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Abstract

Abstract interpretation has been widely used for the analysis of object-oriented
languages and, more precisely, Java source and bytecode. However, while most of the
existing work deals with the problem of finding expressive abstract domains that track
accurately the characteristics of a particular concrete property, the underlying fixpoint
algorithms have received comparatively less attention. In fact, many existing (abstract
interpretation based) fixpoint algorithms rely on relatively inefficient techniques to
solve inter-procedural call graphs or are specific and tied to particular analyses. We
argue that the design of an efficient fixpoint algorithm is pivotal to support the analysis
of large programs. In this paper we introduce a novel algorithm for analysis of Java
bytecode which includes a number of optimizations in order to reduce the number of
iterations. Also, the algorithm is parametric in the sense that it is independent of
the abstract domain used and it can be applied to different domains as “plug-ins”. It
is also incremental in the sense that, if desired, analysis data can be saved so that
only a reduced amount of reanalysis is needed after a small program change, which
can be instrumental for large programs. The algorithm is also multivariant and flow-
sensitive. Finally, another interesting characteristic of the algorithm is that it is based
on a program transformation, prior to the analysis, that results in a highly uniform
representation of all the features in the language and therefore simplifies analysis.
Detailed descriptions of decompilation solutions are provided and discussed with an
example.

1 Introduction

Analysis of the Java language (either in its source version or its compiled bytecode [17]) us-
ing the framework of abstract interpretation [6] has been the subject of significant research
in the last decade (see, e.g., [19] and its references). Most of this research concentrates
on finding new abstract domains that better approximate a particular concrete property
of the program analyzed in order to optimize compilation (e.g., [3, 27]) or statically verify
certain properties about the run-time behavior of the code (e.g., [11, 15]). In contrast
with this concentration and progress on the development of new, refined domains there has
been comparatively little work in the underlying fixpoint algorithms and frameworks. In
fact, many existing abstract interpretation-based analyses use relatively inefficient fixpoint
algorithms. In other cases, the fixpoint algorithms are specific and/or tied to particular
analyses and cannot easily be reused for other domains.

While interesting work on fixpoint algorithms has been done for example in functional
and logic programming, where a number of solutions have been proposed to speed up anal-
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ysis fixpoint convergence (see, e.g., [22, 5] and its references). However, these algorithms
are strongly tied to the operational semantics of those languages. As a result, their adap-
tion to Java is far from trivial, since fundamental aspects of object-oriented programs like
virtual calls, object instantiation, static methods and variables, destructive update, etc.
are not contemplated, at least directly.

We argue that the design of an efficient fixpoint algorithm is pivotal to support the
analysis of large programs. In this paper we propose and describe in detail a novel algorithm
for analysis of Java bytecode which includes a number of optimizations in order to reduce
the number of iterations as well as other unique characteristics. In particular, dependencies
are kept during analysis so that only the really affected parts of the need to be revisited
after a change during the convergence process. The algorithm deals thus efficiently with
mutually recursive call graphs. The proposed algorithm is parametric in the sense that it is
independent of the abstract domain used and it can be applied to different domains. The
algorithm specifies a reduced number of basic operations that each domain must implement.
This allows having a single implementation to which the designer of new analyses can add
new domains as “plug-ins”. The algorithm is also multivariant : abstract calls to the a given
method that are represent different input patterns are automatically analyzed separately.
This is both more precise and efficient than alternative techniques such as cloning methods
for each call site, since cloning can produce either too many versions of methods (if two call
sites are determined to use the same input pattern) or too few (if two different, separate
input patterns arise from a single call site). The algorithm is also top-down/flow-sensitive,
in order to allow modeling properties that depend on the data flow characteristics of the
program. The proposed algorithm is also incremental in the sense that, if desired, analysis
data can be saved so that only a reduced amount of reanalysis is needed after a small
program change, which can be instrumental for large programs.

Finally, another interesting characteristic of the algorithm is that it is preceded by a
program transformation, prior to the analysis, that results in a highly uniform represen-
tation of all the features in the language and therefore simplifies analysis. This program
transformation includes a certain level of decompilation of the bytecode which, which re-
covers part of the original code structure lost in the bytecode representation. Although
our decompilation process is based on existing tools [21, 31] we greatly simplify the bur-
den of designing new abstract operations by normalizing the intermediate representation
which is actually analyzed, representing different classes of statements in a unified way,
automatically introducing relational information between initial and final states on meth-
ods calls, etc. While not the subject of this paper, the algorithm can also be applied to
Java source code, applying a similar transformation that converts such source code into
the intermediate language of the analyzer.

The basis of the algorithm is a data structure called the memo table, which stores pairs
of abstract states that are interpreted as the output in the given abstract domain for a
given input, in the context of a particular method. The purpose of the memo table is
twofold: it acts as a data cache and it is also used to remember whether the pair represents
final, stable results for the method, or intermediate approximations obtained half way
during the convergence of fixpoint computations. The solution proposed is highly efficient
when compared to classic solutions for the inter-procedural dataflow analysis of recursive
programs.

Java programs rely heavily on libraries and analysis thus usually expands to many
imported classes. Thus, modular analysis is definitely an important issue in this context.
However, and in order to concentrate on the description of the fixpoint algorithm, we will
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not deal with modular analysis issues in this paper. Instead, we assume that methods
exported libraries are annotated in an assertion language that describes which output
abstract states are provided for certain input abstract states (we use a particular assertion
language that resembles the Java Modeling Language [14], however we omit also a detailed
description of this assertion language from the description for brevity). A solution for
modular analysis in the context of Java can be found for example in [25].

