
Automated Attribute Inference in Complex Service
Workflows Based on Sharing Analysis

Dragan Ivanović
idragan@clip.dia.fi.upm.es

Universidad Politécnica de
Madrid (UPM)

Manuel Carro Manuel Hermenegildo
{mcarro,herme}@fi.upm.es

manuel.{carro,hermenegildo}@imdea.org
Universidad Politécnica de Madrid (UPM) and

IMDEA Software Institute

Abstract—The properties of data and activities in business
processes can be used to greatly facilitate several relevant tasks
performed at design- and run-time, such as fragmentation,
compliance checking, or top-down design. Business processes
are often described using workflows. We present an approach
for mechanically inferring business domain-specific attributes
of workflow components (including data items, activities, and
elements of sub-workflows), taking as starting point known
attributes of workflow inputs and the structure of the workflow.
We achieve this by modeling these components as concepts and
applying sharing analysis to a Horn clause-based representation
of the workflow. The analysis is applicable to workflows featuring
complex control and data dependencies, embedded control con-
structs, such as loops and branches, and embedded component
services.

Keywords-workflow; business process; service composition;
horn clause; static analysis;

I. INTRODUCTION

Service-Oriented Computing stresses interoperability
among services, i.e., among loosely coupled and platform-
independent software components with standardized
data type descriptions and interfaces. While back-end
services essentially implement indivisible operations, service
compositions express higher-level, potentially long-running
business processes in an executable form, often across
organizational boundaries. Compositions are often described
by specifying workflows that describe links between activities
and the routing of data. This is done using a language that
allows process modelers and designers to capture the essential
elements of business logic and processing requirements [17],
[9], [21], [20].

Inferring properties of workflows is valuable for several
important design- and run-time activities such as transforming
and refactoring workflows, identifying patterns, facilitating
run-time instrumentation, reshaping, or performing distributed
enactment of service compositions [15].

In this paper we focus on the inference of user-defined
business domain-specific attributes for data items and activ-
ities in service orchestration workflows featuring rich control
structures (branching, loops, and-split-join, (x)or-split-join),
data dependencies, and component services with a (partially)
known structure. The user-defined attributes that describe input
data are organized into contexts and concept lattices from

Formal Concept Analysis (FCA) [5]. Inference based on static
program analysis techniques (see [16] for a general intro-
duction) allows us to further enrich attribute information by
automatically deriving emerging properties which are implicit
in, but not evident from, the input data attributes and the
workflow structure. Static analysis results are mapped back
to the FCA representation framework, and can then be used
to feed, for instance, fragmentation algorithms [10], [11].

This paper is a natural continuation of earlier work [8]
which presented the basis of the application of sharing analysis
to workflows. However that work did not specify from where
and how the entities subject to sharing were obtained, or where
its results were applied.

Work related to our approach includes several proposals
that address the problem of information control flow from
the viewpoint of decentralized process/workflow execution
in complex scientific [22] or business domains [4], [23]. In
that work the attributes of data items and activities carry the
particular semantics of privacy or confidentiality levels from
the viewpoint of multiple participants. With respect to that
work, this paper adds two dimensions of flexibility. First,
we employ a type of static analysis, sharing analysis, based
on abstract interpretation [2], [6], which is applicable to a
generalized user-defined semantics of the data and activity
attributes (e.g., describing data components or some form
of “data quality” for the activities and the entire workflow).
Second, we relax (sometimes significantly) the constraints
on the control structure of workflows that can be treated,
by allowing complex and nested control structures that are
commonly found in practice (such as loops, branches, splits
and joins). In that respect, the workflow representation we
use avoids on purpose depending on a particular business
process language unlike some other analyses [12]. References
to related work connected to particular aspects of our approach
are given throughout the subsequent sections.

The paper proceeds as follows. Section II motivates and out-
lines the approach, and introduces the medication prescription
workflow example that is used throughout the text. Section
III introduces the notion of concept lattices and describes
how such lattices are derived from an assignment of user-
defined attributes to a set of input data objects. Section IV
deals with turning workflow definitions and the concept lattices

into a form amenable to sharing analysis, and addresses the
analysis itself. Section V explains how the results from sharing
analysis are interpreted in terms of contexts and the user-
defined attributes. Finally, Section VI presents our conclusions.

