding

optimized code

normalized source

schematic C code

Prolog source

C code generation

Figure 3.7: Unboxing optimization.

3. Make a backward pass to remove unnecessary box operations whose result
is not used any longer.

3.4.2 Example

Figure 3.7 sketches how the algorithm behaves for a short piece of code corre-
sponding to the body of find_skip/2 (Section 7.3.4). The initial code is shown
in the box at the top left. The next box contains the same code after splitting
arithmetic expressions into basic operations which still work on boxed data and
adding number-creation primitives. Each of these primitives is later expanded
into smaller components which either create or disassemble boxed values or work
directly with unboxed numbers.

Dashed lines with arrows relate pairs of unbox / box operations which can
be simplified by a forward pass, since the boxed versions of the variables are not
used between them. Goals marked with c denote checks (coming from builtin
expansion) which are statically known to be true at runtime, either because of
assertions at source level or thanks to information gathered in the fragment of
code being compiled. They can be safely removed. Finally, goals marked with u
are marked as unnecessary during the backward pass because their output value
is not used.

53

3.5. Experimental Results

The next two stages show the intermediate program after removal of dead
code and, finally, the corresponding C code. Only one boxing and one unboxing
operations (for the input and output parameters, respectively) are needed, and
intermediate variables have been mapped to C (native) variables. Additionally,
since mode information tells us that the second argument is always free variable,
only a very specialized form of unification (the call to bind(), in fact a pointer
assignment with trailing) is needed.

Performance Evaluation This optimization technique and the combination
with all the others has been studied in a real-life application in Chapter 7.

3.5 Experimental Results

Program Bytecode Non opt. C Opt1. C Opt2. C
(Std. Ciao)

queens11 (1) 691 391 (1.76) 208 (3.32) 166 (4.16)
crypt (1000) 1525 976 (1.56) 598 (2.55) 597 (2.55)
primes (10000) 896 697 (1.28) 403 (2.22) 402 (2.22)
tak (1000) 9836 5625 (1.74) 5285 (1.86) 771 (12.75)
deriv (10000) 125 83 (1.50) 82 (1.52) 72 (1.74)
poly (100) 439 251 (1.74) 199 (2.20) 177 (2.48)
qsort (10000) 521 319 (1.63) 378 (1.37) 259 (2.01)
exp (10) 494 508 (0.97) 469 (1.05) 459 (1.07)
fib (1000) 263 245 (1.07) 234 (1.12) 250 (1.05)
knights (1) 621 441 (1.46) 390 (1.59) 356 (1.74)

Average Speedup (1.46 – 1.43) (1.88 – 1.77) (3.18 – 2.34)

Table 3.4: Bytecode emulation vs. unoptimized, optimized (types), and optimized
(types and determinism) compilation to C. Arithmetic – Geometric means
are shown.

We have evaluated the performance of a set of benchmarks executed by emu-
lated bytecode, translation to C, and by other programming systems. The bench-
marks, while representing interesting cases, are not real-life programs, and some
of them have been executed up to 10.000 times in order to obtain reasonable and

54

Chapter 3. Compiling Prolog to Native Code

stable execution times. Since parts of the compiler are still in an experimental
state, we have not been able to use larger benchmarks yet. All the measurements
have been performed on a Pentium 4 Xeon @ 2.0GHz with 1Gb of RAM, running
Linux with a 2.4 kernel and using gcc 3.2 as C compiler. A short description of
the benchmarks follows:

crypt: Cryptoarithmetic puzzle involving multiplication.
primes: Sieve of Erathostenes (with N = 98).
tak: Takeuchi function with arguments tak(18, 12, 6, X).
deriv: Symbolic derivation of polynomials.
poly: Symbolically raise 1+x+y+z to the 10th power.
qsort: QuickSort of a list of 50 elements.
exp: 137111 using both a linear- and a logarithmic-time algorithm.
fib: F1000 using a simply recursive predicate.
knight: Chess knight tour in a 5×5 board.

A summary of the results appears in Table 3.4. The figures between parentheses
in the first column is the number of repetitions of each benchmark. The sec-
ond column contains the execution times of programs run by the Ciao bytecode
emulator. The third column corresponds to programs compiled to C without
compile-time information. The fourth and fifth columns correspond, respectively,
to the execution times when compiling to C with type and type+determinism
information. The numbers between parentheses are the speedups relative to the
bytecode version. All times are in milliseconds. Arithmetic and geometric means
are also shown in order to diminish the influence of exceptional cases.

Program GProlog WAMCC SICStus SWI Yap Mercury Opt2. C
Mercury

queens11 (1) 809 378 572 5869 362 106 1.57
crypt (1000) 1258 966 1517 8740 1252 160 3.73
primes (10000) 1102 730 797 7259 1233 336 1.20
tak (1000) 11955 7362 6869 74750 8135 482 1.60
deriv (10000) 108 126 121 339 100 72 1.00
poly (100) 440 448 420 1999 424 84 2.11
qsort (10000) 618 522 523 2619 354 129 2.01
exp (10) — — 415 — 340 — —
fib (1000) — — 285 — 454 — —
knights (1) 911 545 631 2800 596 135 2.63

Average 1.98 – 1.82

Table 3.5: Speed of other Prolog systems and Mercury

55

3.5. Experimental Results

Table 3.5 shows the execution times for the same benchmarks in five well-
known Prolog compilers: GNU Prolog 1.2.16, wamcc 2.23, SICStus 3.8.6, SWI-
Prolog 5.2.7, and Yap 4.5.0. The aim is not really to compare directly with
them, because a different underlying technology and external information is being
used, but rather to establish that our baseline, the speed of the bytecode system
(Ciao), is similar and quite close, in particular, to that of SICStus. In principle,
comparable optimizations could be made in these systems. The cells marked with
“—” correspond to cases where the benchmark could not be executed (in GNU
Prolog, wamcc, and SWI, due to lack of multi-precision arithmetic).

We also include the performance results for Mercury [SHC96] (version 0.11.0).
Strictly speaking the Mercury compiler is not a Prolog compiler: the source lan-
guage is substantially different from Prolog. But Mercury has enough similarities
to be relevant and its performance represents an upper reference line, given that
the language was restricted in several ways to allow the compiler, which gener-
ates C code with different degrees of “purity”, to achieve very high performance by
using extensive optimizations. Also, the language design requires the necessary
information to perform these optimizations to be included by the programmer
as part of the source. Instead, the approach that we use in Ciao is to infer
automatically the information and not restricting the language.

Going back to Table 3.4, while some performance gains are obtained in the
naive translation to C, these are not very significant, and there is even one pro-
gram which shows a slowdown. We have tracked this down to be due to a com-
bination of several factors:

• The simple compilation scheme generates clean, portable, “trick-free” C
(some compiler dependent extensions would speed up the programs). The
execution profile is very near to what the emulator would do.

• As noted in Section 3.2, the C compiler makes the fetch/switch loop of the
emulator a bit cheaper than the C execution loop. We have identified this
as a cause of the poor speedup of programs where recursive calls dominate
the execution (e.g., factorial). We want, of course, to improve this point
in the future.

• The increment in size of the program (to be discussed later — see Table 3.6)
may also cause more cache misses. We also want to investigate this point

56

Chapter 3. Compiling Prolog to Native Code

in more detail.

As expected, the performance obtained when using compile-time information
is much better. The best speedups are obtained in benchmarks using arithmetic
builtins, for which the compiler can use optimized versions where several checks
have been removed. In some of these cases the functions which implement arith-
metic operations are simple enough as to be inlined by the C compiler — an
added benefit which comes for free from compiling to an intermediate language
(C, in this case) and using tools designed for it. This is, for example, the case of
queens, in which it is known that all the numbers involved are integers. Besides
the information deduced by the analyzer, hand-written annotations stating that
the integers involved fit into a machine word, and thus there is no need for infinite
precision arithmetic, have been manually added.6

Determinism information often (but not always) improves the execution. The
Takeuchi function (tak) is an extreme case, where savings in choicepoint genera-
tion affect execution time. While the performance obtained is still almost a factor
of 2 from that of Mercury, the results are encouraging since we are dealing with a
more complex source language (which preserves full unification, logical variables,
cuts, call/1, database, etc.), we are using a portable approach (compilation to
standard C), and we have not yet applied all possible optimizations.

A relevant point is to what extent a sophisticated analysis tool is useful in
practical situations. The degree of optimization chosen can increase the time
spent in the compilation, and this might preclude its everyday use. We have
measured (informally) the speed of our tools in comparison with the standard Ciao
Prolog compiler (which generates bytecode), and found that the compilation to C
takes about three times more than the compilation to bytecode. A considerable
amount of time is used in I/O, which is being performed directly from Prolog,
and which can be optimized if necessary. Due to a well-developed machinery
(which can notwithstanding be improved in a future by, e.g, compiling CiaoPP
itself to C), the global analysis necessary for examples is really fast and never
exceeded twice the time of the compilation to C. Thus we think that the use of
global analysis to obtain the information we need for ciaocc is a practical option

6This is the only piece of information used in our benchmarks that cannot be currently
determined by CiaoPP. It should be noted, though, that the absence of this annotation would
only make the final executable less optimized, but never incorrect.

57

3.5. Experimental Results

already in its current state.
Table 3.6 compares object size (in bytes) of the bytecode and the different

schemes of compilation to C and using the same compiler options in all cases.
While modern computers usually have a large amount of memory, and program
size hardly matters for a single application, users stress computers more and
more by having several applications running simultaneously. On the other hand,
program size does impact their startup time, important for small, often-used
commands. Besides, size is still very important when addressing small devices
with limited resources.

As mentioned in Section 2, due to the different granularity of instructions,
larger object files and executables are expected when compiling to C. The ratio
depends heavily on the program and the optimizations applied. Size increase with
respect to the bytecode can be as large as 15× when translating to C without
optimizations, and the average case sits around a 7-fold increase. This increment
is partially due to repeated code in the indexing mechanism, which we plan to
improve in the future.7 Note that, as our framework can mix bytecode and native
code, it is possible to use both in order to achieve more speed in critical parts,
and to save program space otherwise. Heuristics and translation schemes like
those described in [TDBD96] can hence be applied (and implemented as a source
to source transformation).

The size of the object code produced by wamcc is roughly comparable to that
generated by ciaocc, although wamcc produces smaller intermediate object code
files. However the final executable / process size depends also on which libraries
are linked statically and/or dynamically. The Mercury system is somewhat in-
comparable in this regard: it certainly produces relatively small component files
but then relatively large final executables (over 1.5 MByte).

Size, in general, decreases when using type information, as many runtime
type tests are removed, the average size being around five times the bytecode size.
Adding determinism information increases the code size because of the additional
inlining performed by the C compiler and the more complex parameter passing
code. Inlining was left to the C compiler; experiments show that more aggressive
inlining does not necessarily result in better speedups.

7In all cases, the size of the bytecode emulator / runtime support (around 300Kb) has to be
added, although not all the functionality it provides is always needed.

58

Chapter 3. Compiling Prolog to Native Code

Program Bytecode Non opt. C Opt1. C Opt2. C
queens11 7167 36096 (5.03) 29428 (4.10) 42824 (5.97)
crypt 12205 186700 (15.30) 107384 (8.80) 161256 (13.21)
primes 6428 50628 (7.87) 19336 (3.00) 31208 (4.85)
tak 5445 18928 (3.47) 18700 (3.43) 25476 (4.67)
deriv 9606 46900 (4.88) 46644 (4.85) 97888 (10.19)
poly 13541 163236 (12.05) 112704 (8.32) 344604 (25.44)
qsort 6982 90796 (13.00) 67060 (9.60) 76560 (10.96)
exp 6463 28668 (4.43) 28284 (4.37) 25560 (3.95)
fib 5281 15004 (2.84) 14824 (2.80) 18016 (3.41)
knights 7811 39496 (5.05) 39016 (4.99) 39260 (5.03)

Average Increase (7.39 – 6.32) (5.43 – 4.94) (8.77 – 7.14)

Table 3.6: Compared size of object files (bytecode vs. C) including Arithmetic - Geo-
metric means.

It is interesting to note that some optimizations used in the compilation to C
would not give comparable results when applied directly to a bytecode emulator.
For example, a version of the bytecode emulator hand-coded to work with small
integers (which can be boxed into a tagged word) performed worse than that
obtained doing the same with compilation to C. That suggests that when the
overhead of calling builtins is reduced, as is the case in the compilation to C,
some optimizations which only produce minor improvements for emulated systems
acquire greater importance.

3.6 Conclusions

We have reported on the scheme and performance of ciaocc, a Prolog-to-C com-
piler which uses type analysis and determinacy information to improve code gen-
eration by removing type and mode checks and by making calls to specialized
versions of some builtins. We have also provided performance results. ciaocc is
still in a prototype stage, but it already shows promising results.

The compilation uses internally a simplified and more homogeneous represen-
tation for WAM code, which is then translated to a lower-level intermediate code,
using the type and determinacy information inferred by CiaoPP. This code is fi-

59

3.6. Conclusions

nally translated into C by the compiler back-end. The intermediate code makes
the final translation step easier and will facilitate developing new back-ends for
other target languages.

We have found that optimizing a WAM bytecode emulator is more difficult
and results in lower speedups, due to the larger granularity of the bytecode in-
structions. The same result has been reported elsewhere [Van94], although some
recent work tries to improve WAM code by means of local analysis [FD99].

60

4
A Generic Emulator Generator

Summary

Implementors of abstract machines face complex, and often interacting, deci-
sions regarding, e.g., data representation, instruction design, instruction encod-
ing, or instruction specialization levels. These decisions affect the performance
of the emulator and the size of the bytecode programs in ways that are often dif-
ficult to foresee. Furthermore, studying different alternatives by implementing
abstract machine variants is a time-consuming and error-prone task because of
the level of complexity and optimization of competitive implementations, which
makes them generally difficult to understand, maintain, and modify. This also
makes it hard to generate specific implementations for particular purposes. We
propose a systematic approach to the automatic generation of implementations
of abstract machines which is aimed at harnessing some of these difficulties.
Different parts of the abstract machine definition (e.g., the instruction set or
the internal data and bytecode representation) are kept separate and automat-
ically assembled in the generation process. Alternative versions of the abstract
machine are therefore easier to produce, and variants of their implementation
can be created mechanically. This even allows generating implementations tai-
lored to a particular context. We illustrate the practicality of the approach by
reporting on an implementation of a generator of production-quality WAMs
which are specialized for executing a particular fixed (set of) program(s). The
experimental results show that the approach is effective in reducing emulator
size.

61

4.1. Introduction

4.1 Introduction

Abstract machines are currently a popular alternative to native code compilation
because they offer practical advantages, especially for programs written in high-
level languages with complex features. When used in place of, or in combination
with, native code compilation, these advantages include for example increased
portability, small executable code size, simpler security control through sandbox-
ing, or increased compilation speed. The use of intermediate abstract machines
requires combining several components. In order to execute programs written in
a source language Ls, a compiler from Ls to the abstract machine language, La, is
needed. An interpreter for La, usually written in some lower-level language Lc, the
implementation language, for which there is a compiler to native code, performs
the actual execution.1 Traditional approaches start with a fixed set of abstract
machine instructions and then develop the Ls compiler and the La interpreter.
Further development tends to work on both the Ls compiler and La interpreter
implementation, often keeping the instruction set relatively unchanged.

One important concern when implementing such interpreters is that of effi-
ciency (see [VR90, Van94, SC99, DN00, DC01]), which greatly depends on the
complexity of Ls and, of course, on the compiler and emulator technology. As
a result, efficient emulators are very often difficult to understand, maintain, and
modify. This makes the implementation of variants of abstract machines a hard
task, since both the compiler and emulator, which are rather complex, have to be
rewritten by hand for each variation. Variants of emulators have been (naturally)
used to evaluate different implementation options for a language [DN00], often
manually. Automating the creation of these variants, in addition to making it eas-
ier to test them, will allow tailoring a general design to particular applications or
environments with little effort. A particularly daunting task is to adapt existing
emulators to resource-constrained applications, such as those found in pervasive
computing. While this can clearly be done by carefully rewriting existing emu-
lators, selecting alternative data representations, and, maybe, adapting them to
the type of expected applications, we deem that this task is a too difficult one,
especially taking into account the amount (and, especially, variety) of different

1 Implementations of abstract machines are usually termed virtual machines. We will, how-
ever, use the term emulator or bytecode interpreter to denote a virtual machine. This is in line
with the tradition used in the implementation of logic programming languages.

62

Chapter 4. A Generic Emulator Generator

small devices which are ubiquitous nowadays.
In this work we propose an approach in which, rather than being hand-written,

emulators and (back-end) compilers are automatically generated from a high-level
description of the abstract machine instruction set. This makes it possible to eas-
ily experiment with alternative abstract machines and to evaluate the impact of
different implementation decisions, since the corresponding emulator and com-
piler are obtained automatically.

In order to do so, rather than considering emulators for a particular abstract
machine, we formalize emulators as parametric programs, written, for purposes
of improved expressiveness, in a syntactical extension of Lc that can represent
directly elements of La and which receive two inputs: a program to be executed,
written in language La, and a description of the abstract machine language La in
which the operational definition of each instruction of La is given in terms of Lc.
I.e., we define a generic emulator as a procedure

interpret(P,M)

which takes as input a program P in the abstract machine language La and a
definitionM of the abstract machine itself and interprets P according toM.

For the sake of maintainability and ease of manipulation, La is to be as close
as possible to its conceptual definition. This usually affects performance nega-
tively, and therefore a refinement step, based on pass separation [Han91], a form
of staging transformations [JS86], is taken to convert programs written in La
into programs written in Lb, the bytecode language, which is a lower-level rep-
resentation (with concerns such as data alignment, word size, etc. in mind) for
which faster interpreters can be written in Lc. By formalizing adequately the
transformation from La to Lb it is possible to do automatically:

• The translation of programs from La into Lb.

• The generation of efficient emulators for programs in Lb based on inter-
preters for La.

• The generation of compilers from Ls to Lb based on compilers from Ls to
La.

63

4.1. Introduction

A high-level view of the different elements we will describe in this chapter
appears in Figure 4.1. When the abstract machine descriptionM is available, it is
possible (at least conceptually) to partially evaluate [JGS93, Fut71] the procedure
interpret into an emulator for a (now fixed)M. Of course, it is desirable that
the emulator to as efficient as possible, and since its implementation language
will finally be that of interpret, the interpreter itself should be written in Lc.
Although this approach is attractive in itself, it has the disadvantage that the
existence of a partial evaluator of programs written in Lc is required. Depending
on Lc, this may or may not be a good approach in practice.

A well known result in partial evaluation is that it is possible to partially eval-
uate a partial evaluator w.r.t. itself and a particular program P as static data,
and the result is a partial evaluator specialized to perform the partial evaluation
of the particular program P . In our case, by taking the parametric interpreter
as static data for the partial evaluator, we can obtain an emulator generator
(emucomp), which will produce an efficient emulator when supplied with a de-
scription of an abstract machine. This approach, known as the second Futamura
projection [Fut71], not only requires the availability of a partial evaluator for pro-
grams in Lc but also needs the partial evaluator to be self-applicable. Somewhat
surprisingly, the structure of emulator generators is often easy to understand.
In fact, the approach we will follow in this work is to write such an emulator
generator directly by hand. The emulator generator we propose has been defined
in such a way that, and as will be discussed below, it produces emulators whose
code is comparable to those produced by a skilled programmer when provided
with the description of an abstract machine.

Table 4.1 summarizes the meaning and relationships among the interpreters
and emulators that we will define in this chapter. This table will be useful for
reference throughout the discussion.

The benefits of our approach are multifold. Writing an emulator generator
is clearly much more profitable than writing a particular emulator (though more
difficult to achieve for the general case) since, with no performance penalty, it
will make it possible to easily experiment with multiple variations of the origi-
nal abstract machine. For example, and as discussed later, it is straightforward
to produce reduced emulators. As an example of the application of our tech-
nique, and taking as starting point the instruction set of an existing emulator (a

64

Chapter 4. A Generic Emulator Generator

encode int

Mdec Marg M def

input output

emucomp

prgBA
P

Pprg Aprgcomp

comp P
B

, ,,insM,encMM = < >

Compilation of programs in L Interpreter execution

Generation of interpreter

generates

P

Figure 4.1: “Big Picture” view of the generation of emulators

intA(p, program) Interpreter for La
int1(p, program,M) Interpreter for La which is parametric with respect

to the abstract machine definitionM
int2(p, prg,M) Interpreter for Lb (i.e., emulator) which reuses the

structure of int1 and applies the augmented ab-
stract machine (Section 4.2.3 and Figure 4.6)

int3 ≡ JspecK(int2,M) Interpreter for Lb which is specialized for a fixed
abstract machineM

emucomp ≡ JspecK(spec, int2) Generator of Lb emulators for some abstract ma-
chine definition

JspecK(int2,M) ≡ emucomp(M) Correctness condition for the emulator compiler

Table 4.1: Series of interpreters and emulators in this chapter

production-quality implementation of a modern version of the Warren Abstract
Machine for Prolog [War83, AK91]), we generate emulators which are sliced with
respect to the set of abstract machine instructions which a given application or
sets of applications are going to actually use, thus producing smaller and resource
friendlier executables.

65

4.2. Algorithm for the Generation of Emulators

4.2 Algorithm for the Generation of Emulators

In this section we will develop an emulator generator which takes a description of
the machine and can produce emulators which are very close (and in some cases
identical) to what a skilled programmer would craft.

Our initial source language is Ls, and we assume that there is a compiler comp

from Ls to La, a symbolic representation of a lower-level language Lb intended
to be interpreted by an emulator. We want comp to be relatively simple and
independent from the low-level details of the implementation of the final emulator.
The definition of La will be kept separate in M so that it can be used later
(Section 4.2.2) in a generic interpreter. Instructions in La can, in general, consult
and modify a global state and change the control flow with (conditional) jump/call
instructions.

4.2.1 Scheme of a Basic Interpreter

Let us consider interpreters based on a main loop implementing a fetch-execute
cycle. Figure 4.2 portrays an example, where that cycle is performed by a tail-
recursive procedure. The reason to choose this scheme is because it allows a
shorter description of some further transformations. Note that, since it is tail re-
cursive, it can be converted easily (and automatically) into a proper loop without
the need for additional data structures (stacks, etc.). The function:

fetchA : locatorA × programA → 〈insA, locatorA〉

returns, for a given program and program point, the instruction at that point
(of type insA, a tuple containing instruction name and arguments) and the next
location in the program, in sequential order. This abstracts away program coun-
ters, which can be symbolic, and indirections through the program counter. We
will reuse this function, in different contexts, in the following sections.

Example 4.2.1 (La instructions and their semantics written in Lc): The left
hand side of each of the branches in the case expression of Figure 4.2 corresponds
to one instruction in La. The interpreter intA is written in Lc (syntactically
extended to represent La instructions), and the semantics of each instruction is
given in terms of Lc in the right hand side of the corresponding branch. The

66

Chapter 4. A Generic Emulator Generator

intA(p, program) ≡
〈ins, p′〉 = fetchA(p, program)

case ins of
〈move, [r(i), r(j)]〉 : reg[j] := reg[i]; p′′ := p′

〈jump, [label(l)]〉 : p′′ := l

〈call, [label(l)]〉 : push(p′); p′′ := l

〈ret, []〉 : p′′ := pop()

〈halt, []〉 : return
otherwise : error

intA(p′′, program)

Figure 4.2: An example of a simple La-level interpreter

int1(p, program,M) ≡
〈〈name, args〉, p′〉 = fetchA(p, program)

if ¬validA(〈name, args〉,Mins ,Mabsexp) then error
cont = λa→ [p′′ := a]

JMdef (p
′, cont, name,Margs(args))K

int1(p
′′, program,M)

Figure 4.3: Parametric interpreter for La

implementation of the memory model is implicit at the right hand side of the
case branches; we assume that appropriate declarations for types and global
variables exist. La instructions (and related data structures) are able to move
data between registers, do jumps, calls to and return from subroutines, and stop
the execution with the halt instruction. Alternative interpreters can be crafted
by changing the way La instructions are implemented. This must, of course, be
done homogeneously across all the instruction definitions.

4.2.2 Parameterizing the Interpreter

In order to make interpreters parametric with respect to the abstract machine
definition, we need to settle on an interpreter scheme first, which we show in

67

4.2. Algorithm for the Generation of Emulators

Figure 4.3, and to make the definition of the abstract machine precise. We will
use a piecewise definition

M = (Mdef ,Marg ,Mins ,Mabsexp)

of La which is passed as a parameter to the interpreter scheme and which relates
different parts of the abstract machine with a feasible implementation thereof.
The meaning of each component of M (see also Example 4.2.2 for a concrete
case) is as follows:

Mdef Provides the correspondence between every instruction of La and the code
to execute it in Lc.

Marg The correspondence between every argument for the instructions in La and
the corresponding data in Lc. Margs generalizesMarg by mapping lists of
arguments in La into lists of arguments in Lc. The definitions of Mdef

andMarg are highly dependent, and quite often updating one will require
changes in the other.

Mins The instruction set, described as the signature of every instruction in La,
i.e., the instruction name and which kinds of expressions in La can be han-
dled by that instruction. The format is given as a list of abstract expressions
of La, whose definition is also included inM (see next item). For example,
a jump instruction might be able to jump to a (static) label, but not to
the address contained in a register, or a move instruction might be able to
store a number in a register but not directly in a memory location. Note
that in general we want to be able to use the same instruction name with
different formats.

Mabsexp An abstraction function which returns the type of an instruction argu-
ment.

The interpreter in Figure 4.3 is parametric w.r.t. a definition of the semantics
of the abstract machine language La, described in terms of the implementation
language Lc. First, for every instruction, arguments in La are translated into
arguments in Lc byMargs . Then,Mdef selects the right code for the instruction.
BothMdef andMarg are functions which return unevaluated pieces of code, which

68

Chapter 4. A Generic Emulator Generator

are meant to be executed by int1 — this is marked by enclosing the function call
within double square brackets — in the following iteration of the emulator. The
next program location is set by a function cont which is handed in to Mdef as
an argument. The language expressions not meant to be evaluated, but to be
passed as data are enclosed inside square brackets, such as [p′′ := a]. The context
should be enough to distinguish them from those used to access array elements
or to denote lists.

In order to ensure that no ill-formed instruction is executed (for example,
because a wrongly computed location tries to access instructions outside the
program scope), the function validA checks that the instruction named name

can understand the arguments args which it receives. It needs to traverse every
argument, extract its type, which defines an argument format, and check that
the instruction name can be used with arguments following that format.

Example 4.2.2 (Definitions for a trivial abstract machine in int1): In the def-
initions forM in Figure 4.4, the higher-order argument cont is used in order to
set the program counter to the address of the instruction to be executed next.
The instruction definitions do not check operator and operand types, since that
has been taken care of by validA by checking that the type of every argument
matches those accepted by the instruction to be executed.

Instructions can in general admit several argument formats. For example,
arithmetic instructions might accept integers and floating-point numbers. That
would makeMins have several entries for some instructions. This is not a serious
problem, as long as Mabsexp returns all abstractions for a given pattern and
there is a suitable selection rule (e.g., the most concrete applicable pattern) is
used to choose among different possibilities. For the sake of simplicity we will
not deal with that case. Multi-format instructions are helpful when compiling
weakly-typed languages, or languages with complex inheritance rules, where types
of expressions might not be completely known until runtime. If this happens,
compiling to a general case to be dynamically checked is the only solution.

4.2.3 A More Specialized Intermediate Language and Its Interpreter

The symbolic nature of La, which should be seen as an intermediate language,
makes it convenient to express instruction definitions and to associate internally

69

4.2. Algorithm for the Generation of Emulators

Mdef (next, cont, name, args) =

case 〈name, args〉 of
〈move, [a, b]〉 → [a := b; cont(next)]

〈jump, [a]〉 → [cont(a)]

〈call, [a]〉 → [push(next); cont(a)]

〈ret, []〉 → [cont(pop())]

〈halt, []〉 → [return]

Mins =

{ 〈move, [r, r]〉
〈jump, [label]〉
〈call, [label]〉
〈ret, []〉
〈halt, []〉 }

Marg(arg) =

case arg of
r(i)→ reg[i]

label(l)→ l

Mabsexp(arg) =

case arg of
r(_)→ r

label(_)→ label

otherwise →⊥

Figure 4.4: Definition ofM for our example

properties to them, but it is not designed to be directly executed. Most emulators
use a so-called bytecode representation, where many details have been settled:
operation codes for each instruction (which capture the instruction name and
argument types), size of every instruction, fixed values of some arguments, etc.
In return, bytecode interpreters are quite fast, because a great deal of the work
int1 does has been statically encoded, so that several sources of overhead can be
removed. In short, the bytecode design focuses on achieving speed.

On the other hand, working right from the beginning with a low-level defini-
tion is cumbersome, because many decisions percolate through the whole language
and seemingly innocent changes can force the update of a significant part of the
bytecode language definition (and, therefore, of its emulator). This is the main
reason to keep La at a high level, with many details still to be filled in. It is
however possible to translate La into a lower-level language, Lb, closer to Lc and
easier to represent using Lc data structures. That process can be instrumented
so that programs written in La are translated into Lb and interpreters for La
are transformed into interpreters for Lb using a similar encoding. Figure 4.5
depicts the temporal stage were a pass separation is introduced to change the
representation language. Translating from La to Lb is done by a function:

70

Chapter 4. A Generic Emulator Generator

encodeA
P

Pprg Aprgcomp

decode prgA int

Compiler

prg BM

1

Interpreter

L A

AL

L B

Figure 4.5: Pass separation

encode : La → Lb

encode accepts instructions in La (including name and arguments) and returns
tokens in Lb. The encoding function has to:

1. Assign a unique operation code (opcode) to each instruction in La when
the precondition expressed by validA holds (a compile-time error would
be raised otherwise). This moves the overhead of checking formats from
runtime to compile-time.

2. Take the arguments of instructions in La and translate them into Lb.

encode is also used to generate a compiler from Ls into Lb from a compiler from
Ls into La (Figure 4.1). As encode gives a unique opcode to every combination
of instruction name and format, it has an associated function:

decode : Lb → La

which brings bytecode instructions back to its original form.2 In order to capture
the meaning of encode / decode, we augment and update the abstract machine

2Both encode and decode may need to resolve symbols. As this is a standard practice in
compiling (which can even be delayed until link time), we will not deal with that problem here.

71

4.2. Algorithm for the Generation of Emulators

Mins′(opcode) =

case opcode of
0→ 〈move, [r, r]〉
1→ 〈jump, [label]〉
2→ 〈call, [label]〉
3→ 〈ret, []〉
4→ 〈halt, []〉

Menc(arg) =

case arg of
〈r(a)〉 → a

〈label(l)〉 → symbol(l)

Mdec(t, f) =

case 〈t, f〉 of
〈a, r〉 → r(a)

〈l, label〉 → label(l)

Figure 4.6: New parts of the abstract machine definition

int2(p, prg,M) ≡
opcode = prg[p]

〈name, format〉 =Mins′(opcode)

〈args, p′〉 = decodeins(format , [p], [prg],M)

cont = λa→ [int2(a, prg,M); return]

JMdef (p
′, cont, name,Margs(args)); cont(p

′)K

decodeins(〈f1, . . . , fn〉, p, prg,M) =

〈〈d1, . . . , dn〉, p+ 1 + n〉 where
di =Mdec([prg[p+ i]], fi)

Figure 4.7: Parametric interpreter for Lb

definition to be M = (Mdef ,Marg ,Mins′ ,Mabsexp ,Menc,Mdec) (see Figure 4.6
and Example 4.2.3). Mins′ is derived fromMins by capturing the opcode assign-
ment. It accepts an opcode and returns the corresponding instruction in La as
a pair 〈name, format〉. Argument encoding is taken care of by a new function
Menc. Mdec is the inverse ofMenc.

An interpreter int2 for Lb (see Figure 4.7) can be derived from int1 with the
help of bytecode decoding. int2 receives an (extended) definition ofM and uses
it to retrieve the original instruction 〈name, format〉 in La corresponding to an
opcode in a bytecode program (returned by program[p], where p is a program
counter in Lb). The arguments are brought from the domain of Lb back to the
domain of La byMdec, and code and argument translations defined byMdef and
Marg can then be employed as in int1.

We want to note that in Figure 4.7 the recursive call has been placed inside
the continuation code, which avoids the use of the intermediate variable p′′ used
in Figure 4.2 and makes it easier to apply program transformations.

72

Chapter 4. A Generic Emulator Generator

emucomp(M) =

[emuB(p, prg) ≡
case get_opcode(p, prg) of
opcode1 : inscomp(opcode1,M)

. . .

opcoden : inscomp(opcoden,M)]
where opcodei ∈ domain(Mins′)

inscomp(opcode,M) =

[Mdef (p
′, cont, name,Margs(args)); cont(p

′)]

where
〈name, format〉 =Mins′(opcode)

〈args, p′〉 = decodeins(format , [p], [prg],M)

cont = λa→ [emuB(a, prg); return]

Figure 4.8: Emulator compiler

Example 4.2.3 (Encoding instructions): Every combination of instruction name
and format from Example 4.2.2, Figure 4.4, is assigned a different opcode. Mins′

retrieves both the corresponding instruction name and format for every opcode.
In Figure 4.9, the sample La program at the top is translated by encode into the
program Lb at the bottom, which can be interpreted by int2 using the definitions
for M. Figure 4.10 summarizes, for the first instruction in Figure 4.9, the role
of the new components of the abstract machine definition when encoding and
decoding instructions.

4.2.4 A Final Emulator

The interpreter int2 in Section 4.2.3 still has the overhead associated with using
continuously the abstract machine definitionM. However, onceM is fixed, it is
possible to instantiate the parts of int2 which depend statically onM, in order
to obtain another emulator int3. This can be seen as a partial evaluation of
int2 with respect toM, i.e., int3 ≡ JspecK(int2,M). This returns an emulator
written in Lc and without the burden of translating instructions in Lb to the
level of La in order to access the corresponding code and argument definitions in
Mdef andMarg . Finally, and although program[p] is not known at compile time,
we can introduce a case statement which enumerates the possible values for the
opcode. This is a common technique to make partial evaluation possible in cases
where a given argument is not static [JGS93], but the set of values the argument
can take is finite.

Since the structure of the interpreter is fixed, a compiler of emulators could

73

4.2. Algorithm for the Generation of Emulators

La program:

move r(0) r(2)
move r(1) r(0)
move r(2) r(1)
halt

Lb program:

0 0 2 0 1 0 0 2 1 4

Figure 4.9: Sample program

r(2)r(0)move

0 0

r(2)r(0)move

2

move r r

move r r

Mabsexp

Mins’

Mins’

Menc

decM

L

L

L

A

B

A

encoding

decoding

−1

Figure 4.10: From symbolic code to bytecode and back

be generated by specializing the partial evaluator for the case of int2, i.e.,

emucomp :M→ codeC

emucomp = JspecK(spec, int2)

which is equivalent to the emulator compiler in Figure 4.8. It reuses the definition
of decodeins seen in the previous section. Note that, as stated before, this emulator
compiler has a regular structure, and we have opted to craft it manually, instead
of relying on a self-applicable partial evaluator for Lc. This emulator compiler,
of course, does not need to be written in Lc, and, in fact, in our particular
implementation it is coded in Prolog and it generates emulators in C.

Example 4.2.4 (The generated emulator): Figure 4.11 depicts an emulator for
our working example, obtained by specializing int2 with respect to the machine

74

Chapter 4. A Generic Emulator Generator

emuB(p, program) ≡
case program[p] of

0 : reg[program[p+ 1]] := reg[program[p+ 2]];

emuB(p+ 3, program); return

1 : emuB(program[p+ 1], program); return

2 : push(p+ 2);

emuB(program[p+ 1], program); return

3 : emuB(pop(), program); return

4 : return; return

Figure 4.11: Generated emulator

definition in Example 4.2.3. Note the recursive call and returns at the end of every
case branch which ensure that no other code after those statements is executed.
All the recursive calls are, in fact, tail recursions: even if there are statements
after them, these are returns which just pop return addresses. Therefore, there
is no real work performed after the return from any recursive calls.

4.3 An Example Application: Minimal and Alternative Emu-
lators

We will illustrate our technique with two (combined) applications: generating
WAM emulators which are specialized for executing a fixed set of programs, and
using different implementations of the WAM data structures. The former is very
relevant in the context of applications meant for embedded devices and pervasive
computing. It implements an automatic specialization scheme which starts at the
Prolog level (by taking as input the programs to be executed) and, by slicing the
abstract machine definition, traverses the compilation chain until a final emulator,
tailored to these programs, is generated. The latter makes it possible to easily
experiment with alternative implementation decisions.

We have already introduced how a piecewise definition of an abstract machine
can make emulator generation automatic. In the rest of this section we will see
how this technique can be used in order to generate such application-specific

75

4.3. An Example Application: Minimal and Alternative Emulators

emulators, and we will report on a series of experiments performed around these
ideas. We will focus, for the moment, on generating correct emulators of minimal
size, although the technique can obviously also be applied to investigating the
impact of alternative implementations on performance.