Regarding other related work, as mentioned before, most published analyses based on
abstract interpretation for Java or Java bytecode do not provide much detail regarding the
implementation of the fixpoint algorithm. Also, most of the published research (e.g., [3, 4])
focuses on particular properties and therefore their solutions (abstract domains) are tied
to them, even when they are explicitly multipurpose [16]. In [23] the authors mention a
choice of several univariant and multivariant computations, but no further information is
given. Also, their approach is not incremental. The more recent and quite interesting Julia
framework [29] is intended to be generic and targets bytecode as in our case. Their fix-
point techniques are based on prioritizing analysis of non-recursive components over those
requiring fixpoint computations and using abstract compilation [13]. However, again few
implementation details are provided. Also, this is a bottom-up, univariant framework, while
our objective is to develop a top-down, multivariant framework. While it is well-known
that bottom-up analysis can be adapted to perform top-down analyses by subjecting the
program to a “magic-sets”-style transformation [26], the resulting analyzers typically lack
some of the characteristics that are the objective of our proposal, and, specially, multivari-
ance. Finally, in [18] a generic static analyzer for the modular analysis and verification
of Java classes is presented. The algorithm presented is also bottom-up and univariant,
and only a naive algorithm (which is not efficient for mutually recursive call graphs) is
presented.

2 Intermediate program representation

We start by describing the first phase of analysis: the translation of the Java bytecode into
an intermediate representation. In order to concentrate on the fixpoint algorithm, which
is the main objective of the paper, this description is summarized, concentrating on the
characteristics of the transformation and illustrating it with a relatively complete example
(the full description can be found in [20]). The translation process produces a structured,
decompiled representation of the Java bytecode and is based on the SOOT framework [31]
which has been successfully used in previous analyses [7, 2]. However, instead of analyzing
directly the Jimple representation –based on gotos– we process it further in order to
build a control flow graph (CFG) in a similar way to the Dava tool [21]. The idea is also
analogous to the approach of [11, 29] but the graph obtained is somewhat different since
we do not distinguish between stack and local variables, and all the operands are explicit
in the expressions. The actual internal representation used is described by the grammar
in Fig. 1.1 In our current implementation we deal only with the fundamental features of
the language such as inheritance, virtual calls, and method visibility.

Here and in the rest of the paper, we will denote by V be the set of variables in
the program and M the set of method names. The types T of the application include
classes K and atomic types. The decompilation process represents methods as OR-tuples

1This grammar has been simplified slightly for better understanding. An intuition of its complete form

can be derived from Fig. 2.
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prog ::= ({meta1, . . . ,metam} , {or − tp1, . . . , or − tpn})
meta ::= subclass(k1, k2) | implements(k, {par1, . . . , parn})
or − tp ::= method(name, {par1, . . . , parn} , k, attr, body(stmt))
par ::= (name, t)
stmt ::= assignStmt | invokeStmt

condStmt | returnStmt
nopStmt | {stmt1, . . . , stmtn}

assignStmt ::= assign(var, rvalue) | assign(var, var, field)
invokeStmt ::= invoke(name, {par1, . . . , parn} , k)
condStmt ::= guard(imm1 condop imm2)
condop ::= < | > | = | ! = | ≤ | ≥
returnStmt ::= return

nopSmt ::= nop

imm ::= var | constant
rvalue ::= concreteRef | imm | expr
concreteRef ::= field | var.field
expr ::= imm1 binop imm2 | invokeExpr | new type
binop ::= + | − | = | 6= | ≤ | ≥ | ∗ . . .

Figure 1: Internal representation of the bytecode.

(name, fp, kcallee, body) ∈ M × P(V × T ) × K × P(Stmt). The domain of OR-tuples
is denoted by O and therefore a program P is just an element of P(O). A first key
idea in the transformation is to have a single representation for all types of loops, as
well as for conditional structures and standard methods, which are all transformed into
OR-tuples. For example, an unconditional jump in the bytecode is first decompiled as
a conditional block, which is further converted into a virtual method. The “virtual”
notation refers to the fact that those methods did not exist in the original bytecode.
Given a statement if cond1 stmt1 else if cond2 stmt2 . . . else stmtn in the context
of a class k we would get n OR-tuples of the form {(name if, {(v1, k1), . . . , (vn, kn)} ,
k, [cond1, stmt1]), . . . , (name if, {(v1, k1), . . . , (vn, kn)} , k : [cond1, . . . , condn−1, condn, stmtn])}.
The tag name if uniquely identifies the set of OR-tuples. The formal parameters are the
variables referenced inside the intermediate if block.

A second important aspect in the representation of the code is the metainformation
stored about it. Although that information could be indirectly retrieved from intermediate
data structures, a more convenient approach is to maintain a table containing which classes
implement which methods, as well as the hierarchy, interface relations, etc. In this way,
we can easily determine (for example) the set of classes in which a virtual call might take
place without having to resort every time to an abstract syntax tree transversal.

A third key idea is to expose the internal structure of the more complex bytecode
instructions. Java bytecodes are sometimes high-level instructions that encode relatively
complex operations. This is the case for example of a field access v.f, which might throw
a NullPointerException if v is a null object [12]. Instead of delegating the treatment
of such complexities to the abstract domain, we make these aspects of the operational
semantics explicit in the intermediate representation itself using program transformations
(as in [11]). Thus, for example the field access above is translated to if (v==null) throw

(new NullPointerException()) else v.f. In the same way, a pivotal aspect in lan-
guages with destructive updates is the storage of relational information about the formal
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parameters in a method invocation, so that on method exit we can distinguish whether
the parameter state should be propagated back to the caller or it refers to a new, fresh
instance. In [23, 28] the solution is based on the framework by altering call semantics.
Instead we introduce explicit assignments to temporal variables which are undone at the
end of the method’s body. We argue that the solutions that we apply result in simple
domain implementations (important for our parametric approach), as well as increased
portability of the domains: analysis of similar languages (e.g., C# vs. Java) can (almost)
reuse existing abstractions, provided that the compilation phase decompiles in this way
the language-dependent features. We also argue that the representation proposed greatly
facilitates later analyses.

