
Building Dynamic Models of Service Compositions
With Simulation of Provision Resources ?

Dragan Ivanović1, Martin Treiber2, Manuel Carro1, and Schahram Dustdar2

1 Facultad de Informática, Universidad Politécnica de Madrid
idragan@clip.dia.fi.upm.es, mcarro@fi.upm.es

2 Distributed Systems Group, Technical University of Vienna
{treiber,dustdar}@infosys.tuwien.ac.at

Abstract. Efficient and competitive provision of service compositions depends
both on the composition structure, and on planning and management of compu-
tational resources necessary for provision. Resource constraints on the service
provider side have impact on the provision of composite services and can cause
violations of predefined SLA criteria. We propose a methodology for modeling
dynamic behavior of provider-side orchestration provision systems, based on the
structure of orchestrations that are provided, their interaction, statistically esti-
mated run-time parameters (such as running time) based on log traces, and the
model of resources necessary for orchestration provision. We illustrate the ap-
plication of our proposed methodology on a non-trivial real world example, and
validate the approach using a simulation experiment.

Keywords: Service Compositions, Business Process Modeling, Quality of Ser-
vice, Simulation

1 Introduction

Service compositions allow organizations to develop complex, cross-organizational busi-
ness processes by reusing existing services, and are thus attractive for service providers
and service consumers alike. Service compositions have been studied thoroughly over
recent years and different models to define service compositions have emerged [1]. Ap-
proaches like BPEL [2] or YAWL [3] define service compositions in a top down manner
using specific notation. At the same time, abstract service composition models include
different strands of Petri Nets [4] and process calculi [5].

Key to business usability of service compositions is conformance of their Quality
of Service (QoS) attributes with Service-Level Agreements (SLA). Both are intimately
related to monitoring and adaptation capabilities [6]. From the computational point of
view, resource utilization management, especially the ability to scale computational
resources to the expected level of demand, may have drastic impact on response time
and failure rates.
? The research leading to these results has received funding from the European Community

Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).
Dragan Ivanović and Manuel Carro were also partially supported by Spanish MEC project
2008-05624/TIN DOVES and CM project P2009/TIC/1465 (PROMETIDOS).

In this paper we take the approach of modeling service compositions with dynamic,
continuous-time models that are usually found in applications of system dynamics [7].
We extend the previous work on applying system dynamics to (atomic) service pro-
vision management [8], by deriving the quantitative indicators for a service provision
chain (number of executing instances, invocation and failure rates) from the structure
of a particular composition being provided, as well as from a model of computational
resources involved in provision. Usefulness of the system dynamics approach for gen-
erating simulators of different (and potentially complex and “non-standard”) what-if
scenarios that reflect interesting situations in provider’s environment, has been already
studied [9]. Such simulators can be used as a basis for developing and validating provi-
sion management policies for service-oriented systems.

We propose an approach that utilizes a common (composition-independent) service
provision framework that divides the modeling concern into the composition and the
computational resource parts. The former has been studied in several interesting, but
specific, cases [9, 10], and some examples of a more systematic approaches to building
such dynamic composition models based on QoS constraints have been demonstrated
[11]. Our intention is to propose a generic method of converting descriptions of orches-
trations in the form of a place-transition networks (PT-nets) [12] into dynamic models,
in a manner that ensures composability of orchestrations within choreographies. We
believe that such automatic dynamic model generation is a prerequisite for practical
application.

2 Motivating Example

To illustrate the challenges of our proposed approach, consider the following service
composition example. An SME offers a data clearance service, which is the process
of filtering arbitrary customer data (e.g., consumer or company addresses). The data
cleansing removes duplicates and, if necessary, corrects data using the SME’s inter-
nal (consumer/company) database. An overview of the service composition is given in
Figure 1.

In the first step (Format Service), the data set is transformed into a format that is
accepted by the services that are used for data cleansing. This is supported by a set of
auxiliary tools, like spreadsheets or text editors which allow users to check the content
and to apply modifications to the content. Examples include the rearrangement of data
columns or the deletion of columns. In the second step, a service (Data Checker Service)
is used to determine whether a data record represents consumer data or company data.
Afterwards, a Search Service is used to search the company’s database for matching
data. If a data record can be found, the customer data record is marked with a unique
numeric identifier and the result is stored using a Storage Service. If no matching datum
is found, the data record is used to create a new entry in the SME database with an
unique identifier (Add Service). In the case of multiple hits, the data is checked again
(Check Service) using additional resources like online databases to look for additional
data to confirm the identity of a data record and either to create a new entry in the
SME database or to assign an unique identifier manually. These activities are controlled
by employees who supervise the search service. If the observed quality of the search