4.3.1 Obtaining Specialized Emulators

The objective of specializing a program with respect to some criteria is to obtain
a new program that preserves the initial semantics and is smaller or requires
fewer operations. The source and target language are typically the same; this is
expected, since specialization which operates across different translation levels is
harder. It is however highly interesting, and applicable to several cases, such as
the compilation to virtual machines and JIT compilation.

Among previous experiences which cross implementation boundaries we can
cite [FD99], where automatically specialized WAM instructions are used as an in-
termediate step to generate C code which outperforms compilers to native code,
and the Aquarius Prolog compiler [VD92] which carried analysis information
along the compilation process to generate efficient native code.

As already mentioned, simplifying automatically hand-coded emulators (in
order to speed them up or to reduce the executable size) written in Lc requires
a specializer for Lc programs. Furthermore, in order to perform a good job,
such specializer must be able to understand the emulator structure, a task which
can be quite difficult for efficient, complex emulators. Even in the case that
the emulator can be dealt with, there are very few information sources to use
in order to perform useful optimizations: the input data is, in principle, any
bytecode program.

One way to propagate bytecode properties about a particular program p down
to the emulator so that the specializer can do some effective optimization is by
partially evaluating the emulator w.r.t. p. This approach, though very powerful in
principle, also has some drawbacks. First, the partial evaluator must be powerful
enough so as to accurately handle the emulator, which is a complex piece of code.
Second, partial evaluation is in general aimed at optimizing run time regardless
of the size of the resulting program. When specializing w.r.t. large bytecode
programs, partial evaluation can potentially produce very large programs. Also,
this approach will be affected by some of the advantages and disadvantages of

76

Chapter 4. A Generic Emulator Generator

native code vs. bytecode-based systems in issues such as portability, compactness,
etc.

An alternative approach which is guaranteed not to produce code explosion
is to express the specialization of the emulator in terms of slicing [Tip95, RT96,
Wei99]. The aim of slicing is, given a program P and a certain slicing criterion
φ, to obtain another program Pφ which has been obtained from P by removing
statements and arguments which are not required for the slicing criterion φ. A
slicing algorithm and the properties of the emulator input that it focuses on,
φ, can be defined. Examples of those properties are bytecode reachable points,
output variables, etc., which are needed to ensure that the semantics of the exe-
cution of the bytecode are preserved. Then, the slicing algorithm will transform
the emulator so that only the parts of the emulator needed to maintain those
properties (or a conservative approximation thereof) are kept.

One problem with this approach is that the bytecode is quite low level and
the emulator too complicated to be automatically manipulated. However, our
emulator generation scheme makes this problem more tractable. In our case Lb
programs are generated from a higher-level representation which can be changed
quite freely (even enriched with compiler-provided information to be later dis-
carded by encode) and which aims at being easily manageable rather than effi-
cient. It seems therefore more convenient to work at the level of La to extract
the slicing information, since it offers more simplification opportunities. It has
to be noted that transforming the emulator code, written in Lc, using some La
properties may be extremely difficult: to start with, suitable tools to work with
Lc are needed, and they should be able to understand the relationship between
Lb and La elements. It is much easier to work at the level of the definition of the
abstract machineM, where La is completely captured, and where its relationship
with Lb is contained.

We therefore formulate a slicing transformation that deals directly with M
and whose result is used to generate a sliced emulator emus:

emus = emucomp(JsliceMK(M, φ))

emus can also be viewed as the result of slicing emucomp(M) (i.e., emuB)
with a particular slicing algorithm that, among other things, preserves the (loop)

77

4.3. An Example Application: Minimal and Alternative Emulators

structure of the emulator.3 That is, sliceM deals with the instruction set or the
instruction code definitions, and leaves complex data and control issues, quite
common in efficient emulators, untouched and under the control of emucomp.
Slicing can change all the components of the definition of M, including Mdef ,
which may cause the compiled emulator to lose or specialize instructions. Note
that whenMins is modified, the transformation affects the compiler, because the
encode function uses definitions inM.

4.3.2 Some Examples of Opportunities for Simplification

There is a variety of simplifications at the level of M that preserve the loop
structure. They can be expressed in terms of the previously presented technique.

Instruction removal: Programs compiled into bytecode can be scanned and
brought back into La usingMins′ to find the set I of instructions used in them.
M is then sliced with respect to I and a new, specialized emulator is created as
in Section 4.2.4. The new emulator may be leaner than the initial one since it
probably has to interpret fewer instructions.

Removing format support: If La has instructions which admit arguments
of different types (e.g., arithmetical operations which admit both integers and
floating point numbers), programs that only need support for some of the available
types can be executed in a reduced emulator. This can be achieved, again, by
slicingM with respect to the remaining instruction and argument formats.

Removing specialized instructions: M can define specialized instructions
(for example, for special argument values) or collapsed instructions (for often-
used instruction sequences). Those instructions are by definition redundant, but
sometimes useful for the sake of performance. However, not all programs require
or benefit from them. When the compiler to La can selectively choose whether
using or not those versions, a smaller emulator can be generated.

Obtaining the optimal set of instructions (w.r.t. some metric) for a particular
program is an interesting problem. It is however out of the scope of this work.

3Due to the simplicity of the interpreter scheme, this is not a hard limitation for most
emulator transformations, as long as the transformation output is another emulator.

78

Chapter 4. A Generic Emulator Generator

4.3.3 Experimental Evaluation

We tested the feasibility of the techniques proposed herein for the particular
case of the compilation of Prolog to a WAM-based bytecode. We started off
with Ciao [BCC+02], a real, full-fledged logic programming system, featuring a
(Ciao-)Prolog to WAM compiler, a complex bytecode interpreter (the emulator)
written in C, and the machinery necessary to generate multi-platform, bytecode-
based executables. We refactored the existing emulator as an abstract machine
as described in the previous sections, and we implemented an emulator compiler
which generates emulators written in C. We also implemented a slicer to remove
unused instructions from the abstract machine definition.

Specialized emulators were built for a series of benchmark programs. For each
of them, the WAM code resulting from its compilation was scanned to collect the
set I of actually used instructions, and the general instruction setMins was sliced
with respect to I in order to remove unused instructions. The resulting description
was used to encode the WAM code into bytecode and to generate the specialized
emulator. We have verified that, when no changes are applied to the abstract
machine description, the generated emulator and bytecode representation are as
optimized as the original ones. Orthogonally, we defined three slightly different
instruction sets and generated specialized emulators for each of these sets and
each of the benchmark programs, and we measured the resulting size (Table 4.3).

The benchmarks feature both symbolic and numerical computation, and they
are thus representative of several possible scenarios. Although this benchmark set
includes some widely known programs, we briefly describe all of them in Table 4.2
for the sake of completeness.

Specially interesting is the final set of signal processing programs, which are
part of a signal processing application for wearable computing. Although they are
not large, they do perform a real-life task by spacializing CD-quality sound in real
time when executed in a Gumstix small computer. A more detailed description
of the application and characteristics appears in Chapter 7.

It has to be noted that, although most of these benchmarks are of moderate
size, our aim in this section is precisely to show how to reduce automatically
the footprint of an otherwise large engine for these particular cases. On the
other hand, reduced size does not necessarily make them unrealistic, in the sense
that they effectively perform non-trivial tasks. As an example, stream_opt pro-

79

4.3. An Example Application: Minimal and Alternative Emulators

hw The ubiquitous “Hello world!” program.
boyer Simplified Boyer-Moore theorem prover kernel.
crypt Cryptoarithmetic puzzle involving multiplication.
deriv Symbolic derivation of polynomials.
exp Computation of 137111 with a linear- and a logarithmic-time

algorithm.
fact Compute the factorial of a number.
fib Simply recursive computation of the nth Fibonacci number.
knights Chess knight tour, visiting only once every board cell.
nrev Naive reversal of a list using append.
poly Raises symbolically the expression 1+x+y+z to the nth power.
primes Sieve of Eratosthenes.
qsort Implementation of QuickSort.
queens11 Place N (with N = 11) chess queens in a N × N chessboard

without mutual attacks.
query poses a natural language query to a knowledge database con-

taining information about country names, population, and
area.

stream generates 3-D stereo audio from monoaural audio, compass,
and GPS signals to simulate the movement of a subject in a
virtual world (see the case study in Chapter 7).

stream_dyn An improved version of stream which can use any number of
different input signals and sampling frequencies.

stream_opt An optimized version where number of signals and sampling
frequency is fixed.

tak Computation of the Takeuchi function.

Table 4.2: Benchmark descriptions.

cesses audio in real time and with constant memory usage using Ciao Prolog in
a 200MHz GumStix (a computer the size of a chewing gum).

The whole compilation process is fairly efficient. On a Pentium M at
1400MHz, with 512MB of RAM, and running Linux 2.6.10, the compiler compiles
itself and generates a specialized emulator in 31.6 seconds: less than 0.1 seconds

80

Chapter 4. A Generic Emulator Generator

Basic ivect iblt
loop bytecode loop bytecode loop bytecode

(29331) (33215) (34191)
full strip full strip full strip full strip full strip full strip

hw 28% 71% 33116 48 29% 74% 31548 48 29% 75% 31136 48
boyer 26% 46% 40198 8594 27% 50% 38606 8542 28% 52% 38168 8512
crypt 27% 58% 33922 2318 28% 62% 32306 2242 28% 63% 31842 2186
deriv 27% 56% 33606 2002 28% 59% 32022 1958 28% 61% 31606 1950
exp 28% 59% 32102 498 29% 63% 30542 478 29% 63% 30114 458
fact 28% 69% 31756 152 29% 72% 30216 152 29% 73% 29804 148
fib 28% 70% 31758 154 29% 74% 30218 154 29% 74% 29798 142
knights 27% 54% 32306 702 28% 56% 30726 662 29% 57% 30298 642
nrev 27% 65% 31866 262 28% 69% 30322 258 28% 70% 29910 254
poly 26% 48% 34682 3078 27% 52% 33098 3034 27% 53% 32664 3008
primes 27% 56% 32082 478 28% 61% 30526 462 29% 62% 30102 446
qsort 27% 58% 32334 730 28% 61% 30778 714 28% 62% 30370 714
queens11 28% 55% 32248 644 29% 59% 30696 632 29% 60% 30220 564
query 28% 59% 32816 1212 29% 63% 31256 1192 29% 64% 30840 1184
st. dyn 25% 42% 36060 2992 25% 45% 34420 2920 26% 45% 33890 2802
st. opt 26% 46% 35152 2084 26% 49% 33516 2016 26% 49% 32990 1902
stream 26% 46% 34496 1428 27% 49% 32868 1368 28% 49% 32402 1314
tak 28% 67% 31886 282 29% 70% 30334 270 29% 71% 29910 254
Average 27% 56% 27% 60% 28% 61%

Table 4.3: Emulator sizes for different instruction sets

to generate the code of the emulator loop itself, 11.3 seconds to compile the com-
piler to bytecode (written in Prolog), and 20.3 seconds to compile all the C code,
e.g., all Prolog-accessible predicates written in C (e.g., builtins and associated
glue code) and the generated emulator using gcc with optimization grade -O2.
Both the Prolog compiler and emulator generator are written in (Ciao-)Prolog.

The results of the benchmarks are in Table 4.3, were different instruction sets
were used. Columns under the basic column correspond to the instruction set
of the original emulator. The ivect column presents the case for an instruction
set where several compact instructions which are specialized to move register
values before calls to predicates have been added to the studied emulator. Fi-
nally, columns below the column iblt show results for an instruction set where
specialized WAM instructions for the arithmetic builtins have been added to the
emulator. In each of these set of columns, and for each benchmark, we studied
the impact of specialization in the emulator size (the loop columns) and bytecode
size (the bytecode columns).

The bytecode columns show two different figures: full is the bytecode size

81

4.3. An Example Application: Minimal and Alternative Emulators

Size of bytecode

S
iz

e
o

f
m

ai
n

 lo
o

p

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

19000

18000

17000

16000

15000

14000

13000

12000

11000

10000

9000

8000

Figure 4.12: Relationship between stripped bytecode size (x axis) and emulator size
(y axis)

including all libraries used by the program and the initialization code (roughly
constant for every program) which is automatically added by the standard com-
piler. The numbers in the strip column were obtained after performing dead code
elimination at the Prolog level (such as removing unused Prolog library modules
and predicates, producing specialized versions, etc. using information from anal-
ysis — see, e.g., [PH03] and its references) and then generating the bytecode.
This specialization of Prolog programs at the source and module level is done by
the Ciao preprocessor and is beyond the scope of this work.

The loop columns contain, right below the label, the size of the main loop
of the standard emulator with no specialization. For each benchmark we also
show the percentage of reduction achieved with bytecode generated from full or
specialized program with respect to the original, non-specialized emulator — the
higher, the more savings.

Even in the case when the emulator is specialized with respect to the full
bytecode, we get a steady savings of around 27%, including library and initial-
ization code. We can deduce that this is a good approximation of the amount of
reduction that can be expected from typical programs where no redundant code
exists. Of course, programs which use all the available WAM instructions can

82

Chapter 4. A Generic Emulator Generator

be crafted on purpose, but this is not the general case. In our experience, not
even the compiler itself uses all the abstract machine instructions: we also gen-
erated an abstract machine specialized for it which was simpler (although only
marginally) than the original one.

The savings obtained when the emulator is generated from specialized byte-
code are more interesting. Savings range from 45% to 75%, averaging 60%. This
shows that substantial size reductions can be obtained with our technique. The
absolute sizes do not take into account ancillary pieces, such as I/O and operat-
ing system interfaces, which would be compiled or not with the main emulator
as necessary, and which are therefore subject to a similar process of selection.

It might be expected that smaller programs would result in more emulator
minimization. In general terms this is so, but with a wide variation, as can be
seen in Figure 4.12. Thus, predicting in advance which savings will be obtained
from a given benchmark in a precise way is not immediate.

4.4 Conclusions

We have presented the design and implementation of an emulator compiler that
generates efficient code using a high-level description of the instruction set of
an abstract machine and a set of rules which define how intermediate code is
to be represented as bytecode. The approach allowed separating details of the
low-level data and code representation from the set of instructions and their
semantics. We were therefore able to perform, at the abstract machine description
level, transformations which affect both the bytecode format and the generated
emulator without sacrificing efficiency.

We have applied our emulator compiler to a description of the abstract ma-
chine underlying a production, high-quality, hand-written emulator. The auto-
matically generated emulator is as efficient as the original one. By using a slicer
at the level of the abstract machine definition, we were able to reduce automati-
cally its instruction set, producing a smaller, dedicated, but otherwise completely
functional, emulator. By changing the definition of the code corresponding to the
instructions we were able to produce automatically emulators with substantial in-
ternal implementation differences, but still correct and efficient.

There is also a strong connection with Chapter 3: the fundamental pieces of

83

4.4. Conclusions

the C code generation performed there and the code definitions for instructions
in La are intimately related, and we have reached a single abstract machine
definition in the Ciao system which is used both to generate bytecode emulators
and to compile to C code.

84

5
Description and Optimization of Abstract

Machines in a Dialect of Prolog

Summary

In order to achieve competitive performance, abstract machines for Prolog and
related languages end up being large and intricate, and incorporate sophis-
ticated optimizations, both at the design and at the implementation levels.
At the same time, efficiency considerations make it necessary to use low-level
languages in their implementation. This makes them laborious to code, opti-
mize, and, especially, maintain and extend. Writing the abstract machine (and
ancillary code) in a higher-level language can help tame in part this inherent
complexity. In this paper we show how the semantics of most basic components
of an efficient virtual machine for Prolog can be described using (a variant of)
Prolog which retains much of its semantics. These descriptions are then com-
piled to C and assembled to build a complete bytecode emulator. Thanks to
the high level of the language used and its closeness to Prolog, the abstract ma-
chine description can be manipulated using standard Prolog compilation and
optimization techniques with relative ease. We also show how, by applying
program transformations selectively, we obtain abstract machine implementa-
tions whose performance can match and even exceed that of state-of-the-art,
highly-tuned, hand-crafted emulators.

85

5.1. Introduction

5.1 Introduction

Abstract machines have shown useful in order define theoretical models and
implementations of software and hardware systems. In particular, they have
been widely used to define execution models and as implementation vehicles
for many languages, most frequently in functional and logic programming, but
more recently also in object-oriented programming, with the Java abstract ma-
chine [GJSB05] being a very popular recent example. There are also early exam-
ples of the use of abstract machines in traditional procedural languages (e.g., the
P-Code used as target in early Pascal implementations [NAJ+81]) and in other
realms such as, for example, operating systems (e.g., Dis, the virtual machine for
the Inferno operating system [DPP+97]).

The practical applications of the indirect execution mechanism that an ab-
stract machine represents are countless: portability, generally small executables,
simpler security control through sandboxing, increased compilation speed, etc.
However, unless the abstract machine implementation is highly optimized, these
benefits can come at the cost of poor performance. Designing and implementing
fast, resource-friendly, competitive abstract machines is a complex task. This is
specially so in the case of programming languages where there is a wide separation
between many of their basic constructs and features and what is available in the
underlying off-the-shelf hardware: term representation vs. memory words, unifica-
tion vs. assignment, automatic vs. manual memory management, destructive vs.
non-destructive updates, backtracking and tabling vs. Von Neumann-style control
flow, etc. In addition, the extensive code optimizations required to achieve good
performance make development and, especially, maintenance and further modifi-
cations non-trivial. Implementing or testing new optimizations is often involved,
as decisions previously taken need to be revisited and low-level, tedious recoding
is often necessary to test a new idea.

Improved performance has been achieved by post-processing the input pro-
gram (often called bytecode) of the abstract machine (emulator) and generating
efficient native code — sometimes closer to an implementation directly written in
C. This is technically challenging and it makes the overall picture more complex
when bytecode and native code can be combined, usually by dynamic recompila-
tion. This in principle combines the best of both worlds and deciding when and

86

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

how native code (which may be large and/or costly to obtain) is generated based
on runtime analysis of the program execution, and leaving the rest as bytecode.
Some examples are the Java HotSpot VM [PVC01], the Psyco [Rig04] extension
for Python, or for logic programming, all-argument predicate indexing in recent
versions of Yap Prolog [SCSL07b], the dynamic recompilation of asserted predi-
cates in BinProlog [Tar06], etc. Note, however, that the initial complexity of the
virtual machine and all of its associated maintenance issues have not disappeared,
and emulator designers and maintainers still have to struggle against thousands
of lines of low level code.

A promising alternative, on which this paper focuses, is to explore the possibil-
ity of rewriting most of the runtime and virtual machine in the source, high-level
language (or a close dialect of it), and, use all the available compilation machinery
to obtain native code from it. Ideally, this native code should provide a runtime
comparable to the hand-crafted one in terms of performance, while keeping the
amount of low-level parts to a minimum. This is the approach taken in this work,
where we apply it to to write Prolog emulators in a Prolog dialect. As we will see
later, the approach is interesting not only to simplify the task of developers but
also to widen the application domain of the language to other kind of problems
which could extend far from just emulators, mature compilation technology, reuse
analysis and transformation passes, and make easier automatizing tedious opti-
mization techniques for emulators (such as specializing emulator instructions).
The advantages of using a higher-level language are rooted, on one hand, on the
capability of hiding implementation details that a higher-level language provides
and, on the other hand, on its amenability to transformation and manipulation.
These, as we will see, are key for our goals, as they reduce error-prone, tedious
programming work, while making it possible to describe at the same time complex
abstract machines in a concise and correct way.

A similar objective has been pursued elsewhere. For example, the JavaIn-
Java [Tai98] and PyPy [RP06] projects aimed similar goals. The initial perfor-
mance figures reported for these implementations highlight how challenging it is to
make them competitive with existing hand-tuned abstract machines: JavaInJava
started with an initial slowdown of approximately 700 times w.r.t. then-current
implementations, and PyPy started at the 2000÷ slowdown level. Competitive
execution times were only possible after changes in the source language and com-

87

5.1. Introduction

pilation tool chain, by restricting it or adding annotations. For example, the
slowdown of PyPy was reduced to 3.5÷ – 11.0÷ w.r.t. CPython [RP06]. These
results can be partially traced back to the attempt to reimplement the whole
machinery at once, which has the disadvantage of making such a slowdown al-
most inevitable. This makes it difficult to use the generated virtual machines as
“production” software (which would therefore be routinely tested) and, especially,
it makes it difficult to study how a certain, non-local optimization will carry over
to a complete, optimized abstract machine.

Therefore, and we think that interestingly, in our case we chose an alter-
native approach: gradually porting selected key components (such as, e.g., in-
struction definitions) and combining this port with other emulator generation
techniques [MCPH05]. At every step we made sure experimentally1 that the per-
formance of the original emulator was maintained throughout the process. The
final result is an emulator completely written in a high-level language which, when
compiled to native code, does not loss any performance w.r.t. a manually written
one — and, as a very relevant by product, a language and a compiler thereof of
a high-level enough to make several program transformation and analysis tech-
niques applicable, while offering the possibility of being compiled into efficient
native code. While this language is a general-purpose one and it can be used to
implement arbitrary programs, throughout this paper we will focus on its use to
write abstract machines and to easily generate variations.

The rest of the paper will proceed as follows: Section 5.2 gives an overview
of the different parts of our compilation architecture and information flow and
compares it with a more traditional setup. Section 5.3 presents the source lan-
guage with which we will write our abstract machine, and we will justify the
design decisions (e.g., typing, destructive updates, etc.) based on the needs of
applications which demand high performance. Section 5.3.4 summarizes how
compilation to efficient native is done through C. Section 5.4 describes language
extensions which were devised specifically to write abstract machines (in particu-
lar, the WAM) and Section 5.5 explores how the added flexibility of the high-level
language approach can be taken advantage of in order to easily generate variants

1And also with stronger means: for some core components we checked that the binary code
produced from the high-level definition of the abstract machine and that coming from the
hand-written one were identical.

88

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

Traditional approach

Lb emulator
E:Lc
low level code
(hand-written)

user program
P:Ls
source code

Front-end
compiler

P:Li
intermediate
code

Bytecode
back-end

P:La
symbolic
bytecode

Bytecode
assembler

P:Lb
bytecode

Low level
back-end

P:Lc
low level code

Emulation and native compilation must ex-
hibit the same behaviour:
(E:Lc ◦ P:Lb) ≡ (P:Lc)

Figure 5.1: Traditional compilation architecture.

of abstract machines with different core characteristics. We experimentally study
the performance that can be attained with these variants.

5.2 Overview of our Compilation Architecture

The compilation architecture we present here uses several different languages,
language translators, and program representations which must be defined and
placed in the “big picture”. For generality, and since those elements are common
to most bytecode-based systems, we will refer to them by more abstract names
when possible or convenient, although in our initial discussion we will equate
them with the actual languages in our production environment.

The starting point in this work is the Ciao Prolog system [HBC+08], contain-

89

5.2. Overview of our Compilation Architecture

Extended approach

user program
P:Ls
source code

Front-end
compiler

P:Li
intermediate
code

Bytecode
back-end

P:La
symbolic
bytecode

Bytecode
assembler

P:Lb
bytecode

Low level
back-end

P:Lc
low level code

La emulator
Er:Lrs
source code

Lb emulator
Er:Lri
intermediate
code

Front-end
compiler

Lr
s, La;Lb support

Er:Lc
low level code

Low level
back-end

Lr
i support

Emulation and native compilation must exhibit
the same behaviour:
(Er:Lc ◦ P:Lb) ≡ (P:Lc)
Generated and hand-written (Figure 5.1) emu-
lators should be equivalent:
(Er:Lc ◦ P:Lb) ≡ (E:Lc ◦ P:Lb)

Figure 5.2: Extended compilation architecture.

ing an efficient, WAM-based [War83, AK91], abstract machine coded in C (an
independent evolution which forked from the SICStus 0.5/0.7 virtual machine),
the compiler to bytecode with an experimental extension to emit optimized C code
described in Chapter 3, and the CiaoPP preprocessor (a program analysis, special-
ization and transformation framework) [BDD+97, HPB99, PBH00b, HPBG05].

We will denote the source Prolog language as Ls, the symbolic WAM code as
La, the byte-encoded WAM code as Lb, and the C language as Lc. The different
languages and translation processes described in this section are typically found
in most systems, and this scheme could be easily applied to other situations.
We will use N:L to denote the program N written in language L. Thus, we can
distinguish in the traditional approach (Figure 5.1):

90

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

Front-end compiler: P:Ls is compiled to P:Li, where Ls is the source language
and Li is an intermediate representation. For simplicity, we suppose that
this phase includes any analysis, transformation, and optimization.

Bytecode back-end: P:Li is translated to P:La, where La is the symbolic rep-
resentation of the bytecode language.

Bytecode assembler: P:La is encoded into P:Lb, where Lb defines encoded
bytecode streams (a sequence of bytes whose design is focused on interpre-
tation speed).

To execute Lb programs, a hand-written emulator E:Lc (where Lc is a lower-
level language) is required, in addition to a collection of runtime code (written
in Lc). Alternatively, as commented before, more advanced systems are able to
directly translate intermediate code by means of a low level back end, which
compiles a program P:Li directly into its,P:Lc equivalent.2 This avoids the need
for any emulator if all programs are compiled to native code, but additional
runtime support is usually necessary.

The classical architecture needs manual coding of a large and complex piece
of code, the emulator, using a low level language, often missing the opportunity
to reuse compilation techniques that may have been developed for high-level lan-
guages, not only to improve efficiency, but also program readability, correctness,
etc.

In the extended compilation scheme we make the hypothesis that we can design
a dialect from Ls and write the emulator for symbolic La code, instead of byte-
encoded Lb, in that language. We will call Lrs the extended language and Er:Lrs the
emulator. Note that the mechanical generation of an interpreter for Lb from an
interpreter for La was previously described and successfully tested in the emulator
generator in Chapter 4. Adopting it for this work was perceived as a correct
decision, since it moves low-level implementation (and bytecode representation)
issues to a translation phase, thus reducing the requirements on the language to
preserve emulator efficiency, and in practice making the code easier to manage.
The new translation pipeline, depicted in the extended approach path (Figure 5.2)

2Note that in JIT systems the low level code is generated from the encoded bytecode repre-
sentation. For simplicity we keep the figure for static code generation, which takes elements of
Li as the input.

91

5.3. The imProlog Language

shows the following processes (the dashed lines represent the modifications that
some of the elements undergo with respect to the original ones):

Extended front-end compiler: it compiles Lrs programs into Lri programs
(where Lri is the intermediate language with extensions required to pro-
duce efficient native code). This compiler includes the emulator generator.
That framework makes it possible to write instruction definitions for an La
emulator, a separate bytecode encoding rules, and process them together
to obtain an Lb emulator. I.e., it translates Er:Lrs to an Er:Lri emulator for
Lb.

Extended low level back-end: it compiles Lri programs into Lc programs.
The resulting Er:Lri is finally translated to Er:Lc, which should be equiva-
lent (in the sense of producing the same output) to E:Lc.

The advantage of this scheme lies in its flexibility to share optimizations, analysis
and transformations at different compilation stages (e.g., it could reuse the same
machinery for partial evaluation, constant propagation, common subexpression
elimination, etc.) which are commonly reimplemented for high- and low-level
languages.

5.3 The imProlog Language

We describe in this section our Lrs language, imProlog, and the analysis and code
generation techniques used to compile it into highly efficient code.3 This Prolog
variant is motivated by the following problems:

• It is hard to guarantee that certain overheads in Prolog that are directly
related with the language expressiveness (e.g., boxed data for dynamic typ-
ing, trailing for non-determinism, uninstantiated free variables, multiple-
precision arithmetic, etc.) will always be removed by compile-time tech-
niques.

3The name imProlog stands for imperative Prolog, because its purpose is to make typically
imperative algorithms easier to express in Prolog, but minimizing and controlling the scope of
impurities.

92

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

• Even if the overhead could be eliminated, the cost of some basic opera-
tions, such as modifying a single attribute in a custom data structure, is
not constant in the declarative subset of Prolog. For example, the cost
of replacing the value of an argument in a Prolog structure is, in most
straightforward implementations, linear w.r.t. the number of arguments of
the structure, since a certain amount of copying of the structure spine is
typically involved. In contrast, replacing an element in a C structure is a
constant-time operation.

We will now present the different elements that comprise the imProlog language
and we will gradually introduce a number of restrictions on the kind of programs
which we admit as valid. The main reason to impose these restrictions is to
achieve the central goal in this paper: generating efficient emulators starting
from a high-level language.

In a nutshell, the imProlog language both restricts and extends Prolog. The
impure features (e.g., the dynamic database) of Prolog are not part of imProlog
and only programs meeting some strict requirements about determinism, modes
in the unification, and others, are allowed. In a somewhat circular fashion, the
requirements we impose on these programs are those which allow us to compile
them into efficient code. Therefore, implementation matters somewhat influence
the design and semantics of the language. On the other hand, imProlog also ex-
tends Prolog in order to provide a single, well-defined, and amenable to analysis
mechanism to implement constant-time access to data: a specific kind of mu-
table variables. Thanks to the restrictions aforementioned and this mechanism
imProlog programs can be compiled into very efficient low-level (e.g., C) code.

Since we are starting from Prolog, which is well understood, and the restric-
tions on the admissible programs can be introduced painlessly (they just reduce
the set of programs which are deemed valid by the compiler), we will start by
showing, in the next section, how we tackle efficient data handling, which as we
mentioned departs significantly, but in a controlled way, from the semantics of
Prolog.

Notation. We will use lowercase math font for variables (x, y, z, ...) in the rules
that describe the compilation and language semantics. Prolog variable names will
be written in math capital font (X, Y, Z, ...). Keywords and identifiers in the

93

5.3. The imProlog Language

target C language use bold text (return). Finally, sans serif text is used for
other names and identifiers (f, g, h, ...). The typography will make it possible
to easily distinguish a compilation pattern for ‘f(a)’, where ‘a’ may be any valid
term, and ‘f(A)’, where ‘A’ is a Prolog variable with the concrete name “A”.
Similarly, the expression f (a1, ..., an) denotes any structure with functor name
f and n arguments, whatever they may be. It differs from f(A1, ..., An), where
the functor name is fixed to f and the arguments are variables). If n is 0, the
previous expression is tantamount to just f.

5.3.1 Efficient Mechanisms for Data Access and Update

In this section we will describe the formal semantics of typed mutable variables,
our proposal to provide efficient (in terms of time and memory) data handling in
imProlog. These variables feature backtrackable destructive assignment and are
accessible and updatable in constant time through the use of a unique, associated
identifier. This is relevant for us as it is required to efficiently implement a wide
variety of algorithms, some of which appear in WAM-based abstract machines,4

which we want to describe in enough detail as to obtain efficient executables.
There certainly exist a number options for implementing constant-time data

access in Prolog. Dynamic predicates (assert / retract), can in some cases (maybe
with the help of type information) provide constant-time operations; existing
destructive update primitives (such as setarg/3) can do the same. However, it is
difficult to for the analyses normally used in the context of logic programming
deal with them in a precise way, in a significant part because their semantics was
not devised with analysis in mind, and therefore they are difficult to optimize as
much as we need herein.

Therefore, we opted for a generalization of mutable variables with typing
constraints as mentioned before. In our experience, this fits in a less intrusive way
with the rest of the logic framework, and at the same time allows us to generate
efficient code for the purpose of the work in this paper.5 Let us introduce some

4One obvious example is the unification algorithm of logical variables, itself based on the
Union-Find algorithm. An interesting discussion of this point is available in [SF06], where a
CHR version of the Union-Find algorithm is implemented and its complexity studied.

5Note that this differs from [MCH07], where changes in mutable data were non-backtrackable
side effects. Notwithstanding, performance is not affected in this work, since we restrict at

94

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

preliminary definitions before presenting the semantics of mutable variables:

Type: τ is a unary predicate that defines a set of values (e.g., regular types as
in [DZ92, GdW94, VB02]). If τ(v) holds, then v is said to contain values
of type τ .

Mutable identifier: the identifier id of a mutable is a unique atomic value that
uniquely identifies a mutable and does not unify with any other non-variable
except itself.

Mutable store: ϕ is a mapping {id1/(τ 1, val1), ..., idn/(τn, valn)}, where id i
are mutable identifiers, val i are terms, and τ i type names. The expression
ϕ(id) stands for the pair (τ , val) associated with id in ϕ, while ϕ[id/(τ ,
val)] denotes a mapping ϕ′ such that

ϕ′(id i) =

{
(τ , val) if id i = id
ϕ(id i) otherwise

We assume the availability of a function new_id(ϕ) that obtains a new
unique identifier not present in ϕ.

Mutable environment: By ϕ0; ϕ ` g we denote a judgment of g in the
context of a mutable environment (ϕ0, ϕ). The pair (ϕ0, ϕ) makes the
relation between the initial and final mutable stores, respectively, and the
interpretation of the g explicit.

We can now define the rules that manipulate mutable variables (Figure 5.3).
For the sake of simplicity, they do not impose any evaluation order. In practice,
and in order to keep the computational cost low, we will use the Prolog resolution
strategy, and impose limitations on the instantiation level of some particular
terms; we postpone discussing this issue until Section 5.3.2:

Creation: The (M-New) rule defines the creation of new mutable placeholders.
A goal m = initmut(τ , v)6 checks that the term v is a solution of τ (i.e., it

compile-time the emulator instructions to be deterministic.
6To improve readability, we use the functional notation of [CCH06] for the new initmut/3

and (@)/2 built-in predicates.

95

5.3. The imProlog Language

(M-New)
` τ(v) id = new_id(ϕ0) ϕ = ϕ0[id/(τ , v)] ` m = id

ϕ0;ϕ ` m = initmut(τ , v)

(M-Read)
` m = id (_, v) = ϕ(id) ` x = v

ϕ;ϕ ` x = m@

(M-Assign)
` m = id (τ , _) = ϕ0(id) ` τ(v) ϕ = ϕ0[id/(τ , v)]

ϕ0;ϕ ` m ⇐ v

(M-Type)
` m = id (τ , _) = ϕ(id)

ϕ;ϕ ` mut(τ , m)

(M-Weak)
` a

ϕ;ϕ ` a

(M-Conj)
ϕ0;ϕ1 ` a ϕ1;ϕ ` b

ϕ0;ϕ ` (a ∧ b)

(M-Disj-1)
ϕ0;ϕ ` a

ϕ0;ϕ ` (a ∨ b)
(M-Disj-2)

ϕ0;ϕ ` b
ϕ0;ϕ ` (a ∨ b)

Figure 5.3: Rules for the implicit mutable store (operations and logical connectives).

has type τ), creates a new mutable identifier id that did not appear as a
key in ϕ0 and does not unify with any other term in the program, defines
the updated ϕ as ϕ0 where the value associated with id is v, and unifies
m with id. These restrictions ensure, in practice, that m was an unbound
variable before the mutable was created.

Access: Reading the contents of a mutable variable is defined in the (M-Read)
rule. The goal x = m@ holds if the variable m is unified with a mutable
identifier id, for which an associated v value exists in the mutable store ϕ,
and the variable x unifies with v.7

Assignment: Assignment of values to mutables is described in the (M-Assign)
rule. The goal m ⇐ v, which assigns a value to a mutable identifier, holds
iff:

7Since the variable in the mutable store is constrained to the type, it is not necessary to
check that x belongs to that type.

96

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

• m is unified with a mutable identifier id, for which a value is stored in
ϕ0 with associated type τ .

• v has type τ , i.e., the value to be stored is compatible with the type
associated with the mutable.

• ϕ0 is the result of replacing the associated type and value for id by τ
and v, respectively.

Typing: The (M-Type) rule allows checking that a variable contains a mutable
identifier of a given type. A goal mut(τ , m) is true if m is unified with a
mutable identifier id that is associated with the type τ in the mutable store
ϕ.

Note that although some of the rules above enforce typing constraints, the
compiler, as we will see, is actuallly able to statically remove these checks and
there is no dynamic typing involved in the execution of admissible imProlog
programs. The rest of the rules define how the previous operations on mutable
variables can be joined and combined together, and with other predicates:

Weakening: The weakening rule (M-Weak) states that if some goal can be
solved without a mutable store, then it can also be solved in the context of
a mutable store that is left untouched. This rule allows the integration of
the new rules with predicates (and built-ins) that do not use mutables.

Conjunction: The (M-Conj) rule defines how to solve a goal a ∧ b (written
as (a, b) in code) in an environment where the input mutable store ϕ0 is
transformed into ϕ, by solving a and b and connecting the output mutable
store of the former (ϕ1) with the input mutable store of the later. This
conjunction is not commutative, since the updates performed by a may alter
the values read in b. If none of those goals modify the mutable store, then
commutativity can be ensured. If none of them access the mutable store,
then it is equivalent to the classic definition of conjunction (by applying the
(M-Weak) rule).

Disjunction: The disjunction of two goals is defined in the (M-Disj) rule, where
a ∨ b (written as (a ; b) in code) holds in a given environment if either
a or b holds in such environment, with no relation between the mutable

97

5.3. The imProlog Language

stores of both branches. That means that changes in the mutable store
would be backtrackable (e.g., any change introduced by an attempt to solve
one branch must be undone when trying another alternative). As with
conjunction, if the goals in the disjunction do not update nor access the
mutable store, then it is equivalent to the classic definition of disjunction
(by applying the (M-Weak) rule).