Example 2.1 Figure 2 shows three representations of the same code, an alternative im-
plementation of the JDK Vector class. We include the original source in Fig. 2a) for better
understanding of the example. Figure 2b) is the output of the SOOT (de-)compiler, in Jim-
ple format, for the Vector bytecode. Stack and local elements have been converted into
named variables and all the expressions are typed, but the presence of gotos complicates
later analyses. Metainformation about class hierarchies, overwritten methods, etc. is also
implicit in the code.

The data structure that represents the Control Flow Graph that is the input to our
fixpoint algorithm is shown in Fig. 2c). The metainformation part (first five lines) states
that ZipVector is a direct descendant of the user-defined Vector class. Both implement
an add method that receives an Element object and returns nothing. We now focus on the
append method. Most of the statements in the Jimple representation are kept in a very
similar format (the line numbers will help the reader identify the correspondences) except
for gotos and ifs which are now OR-tuples. For example, the if block starting at line 2
corresponds to the two OR-tuples named user:vector:append if00, which have as formal
parameters all the variables of the container method because they are referenced in their
bodies. The while loop in lines 5-6 is constructed in a similar way, although recursive calls
are inserted by the compiler. Space reasons prevent us from showing how the relational
information is copied at the beginning and end of every method.

3 Top-down Approach to Bytecode Analysis

The program transformations of Sect. 2 greatly simplify our bytecode analysis since we
only have two possible flows in the CFG: the branching invocations of OR-tuples or
serial execution of all other statements. For the first case we will not distinguish in
analysis between real (existing in the source) and virtual (generated via program trans-
formation) methods, which are semantically equivalent. In the event of an invocation
invoke(mname, ap, k caller) ∈ M × P(V × T ) × K the semantics of both is computed
by calculating the least upper bound of the semantics of all possible OR tuples compati-
ble with such invocation: SSJinvoke(mname, ap, kcaller)Kσ = ⊔(SSJstmtiKσ) if (name, fp,
kcallee, stmti) ∈ O and comp(i, o). The function comp returns a boolean value indicating
if a particular implementation o = (name, fp, kcallee, stmti) is compatible with the invoca-
tion i = (mname, ap, kcaller): i.e., their names are identical, and their signatures and class
where they are defined are compatible according to a partial order for Java classes ≤T like
the one described in [15].
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comp(i, o) =







true if name = mname and kcaller ≤T kcallee and
|ap| = |fp| and api.k ≤T fpi.k i = 1 . . . n

false otherwise

However, this high-level description of the semantics of an invocation does not take
into account implementation issues like the particular strategy (bottom-up or top-down)
followed or fixpoint calculations. We now develop a refined approach to the problem, which
in fact handles the two types of flows in a uniform fashion.

The goal of the abstract interpreter is to compute in abstract form the set of states
which can occur at all points in the program. Control of the interpretation process can
itself proceed in several ways, a particularly useful and efficient one being to essentially
follow a top-down strategy starting from the program main entry point and an abstraction
of the input data (or top, if such an abstraction is not available). In a similar way to the
concrete top-down execution, the abstract interpretation process can then be represented
as an abstract alternation of non-deterministic choices and serial executions of statements.

The top-down strategy proposed implicitly creates a graph during analysis where nodes
(statements) with several descendants correspond to branches in the concrete execution
(conditionals, virtual calls, loops), all of them abstracted as invocations of OR-tuples.
Nodes with one descendant indicate serial execution and are abstracted by recursively
applying the process to the child node. More precisely, an invocation is an OR-node whose
children are the bodies of all the OR-tuples whose signature matches the one of the call
and each body is an AND-node where the semantics of each statement (possibly containing
further OR-nodes) are composed.

Given a call state CA prior to a statement stmt, the exit state CP is computed by the
function SSJstmtK : D 7→ D, with three subcases:

1. If the statement is a invocation i = invoke(mname, ap, kcaller), let o1, . . . , on be
the OR-tuples such that comp(i, oi) = true. First we restrict the actual state to
those variables that are in ap. This is performed by means of the project operation
described below and results in a new state λ = CA|ap. The description is further
modified to rename the variables so they work in each context of the callee: βi = λ|ap

fp.

Then we call recursively SSJstmtiKβi in order to obtain an exit state for the callee β
′

i .
Now we proceed in the reverse direction, first by renaming back all variables so that
each abstraction is described in terms of the variables in the caller and then by lubbing
their partial results: λ

′

=
⊔

β
′

i|
fp
ap . The last step implies conjoining λ

′

with the initial
description via the extend operation described below: CP = extend(CA,λ

′

)

2. If the statement is a concatenation of statements {stmt1, . . . , stmtn}, the output
state is calculated as the composition of the semantics of each element in the list,
starting with the initial state: CP = SSJstmtnK(. . .SSJstmt1K(CA))

3. If the statement is atomic (does not include further statements) we have a base case
that is resolved directly by the domain: CP = SSJstmtK(σi).

The interprocedural, top-down approach requires the designer of the domain to provide
two extra operations on in addition to the standard [6] lattice functions such as least upper
bound or ordering. The project : D × V 7→ D operator restricts the current abstraction to
the set of variables specified. The intuition behind it is the removal of irrelevant information
in the actual state, in the sense that it does not relate to the actual parameters of the
invocation, i.e., it reflects the scoping rules of the blocks being analyzed. The second
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operation is extend : D × D 7→ D, which updates an abstract state CA based on another
description λ

′

that involves only variables in CA. The purpose of extend is somehow
symmetric to the projection, because after returning from a method invocation we need to
reconcile the result of the call (affecting only a few variables within the scope of the caller)
with the previous state (affecting all the variables in such scope).