II. MOTIVATION AND SKETCH OF THE APPROACH

Fig. 1 depicts a simplified example of a drug prescription
workflow in BPMN [17] . The process is initiated by the arrival
of a patient with an appropriate identification (labeled as x
in the figure). Next, two parallel activities (a1 and a2) are
run to retrieve the patient’s medical history and medication
record. The data items resulting from these two activities are
respectively marked y and z. Additionally, while retrieving
the medical history, activity a1 informs about the stability
of the health of the patient. Depending on it, either the last
prescription is continued (activity a3) or new medication is
selected (activity a4). Finally, the treatment of the patient is
logged (activity a5).

Some relevant questions can be raised. For example, is the
medical history (y) available to activity a4? This will depend
on what activities a3 and a4 do with y (note that a4 internally
executes a loop) and on whether a3 or a4 is executed. If
a5 needs that information and it is not available, we have a
correctness problem which may lead the workflow to failure. If
a5 should not have that information (for, e.g., privacy reasons)
but it can be leaked, there is a potential problem too. More
generally, design-time analysis of the characteristics of data
and activities in the given workflow can be used to obtain
results that are useful for several tasks, of which we highlight
just a few:

a) Fragmentation: A workflow can be split into several
fragments that can be executed within different organizations.
The assignment of activities to fragments can be done ac-
cording to different criteria. In our example, a healthcare
organization may wish to delegate parts of the workflow to
business partners. Confidentiality requirements may require
that either the medical history or the medication record (or
both) be hidden from some of the partners. That would
mean separating the activities in Fig. 1 into several swim-
lanes corresponding to different organizational domains, and
assigning activities accordingly.

b) Data Compliance: When services are composed into
a business process (such as a1 . . .a5 in our example), organi-
zations need to ensure that the information content used by
a component service is adequate to implement the desired
behavior, and often syntactic compliance with XML message
formats is not enough. For example, the Patient ID (which
may be a national identity card, a driving license, a passport,
etc.) may or may not contain at runtime information enough
to retrieve, e.g., a medical history. Some potential problems
can be detected at design time by tracking data flow between
activities and analyzing which pieces of information are shared
between activities and which are needed by them.

c) Robust Top-Down Development: Business process
modeling can start at a high level, and elaborate components in
a top-down fashion. Some components may contain complex

structured constructs, or be developed into separate, reusable
services. Data flow analysis at the process level can help us
identify required features of inputs and outputs from such com-
ponents. Additional results can be obtained for sub-activities
of a component. For instance, in Fig. 2, which exposes a
possible structure for workflow component a4, it would be
interesting to derive the attributes of criterion c. The process
can be repeatedly applied to the components a41 and a42 of
the sub-workflow.

Fig. 3 depicts our approach for inferring domain-specific
attributes for entities in a workflow which can later be used
by design-time tools. From the users’ perspective, the starting
point is a description of the workflow using an appropriate
formalism (BPMN, in our example), and an input data context
(see Fig. 4 and Section III-A): a list of business domain objects
which are input to the workflow, described using relevant
attributes from the domain. The result is presented as a context
that assigns attributes inferred by the analysis to data items
and activities. This context can then be inspected by a user
or a tool and be used for further analysis of the workflow,
transformation, or other design-time tasks.

The initial context is used to set up a concept lattice
(Sec. III), which is the main vehicle to prepare the input to the
sharing analysis and to interpret its results. The sharing anal-
ysis works on a logic program generated from the translation
of the workflow definition and the initial concept lattice into
Horn clauses and logical variable substitutions, respectively
(Sec. IV). Finally (Sec. V), the abstract substitutions which
result from the sharing analysis are used to produce a result
lattice which in turn is used to generate the final context.

III. FROM CONTEXTS TO CONCEPT LATTICES

We will use FCA [3], [5], a mathematical formalism used to
represent and analyze data using contexts and concept lattices,
to describe properties of the data and activities in the workflow.
Due to space constraints, the reader is kindly referred to the
existing literature for a more in-depth introduction to FCA.

A. Contexts and Concept Lattices

In a given domain, a context is a relationship between
(finite) sets of relevant (user-defined) objects and attributes,
and is usually represented as a table (Fig. 4). If O is a set
of objects and A a set of attributes, the context is a relation
ρ ⊆ O×A. For any object o ∈ O, o′ denotes the set of all
attributes a ∈ A such that oρa. By extension, for any B ⊆ O,
B′ = ∩o∈B o′ is the set of all attributes common to all objects
in B. Conversely, for any D⊆ A, D′ = {o ∈O : D⊆ o′} is the
set of all objects that have all attributes from D.