Format
Service

Check Service

Calibration
Service

Data Checker
Service

Storage
Service Add Service

Search
Service

HPS Machine
Service

hit no hit

multiple
hits

no hit

hit

condition Service invoke

Logging
Service

Loop

Parallel Execution

precision not ok

Service Service

Fig. 1. Overview of data cleansing process

pin

A

Formatter service

p1

AND-split

p2 p3

C Search Service

p4 E

Check Service
w4mh p5

F

Calibration Service

w5p

w5nhp6
w4nhw4h

G Add Service

w5h

p7

AND-join (J)

BLog Service

p8

p9

H

Storage Service

pout

Fig. 2. A PT-net representation of workflow
from Fig. 1

result is not satisfying (e.g., low precision of the search result), a re-calibration of the
search service is done manually and the re-calibrated Service Service is invoked again.
In parallel, a Logging Service is executed to log service invocations (execution times
and service precision).

Figure 2 shows a representation of the cleansing process workflow from Figure 1 in
the shape of a PT-net. Services from the workflow are marked as transitions (A . . .H),
and additional transitions are introduced for the AND-split/join. Places represent the
arrival of an input message (pin), end of the process (pout), and activity starting/ending.
The places that represent branches to mutually exclusive activities (p4 and p5) have
outgoing branches annotated with non-negative weight factors that add up to 1; e.g.,
the branches w4h, w4nh and w4mh of p4, which correspond to the single hit, no hits and
multiple hits outcomes of the search service (C), respectively.

As indicated by the example, the actual execution time of the service composition
depends on various factors, like the execution time of the human-provided services.
Based on these observations, we can summarize the challenges of the working example
as follows:

– Unpredictable content. The content of the customer data varies in terms of data
structure, data size, and quality. For instance, there might be missing and/or wrong
parts of addresses or wrong names and misplaced column content which can cause
extra efforts.

– Unpredictable manual intervention. Depending on the data size and the data quality
the precision of the search result differs. This requires manual calibration of search
profiles during the execution of the task.

Variable

Activity Var

net rate
activity id

Rate Var

place id
is parameter?

Quantity

name
value

Aggregation

aggregate op

*

2..*
OCT Model

process def

1 *

CCT Model

composition def

*

1..*

Connection

1

*
* 1

* 1

Fig. 3. Conceptual view of composition CT model.

– Customer specific details regarding the provided and expected data format need
also to be considered. For instance a customer provides excel spreadsheets, while
another costumer favors ASCII files with fixed length columns and another provides
a XML structure.

– Delegation. Employees might delegate parts of their activities to other employees
due to time constraints.

All these challenges arise because of resource constraints (e.g., number of employ-
ees that work on a given task) and need to be regarded when service compositions are
modeled. The provider may be interested not only in maximal levels of required re-
sources, but may also ask, given an input request scenario, when the peak loads can be
expected to occur, how long it takes for resource loads to stabilize after a change in
input regime, and what resource up/down scaling policies are reasonable.

3 Conceptual Dynamic Modeling Framework

3.1 Conceptual Composition Model

We start with a conceptual model for dynamic representation of service compositions
(orchestrations and choreographies). The goal of these models is to represent how the
numbers of executing activites and rates of activity-to-activity transitions vary over
time. Figure 3 presents a conceptual famework for the continuous-time (CT) composi-
tion modeling. The fundamental building block of an orchestration CT (OCT) model is
a variable that has a time-varying value. Compared to a PT-net model, activity variables
are attached to transitions inside, and their value is the expected number of executing
instances of a given activity at each point in time. In our example, each service in the
data cleansing process would be represented with an activity variable, that shows the
expected number of concurrently executing instances of the service at any moment.

Rate variables correspond to places, i.e., the events, in the workflow: arrival of
input messages, dispatching of replies, or branching from one activity to another. They

R

Incoming Requests
i

E

Rejects

e = R/Te

Te

S

Successful finishespout

F

Failures
pfail

OCT Model
Resource

Model

Tin

β
pin = β ·R/Tin

S

Successful finishespout

F

Failures
pfail

Fig. 4. Simulation setting for the CCT model.

represent the number of the corresponding events per unit of time. Rates that come
from outside the OCT are called parameters. The most common example is the input
message rate (number of incoming messages per unit of time), and the reply rate from
the model of an invoked service. In our example, besides the input parameter, the rate
variables would include any service-to-service transitions, branches, parallel split-join
points, and the resulting finishing rate.

Other than variables, quantities in an OCT model include aggregations, which use
some aggregation operator (e.g. sum, minimum, maximum) to combine values of two
or more quantities. Examples include: the sum of activity variables for a given set of
activity types, the number of invocations of a specific partner service, and the sum of the
reply and failure rates. We could, for instance, create an aggregate quantity that sums
all activity variables for services in the data cleansing process that are hosted by the
same provider. Such aggregate quantity could be used as an indication of the total load
on the provider’s infrastructure.