Example 3.1 A pair-sharing domain approximates pairs of variables that might point to
the same location in memory [28]. An abstract state like {{X,Y } , {X,X} , {Y, Y } , {Z,Z}}
is an abstraction of a particular heap configuration where variables X and Y might
point to the same object, while Z definitely references another position in memory. Pro-
jection σ|V is defined as {S | S = S

′

∩ V, S
′

∈ σ}. In the example of Fig. 2c), as-
sume that the actual state before the call to vector:append if00 while00 is CA =
{{R0, R1} , {R0, R2} , {R1, R2} , {R0, R0} , {R1, R1} , {R2, R2}}. Since the invocation in-
volves only variables V = {R1, R2, R4, R5} we get λ = CA|V = {{R1, R2} , {R1, R1} , {R2, R2}}.

The extend operation is less straightforward. Assume the existence of a method
foo(R0, R1) called in state CA = {{R0, R0} , {R0, R2} , {R1, R1} , {R2, R2}}. After analyz-
ing the body of foo the resulting state is λ

′

= {{R0, R1} , {R0, Ro} , {R1, R1}}, probably
because some field in R0 has been assigned to R1 or to any of its non null fields (or vice
versa) within the method. The information discovered is propagated back to the caller and,
thus, extend(CA,λ

′

) = {{R0, R1} , {R0, R2} , {R0, R0} , {R1, R2} , {R1, R1} , {R2, R2}}.

Note that precision can be further improved if, for example, the abstraction is aware
of the run-time class of the objects invoked. Our solution to this issue makes use in
the implementation of object orientation by allowing specialization of the base framework
through subclassing. For the particular example in hand, domains containing class analysis
information [1, 8]) would just overwrite the implementation of the comp predicate in order
to obtain smaller sets of candidate methods to analyze.

In addition to the points above, there is one more issue that needs to be addressed. The
overall abstract interpretation framework scheme described works in a relatively straight-
forward way if the (transformed) program has no recursion (i.e., there are no loops or
recursion in the original bytecode). Consider, on the other hand, a recursive OR-tuple. If
there are two OR-nodes for the tuple in the tree such that the actual parameters apars
and input state CA are identical, and one node is a descendant of the other, then the tree
is infinite and analysis does not terminate. In order to ensure termination, some sort of
fixpoint computation is needed. This is the subject of the following section.

4 Generic Top-Down Analysis Algorithm

We now describe our generic top-down analysis algorithm. The algorithm computes the
least fixed point making use of memo tables [10, 9]. A memo table contains the results of
computations already performed and it is typically used to avoid needless recomputation.
However, in our context it is also used to store results obtained from an earlier round
of iteration. An entry : M × D × S × D × I+ in the memo table has the following
fields: method name, its projected call state (λ), its status, its projected exit state (λ

′

)
and a unique identifier. find : MT × M × D × S 7→ D × I+ returns a tuple (λ

′

, ID)
corresponding to an entry from the memo table if there exists a renaming such that this
entry matches with the given method name and its λ. Other memo table operations are:

7



findStatus : MT × M × D 7→ D × I+ × S, updStatus : MT × M × D × S 7→ MT ,
updLambda : MT ×M×D ×D 7→ MT , and insert : MT × E 7→ MT . We also assume
a procedure called lookup : M 7→ P(M) which given a method description, it returns all
methods that implement it.

The actual analysis algorithm is shown in pseudocode in Figs. 3 and 4. There are
three major subcases. If the statement is an invocation of a non recursive method,
AnalyzeNoLoop handles the call. It first checks whether there is an entry in the memo
table for the name of the invoked method and its λ. In that case the stored value of λ

′

is immediately passed to the Extend operation to yield the exit state. Otherwise, the
variables of its λ are renamed to the set of variables {R0, . . . , Rn} and for each method m
returned by the Lookup procedure the following actions are carried out: a projection of λ
onto the m variables and addition of the variables of the m body to yield its corresponding
β . Then, each statement in the body of m is analyzed by calling the EntrytoExit proce-
dure resulting in a set of exit states which are “lubbed.” These states have been previously
projected onto the variables of the invoked method and renamed in terms of these vari-
ables. This “lubbed” state is inserted as an entry in the memo table and characterized as
complete. Finally, the Extend operation is applied in order to produce the exit state.

In conditional methods the decompilation ensures that the formal parameters of the
method are indeed named as in the caller. Furthermore, caller and callee have an identical
scope so in an invocation I =< N,Ap, > to a conditional method, all the compatible
tuples m =< N,Fp, , Stmts > verify vars(Stmts) = vars(Fp) (i.e., they have no extra
local variables) and vars(CA) = vars(Ap) = vars(Fp) = {R0, . . . , Rn}. This property is
used in AnalyzeCond to speed up analysis, since the Project and Extend operations can
be skipped.

Finally, when a method is recursive the fixpoint computation defined by the AnalyzeLoop
procedure in Fig 4 is required since analysis needs to be repeated until fixpoint is reached
for the abstract and-or tree, i.e. until it remains the same before and after one round
of iteration. In order to do this, we keep track of a flag to signal the termination of the
fixpoint computation. Firstly, AnalyzeLoop begins analyzing those non-recursive instances
of the invoked method in the same way as AnalyzeNoLoop. With this, we are able to yield
a possible λ

′

different from ⊥ which will accelerate the further fixpoint computation, and
then an entry in the memo table is inserted with this information and characterized as
fixpoint. After this, the CompFixpo procedure (also defined in Fig. 4) is called. At each
iteration, a similar process to that described in AnalyzeNoLoop is performed. However, be-
tween the end of one iteration and the beginning of the next one, the values of the previous
λ

′

and the new λ
′

are compared. If they are the same, then fixpoint has been reached and
the procedure finishes ensuring that the least fixed point has been computed. Otherwise,
the least fixed point has not been reached yet and a new iteration will be performed.