In FCA, a set of objects B ⊆ O is said to be a concept
if (B′)′ = B′′ = B. If D = B′, it follows that (D′)′ = D′′ = D.
The operator (·)′′ is a closure that, when applied to a subset of
objects, gives the concept that includes these objects. Speaking
intuitively, it ensures that a concept includes all objects that
share the same set of attributes. In particular, (/0)′′ gives
the most general concept that contains all objects, including
possibly those with no known attributes.

� +

a1: Retrieve
medical history

a2: Retrieve
medication record

+

x: Patient ID

©

a4: Select new
medication

a3: Continue last
prescription

¬stable

stable

© a5: Log treatment

y: Medical history

z: Medication record

Fig. 1. An example drug prescription workflow.

�

a41: Run tests to
produce medication

criteria

a42: Search
medication
databases

Result
sufficiently
specific?

no yes

y: Medical history

z: Medication record

c: Criterion

p: Prescription candidate

Fig. 2. Selection of new medication.

In order to make concepts useful for analysis, we need to
organize them into concept lattices. A lattice is a mathemat-
ical structure (L,≤,∨,∧) built around a set L (in our case
containing concepts from a context), a partial order relation
≤, the least upper bound (LUB) operation ∨, and the greatest
lower bound (GLB) operation ∧. For arbitrary x,y ∈ L, the
element x∨ y = z has the property x ≤ z and y ≤ z, but it is
also the least such element, i.e., for any other w ∈ L such that
x ≤ w and y ≤ w, we have z ≤ w. The case for the greatest
lower bound operation ∧ is symmetric. In this paper, we deal
only with finite and complete lattices, where for any arbitrary
non-empty subset of lattice elements the LUB and the GLB
exist in L; such lattices have unique greatest (>) and least (⊥)
elements.

For concept lattices, the ordering relation ≤ between two
concepts B1 and B2 holds iff B1 ⊆ B2, or, equivalently, iff
B′2 ⊆ B′1: a higher concept includes all objects from a lower
(or derived) one; lower concepts are derived from higher ones
by adding attributes. Consequently, the LUB is obtained using
B1∩B2, and the GLB using B1∪B2.

Context lattices are usually represented using a variant
of Hasse diagrams (Fig. 5). Nodes correspond to concepts,
with the top concept visually on the top, and the bottom
concept placed accordingly. The annotations associated with
a concept (using dashed lines) show the attributes introduced
by the concept (besides the derived attributes from the higher
concepts) above the line, and the objects that belong to that
concept, but not to any of its derived concepts, below the line.

Concepts may have one or both parts of the annotation empty;
in the latter case, the annotation is not shown.

Fig. 5 presents the concept lattices for the medical database
contexts from Fig. 4. The most general concepts are shown on
top of the lattices, and the most specific (empty in both cases)
at the bottom.

B. Describing Data with Concept Lattices

The data items that are input to the workflow need to be
mapped to the appropriate objects in the input concept lattice.
In the case of our example (Fig. 1), we would need to map
the Patient ID input data item to either Passport, National ID,
Driving License, or Social Security Card. In our example, each
of those objects maps to a different concept in the lattice, but
in general several objects can map to the same concept.

The prerequisite in order to use concept lattices is to create
an adequate context at a level of abstraction that captures
enough information to represent all relevant concepts and
their attributes. Complex models can always be simplified by
keeping only those attributes that really discriminate between
different concepts. Existing tools (e.g., ConExp, Lattice Miner,
Colibri and others [1]) facilitate the process of eliciting and
exploring knowledge using FCA.

A relevant point is that some data sources may not appear
explicitly as workflow inputs. In Fig. 1, activities a1 and a2
need to access some external source to extract records using
the input Patient ID. The attributes of the retrieved records
depend on properties of these data sources and therefore, they

U
se

r
pe

rs
pe

ct
iv

e
U

nd
er

ly
in

g
te

ch
ni

qu
es

an
d

ar
tif

ac
ts

α1 α2 α3 . . .

i1 ! !

i2 !

i3 ! !
. . .

Input data context

�

Workflow definition

α1 α2 α3 . . .

o1 ! ! !

o2 ! !

o3 ! !
. . .