The OCT conceptual model can also be applied as a wrapper for services with un-
known structure, or those that are not available for analysis. Such “wrapper OCT mod-
els” consist of a single activity variable, which stands for the entire service execution,
with the input rate (the parameter), the reply rate, and the failure rate.

A composition CT (CCT) model is an extension of the concept of OCT model, and
puts together one or more sub-models, which are connected by pairing their respective
input and reply rates. For instance, when an orchestration A invokes an orchestration
B, at least two connections are required. The first one connects A’s send rate to B’s
input rate, and the second connects B’s reply rate to the corresponding A’s receive rate.
Additionally, the B’s failure rate may be connected to an appropriate slot in A.

A CCT model includes all quantities from the underlying sub-models, but only the
unconnected parameters from the sub-models are qualified as parameters of the CCT
model. In the rest of the paper, we implicitly assume that the sub-models used in simu-
lations are connected in such a way that the resulting model has a single parameter, its
input message rate.

Stock (S)
Inflow (fi) Outflow (fo)

Initial Stock (S0)

S|t=0 = S0,
d
dt S = fi− fo ⇔ S = S0 +

∫ t
0(fi− fo)dt

Fig. 5. Stocks, flows and their meaning.

3.2 Dynamic Framework Provision Model

Figure 4 shows a view of the framework dynamic provision model that embeds a OCT
model and a resource model, using the stock/flow notation [7]. As described in Figure 5,
stock/flow diagrams provide a visual notation that corresponds to a part of the system of
ordinary differential equations. Rates are represented as flows, while stocks correspond
to integrals over the difference between inflows and outflows. Auxiliary variables (cir-
cles) represent parameters or intermediate calculations in the model, and arrows depict
influences.

The framework dynamic provision model is driven by the input rate (or input regime)
i, that models different situations of interest in the environment. Note that this dynamic
model (as well as other system dynamic models) is usually not solved analytically,
but simulated using numeric integration techniques. This allows experimentation with
arbitrary input regime scenarios (i.e., without limiting to the “standard” statistical dis-
tributions at the entry). The input regime i fills the stock of received requests R. Some
of those requests that are not timely served are rejected (at rate e filling the stock E
of rejects). Others, after a period of preparation (modeled by the time constant Tin) are
fed by the input rate pin into the OCT model. There they execute, and end up either as
a successfully finished instance (rate pout filling stock S) or as a failed execution (rate
pfail filling stock F).

The relation between the OCT component and the resource model component of
the framework model is twofold. First, quantities from the OCT model are used by the
resource model to determine the resource load at any moment in time. For instance,
sum of all activity variables corresponding to the services in the workflow hosted by
the same provider may represent the sum of all threads that need to be available at any
moment of time for the orchestration to run. The resource model is, of course, a model
of particular resource management policies. Some models can be as simple as to assume
no resource limits, other can have “firm” limits, and yet others may include mechanisms
for scaling the resources up or down, based on observed trends in the input regime. We
will present such a scalable model in Section 4.5; until then, we will tacitly assume the
infinite resource case.

The second link is the blocking factor β that regulates the composition input rate pin.
β stands for the probability that the system is able to start executing a prepared process
instance. In an infinite resource case, β = 1, but in a more realistic case, as the system
load increases beyond the optimal carrying capacity of the provider’s infrastructure, the

Workflow Engine

ODE
composition

model

BPEL

Service Composition Petri Net
Model

Service

Service

Service
Monitoring Data

Service Execution

Transformation

Fig. 6. Overview of the approach.

system becomes less able to accept new requests, and β may decrease down to a point
of complete denial of service (β = 0).

The framework model can be used to produce some basic metrics for the provision
system, relative to the input regime i. Assuming that R+ is the “inflow” part of R, i.e.
the sole result of accumulating requests from i (without the effect of e and pin), then if
R+ > 0, we may obtain:

– Percentage of all failures and rejects: (E +F)/R+;
– Percentage of all finished orchestrations: (S+F)/R+;
– Percentage of all successful finishes: S/R+.

4 Automatic Derivation of OCT Models

The derivation of an OCT model for an orchestration follows a series of steps as shown
in Figure 6. The overall process starts with the generation of a PT-net model from e.g.,
an executable BPEL process specification. During the process execution, activity timing
and branching probability information is collected, and used to compound (calibrate)
the Petri Net model. In the final step, the calibrated Petri Net model is translated into a
model based on ordinary differential equations (ODE), whose elements are OCT rates
and activity variables.

4.1 Elements of the Petri Net Model

Petri Nets are a formalism frequently used to represent workflows and reason about
them [12]. Many standard workflow patterns can be naturally expressed using Petri
Nets [13], and there exist numerous tools that allow automatic translation and analysis
of service composition languages, such as WS-BPEL [14], and YAWL [3], into a Petri
Net representation. Additionally, Petri Net process models can be (partially) discovered
from (incomplete) execution log traces. Among many different variations of Petri Nets,
we start with simple PT-nets (place-transition networks).