4.1 Dealing with Mutually Recursive Methods

For the sake of simplicity, the description of the analysis so far has omitted some de-
tails which are needed in order to support mutually recursive methods. In this case,
our algorithm operates as follows. Firstly, we need to use new values for the status field
in memo table entries. fixpoint is used when the fixpoint has not been reached yet.
approximate represents when the fixpoint has been reached for a method m1 in this entry
but by using a possibly incomplete value of λ

′

of some other method m2 (i.e., a value that
does not correspond yet to a fixpoint). Finally, complete is used when fixpoint has been
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reached for this method. Furthermore, we also need to use the ID field in order to detect
occurrences of mutual recursion. We also need to use a set of Id’s to keep track of the re-
cursive methods during the analysis. When a fixpoint computation is started, the analysis
searches for an entry in the memo table. Given a method and its λ, if there exists an entry
characterized as complete , then the λ

′

is obtained from it. If the entry is characterized
as fixpoint means that the method is recursive and so, we add its Id in the set of Id’s. If
the entry is approximate, then the method or one of its successors in the and-or tree has
an approximate value of its exit state. Thus, we need to mark it as fixpoint and start
its fixpoint computation again. Finally, after a fixpoint computation is reached we need to
verify the Ids contained in the set of Ids. If this set contains only the Id corresponding to
the method which is being analyzed, then the value of its λ

′

is complete. Otherwise, the
method depends on other Ids (i.e., methods) and so, we mark its output abstract value as
approximate. In both cases, we eliminate the method’s Id from the set of Ids.

Finally, we can improve the efficiency of the procedure defined above by keeping track
of the methods which depend on each other. In the above scenario, during subsequent
iterations for m1, the subtree for m2 is explored every time. After each time these fixpoint
iterations are completed for m2, its entry in the memo table is labeled as approximate.
After the last round of iteration for m1 is over, the entry in the memo table is labeled
complete but the entry for m2 is still characterized as approximate. Then, the subtree for
m2 is explored again. However, this is unnecessary because m2 has used a complete value
of the exit state of m1. In order to avoid this unnecessary work, after each fixpoint iteration
when a method m is labeled as complete, we keep track of those methods which depend
only on m and we mark them directly as complete. It m is characterized as approximate ,
then the current Ids contained in the set of Id’s are made dependent of the m’s Id.

Example 4.1 We now illustrate how the fixpoint algorithm described in Sect. 4 works for
the program in Fig. 2. The domain in use will be pair sharing. The objective is to analyze
the semantics of the append method in the context of the Vector and ZipVector classes.

Space limitations obviously prevent us from showing the entire process in detail. We will
instead assume that the starting program point for analysis is right before the call to append
in the Vector implementation of add. Note that the method creates a vector V which con-
tains a shallow copy of Element so that the three objects (This, Element and V ) cannot
point to the same location in memory and CAV ector

append = {{This, This} , {Element,Element} , {V, V }}.
The invocation is classified as non recursive and handled by AnalyzeNoLoop. We

now have to project CAV ector
append over the two actual parameters and then rename these

to the equivalent formal parameters.2 Since R0 is This and R1 is V we get λappend =
{{R0, R0} , {R1, R1}}. To simplify notation we will denote append if00 and append if while00

by if and while respectively. Analysis of the append body results in a call to AnalyzeCond,
since the last statement is an invocation to if. At that point CAif = {{R0, R0} , {R0, R2} , {R1, R1} , {R2, R2}}
because e (R2) points to a field of this (R0).

Conditional invocations are simpler to handle: no project, extend, or rename operations
are required. Instead, we directly examine the two methods corresponding to if. The first
branch implies that R2 is null and that R0’s field R3 points to the vector passed as argument
R1, Thus, λ

′

if,1 = {{R0, R1} , {R0, R3} , {R1, R3} , {R0, R0} , {R1, R1} , {R3, R3}}. The sec-
ond compatible method with the invocation implies R2 6= null but its semantics depends
on a loop call to while. Control of the algorithm is passed to the AnalyzeLoop subroutine
which projects and renames CAwhile = {{R0, R3} , {R2, R4} , {R0, R0} , {R1, R1} , {R2, R2} , {R4, R4}}

2For better understanding of the variable equivalence check Fig. 5.
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again yielding λwhile = {{R2, R4} , {R1, R1} , {R2, R2} , {R4, R4}}. The non recursive part
is then analyzed first. Since termination depends on R4 being null and the final assign-
ment (line 7 in the source) forces R1 and R2 to share through intermediate variable R5 we
have λ

′

while,1 = {{R1, R2} , {R1, R4} , {R1, R5} , {R1, R1} , {R2, R2} , {R4, R4} , {R5, R5}}.

A new entry e1 =(while,λwhile,fixpoint,λ
′

while,1,id1) is inserted in the memo table.
Fixpoint computation starts by analyzing (recursive) methods that are compatible with

the invocation. The only tuple (last in Fig. 2c) ) found is processed in a straightforward
manner until the self-invocation, which triggers a search in the memo table with return
value e1 (AnalyzeLoop subroutine). We use the current approximation of the while se-
mantics, derived from the base case. On return to the fixpoint routine, we will calculate
a λ

′

while,2 which is identical to λ
′

while,1, because the statements in the body of the re-
cursive tuple do not really alter any information about variables in λwhile. The relation
(λwhile, λ

′

while) did not change after one single iteration and the process can be considered
as complete for the while method. The memo table status of the e1 tuple is updated
accordingly.