Resulting context

Input concept lattice Resulting concept lattice

w(X1,X2,A1,Y1,A2,Y2,A3,Z1,A4,Z2):-
A1=f1(X1),
Y1=f1Y1(X1),
A2=f2(X2),
Y2=f2Y2(X2),
A3=f3(Y1,Y2),
...

Horn clause program

...
X1=f(U1,U2),
X2=f(U1),
X3=f,
...

Input substitution

- Abstract interpretation
- Sharing+freeness domain
- CiaoDE / CiaoPP suite

Sharing analysis
[[X1,A1,Y1,A3,Z1],
[A3,Z1,A4,Z2],
[X2,A4,Z2],
[X2,A2,Y2,A3,Z1,A4,Z2]]

Abstract substitution

Fig. 3. Overview of the approach.

need to be mapped to appropriate objects (in this case the
Medical history and the Medication record from Fig. 5(a)).

IV. APPLYING SHARING ANALYSIS

Our application of sharing analysis to elicit new knowledge
about attributes of the workflow entities is based on three
points: (a) representing the control structures of the workflow
in a language amenable to analysis, (b) representing data links
and activities in the workflow as explicit variables, and (c)
representing attributes of these entities as additional hidden
variables which can share with the variables set up in (b). Two
variables share if there is some object which is reachable from
both, maybe following a reference chain. By inferring how
runtime variables can share in the programming language rep-
resentation of the workflow we deduce the runtime attributes
of data items and activities in the workflow.

A. Workflows as Horn Clauses

The sharing analysis tools we will use [7], [6] work on logic
programs, and therefore the workflow under consideration

Symptoms Tests Coverage
Medical history ! !

Medication record ! !

(a) Characteristics of medical databases.

Name Address PIN SSN
Passport ! !

National Id Card ! ! !

Driving License ! !

Social Security Card ! ! !

(b) Types of identity documents.

Fig. 4. Two examples of contexts.

needs to be represented in the form of a logic program [14]: a
series of logical implications which can be operationally un-
derstood as stating which subgoals are needed to accomplish a
given goal. Note that the translation into a logic program does
not need to be operationally equivalent to the initial workflow;
it only needs to represent the data flow and data aliasing
correctly. We translate data flow into parameter passing and
data aliasing into unification of logical variables. Here we
build on [8], where examples of translations from an abstract
notation for workflows into Horn clauses are given. Due to size
constraints we cannot reproduce here the description of the
translation. Instead, we kindly direct the reader to [8] for more
details. A key ingredient of the translation is representing, for
each activity in the workflow, the sets of data items read and
written. This vantage point in workflow modeling is shared
with the existing approaches to the analysis of soundness
of Workflow Nets with Data (WFD nets) [18], as well as
with the approaches to verifying validity of business process
specifications using data-flow matrices [19]. However, unlike
those higher-level conceptual views that are mainly concerned
with various aspects of business process management, in our
case we aim at inferring properties on a more technical level
that takes into account details of (possibly complex and nested)
control flow and data operations. For that purpose, WFD nets
or UML activity diagrams are not sufficiently informative,
while Horn clauses provide an adequate computation paradigm
that has been extensively studied.

As an illustration, we give here a commented translation
of our workflow written in BPMN (Figs. 1 and 2) into Horn
clauses. The translation for this case is given in Fig. 6 using
Prolog syntax, and will be explained in the following text.

Lines 1-8 are a Horn clause that defines the predicate w for
the workflow with a list of comma-separated goals in the body
(lines 2-8) following the definition symbol “:-”. Character “%”

introduces a comment line and helps relate parts of the body
with activities from Fig. 1. Arguments to w are listed inside
parentheses in line 1; following the Prolog syntax convention,
variable names start with an uppercase letter. These variables
correspond to the names of activities and data items from
the BPMN diagrams, including those data sources which are
not explicit in the diagram: in this case the databases from
which the medical history and medical record are retrieved
from. These databases have to be characterized in the result
lattice, and in order to do so they are assigned variables D and
E. To expose results for the sub-workflow from Fig. 2, the
arguments to w include all activities and data items from the
sub-workflow.