Mutable terms, conceptually similar to the mutables we present here, were
introduced in SICStus Prolog as a replacement for setarg/3, and also appear in
proposals for global variables in logic programming (such as [Sch97], Bart De-
moen’s implementation of (non)backtrackable global variables for hProlog/SWI-
Prolog), or imperative assignment [GKPC85]. In the latter case there was no
notion of types and the terms assigned to had to be (ground) atoms at the time
of assignment.

We will consider that two types unify if their names match. Thus, typing in
mutables divide the mutable store in separate independent regions, which will
facilitate program analysis. For the purpose of this work we will treat mutable
variables as a native part of the language. It would however be possible to emulate
the mutable store as a pair of additional arguments, threaded from left to right
in the goals of the predicate bodies. A similar translation is commonly used to
implement DCGs or state variables in Mercury [SHC96].

5.3.2 Compilation Strategy and imProlog Subset Considered

In the previous section the operations on mutable data were presented separately
from the host language, and no commitment was made regarding their imple-
mentation other than assuming that it could be done efficiently. However, when
the host language Lrs has a Prolog-like semantics (featuring unification and back-
tracking) and even if backtrackable destructive assignment is used, the compiled
code can be unaffordably inefficient for deterministic computations unless ex-
tensive analysis and optimization is performed. On the other hand, the same
computations may be easy to optimize in lower-level languages.

A way to overcome those problems is to specialize the translated code for a
relevant subset of the initial input data. This subset can be abstractly specified:
let us consider a predicate bool/1 that defines truth values, and a call bool(X)

98

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

where X is known to be always bound to a de-referenced atom. The informa-
tion about the dereferencing state of X is a partial specification of the initial
conditions, and replacing the call to the generic bool/1 predicate by a call to
another predicate that implements a version of bool/1 that avoids unnecessary
work (e.g., there is no need for choice points or tag testing on X) produces the
same computation, but using code that is both shorter and faster. To be usable
in the compilation process, it is necessary to propagate this knowledge about
the program behavior as predicate-level assertions or program-point annotations,
usually by means of automatic methods such as static analysis. Such techniques
has been tested elsewhere [War77, Tay91b, VD92, Van94, MCH04].

This approach (as most automatic optimization techniques) has obviously its
own drawbacks when high-performance is a requirement: a) the analysis is not
always precise enough, which makes the compiler require manual annotations or
generate under-optimized programs; b) the program is not always optimized, even
if the analysis is able to infer interesting properties about it, since the compiler
may not be clever enough to improve the algorithm; and c) the final program
performance is hard to estimate, as we leave more optimization decisions to the
compiler, of which the programmer may not be aware.

For the purposes of this paper, cases a and b do not represent a major prob-
lem. Firstly, if some of the annotations cannot be obtained automatically and
need to be provided by hand, the programming style still encourages separation
of optimization annotations (as hints for the compiler) and the actual algorithm,
which we believe makes code easier manage. Secondly, we adapted the language
imProlog and compilation process to make the algorithms implemented in the
emulator easier to represent and compile. For case c, we took an approach differ-
ent from that in other systems. Since our goal is to generate low level code that
ensures efficiency, we impose some constraints on the compilation output to avoid
generation of code known to be suboptimal. This restricts the admissible code
and the compiler informs the user when the constraints do not hold, by reporting
efficiency errors. This is obviously too drastic a solution for general programs,
but we found it a good compromise in our application.

99

5.3. The imProlog Language

pred ::= head :– body (Predicates)
head ::= bβcid(var, ..., var)bβc (Heads)
body ::= goals | (goals → goals ; body) (Body)
goals ::= bβcgoal, ..., bβcgoal (Conjunction of goals)
goal ::= var = var | var = cons | (Unifications)

var = var@ | var ⇐ var | (Mutable ops.)
id(var, ..., var) (Built-In/User call)

var ::= uppercase name (Variables)
id ::= lowercase name (Atom names)

cons ::= atom names, integers, floats, characters, etc. (Other constants)
β ::= abstract substitution (Program point anots.)

Figure 5.4: Syntax of normalized programs.

Preprocessing imProlog Programs

The compilation algorithm starts with the expansion of syntactic extensions (such
as, e.g., functional notation), followed by normalization and analysis. Normaliza-
tion is helpful to reduce programs to simpler building blocks for which compilation
schemes are described.

The syntax of the normalized programs is shown in Figure 5.4, and is similar
to that used in ciaocc (Chapter 3). It focuses on simplifying code generation
rules and making analysis information easily accessible. Additionally, operations
on mutable variables are considered built-ins. Normalized predicates contain a
single clause, composed of a head and a body which contains a conjunction of goals
or if-then-elses. Every goal and head are prefixed with program point information
which contains the abstract substitution inferred during analysis, relating every
variable in the goal / head with an abstraction of its value or state. However,
compilation needs that information to be also available for every temporal variable
that may appear during code generation and which is not yet present in the
normalized program. In order to overcome this problem, most auxiliary variables
are already introduced before the analysis. The code reaches an homogeneous
form by requiring that both head and goals contain only syntactical variables
as arguments, and making unification and matching explicit in the body of the

100

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

clauses. Each of these basic data-handling steps can therefore be annotated with
the corresponding abstract state. Additionally, unifications are restricted to the
variable-variable and variable-constant cases. As we will see later, this is enough
for our purposes.

Program Transformations. Normalization groups together the bodies of the
clauses of the same predicate in a disjunction, sharing common new variables in
the head arguments, introducing unifications as explained before, and taking care
of renaming variables local to each clause.8 As a simplification for the purpose
of this paper, we restrict ourselves to treating atomic, ground data types in the
language. Structured data is created by invoking built-in or predefined predicates.
Control structures such as disjunctions (_ ; _) and negation (\+ _) are only
supported when they can be translated to if-then-elses, and a compilation error
is emitted (and compilation is aborted) if they cannot. If cuts are not provided,
mode analysis and determinism analysis helps in detecting the mutually exclusive
prefixes of the bodies, and delimit them with cuts. Note that the restrictions
that we impose on the accepted programs make it easier to treat some non-logical
Prolog features, such as red cuts, which make language semantics more complex
but are widely used in practice. We allow the use of red cuts (explicitly or as
(... → ... ; ...) constructs) as long as it is possible to insert a mutually exclusive
prefix in all the alternatives of the disjunctions where they appear: (b1, !, b2 ; b3)
is treated as equivalent to (b1, !, b2 ; \+ b1, !, b3) if analysis (e.g., [DLGH97]) is
able to determine that b1 does not generate multiple solutions and does not further
instantiate any variables shared with the head or the rest of the alternatives.

Predicate and Program Point Information. The information that the anal-
ysis infers from (and is annotated in) the normalized program can be divided into
predicate-level assertions and program point assertions. Predicate-level assertions
relate an abstract input state with an output state (bβ0cf (a1, ..., an)bβc), or state
facts about some properties (see below) of the predicate. Given a predicate f /n,
the properties needed for the compilation rules used in this work are:

• det(f /n): The predicate f /n is deterministic (it has exactly one solution).
8This is required to make their information independent in each branch during analysis and

compilation .

101

5.3. The imProlog Language

• semidet(f /n): The predicate f /n is semideterministic (it has one or zero
solutions).

We assume that there is a single call pattern, or that all the possible call patterns
have been aggregated into a single one, i.e., the analysis we perform does not take
into account the different modes in which a single predicate can be called. Note
that this does not prevent effectively supporting different separate call patterns,
as a previous specialization phase can generate a different predicate version for
each calling pattern.

The second kind of annotations keeps track of the abstract state of the execu-
tion at each program point. For a goal bβcg, the following judgments are defined
on the abstract substitution β on variables of g :

• β ` fresh(x): The variable x is a fresh variable (not instantiated to any
value, not sharing with any other variable).

• β ` ground(x): The variable x contains a ground term (it does not contain
any free variable).

• β ` x :τ : The values that the variable x can take at this program point are
of type τ .

Overview of the Analysis of Mutable Variables

The basic operations on mutables are restricted to some instantiation state on
input and have to obey to some typing rules. In order to make the analysis as
parametric as possible to the concrete rules, these are stated using the following
assertions on the predicates @/2, initmut/3, and ⇐/2:

:– pred @(+mut(T), −T).
:– pred initmut(+(ˆT), +T, −mut(T)).
:– pred (+mut(T)) ⇐ (+T).

These state that:

• Reading the value associated with a mutable identifier of type mut(T)
(which must be ground) gives a value type T.

102

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

• Creating a mutable variable with type T (escaped in the assertion to indi-
cate that it is the type name that is provided as argument, not a value of
that type) takes an initial value of type T and gives a new mutable variable
of type mut(T).

• Assigning a mutable identifier (which must be ground and of type mut(T))
a value requires the last one to be of type T.

Those assertions are able to instruct the type analysis on the meaning of the
built-ins, requiring no further changes w.r.t. equivalent9 type analyses for plain
Prolog. However, in our case more precision is needed sometimes. E.g., given
mut(int, A) and (A ⇐ 3, p(A@)) we want to infer that p/1 is called with an
integer value 3 and not with any integer (as inferred using just the assertion).
With no information about the built-ins, that code is equivalent to (T 0 = 3, A
⇐ T 0, T 1 = A@, p(T 1)), and no relation between T 0 and T 1 is established.

However, based on the semantics of mutables variables and their operations
(Figure 5.3), it is possible to define an analysis based on abstract interpretation to
infer properties of the values stored in the mutable store. To natively understand
the built-ins, it is necessary to abstract the mutable identifiers and the mutable
store, and represent it in the abstract domain, for which different options exist.

One is to explicitly keep the relation between the abstraction of the mutable
identifier and the variable containing its associated value. For every newly created
mutable or mutable assignment, the associated value is changed, and the previous
code would be equivalent to (T = 3, A⇐ T, T = A@, p(T)). The analysis in this
case will lose information when the value associated with the mutable is unknown.
That is, given mut(int, A) and mut(int, B), it is not possible to prove that A ⇐
3, p(B@) will not call p/1 with a value of 3.

Different abstractions of the mutable identifiers yield different precision lev-
els in the analysis. E.g., given an abstract domain for mutable identifiers that
distinguishes newly created mutables, the chunk of code (A = initmut(int, 1), B
= initmut(int, 2), A ⇐ 3, p(B@)) has enough information to ensure that B is
unaffected by the assignment to A. In the current state, and for the purpose of
the paper, the abstraction of mutable identifiers is able to take into account newly

9In the sense that the definition of how built-ins behave are not hard-wired into the analysis
itself.

103

5.3. The imProlog Language

created mutables and mutables of a particular type. When an assignment is per-
formed on an unknown mutable, it only needs to change the values of mutables
of exactly the same type, improving the precision.10 If mutable identifiers are
interpreted as pointers, that problem is related to pointer aliasing in imperative
programming [HP00].

5.3.3 Data Representation and Operations

Data representation in most Prolog systems often chooses a general mapping from
Prolog terms and variables to C data so that full unification and backtracking
can be implemented. However, for the logical and mutable variables of imProlog,
we need the least expensive mapping to C types and variables possible, since
anything else would bring an unacceptable overhead in critical code (such as
emulator instructions). A general way to overcome this problem, which is taken
in this work, is to start from a general representation, fixing data at compile time,
and replacing it by a more specific encoding.

Let us recall the general representation inWAM-based implementations [War83,
AK91]. The abtract machine state is composed of a set of registers and stacks of
memory cells. The values stored in those registers and memory cells are called
tagged words. Every tagged word has a tag and a value, the tag indicating the
kind of value stored in it. Possible values are constants (such as integers up to
some fixed length, indexes for atoms, etc.), or pointers to larger data which does
not fit in the space for the value (such as larger integers, multiple precision num-
bers, floating point numbers, arrays of arguments for structures).11 There exist
a special reference tag that indicates that the value is a pointer to another cell.
That reference tag allows a cell to point to itself (for unbound variables), or set
of cells point to the same value (for unified variables). As we had the assumption
that mutable variables can be efficiently implemented, we want to point out that
these representations can be extended for this case, using, for example, an ad-
ditional mutable tag, to denote that the value is a pointer to another cell which
contains the associated value. How terms are created and unified using the a

10That was enough to specialize pieces of imProlog code implementing the unification of
tagged words, which was previously optimized by hand.

11Those will be ignored in this paper, since all data can be described using atomic constants,
mutable identifiers, and built-ins to control the emulator stacks.

104

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

tagged cell representation is well described in the relevant literature.
When a Prolog-like language is (naively) translated to C, a large part of

the overhead comes from the use of tags (including bits reserved for automatic
memory management) and machine words with fixed sizes (e.g., unsigned int)
for tagged cells. If we are able to enforce a fixed tag for every variable (which we
can in principle map to a word) at compile time at every program point, those
additional tag bits can be removed from the representation and the whole machine
word can be used for the value. Then, it is possible to make use of different C types
for each kind of value (e.g., char, float, double, etc.). Moreover, the restrictions
that we have imposed on program determinism (Section 5.3.2), variable scoping,
and visibility of mutable identifiers make trailing unnecessary.

C Types for Values

The associated C type that stores the value for an imProlog type τ is defined
in a two-layered approach. First, the type τ is inferred by means of Prolog type
analysis. In our case we are using, a regular type analysis [VB02], which can type
more programs than a Hindley-Damas-Milner type analysis [DM82]. Then, for
each variable a compatible encoding type, which contains all the values that the
variable can take, is assigned, and the corresponding C type for that encoding
type is used. Encoding types are Prolog types annotated with an assertion that
indicates the associated C type. A set of heuristics is used to assign economic
encodings so that memory usage and type characteristics are adjusted as tightly
as possible. Consider, for example, the type flag/1 defined as

:– regtype flag/1 + low(int32).
flag := off | on.

It specifies that the values in the declared type must be represented using the
int32 C type. In this case, off will be encoded as 0 and on encoded as 1. The set
of available encoding types must be fixed at compile time, either defined by the
user or provided as libraries. Although it is not always possible to automatically
provide a mapping, we believe that this is a viable alternative to more restrictive
typing options such as Hindley-Damas-Milner based typings. A more detailed
description of data types in imProlog can be seen in [MCH08].

105

5.3. The imProlog Language

Mapping imProlog Variables to C Variables

The logical and mutable variables of imProlog are mapped onto imperative, low
level variables which can be global, local, or passed as function arguments. Thus,
pointers to the actual memory locations where the value, mutable identifier, or
mutable value are stored may be necessary. However, as stated before, we need
to statically determine the number of references required. The reference modes
of a variable will define the shape of the memory cell (or C variable), indicating
how the value or mutable value is accessed:

• 0v: the cell contains the value.

• 1v: the cell contains a pointer to the value.

• 0m: the cell contains the mutable value.

• 1m: the cell contains a pointer to the mutable cell, which contains the
value.

• 2m: the cell contains a pointer to another cell, which contains a pointer to
the mutable cell, which contains the mutable value.

For an imProlog variable x, with associated C symbol x, and given the C
type for its value cτ , Table 5.1 gives the full C type definition to be used in the
variable declaration, the r-value (for the left part of C assignments) and l-value
(as C expressions) for the reference (or address) to the variable, the variable value,
the reference to the mutable value, and the mutable value itself. These definitions
relate C and imProlog variables and will be used later in the compilation rules.
Note that the translation for ref_rval and val_lval is not defined for 0m. That
indicates that it is impossible to modify the mutable identifier itself for that
mutable, since it is fixed. This tight mapping to C types, avoiding when possible
unnecessary indirections, allows the C compiler to apply optimizations such as
using machine registers for mutable variables.

The following algorithm infers the reference mode (refmode(_)) of each pred-
icate variable making use of type and mode annotations:

1: Given the head bβ0cf (a1, ..., an)bβc, the ith-argument mode argmode(f /n, i)

106

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

refmode(x)
0v 1v 0m 1m 2m

Final C type cτ cτ * cτ cτ * cτ * *

ref_rvalJxK &x x - &x x

val_lvalJxK x *x - x *x

val_rvalJxK x *x &x x *x

mutval/val_lvalJxK x *x **x

mutval/val_rvalJxK x *x **x

Table 5.1: Operation and translation table for different mapping modes of imProlog
variables

for a predicate argument a i, is defined as:

argmode(f /n, i) =

{
in if β ` ground(a i)
out if β0 ` fresh(a i), β ` ground(a i)

2: For each predicate argument a i, depending on argmode(f /n, a i):

– If argmode(f /n, a i) = in, then

∗ if β ` a i:mut(t) then refmode(a i) = 1m, else refmode(a i) = 0v.

– If argmode(f /n, a i) = out, then

∗ if β ` a i:mut(t) then refmode(a i) = 2m, else refmode(a i) = 1v.

3: For each unification bβca = b:

– if β ` fresh(a), β ` ground(b), β ` b:mut(t), then refmode(a) = 1m.

– Otherwise, if β ` fresh(a), then refmode(a) = 0v.

4: For each mutable initialization bβca = initmut(t, b):

– if β ` fresh(a), β ` ground(b), β ` b: mut(t), then refmode(a) = 0m.

5: Any case not contemplated above is a compile-time error.

107

5.3. The imProlog Language

Escape analysis of mutable identifiers. According to the compilation
scheme we follow, if a mutable variable identifier cannot be reached outside the
scope of a predicate, it can be safely mapped to a (local) C variable. That re-
quires the equivalent of escape analysis for mutable identifiers. A conservative
approximation to decide that mutables can be assigned to local C variables is
the following: the mutable variable identifier can be read from, assigned to, and
passed as argument to other predicates, but it cannot be assigned to anything else
than other local variables. This is easier to check and has been precise enough
for our purposes.

5.3.4 Code Generation Rules

Schematically, compilation processes a set of predicates, each one composed of
a head and body as defined in Section 5.3.2. The body can contain control con-
structs, calls to user predicates, calls to built-ins, and calls to external predicates
written in C. For each of these cases we will summarize the compilation as trans-
lation rules, where p stands for the predicate compilation output that stores the
C functions for the compiled predicates. The compilation state for a predicate
is denoted as θ, and it is composed of a set of variable declarations and a map-
ping from identifiers to basic blocks. Each basic block, identified by δ, contains a
sequence of sentences and a terminal control sentence.

Basic blocks are finally translated to C code as labels, sequences of sentences,
and jumps or conditional branches generated as gotos and if-then-elses. Note that
the use of labels and jumps in the generated code should not make the C compiler
generate suboptimal code, as simplification of control logic to basic blocks and
jumps is one of the first steps performed by C compilers. It was experimentally
checked that using if-then-else constructs (when possible) does not necessarily
help mainstream C compilers in generating better code. In any case, doing it so
is a code generation option.

For simplicity, in the following rules we will use the syntax 〈θ0〉 ∀i=1..n g
〈θn〉 to denote the evaluation of g for every value of i between 1 and n, where
the intermediate states θj are adequately threaded to link every state with the
following one.

108

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

(Conj)

〈θ0〉 bb_new ⇒ δb 〈θ1〉
〈θ1〉 gcomp(a, η[s7→δb], δ) ⇒ 〈θ2〉
〈θ2〉 gcomp(b, η, δb) ⇒ 〈θ〉
〈θ0〉 gcomp((a, b), η, δ) ⇒ 〈θ〉

(IfThenElse)

〈θ0〉 bb_newn(2) ⇒ [δt, δe] 〈θ1〉
〈θ1〉 gcomp(a, η[s7→δt, f 7→δe], δ) ⇒ 〈θ2〉
〈θ2〉 gcomp(then, η, δt) ⇒ 〈θ3〉 〈θ3〉 gcomp(else, η, δe) ⇒ 〈θ〉

〈θ0〉 gcomp((a → then ; else), η, δ) ⇒ 〈θ〉

(True)
〈θ0〉 emit(goto η(s), δ) ⇒ 〈θ〉
〈θ0〉 gcomp(true, η, δ) ⇒ 〈θ〉

(Fail)
〈θ0〉 emit(goto η(f), δ) ⇒ 〈θ〉
〈θ0〉 gcomp(fail, η, δ) ⇒ 〈θ〉

Figure 5.5: Control compilation rules.

Compilation of Goals

The compilation of goals is described by the rule 〈θ0〉 gcomp(goal, η, δ) ⇒ 〈 θ〉.
η is a mapping which goes from continuation identifiers (e.g., s for the success
continuation, f for the failure continuation, and possibly more identifiers for other
continuations, such as those needed for exceptions) to basic blocks identifiers.
Therefore η(s) and η(f) denote the continuation addresses in case of success (resp.
failure) of goal. The compilation state θ is obtained from θ0 by appending the
generated code for goal to the δ basic block, and optionally introducing more
basic blocks connected by the continuations associated to them.

The rules for the compilation of control are presented in Figure 5.5. We
will assume some predefined operations to request a new basic block identifier
(bb_new) and a list of new identifiers (bb_newn), and to add a C sentence to a
given basic block (emit). The conjunction (a, b) is translated by rule (Conj) by
reclaiming a new new basic block identifier δb for the subgoal b, generating code
for a in the target δ, using as success continuation δb, and then generating code
for b in δb. The construct (a → b ; c) is similarly compiled by the (IfThenElse)
rule. The compilation of a takes place using as success and failure continuations
the basic block identifiers where b and c are emitted, respectively. Then, the
process continues by compiling both b and c using the original continuations.
The goals true and fail are compiled by emitting a jump statement (goto _) that
goes directly to the success and failure continuation (rules (True) and (Fail)).

109

5.3. The imProlog Language

As stated in Section 5.3.2, there is no compilation rule for disjunctions (a
; b). Nevertheless, program transformations can change them into if-then-else
structures, following the constraints on the input language. E.g., (X = 1 ; X
= 2) is accepted if X is ground on entry, since the code can be translated into
the equivalent (X = 1 → true ; X = 2 → true). It will not be accepted if X is
unbound, since the if-then-else code and the initial disjunction are not equivalent.

Note that since continuations are taken using C goto _ statements, there is a
great deal of freedom in the physical ordering of the basic blocks in the program.
The current implementation emits code in an order roughly corresponding to the
source program, but it has internal data structures which make it easy to change
this order. Note that different orderings can impact performance, by, for example,
changing code locality, affecting how the processor speculative execution units
perform, and changing which goto _ statements which jump to an immediate
label can be simplified by the compiler.

Compilation of Goal Calls

External predicates explicitly defined in C and user predicates compiled to C code
have both the same external interface. Thus we use the same call compilation
rules for them.

Predicates that may fail are mapped to functions with boolean return types
(indicating success / failure), and those which cannot fail are mapped to proce-
dures (with no return result – as explained later in Section 5.3.4). Figure 5.6
shows the rules to compile calls to external or user predicates. Function arg-
pass(f /n) returns the list [r 1, ..., rn] of argument passing modes for predicate
f /n. Depending on argmode(f /n, i) (see Section 5.3.3) , r i is val_rval for in or
ref_rval for out. Using the translation in Table 5.1, the C expression for each vari-
able is given as r iJa iK. Taking the C identifier assigned to predicate (c_id(f /n)),
we have all the pieces to perform the call. If the predicate is semi-deterministic
(i.e., it either fails or gives a single solution), the (Call-S) rule emits code that
checks the return value and jumps to the success or failure continuation. If the
predicate is deterministic, the (Call-D) rule emits code that continues at the
success continuation. To reuse those code generation patterns, rules (Emit-S)
and (Emit-D) are defined.

110

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

(Call-S)

semidet(f /n)
[r 1, ..., rn] = argpass(f /n)
∀i=1..n ci = r iJa iK
cf = c_id(f /n) 〈θ0〉 emit_s(cf(c1, ..., cn), η, δ) ⇒ 〈θ〉

〈θ0〉 gcomp(f (a1, ..., an), η, δ) ⇒ 〈θ〉

(Emit-S)
〈θ0〉 emit(if (expr) goto η(s); else goto η(f); , δ) ⇒ 〈θ〉

〈θ0〉 emit_s(expr, η, δ) ⇒ 〈θ〉

(Call-D)

det(f /n)
[r 1, ..., rn] = argpass(f /n)
∀i=1..n ci = r iJa iK
cf = c_id(f /n) 〈θ0〉 emit_d(cf(c1, ..., cn), η, δ) ⇒ 〈θ〉

〈θ0〉 gcomp(f (a1, ..., an), η, δ) ⇒ 〈θ〉

(Emit-D)

〈θ0〉 emit(stat, δ) ⇒ 〈θ1〉
〈θ1〉 emit(goto η(s), δ) ⇒ 〈θ〉
〈θ0〉 emit_d(stat, η, δ) ⇒ 〈θ〉

Figure 5.6: Compilation of calls.

(Unify-FG)

var(a) var(b) β ` fresh(a) β ` ground(b)
ca = val_lvalJaK cb = val_rvalJbK
〈θ0〉 emit_d(ca=cb, η, δ) ⇒ 〈θ〉
〈θ0〉 gcomp(bβca = b, η, δ) ⇒ 〈θ〉

(Unify-GG)

var(a) var(b) β ` ground(a) β ` ground(b)
ca = val_rvalJaK cb = val_rvalJbK
〈θ0〉 emit_s(ca==cb, η, δ) ⇒ 〈θ〉

〈θ0〉 gcomp(bβca = b, η, δ) ⇒ 〈θ〉

(Instance-FC)

var(a) cons(b) β ` fresh(a)
ca = val_lvalJaK cb = encodecons(b, encodingtype(a))
〈θ0〉 emit_d(ca=cb, η, δ) ⇒ 〈θ〉

〈θ0〉 gcomp(bβca = b, η, δ) ⇒ 〈θ〉

Figure 5.7: Unification compilation rules.

Compilation of Built-in Calls

When compiling goal calls, we distinguish the special case of built-ins, which are
natively understood by the imProlog compiler and which treats them specially.

111

5.3. The imProlog Language

(InitMut)

var(a) β ` fresh(a) refmode(a) = 0m
〈θ0〉 gcomp(a ⇐ b, η, δ) ⇒ 〈θ〉
〈θ0〉 gcomp(a = initmut(τ , b), η, δ) ⇒ 〈θ〉

(AssignMut)

var(a) β ` ground(a) β ` a:mut(_)
var(b) β ` ground(b)
ca = mutval/val_lvalJaK
cb = val_rvalJbK
〈θ0〉 emit_d(ca=cb, η, δ) ⇒ 〈θ〉
〈θ0〉 gcomp(a ⇐ b, η, δ) ⇒ 〈θ〉

(ReadMut)

var(a) β ` ground(a) β ` a:mut(_) β ` ground(a@)
var(b) β ` fresh(b)
ca = mutval/val_rvalJaK
cb = val_lvalJbK
〈θ0〉 emit_d(cb=ca, η, δ) ⇒ 〈θ〉

〈θ0〉 gcomp(b = a@, η, δ) ⇒ 〈θ〉

Figure 5.8: Compilation rules for mutable operations.

The unification a = b is handled as shown in Figure 5.7. If a is a fresh variable
and b is ground (resp. for the symmetrical case), the (Unify-FG) rule specifies a
translation that generates an assignment statement that copies the value stored in
b into a (using the translation for their r-value and l-value, respectively). When
a and b are both ground, the built-in is translated into a comparison of their
values (rule (Unify-GG)). When a is a variable and b is a constant, the built-in
is translated into an assignment statement that copies the C value encoded from
b, using the encoding type required by a, into a (rule (Instance-FC)). Note
that although full unification may be assumed during program transformations
and analysis, it must be ultimately reduced to one of the cases above. Limiting
to the simpler cases is expected, in order to avoid bootstrapping problems when
defining the full unification in imProlog as part of the emulator definition.

The compilation rules for operations on mutable variables are defined in Fig-
ure 5.8. The initialization of a mutable a = initmut(τ , b) (rule (InitMut)) is
compiled as a mutable assignment, but limited to the case where the reference
mode of a is 0m (that is, it has been inferred that it will be a local muta-
ble variable). The built-in a ⇐ b is translated into an assignment statement

112

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

(Pred-D)
det(name) ([a1, ..., an], body) = lookup(name)
θ0 = bb_empty
〈θ3〉 bb_newn(2) ⇒ [δ, δs] 〈θ4〉
〈θ4〉 gcomp(body, [s 7→δs], δ) ⇒ 〈θ5〉
〈θ5〉 emit(return, δs) ⇒ 〈θ〉
cf = c_id(name)
argdecls = argdecls([a1, ..., an]) vardecls = vardecls(body) code = bb_code(δ, θ)
〈p0〉 emitdecl(void cf(argdecls) { vardecls; code }) ⇒ 〈p〉

〈p0〉 pcomp(name) ⇒ 〈p〉

(Pred-S)
semidet(name) ([a1, ..., an], body) = lookup(name)
θ0 = bb_empty
〈θ3〉 bb_newn(3) ⇒ [δ, δs, δf] 〈θ4〉
〈θ4〉 gcomp(body, [s 7→δs, f 7→δf], δ) ⇒ 〈θ5〉
〈θ5〉 emit(return TRUE, δs) ⇒ 〈θ6〉
〈θ6〉 emit(return FALSE, δf) ⇒ 〈θ〉
cf = c_id(name)
argdecls = argdecls([a1, ..., an]) vardecls = vardecls(body) code = bb_code(δ, θ)
〈p0〉 emitdecl(bool cf(argdecls) { vardecls; code }) ⇒ 〈p〉

〈p0〉 pcomp(name) ⇒ 〈p〉

Figure 5.9: Predicate compilation rules.

(rule (AssignMut)), that copies the value of b as the mutable value of a. The
(ReadMut) rule defines the translation of b = a@, an assignment statement
that copies the value stored in the mutable value of a into b, which must be a
fresh variable. Note that the case x = a@ where x is not fresh can be reduced to
(t = a@, x = t), with t a new variable, for which compilation rules exist.

Compilation of Predicates

The rules in the previous sections defined how goals are compiled. In this sections
we will use those rules to compile predicates as C functions. Figure 5.9 provides
rules that distinguish between deterministic and semi-deterministic predicates.
For a predicate with name = f /n, the lookup(name) function returns its argu-
ments and body. The information from analysis of encoding types and reference

113

5.3. The imProlog Language

modes (Section 5.3.3) is used by argdecls and vardecls to obtain the list of argu-
ment and variable declarations for the program. On the other hand, bb_code
is a predefined operation that flattens the basic blocks in its second argument θ
as a C block composed of labels and statements. Finally, the emitdecl operation
is responsible for inserting the function declarations in the compilation output
p. Those definitions are used in the (Pred-D) and (Pred-S) rules. The for-
mer compiles deterministic predicates by binding a single success to a return

statement, and emits a C function returning no value. The latter compiles semi-
deterministic predicates by binding the continuations to code that returns a true
or false value depending on the success and failure status. Note that this code
matches exactly the scheme needed in Section 5.3.4 to perform calls to imProlog
predicates compiled as C functions.

A Compilation Example

In order to clarify how the previous rules generate code, we include here a short
code snippet (Figure 5.10) with several types of variables accessed both from
the scope of their first appearance, and from outside that frame. We show also
how this code is compiled into two C functions. Note that redundant jumps
and labels have been simplified. It is composed of an encoding type definition
flag/1, two predicates that are compiled to C functions (p/1 semi-deterministic,
swmflag/1 deterministic), and two predicates with annotations to unfold the code
during preprocessing (mflag/2 and swflag/2). Note that by unfolding the mflag/2
predicate, an illegal code (passing a reference to a local mutable) becomes legal.
Indeed, this kind of predicate unfolding has proved to be a good, manageable
replacement for the macros which usually appear in emulators written in lower-
level languages and which are often a source of mistakes.

Related Compilation Schemes

Another compilation scheme which produces similar code is described in [HS02].
There are, however, significant differences, of which we will mention just a few.
One of them is the source language and the constraints imposed on it. In our
case we aim at writing a WAM emulator in imProlog from which C code is gen-

114

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

Source:

:– regtype flag/1 + low(int32).
flag := off | on.
:– pred p(+I) :: flag.
p(I) :–

mflag(I, A),
A = B,
swmflag(B),
A@ = on.

:– pred mflag/2 + unfold.
mflag(I, X) :–

X = initmut(flag, I).
:– pred swmflag(+I) :: mut(flag).
swmflag(X) :–

swflag(X@, X 2),
X ⇐ X 2.

:– pred swflag/2 + unfold.
swflag(on, off).
swflag(off, on).

Output:

bool p(int32 i) {

int32 a;

int32 *b;

int32 t;

b = &a;

swmflag(b);

t = a;

if (t == 1) goto l1; else goto l2;

l1: return TRUE;

l2: return FALSE;

}

void smwflag(int32 *x) {

int32 t;

int32 x2;

t = *x;

if (t == 1) goto l1; else goto l2;

l1: x2 = 0;

goto l3;

l2: x2 = 1;

l3: *x = x2;

return;

}

Figure 5.10: imProlog compilation example

erated with the constraint that it has to be identical (or, at least, very close)
to a hand-written and hand-optimized one, including the implementation of the
internal data structures. This has forced us to pay special attention to the com-
pilation and placement of data, mutable variables, and ignore at this moment
non-deterministic control. Also, in this work we use an intermediate representa-
tion based on basic blocks, which would make it easier to interface with internal
back-ends for compilers other than GCC, such as LLVM [LA04] (which enables
JIT compilation from the same representation).

115

5.4. Extensions for Emulator Generation in imProlog

5.4 Extensions for Emulator Generation in imProlog

The dialect and compilation process that has been described so far is general
enough to express the instructions in a typical WAM emulator, given some ba-
sic built-ins about operations on data types, memory stacks, and O.S. interface.
However, combining those pieces of code together to build an efficient emulator
requires a compact encoding of the bytecode language, and a bytecode fetching
and dispatching loop that usually needs a tight control on low-level data and
operations that we have not included in the imProlog language. In Chapter 4
we showed that it is possible to automate the generation of the emulator from
generic instruction definitions, and annotations stating how the bytecode is en-
coded and decoded. Moreover, this process was found to be highly mechanizable,
while making instruction code easier to manage and other optimizations (such as
instruction merging) easier to perform. In this section we show how this approach
is integrated in the compilation process, by including the emulator generation as
part of the compilation process.

5.4.1 Defining WAM Instructions in imProlog

The definition of every WAM instruction in imProlog looks just like a regular
predicate, and the types, modes, etc. of each of their arguments have to be de-
clared using (Ciao) assertions. As an example, Figure 5.11 shows imProlog code
corresponding to the definition of an instruction which tries to unify a term and
a constant. The pred declaration states that the first argument is a mutable
variable and that the second is a tagged word containing a constant. It includes
a sample implementation of the WAM dereference operation, which follows a ref-
erence chain and stops when the value pointed to is the same as the pointing
term, or when the chain cannot be followed any more. Note the use of the native
type tagged/2 and the operations tagof/2 and tagval/2 which access the tag and
the associated value of a tagged word, respectively. Also note that the tagval/2 of
a tagged word with ref results in a mutable variable, as can be recognized in the
code. Other native operations include trail_cond/1, trail_push/1, and operations
to manage the emulator stacks. Note the special predicates next_ins and fail_ins.
They execute the next instruction or the failure instruction, respectively. The
purpose of the next instruction is to continue the emulation of the next bytecode

116

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

:– pred u_cons(+, +) :: mut(tagged) * constagged.
u_cons(A, Cons) :–

deref(A@, T d),
(tagof(T d, ref) → bind_cons(T d, Cons), next_ins
; T d = Cons → next_ins
; fail_ins
).

:– pred deref/2.
deref(T, T d) :–

(tagof(T, ref) →
T 1 = ∼tagval(T)@,
(T = T 1 → T d = T 1 ; deref(T 1, T d))

; T d = T
).

:– pred bind/2.
bind_cons(Var, Cons) :–

(trail_cond(Var) → trail_push(Var) ; true),
∼tagval(Var) ⇐ Cons.

Figure 5.11: Unification with a constant and auxiliary definitions.

instruction (which can be considered as a recursive call to the emulator itself, but
which will be defined as a built-in). The failure instruction must take care of un-
winding the stacks at the WAM level and selecting the next bytecode instruction
to execute (to implement the failure in the emulator). As a usual instruction, it
can be defined by calling built-ins or other imProlog code, and it should finally
include a call to next_ins to continue the emulation. Since this instruction is
often invoked from other instructions, a special treatment is given to share its
code, which will be described later.

The compilation process is able to unfold (if so desired) the definition of the
predicates called by u_cons/2 and to propagate information from them inside

117

5.4. Extensions for Emulator Generation in imProlog

the instruction, in order to optimize the resulting piece of the emulator. After
the set of transformations that instruction definitions are subject to, and other
optimizations on the output (such as transformation of some recursions into loops)
the generated C code is of high quality (see, for example, Figure 5.14, for the code
corresponding to a specialization of this instruction).

Our approach has been to define a reduced number of instructions (50 is a
ballpark figure) and let the merging and specialization process (see Section 5.5)
generate all instructions needed to have a competitive emulator. Note that effi-
cient emulators tend to have a large number of instructions (hundreds, or even
thousands, in the case of Quintus Prolog) and many of them are variations (ob-
tained through specialization, merging, etc., normally done manually) on “com-
mon blocks.” These common blocks are the simple instructions we aim at repre-
senting explicitly in imProlog.

In the experiments we performed (Section 5.5.3) the emulator with a largest
number of instructions had 199 different opcodes (not counting those which result
from padding some other instruction with zeroes to ensure a correct alignment
in memory). A simple instruction set is easier to maintain and its consistency
is easier to ensure. Complex instructions are generated automatically in a (by
construction) sound way from this initial “seed”.