Coming back to the semantics of the second branch of the if method, we observe that
it has to be identical to extend(CAif , λ

′

while,1), which forces further sharings with the R0

object to produce λ
′

if,2 = {{R0, R1} , {R0, R3} , {R1, R3} , {R0, R0} , {R1, R1} , {R3, R3}}.

We now write a new entry in the memo table: (if, CAif , complete, λ
′

if,1 ⊔ λ
′

if,2,id2). This
entry, projected over the formal parameters of append results in yet another entry (append,
{{R0, R0} , {R1, R1}}, complete, {{R0, R1} , {R0, R0} , {R1, R1}},id3). This semantics is
congruent with the concatenation that takes place inside the method.

We are now in the position of inferring the abstract semantics of add in class Vector.
Remember that CAV ector

append = {{This, This} , {Element,Element} , {V, V }} and that the
call to append results (after renaming) in {{This, V } , {This, This} , {Element,Element} , {V, V }}.
We repeat the same process of projecting over the formal parameters thus CP V ector

add =
{{This, This} , {Element, Element}}. In the ZipV ector there is a different call state prior
to append invocation, derived from the insertion of the element in v (instead of copying its
fields, like in Vector): CAZipV ector

append = {{Element, V } , {This, This} , {Element,Element} , {V, V }}.

Nevertheless, AnalyzeLoopwill find the λ entry already in the memo table, since CAV ector
append|This,V =

CAZipV ector
append |This,V thus λV ector

append = λZipV ector
append . We can reuse the computed semantics to get

the same λ
′

append for the call. On extension with CAZipV ector
append it results in CPZipV ector

add =
{{This,Element} , {This, This} , {Element,Element}}. If we repeat the process for a call
state CAappend where This and V share, CPappend will remain the same on exit, but the
memo table now contains two entries for the same method reflecting the two different call
contexts (multivariance).

5 Incremental Analysis

In this section, we propose how to make our generic fixpoint algorithm incremental in the
sense that analysis results can be stored so that a reduced amount of effort is needed in
order to reanalyze after a small change. The changes that we consider are a set of addition
or deletions of methods.

10



5.1 Incremental Addition

We show an incremental addition algorithm in Fig. 6. Firstly, we need to define a new
operation to handle the memo table. FindEntry : MT ×M 7→ P(D ×D) retrieves a set
of pairs < λ, λ

′

> given a method name. If new methods are added to a program, in order
to be correct we must yield the exit state for each new method. The algorithm works as
follows. For each new method it obtains every different entry in the memo table (i.e., each
different λ). Then, each method is reanalyzed starting with its corresponding λ in order
to propagate the effect of these changes.

5.2 Incremental Deletion

The next step is to define an algorithm which considers deletion of methods from a program
analyzed previously in order to update the memo table. Note that, unlike incremental
addition, we do not need to change the analysis to guarantee correctness. However, for
large programs this solution is inadmissible. The algorithm defined in Fig. 6 has two phases:
firstly, it detects the set of methods that depend on some of the methods to be deleted,
and resets their entries in the memo table. In the second stage, the algorithm reanalyzes
the methods involved in the previous phase. To do this, we define another memo table
operation Remove : MT ×M×D 7→ MT .

6 Some Experimental Results

We implemented the pair sharing (PS) analysis in our framework, extending the operations
described in [28] in order to handle some additional cases required by our benchmark
programs such as primitive variables, visibility of methods, etc. The benchmarks used
have been adapted from previous literature on either abstract interpretation for Java or
points-to analysis [28, 24, 23, 30]. Our experimental results are summarized in Fig. 7.

The first column (#tp) shows the total number of program points (commands or expres-
sions) for each program. Column #rp then provides, for each analysis, the total number
of reachable program points, i.e., the number of program points that the analysis explores,
while #up represents the (#tp − #rp) points that are not analyzed because the analysis
determines that they are unreachable. Since our framework is multivariant and can thus
keep track of different contexts at each program point, at the end of analysis there may
be more than one abstract state associated with each program point. Thus, the number
of abstract states is typically larger than the number of reachable program points. Col-
umn #σ provides the total number of these abstract states inferred by analysis. The level
of multivariance is the ratio #σ/#rp. In general, such a larger number for #σ tends to
indicate more precise results. The t column in Fig. 7 provides the running times for the
different analyses, in milliseconds, on a Pentium III 2.0Ghz, 1Gb of RAM, running Fedora
Core 4.0, and averaging several runs after eliminating the best and worst values.

7 Conclusions

We have presented a novel algorithm for analysis of Java bytecode which includes a number
of optimizations in order to reduce the number of iterations. The algorithm is parametric
in the sense that it is independent of the abstract domain used and it is also incremental
in the sense that, if desired, only a reduced amount of reanalysis is needed after a small
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program change. The algorithm is also multivariant and top-down/flow-sensitive. Also,
the algorithm uses a program transformation, prior to the analysis, that results in a highly
uniform representation of all the features in the language and which simplifies analysis.
We have implemented the algorithm and tested it on a previously published domain with
encouraging results.
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class Element{

int value;

Element next;}

class Vector{

Element first;

public void append(Vector v){

1 Element e = first;

2 if (e == null)

3 first = v.first;

4 else{

5 while (e.next != null)

6 e = e.next;

7 e.next = v.first;}

}

public void add(Element element){

Element e = new Element();

e.value = element.value;

Vector v = getNewVector();

v.first = e;

append(v);

}

}

class ZipVector extends Vector{

public void add(Element element){

Vector v = getNewVector();

element.next = null;

v.first = element;

append(v);

}

}

(a)

class Element extends java.lang.Object{

int value;

Element next;

[...]