Simple activities (including external service invocation) are
translated as goals of the shape α = ϕ(Γ), where α stands for
an activity, Γ is a sequence of all data items used as inputs
by the activity, and ϕ is an uninterpreted function symbol
(whose particular name is not relevant for sharing analysis,
and has been chosen to recall the activity name). This is
followed by goals of the same shape where the left-hand side
of “=” stands for data item produced by the activity, and the
Γ part on the right hand side includes data items used in the
computation of the data item. For instance, goals A1=f1(X,D)
and Y=f1 Y(X,D) in lines 2 and 3 represent the fact that a1
uses data items x and d as inputs, to produce data item y. The
only exception in w is the goal for sub-workflow a4 (line 7)
to be discussed below.

The ordering of activities in the body of a clause must
respect data dependencies, in the sense that data items should
appear as arguments in a goal only if they are produced by a
preceding activity. The ordering also needs to respect control
dependencies arising from explicit sequences and joins (AND
and OR). Otherwise, as in the AND-split case, the relative
order of activities as goals in the body of a Horn clause is

Symptoms

Tests
Medical history

Coverage
Medication record

(a) Concept lattice for medical databases.

Name

PIN
Passport

Address
Driving License

National ID

SSN
Soc. Sec. Card

(b) Concept lattice for identity documents.

Fig. 5. Concept lattices for contexts from Fig. 4.

1 w(X,D,E,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5):-
A1=f1(X,D), % a_1

3 Y=f1_Y(X,D),
A2=f2(X,E), % a_2

5 Z=f2_Z(X,E),
A3=f3(Y,Z), % a_3

7 a_4(Y,Z,A4,A41,C,A42,P), % a_4
A5=f5(X). % a_5

9

a_4(Y,Z,A4,A41,C,A42,P):-
11 w2(Y,Z,A41,C2,A42,P2),

A4=f(P2),
13 a_4x(Y,Z,C2,P2,C,P,A4,A41,A42).

15 a_4x(_,_,C,P,C,P,_,_,_).
a_4x(X,Z,_,_,C,P,A4,A41,A42):-

17 a_4(X,Z,A4,A41,C,A42,P).

19 w2(Y,Z,A41,C,A42,P):-
A41=f41(Y,Z), % a_41

21 C=f41_C(Y),
A42=f42(C), % a_42

23 P=f42_P(C).

Fig. 6. Horn clause program encoding for the medication prescription
workflow.

not significant from the sharing analysis point of view [8],
and one such ordering can always be found, unless there is a
race condition between potentially parallelized activities that
try to read/write the same data item. This is not the case in our
example and the possibility of this happening can be statically
detected from the structure of the workflow. Also note that we
include both branches of the XOR-split, since the data in a5
can be affected by either one of them. The workflow for the
component activity a4 is effectively a repeat-until loop, and
its body (activities a41 and a42) is translated in lines 19-23 in
the same manner as w.

The goal for a4 in the definition of w (line 7) is a call
to a predicate a4 defined in lines 10-13. Its loop structure is
translated by introducing auxiliary clauses in lines 15-17 that
represent the case of loop exit (line 15) and the loop iteration
by means of a recursive call. The call to the body of the loop
(w2 in line 11) is translated before the call to the auxiliary
predicate a 4x.

B. Input Substitutions

An input substitution sets up the initial sharing (and there-
fore which attributes are shared) between the input top-level
variables. It is a mapping from the variables that represent the
data items given as input to the workflow to subsets of the
“hidden” variables which represent attributes.

Variable sharing can be represented as a lattice where nodes
represent variable sets which share a unique, hidden variable.
The structure of the sharing lattice can be directly derived from
the input concept lattice by assigning a hidden variable to each
attribute in the input context. For clarity, hidden variables are
named after the corresponding attributes. Next, the top-level
variables are mapped to objects from the input context, and,

1 init1(X,D,E):-
X=[Name,PIN],

3 D=[Symptoms,Tests],
E=[Symptoms,Coverage].

5

init2(X,D,E):-
7 X=[Name,Address,SSN],

D=[Symptoms,Tests],
9 E=[Symptoms,Coverage].

Fig. 7. Initial substitution for the two cases.

therefore, to subsets of the hidden input variables (which are
nodes in the sharing lattice). The ordering av b between top-
level variables a and b in the sharing lattice holds iff A ⊆ B,
where A and B are the corresponding subsets of the associated
hidden input variables. It directly follows that v in the sharing
lattice is the exact opposite of ≤ in the concept lattice.

In the text that follows, we will use two cases for input
substitutions:

Case 1 Patient ID (item x) maps to the Passport object (has
the attributes Name and PIN).