5.4.2 An Emulator Specification in imProlog

Although imProlog could be powerful enough to describe the emulation loop,
as mentioned before we leverage on previous work in which Lc emulators were
automatically built from definitions of instructions written in La and their cor-
responding code written in Lc(Chapter 4). Bytecode representation, compiler
back-end, and an emulator (including the emulator loop) able to understand Lb
code can be automatically generated from those components. In our current set-
ting, definitions for La instructions are written in Lrs (recall Figure 5.2) and these
definitions can be automatically translated into Lc by the imProlog compiler. We
are thus spared of making this compiler more complex than needed. More details
on this process will be given in the following section.

118

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

mgen

La emulator
Er:Lrs
source codeBytecode

definitions

Instruction def-
initions in Lrs

MachineM
Menc

Mdec

MargI

Mins′

MdefI

Menc

Mins′ La to Lb
back-end

...
Ls to Lb compiler

emucomp
Mdec

MargI

Mins′

MdefI

Lb emulator
Er:Lc
low level code

Figure 5.12: From imProlog definitions to Lb emulator in Lc.

5.4.3 Assembling the Emulator

We will describe now the process that takes an imProlog representation of an
abstract machine and obtains a full-fledged implementation of this machine. The
overall process is sketched in Figure 5.12, and can be divided into two stages,
which we have termed mgen and emucomp. The emulator definition, E , is a set
of predicates and assertions written in imProlog, and mgen is basically a normal-
ization process where the source E is processed to obtain a machine definitionM.
This definition contains components describing the instruction semantics written
in imProlog and a set of hints about the bytecode representation (e.g., numbers
for the bytecode instructions). M is then processed by an emulator compiler
emucomp which generates a bytecode emulator for the language Lb, written in
the language Lc. The machinery to encode La programs into the bytecode rep-
resentation Lb is also given by definitions inM.

We use the terminology described in Chapter 4 to denote the components of
M as follows:

M = (Menc,Mdec,MargI
,MdefI

,Mins′)

Firstly, the relation between La and Lb is given by means of several compo-
nents:12

12The complete description includes all elements for a WAM: X and Y registers, atoms, num-
bers, functors, etc.

119

5.4. Extensions for Emulator Generation in imProlog

Menc declares how the bytecode encodes La instructions and data: e.g., X(0) is
encoded as the number 0 for an instruction which needs access to some X

register.

Mdec declares how the bytecode should be decoded to give back the initial in-
struction format in La: e.g., for an instruction which uses as argument an
X register, a 0 means X(0).

The rest of the components of M capture the meaning of the (rather low
level) constituents of La, providing a description of each instruction. Those com-
ponents do not make bytecode representation issues explicit, as they have already
been specified in Menc andMdec. In this chapter, and unlike the formalization
presented in Chapter 4, definitions for La instructions are given in Lrs instead
of Lc. The reason for this change is that in Chapter 4 the final implementa-
tion language (Lc, in which emulators were generated) was also the language in
which each basic instruction was assumed to be written. However, in our case,
instructions are obviously written in Lrs (i.e., imProlog, which is more amenable
to automatic program transformations) and it makes more sense to use it directly
in the definition ofM. Using Lrs requires, however, extending and/or modifying
the remaining parts ofM with respect to the original definition as follows:

MargI
which assigns a pair (T,mem) to every expression in La, where T is the

type of the expression and mem is the translation of the expression into Lc.
For example, the type of X(0) is mut(tagged) and its memory location is
&(x[0]), assuming X registers end up in an array.13

MdefI which contains the definition of each instruction in Lrs.

Mins′ which describes the instruction set with opcode numbers and the format
of each instruction, i.e., the type in La for each instruction argument: e.g.,
X registers, Y registers, integers, atoms, functors.

The rest of the components andMins′ are used by the emulator compiler to
generate an Lb emulator written in Lc. A summarized definition of the emulator

13This definition has been expanded with respect to its originalMarg definition in order to
include the imProlog type in addition to the memory location.

120

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

compiler and how it uses the different pieces inM can be found in Figure 5.13.
The (Emu) rule defines a function that contains the emulator loop. It is similar
to the (Pred-D) rule already presented, but takes parts of the source code from
M. It generates a list of basic block identifiers for each instruction, and a basic
block identifier for the emulator loop entry. The (Swr) rule is used to insert a
switch statement that implements the opcode fetching, and jumps to the code of
each instruction. The (Ins) rule is used to generate the code for each instruction.
To implement the built-ins next_ins and fail_ins, two special continuations ni
and fi are stored in the continuation mapping. The continuation to the failure
instruction is bound to the δf basic block identifier (assuming that the opf opcode
is that of the failure instruction). The (FailIns) rule includes a special case in
gcomp that implements this call. The continuation to the next instruction is a
pair of the basic block that begins the emulator switch, and a piece of C code
that moves the bytecode pointer to the next instruction (that is particular to each
instruction, and is returned by insdef alongside with its code). The (NextIns)
rule emits code that executes that code and jumps to opcode fetching.

The abstract machine componentMins′ is used to obtain the name and data
format of the instruction identified by a given opcode. From the format andMargI

definition, a type, an encoding type, and a custom r-value for each instruction
argument are filled. In this way, the compilation process can transparently work
with variables whose value is defined from the operand information in a bytecode
stream (e.g., an integer, a machine register, etc.).

Relation with Other Compilation Schemes. The scheme of the generated
emulator code is somewhat similar to what the Janus compilation scheme [GBD92]
produces for general programs. In Janus, addresses for continuations are either
known statically (e.g., for calls, and therefore a direct, static jump to a label can
be performed) or are popped from the stack when returning. Since labels cannot
be directly assigned to variables in standard C, an implementation workaround
is made by assigning a number to each possible return address (and it is this
number which is pushed onto / popped from the stack) and using a switch to
relate these numbers with the code executing them. In our case we have a similar
switch, but it relates each opcode with its corresponding instruction code, and it
is executed every time a new instruction is dispatched.

121

5.4. Extensions for Emulator Generation in imProlog

(Emu)

Mops = [op1, ..., opn]
θ0 = bb_empty
〈θ0〉 bb_newn(n + 1) ⇒ [δ, δ1, ..., δn] 〈θ1〉
〈θ1〉 emit_switch(get_opcode(),Mops, [δ1, ..., δn], δ) ⇒ 〈θ2〉
〈θ2〉 ∀i=1..n inscomp(opi, δ, δi, [fi7→δf]) 〈θ〉
code = bb_code(δ, θ)
〈p0〉 emitdecl(void emu() { code }) ⇒ 〈p〉

〈p0〉 emucomp ⇒ 〈p〉

(Swr)
〈θ0〉 emit(switch (x) {case v 1: goto δ1; ...; case vn: goto δn; }, δ) ⇒ 〈θ〉

〈θ0〉 emit_switch(x, [v 1, ..., vn], [δ1, ..., δn], δ) ⇒ 〈θ〉

(Ins)

(body, nextp) = insdef(opcode)
〈θ2〉 gcomp(body, η[ni7→(δ0, nextp)], δ) ⇒ 〈θ〉
〈θ0〉 inscomp(opcode, δ0, δ, η) ⇒ 〈θ〉

(NextIns)

(δs, nextp) = η(ni)
〈θ0〉 emit(nextp, δ) ⇒ 〈θ1〉
〈θ1〉 emit(goto δs, δ) ⇒ 〈θ〉

〈θ0〉 gcomp(next_ins, η, δ) ⇒ 〈θ〉
(FailIns)

δs = η(fi)
〈θ0〉 emit(goto δs, δ) ⇒ 〈θ〉

〈θ0〉 gcomp(fail_ins, η, δ) ⇒ 〈θ〉

Figure 5.13: Emulator compiler.

We want to note that we deliberately stay within standard C in this presenta-
tion: taking advantage of C extensions, such as storing labels in variables, which
are provided by gcc and used, for example, in [HCS95, CD95], is out of the scope
of this paper. These optimizations are not difficult to add as code generation
options, and therefore they should not be part of a basic scheme. Besides, that
would make it difficult to use compilers other than gcc.

Example 5.4.1: As an example, from the instruction in Figure 5.11, which
unifies a term living in some variable with a constant, we can derive a specialized
version in which the term is assumed to live in an X register. The declaration:

122

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

:– ins_alias(ux_cons, u_cons(xreg_mutable, constagged)).

assigns the (symbolic) name ux_cons to the new instruction, and specifies that
the first argument lives in an X register. The declaration:

:– ins_entry(ux_cons).

indicates that the emulator has an entry for that instruction.14 Figure 5.14 shows
the code generated for the instruction (right) and a fragment of the emulator
generated by the emulator compiler in Figure 5.13.

5.5 Automatic Generation of Abstract Machine Variations

Using the techniques described in the previous section we now address how ab-
stract machine variations can be generated automatically. Substantial work has
been devoted to abstract machine generation strategies such as, e.g., [DN00,
NCS01, CZ07], which explore different design variations with the objective of
putting together highly optimized emulators. However, as shown previously, by
making the semantics of the abstract machine instructions explicit in a language
like imProlog, which is easily amenable to automatic processing, such variations
can be formulated in a straightforward way mostly as automatic transformations.
Adding new transformation rules and testing them together with the existing
ones becomes then a relatively easy task.

We will briefly describe some of these transformations, which will be experi-
mentally evaluated in Section 5.5.3. Each transformation is identified by a two-
letter code. We make a distinction between transformations which change the
instruction set (by creating new instructions) and those which only affect the
way code is generated.

14We optionally allow a pre-assignment of an opcode number to each instruction entry. Dif-
ferent assignments of instruction numbers to opcodes can impact the final performance, as they
dictate how the code is laid out in the emulator switch which affects, for example, the behavior
of the cache.

123

5.5. Automatic Generation of Abstract Machine Variations

1 loop:

2 switch(Op(short,P,0)) {

3 ...

4 case 97: goto ux_cons;

5 ...

6 }

7 ...

8 ux_cons:

9 tagged t;

10 t = X(Op(short,P,2));

11 deref(&t);

12 if (tagged_tag(t) != REF)

13 goto ux_cons__0;

14 bind_cons(t, Op(tagged,P,4));

15 goto ux_cons__1;

16 ux_cons__0:

17 if (t != Op(tagged,P,4))

18 goto fail_ins;

19 ux_cons__1:

20 P = Skip(P,8);

21 goto loop;

22 ...

1 void deref(tagged_t *a0) {

2 tagged_t t0;

3 deref:

4 if (tagged_tag(*a0) == REF)

5 goto deref__0;

6 else goto deref__1;

7 deref__0:

8 t0 = *(tagged_val(*a0));

9 if ((*a0) != t0)

10 goto deref__2;

11 else goto deref__1;

12 deref__2:

13 *a0 = t0;

14 goto deref;

15 deref__1:

16 return;

17 }

Figure 5.14: Code generated for a simple instruction.

5.5.1 Instruction Set Transformations

Let us define an instruction set transformation as a pair (ptrans,etrans), so that
ptrans transforms programs from two symbolic bytecode languages La and (a
possibly different) La’ 15 and etrans transforms the abstract machine definition
within Lrs. Figure 5.15 depicts the relation between emulator generation, program
compilation, program execution, and instruction set transformations. The full
emulator generation includes etrans as preprocessing before mgen is performed.
The resulting emulator is able to interpret transformed programs after ptrans
is applied (before bytecode encoding), that is, the new compiler is obtained by
including ptrans as a new compilation phase.

15Those languages can be different, for example, if the transformation adds or removes some
instructions

124

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

E M L emu prgB B
encode

prg A

ptransetrans

Mmgen emucomp

E’ M’ L emu prgB’ B’ encode
prg A’

M’

mgen
emucomp

emulator
generation

program
execution

program
compilation

initial state final state

prg P

front-end
compiler

Figure 5.15: Application of an instruction set transformation (ptrans, etrans).

Note that both ptrans and etrans are working at the symbolic bytecode level.
It is easier to work with a symbolic La program than with the stream of bytes that
represents Lb code, and it is easier to transform instructions written in Lrs and
specified at the La level, than those already written in Lc code (where references
to Lb code and implementation details obscure the actual semantics). Reasoning
about the correctness of the global transformation that affects the La program
and the instruction code is also easier in the Lrs specification of the emulator
instructions than in a low-level Lc emulator (assuming the correctness of the
emulator generation process).

In the following sections we will review the instruction set transformations
currently available. Although more transformations can of course be applied,
the current set is designed with the aim of generating, from simple imProlog
definitions, an emulator which is as efficient as a hand-crafted, carefully tuned
one.

Instruction Merging [im]

Instruction Merging generates larger instructions from sequences of smaller ones,
and is aimed at saving fetch cycles at the expense of a larger instruction set and,
therefore, an increased switch size. This technique has been used extensively in
high-performance systems (e.g., Quintus Prolog, SICStus, Yap, etc.). The per-
formance of different combinations has been studied empirically [NCS01], but in

125

5.5. Automatic Generation of Abstract Machine Variations

that work new instructions were generated by hand, although deciding which in-
structions had to be created was done by means of profiling. In our framework
only a single declaration is needed to emit code for a new, merged instruction.
Merging is done automatically through code unfolding and based on the defini-
tions of the component instructions. This makes it possible, in principle, to define
a set of (experimentally) optimal merging rules. However, finding exactly this set
of rules is actually not straightforward.

Merging rules are specified separately from the instruction code itself, and
these rules state how basic instructions have to be combined. To start with, we
will need to show how instructions are defined based on their abstract versions.
For example, definition:

move(A, B) :– B ⇐ A@ .

moves data between two locations, i.e., the contents of the a mutable into the b
mutable. In order to specify precisely the source and destination of the data, it
is necessary to specify the instruction format, with a declaration such as:

:– ins_alias(movexy, move(xreg_mutable, yreg_mutable)).

which defines a virtual instruction named movexy, that corresponds to the instan-
tiation of the code for move/2 for the case in which the first argument corresponds
to an X register and the second one corresponds to a Y register. Both registers
are seen from imProlog as mutable variables of type mut(tagged). Then, and
based on this more concrete instruction, the declaration

:– ins_entry(movexy + movexy).

forces the compiler to actually use during compilation an instruction composed
of two virtual ones and to emit bytecode containing it (thanks to the ptrans
transformation in Figure 5.15, which processes the program instruction sequence
to replace occurrences of the collapsed pattern by the new instruction). Emulator
code will be generated implementing an instruction which merges two movexy
instructions (thanks to the etrans transformation). The corresponding code is
equivalent to:

126

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

:– ins_entry(movexy_movexy).
:– pred movexy_movexy(xreg_mutable, yreg_mutable,

xreg_mutable, yreg_mutable).
movexy_movexy(A, B, C, D) :– B ⇐ A@, D ⇐ C@ .

This can later be subject to other transformations and used to generate em-
ulator code as any other imProlog instruction.

Single-Instruction Encoding of Sequences of the Same Instruction [ie]

In some cases a series of similar instructions (e.g., unify_with_void) with differ-
ent arguments can be collapsed into a single instruction with a series of operands
which correspond to the arguments of each of the initial instructions. For exam-
ple, a bytecode sequence such as:

unify_with_void(x(1)), unify_with_void(x(2)),
unify_with_void(x(5))

can be compiled into:

unify_with_void_n([x(1), x(2), x(5)])

which would perform exactly as in the initial instruction series, but taking less
space and needing fewer fetch cycles. Such an instruction can be created, emit-
ted, and the corresponding emulator code generated automatically based on the
definition of unify_with_void.

In order to express this composite instruction within imProlog using a single
predicate, unify_with_void_n needs to receive a fixed number of arguments. A
different predicate for each of the possible lengths of the array would have to
be generated otherwise. A single argument actually suffices; hence the square
brackets, which are meant to denote an array.

The imProlog code which corresponds to the newly generated instruction is,
conceptually, as follows:

127

5.5. Automatic Generation of Abstract Machine Variations

unify_with_void_n(Array) :–
array_len(Array, L),
unify_with_void_n_2(0, L, Array).

unify_with_void_n_2(I, L, Array) :–
(I = L → true
; elem(I, Array, E),
unify_with_void(E),
I 1 is I + 1,
unify_with_void_n_2(I 1, L, Array)

).

It should be clear here why a fixed number of arguments is needed: a series
of unify_with_void_n/1, unify_with_void_n/2, etc. would have to be generated
otherwise. Note that the loop code ultimately calls unify_with_void/1, the Lrs
reflection of the initial instruction.

In this particular case the compiler to Lc performs some optimizations not
captured in the previous code. For example, instead of traversing explicitly the
array with an index, this array is expanded and inlined in the bytecode and the
program counter is used to retrieve the indexes of the registers by incrementing
it after every access. As the length of the array is known when the bytecode is
generated, it is actually explicitly encoded in the final bytecode. Therefore, all of
the newly introduced operations (array_len/2, elem/3, etc.) need constant time
and are compiled efficiently.

Instructions for Special Built-Ins [ib]

As mentioned before, calling external library code or internal predicates (clas-
sically termed “built-ins”) requires following a protocol, to pass the arguments,
to check for failure, etc. Although the protocol can be the same as for normal
predicates (e.g., passing arguments as X registers), some built-ins require a spe-
cial (more efficient) protocol (e.g. passing arguments as Lc arguments, avoiding
movements in X registers). Calling those special built-ins is, by default, taken
care of by a generic family of instructions, one per arity. This is represented as
the instructions:

128

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

:– ins_alias(bltin1d, bltin1(bltindet(tagged), xreg)).
bltin1(BltName, A) :– BltName(A@).
:– ins_alias(bltin2d, bltin2(bltindet(tagged, tagged), xreg, xreg)).
bltin2(BltName, A, B) :– BltName(A@, B@).

where each bltinI/i + 1 acts as a bridge to call the external code expecting i param-
eters. The BltName argument represents a predicate abstraction that will contain
a reference to the actual code of the built-in during the execution. The type of the
BltName argument reflects the accepted calling pattern of the predicate abstrac-
tion. When compiling those instructions to Lc code, that predicate abstraction
is efficiently translated as an unboxed pointer to an Lc procedure.16 With the
definition shown above, the imProlog compiler can generate, for different arities,
an instruction which calls the built-in passed as first argument.

However, by specifying at compile time a predefined set of built-ins or predi-
cates written in Lc (that is, a static value for BltName instead of a dynamic value),
the corresponding instructions can be statically specialized and an instruction set
which performs direct calls to the corresponding built-ins can be generated. This
saves an operand, generating slightly smaller code, and replaces an indirection
by a direct call, which saves memory accesses and helps the processor pipeline,
producing faster code.

5.5.2 Transformations of Instruction Code

Some transformations do not create new instructions; they perform instead a
number of optimizations on already existing instructions by manipulating the
code or by applying selectively alternative translation schemes.

16In the bytecode, the argument that corresponds to the predicate abstraction is stored as a
number that uniquely identifies the built-in. When the bytecode is actually loaded, this number
is used to look up the actual address of the built-in in a table maintained at runtime. This is
needed since, in general, there is no way to know which address will be assigned to the entry
point of a given built-in in different program executions.

129

5.5. Automatic Generation of Abstract Machine Variations

Unfolding Rules [ur]

Simple predicates can be unfolded before compilation. In the case of instruction
merging, unfolding is used to merge two (or more) instructions into a single piece
of code, in order to avoid fetch cycles (Section 5.5.1). However, uncontrolled un-
folding is not always an advantage, because an increased emulator size can affect
negatively the cache behavior. Therefore the ur option turns on or off a prede-
fined set of rules to control which instruction mergings are actually performed.
Unfolding rules follow the scheme:

:– ins_entry(Ins1 + Ins2 + ... + Insn, WhatToUnfold).

where Ins1 to Insn are the basic instructions to be merged, and WhatToUnfold
is a rule specifying exactly which instruction(s) has to be unfolded when ur is
activated. As a concrete example, the unfolding rule:

:– ins_entry(alloc + movexy + movexy, 1).

means that in the instruction to be generated by combining one alloc and two
movexy, the code for alloc is inlined (the value of the last argument 1 refers to the
first instruction in the sequence), and the (shared) code for movexy + movexy is
invoked afterwards. A companion instruction merging rule for movexy + movexy
exists:

:– ins_entry(movexy + movexy, all).

which states that the code for both movexy has to be unfolded in a combined
instruction. The instruction alloc + movexy + movexy would generate code for
alloc plus a call to movexy + movexy. The compiler eventually replaces this call
by an explicit jump to the location of movexy + movexy in the emulator. The
program counter is updated accordingly to access the arguments correctly.

Alternative Tag Switching Schemes [ts]

Tags are used to determine dynamically the type of basic data (atoms, struc-
tures, numbers, variables, etc.) contained in a (tagged) memory word. Many

130

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

instructions and built-ins (like unification) take different actions depending on
the type (or tag) of the input arguments. This is called tag switching, and it is a
heavily-used operation which is therefore worth optimizing as much as possible.
The tag is identified (and the corresponding action taken) using tag switching
such as:

(tagtest1 → tagcode1 ; ... ; tagtestn → tagcoden)

where every tagtest i has the form tagof(v, tag i) (i.e., code that performs a different
action depending on the tag value of a tagged v). The ts option chooses between
either a switch control structure (when enabled) or a set of predefined test patterns
based on tag encodings and assertions on the possible tags (when disabled).

Both possibilities are studied in more detail in [MCH08]. Since the numbers
that encode the tags are usually small, it is easy for a modern C compiler (e.g.,
gcc) to generate an indirection table and jump to the right code using it (that is,
it does not require a linear search). It is difficult, however, to make the C compiler
aware that checks to ensure that the tag number will actually be one of the cases
in the switch are, by construction, unnecessary (i.e., there is no need for a default
case). This information could be propagated to the compiler with a type system
which not all low-level languages have. The alternative compilation scheme (rule
(Tif)) makes explicit use of tag-checking primitives, where the sequence of ctest i
and the code of each branch depends on the particular case.

The latter approach is somewhat longer (and more complex as the number of
allowed tags grows) than the former. However, in some cases there are several
advantages to the latter, besides the already mentioned avoidance of boundary
checks:

• Tags with higher runtime probability can be checked before, in order to
select the right branch as soon as possible.

• Since the evaluation order is completely defined, tests can be specialized to
determine as fast as possible which alternative holds. For example, if by
initial assumption v can only be either a heap variable, a stack variable, or
a structure (having a different tag for each case), then the tests can check
if it is a heap variable or a stack variable and assume that it is a structure
in the last branch.

131

5.5. Automatic Generation of Abstract Machine Variations

Deciding on the best option has to be based on experimentation, the results
of which we summarize in Section 5.5.3 and in tables 5.4 and 5.5.

Connected Continuations [cc]

Some actions can be repeated unnecessarily because they appear at the end of
an operation and at the beginning of the next one. Often they have no effect the
second time they are called (because they are, e.g., tests which do not change
the tested data, or data movements). In the case of tests, for example, they are
bound to fail or succeed depending on what happened in the previous invocation.

As an example, in the fragment deref(T), (tagof(T, ref) → A ; B) the test
tagof(R, ref) is performed just before exiting deref/1 (see Figure 5.11). Code
generation for instructions which include similar patterns is able to insert a jump
either to A or B from the code generated for deref/1. This option enables or
disables this optimization for a series of preselected cases, by means of code
annotations similar to the ones already shown.

Read/Write Mode Specialization [rw]

WAM-based implementations use a flag to test whether heap structures are being
read (matched against) or written (created). According to the value of this flag,
which is set by code executed immediately before, several instructions adapt their
behavior with an internal, local if-then-else.

A common optimization is to partially evaluate the switch statement which
implements the fetch-and-execute cycle inside the emulator loop. Two differ-
ent switches can be generated, with the same structure, but with heap-related
instructions specialized to perform either reads or writes [Car91]. Enabling or
disabling the rw optimization makes it possible to generate instruction sets (and
emulators) where this transformation has been turned on or off.

This is conceptually performed by generating different versions of the instruc-
tions code depending on the value of a mutable variable mode, which can only
take the values read or write. Deciding whether to generate different code versions
or to generate if-then-elses to be checked at run-time is done based on a series of
heuristics which try to forecast the complexity and size of the resulting code.

132

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

5.5.3 Experimental Evaluation

We present in this section experimental data regarding the performance achieved
on a set of benchmarks by a collection of emulators, all of which were automat-
ically generated by selecting different combinations of the options presented in
previous sections. In particular, by using all compatible possibilities for the
transformation and generation options given in Section 5.5 we generated 96 dif-
ferent emulators (instead of 27 = 128, as not all options are independent; for ex-
ample, ie needs im to be performed). This bears a close relationship with [DN00],
but here we are not changing the internal data structure representation (and of
course our instructions are all initially coded in imProlog). It is also related to
the experiment reported in [NCS01], but the tests we perform are more extensive
and cover more variations on the kind of changes that the abstract machine is
subject to. Also, [NCS01] starts off by being selective about the instructions to
merge, which may seem a good idea but, given the very intricate dependencies
among different optimizations, can also result in a loss of optimization opportu-
nities. In any case, this is certainly a point we want to address in the future by
using instruction-level profiling.

Although most of the benchmarks we used are relatively well known, a brief
description follows:

boyer Simplified Boyer-Moore theorem prover kernel.

crypt Cryptoarithmetic puzzle involving multiplication.

deriv Symbolic derivation of polynomials.

factorial Compute the factorial of a number.

fib Simply recursive computation of the nth Fibonacci number.

knights Chess knight tour, visiting only once every board cell.

nreverse Naive reversal of a list using append.

poly Raises symbolically the expression 1 + x + y + z to the nth power.

primes Sieve of Eratosthenes.

133

5.5. Automatic Generation of Abstract Machine Variations

qsort Implementation of QuickSort.

queens11 N -Queens with N = 11.

query Makes a natural language query to a knowledge database with
information about country names, population, and area.

tak Computation of the Takeuchi function.

Our starting point was a “bare” instruction set comprising the common basic
blocks of a relatively efficient abstract machine (the “optimized” abstract ma-
chine of Ciao 1.13, in the ’optim_comp’ directory in the Ciao 1.13 repository).17

The Ciao abstract machines have their remote roots in the emulator of SICStus
Prolog 0.5/0.7 (1986-89), but have evolved over the years quite independently
and been the object of many optimizations and code rewrites resulting in perfor-
mance improvements and much added functionality.18 The performance of this,
our baseline engine matches that of modern Prolog implementations. Table 5.2
helps evaluating the speed of this baseline optimized Ciao emulator w.r.t. to the
relatively unoptimized Ciao 1.13 emulator compiled by default in the Ciao distri-
bution and other well-known Prolog systems: Yap 5.1.2, hProlog 2.7, SWI-Prolog
5.6.55.

Figures 5.16 (in page 137) to 5.37 (in page 153) summarize graphically the
results of the experiments, as the data gathered —96 emulators × 13 benchmarks
= 1248 performance figures— is too large to be comfortably presented in regular
tables.

Each figure presents the speedup obtained by different emulators for a given
benchmark (or all benchmarks in the case of the summary tables). Such speedups
are relative to some “default” code generation options, which we have set to be
those which were active in the Ciao emulator we started with (our baseline), and
which therefore receive speedup 1.0. Every point in each graph corresponds to
the relative speed of a different emulator obtained with a different combination
of the options presented in Sections 5.5.1 and 5.5.2.

17Changes in the optimized version include tweaks to clause jumping, arithmetic operations
and built-ins and some code clean-ups that reduce the size of the emulator loop.

18This includes modules, attributed variables, support for higher order, multiprocessing, par-
allelism, tabling, modern memory management, etc., etc.

134

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

Benchmark Yap hProlog SWI Ciao-std Ciao-opt
5.1.2 2.7 5.6.55 1.13 (baseline)

boyer 1392 1532 11169 2560 1604
crypt 3208 2108 36159 6308 3460
deriv 3924 3824 12610 6676 3860
exp 1308 1740 2599 1400 1624
factorial 4928 2368 16979 3404 2736
fft 1020 1652 14351 2236 1548
fib 2424 1180 8159 1416 1332
knights 2116 1968 11980 3432 2352
nreverse 1820 908 18950 3900 2216
poly 1328 1104 6850 1896 1160
primes 4060 2004 28050 3936 2520
qsort 1604 1528 8810 2600 1704
queens11 1408 1308 24669 3200 1676
query 632 676 6180 1448 968
tak 3068 1816 27500 5124 2964

Table 5.2: Speed comparison with other Prolog systems.

The options are related to the points in the graphs as follows: each option is
assigned a bit in a binary number, where ‘1’ means activating the option and ‘0’
means deactivating it. Every value in the y axis of the figures corresponds to a
combination of the three options in Section 5.5.1. Note that only 6 combinations
out of 23 = 8 possible ones are plotted due to dependencies among options.
Options in Section 5.5.2, which correspond to transformations in the way code is
generated and which need four bits, are encoded using 16 different dot shapes.
Every combination of emulator generation options is thus assigned a different 7-bit
number encoded as a dot shape and y coordinate. The x coordinate represents the
speedup as presented before (i.e., relative to the hand-coded emulator currently
in Ciao 1.13).

Different selections for the bits assigned to the y coordinate and to the dot
shapes would of course yield different plot configurations. However, our selection
seems intuitively appropriate, as it uses two different encodings for two different

135

5.5. Automatic Generation of Abstract Machine Variations

Instruction Instruction
Generation Transformations

Instruction Special Instruction Tag Connected Unfolding R/W
Encoding Builtins Merging Switching Conts. Rules Mode

(ie) (ib) (im) (ts) (cc) (ur) (rw)

Table 5.3: Meaning of the bits in the plots.

families of transformations, one which affects the bytecode language itself, and
another one which changes the way these bytecode operands are interpreted.
Table 5.3 relates the bits in these two groups, using the same order as in the
plots.

Every benchmark was run several times on each emulator to make time mea-
sures stable. The hosts used were an x86 machine with a Pentium 4 processor
running Linux and an iMac with a PowerPC 7450 running Mac OS X. Arith-
metic and geometric19 averages of all benchmarks were calculated and are shown
in Figures 5.16, 5.17, 5.32, and 5.33. Their similarity seems to indicate that there
are no “odd” behaviors off the average. Additionally, we are including detailed
plots for every benchmark and all the engine generation variants, following the
aforementioned codification, first for the x86 architecture (Figures 5.19 to 5.31)
and for the PowerPC architecture (Figures 5.34 to 5.46), in the same order in
both cases. Plots for specially relevant cases are shown first, followed by the rest
of the figures sorted following an approximate (subjective) “more sparse” to “less
sparse” order.

General Analysis

The best speedup among all tried options, averaged across the exercised bench-
marks and with respect to the baseline Ciao 1.13 emulator, is 1.05× for the x86
processor (Table 5.4, top section, under the column w.r.t. def.) and 1.01× for the
PowerPC (Table 5.5, top section, same column heading). While this is a modest
average gain, some benchmarks achieve much better speedups. An alternative in-
terpretation of this result is that by starting with a relatively simple instruction
set (coded directly in imProlog) and applying automatically and systematically
a set of transformation and code generation options which can be trusted to be
correct, we have managed to match (and even exceed) the time performance of

19The geometric average is known to be less influenced by extremely good or bad cases.

136

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 o
pt

s

speed-up relative to default Ciao opts

Showing Geometric mean of benchmark set

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.16: Geometric average of all benchmarks (with a dot per emulator) — Intel.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.17: Arithmetic average of all benchmarks (with a dot per emulator) — Intel.

an emulator which was hand-coded by very proficient programmers, and in which
decisions were thoroughly tested along several years. Memory performance was
left untouched. Note (in the same tables) that the speedup obtained with respect
to the basic instruction set (under the column labeled w.r.t. base) is significantly
higher.

Figure 5.16 depicts the geometric average of the executions of all benchmarks
in an Intel platform. It aims at giving an intuitive feedback of the overall per-
formance of the option sets, and indeed a well defined clustering around eight
centers is clear. Figure 5.17, which uses the arithmetic average, is very similar

137

5.5. Automatic Generation of Abstract Machine Variations

(but not identical — it is very slightly biased towards higher speedups), and it
shows eight well-defined clusters as well.

From these pictures we can infer that bytecode transformation options can
be divided into two different sets: one which is barely affected by options of the
generation of code for the emulator (corresponding to the upper four clusters),
and another set (the bottom four clusters) in which changes to the generation of
the emulator code does have an effect in the performance.

In general, the results obtained in the PowerPC show fewer variations than
those obtained in an x86 processor. We attribute this behavior to differences
between these two architectures, as they greatly affect the optimization oppor-
tunities and the way the C compiler can generate code. For example, the larger
number of general-purpose registers available in a PowerPC seems to make the
job of the C compiler less dependent on local variations of the code (as the trans-
formations shown in Section 5.5.2 produce). Additionally, internal differences be-
tween both processors (e.g., how branch prediction is performed, whether there
is register renaming, shadow registers, etc.) can also contribute to the differences
we observed.

As a side note, while Figures 5.16 and 5.17 portray an average behavior,
there were benchmarks whose performance depiction actually match this average
behavior very faithfully —e.g., the simply recursive Factorial (Figure 5.19), which
is often disregarded as an unrealistic benchmark but which, for this particular
experiment, turns out to predict quite well the (geometric) average behavior of
all benchmarks. Experiments in the PowerPC (Figures 5.32 and 5.34) generate
similar results.

Figure 5.18, unlike the rest of the experimental results, presents the size of the
WAM loop (using actual i86 object code size measured in bytes) for each bytecode
and Lc code generation option. This size is independent from the benchmarks,
and therefore only one plot is shown. It resembles notably the depictions of
the speedup graphs. In fact, a detailed inspection of the distribution of low-
level code generation options (where each of them corresponds to one of the 16
different dot shapes) inside each bytecode language option shows some correlation
among larger and faster emulators. This is not surprising as some code generation
schemes which tend to increase the size do so because they generate additional,
specialized code.

138

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

111

101

011

010

001

000

 5000 10000 15000 20000 25000 30000 35000 40000 45000

B
yt

ec
od

e
ge

ne
ra

tio
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.18: Size (in bytes) of WAM emulator with respect to the generation options
(i86).

As in the case for speed, Lb generation options are the ones which influence
most heavily the code size. This is understandable because some options (for
example, the im switch for instruction merging, corresponding to the leftmost bit
of the “bytecode generation options”) increment notably the size of the emulator
loop. On the other hand, code generation options have a less significant effect,
as they do not necessarily affect all the instructions.

It is to be noted that the generation of specialized switches for the write and
read modes of the WAM (the rw option) does not increase the size of the emula-
tor. The reason is that when the rw flag is checked by all the instructions which
need to do so (and many instructions need it), a large number of if-then-else
constructions with their associated code are generated. In the case of the spe-
cialized switches, only an if-then-else is needed and the savings from generating
less branching code make the emulator smaller.

A More Detailed Inspection of Selected Cases

Figures 5.20 (Queens 11) and 5.21 (Cryptoarithmetic puzzle) show two cases of
interest. The former corresponds to results which, while departing from the aver-
age behavior, still resembles it in its structure, although there is a combination of
options which achieves a speedup (around 1.25) that is significantly higher than
average. Figure 5.21 shows a different landscape where variations on the code

139

5.5. Automatic Generation of Abstract Machine Variations

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.19: Factorial involving large numbers — Intel.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 o
pt

s

speed-up relative to default Ciao opts

Showing benchmark queens11

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.20: Queens (with 11 queens to place) — Intel.

generation scheme appear to be as relevant as those on the bytecode itself. Both
benchmarks are, however, search-based programs which perform mainly arith-
metic operations (with the addition of some data structure management in the
case of the Queens program), and could in principle be grouped in the same class
of programs. This points to the need to perform a finer grain analysis to deter-
mine, instruction by instruction, how every engine/bytecode generation option
affects execution time, and also how these different options affect each other.

Studying which options are active inside each cluster sheds some light about
their contribution to the overall speedup. For example, the upper four clusters of

140

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 o
pt

s

speed-up relative to default Ciao opts

Showing benchmark crypt

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.21: Cryptoarithmetic puzzle — Intel.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.22: Computation of the Takeuchi function — Intel.

Figures 5.16 and 5.17 have in common the use of the ib option, which generates
specialized instructions for built-ins. These clusters have consistently better (and,
in some cases, considerably better) speedups than the clusters which do not have
it activated. It is, therefore, a candidate to be part of the set of “best options”.
A similar pattern, although less acute, appears in the results of the PowerPC
experiments (Figures 5.32 and 5.33).

The two leftmost clusters of the group of four at the bottom correspond to
executions of emulators generated with the rw specialization activated, and the
two clusters at their right do not have it activated. It can come as a surprise

141

5.5. Automatic Generation of Abstract Machine Variations

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.23: Symbolic derivation of polynomials — Intel.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.24: Naive reverse — Intel.

that using separate switches for read/write modes, instead of checking the mode
in every instruction which needs to do so, does not seem to bring any advantage
in the Intel processor. Indeed, a similar result was already observed in [DN00],
and was attributed to modern architectures performing branch prediction and
speculative work with redundant units. This is likely to be carried out with more
accuracy at the smaller scale level of a short if-then-else.

142

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.25: Symbolic exponentiation of a polynomial — Intel.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.26: Version of Boyer-Moore theorem prover — Intel.