}

class Vector extends java.lang.Object{

Element first;

public void append(Vector){

Vector r0, r1;

Element r2, $r3, $r4, $r5;

r0 := @this: Vector;

r1 := @parameter0: Vector;

1 r2 = r0.<Vector: Element first>;

2 if r2 != null goto label0;

3 $r3 = r1.<Vector: Element first>;

3 r0.<Vector: Element first> = $r3;

goto label2;

label0:

5 $r4 = r2.<Element: Element next>;

5 if $r4 == null goto label1;

6 r2 = r2.<Element: Element next>;

goto label0;

label1:

7 $r5 = r1.<Vector: Element first>;

7 r2.<Element: Element next> = $r5;

label2:

return;

}

[...]

public class ZipVector extends Vector

[...]

(b)

subclass(’user:vector’,java.lang.object,[]).

subclass(’user:zipvector’,’user:vector’,[]).

subclass(’user:element’,java.lang.object,[]).

implements(’user:vector’,’add’,[’user:vector’,’user:element’,’void’]).

implements(’user:zipvector’,’add’,[user:zipvector’,’user:element’,’void’]).

[...]

method(’user:vector:append’,’user:vector’,’void’,recursive(not),

formal([(R0,’user:vector’),(R1,’user:vector’)]),

local([(R2,’user:element’),(R3,’user:element’),

(R4,’user:element’),(R5,’user:element’)]),

body([

1 staticinvoke(’check_not_null’,[(R0,’user:vector’)],java.lang.object),

1 assign(R2,R0,first,’user:element’),

conditionalinvoke(’user:vector:append_if00’,

[(R0,’user:vector’),(R1,’user:vector’),(R2,’user:element’),

(R3,’user:element’),(R4,’user:element’),(R5,’user:element’)])

])).

method(’user:vector:append_if00’,’user:vector:append’,’user:vector’,’void’,

formal([(R0,’user:vector’),(R1,’user:vector’),(R2,’user:element’),

(R3,’user:element’),(R4,’user:element’),(R5,’user:element’)]),

body([

2 guard(R2==null),

3 staticinvoke(’check_not_null’,[(R1,’user:vector’)],java.lang.object),

3 assign(R3,R1,first,’user:element’),

3 staticinvoke(’check_not_null’,[(R0,’user:vector’)],java.lang.object),

3 setfield(R0,first,R3,’user:element’),

return(’user:vector:append’)

])).

method(’user:vector:append_if00’,’user:vector:append’,’user:vector’,’void’,

formal([(R0,’user:vector’),(R1,’user:vector’),(R2,’user:element’),

(R3,’user:element’),(R4,’user:element’),(R5,’user:element’)]),

body([

4 guard(not(R2==null)),

5 assign(R4,R2,next,’user:element’),

loopinvoke(’user:vector:append_if00_while00’,[(R1,’user:vector’),

(R2,’user:element’),(R4,’user:element’),(R5,’user:element’)])

])).

method(’user:vector:append_if00_while00,’,’user:vector:append’,’user:vector’,’void’,

formal([(R1,’user:vector’),(R2,’user:element’),(R4,’user:element’),

(R5,’user:element’)]),

body([

5 guard([R4==null]),

6 staticinvoke(’check_not_null’,[(R1,’user:vector’)],java.lang.object),

6 assign(R5,R1,first,’user:element’),

6 staticinvoke(’check_not_null’,[(R1,’user:element’)],java.lang.object),

6 setfield(R2,next,R5,’user:element’)

])).

method(’user:vector:append_if00_while00’,’user:vector:append’,’user:vector’,’void’,

formal([(R1,’user:vector’),(R2,’user:element’),(R4,’user:element’),

(R5,’user:element’)]),

body([

5 guard(not([R4==null])),

7 staticinvoke(’check_not_null’,[(R2,’user:element’)],java.lang.object),

7 assign(R2,R2,next,’user:element’),

7 staticinvoke(’check_not_null’,[(R2,’user:element’)],java.lang.object),

7 assign(R4,R2,next,’user:element’),

loopinvoke(’user:vector:append_if00_while00’,[(R1,’user:vector’),

(R2,’user:element’),(R4,’user:element’),(R5,’user:element’)])

]) ).

(c)

Figure 2: Vector example
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Analyze(P, Stmt, CA, MT, Set)
case Stmt of

conditional:
return AnalyzeCond(P, Stmt, CA,MT , Set)

recursive:
return AnalyzeLoop(P, Stmt, CA, MT, Set)

no recursive:
return AnalyzeNoLoop(P, Stmt, CA, MT, Set)

special:
return AnalyzeSpecial(P, Stmt, CA, MT, Set)

builtin:
return AnalyzeBuiltin(Stmt, CA)

end

AnalyzeCond(P, I, CA, MT, Set)
λ:=CA
I = (N, , )
entry:=Find(MT, < N, λ >, complete)
if entry 6= ∅ then

entry =< λ
′

, >

CP :=λ
′

else

λ
′

:=⊥
M :=Lookup(I)
foreach m ∈ M

m = (N, , , Stmts)
< λ′

m, MT, Set > :=
EntrytoExit(P, λ, Stmts, MT, Set)

λ
′

:=λ
′

⊔ λ′
m

end
Let ID be an unique identifier

MT :=Insert(MT, < N, λ, λ
′

, complete, ID >)