Case 2 Patient ID (item x) maps to the Social Security Card
object (has the attributes Name, Address and SSN).

In both cases, the data source d for medical histories
maps to the Medical history DB object (attributes Symptoms
and Tests), and the data source e for medication records
maps to the Medication record DB (attributes Symptoms and
Coverage).

The input substitution is easy to produce: the input variables
are made equal to (i.e., made to share with) terms that contain
exactly the associated hidden variables from the input sharing
lattice (Fig. 7). The actual shape of the terms is not significant,
and therefore we just use lists of variables associated to the
attributes.

C. Obtaining Sharing Analysis Results

The sharing analysis is applied to the program resulting
from the translation of the workflow (Fig. 6) and the code
that sets up the initial substitutions (Fig. 7). The underlying
theoretical framework we use is abstract interpretation [2],
which interprets a program by mapping concrete, possibly
infinite sets of values onto (usually finite) abstract domains
and reinterprets the operations of the language in a way that
respects the original semantics of the language. The abstract
approximations of the concrete behavior are safe in the sense
that properties proved in the abstract domain necessarily hold
in the concrete case. However, its precision depends in general
on the problem and on the choice of the abstract domain.

The analysis is run using CiaoPP [7], [6], a tool for
the analysis and transformation of logic programs featuring,
among others, a powerful sharing analysis. While the sharing
analysis we used is, in pathological cases, exponential in the
number of variables in a clause, in our experience it exhibits

1 [[X,D,E,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5],
2 [X,D,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5],
3 [X,E,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5],
4 [X,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5],
5 [D,E,A1,Y,A2,Z,A3,A4,A41,C,A42,P],
6 [D,A1,Y,A3,A4,A41,C,A42,P],
7 [E,A2,Z,A3,A41]]

(a) The resulting substitution

Top-level variables Recovered hidden variables
X, A5 {u1, u2, u3, u4}

E {u1, u3, u5, u7}
D {u1, u2, u5, u6}

A2, Z {u1, u2, u3, u4, u5, u7}
A1, Y, A42, C, P {u1, u2, u3, u4, u5, u6}

A3, A4, A41 {u1, u2, u3, u4, u5, u6, u7}
(b) Points in the resulting sharing lattice.

Fig. 8. Abstract substitution and the recovered hidden variables.

u1

u3

u2u5

u4

x, a5

u7
e u6

d

a2 , z
a1 , y, p,

a42 , c

a3 , a4 , a41

Fig. 9. The resulting concept lattice.

a reasonable speed in practice.1

The output of the analysis is an abstract substitution
(Fig. 8(a)), which is common to both cases of input data
mapping. The difference will arise in the interpretation, as
described in the next section. Each row (1-7) contains a subset
of the top-level variables (representing items and activities in
the workflow) that share at least one unique hidden variable.
The minimal set of hidden variables which can explain that
abstract substitution can be easily recovered [8]: for each line
i = 1 . . .7 in Fig. 8(a), we introduce a new output hidden
variable ui (arbitrarily but uniquely named), and we assign to
each top-level variable all hidden variables corresponding to
the rows in which it appears. The result is shown in Fig. 8(b),
where each row shows the top-level variables associated to a
set of the output hidden variables.

V. FROM SHARING BACK TO CONCEPTS

The mapping of intermediate variables (those which are
not initial top-level variables) to subsets of the hidden output
variables carries the information on the relationship between
these variables that the sharing analysis inferred. However, the

1The results presented here were obtained in 1.192ms using CiaoPP running
on an Apple MacBook computer with Intel Core Duo processor, 2GB of RAM
and MacOS X 10.6.5.

Item Name PIN Symp. Tests Cover.

x ! !

d ! !

e ! !

a2 , z ! ! ! !

a1 , y, p, a42 , c ! ! ! !

a3 , a4 , a41 ! ! ! ! !

a5 ! !

Item Name Address SSN Symp. Tests Cover.

x ! ! !

d ! !

e ! !

a2 , z ! ! ! ! !

a1 , y, p, a42 , c ! ! ! ! !

a3 , a4 , a41 ! ! ! ! ! !

a5 ! ! !

Fig. 10. The resulting context for the two analysis cases.

meaning of these output hidden variables has to be interpreted
in terms of the original attributes — starting with those of the
input data items. The sharing analysis of course preserves the
original relationship among the input top-level variables [8]:
if two variables a and b were associated in the input sharing
lattice to subsets of attributes A and B, respectively, such that
A⊆ B, then for the corresponding subsets A1 and B1 to which
a and b map in the resulting sharing lattice, it is the case that
A1 ⊆ B1.