Best Generation Options and Overall Speedup

An important general question is which options should be used for the “stock”
emulator to be offered to general users. Our experimental results show that op-
tions cannot be considered in isolation — i.e., the overall option set constructed
by taking separately the best value for every option does not yield a better set
(defined as the best options obtained by averaging speedups for every option set).
As we have seen, there is some interdependence among options. A more realistic
answer is that the average best set of options should come from selecting the

143

5.5. Automatic Generation of Abstract Machine Variations

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.27: QuickSort — Intel.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.28: Calculate primes using the sieve of Eratosthenes — Intel.

rightmost point in the plot corresponding to average speedups. We must however
bear in mind that averages always suffer the problem that a small set of good
results may bias the average and, in this case, force the selection of an option set
which performs worse for a larger set of benchmarks

In order to look more closely at the effects of individual options (without
resorting to extensively listing them and the obtained performance), Tables 5.4
and 5.5 show which options produced the best and the worst results time-wise
for each benchmark. We include the geometric average as an specific case and
the Ciao-1.10 baseline options as reference.

144

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.29: Natural language query to a geographical database — Intel.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.30: Chess knights tour — Intel.

It has to be noted that the best/worst set of options is not the negation of
the worst/best options: there are plenty of cases where the same option was
(de)activated both for the best and for the worst executions. The observed situa-
tion for the PowerPC architecture (Table 5.5) is more homogeneous: at least some
better/worst behaviors really come from combinations which are complementary,
and, in the cases where this is not so, the amount of non-complementary options
goes typically from 1 to 3 — definitely less than in the x86 case.

Despite the complexity of the problem, some conclusions can be drawn: in-
struction merging (im) is a winner for the x86, probably followed by having a

145

5.5. Automatic Generation of Abstract Machine Variations

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.31: Simply recursive Fibonacci — Intel.

variable number of operands (ie), and then by specialized calls to built-ins (ib).
The first and second options save fetch cycles, while the third one saves process-
ing time in general. It is to be noted that some options appear both in the best
and worst cases: this points to interdependencies among the different options.

The performance table for the PowerPC (Table 5.5) also reveals that instruc-
tion merging, having a variable number of operands, and generating specialized
instructions for built-ins, are options which bring performance advantages. How-
ever, and unlike the x86 table, the read/write mode specialization is activated in
all the lines of the “best performance” table, and off in the “worst performance”.
A similar case is that of the tag switching schema, in the sense that the selection
seems clear in the PowerPC case.

The transformation rules we have applied in our case are of course not the only
possible ones, and we look forward to enlarging this set of transformations by,
for example, performing a more aggressive merging guided by profiling.20 Similar
work, with more emphasis on the production of languages for microprocessors is
presented in [Hol93], where a set of benchmarks is used to guide the (constrained)
synthesis of such a set of instructions.

We want to note that although exceeding the speed of a hand-crafted emulator
is not the main concern in this work,21 the performance obtained by the imple-

20Merging is right now limited in depth to avoid a combinatorial explosion in the number of
instructions.

21In order to do that, a better approach would probably be to start off by finding performance

146

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

mentation of the emulator in imProlog allows us to conclude that the imProlog
approach can match the performance of lower-level languages, while making it
possible to apply non-trivial program transformation techniques.

In Chapter 7, additional experiments carried out in a very different scenario
(that of embedded systems and digital signal processing which pertains to a
realm traditionally considered disadvantageous for symbolic languages) showed
also very good performance —only 20% slower than a comparable C program—
and also very good speedups (up to 7-fold compared with an implementation
running on a bytecode emulator). Analysis and compilation techniques similar
to those applied in this paper were used, but put to work in a program using the
full Prolog language.

5.6 Conclusions

We have designed a language and its compiler (imProlog, a variation of Prolog
with some imperative features) and used it to describe the semantics of instruc-
tions of a bytecode interpreter (the Ciao engine). In our experience, the port
replaced duplicated code structures, redundant hand-made specializations, and
a large number of C macros (which notwithstanding helps in writing less code,
but are not easily recognized and understood by automatic compilation tools),
by more abstract predicates, and in the worst case, program annotations to guide
the transformations. The result was an emulator as efficient as the original, but
which avoided some typical software defects that hinder highly-tuned emulators.

The imProlog language, with the proposed constraints and extensions, is se-
mantically closer enough to Prolog to share analysis, optimization and compi-
lation techniques, but at the same time, it is designed to make translation into
very efficient C code possible. The low-level code for each instruction and the
definition of the bytecode is taken as input by a previously developed emulator
generator to assemble full high-quality emulators. Since the process of generating
instruction code and bytecode format is automatic, we were able to produce and
test different versions thereof to which several combinations of code generation
options were applied. This approach makes it possible to perform non-trivial

bottlenecks in the current emulator and redesigning / recoding it. We want to note, however,
that we think that our approach can greatly help in making this redesign and recoding easier.

147

5.6. Conclusions

transformations on both the emulator and the instruction level (e.g., unfolding
and partial evaluation of instruction definitions, instruction merging or speciali-
zation, etc.). The different transformations and code generation options, result in
different grades of optimization / specialization and different bytecode languages
from a single (higher-level) abstract machine definition.

We have also studied how these combinations perform with a series of bench-
marks in order to find, e.g., what is the “best” average solution and how indepen-
dent coding rules affect the overall speed. We have in this way as one case the
regular emulator we started with (and which was decomposed to break complex
instructions into basic blocks). However, we also found out that it is possible to
outperform it by using some code patterns and optimizations not explored in the
initial emulator, and, what is more important, starting from abstract machine
definitions in imProlog.

Performance evaluation of non-trivial variations in the emulator code showed
that some results are hard to predict and that there is no absolute winner for
all architectures and programs. On the other hand, it is increasingly difficult to
reflect all the variations in a single source using more traditional methods like m4

or cpp macros. Automatic program manipulation at the emulator level represents
a very attractive approach, and although difficult, the problem becomes more
tractable when the abstraction level of the language to define the virtual machine
is raised and enriched with some problem-specific declarations.

148

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

Benchmark
Best performance

ie ib im ts cc ur rw Speed-up
baseline x x x x x w.r.t. def. w.r.t. base
all (geom.) x x x x x 1.05 1.28
boyer x x x x 1.18 1.52
crypt x x x 1.22 1.07
deriv x x x x 1.10 1.46
factorial x x x 1.02 1.21
fib x x x x x x 1.02 1.32
knights x x x x 1.06 1.39
nreverse x x x x 1.03 1.34
poly x x x x x 1.02 1.52
primes x x x x 1.10 1.26
qsort x x x x 1.05 1.46
queens11 x x x x x x x 1.26 1.46
query x x x x x x 1.06 1.21
tak x x x x 1.23 1.62

Benchmark
Worst performance

ie ib im ts cc ur rw Speed-up
baseline x x x x x w.r.t. def. w.r.t. base
all (geom.) x x 0.70 0.88
boyer x 0.70 0.90
crypt x x 0.86 0.75
deriv x x 0.62 0.82
factorial x x 0.76 0.99
fib x x x 0.75 0.91
knights x x x x 0.72 0.97
nreverse x x x 0.57 0.95
poly x x 0.56 0.74
primes x x x 0.73 0.84
qsort x x 0.54 0.84
queens11 x x x 0.77 0.75
query x x 0.71 0.89
tak x x x x 0.69 0.92

Table 5.4: Options which gave best/worst performance (x86).

149

5.6. Conclusions

Benchmark
Best performance

ie ib im ts cc ur rw Speed-up
baseline x x x x x w.r.t. def. w.r.t. base
all (geom.) x x x x x x 1.01 1.21
boyer x x x x 1.02 1.25
crypt x x x x 1.00 1.13
deriv x x x x x 1.00 1.30
factorial x x x x x 1.00 1.02
fib x x x x 1.03 1.17
knights x x x x 1.00 1.10
nreverse x x x x 1.02 1.20
poly x x x x x x 1.01 1.35
primes x x x x x x 1.02 1.33
qsort x x x x x x 1.01 1.17
queens11 x x x x x 1.06 1.33
query x x x x x x x 1.01 1.20
tak x x x x x 1.01 1.22

Benchmark
Worst performance

ie ib im ts cc ur rw Speed-up
baseline x x x x x w.r.t. def. w.r.t. base
all (geom.) x 0.82 0.99
boyer x x 0.81 0.99
crypt x x x x 0.87 0.98
deriv x x x 0.76 0.99
factorial x x 0.85 0.97
fib 0.94 0.99
knights x x 0.82 1.00
nreverse x x 0.74 0.98
poly x 0.74 0.98
primes x x 0.86 0.97
qsort x 0.75 0.99
queens11 x 0.88 0.99
query x 0.82 0.99
tak x x 0.78 0.99

Table 5.5: Options which gave best/worst performance (PowerPC).

150

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.32: Geometric average of all benchmarks (with a dot per
emulator) — PowerPC.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.33: Arithmetic average of all benchmarks (with a dot per
emulator) — PowerPC.

151

5.6. Conclusions

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.34: Factorial involving large numbers — PowerPC.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.35: Queens (with 11 queens to place) — PowerPC.

152

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.36: Cryptoarithmetic puzzle — PowerPC.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.37: Computation of the Takeuchi function — PowerPC.

153

5.6. Conclusions

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.38: Symbolic derivation of polynomials — PowerPC.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.39: Naive reverse — PowerPC.

154

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.40: Symbolic exponentiation of a polynomial — PowerPC.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.41: Version of Boyer-Moore theorem prover — PowerPC.

155

5.6. Conclusions

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.42: QuickSort — PowerPC.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.43: Calculate primes using the sieve of Eratosthenes —
PowerPC.

156

Chapter 5. Description and Optimization of Abstract Machines in a Dialect of Prolog

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.44: Natural language query to a geographical database —
PowerPC.

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.45: Chess knights tour — PowerPC.

157

5.6. Conclusions

111

101

011

010

001

000

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

by
te

co
de

 g
en

er
at

io
n

op
tio

ns

0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111

Figure 5.46: Simply recursive Fibonacci — PowerPC.

158

6
Comparing Tag Scheme Variations Using

an Abstract Machine Generator

Summary

In this chapter we study, in the context of a WAM-based abstract machine for
Prolog, how variations in the encoding of type information in tagged words and
in their associated basic operations impact performance and memory usage.
We use a high-level language to specify encodings and the associated opera-
tions. An automatic generator constructs both the abstract machine using this
encoding and the associated Prolog-to-bytecode compiler. Annotations in this
language make it possible to impose constraints on the final representation of
tagged words, such as the effectively addressable space (fixing, for example, the
word size of the target processor / architecture), the layout of the tag and value
bits inside the tagged word, and how the basic operations are implemented. We
evaluate a large number of combinations of the different parameters in two sce-
narios: a) trying to obtain an optimal general-purpose abstract machine and
b) automatically generating a specially-tuned abstract machine for a particular
program. We conclude that we are able to automatically generate code featur-
ing all the optimizations present in a hand-written, highly-optimized abstract
machine and we can also obtain emulators with larger addressable space and
better performance.

159

6.1. Introduction

6.1 Introduction

Dynamically typed languages, where the type of an expression may not be com-
pletely known at compile time, have experienced increased popularity in recent
years. These languages offer a number of advantages over statically typed ones:
the source code of the programs tend to be more compact (e.g., type declara-
tions are not present and castings are unneeded), faster to develop, and easier to
reuse.

In statically typed languages with prescriptive types the type of each expres-
sion is to be declared in the source code. This makes it possible to generate
tighter data encodings and remove all type checks at compile time, which in gen-
eral results in faster execution times and reduced memory usage and, hopefully,
in the static detection of more programming errors. At the same time, extra
redundancy is added in the cases where types can be inferred, and calls for a
more rigorous (or strict) developing methodology. Additionally, some program
and data structures which are natural for dynamically typed languages need to
be adapted significantly to be cast into common, well-known type systems.

It is interesting to note that recent advances in program analysis can po-
tentially reconcile to a large extent this apparent dichotomy by inferring au-
tomatically the properties needed to perform the optimizations brought about
by static typing and by using such properties to perform non-trivial error
and property checking which subsumes traditional type-based static check-
ing [HPBG05, CMM+06, Rig04, CF91]. Also, even in the cases where types
and other information cannot be statically inferred, performance of dynamic lan-
guages can be quite competitive, since modern compilers and abstract machines
have evolved significantly and offer a high degree of optimization.

However, the same high degree of specialization and optimization that brings
about the performance of modern compilers and abstract machines implies signif-
icant complexity in their design which in turn makes it very difficult to explore a
large design space of modifications in order to obtain significant further advances,
at least “by hand.”

In this chapter we explore, in the context of a state-of-the-art WAM-
based [War83, AK91] implementation of Prolog, how a number of variations in
the way the core data structures of an abstract machine are implemented impact

160

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

performance and memory usage. Our objective is to draw general conclusions
about which are the best optimization options. We use a Prolog-inspired high-
level language to specify encodings, the associated operations, and in general to
generate complete abstract machines using these variations. This language has
a type and property system which, while quite flexible, is decidable at compile
time, so that very efficient low-level code (C, in our case) can be generated.

6.2 Implementation of Dynamic Typing

Dynamic typing requires type information to be available at run time, and there-
fore it is customary to store it within the actual data during execution. In this
chapter we focus on the widespread implementation technique which uses tagged
words. In this approach a (usually reduced) set of tags is used to represent type
identifiers which are used as the first level information regarding the type of the
contents of the memory word. Other ancillary information, such as the garbage
collection (GC) bits as needed by some GC algorithms, is often stored in the tag.
These tags are usually attached to the actual data value, and they are typically
stored together in the same machine word. There are multiple ways to do this
using fewer or more bits for the tag, placing it in the upper or lower part of the
word, etc. However, not all schemes to pair up tag and value offer the same
performance, memory consumption, and addressable space size. The quality of
a tagged word implementation actually depends on a compromise between the
available addressable space and performance. The latter is dominated by the
cost of operations on the tagged type: setting and getting the tag, reading the
value, and manipulating the GC-related information. Without explicit hardware
support for tagged words (the norm in today’s general-purpose processors), im-
plementers must rely on simple, natively supported operations like shifting and
masking, and often the effectively addressable space has to be reduced in order
to, e.g., be able to pack a (reduced-size) pointer in a word using the space left by
the tag and the GC information.

161

6.2. Implementation of Dynamic Typing

6.2.1 Performance of Different Encoding Schemes

Some bit layouts appear, at least a priori, to allow implementing more efficiently
the most often used operations. In practice, experimental results indicate that
with modern processors a realistic cost estimation is very difficult to perform a
priori due to the inherent complexity of the processor operation, since too many
parameters have to be taken into account: superscalar architectures, out-of-order
execution, branch prediction, size of the pipeline, different cache sizes and lev-
els, SIMD instructions, etc. That makes it very difficult to extract performance
conclusions from the source code which implements the operations on the tagged
data, even if the final assembler code is known and can be analyzed thoroughly:
every basic operation depends, in fact, on the previous history and current state
of the processor units. The situation is aggravated when the overall abstract
machine complexity is taken into account. The implementation of the basic op-
erations is often quite tricky, and high-performance code is usually achieved by
creating by hand a number of specialized cases of these operations to be used in
different contexts (i.e., when certain preconditions are met). As a result the code
describing the abstract machine is usually large and any change is tedious and
error-prone, which limits the capacity to explore alternatives systematically.

In order to overcome these problems, and building on the work presented
in Chapter 4 and 5 we have constructed a framework for generating abstract
machines (and their corresponding compiler) automatically based on high-level
descriptions of the placement of tags, GC bits, and values inside a tagged word,
the size of the tagged word, the size of the native machine word, as well as some
variations on the shape of the basic operations which deal with these tagged
words. In all combinations, we aim at optimizing the resulting C code as much
as possible, up to the point in which the result is often indistinguishable (in some
cases identical) from what a highly skilled programmer would have written.

The concrete virtual machine skeleton we base our variations on is an imple-
mentation of the well-known WAM for Prolog. We argue that tagging schemes
of modern Prolog virtual machines have requirements which are not unlike those
of other dynamic languages: basic operations, encodings, and optimization possi-
bilities at this level are similar in all of them. Additionally, many statically-typed
programming languages present also dynamic features such as class inheritance,
dynamic dispatching, disjunction of data structures, etc., which require similar

162

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

techniques.
In all these cases, variations on the tagging scheme and ancillary operations

significantly affect both the generated code and the size of the data structures,
and can have a critical impact on execution speed and memory consumption.
In fact, as a result of the (non-obvious) complexity of the basic tag operations
and their very frequent use, small variations in their implementation can have a
significant effect on performance even in small programs.

Note that the purpose of this work is not to demonstrate that we are using
the overall best scheme for implementing a Prolog abstract machine (which in-
cludes decisions about term representations [DN00], whether or not to use stack
variables, last call optimizations, . . . , as well as parameters that affect perfor-
mance including the bytecode encoding, instruction set, unification algorithm, C
compiler, etc.), but rather to show how a higher level description (higher than C
code) can be parameterized to generate variations of a tagging scheme, and to
study the different results in terms of performance and memory usage.

6.3 Describing Types in imProlog

As mentioned before, classical implementations of abstract machines involve non-
trivial algorithms with data representations defined at the bit level, and very
involved (hand-)codifications of the operations on them. The C language is a
common implementation vehicle because the programmer can control many low
level aspects and the quality of assembler code generated by current compilers is
quite high, so that it is essentially a high-level way of generating quasi-optimal
assembler code. The usual development techniques involve using preprocessor
macros and conditional code, inlining C functions, using bit packed structures,
etc. However, in more involved cases (e.g., when extensive instruction merging
is to be performed, or when variations are being explored), this approach falls
short, and some sort of automatic code generation (which can in part be done
with advanced preprocessors) needs to be adopted to control complexity and
avoid coding errors.

In this chapter we use the abstract machine generator framework described in
Chapter 4 and we use the imProlog language (Chapter 5) to write the abstract
machine and to specify the low-level data layout. imProlog is a restricted Prolog

163

6.3. Describing Types in imProlog

subset extended with mutable variables as first-order citizens and specific anno-
tations to declare constraints on how to encode the tagged words in the machine
memory. The compilation process ensures that the optimizations which allow ef-
ficient native code to be generated (controlled unfolding, specialization, unboxing
of types, avoiding unnecessary trailing, backtracking, etc.) are met by the initial
code, and rejects the program / module otherwise. Although the compiler and
the language is not yet suitable (or intended) for writing general-purpose appli-
cations, it has been successfully applied in the implementation of a very efficient
Prolog emulator that is highly competitive with hand-written state of the art Pro-
log emulators such as those of Ciao [BCC+09], Yap [SCDRA00], SICStus [Swe99],
hProlog etc., and which is used as the basis for our experiments.

The C code that the imProlog compiler generates could obviously have been
hand-written given enough time and patience. However, as we stated before, our
goal is to reduce the burden on the abstract machine designer (which is likely
to reduce programming errors) through the use of a higher-level language and
improve correctness (the imProlog compiler can statically detect ill-typed oper-
ations with respect to the expected tags, without introducing run-time checks),
while at the same time making it easier to maintain and extend the code.

The approach also allows exploring more possibilities of optimization. This
includes stating high-level optimization rules and letting the compiler determine
(maybe with additional compilation hints) whether applying them to generating
acceptable native code is feasible or not at each point. Such optimization rules are
used at any point in which they can be applied while generating the C code —i.e.,
in all parts of the abstract machine code corresponding to the implementation of
bytecode instructions and other operations. This relieves the programmer from
repeatedly having to remember to apply the same coding tricks at all points
where similar operations are implemented, which also reduces the possibilities of
introducing errors.

6.3.1 Types in imProlog

Since imProlog is the implementation language, the data representations used in
the abstract machines generated are described as imProlog types. The language
used in imProlog to describe types is (as in Ciao and CiaoPP [HPBG05]) the
same that is used to write programs. Types are written as predicates, and the

164

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

set of solutions of the predicate is the set of values in the type. Type definitions
in imProlog can have recursive calls, disjunctions, etc., as long as the compiler
is able to analyze them and extract enough information to generate an efficient,
unique encoding for the type.

From a syntactic point of view, Ciao’s functional notation [CCH06] is conve-
nient to write type definitions, and we will use it for conciseness in this chapter.
This notation makes the default assumption that function outputs correspond
to the last predicate argument (i.e., X = ∼p(T1,. . ., Tn−1) stands for p(T1,. . .,
Tn−1, Tn), X = Tn). The syntax for feature terms uses A·B as a function that
returns the contents of feature B in A. For mutables, the goal A ⇐ B sets B as
the content of A, and the function @A obtains the value stored in A. The type
∼mut(T) stands for the mutables whose values are restricted to those of type T.

The imProlog compilation process distinguishes the type a variable holds at
a given time and the type that describes the possible values that can be encoded
in that variable (the encoding type). Choosing the right encoding for each vari-
able generates a statically typed (imProlog) program, in which the type of every
expression must be either inferred by the imProlog compiler or explicitly stated
so that unique memory encodings for variables and mutables can be statically
determined. The compiler will reject programs with non-unique feasible type
encodings for expressions / variables.

Although this presents a limitation for general-purpose programming, we
think that it can be tolerated in the case of writing an abstract machine, where
high performance is paramount. If a unique data representation cannot be stat-
ically determined, the compiler would need to generate dynamic tests to distin-
guish between the different encodings for the same data (e.g., comparing variables
containing atoms which are encoded in different ways) which may result in a per-
formance loss. Detecting that this is the case would be difficult if the compiler
does not inform the user that this overhead has been introduced.1

1In fact, these errors can be interpreted as a quality report. An interesting option would be
to define a tolerance value that allows or disallows certain ways of generating code.

165

6.3. Describing Types in imProlog

6.3.2 Feature Terms and Disjunctions of Types

In Chapter 5 imProlog types were limited to built-in types, which are seen as
black boxes, and which reflect machine and low-level types. As a natural step, we
have extended the imProlog language and compiler with the required machinery
to express the complex types needed to define tagged words : structured types
(based on feature terms), and disjunctions of types (based on dependent types).
For the sake of efficiency, we have improved the support for low-level encoding at
the level of bits. The implemented support for dependent types allows indexing
the feature term w.r.t. a single atomic feature. The restriction in that case is that
the discriminant field must have the same encoding properties in all cases. When
one of the type features is accessed and the discriminant value is known at compile
time, no checks are necessary, since the type encoding is precisely defined. On
the other hand, if the discriminant value is not unequivocally defined at compile
time, the code is wrapped in tests that cover all the possible cases and which
associate them with a code version specialized for the case in hand.

6.3.3 Defining a Hierarchy of Types

Inheritance can be captured by the semantics of logical implication [AKN88], and
this idea has been used to define our type hierarchy by means of feature terms
and disjunctions of types. We will use this hierarchy to define the tagged type
(Section 6.4). Inheritance makes it possible to define a (complex) set of types as
a group of predicates making up a hierarchy tree where each type is a node, the
root type is the root of the tree and the final types, which are not needed by any
other type, its leaves. Using this coding style we can group together definitions
belonging to the same type in an “object-oriented” fashion. Although it is out of
the scope of this work, this makes it possible to extend or specialize the type just
by adding or removing final types. The general skeleton of each type definition
includes the following rules:

Rule 1 : supertype(T) :− type(T).
Parent-child relationship between some type and its supertype (except for
the root type). This is to be read as “type is a kind of supertype”.

Rule 2 : type(T) :− T·kind = ’unique−atom’, typei(T).

166

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

This rule defines a final type (a leaf in the tree) in the hierarchy. This gives
the basic solution for the type, which must be mutually exclusive with all
other types. Only leaf nodes define the kind feature.

Rule 3 : typei(T) :− supertypei(T), . . .
The definition of the features that are specific to the type. It may include
the parent’s invariant and extend it with other features.

Rule 4 : operation(A, . . .) :− type(A), . . .
One rule for each operation on the type, using first argument indexing,
when available, for efficiency.

The solutions (i.e., values belonging to the type) given by a type declaration
are those generated by the type itself and by all of its descendants. The predicates
typei and type differ as follows: the former defines the contents that are exclusive
to type type (and, optionally, the types it inherits from) and the latter defines
the type itself (and, recursively, all the types which inherit from it).

6.4 Specifying the Tagged Data Type

We define in imProlog a type that implements the basic data structure (tagged
type) for the Ciao abstract machine. It is a discriminated union of heap variables,
stack variables, constrained variables, structures, list constructors, atoms, and
numbers. This type (or that of mutables constrained to values of this type)
appears everywhere in the abstract machine state (heap cells, temporal registers,
values saved in a choice point, local values in local frames, etc.).

The novelty of this approach —for the generation of abstract machines— is
that the full definition is composed of the high level description, used by analysis
and optimizations, and the low level annotations and optional user-defined com-
pilation rules that determine how optimal native code is generated for the type
definition and operations.

6.4.1 The Tagged Hierarchy

The tagged type can be viewed as the hierarchy in Figure 6.1. A simplified subset
of the description for the type is shown in Figure 6.2, for generic nodes, and in

167

6.4. Specifying the Tagged Data Type

tagged

reftagged

hvatagged

cvatagged

svatagged

nonreftagged

constagged
numtagged

atmtagged

structtagged
lsttagged

strtagged

Figure 6.1: Tagged hierarchy.

Figure 6.3, for the leaf nodes. In this case the feature that distinguishes all leaves
is called tag (the type of the tag feature returns the set of all required tags). We
also describe, as an example, the code for the operation unify_cons, that unifies
the tagged in its first argument with a single-cell tagged (a tagged whose value
is perfectly defined without consulting any heap or stack location, such as small
integers or atoms).

That specification defines the possible tagged words. The defined tagged word
may optionally contain two GC bits [ACHS88] or place them in an external mem-
ory area, depending on whether predicate ext_gc_bits is true or false. Partial
evaluation is used to statically specialize taggedi with respect to the usage of
external GC bits.

Note that low-level encoding details are not present at this point; they are
introduced later as annotations. This separation facilitates automatic handling of
more properties that it would be possible with a low-level implementation (where
the domain information for tagged words is lost when they are translated to
integers). For example, it is possible to specify that all members of the heap have
values of type nonstacktagged, to detect errors or remove checks for svatagged
automatically, where the type is defined as:

nonstackreftagged(T) :− hvatagged(T) ; cvatagged(T).
nonstacktagged(T) :− nonstackreftagged(T) ; nonreftagged(T).

168

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

The tagged type

taggedi(T) :−
(ext_gc_bits → true
; T·marked = ∼bool, T·forward = ∼bool).

unify_cons(R, Cons) :− derefvar (R), unify_consd(R, Cons).
. . .

References (a kind of tagged)

tagged(T) :− reftagged(T).
reftagged i(T) :−

taggedi(T),
T·ref = ∼mut(tagged).

unify_consd(R, Cons) :− reftagged(@R),
(trail_cond(@R) →

trail_push(@R)
; true
),
(@R)·ref ⇐ Cons.

. . .

Non-references (a kind of tagged)

tagged(T) :− nonreftagged(T).
nonreftaggedi(T) :− taggedi(T).
unify_consd(R, Cons) :− nonreftagged(@R),

@R == Cons.
. . .

Constants (a kind of non-reference)

nonreftagged(T) :− constagged(T).
constaggedi(T) :− nonreftaggedi(T).
. . .

Figure 6.2: Some generic nodes in the hierarchy.

169

6.5. Optimizing Type Encodings

Heap variables (a kind of reference)

reftagged(T) :− hvatagged(T).
hvatagged(T) :− T·tag = hva, hvataggedi(T).
hvataggedi(T) :− reftaggedi(T).
trail_cond(A) :− hvatagged(A), A·ref < (∼s)·heap_uncond.
. . .

Small integers (a kind of constant)

constagged(T) :− numtagged(T).
numtagged(T) :− T·tag = num, numtaggedi(T).
numtaggedi(T) :− constaggedi(T), T·num = ∼int.

Figure 6.3: Some leaf nodes in the tagged hierarchy.

6.5 Optimizing Type Encodings

The data type that customarily constitutes the building unit of WAM-based
abstract machines is a machine word (or tagged) where the value of some of its
bits (the tag) provides the meaning of the rest of them. We obtain the same
effect from higher level type descriptions for the tagged type by constraining the
size available to represent the type and each of its features. In this section we
will describe the annotations and low-level optimizations used to implement the
tagged type. The set of all of these annotations constitute the parameter values
that define a tag scheme variation.

6.5.1 Bit-level Encoding

The basic data types supported in imProlog include the unboxed form of atoms
(encoding types that define a set of atoms, where each atom is represented as a
number), numbers (limited to native types, such as 32 bit or 64 bit integers, floats,
etc.), and mutables (as local C variables or stored as pointers to a memory location
where the value is contained). This is possible because of the restrictions on the
values which can be stored in a variable to avoid boxing: they must be completely
instantiated and contain values defined by their type. Also, dereference chains
of arbitrary length are not allowed, only fixed-length chains as specified in the

170

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

type. With bit-level annotations for features, we limit the total size available to
represent the data type, and the bits available for each of the features and their
relative bit position.

The final bit layout is determined by annotations that control the bit offset
where each feature is placed. In particular, they may be allocated in the upper
or lower free part of the data bits, or even split between these two locations. For
the tagged type, we abbreviate the storage location of the tag bits as h for upper
bits, l for lower bits, or s for split bits. For GC marks, we use H for upper bits, L
for lower bits, and external when they are allocated in a separate section of the
stack (enabled by ext_gc_bits/0).

The bit layout affects how feature values can be extracted: if tags are in the
lower part, a mask just gives its value; if they are in the upper part, a left rotation
is needed. However, extracting a tag value is not so common when optimized tag
tests are used, since most operations are reduced to bit tests. The location of tags
and GC bits affects the access to pointers and other values. A field is extracted
by masking out other fields and shifting the value accordingly. If the fields to be
removed are known at compile time, then subtraction is used instead of masking,
so that use can be made of the indirect addressing mode in the assembler code
(pointer+offset), and combined at compile time with other arithmetic operations
such as, e.g., the additions that need to be performed when we use a displaced
pointer from a tagged or add two small numbers.

In the case of pointers, the fixed pointer bits must be placed back, with a
previous shift to reintroduce the alignment bits, if they have been used (note that
the shifting to extract the pointer and reinsert the alignments may be canceled
out, such as in s and hL in 32 bits or lH or lL in 64 bits). Note that each bit
placement has its advantages and disadvantages, since optimizing some operations
with one configuration sometimes makes others more costly, which ultimately
complicates performance estimation.

6.5.2 Trade-off: Limited Address Space

Encoding both fixed-length reference chains and mutables in the presence of bit-
size restrictions implies some implementation tricks to define pointers where some
bits are free to be used for other purposes. For example, alignment bits can be
reused or some extra bits can be made available by fixing the location of a memory

171

6.5. Optimizing Type Encodings

region with the mmap system call. Note that storing n-bit pointers in less than n
bits results in address space limitation. Such limitation may not be an issue in
64 bit machines (were the address space is huge, much larger than the physical
memory, as it was also the case for 32 bit pointers in the not-so-remote past), but
currently it may be a problem in 32 bit machines where more than 1GB of physical
memory is common nowadays. In the case of our tagged word representation, the
available address space is determined by the number of bits required for tags
and GC, the tagged word size and the use of external or internal GC bits. Here
we see even more clearly why a flexible way to implement abstract machines
with different tagged schemes matters, since a scheme that represents a good
compromise between address space and performance for a 32 bit machine may
not be the best for 64 bits (even more, if we consider architectural differences).
Also, while it is tempting to decide to simply concentrate on 64-bit machines,
since they are now the norm for new general-purpose machines, it should be
noted that 32 bit machines are still in widespread use and, furthermore, other
computing platforms (such as, e.g., portable gaming devices, cell phones, etc.)
have physical limitations which make them have 32-bit address buses.

6.5.3 More Control over Tag Representation

Although an automatic assignment of encoding values for each of the atoms in a
type may be efficient for most applications, it is not enough to implement optimal
operations for the tagged type, where choosing the right numeric value for each
tag may play an important role in reducing the number of assembler instructions
required to implement essential basic operations on the tagged. The reason is that
for some encodings a single assembler instruction can check for more than one
tag at the same time, yielding faster code to switch on tag values. To this end,
the imProlog compiler allows explicit definition of atom encodings and a large
set of predefined compilation patterns to build indexing trees. imProlog does not
have a switch construct, and, as Prolog, it is based on indexing to optimize clause
selection, in two steps defined as Figure 6.4 illustrates.

Index extraction: Group together discontiguous clauses and transform the
program to make explicit the possible indexing keys (unfolding cheap type
checks, removing impossible cases, adding the default case). E.g., suppose that

172

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

t ∈ {4, 5, 6, 7}?

CN

ye
st ∈ {4, 5, 6, 7}

t ∈ {0}?

CH

ye
st ∈ {0}

CC

no t ∈ {1}

no t ∈ {0, 1}

Pre: t ∈ {0, 1, 4, 5, 6, 7}

(X & 4)!=0

(X & 1)==0

code

code

Figure 6.4: Obtaining indexing code.

nonstacktagged(X) holds on entry, then for the code on the left we obtain the
index on the tag feature of X on the right:

(hvatagged(X) → CH

; cvatagged(X) → CC

; svatagged(X) → CS

; nonreftagged(X) → CN

)

(X·tag = hva → CH

; X·tag = cva → CC

; (X·tag = num
; X·tag = atm
; X·tag = lst
; X·tag = str) → CN

)

Low level indexing: Compile low level indexing, by taking into account where
the tag is located (e.g., lower or upper bits) and how it is encoded (e.g., hva: 0,
cva:1, . . . , str:7). Depending on whether optimized tests are used or not, we
distinguish several compilation modes, which we will call the swmode parameter:
sw0, sw1, and sw2.

In sw0 mode, the code generator emits a simple if-then-else (when two cases
are used), or a C switch statement (usually compiled internally as a indirect jump
to an array that maps from tag values to code labels) — see Figure 6.5 for an
example where the tag is stored in the lower 3 bits of X.

Note that although C compilers can generate very clever code for switches,
they are unable to infer the value of bit-encoded members or make use of user-
provided assertions (so they cannot optimize some tests). Although the indirect
jump version may look very optimized, it may hinder the benefits of the branch

173

6.5. Optimizing Type Encodings

switch on X & 7

0 1 2 3 4 5 6 7

CH CC CN

jump
table

Figure 6.5: Code generation using sw0.

prediction unit in modern processors [MYJ07]. In sw1 the compiler tries to emit
better code by grouping together tests for several values in a single expression
(that can be cheaply compiled in few assembler instructions by the C compiler)
that we will call bitfield test. We call a bitfield test with precondition S and
postcondition P , for the k-bits in the p-bit offset, a low level test Test that given
a n-bit word X, where t=(X >> p)&((1<<k)-1), checks that if t ∈ S and Test
is true, then t ∈ P . Examples of tests for the 3 lower bits are:

• Pre:t ∈ {0..7} Post:t ∈ {4, 5, 6, 7} Code: (X & 4)!=0

• Pre:t ∈ {0, 1} Post:t ∈ {0} Code: (X & 1)==0

• Pre:t ∈ {4, 5, 6, 7} Post:t ∈ {4, 6} Code: (X & 1)==0

With the optimized tests, the search space is divided in two (the values in
postcondition, and the values in the precondition minus the postcondition). When
sw2 is selected, more complex indexing trees are treated, that would otherwise
be translated to C switches. Switch rules represent heuristics to reach the desired
branches more efficiently. The rules are specified as nested disjunctions (that
define a binary tree where the leaf nodes are sets of values) and are supposed to
cover all cases so that the implicit precondition is the union of all the sets. For
example: {4, 5, 6, 7} ∨ ({0} ∨ {1}) states that it should do a test to distinguish
between {4, 5, 6, 7} (which is a leaf node) {0, 1}, then do the same for {0} to
distinguish between {0} and {1}. When the test code is inserted, we obtain the
low level definition of the indexing code (Figure 6.4).

6.5.4 Extending Garbage-collector for External and Internal GC Bits

GC bits are only active during garbage collection. With external GC bits, When
GC starts a special section is reserved to store GC bits for every WAM stack.

174

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

A GC pointer resolution operation which obtains the location of the GC bits
for a pointer from some memory region, while reasonably fast, accumulates an
excessive overhead when it is performed for every GC bit access.

To minimize the number of GC pointer resolutions without having to maintain
two slightly different GC algorithm codifications (for internal and external GC
bits), we define an abstract “pointer to tagged” data type. When internal GC
bits are selected, the pointer is a normal pointer. When external GC bits are
used, the pointer to tagged is actually a pair of pointers: one points to the actual
tagged word and the other one to the byte that contains the GC bits. Pointer
displacement, read, and write operations are done for both pointers, obtaining a
similar performance for the case of external and internal GC bits.

The GC algorithm (and the code itself) is therefore generic with respect to
the format of the tagged words.

6.5.5 Interactions with Bytecode

There is an implicit dependence between the abstract machine definition and the
compiler that generates bytecode to be executed in that machine. By extending
the framework to describe the tagged type, the assumptions about data sizes
become a parameter for the compiler (in addition to other parameters described in
Chapter 4 and 5, related to the accepted instruction set, instruction merging, how
instructions are encoded, etc. [MCH07, MCPH05]). When the abstract machine
code is generated, all this information is fed into the compiler; this approach
ensures that the compiler and the abstract machine are synchronized. This is
needed, for example, when the compiler requires the size of a tagged to insert
heap overflow tests prior to the construction of known terms, or to decide whether
multiple-precision arithmetic is needed when building an integer, which depends
on whether the number of bits used to represent the value of a small number
(num feature in numtagged) is enough to store the value.