CP :=λ
′

end
return < CP, MT, Set >

AnalizeNoLoop(P, I, CA, MT, Set)
I = (N, Ap, )
apars = vars(Ap)
λ:=Project(CA, apars)
entry:=Find(MT, < N, λ >, < complete)
if entry 6= ∅ then

entry =< λ
′

, >
else

λ
′

:=⊥

λ:=λ|
{R0,...,Rn}
apars

M :=Lookup(I)
foreach m ∈ M

m = (N, Fp, , Stmts)
fpars:=vars(Fp)
V :=vars(Stms)
β :=Project(λ, fpars)
β :=Augment(β, V )

< β
′

, MT, Set > :=EntrytoExit(P, β, Stmts, MT, S

λ
′

m:=Project(β
′

, apars)

λ
′

m:=λ
′

m|apars

{R0,...,Rn}

λ
′

:=λ
′

⊔ λ
′

m

end
Let ID be an unique identifier

MT :=Insert(MT, < N, λ, λ
′

, complete, ID >)
end

CP :=Extend(CA, λ
′

)
return < CP, MT, Set >

Figure 3: The Fixpoint algorithm (A)
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AnalyzeLoop(P, I, CA, MT, Set)
I = (N, Ap, )
apars = vars(Ap)
λ:=Project(CA, apars)
entry:=FindStatus(MT, < N, λ >)

λ:=λ|
{R0,...,Rn}
apars

if entry 6= ∅ then

entry =< λ
′

1
, ID, status >

case status of
complete:

λ
′

2
:=λ

′

1

fixpoint:

λ
′

2
:=λ

′

1

Set:=Set ∪ {ID}
approximate:

MT :=UpdStatus(MT, < N, λ >, fixpoint)

< λ
′

2
, MT, Set > :=

CompFixpo(P, I, λ, MT, Set)
end

else

λ
′

:=⊥
M :=Lookup(I)
foreach non-recursive m ∈ M

m = (N, Fp, , Stms)
fpars:=vars(Fp)
β :=Project(λ, fpars)

< β
′

, MT, Set > :=EntrytoExit(P, β, Stms, MT, Set)

λ
′

:=λ
′

⊔ β
′

end

MT :=Insert(MT, < S, λ, λ
′

, fixpoint, ID >)

< λ
′

2
, MT, Set > :=CompFixpo(P, I, λ, MT, Set)

end

CP :=Extend(CA, λ
′

2
)

return < CP, MT, Set >

EntrytoExit(P, β, Stmts, MT, Set)
CA:=β
foreach Stmt ∈ Stmts until Stmt = return

< CP, MT, Set > :=Analyze(P, Stmt, CA, MT, Set)
CA:=CP

end

β
′

:=CP

return < β
′

, MT, Set >

CompFixpo(P, I, λ, λ
′

, MT, Set)
I =< N, , >
entry:=Find(MT, < N, λ >)
setI:=∅
changed:=false
repeat

fixpoint:=true

entry =< , λ
′

, ID >
M :=Lookup(I)
foreach m ∈ M

m = (N, Fp, , Stmts)
if N is recursive or changed

fpars:=vars(Fp)
β :=Project(λ, fpars)

< β
′

, MT, setStmts > :=
EntrytoExit(P, β, Stmts, MT, ∅)

λ
′

old:=λ
′

λ
′

:=λ
′

old ⊔ β
′

if λ
′

old 6= λ
′

then
fixpoint:=false
changed:=true

MT :=UpdLambdaPrime(MT, < N, λ >, λ
′

)
end
setI:=setI ∪ setStmts

end
end

until (fixpoint = true)
if setI \ {ID} = ∅ then

status:=complete
foreach ID′ such that ID′ depends on ID

remove dependence between ID′ and ID
if ID′ is independent then

let < NID′ , λ
′

ID′ > be associated with ID′

MT := UpdStatus(MT, < NID′ , λ
′

ID′ >, complete
end

end
else

status:=approximate
make setID \ {ID} dependent from ID

end

MT :=UpdStatus(MT, < N, λ
′

>, status)
Set:=Set ∪ setI \ {ID}
return < λ

′

, MT, Set >

Figure 4: The Fixpoint algorithm (B)
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var byt var src line

R0 this −
R1 v −
R2 e 1
R3 this.f irst 3
R4 e.next 5
R5 v.first 7

Figure 5: Equivalence of variables between source code and internal representation

IncrementalAddition(P,Ms,MT )
Set:=∅
foreach m ∈ Ms

m =< N, , , >
E:=FindEntry(MT,N)
foreach entry ∈ E

entry =< λ, >
CA:=λ
< CP,MT, Set > :=

Analyze(P ∪ Ms,N,CA,MT, Set)
end

end
return < CP,MT, Set >

IncrementalDeletion(P,Ms,MT )
Let D be the set of methods dependent from Ms
foreach m ∈ D

m =< N, , , >
E:=FindEntry(MT,N)
foreach entry ∈ E

entry =< λ, >
MT :=Remove(MT,< N,λ >)

end
end
Set:=∅
foreach m ∈ Ms ∩ D

m =< N, , , >
< CP,MT, Set > :=

Analyze(P \ Ms,N,⊥, CP,MT, Set)
end
return < CP,MT, Set >

Figure 6: Incremental Addition Algorithm

PS
#tp #rp #up #σ t

dyndisp 71 68 3 114 30
clone 41 38 3 42 52
dfs 102 98 4 103 68
passau 167 164 3 296 97
qsort 185 142 43 182 125
intgrqsort 191 148 43 159 110
pollet01 154 126 28 276 196
zipvector 272 269 3 513 388
cleanness 314 277 37 360 233

Figure 7: Analysis times, number of program points, and number of abstract states.
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