The next step is to construct a result concept lattice (Fig. 9)
based on the sharing analysis results where data items and
activities are considered as objects and the hidden variables
in the result are considered as a new set of attributes. The
activities are highlighted and framed, and the input data items
from the input concept lattice are set in boldface. In this lattice
we first assign the original attributes to the input data items,
and then pass them down to all the lower-level concepts. We
then obtain the resulting contexts (Fig. 10) for the two initial
cases aforementioned. Note that only the attributes that are
associated with some input data item may appear.

It should be noted that the construction of the resulting
concept lattice can be done in polynomial time with respect
to the number of objects (data items, activities) and attributes
[13]. Different algorithms for construction of concept lattices
differ in performance over different types of sparse contexts.

We want to note that in the most general case sharing
analysis is undecidable, and the results of the analyzer can
be a safe over-approximation which can indicate sharing
between variables when it could not be proved that there is
definitely no sharing. However, when it indicates no sharing,
then this is definitely the case. The assignment of attributes to
the workflow elements should be interpreted accordingly: the
absence of an attribute is always certain, but its presence is
not guaranteed.

We can now go back to the application cases mentioned in
Section II and illustrate how the information in the contexts
in Fig. 10 can be applied.

d) Fragmentation: The organization responsible for
medicine prescription may want to split the workflow among
several partners, based on what kind of information they are
allowed to handle. The basis for fragmentation is the resulting
contexts from Fig. 10. An example of fragmentation is shown
in Fig. 11. The swim lanes correspond to the health organi-
zation and its partners. Registry and Archive cannot handle
Symptoms, Tests, or Coverage data, and is therefore assigned
activity a5. Medical examiners can at most see Symptoms

and Tests, and are thus assigned the activities a1 and a42.
Medication providers can only take care of Symptoms and
Coverage, and are assigned activity a2. All other activities
(a3, a4 and a41) need full access and remain centrally handled
by the health organization.

e) Data Compliance: It may be known that a particular
kind of information identifying a patient, such as his/her
SSN, is required for retrieving the patient’s medication record
(activity a2), and that the patient’s address is required for
sending the results of tests (activity a42). It can therefore be
detected at design time that unless the patient is identified with
a Social Security Card, these activities will fail. The designer
may either restrict the use of the workflow by requiring the
card, or select implementations of the mentioned activities
with weaker success preconditions.

f) Robust Top-Down Development: Based on the char-
acterization of the input data items, designers can derive the
attributes of the data items in nested workflows. For instance,
the attributes of the medicine search criterion (c) and the
prescription candidate (p) are inferred in Fig. 10 in a safe
way.

VI. CONCLUSIONS

We have shown how an FCA-based characterization of input
data to a workflow can be enriched to include intermediate
data items and internal activities. These are annotated with
attributes which are inferred from emergent properties of
the workflow which stem from the workflow structure and
relationships between input data. We have shown how this
task can be automated by translating (a) an initial FCA into
a lattice from which sharing conditions are derived and (b)
the workflow structure into a logic program. Then, (a) and (b)
are subjected to a sharing analysis, and the results are mapped
back to a resulting lattice and that to a resulting context, whose
information can be used as a starting point for a number
of other tasks. We have illustrated this methodology with a
worked example.

As future work, we plan to address the development of
automatic translations from common business process spec-
ification languages (BPEL, XPDL, YAWL, etc.) into logic
programs amenable to sharing analysis in order to further test
and refine the techniques proposed herein. Besides, we plan to
explore other applications of the concept of sharing to services,
aiming not only at (local) data sharing between activities,
but also looking towards the representation of stateful service
conversations and quality aspects of services.

Main medical workflow
H

ea
lth

O
rg

an
iz

at
io

n
M

ed
ic

al
E

xa
m

in
er

s
M

ed
ic

at
io

n
Pr

ov
id

er
R

eg
is

tr
y

&
A

rc
hi

ve
�

+

a1: Retrieve
medical history

a2: Retrieve
medication record

+ ©

a4: Select new
medication

a3: Continue last
prescription

¬stable

stable

©

a5: Log treatment

�

a41: Run tests to
produce medication

criteria

a42: Search
medication
databases

Result
sufficiently
specific?

no yes

Workflow for service a4.