The tagged size also affects the size of opcodes and operands in bytecode in-
structions. In some architectures n-bit words must be n-bit aligned (for efficiency
or architectural constraints). While it is possible to introduce paddings to keep
operands always aligned [SC99], in order to allow a more compact bytecode repre-
sentation, the instruction set in the standard Ciao system uses instructions whose
size is not a multiple of the largest machine word (32 bits in a 32-bit machine).

175

6.6. Evaluation of Tag Scheme Variations

In that case, several opcodes stand for differently padded versions of the same
instruction.

In our system the instruction set is generated automatically from a higher-level
description, creating all the necessary padded versions automatically. E.g., the
following code defines an instruction that unifies an X register (a mutable variable
whose low-level address is specified by an operand in the bytecode representation
containing an indirect offset to an address in the global state), and a constagged:

:− entry(u_cons(xreg,constagged)).
u_cons(A, Cons) :− T ⇐ @A, unify_cons(T, Cons).

where the code that links the operands of that bytecode with the arguments
is synthesized by the abstract machine generator. In the instruction above, if
the instruction opcodes are stored as a 16 bit word and the X registers as a 16-
bit word, the second operand (that is 32-bit sized) is aligned to 32 bits or not,
depending on whether the instruction begins at a 32-bit aligned address or not.
Then, two versions of the same instruction (padded and non-padded) are emitted;
in the latter a 16-bit pad before the Cons operand is inserted to ensure that it is
aligned to 32-bits.

6.6 Evaluation of Tag Scheme Variations

We tested 48 combinations of the available address space possibilities, bit layouts,
and optimizations. For each combination we generate an abstract machine on
which 22 benchmarks (see table 6.1) are executed. Some of these benchmarks are
well known and relatively small, while others (for example, witt and wumpus) can
be considered having a medium size (from 400 to 500 lines). In any case, these
benchmarks exercise operations whose performance will be greatly affected by
the different compilation options under study, so they can be taken as reasonable
witnesses of this impact in efficiency. We measured the memory usage and the
total execution time, with and without GC. Each benchmark was executed three
times, taking the shortest execution. The experiments were run on four machines,
with different architectures or processors, taking from 5 to 12 hours, depending on
the machine speed. In the machines where it was possible, the O.S. was running
in native 64-bit mode (executing also the 32-bit tests).

176

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

boyer Simplified Boyer-Moore theorem prover.
crypt Arithmetic puzzle involving multiplication.
deriv Symbolic derivation of polynomials.
exp Work out 137111.
factorial Compute the factorial of a number.
fft Fast Fourier transform
fib Simply recursive computation of the nth Fibonacci number.
guardians Prison guards playing game.
jugs Jugs problem.
knights Chess knight tour, visiting only once every board cell.
nreverse Naive reversal of a list using append.
poly Raises symbolically the expression 1+x+y+z to the nth power.
primes Sieve of Eratosthenes.
qsort Implementation of QuickSort.
queens11 N -Queens with N = 11.
query Natural language query to a database with information

about countries.
tak Computation of the Takeuchi function.
trie Word indexer using tries.
wave_arr Signal processing using updatable arrays.
wave_dyn Signal processing using dynamic facts.
witt A conceptual clustering algorithm.
wumpus Wumpus world game.

Table 6.1: Benchmark descriptions.

We will use an abbreviated notation for the different combinations of compi-
lation options and architectures, using the following codes:

highbittags h splitbittags s lowbittags l

lowbitgc L highbitgc H

sw0 0 sw1 1 sw2 2

sparc64 64-b. Sparc/Sol. 5.10, 3MB cache
p4-64 64-b. Intel P4/Lin. 2.6, 2MB cache
xeon-32 32-b. Intel Xeon/Lin. 2.6, 512Kb cache
coreduo-32 32-b. Intel Core Duo/Lin. 2.6, 2Mb cache

177

6.6. Evaluation of Tag Scheme Variations

The C compiler (gcc) we used to compile the emulators had a different version
in each architecture. This may affect the conclusions in which speedups from
different architectures are compared, which we think is sensible only for xeon-32
and coreduo-32 (Section 6.6.3). In these two cases, however, the “best options”
happen to be the same. This makes us confident that the results will also be
applicable in a more long term, when current compilers have been outdated.

For each architecture the speedups and memory usage figures are normalized
w.r.t. a default case which corresponds to hL2 with 26 bits of address space
(the smallest we tested). This normalization makes comparisons among different
address spaces meaningful using speedups w.r.t. the fixed basic case. We want
to note that this default case is in itself quite efficient: it was generated using as
basis the Ciao virtual machine (itself an offspring of the SICStus 0.6/0.7 virtual
machine) with some improvements (computed goto/threaded bytecode, smarter
instruction opcode assignment, . . .) written in imProlog which made the virtual
machine faster than the stock Ciao one. Table 6.2 helps to evaluate the speed of
the default emulator (in the coreduo-32 machine) w.r.t. to Ciao 1.13 and other
well-know Prolog systems: Yap 5.1.2, hProlog 2.7, SWI-Prolog 5.6.55.

6.6.1 Address Limits and Memory Usage

The different addressing possibilities are described in Table 6.3. The leftmost
column gives a name to each of the combinations and the one to its right describes
the (physical) size of the tagged word (32 or 64 bits), the size of the stored pointer
(64 bits when running in a 64 bit architecture and O.S.), and whether GC bits are
internal or not to the tagged word (extgc). The option qtag, used in the default
tag scheme in Ciao, reserves one bit to represent special functors for blobs. Note
that not all combinations are possible in all studied architectures. The following
columns provide the number of bits available for pointers, the number of bytes
to be aligned to, and the resulting limits to addressable space.

The growth ratio in memory consumption that a given choice implies (w.r.t.
the default case) appears in Table 6.4. Within each case, the figures are the same
for every architecture in which the case can be implemented. However, every
memory zone has a different growth ratio, and the relative growth for every area
is not homogeneous for all the combinations. The reason is that the memory

178

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

Benchmark Yap hProlog SWI Def. 1.13
boyer 1392 1532 11169 1604 2560
crypt 3208 2108 36159 3460 6308
deriv 3924 3824 12610 3860 6676
exp 1308 1740 2599 1624 1400
factorial 4928 2368 16979 2736 3404
fft 1020 1652 14351 1548 2236
fib 2424 1180 8159 1332 1416
knights 2116 1968 11980 2352 3432
nreverse 1820 908 18950 2216 3900
poly 1328 1104 6850 1160 1896
primes 4060 2004 28050 2520 3936
qsort 1604 1528 8810 1704 2600
queens11 1408 1308 24669 1676 3200
query 632 676 6180 968 1448
tak 3068 1816 27500 2964 5124

Table 6.2: Speed comparison (coreduo-32).

Name Options
Ptr. Align. Limits
bits (bytes) (Mb)

addr26 tagged32*pointer32*qtag 26 4 256
addr27 tagged32*pointer32 27 4 512
addr29 tagged32*pointer32*extgc 29 4 2048
addr30 tagged64*pointer32 30 8 4096
addr32 tagged64*pointer32*extgc 32 8 4096
addr59 tagged64*pointer64 59 8 full
addr61 tagged64*pointer64*extgc 61 8 full

Table 6.3: Options related to the address space.

space used by objects does not change uniformly for all objects.2 Therefore, data
about actual memory usage has to be taken experimentally, as the ratio between
these object types is different for each program.

2For example, large numbers or floating point numbers have a special, structure-based rep-
resentation (a blob) whose size does not grow linearly with the size of the tagged word.

179

6.6. Evaluation of Tag Scheme Variations

Addr. Total Program Heap Local Trail Choice GC’ed memory
addr26 1.00 1.00 1.00 1.00 1.00 1.00 1.00
addr27 1.00 1.00 1.00 1.00 1.00 1.00 1.00
addr29 1.09 1.00 1.25 1.25 1.25 1.25 1.10
addr30 1.53 1.22 2.03 1.59 2.15 1.33 1.29
addr32 1.63 1.22 2.28 1.79 2.42 1.50 1.38
addr59 1.92 1.81 2.03 2.00 2.10 2.00 1.29
addr61 2.02 1.81 2.28 2.25 2.36 2.25 1.38

Table 6.4: Memory growth ratio.

The differences in program memory come from the need to use extra padding
bytes in some instructions, which have a different impact in the different tag
schemes.

As objects in different tagging schemes take different amounts of memory (for
example, addr30 can address 4GB of memory, but each tagged word takes twice
as much space as in addr29), Table 6.3 is not really useful to decide which is the
best scheme memory-wise: it is much more useful to reason about the number of
objects which can actually fit in the memory addressable so that, leaving aside
speed considerations, using addr29 may be more advantageous, as it uses half as
much memory.3 This is shown in Table 6.5, where the memory address limits
have been adjusted taking into account the data in Table 6.4, to finally work
out a ratio of the number of objects which can actually be created. Note that in
practice all the physically available memory is addressable in 64-bit architectures.

Both addr30 and addr32 use two 32-bit (4 bytes) words for a tagged word in a
32-bit architecture. Pointers must therefore be aligned to 4-byte boundaries, and
their two less significant bits have to be zero. Hence, both addr32 and addr30

can address 4GB of memory. The latter is included in order to study how using
external GC bits impacts performance. Although the underlying emulator differs,
those schemes are similar to the one used in ECLiPSe [ECR93].

3Also, note that stock Linux kernels make only 3Gb available for user processes in 32-bit
architectures.

180

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

Addr. Total Program Heap Local Trail Choice
addr26 256 (1.00) 256 (1.00) 256 (1.00) 256 (1.00) 256 (1.00) 256 (1.00)
addr27 512 (2.00) 512 (2.00) 512 (2.00) 512 (2.00) 512 (2.00) 512 (2.00)
addr29 1876 (7.33) 2048 (8.00) 1638 (6.40) 1638 (6.40) 1638 (6.40) 1638 (6.40)
addr30 2669 (10.43) 3355 (13.11) 2018 (7.89) 2579 (10.08) 1906 (7.45) 3076 (12.02)
addr32 2513 (9.82) 3355 (13.11) 1794 (7.01) 2293 (8.96) 1694 (6.62) 2734 (10.68)
addr59 all memory all memory all memory all memory all memory all memory
addr61 all memory all memory all memory all memory all memory all memory

Table 6.5: Effective addressable limits (and ratio w.r.t. default case) for address space
options.

0
1
2

L0
L1
L2
s0
s1
s2
l0
l1
l2

lL0
lL1
lL2
lH0
lH1
lH2
h0
h1
h2

hL0
hL1
hL2
hH0
hH1
hH2

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

speed-up relative to default options

Arithmetic mean of benchmark set

addr26
addr27
addr29
addr30
addr32
addr59
addr61

Figure 6.6: Arithmetic average of speedups (sparc64).

6.6.2 General Speed-up Analysis

We have summarized in a series of plots (Figures 6.6.2, 6.6.2, 6.6.2, 6.6.2) the
arithmetic4 average of speedups obtained assigning the different combinations of
placements of GC bits, tags, and tag-related primitives in the Y axis, the option
which selects the address space in the shapes of the dots, and the speedup in the
X axis.

Some general conclusions can be drawn from these plots. First, the Sparc
64 architecture seems to have a very regular behavior (probably due to its large
number of registers), except for some specific combinations of options which, non

4Plots with geometric average were practically identical.

181

6.6. Evaluation of Tag Scheme Variations

0
1
2

L0
L1
L2
s0
s1
s2
l0
l1
l2

lL0
lL1
lL2
lH0
lH1
lH2
h0
h1
h2

hL0
hL1
hL2
hH0
hH1
hH2

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

speed-up relative to default options

Arithmetic mean of benchmark set

addr26
addr27
addr29
addr30
addr32
addr59
addr61

Figure 6.7: Arithmetic average of speedups (p4-64).

0
1
2

L0
L1
L2
s0
s1
s2
l0
l1
l2

lL0
lL1
lL2
lH0
lH1
lH2
h0
h1
h2

hL0
hL1
hL2
hH0
hH1
hH2

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

speed-up relative to default options

Arithmetic mean of benchmark set

addr26
addr27
addr29
addr30
addr32

Figure 6.8: Arithmetic average of speedups (xeon-32)

.

surprisingly, perform badly in all architectures. The Intel processors, on the other
hand, show wide variations, both for the different options in a given processor
and also among the tested processor families. The latter can be attributed to the
large differences in the internal architecture among Intel processors, which share
little more than a common assembler language.

Although careful inspection of the plots (including the extensive per-program
data available at
http://clip.dia.fi.upm.es/˜jfran/tagschemes) can be of help to draw some

182

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

0
1
2

L0
L1
L2
s0
s1
s2
l0
l1
l2

lL0
lL1
lL2
lH0
lH1
lH2
h0
h1
h2

hL0
hL1
hL2
hH0
hH1
hH2

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

speed-up relative to default options

Arithmetic mean of benchmark set

addr26
addr27
addr29
addr30
addr32

Figure 6.9: Arithmetic average of speedups (coreduo-32)

.

definite conclusion, resorting to visual inspection is too error-prone, so we per-
formed an analytical study of the available data.

6.6.3 General-purpose Abstract Machine

Determining the combination of options which gives the best performance for a
general-purpose abstract machine (where general-purpose is in our case reduced
to the universe of programs in Table 6.1) is not easy: there is no absolute winner
combination of tagging scheme / access primitive for any architecture / addressing
range, and combinations which perform well (or very well) for some programs
often perform badly (or very badly) for other programs.

Therefore, we decided to resort to a method based on ballots to decide the
best option encoding / tag primitive implementation for each addressing space. In
this setting, programs are voters, and the different combinations are candidates
which voters rank using the runtime they offer for each voter. The idea is to
select the candidate which is, in some sense, most preferred. Among the many
ways to decide between candidates given this information, Condorcet methods
are among the best known and preferred in many situations. We have selected
the Schulze method 5 which it is used in other related areas and which determines
a winner combination. This winner is removed from the list of candidates and the

5http://m-schulze.webhop.net/schulze1.pdf

183

6.6. Evaluation of Tag Scheme Variations

algorithm is applied again, to generate a global preference list, its last member
being the the worst combination – the loser.6

The reason not to simply select the combination with the best average is that
extreme cases can affect this average more than what is desirable. Removing
the best and worst combination (to exclude extreme elements) was an option we
did not want to take, because we wanted to take into account all the available
information.

The results of this process are summarized in Tables 6.6 (without GC time)
and 6.7 (including GC time), where for each architecture and address space, the
best and worst tag scheme combinations are shown, together with the average
speedup w.r.t. a default combination. For each of these, the best and worst
speedup in the benchmarks is shown, as well as the ratio (W/L) between these
speedups. This ratio gives a raw idea of what variation can be expected for each
address space and architecture combination.

Let us note first that comparing speedups in different architectures is not
really needed (or even meaningful). If a single tagging scheme / address space
option were the winner hands down, then a single answer (a single code scheme)
could be given for a machine, but a per-architecture best option can typically be
decided at compile time with adequate macro definitions. On the other hand,
comparing the best schemes in each of the architectures may give some insight
on which code schemes are favored by the C compiler, optimizer, and processor,
which may guide future decisions.

Selecting between tag and GC bit placement and code for tag management
operations is somewhat independent from the addressing scheme selected. On
one hand, schemes which need native 64 bits (e.g, addr59 and addr61) are only
applicable to 64-bit machines, and therefore cannot be compared with those de-
signed to be used in 32-bit machines. Additionally, if some tag scheme A gives
better performance, but less effective address space than some other tag scheme
B, then a decision should be made depending on the expected needs of speed vs.
runtime memory needs.

In order to decide which schemes are the best, we first observe that the options
favored by the Schulze method are the same regardless of whether GC time is

6The Schulze method may end up in a draw, in which case we select the combination with
the best average speedup to be the winner.

184

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

taken into account or not in all cases but one: for the p4-64 architecture and
the addr29 tag scheme in tables 6.6 and 6.7, the winners are, respectively, h2 and
h1. However, these two code generation options gave almost identical speedup
results, so the difference can be safely ignored, and we can, therefore, focus on
just one of the speedup tables.

Options for Native 64-bit Implementations: In the two 64-bit architectures
the native 64-bit tagging scheme is reasonably fast w.r.t. the default 32-bit one,
and both (addr59 and addr61) give a similar speedup. Therefore, and looking at
the actual memory consumption figures in Table 6.4, we select addr59, since it
would make better use of the really available memory in the machine. In that
case, GC bits in the higher part (H) is the recommended option, while tag bits
are better placed in the lower (l) part for sparc64 and in the higher (h) part for
p4-64. In general, predefined switch rules (2) gave the best results, except in the
scheme addr95 in p4-64.

Options for 32-bit Architectures: Architectures with only 32-bit addresses
(xeon-32 and coreduo-32, in our case), can take advantage of the full address
range by using two 32-bit words (i.e., schemes addr30 and addr32). This, however,
comes at the cost of a noticeable slowdown. In return, a larger set of objects
can be kept in memory. Between these two schemes, and if memory usage is a
concern, we would select addr30. If speed is a primary concern, then the default
setup (addr26) gives the best results. However, for a not very large price in
speed (especially in coreduo-32 machines), the number of objects in memory can
be increased almost eightfold. For memory-demanding applications (which may
even not run in the memory available with addr26) this would obviously be an
advantage and the results suggest using addr29 in these cases. For the selected
case, the best performance is obtained by using external GC bits and split tag
bits (s).

Options for 32-bit Tagged Words in 64-bit Machines: Although the natural
option for a 64-bit machine would be a 64-bit native implementation, there are
cases where this may not be completely advantageous. The space that a 64-bit
tagged word takes up is 8 bytes, and if a 64-bit machine has less than 4Gb of
memory, as is often the case currently on, e.g., normal desktops and laptops, more
32-bit-based objects can fit in it without leaving any memory unreachable. In
this case, again, the best options in terms of addressing space, addr30 and addr32

185

6.6. Evaluation of Tag Scheme Variations

pay a high price in speed. A better compromise uses addr29, as it provides good
speed and a reasonably large memory address space. For the selected case, best
options are similar to those for 64-bit in the same machines: tag bits are better
placed in the lower (l) part for sparc64 and in the higher (h) part for p4-64.

Impact of External GC Bits on Performance: Turning on external GC bit
support (moving the GC bits out of the word) increases addressable space, at the
expense of a somewhat more complex access to the GC bits and, perhaps more
importantly, less cache locality, which however affects execution only when GC
is performed. This is the reason why speed-ups are more modest when GC is
turned on in the combinations where GC bits are external to the tagged word
(addr29, addr32, addr61). Its impact is however not dramatically large, and can
be accepted in exchange for the increased address space if it is really needed.

6.6.4 Per-program Abstract Machines

Our framework makes it possible to generate an executable which contains byte-
code, native code, and an abstract machine specialized for a given Prolog program,
using any of the generation options we have discussed so far. It is, thus, natural,
to generate program-specific abstract machines and measure their performance.
Table 6.8 shows the results of this experiment. Each case was obtained by find-
ing the best combination of tag/GC placement options for each benchmark, then
averaging over the benchmarks.

A comparison of the speedups in Table 6.6 and 6.7 with Table 6.8 shows
that program-specific abstract machines have, on average, better performance
than an “agreed” single abstract machine. The difference is not very big and,
for general usage, a single abstract machine with the right selection of options
(see Section 6.6.3) is probably enough. However, for some benchmarks the best
abstract machine is more than twice as fast as the worst one (e.g., addr27 in
xeon-32, column “W/L Sabs”), and in some other benchmarks they difference
reaches the 38% (again, xeon-32 but in the addr26 row in the “Sabs” column).

186

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

6.7 Final Remarks

It is interesting to observe that the 32 and 64 bit cases have a close performance,
but of course there is a huge difference in address space (and a noticeable in-
crease in memory consumption). Double word representations, which are easier
to implement, have been observed to be in general slower. Thus, for languages
or applications with a reduced set (around 8) of types of small objects requiring
runtime type information it is clearly worth using in-word tags.

It is also interesting to note that with our approach we have been able to
automatically generate code featuring all the optimizations present in a hand-
written, highly-optimized abstract machine (the base case that we compare to)
and we have also been able to obtain emulators with larger addressable space
and/or better performance.

The results indicate that it is difficult to recommend a particular bit layout
or tag switch implementation that will be ideal for all situations, since the best
option set changes depending on the architecture and the memory requirements
of the application. In this sense the results presented provide a recommendation
table which indicates the best option for each situation (the results are of course
limited to the architectures studied). In this sense, further interesting results
of this work are a) that it is possible to construct a framework that allows a
flexible and parametric implementation of tagged data which can be adapted to
support different schemes with modest effort, and b) that the variability in results
observed indicates that constructing such as framework is indeed useful not just
for experimentation, but also for production since it allows generating the right
machine for each architecture or even for each application.

The system in which these techniques have been implemented and wich which
the experiments have been performed is part of the development branch of Ciao
Prolog.

187

6.7. Final Remarks

(tags,gcbits,swmode) and speedups for host sparc64

Addr.
Winner Loser W/L

best avg. max min. worst avg. max min. avg. max min
addr26 hL2 1.00 1.00 1.00 hL1 0.98 1.00 0.94 1.02 1.06 1.00
addr27 lL2 1.04 1.33 1.00 hH1 0.97 1.00 0.90 1.07 1.47 1.00
addr29 l2 1.04 1.28 0.96 s0 0.95 1.00 0.89 1.09 1.31 1.00
addr30 2 0.69 0.96 0.59 1 0.68 0.96 0.58 1.02 1.05 0.99
addr32 2 0.69 0.96 0.60 1 0.68 0.96 0.58 1.02 1.05 0.99
addr59 lH2 1.00 1.35 0.86 hH0 0.96 1.35 0.83 1.04 1.11 1.00
addr61 l2 1.00 1.35 0.85 h0 0.96 1.35 0.83 1.05 1.11 1.00

(tags,gcbits,swmode) and speedups for host p4-64

addr26 hL1 1.01 1.09 0.94 hL2 1.00 1.00 1.00 1.01 1.09 0.94
addr27 lL2 1.08 1.24 0.86 hL2 0.99 1.07 0.88 1.09 1.24 0.84
addr29 h2 1.08 1.25 0.86 s1 0.98 1.05 0.89 1.09 1.28 0.87
addr30 0 0.80 0.99 0.69 2 0.73 1.00 0.62 1.09 1.19 0.99
addr32 0 0.81 1.00 0.67 2 0.74 0.99 0.62 1.09 1.26 1.01
addr59 hH0 1.07 1.31 0.77 hL1 1.04 1.29 0.77 1.03 1.09 0.96
addr61 l2 1.08 1.31 0.79 l0 1.04 1.24 0.70 1.05 1.32 0.91

(tags,gcbits,swmode) and speedups for host xeon-32

addr26 hL2 1.00 1.00 1.00 hL0 0.97 1.31 0.64 1.07 1.55 0.77
addr27 hL2 0.99 1.36 0.62 hL0 0.72 0.95 0.58 1.40 1.72 1.05
addr29 s2 0.92 1.21 0.65 h1 0.72 0.93 0.60 1.28 1.67 0.97
addr30 0 0.62 0.95 0.39 2 0.61 0.76 0.37 1.02 1.27 0.80
addr32 0 0.66 0.89 0.42 1 0.62 0.80 0.44 1.07 1.48 0.71

(tags,gcbits,swmode) and speedups for host coreduo-32

addr26 hL2 1.00 1.00 1.00 hL0 0.94 1.01 0.70 1.07 1.44 0.99
addr27 hL2 0.99 1.02 0.90 lL0 0.95 1.17 0.70 1.05 1.42 0.85
addr29 s2 0.98 1.07 0.82 s0 0.90 1.00 0.69 1.10 1.18 1.00
addr30 0 0.64 0.98 0.51 1 0.62 0.97 0.51 1.03 1.12 0.97
addr32 0 0.64 0.99 0.55 1 0.62 0.98 0.52 1.03 1.11 0.99

Table 6.6: Schulze winner for each address space and machine (GC time not taken
into account).

188

Chapter 6. Comparing Tag Scheme Variations Using an Abstract Machine Generator

(tags,gcbits,swmode) and speedups for host sparc64

Addr.
Winner Loser W/L

best avg. max min. worst avg. max min. avg. max min
addr26 hL2 1.00 1.00 1.00 hL0 0.98 1.02 0.94 1.02 1.07 0.98
addr27 lL2 1.03 1.22 0.98 hH1 0.97 1.00 0.89 1.06 1.37 1.00
addr29 l2 1.00 1.11 0.85 s0 0.93 0.99 0.79 1.09 1.23 1.01
addr30 2 0.69 0.97 0.59 1 0.67 0.97 0.58 1.02 1.05 0.99
addr32 2 0.68 0.96 0.57 1 0.66 0.96 0.56 1.02 1.05 0.99
addr59 lH2 0.99 1.36 0.85 hH0 0.95 1.35 0.82 1.04 1.10 1.00
addr61 l2 0.97 1.34 0.80 h0 0.93 1.33 0.80 1.04 1.11 1.00

(tags,gcbits,swmode) and speedups for host p4-64

addr26 hL1 1.01 1.09 0.94 hL2 1.00 1.00 1.00 1.01 1.09 0.94
addr27 lL2 1.06 1.24 0.86 hH1 0.99 1.11 0.90 1.08 1.25 0.90
addr29 h1 1.04 1.26 0.74 s0 0.95 1.04 0.73 1.09 1.29 0.92
addr30 0 0.78 1.02 0.65 2 0.72 0.99 0.61 1.08 1.19 0.99
addr32 0 0.77 0.99 0.58 2 0.72 0.98 0.53 1.08 1.18 1.01
addr59 hH0 1.04 1.30 0.77 lH0 1.01 1.23 0.80 1.02 1.18 0.90
addr61 l2 1.03 1.30 0.70 l0 0.98 1.24 0.70 1.05 1.32 0.91

(tags,gcbits,swmode) and speedups for host xeon-32

addr26 hL2 1.00 1.00 1.00 hL0 0.97 1.31 0.64 1.06 1.55 0.77
addr27 hL2 0.99 1.36 0.62 hL0 0.71 0.95 0.58 1.40 1.72 1.05
addr29 s2 0.89 1.18 0.61 h1 0.70 0.93 0.60 1.28 1.67 0.98
addr30 0 0.62 0.95 0.40 2 0.61 0.76 0.38 1.02 1.27 0.80
addr32 0 0.65 0.89 0.42 1 0.61 0.80 0.43 1.07 1.48 0.71

(tags,gcbits,swmode) and speedups for host coreduo-32

addr26 hL2 1.00 1.00 1.00 hL0 0.93 0.99 0.70 1.08 1.42 1.01
addr27 hL2 0.99 1.02 0.90 lL0 0.93 1.07 0.70 1.07 1.40 0.94
addr29 s2 0.95 1.01 0.75 s0 0.87 0.98 0.68 1.09 1.18 1.01
addr30 0 0.63 0.97 0.51 1 0.61 0.96 0.51 1.03 1.12 0.97
addr32 0 0.63 0.95 0.52 1 0.61 0.93 0.52 1.03 1.12 0.99

Table 6.7: Schulze winner for each address space and machine (GC time included).

189

6.7. Final Remarks

speedups for host sparc64

Addr.
Without GC With GC

Sabs W/L Sabs Sabs W/L Sabs
avg. max min avg. max min avg. max min avg. max min

addr26 1.00 1.03 1.00 1.03 1.07 1.00 1.00 1.02 1.00 1.03 1.07 1.00
addr27 1.04 1.33 1.00 1.08 1.47 1.00 1.03 1.22 1.00 1.07 1.37 1.01
addr29 1.04 1.29 0.99 1.10 1.40 1.00 1.01 1.11 0.85 1.09 1.29 1.01
addr30 0.69 0.96 0.59 1.02 1.05 1.00 0.69 0.97 0.59 1.02 1.05 1.01
addr32 0.69 0.96 0.60 1.02 1.06 1.00 0.68 0.96 0.57 1.02 1.06 1.00
addr59 1.02 1.35 0.86 1.07 1.43 1.00 1.00 1.36 0.85 1.06 1.35 1.00
addr61 1.01 1.35 0.86 1.05 1.11 1.00 0.97 1.34 0.82 1.05 1.11 1.00

speedups for host p4-64

addr26 1.03 1.13 1.00 1.05 1.13 1.01 1.02 1.13 1.00 1.05 1.13 1.01
addr27 1.12 1.29 1.01 1.18 1.41 1.03 1.11 1.29 1.01 1.17 1.41 1.03
addr29 1.12 1.29 1.01 1.17 1.32 1.02 1.08 1.29 0.78 1.16 1.32 1.02
addr30 0.80 1.01 0.69 1.10 1.19 1.01 0.78 1.02 0.65 1.09 1.19 1.01
addr32 0.81 1.00 0.67 1.10 1.26 1.01 0.78 0.99 0.58 1.09 1.18 1.01
addr59 1.14 1.33 0.83 1.15 1.40 1.04 1.09 1.32 0.81 1.14 1.38 1.04
addr61 1.11 1.31 0.81 1.12 1.33 1.02 1.06 1.30 0.71 1.11 1.33 1.02

speedups for host xeon-32

addr26 1.08 1.38 1.00 1.24 1.56 1.00 1.08 1.38 1.00 1.23 1.56 1.00
addr27 1.03 1.36 0.77 1.54 2.13 1.27 1.02 1.36 0.77 1.53 2.13 1.25
addr29 1.03 1.23 0.75 1.48 1.74 1.12 1.00 1.23 0.73 1.47 1.74 1.11
addr30 0.69 0.99 0.39 1.20 1.58 1.03 0.69 0.99 0.40 1.19 1.58 1.03
addr32 0.73 0.89 0.45 1.27 1.51 1.04 0.71 0.89 0.45 1.27 1.51 1.04

speedups for host coreduo-32

addr26 1.00 1.04 1.00 1.08 1.44 1.01 1.00 1.03 1.00 1.08 1.42 1.01
addr27 1.02 1.24 0.98 1.13 1.43 1.05 1.01 1.16 0.94 1.13 1.40 1.05
addr29 1.01 1.19 0.97 1.14 1.43 1.02 0.98 1.04 0.75 1.13 1.40 1.05
addr30 0.64 0.98 0.55 1.04 1.12 1.01 0.63 0.97 0.55 1.04 1.12 1.01
addr32 0.64 0.99 0.55 1.04 1.13 1.00 0.63 0.95 0.53 1.04 1.13 1.00

Table 6.8: Speedup results using the best options for each benchmark.

190

7
A Case Study: Real-Time Sound

Processing

Summary

In this chapter we study, through a concrete case, the feasibility of using a
high-level, general-purpose logic language in the design and implementation of
applications targeting wearable computers. The case study is a “sound spatial-
izer” which, given real-time signals for monaural audio and heading, generates
stereo sound which appears to come from a position in space. The use of
advanced compile-time transformations and optimizations made it possible to
execute code written in a clear style without efficiency or architectural concerns
on the target device, while meeting strict existing time and memory constraints.
The final executable compares favorably with a similar implementation written
in C. We believe that this case is representative of a wider class of common
pervasive computing applications, and that the techniques we show here can be
put to good use in a range of scenarios. This points to the possibility of apply-
ing high-level languages, with their associated flexibility, conciseness, ability to
be automatically parallelized, sophisticated compile-time tools for analysis and
verification, etc., to the embedded systems field without paying an unnecessary
performance penalty.

7.1 Introduction

In recent years software has become truly ubiquitous: a large part of the func-
tionality of many devices is now provided by an embedded program, which often

191

7.1. Introduction

implements the core tasks that such devices perform. This includes from simple
timers in ovens or fuzzy logic based monitoring and control software in house-
hold appliances, to sophisticated real-time concurrent systems in cars and cell
phones. Upcoming wearable computing applications envision an integration of
such devices even into clothing.

A range of micro-controllers is available for these purposes which, when com-
pared with the processors currently used in workstations or laptops, are much
less expensive and consume a reduced amount of power (starting at micro-Watts
for the simplest ones). In return such processors have limited memory (from
hundreds of bytes to perhaps a few megabytes total) and speed (up to at most a
few hundred megahertz clock rates, and with little or no instruction parallelism).
Basically, lower clock rates consume less power and simpler processors with less
storage are cheaper.

As a result of this, frequent requirements on embedded programs is that they
be able to use minimum storage, execute few instructions, and meet strict timing
constraints, since all this brings down both cost and power consumption. The
importance of these requirements depends of course on the domain. Because of
these requirements, programs are often developed in low-level languages includ-
ing, in many cases, directly in assembler [Wol05]. Some of those programs are
written on micro-controllers in order to completely minimize power consumption
while others are written using also small, but more general-purpose computing
platforms [MM03, MR00, RM02]. In most cases, platform limitations drive the
whole development cycle, diverting attention from modularity, reusability, code
maintainability, etc.

At the same time, and despite resource and program development technology
constraints, the functionality implemented by embedded systems is often quite
sophisticated. This can include, even for the smallest devices, non-trivial matrix
operations (as in, e.g., Kalman filters [WB95], used in GPS receivers), or intensive,
real-time operations on data streams (including spatialization, as in the digital
sound processing example that we will study in this chapter). In addition, more
sophisticated functionality and more automated operation is always demanded
by users. Furthermore, those systems often face strict correctness requirements
because of the nature of the application or simply because of the higher cost of
fixing bugs once the system is deployed. In practice, and in order to deal with

192

Chapter 7. A Case Study: Real-Time Sound Processing

these conflicting requirements, applications are often coded also in a high-level or
specification language which is used for prototyping and verification, in addition
to the above mentioned low-level language, which constitutes the implementation.
Unfortunately, often no real link between these two codings of the problem exists.

Coding at a Higher Level

A number of recent proposals make it easier to code stream processing routines.
They are usually based on connecting processing blocks (available in a library or
provided by the user) using a textual programming language (e.g. [TKA02]) or
visual depictions thereof (e.g. [Lee03]). In many cases their abstraction level is
adequate to use them as specification languages, but code generation is sometimes
not automatic, or the resulting code needs to be fine-tuned by hand. Data and
control models are often that of a procedural / O.O. language, which makes the
application of some program analysis and transformation techniques somewhat
challenged. Domain-specific program transformation techniques exist, but they
have only a limited use in the case of a general embedded system. We want to note
that defining processing blocks and applying domain-specific transformations is
in principle possible for languages of any type and level.

In contrast, the availability of optimizing technology for high-level languages
makes their direct use to implement (and not just to specify and to prototype) an
attractive alternative. First, using high-level languages makes it easier to write
better programs, with fewer errors, in less time, and with less effort. Problems
can be formulated at a higher level of abstraction and much of the low-level
detail that must be dealt with when using, e.g., C or assembler (such as manual
memory management, ensuring safe typing, complex data structure management,
etc.), which complicate and obfuscate the coding of algorithms, are taken care of
automatically. These languages also make it easier to detect any remaining bugs
and also to verify the correctness of programs automatically. Finally, high-level
languages are also useful in the context of the general trend in processor design
towards multi-core chips. Dual processor designs (with four threads total) are
present already in mainstream laptops and the expectations are to double the
number of cores and threads every two years at fixed cost. Since the motivation
behind these multi-core designs is precisely to gain performance while keeping
resource consumption down, this trend is also likely to hit the micro-controller

193

7.1. Introduction

arena. Parallelized programs will be required to exploit the performance that
the chip can deliver, and the parallelization task will add to the burden on the
programmer. High-level languages are relevant in this context because they have
been shown to be easier to parallelize automatically [GPA+01].

The challenge in using high-level languages in embedded and wearable de-
vices is to be able to generate automatically executables that are as efficient as
required by the platform (with memory, speed, and energy consumption close
to hand-coded low-level implementations). A particular challenge is to achieve
this even if numeric or data-intensive computations are involved. While some
interesting work has been done regarding the use functional programs in embed-
ded systems [PHE99, Wal95], the use of (constraint) logic programming (CLP)
systems in this context has received comparatively little attention. CLP, and, in
particular, the availability of logical variables, search, and constraints in a pro-
gramming language can be attractive because these features can make it easier to
provide sophisticated problem solving, optimization, and reasoning capabilities
in devices. This is in line with the demands for higher and more automated func-
tionality from users. The purpose of this chapter is to investigate for a particular
case study (a sound spatializer embedded in a wearable computer) the feasibility
of coding it using a very high level, multiparadigm programming system sup-
porting predicates, logical variables, dynamic typing, search, and constraints in
combination with functions, higher order, objects, etc. (in particular, the Ciao
system [BCC+09, HBC+99, HPBG05]).

However, the point of this work is not to use all these capabilities extensively1

but instead to study whether current state of the art tools for compile-time anal-
ysis, verification, specialization, and low-level optimization are powerful enough
to optimize away the default functionality available in such a rich language, in-
cluding all its libraries, for a program such as the spatializer which only needs a
fraction of them. This will require optimizing away all the overhead needed for
supporting backtracking, full unification, tagged values, infinite precision arith-
metic, etc., which are present by default in the language for program sections that
do not need these features and see whether it is possible to produce in this way

1A brief account of how CLP characteristics can be of use to define and implement processes
on streams appears in [Ste97]. Our work is complementary in that we do not deal with how to
define and compose basic building blocks, but rather on how to optimize them.

194

Chapter 7. A Case Study: Real-Time Sound Processing

executables for the wearable computer that are competitive in terms of speed,
memory consumption, etc., when compared to a solution in a low-level language
(in our case, C). This presents challenges that, while having some similarities,
are also different for example from those which appear when optimizing pro-
grams written in other languages: dealing with logical variables and argument
modes (i.e., procedure arguments are not known a priori to be input or output),
dealing with backtracking and multiple solutions, eliminating dynamic typing
(when compared to strongly typed languages), etc.

A Concrete Problem and its Motivation

The case study we chose is a stylized (but fully functional) version of a real wear-
able computing application (designed for the new Bristol CyberJacket) in which
a set of virtual sounds are projected into a physical space. The user experiences
these soundscapes through a set of headphones attached to the wearable com-
puter (which has limited available power). An example of the use of such a sound
spatialization device is a “talking museum” where any object, from the actual ex-
hibits to the walls or doors of the rooms, can appear to be talking to the visitor.
A compass is fixed on the user headphones which provides information on head
orientation. The wearable computer is also aware of the user’s location, through
GPS for outdoor locations and through an ultrasonic positioning system [MM03]
for indoor installations. With these two sources of information the wearable de-
vice can determine where a sound should be positioned relative to the user. By
calculating the angle at which the sound is with respect to the head, the delay
that the sound will experience at each ear can be calculated, and this allows
spatializing the sound [Bla83]. For the sake of simplicity, and since we want to
show actual code, we will present a version in which position is not dealt with,
and only sound direction is taken into account.

This concrete case study was selected because of its characteristic nature:
it requires core functionality present in many wearable computing applications.
Handling streams of data such as audio and video and collections of positions
is frequent in pervasive and wearable systems. In many common scenarios one
or more sensors will produce data streams to be received and used by an actua-
tor. These sensors can generate data at different, unrelated, but generally fixed,
and sometimes very high, rates. Additionally, this case does not belong to the

195

7.2. The Sound Spatializer

Figure 7.1: Sound spatializer prototype, with Gumstix (bottom left) and compass
(right) attached to headphone.

restricted class of synchronous systems and the operation (and, therefore, time)
of some of the actuators depend on the particular data coming in. Therefore,
this case study exemplifies a family of programs to which techniques similar to
those we will show here can be applied. Very often (including, for example, our
case) these problems have, in addition to resource constraints, hard real-time
constraints where there are exact deadlines within the system. Of course the
objective is to be able to support, in addition to such lower-level data integra-
tion tasks, higher-level functionality. But the point of the study is to see if the
lower-level tasks can be handled efficiently enough, since the suitability of the
programming language used for the higher-level tasks is taken for granted.

7.2 The Sound Spatializer

The problem we focus on is spatializing sound in real time by processing a monau-
ral stream into a stereo one so that the sound appears to come from a position in
space when played through a set of headphones. Angle information comes from

196

Chapter 7. A Case Study: Real-Time Sound Processing

a compass mounted on the headphones. When the head turns, the compass will
register a change in heading and the spatialization unit should change accordingly
the direction from which the sound seems to originate to create the illusion that
it remains fixed at a certain spacial point. Our fully functional prototype has
a small processor board, compass, and battery, all integrated on a pair of head-
phones (see Figure 7.1). The sound stream is a series of samples (16-bit integers,
coming either from some external source or from flash memory) and the compass
data is read as floating-point numbers measuring the heading in degrees relative
to North.

We will assume that signals are delivered at a priori known rates, and we will
apply analysis and optimization tools in order to reduce the resources (processor
cycles, mainly) needed to deliver sound in a timely manner. We want to, at least,
be able to execute spatialization in real time on a small processor (described in
Section 7.2.3). Any gains beyond real-time execution will allow us to lower the
clock rate of the processor, which reduces power consumption, in turn increasing
battery life. In the following subsections we will discuss the requirements in
detail.

7.2.1 Sound Spatialization Basics

Figure 7.2 sketches how the ear localizes sound emanating from some point in
space. When the head does not face the sound source, sound waves travel a
different distance to each ear (DL and DR, respectively). Therefore the left and
right ears receive the same sound with a slight phase shift, in the order of a
millisecond, determined on the basis of the difference DL − DR. This enables
the brain to determine the direction of the sound. Calculating that shift is the
starting point for spatialization, as each earphone is to output one stream of sound
samples, which is in turn a possibly delayed copy of the initial sound stream. The
absolute distances to the sound sources can also be used to modify the volume
of the sound, although in practice attenuation information is hardly used by the
brain when determining the source of a sound. DL − DR obviously depends on
the angle C and the size of the head.

197

7.2. The Sound Spatializer

D
R

D
L

C

Figure 7.2: Sound samples reaching the ears.

7.2.2 Sound Quality and Spatial Localization

High sampling rates are needed to model small head movements. A relative
displacement of 3.43 mm. corresponds to a difference of 10 µs, which needs a
sampling rate of 100 KHz. The higher the sampling rate, the better the spatial-
ization, but the more processing is required: there is a trade-off between quality
of spatialization and processing power.

One of the requirements of the final application is that CD-quality sound has
to be produced, i.e., 44,100 16-bit samples per second (sps), which can model a
relative displacement between ears of about 7.5 mm. (a rotation of 2 degrees.)
Our program should therefore be able to process 44,100 16-bit sps and deliver
88,200 16-bit sps (on the two output channels). Concurrently, data from the
compass has to be read and used to produce the sound streams.

7.2.3 Hardware Characteristics of the Platform

The target architecture is modest in comparison with modern desktops or laptops:
it is a Gumstix board equipped with a 200MHz XScale processor, 64Mb of RAM

198

Chapter 7. A Case Study: Real-Time Sound Processing

and 4Mb of flash memory, which acts as permanent storage, and running a version
or Linux (see http://www.gumstix.com/ for more information). The Gumstix
board is around 25 times slower (depending on the application, of course) than
a 1.5GHz SpeedStep Centrino, at a fraction of the power usage. Memory and
storage limitations are obviously significant and relevant to our application, since
we want to run a non-terminating process, and thus garbage collection is critical.

7.2.4 Hard Real-time

A stereo sample should ideally be generated every 22 µs (1/44,100), as input
samples arrive. In practice, sound buffers require blocks (typically of 256 samples)
to be written to the sound card. Thus we are required to produce a block of sound
samples every 6 ms. Two issues can prevent us from meeting this hard real-time
deadline: process scheduling may swap out our program for more than 6 ms. and
executions of the garbage collector could take more than that.

The former can be worked around, if necessary, by switching to some form of
real-time Linux. However, if fewer processor cycles are needed by the application
(our goal), it will be less likely to be affected by the O.S. scheduling. In our case
this proved not to be a problem in the end.

The latter could hinder the use of high-level languages, as automatic mem-
ory management is one of the characteristics which makes them less error-prone.
Some languages have undergone a careful and interesting revision of the mem-
ory management model and primitives in order to adapt to real-time require-
ments [BG00] (but, arguably losing part of the initial elegance). In our case
recent work in this regard is aimed at inferring bounds on memory consumption
at compile-time in order to guarantee compliance with memory constraints with-
out modifying the language. In any case in our concrete case study the built-in
memory management of the (Ciao) system proved sufficient to not cause any no-
ticeable interruption in the sound while keeping memory consumption constant
and within reasonable limits.

In both cases, increasing the sound card buffer size would give more freedom
to the application. However, this creates a lag between the compass movements
and the sound emission which would render the application unacceptably sluggish
and destroy the illusion of spatialization.

199

7.3. Program Code and Source-Level Transformations

7.2.5 Compass and Concurrency

Reading the compass data (which is done from a serial interface) may take an
unknown amount of time, because due to limitations of the hardware data may be
corrupted. In order not to block or obfuscate the rest of the application code, a
separate thread is started which asynchronously reads data from the compass and
posts it for the main program. Communication is performed via an atomically
updatable, concurrent dynamic database [CH99]. This isolates low-level details of
the compass from the rest of the program. However, it makes it necessary for the
analysis tools to understand this communication by giving them an appropriate
description. Ciao includes an assertion language which was used to annotate the
interface to the compass (Section 7.4.2) appropriately.

Note that the scheduling is handled by the Gumstix operating system. In other
scenarios, CLP-based tools have shown their usefulness at precomputing feasible
schedulings using system specifications written as logic programs which are then
automatically specialized to reduce or eliminate scheduling overhead [Leu01].

7.3 Program Code and Source-Level Transformations

7.3.1 Naive implementation

A naive implementation of the sound spatialization algorithm is shown in Fig-
ure 7.3. A function f takes the current samples of the sound stream and the
direction stream, and produces a stereo sample. We encapsulate knowledge about
when to skip samples and any history needed in a separate object “state,” making
f a pure function. The three stream objects all have preset periodicities and are
initialized with their expected sampling rates.

This code is naive in that inside the function f one needs to perform trigono-
metric functions, but these only need to be executed once every compass poll (in
our case, once every 4,410 sound samples instead of every sample). In general,
a function f that operates on n inputs s0, s1, . . . , sn−1 can be projected onto a
series of functions f0, . . . , fn−1 such that

f(s0, s1, . . . , sn−1) = f0(s0, f1(s1, . . . fn−1(sn−1) . . .))

If the si are ordered according to their update rates so that s0 has the fastest one

200

Chapter 7. A Case Study: Real-Time Sound Processing

mono := new InputPeriodicStream(sound_sps);

direction := new InputPeriodicStream(compass_sps);

stereo := new OutputPeriodicStream(sound_sps);

while (true) DO

state = f(mono.current(),

direction.current(),

state);

stereo.output(state);

end

Figure 7.3: Single-loop algorithm for the spatializer.

mono := new InputPeriodicStream(sound_sps);

direction := new InputPeriodicStream(compass_sps);

stereo := new OutputPeriodicStream(sound_sps);

while (true) do

state := f_c(direction.current(), mono.current(), state);

samp_sound := sound_sps / compass_sps;

while (samp_sound > 0) do

state := f_m(mono.current(), state);

stereo.output(state);

samp_sound := samp_sound - 1;

end

end

Figure 7.4: A nested-loop sound spatializer.

and sn−1 has the slowest one, the initial program can be rewritten to save the
results of function applications by computing fn−1(sn−1) in the outer loop (with
the lowest frequency) and proceeding inwards across nested loops until f0(s0, ·)
is computed in the innermost loop. Note that in our example code we only deal
with the case in which the two frequencies divide each other. This is not the case
for arbitrary sensors.

The code for the sound spatializer, according to this decomposition, is shown
in Figure 7.4. The function f has been decomposed into fm and fc, and two loops
have been created. The outer loop computes fc when a new compass signal is
available, whereas the inner loop applies fm at a higher frequency. More efficiency
is attained at the cost of a slightly more complex code (which has however a clear

201

7.3. Program Code and Source-Level Transformations

spatialize(SamplesRemaining, SampleL, SampleR, CurrSkip):-

new_sample_cycle(SamplesRemaining, NewCycle,

CurrSkip, NewSkip,

SampleL, SampleR,

NewSampleL, NewSampleR),

new_sample(NewSampleR, R, RestSampleRight),

new_sample(NewSampleL, L, RestSampleLeft),

play_sample(R, L),

spatialize(NewCycle, RestSampleLeft,

RestSampleRight, NewSkip).

new_sample_cycle(0, ~audio_per_compass, CurrSkip,

NewSkip, SL, SR, NSL, NSR):-

find_skip(~read_compass, NewSkip),

skip(NewSkip - CurrSkip, SL, SR, NSL, NSR).

new_sample_cycle(Cycle, Cycle - 1,

Sk, Sk, SL, SR, SL, SR):- Cycle > 0.

new_sample([Sample|Rest], Sample, Rest):-

var(Sample) -> read_sample(Sample) ; true.

Figure 7.5: Main loop for the sound spatializer reading from a compass.

structure) and the decomposition of f .

7.3.2 High-level Code for the Sound Spatializer

To go from the schematic code to a full implementation in a low-level imperative
language requires quite a bit of coding where, e.g., memory management (alloca-
tion and management of buffers), data types and sizes, explicit synchronization,
etc. need to be taken into account. Given our objectives, instead we wrote a
complete sound spatializer in Ciao whose actual core code is shown in Figure 7.5
(we do leave out however for brevity some low-level details that deal with ob-
taining compass data and sending audio data, which were notwithstanding fully
implemented in the code which was benchmarked in this chapter). Note that
while the code has of course to deal with some low-level details, such as actually
reading stream information and outputting sounds, there are many others (such
as internal buffer information, types and precision of variables, etc.) which do
not need to be explicitly stated.

202

Chapter 7. A Case Study: Real-Time Sound Processing

A Note on Syntax: Ciao allows the use of functional notation with no execu-
tion time penalty [CCH06]. The prefix operator ~ enables the use of a predicate as
a function by making its last argument correspond to the function result. Hence,
the goal ?- append([1], [a], R). can be written as ?- R = ~append([1], [a]).
Predicates can also be defined in functional syntax, by using := instead of :-

(Figure 7.6). This assumes that the last argument will represent the function
result. Arithmetic expressions are also translated.

The sound stream is represented as an open-ended (incomplete), unbound-
length list of samples (of some opaque type) which is incrementally instantiated
as more samples are needed. This list is held in memory and the unnecessary items
(the samples which have already reached the farthest ear and are unreachable in
the program) are eventually and automatically deallocated.

On the other hand, the compass is explicitly polled (this is the functional-
ity offered by the hardware) by a separate thread and communicated through
the predicate read_compass/1 which returns the latest read value. Based on it,
find_skip/2 determines the current difference (in number of samples) between
the left and the right ear. This is used by skip/6 which returns new sample lists
(which are, at the virtual machine level, pointers to the initial, monaural sample
list) for the left and right channels.

The code in Figure 7.6 represents physical units (such as the speed of sound
in the air) and laws (e.g., the amount of space corresponding to every sample,
depending on the sampling frequency) or parameters defining particular scenarios
(such as the distance between ears).

We evaluated the different stages of optimization of the sound spatializer by
processing a 120-second track while sampling the compass 10 times per second,
using both the original version and an automatically specialized version (Sec-
tion 7.3.4). Assessment is based on measuring the total processing time required
and comparing it with the track duration, which indicates how well the band-
width can be sustained by telling us how busy the processor is. We also recorded
whether there were any artifacts such as clicks and silences. Their presence would
reveal issues with garbage collection or swapping. The results are summarized
in Table 7.1 where scenarios which generated acceptable sound are marked in
boldface.

The code in Figures 7.5 and 7.6 can be compiled to bytecode and it can

203

7.3. Program Code and Source-Level Transformations

sound_sps := 44100. % Samples per second

compass_sps := 10. % Samples per second

sound_speed := 343. % Meters

head_radius := 0.1. % Meters

pi := 3.141592.

audio_per_compass :=

integer(~sound_sps / ~compass_sps).

samples_per_meter :=

~sound_sps / ~sound_speed.

ear_dif(Angle) :=

~head_radius * sin((Angle * ~pi) / 180).

find_skip(Angle) :=

round(~samples_per_meter * 2 * ~ear_dif(Angle)).

Figure 7.6: Physical model in the sound spatializer.

Non-Specialized Specialized
Compilation mode i686 Gumstix i686 Gumstix

secs. secs. Utilization secs. secs. Utilization
Bytecode 4.70 115.95 96.6% 3.91 103.49 86.2%
Compiling to C 3.87 98.08 81.7% 3.36 88.27 73.6%
Id. + semidet 3.28 92.42 77.0% 2.85 83.74 69.8%
Id. + mode/type annotation 3.00 88.38 73.6% 2.57 79.42 66.2%
Id. + arithmetic 2.90 85.70 71.4% 2.47 78.01 65.0%

Table 7.1: Speed results and processor utilization for a benchmark with different com-
pilation regimes.

deliver spatialized sound with the required quality in a modern desktop or laptop
computer, while responding in real time to the signals received from a compass.
However it falls short in our target platform: generating stereo samples for a
120-second track takes 115.95 seconds, which means the processor is busy 96.6%
(= 115.95

120
× 100) of the time (Table 7.1). The remaining processor time is not

enough to cope with the rest of the O.S. tasks without introducing noticeable
clicks. To improve this situation we take advantage of the amenability of high-
level languages to advanced program analysis and transformation in order to

204

Chapter 7. A Case Study: Real-Time Sound Processing

produce better executables without changing the original code. In particular we
used (i) partial evaluation (to specialize parts of the program), (ii) abstract-
interpretation based compile-time analysis to ensure that the program will not
raise any run-time exceptions (due to illegal modes, types, etc.) and to extract
information in order to (iii) perform optimizing compilation to native code (via
C) using the information on modes, types, determinism, and non-failure gathered
during analysis.

7.3.3 Compile-time Checking

The aim of compile-time checking is to guarantee statically that some program
will satisfy certain correctness criteria, which in principle may be arbitrary. Static
correctness proofs are certainly of utmost practical relevance in systems of high
dependability or where updating the software is burdensome or costly. However,
in most programming languages today the correctness criterion is type correct-
ness, and compile-type checking boils down to type checking.

In the case of logic programs, arguments can in principle be input or out-
put without further restrictions. This results in a very flexible programming
language, where procedures are reversible. However, it is often the case that
predefined (system) predicates require their arguments to satisfy certain calling
conventions involving both types and modes (instantiation degree). Failing to
satisfy such calling conventions is considered an error. For example, traditional
Prolog systems check at run-time such calling conventions and errors are issued if
the conventions are violated. In contrast to traditional CLP systems, in the Ciao
analyzer and preprocessor, CiaoPP [HPBG05], information obtained by static
analysis is used to reason about such calling conventions. To this end, the system
has an assertion language [PBH00a] which allows explicitly and precisely stating
calling conventions, i.e., preconditions for predicates. The Ciao system libraries
are annotated to state pre- and post-conditions for library predicates. Several as-
sertions expressing different pre-conditions and their associated post-conditions
can co-exist for procedures which are multi-directional.

Static analysis in CiaoPP is based on abstract interpretation [CC77], and it is
thus guaranteed to provide safe approximations of program behavior. Such safe
approximations can be used in order to prove the absence of violations of a set of
assertions, which can express more properties than just type coherence, and thus

205

7.3. Program Code and Source-Level Transformations

the absence of run-time errors.
For example, in the case of our implementation of the stream interpreter,

we use the system predicate is/2. The arithmetic library in Ciao contains an
assertion of the form:

:- trust pred is(X,Y) : arithexpression(Y) => num(X).

which requires the second argument to is/2 to be an arithmetic expression (which
is a regular type also defined in the arithmetic library) containing no unbound
variables, and also provides the information that on success the first argument
will be instantiated to a number. Analysis information using the eterms [VB02]
abstract domain allows CiaoPP to guarantee at compile time that the program
satisfies the calling conventions for system predicates (in this example just is/2)
used in the program. Thus, the compiler certifies that no run-time errors will be
produced during the execution of our code for the stream interpreter. The same
applies to other predicates which access external entities (e.g., compass data) and
whose behavior was modeled using Ciao assertions (see Section 7.4.2).

The user may optionally provide assertions for his/her own procedures. If
available, CiaoPP will try to check at compile time such assertions. Clearly, the
more effort the user puts into writing assertions, the more guarantees we have of
the program being correct.

7.3.4 Partially Evaluating the Program

The code in Figure 7.6 performs repeatedly the same set of operations, many of
them involving constants. While the part of the main loop dealing with arith-
metic is not called a large number of times (because of the low sampling rate
of the compass), opportunities for partial evaluation to improve execution time
certainly exist. Indeed, all the code in Figure 7.6 is reduced to a single clause:

find_skip(A,B) :-

C is sin(A*0.017453288889),

B is round(25.94117647058824*C) .

Moreover, the calculations involving constant numerical values are performed at
compile-time and the results propagated to the appropriate places in the pro-

206

Chapter 7. A Case Study: Real-Time Sound Processing

gram.2 Loops and other parts of the program are also specialized, but the effect
in those program points is less relevant. Input/output and other library built-ins
are handled since they are appropriately annotated with assertions where they
are defined.

Partial evaluation by itself gave, on average, speedups ranging from a factor
of 1.15 to 1.2 on an i686 and around a factor of 1.1 on a Gumstix, when the
compass is polled at 10Hz (see Table 7.1). On the Gumstix, partial evaluation
decreases the processor utilization to 86.2% —substantially better than with the
non-specialized code.

Although these results are encouraging, specialization by itself did not increase
performance to a level where the spatializer really runs reliably in real-time on
our target platform. Therefore, our next step towards gaining efficiency (and, as
before, keeping the initial code untouched) was to optimize away the bytecode
interpretation overhead by compiling the Ciao program into native code, using
progressively more compile-time information in order to generate code as optimal
as possible.

7.4 Compilation to Native Code

Two separate issues affect the performance of the sound spatializer: the time taken
to process each sample, regardless of how it is processed, and the time taken to
compute the new delay to be applied to the output streams. The former concerns
mainly data-structure and control compilation (how the main loop is mapped
into the lower-level language, how data structures are handled, and how data is
read from and written to the streams). The latter is dominated fundamentally
by costly (at least from the point of view of Ciao) floating-point arithmetic.

We attacked these problems by compiling to native code via C, using the
schema presented in Chapter 3. As we also wanted to identify the impact of
different technologies in the efficiency of the application, we proceeded stepwise:

2The reader may notice that C compilers also evaluate statically expressions containing
constants. The situation is however different: in our case separate predicates (c.f., functions)
are being evaluated statically guided by the calls made to them. If they were called from
elsewhere in the program, the original definitions would have been kept together with the
specialized versions.

207

7.4. Compilation to Native Code

we initially used only the information present explicitly in the original program,
and later we used the extensive compile-time information gathered though global
analysis.

7.4.1 Naive Compilation to Native Code

Compiling to native code without using information about types, modes, de-
terminism, non-failure, etc. preserves exactly the data structures created when
interpreting bytecode. Memory usage, existence (or not) of choice points, etc.
do not change either, so any improvements in performance come mainly from
reducing the time used in instruction fetching within the main virtual machine
loop. Better data locality can help, but access patterns are difficult to predict
and therefore this cannot usually be trusted as a source of improvement.

Despite the limited speedup that is obtained in the absence of additional infor-
mation (Table 7.1), this was actually a turning point in our case: the processor
utilization in the Gumstix decreased to 81.7% for the non-specialized program
and to 73.6% for the partially evaluated version. The performance of the former
is not enough to give a smooth playback; however, the latter is fast enough to
play and to poll the compass at an adequate pace, while supporting some minimal
additional load on the host processor. It is however not a satisfactory solution
yet, as it was easy to produce noticeable interruptions in the playback just by
adding a light load on the Gumstix.

7.4.2 Optimized Compilation

One of the tasks that non statically-typed languages have to perform at runtime
is checking types and, for a logic-based language, also modes. Note that, unlike
other declarative languages such as Mercury [SHC96] or Haskell [Jon03], Ciao
programs do not need to include any type, mode, determinism, or non-failure
declarations. Mode and determinism annotations are not needed in functional
languages because all functions produce a single solution and their arguments are
input.

Analysis information can be used to optimize native code generation in sev-
eral points. For example, type information can be used to choose a more effi-
cient, closer to the machine, representation. If mode information is also available,

208

Chapter 7. A Case Study: Real-Time Sound Processing

:- true pred new_sample_cycle(A,B,C,D,E,F,G,H)

: (int(A), term(B), int(C), term(D),

term(E), term(F), rt2(G), rt2(H))

=> (int(A), int(B), int(C), int(D),

rt2(E), rt2(F), rt2(G), rt2(H))

+ (is_det, mut_exclusive).

new_sample_cycle(0,4410,C,D,E,F,G,H) :-

find_skip(~read_compass,D),

skip(D-C,E,F,G,H).

new_sample_cycle(A,A-1,C,C,E,F,E,F) :- A > 0.

:- regtype rt2/1.

rt2([A|B]) :- term(A), term(B) .

Figure 7.7: Part of the information inferred for the compass program.

the overhead involved in parameter passing and unification can be reduced by,
e.g., compiling the latter into simple low-level assignments, perhaps with trail-
ing. Last, determinism and non-failure information make it possible to reduce or
avoid the creation of choicepoints since the compiler can know beforehand that
no backtracking will be performed. This is, of course, only a partial list.

The analyzer we used (CiaoPP) is able to infer automatically a significant
amount of information, provided that the boundaries of the program are well
defined. For example, when there is communication with the outside world and
the type of incoming data is relevant, then this data has to be described (via
assertions in our framework). In our case study the only external data we need to
deal with is that coming from the compass, since the sound samples themselves are
treated as opaque data. Data coming from the compass is always a floating-point
number. To reflect this, we added the following assertion for the read_compass/1

predicate

:- trust pred read_compass(X) : var(X) => flt(X).

to the module encapsulating the compass access. This assertion should be read
as: “in any call to read_compass/1, the argument should be free when calling the
predicate and it will be instantiated to a floating-point number upon success.” No
other information is needed to infer accurate information regarding all the types,

209

7.4. Compilation to Native Code

modes, and determinism of the whole program. However, if this information is not
provided little useful information can be inferred and most of the improvements
that will be described in the following sections cannot be achieved. We want
to note that in bigger, modular applications, boundary information is usually
provided as part of the module interfaces (and it may have been automatically
inferred), or it can be generated if all source code, libraries included, is available.

Figure 7.7 shows a selection of the information CiaoPP can deduce for the
predicate new_sample_cycle/8. Much more information on sharing (pointer alias-
ing) and freeness (pointer initialization) was produced, which we omit since it is
not instrumental for our case. However, it would be vital if we were to parallelize
the code automatically.

read_compass/1, as we discussed previously, performs communication with the
concurrent process that reads the compass, and its behavior is modeled with the
assertion previously shown. With this information, the predicate new_sample-

_cycle/8 is inferred to be deterministic and the clauses are found to be mutually
exclusive (as expressed by the (is_det, mut_exclusive) assertion). This means
that a more efficient compilation scheme, which does not produce superfluous
code to handle backtracking, can be used.

Additionally, the open-ended list used to hold the samples to output is ap-
proximated with the type rt2/1, which only states that the argument is a cons
cell. This information, albeit not complete, is enough for a lower-level compiler
to generate better code which avoids testing at runtime the type of a parameter.

If determinism and non-failure inference are used, the processor utilization is
reduced to 77% (for the non-specialized program, which is now able to generate
stereo samples and poll the compass simultaneously with quite acceptable sound)
and to 69.8% (for the specialized version). If mode (variable instantiation state at
predicate entry and exit) and type inference are also used, the processor utilization
gets further reduced to 73.6% and 66.2% for the non-specialized and specialized
programs, respectively.

Optimizing Arithmetic Operations The unboxing optimization described
in Section 3.4 presents another opportunity to reduce processor utilization. As
before, this optimization was applied both to the non-specialized and to the
specialized Ciao program, leading to some performance gains: the unboxing op-

210

Chapter 7. A Case Study: Real-Time Sound Processing

target language

Compilation

(via C)

Native Code

Original

language

Analysis
Specialization

Bytecode
95%

85%

65%

71%

Figure 7.8: Global view of the experiments.

timization made it possible to reduce processor utilization to 71.4% for the non-
specialized program and to 65% when running the specialized one. In both cases
this is enough for the Gumstix to respond adequately to compass movements,
even if there are several other (non CPU-bound) processes running on it.

7.5 Summary of the Experiments

Although we already presented some results in the previous sections, we will
summarize our experiments and put them in the light of a new scenario we did
not discuss before in order to make the presentation as clear as possible. A
rough classification of the experiments performed, the processor utilization, and
a pictorial summary of their characteristics, is shown in Figure 7.8.

7.5.1 Basic Results

All tests were run on a Gumstix, as commented throughout this chapter, and on
a SpeedStep Centrino @ 1.4GHz. Table 7.1 shows performance figures for both.

211

7.5. Summary of the Experiments

Compilation mode Non-Spec. Specialized
Bytecode 25.64 14.00
Compiling to C 21.59 11.99
Id. + semidet 19.59 11.53
Id. + modes/types 19.19 11.08
Id. + arithmetic 6.97 3.62

Table 7.2: Results with a higher compass polling rate.

While the input stream is not infinite, after a few seconds both CPU usage and
memory consumption stabilize, which makes us confident that the program would
be able to run indefinitely.

The original non-specialized program running on a virtual machine is fairly
efficient, especially taking into account that it is written in a style which is very
close to a specification: buffer sizes are not stated anywhere (they self-adjust dy-
namically), memory management is automatic, etc. But there is not enough spare
time to produce a sustained high quality sound stream on a Gumstix. A combina-
tion of specialization plus compilation to C, or compilation to C plus compile-time
information, is enough to make the program deliver acceptable sound. However,
the CPU usage in the Gumstix is still too high and any other activity on the same
board causes audible interferences. It is only when both specialization plus anal-
ysis information are used to compile to C that other processes can be supported
on the same board without noticeable interferences.

The best version runs, on the Gumstix, 1.5 times faster than the initial one.
The difference is larger for the i686 case, as the speedup is around 1.9. How-
ever, those speedups also depend on particular scenario characteristics, such as
polling frequencies, and, as we will see, other scenarios can exhibit very different
behaviors.

7.5.2 Increasing the Sampling Frequency

The optimizations on arithmetic operations affect mainly a tiny fragment of code
which computes the phase shift between the two ears and which is executed
infrequently (10 times per second) with the current compass hardware. A faster
poll rate, or the need to process other signals coming at a higher frequency would

212

Chapter 7. A Case Study: Real-Time Sound Processing

require a larger fraction of processing time to be spent on computing the heading
data.

To set up an extreme situation, we have simulated the case where heading data
is provided at the same rate as the audio data (44,100 Hz). Note that this is the
highest polling rate which makes sense, since a faster rate would actually discard
compass data until the next audio sample is available. Table 7.2 summarizes the
results under that assumption for an i686. In that scenario we measured a 7-fold
speedup between the slowest and the fastest executable. This is indeed a very
good result, and an extrapolation to the Gumstix suggests that with our current
analysis and compilation technology the software running on the Gumstix would
be very close to supporting compass sampling at 22,050 Hz.

The improvement introduced by using unboxed data and by specializing the
program is much higher than in the previous set of tests. The reason is the
same for both cases: more time is comparatively spent on arithmetic operations.
Therefore, compile-time specialization, which evaluates many floating-point op-
erations at compile time, simplifies fragments of code whose execution would take
a substantial portion of the execution time (compare the left and right columns
in Table 7.2). Something similar happens with the low-level optimization of
floating-point arithmetic: operations are not removed, but they become much
cheaper instead (last and next-to-last rows in Table 7.2)

7.5.3 A Comparison with C

We wanted to determine how far we are from an implementation written directly
in C. We wrote a C program which mimics the Ciao one in the sense that it offers
the same flexibility: it uses dynamic memory, buffer size is not statically deter-
mined, etc. It was written by an experienced C programmer and it does not incur
any unnecessary overheads. The results are highly encouraging: the C program
was only between 20% (for the tests in Table 7.2) to 40% faster (for the tests
in Table 7.1) on an i686 processor. Interestingly, this C program did not behave
as smoothly as expected when executed on the Gumstix: memory management
caused audible clicks, and writing an ad-hoc memory manager would probably
have been needed — or sacrificing flexibility by using static data structures. Ad-
ditionally, the complexity of the C code would have made tuning the application
much more difficult.

213

7.6. Conclusions

7.6 Conclusions

In this chapter we have shown how a set of advanced analysis, transformation,
and compilation tools can be applied to a program written in a high-level CLP
language which deals with a combination of numerical and symbolic processing
(in the form of data structures) to generate an executable which runs adequately
in terms of time, memory, and feedback to the user on a pervasive computing
platform. We believe that the techniques we show here can be effectively used in
a broader set of scenarios.

The application we used is a sound spatializer, intended to run on a wearable
computer, the Bristol “CyberJacket”. There were hard requirements regarding
timing, sound quality, and non-functional behavior. The application code was
deliberately not “tricky”, but clear and as declarative as possible; it was not
changed or adapted (by hand) in any of the experiments. The initial executions
(using a bytecode interpreter in the wearable computer) did not meet the stated
requirements, but a series of analysis, specialization, and optimizing compilation
stages, which we reported on, managed to make it run well within spec on the
target machine. All of them were carried on using the Ciao/CiaoPP program-
ming environment. In an alternative, more demanding scenario, needing more
arithmetic operations, our code performs within 20%-40% of a comparable C
program.

It is difficult to single out a compilation stage which can be attributed the
majority of the benefits. In the first (non arithmetic intensive) scenario, spe-
cialization caused most of the speedup because of the reduction in the number
of arithmetic operations and calls performed. However, in the second scenario,
boxing / unboxing removal was the clear winner. The rest of the optimizations
were not highly relevant in this case, but we believe they would have been if more
symbolic processing were needed. In any case, the information gathered by the
analysis was also used by the low-level optimizing compiler.

214

8
Conclusions and Future Work

Summary

This chapter summarizes the conclusions from previous chapters, and shows
the relationship of what has been achieved with the thesis objectives. It also
points to future work in the area of the thesis.

8.1 Conclusions

A motivation of this thesis has been the development of native compilation tech-
niques for logic programming that could be combined with bytecode emulation, as
well as a framework that simplifies the creation of virtual machines, both included
in the development version of Ciao Prolog.

Among the most relevant conclusions from this work we can mention:

• We have developed a Prolog-to-C compiler that uses type analysis and de-
terminacy information to improve code generation, and we have provided
performance results.

Annotated WAM-like code: The compiler to C code uses a simplified
representation for WAM code that includes analysis information (us-
ing type and determinacy information inferred by means of abstract
interpretation), which is then translated to a lower-level intermediate
code.

215

8.1. Conclusions

Effective combination of source-level and low-level optimizations:
We have shown with a realistic case (a real-time sound processing
tool) (Chapter 7) that a combination of analysis, specialization, and
optimizing compilation, carried out in the Ciao/CiaoPP enviroment,
followed by optimized code generation, was able to produce code that
performed within 20%-40% of a comparable C program, and which had
a 7-fold speedup w.r.t. the program executed by a bytecode emulator.

• We have presented (Chapter 4) the design and implementation of an emu-
lator compiler that generates efficient code using a high-level description of
the instruction set of an abstract machine and a set of rules which define
how intermediate code is to be represented as bytecode.

Data and code representation abstractions: We proposed a separa-
tion of the emulator definition into distinct components. That is, the
low-level data and bytecode representation, and the set of instruc-
tions and their corresponding semantics. By doing this separation and
developing an automatic approach to combine them in a full-fledged
emulator, we were able to perform, at the abstract machine description
level, transformations which affect both the bytecode format and the
instruction set.

Emulator Minimization: As an initial application and example for the
technique, we experimented with emulator minimization which, given
a set of programs, can generate emulators where unusued instructions
(and their implementations) have been completely removed from the
instruction set.

A framework for exploring emulator optimizations: We have stud-
ied how these combinations perform with a series of benchmarks in
order to find, e.g., what is the “best” average solution and how inde-
pendent coding rules affect the overall speed or other desired proper-
ties.

• Dealing with an abstraction for the actual semantics of the instructions in
a way that they can be manipulated automatically in order to do program
transformations on the instruction code themselves, is a harder problem.

216

Chapter 8. Conclusions and Future Work

The approach that has been taken in this thesis (Chapter 5) describes the
semantics of instructions of a Prolog bytecode interpreter — the Ciao en-
gine — and some data types (tagged words) necessary for the emulator
(Chapter 6) in a specially designed language (imProlog) derived from Pro-
log that is semantically closer enough to it to reuse analysis, optimization,
and compilation techniques, but which is at the same time designed to be
translated into very efficient C code.

Better source quality: The approach based on program manipulation
techniques, with optional program annotations, allowed for a cleaner
implementation of the emulator, in comparison with the original
macro-based C code: it contained less duplicated code structures and
hand-made specializations. Combined with the emulator generator
framework (Chapter 4) we were able to produce and test different
emulator versions to which several combinations of code generation
options were applied.

Reproducing hand-made optimizations: We were able to perform non-
trivial transformations on both the emulator and the instructions: in-
struction merging, specialization, and many other optimizations that
are typically implemented by hand in bytecode emulators.

Tag schemes: We have been able to automatically generate code featur-
ing many optimizations present in a hand-written, highly-optimized
abstract machine (the base case that we compare to) relating manipu-
lation of tagged data types, studying the performance of many 32 and
64 bit cases.

Applying together many of the proposed techniques, we found several com-
binations that performed better than our initial emulator, and which had
a larger address space.

8.2 Future Work

Among the work which this thesis leaves open for the future we want to cite the
following.

217

8.2. Future Work

Inter-procedural low-level optimizations: Most of the inter-procedural anal-
ysis results that are used in this thesis to perform optimizations is derived
from source code properties. We intend to extend the analysis with lower-
level properties: for example, those required to perform inter-procedural
and inter-modular boxing and unboxing.

Memory optimizations: We also want to study compilation schemes aimed
at saving memory space which, although not a problem in the cases we
studied, can be a concern in other scenarios. For example, generating auto-
matically “hints” for the garbage collector or compile-time garbage collec-
tion [MRJB01].