Fig. 11. An example fragmentation for the drug prescription workflow.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s 7th Framework Programme
under the NoE S-Cube (Grant Agreement n◦ 215483). The
authors were also partially supported by Spanish MEC project
2008-05624/TIN DOVES and CM project P2009/TIC/1465
(PROMETIDOS).

REFERENCES

[1] Claudio Carpineto and Giovanni Romano. Concept Data Analysis:
Theory and Applications. Wiley, 2004.

[2] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints. In ACM Symposium on Principles of Programming
Languages (POPL’77). ACM Press, 1977.

[3] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 2nd ed. edition, 2002.

[4] Walid Fdhila, Ustun Yildiz, and Claude Godart. A Flexible Approach
for Automatic Process Decentralization Using Dependency Tables. In
ICWS, pages 847–855, 2009.

[5] Bernhard Ganter, Gerd Stumme, and Rudolf Wille, editors. Formal Con-
cept Analysis, Foundations and Applications, volume 3626 of Lecture
Notes in Computer Science. Springer, 2005.

[6] M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garcı́a. Integrated
Program Debugging, Verification, and Optimization Using Abstract
Interpretation (and The Ciao System Preprocessor). Science of Computer
Programming, 58(1–2), 2005.

[7] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F.
Morales, and G. Puebla. An Overview of Ciao and its Design
Philosophy. Theory and Practice of Logic Programming, 2011.
http://arxiv.org/abs/1102.5497.

[8] Dragan Ivanović, Manuel Carro, and Manuel Hermenegildo. Automatic
Fragment Identification in Workflows Based on Sharing Analysis. In
Mathias Weske, Jian Yang, Paul Maglio, and Marcelo Fantinato, editors,
Service-Oriented Computing – ICSOC 2010, number 6470 in LNCS.
Springer Verlag, 2010.

[9] D. Jordan and et. al. Web Services Business Process Execution Language
Version 2.0. Technical report, IBM, Microsoft, et. al, 2007.

[10] R. Khalaf and F. Leymann. E Role-based Decomposition of Business
Processes using BPEL. In IEEE International Conference on Web
Services (ICWS’06), 2006.

[11] Rania Khalaf. Note on Syntactic Details of Split BPEL-D Business
Processes. Technical Report 2007/2, IAAS, U. Stuttgart, July 2007.

[12] Oliver Kopp, Rania Khalaf, and Frank Leymann. Deriving Explicit Data
Links in WS-BPEL Processes. In International Conference on Services
Computing (SCC), 2008.

[13] Sergei O. Kuznetsov and Sergei A. Obiedkov. Comparing performance
of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell.,
14(2-3):189–216, 2002.

[14] J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd Ext. Ed.,
1987.

[15] Daniel Martin, Daniel Wutke, and Frank Leymann. A Novel Approach
to Decentralized Workflow Enactment. In EDOC ’08: Proceedings
of the 2008 12th International IEEE Enterprise Distributed Object
Computing Conference, pages 127–136, Washington, DC, USA, 2008.
IEEE Computer Society.

[16] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer, 2005. Second Ed.

[17] Object Management Group. Business Process Modeling Notation
(BPMN), Version 1.2, January 2009.

[18] Natalia Sidorova, Christian Stahl, and Nikola Trcka. Workflow sound-
ness revisited: Checking correctness in the presence of data while staying
conceptual. In CAiSE, pages 530–544, 2010.

[19] Sherry X. Sun, J. Leon Zhao, Jay F. Nunamaker, and Olivia R. Liu
Sheng. Formulating the data-flow perspective for business process
management. Information Systems Research, 17(4):374–391, 2006.

[20] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245–275, June 2005.

[21] Wil van der Aalst and Maja Pesic. DecSerFlow: Towards a Truly
Declarative Service Flow Language. In The Role of Business Processes
in Service Oriented Architectures, number 06291 in Dagstuhl Seminar
Proceedings, 2006.

[22] Ping Yang, Shiyong Lu, Mikhail I. Gofman, and Zijiang Yang. In-
formation flow analysis of scientific workflows. J. Comput. Syst. Sci.,
76(6):390–402, 2010.

[23] Ustun Yildiz and Claude Godart. Information Flow Control with
Decentralized Service Compositions. In ICWS, pages 9–17, 2007.