Back-ends: We want to study which other optimizations that can be added
to the generation of C code without breaking its portability. We are also
interested on using intermediate representation to generate code for other
back-ends (for example, GCC RTL, CIL, Java bytecode, etc.).

Just-in-time (JIT) and hybrid approaches: It is certainly worth exploring
the combination of bytecode and native code compilation, both statically
(by selecting statically which predicates will be compiled to native code)
and dynamically (by selecting and compiling the predicates during program
execution, e.g., driven by profiling information).

Full imProlog: We are interested in the generation of efficient code for Prolog
with imProlog features (like mutable states) for non-typical applications of
logic programming where algorithms with state changes have a primary role.
This work would combine the compilation techniques already put to work in
the optimization of Prolog applications in pervasive computing (Chapter 7)
and the generation of emulators code (Chapter 5).

The emulator compiler is a very flexible framework that can be used to perform
extensive experimentation with variations of abstract machine instruction sets
and bytecode representations. Some of the future lines of research that can be
derived from this are the following:

Further emulator specialization: As an extension of the abstract machine
minimization developed in Chapter 4, many other simplifications can be

218

Chapter 8. Conclusions and Future Work

performed, affecting the instruction set, the implementation of data struc-
tures, or the code for the built-ins. It could be possible to refine the ancillary
machinery in order to generate fast and small executables from generic code
by performing dead code elimination, slicing, and partial evaluation based
on abstract representations of the input bytecode language.

Instruction merging and specialization: Instruction merging been explored
in [NCS01] for a fixed set of benchmarks, but emulators were hand-coded,
somewhat limiting the per-application use of this approach. A future line
of work consits on using information from execution profiling in order to
merge instructions which frequently appear contiguous, and specialize them
with respect to often-used argument values, etc. We would also like to study
the applicability of our scheme (or variations on it) on abstract machines
which have a different design, such as, for example, those which feature
stack-based parameter passing like the TOAM [Zho94].

Reduce the optimization search space: Expanding the number of transfor-
mations and optimizations would give a combinatorial explosion on the
number of new instructions. In order to attack the problem, it would be
necessary to prune the search space by, for example, detecting orthogonal
parameters and maximizing them independently, and devising heuristics
that explore the more promising combinations sooner.

Specially tuned-abstract machines: We found that the outcome of many op-
timizations is only posive or appreciable on some kind of problems and/or
architectures. The automatic emulator generation is useful not just for
experimentation, but also for generating the right emulator for each archi-
tecture or even for each application.

219

8.2. Future Work

220

Bibliography

[ACHS88] K. Appleby, M. Carlsson, S. Haridi, and D. Sahlin, Garbage Collec-
tion for Prolog Based on WAM, Communications of the ACM 31
(1988), no. 6, 719–741.

[AK91] Hassan Ait-Kaci, Warren’s Abstract Machine, A Tutorial Recon-
struction, MIT Press, 1991.

[AKN88] H. Ait-Kaci and R. Nasr, Integrating Data Type Inheritance into
Logic Programming, Data Types and Persistence (P. Atkinson,
P. Buneman, and R. Morrison, eds.), Springer, Berlin, Heidelberg,
1988, pp. 121–136.

[AKP91] H. Aït-Kaci and A. Podelski, Towards a Meaning of LIFE, Proc. of
the 3rd Int. Symposium on Programming Language Implementation
and Logic Programming, Springer LNCS 528, 1991, pp. 255–274.

[App89] Andrew W. Appel, Runtime Tags Aren’t Necessary, LISP and Sym-
bolic Computation 2 (1989), no. 2, 153–162.

[BCC+02] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-
García, and G. Puebla, The Ciao Prolog System. Reference Manual
(v1.8), The Ciao System Documentation Series–TR CLIP4/2002.1,
School of Computer Science, Technical University of Madrid (UPM),
May 2002, System and on-line version of the manual available at
http://www.ciaohome.org.

[BCC+09] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García,
and G. Puebla (Eds.), The Ciao System. Ref. Manual (v1.13), Tech.

221

Bibliography

report, School of Computer Science, T.U. of Madrid (UPM), 2009,
Available at http://www.ciaohome.org.

[BD95] Peter A. Bigot and Saumya K. Debray, A Simple Approach to Sup-
porting Untagged Objects in Dynamically Typed Languages, Interna-
tional Logic Programming Symposium, 1995, pp. 257–271.

[BDD+97] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo,
J. Maluszynski, and G. Puebla, On the Role of Semantic Ap-
proximations in Validation and Diagnosis of Constraint Logic Pro-
grams, Proc. of the 3rd. Int’l Workshop on Automated Debugging–
AADEBUG’97 (Linköping, Sweden), U. of Linköping Press, May
1997, pp. 155–170.

[BG00] Greg Bollella and James Gosling, The Real-Time Specification for
Java, Computer 33 (2000), no. 6, 47–54.

[Bla83] Jens Blauert, Spatial hearing : The psychophysics of human sound
localization, The MIT Press, 1983.

[BM72] R. Boyer and J. More, The sharing of structure in theorem-proving
programs, Machine Intelligence 7 (1972), 101–116.

[Bow83] D. Bowen et al., A Portable Prolog Compiler, Logic Programming
Workshop ’83, Universidade Nova de Lisboa, June 1983, pp. 74–83.

[Bru82] M. Bruynooghe, The Memory Management of Prolog Implementa-
tions, Logic Programming (K.L. Clark and S.-A. Tärnlund, eds.),
Academic Press, 1982, pp. 83–98.

[BW88] Hans-Juergen Boehm and Mark Weiser, Garbage collection in an
uncooperative environment, Softw. Pract. Exper. 18 (1988), no. 9,
807–820.

[Car89] M. Carlsson, On the Efficiency of Optimizing Shallow Backtracking
in Compiled Prolog, Sixth International Conference on Logic Pro-
gramming (G. Levi and M. Martelli, eds.), MIT Press, June 1989,
pp. 3–16.

222

Bibliography

[Car91] Mats Carlsson, The SICStus emulator, Tech. Report T91:15,
Swedish Institute of Computer Science, 1991.

[CC77] P. Cousot and R. Cousot, Abstract Interpretation: a Unified Lattice
Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints, POPL’77, ACM, 1977, pp. 238–252.

[CC01] Luís Fernando Castro and Vítor Santos Costa, Understanding Mem-
ory Management in Prolog Systems, Proceedings of the 17th Interna-
tional Conference on Logic Programming (London, UK), Springer-
Verlag, 2001, pp. 11–26.

[CCH06] A. Casas, D. Cabeza, and M. Hermenegildo, A Syntactic Approach
to Combining Functional Notation, Lazy Evaluation and Higher-
Order in LP Systems, The 8th International Symposium on Func-
tional and Logic Programming (FLOPS’06) (Fuji Susono (Japan)),
April 2006, pp. 142–162.

[CD95] Philippe Codognet and Daniel Diaz, WAMCC: Compiling Prolog to
C, International Conference on Logic Programming (Leon Sterling,
ed.), MIT PRess, June 1995, pp. 317–331.

[CF91] Robert Cartwright and Mike Fagan, Soft Typing, Programming Lan-
guage Design and Implementation (PLDI 1991), SIGPLAN, ACM,
1991, pp. 278–292.

[CH99] M. Carro and M. Hermenegildo, Concurrency in Prolog Using
Threads and a Shared Database, 1999 International Conference on
Logic Programming, MIT Press, Cambridge, MA, USA, November
1999, pp. 320–334.

[CH00] D. Cabeza and M. Hermenegildo, A New Module System for Prolog,
International Conference on Computational Logic, CL2000, LNAI,
no. 1861, Springer-Verlag, July 2000, pp. 131–148.

[CMM+06] M. Carro, J. Morales, H.L. Muller, G. Puebla, and M. Hermenegildo,
High-Level Languages for Small Devices: A Case Study, Compilers,

223

Bibliography

Architecture, and Synthesis for Embedded Systems (Krisztian Flaut-
ner and Taewhan Kim, eds.), ACM Press / Sheridan, October 2006,
pp. 271–281.

[Col93] A. Colmerauer, The Birth of Prolog, Second History of Program-
ming Languages Conference, ACM SIGPLAN Notices, March 1993,
pp. 37–52.

[CZ07] Cuny Cs and Neng-Fa Zhou, A Register-Free Abstract Prolog Ma-
chine with Jumbo Instructions, International Conference on Logic
Programming, 2007.

[DC01] Daniel Diaz and Philippe Codognet, Design and Implementation of
the GNU Prolog System, Journal of Functional and Logic Program-
ming 2001 (2001), no. 6, 2001.

[Deb92] Saumya K. Debray, A Simple Code Improvement Scheme for Prolog,
Journal of Logic Programming 13 (1992), 57–88.

[DLGH97] S.K. Debray, P. López-García, and M. Hermenegildo, Non-Failure
Analysis for Logic Programs, 1997 International Conference on Logic
Programming (Cambridge, MA), MIT Press, Cambridge, MA, June
1997, pp. 48–62.

[DM82] L. Damas and R. Milner, Principal type-schemes for functional pro-
grams, Proc. 9th Annual Symposium on Principles of Programming
Languages, 1982, pp. 207–212.

[DM92] Bart Demoen and André Mariën, Can Prolog Execute as Fast as
Aquarius, Tech. Report CW144, Department of Computer Science,
K.U.Leuven, 1992.

[DN00] Bart Demoen and Phuong-Lan Nguyen, So Many WAM Variations,
So Little Time, Computational Logic 2000, Springer Verlag, July
2000, pp. 1240–1254.

[DN08] Bart Demoen and Phuong-Lan Nguyen, Environment reuse in the
wam, ICLP ’08: Proceedings of the 24th International Conference

224

Bibliography

on Logic Programming (Berlin, Heidelberg), Springer-Verlag, 2008,
pp. 698–702.

[DNSCS07] B. Demoen, P. Nguyen, V. Santos Costa, and Z. Somogyi, Dealing
with large predicates: Exo-compilation in the WAM and in Mer-
cury, Proceedings of CICLOPS 2007, 7th International Colloquium
on Implementation of Constraint and LOgic Programming Systems
(Porto, Portugal) (S. Abreu and V. Santos Costa, eds.), September
2007, pp. 117–131.

[DPP+97] Sean Dorward, Rob Pike, David Leo Presotto, Dennis Ritchie,
Howard Trickey, and Phil Winterbottom, Inferno, 42nd IEEE In-
ternational Computer Conference, IEEE, 1997.

[DZ92] P.W. Dart and J. Zobel, A Regular Type Language for Logic Pro-
grams, Types in Logic Programming, MIT Press, 1992, pp. 157–187.

[ECR93] ECRC, Eclipse user’s guide, European Computer Research Center,
1993.

[FD99] M. Ferreira and L. Damas, Multiple Specialization of WAM Code,
Practical Aspects of Declarative Languages, LNCS, no. 1551,
Springer, January 1999.

[FD02] Michel Ferreira and Luís Damas, WAM Local Analysis, Proceed-
ings of CICLOPS 2002 (Copenhagen, Denmark) (Bart Demoen, ed.),
Department of Computer Science, Katholieke Universiteit Leuven,
June 2002, pp. 13–25.

[Fut71] Y. Futamura, Partial Evaluation of Computation Process - An Ap-
proach to a Compiler-Compiler, Systems, Computers, Controls 2
(1971), no. 5, 45–50.

[GBD92] D. Gudeman, K. De Bosschere, and S.K. Debray, jc: An Efficient
and Portable Sequential Implementation of Janus, Proc. of 1992
Joint International Conference and Symposium on Logic Program-
ming, MIT Press, November 1992, pp. 399–413.

225

Bibliography

[GdW94] J.P. Gallagher and D.A. de Waal, Fast and precise regular approx-
imations of logic programs, Proc. of the 11th International Con-
ference on Logic Programming (Pascal Van Hentenryck, ed.), MIT
Press, 1994, pp. 599–613.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, Java(tm)
language specification, the (3rd edition), Addison-Wesley Profes-
sional, 2005.

[GKPC85] F. Giannesini, H. Kanoui, R. Pasero, and M. Van Caneghem, Prolog,
InterEditions, 87 Avenue du Maine, 75014, Paris, 1985, ISBN 2-7296-
0076-0.

[GPA+01] G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo,
Parallel Execution of Prolog Programs: a Survey, ACM Transactions
on Programming Languages and Systems 23 (2001), no. 4, 472–602.

[Han91] John Hannan, Staging Transformations for Abstract Machines,
Partial Evaluation and Semantics-Based Program Manipulation
(PEPM), ACM SigPlan Notices, 1991.

[HBC+99] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. García de la
Banda, P. López-García, and G. Puebla, The CIAO Multi-Dialect
Compiler and System: An Experimentation Workbench for Future
(C)LP Systems, Parallelism and Implementation of Logic and Con-
straint Logic Programming, Nova Science, Commack, NY, USA,
April 1999, pp. 65–85.

[HBC+08] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, J.F. Morales,
and G. Puebla, An Overview of The Ciao Multiparadigm Language
and Program Development Environment and its Design Philosophy,
Festschrift for Ugo Montanari (Pierpaolo Degano, Rocco De Nicola,
and Jose Meseguer, eds.), LNCS, no. 5065, Springer-Verlag, June
2008, pp. 209–237.

[HCS95] F. Henderson, T. Conway, and Z. Somogyi, Compiling Logic Pro-
grams to C Using GNU C as a Portable Assembler, ILPS 1995 Post-

226

Bibliography

conference Workshop on Sequential Implementation Technologies for
Logic Programming, December 1995, pp. 1–15.

[Hen02] Fergus Henderson, Accurate garbage collection in an uncooperative
environment, ISMM ’02: Proceedings of the 3rd international sym-
posium on Memory management (New York, NY, USA), ACM,
2002, pp. 150–156.

[HF00] S. Haridi and N. Franzén, The Oz Tutorial, DFKI, February 2000,
Available from http://www.mozart-oz.org.

[HG91] M. Hermenegildo and K. Greene, The &-Prolog System: Exploiting
Independent And-Parallelism, New Generation Computing 9 (1991),
no. 3,4, 233–257.

[HL94] P. Hill and J. Lloyd, The Goedel Programming Language, MIT Press,
Cambridge MA, 1994.

[Hod90] Joshua S. Hodas, Compiling Prolog - From the PLM to the WAM
and Beyond, 1990.

[Hol93] Bruce K. Holmer, Automatic Design of Computer Instruction Sets,
Ph.D. thesis, University of California at Berkeley, 1993.

[HP00] Michael Hind and Anthony Pioli, Which pointer analysis should I
use?, International Symposium on Software Testing and Analysis,
2000, pp. 113–123.

[HPB99] M. Hermenegildo, G. Puebla, and F. Bueno, Using Global Anal-
ysis, Partial Specifications, and an Extensible Assertion Lan-
guage for Program Validation and Debugging, The Logic Program-
ming Paradigm: a 25–Year Perspective (K. R. Apt, V. Marek,
M. Truszczynski, and D. S. Warren, eds.), Springer-Verlag, July
1999, pp. 161–192.

[HPBG05] M. Hermenegildo, G. Puebla, F. Bueno, and P. López García, In-
tegrated Program Debugging, Verification, and Optimization Using
Abstract Interpretation (and The Ciao System Preprocessor), Sci-
ence of Computer Programming 58 (2005), no. 1–2, 115–140.

227

Bibliography

[HS02] F. Henderson and Z. Somogyi, Compiling Mercury to High-Level C
Code, Proceedings of Compiler Construction 2002 (R. Nigel Hor-
spool, ed.), LNCS, vol. 2304, Springer-Verlag, April 2002, pp. 197–
212.

[HWD92] M. Hermenegildo, R. Warren, and S. K. Debray, Global Flow Analy-
sis as a Practical Compilation Tool, Journal of Logic Programming
13 (1992), no. 4, 349–367.

[JGS93] N.D. Jones, C.K. Gomard, and P. Sestoft, Partial Evaluation and
Automatic Program Generation, Prentice Hall, New York, 1993.

[JM87] J. Jaffar and S. Michaylov, Methodology and Implementation of a
CLP System, Fourth International Conference on Logic Program-
ming, University of Melbourne, MIT Press, 1987, pp. 196–219.

[Jon03] Simon Peyton Jones (ed.), Haskell 98 Language and Libraries: The
Revised Report, Cambridge University Press, 2003.

[JRR99] Simon L. Peyton Jones, Norman Ramsey, and Fermin Reig, C--:
A Portable Assembly Language that Supports Garbage Collection,
International Conference on Principles and Practice of Declarative
Programming (Gopalan Nadathur, ed.), Lecture Notes in Computer
Science, no. 1702, Springer Verlag, September 1999, pp. 1–28.

[JS86] U. Jørring and W.L. Scherlis, Compilers and staging transforma-
tions, Thirteenth ACM POPL, 1986, pp. 86–96.

[KB95] Andreas Krall and Thomas Berger, The VAMAI - an abstract ma-
chine for incremental global dataflow analysis of Prolog, ICLP’95
Post-Conference Workshop on Abstract Interpretation of Logic Lan-
guages (Tokyo) (Maria Garcia de la Banda, Gerda Janssens, and
Peter Stuckey, eds.), Science University of Tokyo, 1995, pp. 80–91.

[KNW90] Andreas Krall, Ulrich Neumerkel, and Technische Universität Wien,
The Vienna Abstract Machine, In PLILP’90, LNCS, Springer, 1990,
pp. 121–135.

228

Bibliography

[Kow79] R. Kowalski, Algorithm = logic + control, Communications of the
ACM 22 (1979), no. 7, 424–436.

[Kra94] Andreas Krall, Implementation Techniques for Prolog, Proceedings
of the Tenth Logic Programming Workshop, WLP 94, 1994, pp. 1–
15.

[LA04] Chris Lattner and Vikram Adve, LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation, CGO, 2004.

[Lee03] Edward A. Lee, Overview of the Ptolemy Project, Tech. Report
UCB/ERL M03/25, University of California at Berkeley, July 2003.

[Ler92] Xavier Leroy, Unboxed Objects and Polymorphic Typing, Conference
Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (Albequerque, New
Mexico), 1992, pp. 177–188.

[Leu01] M. Leuschel, Design and Implementation of the High-Level Specifica-
tion Language CSP(LP), PADL’01 (I. V. Ramakrishnan, ed.), Lec-
ture Notes in Computer Science, vol. 1990, Springer-Verlag, March
2001, p. 14.

[Llo94] John W. Lloyd, Practical Advtanages of Declarative Programming,
GULP-PRODE (1), 1994, pp. 18–30.

[LSC94] R. Lopes and V. Santos Costa, The YAIL: An Intermediate Lan-
guage for the Native Compilation of Prolog Programs, 3rd COM-
PULOG NET Workshop on Parallelism and Implementation Tech-
nology for (Constraint) Logic Programming Languages (Bonn),
September 1994.

[Mar93] André Mariën, Improving the Compilation of Prolog in the Frame-
work of the Warren Abstract Machine, Ph.D. thesis, Katholieke Uni-
versiteit Leuven, September 1993.

[MCH04] J. Morales, M. Carro, and M. Hermenegildo, Improving the Compi-
lation of Prolog to C Using Moded Types and Determinism Informa-
tion, Proceedings of the Sixth International Symposium on Practical

229

Bibliography

Aspects of Declarative Languages (Heidelberg, Germany), Lecture
Notes in Computer Science, vol. 3057, Springer-Verlag, June 2004,
pp. 86–103.

[MCH07] J.F. Morales, M. Carro, and M. Hermenegildo, Towards Description
and Optimization of Abstract Machines in an Extension of Prolog,
Logic-Based Program Synthesis and Transformation (LOPSTR’06)
(Germán Puebla, ed.), LNCS, no. 4407, July 2007, pp. 77–93.

[MCH08] J. Morales, M. Carro, and M. Hermenegildo, Comparing Tag Scheme
Variations Using an Abstract Machine Generator, 10th Int’l. ACM
SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP’08), ACM Press, July 2008, pp. 32–43.

[MCH09] J.F. Morales, M. Carro, and M. Hermenegildo, Description and Op-
timization of Abstract Machines in a Dialect of Prolog, Technical Re-
port CLIP4/2009.0, Technical University of Madrid (UPM), School
of Computer Science, UPM, October 2009.

[MCH10] , Description and Optimization of Abstract Machines in an
Extension of Prolog, Submitted to Theory and Practice of Logic
Programming (2010).

[MCPH05] J. Morales, M. Carro, G. Puebla, and M. Hermenegildo, A Generator
of Efficient Abstract Machine Implementations and its Application
to Emulator Minimization, International Conference on Logic Pro-
gramming (Maurizio Gabbrielli and Gopal Gupta, eds.), LNCS, no.
3668, Springer Verlag, October 2005, pp. 21–36.

[MD91] Andre Marien and Bart Demoen, A New Scheme for Unification
in WAM, Proceedings of The International Symposium on Logic
Programming (San Diego), October 1991, pp. 257–271.

[Mel82] C.S. Mellish, An Alternative to Structure Sharing in the Implemen-
tation of a Prolog Interpreter, Logic Programming (K.L. Clark and
S.-A. Tärnlund, eds.), Academic Press, 1982, pp. 99–106.

230

Bibliography

[MM03] Mike McCarthy and Henk Muller, No Pingers: Ultrasonic Indoor
Location Sensing without RF Synchonisation, Tech. Report 003-004,
University of Bristol, Department of Computer Science, May 2003.

[MR00] Henk Muller and Cliff Randell, An Event-Driven Sensor Architec-
ture for Low Power Wearables, ICSE 2000, Workshop on Software
Engineering for Wearable and Pervasive Computing, ACM/IEEE,
June 2000, pp. 39–41.

[MRJB01] Nancy Mazur, Peter Ross, Gerda Janssens, and Maurice
Bruynooghe, Practical aspects for a working compile time garbage
collection system for mercury, Proceedings of the 17th International
Conference on Logic Programming (London, UK), Springer-Verlag,
2001, pp. 105–119.

[MYJ07] Simon Marlow, Alexey Rodriguez Yakushev, and Simon Peyton
Jones, Faster Laziness Using Dynamic Pointer Tagging, ICFP ’07:
Proceedings of the 2007 ACM SIGPLAN international conference
on Functional programming (New York, NY, USA), ACM, 2007,
pp. 277–288.

[NAJ+81] K. V. Nori, Urs Ammann, Kathleen Jensen, H. H. Nageli, and Chris-
tian Jacobi, Pascal-p implementation notes, Pascal - The Language
and its Implementation (D. W. Barron, ed.), John Wiley, 1981,
pp. 125–170.

[NCS01] H. Nässén, M. Carlsson, and K. Sagonas, Instruction Merging and
Specialization in the SICStus Prolog Virtual Machine, Proceedings of
the 3rd ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, ACM Press, 2001, pp. 49–60.

[NM88] G. Nadathur and D. Miller, An Overview of λProlog, Proc. 5th Con-
ference on Logic Programming & 5th Symposium on Logic Program-
ming (Seattle), MIT Press, 1988, pp. 810–827.

[PBH00a] G. Puebla, F. Bueno, and M. Hermenegildo, An Assertion Language
for Constraint Logic Programs, Analysis and Visualization Tools

231

Bibliography

for Constraint Programming (P. Deransart, M. Hermenegildo, and
J. Maluszynski, eds.), LNCS, no. 1870, Springer-Verlag, September
2000, pp. 23–61.

[PBH00b] , Combined Static and Dynamic Assertion-Based Debugging
of Constraint Logic Programs, Logic-based Program Synthesis and
Transformation (LOPSTR’99), LNCS, no. 1817, Springer-Verlag,
March 2000, pp. 273–292.

[Per87] F. Pereira, C-Prolog User’s Manual, Version 1.5, University of Ed-
inburgh, 1987.

[Pet89] John Peterson, Untagged Data in Tagged Environments: Choos-
ing Optimal Representations at Compile Time, Fourth International
Conference on Functional Programming Languages and Computer
Architecture, ACM Press, September 1989, pp. 89–99.

[PH03] G. Puebla and M. Hermenegildo, Abstract Specialization and its
Applications, ACM Partial Evaluation and Semantics based Pro-
gram Manipulation (PEPM’03), ACM Press, June 2003, Invited
talk, pp. 29–43.

[PHE99] John Peterson, Paul Hudak, and Conal Elliott, Lambda in Motion:
Controlling Robots with Haskell, PADL, 1999, pp. 91–105.

[PL91] Simon L. Peyton Jones and J. Launchbury, Unboxed Values as First
Class Citizens in a Non-strict Functional Language, Proceedings of
the Conference on Functional Programming and Computer Architec-
ture (Cambridge, Massachussets, USA) (J. Hughes, ed.), Springer-
Verlag LNCS523, 26–28 August 1991, pp. 636–666.

[PVC01] Michael Paleczny, Christopher A. Vick, and Cliff Click, The Java
hotspot server compiler., Java Virtual Machine Research and Tech-
nology Symposium, 2001.

[Qui86] Quintus Computer Systems Inc., Mountain View CA 94041, Quintus
Prolog User’s Guide and Reference Manual—Version 6, April 1986.

232

Bibliography

[Rig04] Armin Rigo, Representation-based Just-In-Time Specialization and
the Psyco Prototype for Python, PEPM ’04: Proceedings of the 2004
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation (New York, NY, USA), ACM Press,
2004, pp. 15–26.

[RM02] Cliff Randell and Henk L. Muller, The Well Mannered Wearable
Computer, Personal and Ubiquitous Computing 6 (2002), no. 1, 31–
36.

[RP06] A. Rigo and S. Pedroni, PyPy’s Approach to Virtual Machine Con-
struction, Dynamic Languages Symposium 2006, ACM Press, Octo-
ber 2006.

[RT96] T. Reps and T. Turnidge, Program Specialization via Program Slic-
ing, Partial Evaluation. Dagstuhl Castle, Germany, February 1996
(O. Danvy, R. Glück, and P. Thiemann, eds.), Springer LNCS 1110,
1996, pp. 409–429.

[San00] Santos Costa, V., Parallelism and implementation technology for
logic programming languages, Encyclopedia of Computer Science and
Technology 42 (2000), 197–237.

[SC91] Dan Sahlin and Mats Carlsson, Variable Shunting for the WAM,
Tech. report, Research Report SICS/R–91/9107, SICS, 1991.

[SC99] Vítor Santos-Costa, Optimising Bytecode Emulation for Prolog, In-
ternational Conference on Principles and Practice of Declarative
Programming (PPDP’99), LNCS, vol. 1702, Springer-Verlag, 1999,
pp. 261–277.

[SCDRA00] V. Santos-Costa, L. Damas, R. Reis, and R. Azevedo,
The Yap Prolog User’s Manual, 2000, Available from
http://www.ncc.up.pt/˜vsc/Yap.

[Sch97] Peter Schachte, Global Variables in Logic Programming, ICLP’97,
MIT Press, 1997, pp. 3–17.

233

Bibliography

[SCSL07a] V. Santos Costa, K. Sagonas, and R. Lopes, Demand-Driven Index-
ing of Prolog Clauses, Proceedings of the International Conference
of Logic Programming, 2007, pp. 40–58.

[SCSL07b] Vítor Santos-Costa, Konstantinos Sagonas, and Ricardo Lopes,
Demand-Driven Indexing of Prolog Clauses , International Confer-
ence on Logic Programming, LNCS, vol. 4670, Springer Verlag, 2007,
pp. 395–409.

[SD02] Tom Schrijvers and Bart Demoen, Combining an improvement to
PARMA trailing with trailing analysis, PPDP ’02: Proceedings of
the 4th ACM SIGPLAN international conference on Principles and
practice of declarative programming (New York, NY, USA), ACM,
2002, pp. 88–98.

[SF06] Tom Schrijvers and Thom Frühwirth, Optimal Union-Find in Con-
straint Handling Rules, Theory and Practice of Logic Programming
6 (2006), no. 1, 213–224.

[SF08] Tom Schrijvers and Thom Frühwirth (eds.), Constraint Handling
Rules - Current Research Topics, Lecture Notes in Artificial Intelli-
gence, vol. 5388, Springer-Verlag, December 2008.

[SHC96] Z. Somogyi, F. Henderson, and T. Conway, The Execution Algo-
rithm of Mercury: an Efficient Purely Declarative Logic Program-
ming Language, Journal of Logic Programming 29 (1996), no. 1–3,
17–64.

[SSCWD08] Tom Schrijvers, Vítor Santos Costa, Jan Wielemaker, and Bart De-
moen, Towards Typed Prolog, ICLP ’08: Proceedings of the 24th In-
ternational Conference on Logic Programming (Berlin, Heidelberg),
Springer-Verlag, 2008, pp. 693–697.

[Ste97] R. Stevens, A Survey of Stream Processing, Acta Informatica 34
(1997), 491–541.

[Swe99] Swedish Institute for Computer Science, PO Box 1263, S-164 28

234

Bibliography

Kista, Sweden, SICStus Prolog 3.8 User’s Manual, 3.8 ed., October
1999, Available from http://www.sics.se/sicstus/.

[Tai98] Antero Taivalsaari, Implementing a Java Virtual Machine in the
Java Programming Language, Tech. report, Sun Microsystems,
March 1998.

[Tar06] Paul Tarau, BinProlog 2006 version 11.x Professional Edi-
tion User Guide, BinNet Corporation, 2006, Available from
http://www.binnetcorp.com/.

[Tay89] A. Taylor, Removal of Dereferencing and Trailing in Prolog Compi-
lation, Sixth International Conference on Logic Programming, MIT
Press, June 1989, pp. 48–60.

[Tay90] , LIPS on a MIPS: Results from a Prolog Compiler for a
RISC, 1990 International Conference on Logic Programming, MIT
Press, June 1990, pp. 174–189.

[Tay91a] , High-Performance Prolog Implementation, Ph.D. thesis,
Basser Department of Computer Science, Unversity of Sidney, June
1991.

[Tay91b] A. Taylor, High Performance Prolog Implementation through Global
Analysis, Slides of the invited talk at PDK’91, Kaiserslautern, 1991.

[TDBD96] Paul Tarau, Koen De Bosschere, and Bart Demoen, Partial Transla-
tion: Towards a Portable and Efficient Prolog Implementation Tech-
nology, Journal of Logic Programming 29 (1996), no. 1-3, 65–83.

[Tip95] Frank Tip, A Survey of Program Slicing Techniques, Journal of Pro-
gramming Languages 3 (1995), 121–189.

[TKA02] W. Thies, M. Karczmarek, and S. Amarasinghe, StreamIt: A Lan-
guage for Streaming Applications, International Conference on Com-
piler Construction, LNCS, no. 2304, Springer Verlag, 2002, pp. 179–
196.

235

Bibliography

[TN94] Paul Tarau and Ulrich Neumerkel, A Novel Term Compression
Scheme and Data Representation in the BinWAM, PLILP ’94:
Proceedings of the 6th International Symposium on Programming
Language Implementation and Logic Programming (London, UK),
Springer-Verlag, 1994, pp. 73–87.

[Van94] P. Van Roy, 1983-1993: The Wonder Years of Sequential Prolog
Implementation, Journal of Logic Programming 19/20 (1994), 385–
441.

[VB02] C. Vaucheret and F. Bueno, More Precise yet Efficient Type Infer-
ence for Logic Programs, International Static Analysis Symposium,
Lecture Notes in Computer Science, vol. 2477, Springer-Verlag,
September 2002, pp. 102–116.

[VD92] P. Van Roy and A.M. Despain, High-Performance Logic Program-
ming with the Aquarius Prolog Compiler, IEEE Computer Magazine
(1992), 54–68.

[VR90] P.L. Van Roy, Can Logic Programming Execute as Fast as Impera-
tive Programming?, Ph.D. thesis, Univ. of California Berkeley, 1990,
Report No. UCB/CSD 90/600.

[Wal95] Malcolm Wallace, Functional Programming and Embedded Systems,
Ph.D. thesis, York University, January 1995.

[War77] D.H.D. Warren, Applied logic—its use and implementation as pro-
gramming tool, Ph.D. thesis, University of Edinburgh, 1977, Also
available as SRI Technical Note 290.

[War83] , An Abstract Prolog Instruction Set, Technical Report 309,
Artificial Intelligence Center, SRI International, 333 Ravenswood
Ave, Menlo Park CA 94025, 1983.

[War92] D. S. Warren, Memoing for logic programs, Communications of the
ACM 35 (1992), no. 3, 93–111.

236

Bibliography

[WB95] G. Welch and G. Bishop, An Introduction to the Kalman Filter,
Tech. Report TR95-041, Department of Computer Science, Univer-
sity of North Carolina - Chapel Hill, November 1995.

[Wei99] Mark Weiser (ed.), Special issue on program slicing, vol. 40, Informa-
tion and Software Technology, no. 11/12, Elsevier, November 1999.

[Win92] W. Winsborough, Multiple Specialization using Minimal-Function
Graph Semantics, Journal of Logic Programming 13 (1992), no. 2
and 3, 259–290.

[Wol05] Michael Wolfe, How Compilers and Tools Differ for Embedded Sys-
tems, International Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems, ACM and IEEE Computer Society,
September 2005, Keynote Speech.

[Zho94] Neng-Fa Zhou, Parameter Passing and Control Stack Management
in Prolog Implementation Revisited, ACM Transactions on Program-
ming Languages and Systems 18 (1994), 752–779.

237

	Introduction
	Overview and Motivation
	From Low Level to Declarative Programming
	Challenges of Declarative Programming
	The Prolog Language

	Thesis Objectives
	Structure of the Thesis
	Sequential Implementation and Optimization of Prolog: a (Short) Survey [Chapter 2]
	Compiling Prolog to Native Code [Chapter 3]
	A Generic Emulator Generator [Chapter 4]
	Description and Optimization of Abstract Machine in a Dialect of Prolog [Chapter 5]
	Comparing Tag Scheme Variations Using an Abstract Machine Generator [Chapter 6]
	A Case Study: Real-Time Sound Processing [Chapter 7]

	Main Contributions

	Sequential Implementation and Optimization of Prolog: a (Short) Survey
	Introduction
	From Early Interpreters to the WAM
	Abstract Machines: from the PLM to the WAM
	The WAM at a Glance
	Alternatives to the WAM

	Further Optimizing the WAM
	Advanced Emulator Implementations
	Mapping Hardware and WAM Registers
	Cheaper Instruction Fetching
	Augmented Instruction Set

	Compilers to Native and Low-Level Code
	Global Static Analysis
	Low-granularity Instruction Set
	WAM-level Multiple Specialization
	Static Typing
	Back-ends for Native and Low-level Code

	Hybrid Compilation
	Partial Translation
	Exo-compilation

	Compiling Prolog to Native Code
	Introduction
	Basic Compilation Scheme
	Typing WAM Instructions
	Generation of the Intermediate Low Level Code
	Compilation to C
	Examples

	Optimized Compilation via Moded Types and Determinism
	Extended Typing of WAM Instructions
	Generation of Optimized C Code
	Examples

	Unboxing of Constants
	Overview of The Algorithm
	Example

	Experimental Results
	Conclusions

	A Generic Emulator Generator
	Introduction
	Algorithm for the Generation of Emulators
	Scheme of a Basic Interpreter
	Parameterizing the Interpreter
	A More Specialized Intermediate Language and Its Interpreter
	A Final Emulator

	An Example Application: Minimal and Alternative Emulators
	Obtaining Specialized Emulators
	Some Examples of Opportunities for Simplification
	Experimental Evaluation

	Conclusions

	Description and Optimization of Abstract Machines in a Dialect of Prolog
	Introduction
	Overview of our Compilation Architecture
	The imProlog Language
	Efficient Mechanisms for Data Access and Update
	Compilation Strategy and imProlog Subset Considered
	Data Representation and Operations
	Code Generation Rules

	Extensions for Emulator Generation in imProlog
	Defining WAM Instructions in imProlog
	An Emulator Specification in imProlog
	Assembling the Emulator

	Automatic Generation of Abstract Machine Variations
	Instruction Set Transformations
	Transformations of Instruction Code
	Experimental Evaluation

	Conclusions

	Comparing Tag Scheme Variations Using an Abstract Machine Generator
	Introduction
	Implementation of Dynamic Typing
	Performance of Different Encoding Schemes

	Describing Types in imProlog
	Types in imProlog
	Feature Terms and Disjunctions of Types
	Defining a Hierarchy of Types

	Specifying the Tagged Data Type
	The Tagged Hierarchy

	Optimizing Type Encodings
	Bit-level Encoding
	Trade-off: Limited Address Space
	More Control over Tag Representation
	Extending Garbage-collector for External and Internal GC Bits
	Interactions with Bytecode

	Evaluation of Tag Scheme Variations
	Address Limits and Memory Usage
	General Speed-up Analysis
	General-purpose Abstract Machine
	Per-program Abstract Machines

	Final Remarks

	A Case Study: Real-Time Sound Processing
	Introduction
	The Sound Spatializer
	Sound Spatialization Basics
	Sound Quality and Spatial Localization
	Hardware Characteristics of the Platform
	Hard Real-time
	Compass and Concurrency

	Program Code and Source-Level Transformations
	Naive implementation
	High-level Code for the Sound Spatializer
	Compile-time Checking
	Partially Evaluating the Program

	Compilation to Native Code
	Naive Compilation to Native Code
	Optimized Compilation

	Summary of the Experiments
	Basic Results
	Increasing the Sampling Frequency
	A Comparison with C

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