A PT-net is a tuple 〈P,M,R〉, where P and M are finite non-empty sets of places
and transitions, respectively, and R ⊆ (P×M)∪ (M×P) is a relation that represents

edges from places to transitions and from transitions to places. For any place p ∈ P,
we denote the set of input transitions for p as •p = {m ∈ M|(m, p) ∈ R}, and the set
of output transitions as p• = {m ∈ M|(p,m) ∈ R}. The sets •m and m• of input and
output places, respectively, for any transition m ∈M, are defined analogously. For the
derivation of an ODE model from the given PT-net, we require that | •m| > 0 for each
m ∈M. A marking s : P→ N assigns to each place p ∈ P a non-negative integer s(p),
known as the number of tokens. We say that p is marked (under s) if s(p)> 0.

A marked place p ∈ P enables exactly one of its output transitions among p•. For a
transition m to fire, all places in •m must be marked. When firing, m consumes a token
from each p ∈ •m, and when m finishes, it sends a token into each p ∈ m•. In a typical
composition setting, tokens are used to describe orchestration instances, transitions are
used to model activities, which may take some time to complete, and places typically
represent entry/exit points or pre/post conditions for execution of activities.

4.2 Elements of the ODE Orchestration Model

In a discrete time model of an orchestration provision system, at any moment of time,
each running instance of an orchestration has its own marking, and the superposition
of these markings gives the aggregate view of the provision system. The aggregate
number of tokens p(ti) in a place p ∈ P between time steps ti and ti+1 remains stable
until ti+1 = ti + ∆ ti, where ∆ ti is a discrete time increment, implying instantaneous
transitions. In real execution environments, however, activities (transitions) use some
definite (sometimes long) amount of time to execute, while tokens stay in places for
a very short period of time which is needed by the execution engine to start the next
activity.

To build an ODE model based on a PT-net, we consider an idealized execution en-
vironment, where the time step ∆ ti becomes infinitely small and turns into the time
differential dt. Consequently, we can no longer assume that tokens stay in places for
definite periods of time, but rather presume they are immediately passed to the destina-
tion activities. Therefore, in the CT case, we associate a place p ∈ P with the rate p(t)
of tokens passing through p, measured in instances per unit of time.

On the other hand, activities are fed by tokens emitted from places at their corre-
sponding rates. For activity m ∈ M, we denote the aggregate number of its currently
executing instances at time t with m(t).

In the CT setting, we operate on probabilistic expectations of both rates and activi-
ties (transitions). When p has more than one outgoing transition, we use a non-negative
real number wpm to denote the expected fraction of p(t) that is passed to m ∈ p•, such
that ∑m∈p•wpm = 1.

Also, we use exponential decay to model the expected number of executing activity
instances. With m(t) we associate a non-negative average execution time Tm. When
Tm = 0, transition is immediate, and m(t) always remains empty. When Tm > 0, we
take the usual convenience assumption in dynamic modeling that the running time of
individual instances of m obeys Poisson distribution with the average Tm.

The weight factors wpm and the average execution times Tm are assumed to be ob-
tained from execution logs, i.e. the statistical information from previous executions of
the orchestrations.

· · ·

m

om

mp(t): a new stock ∀p ∈ •m
qt = argminp∈•m{mp(t)}
m(t) = mqt (t)
d
dt mp(t) = p(t)wpm−om(t) , ∀p ∈ •m

om(t) =

{
m(t)/Tm Tm > 0
qt(t)wqt m Tm = 0

Fig. 7. ODE scheme for a transition.

· · ·

p p(t) = ∑m∈•p{om(t)}

Fig. 8. ODE scheme for a place.

Figure 7 shows a general ODE scheme for a transition m ∈ M with one or more
input places. With single input place, the transition continuously accumulates tokens
from the input place, and discharges them either instantaneously (Tm = 0) or gradually
(Tm > 0) through om(t).

When a transition has more than one input place, its execution is driven by the
smallest number of accumulated tokens. At time t, qt ∈ •m denotes the the place from
which the smallest number of tokens has been accumulated. Because a transition needs
to collect a token from all of its input places to fire, the smallest token accumulation
mqt (t) dictates m(t).

When the average execution time Tm > 0, the outflow om(t) = m(t)/Tm corresponds
to exponential decay. When Tm = 0, the transition is instantaneous, i.e. m(t) = 0, which
means that outflow has to balance inflow qt(t)wqt m from qt , therefore keeping mqt (t) at
zero.

Figure 8 shows a general ODE scheme for a place p ∈ P, which is simply a sum
of outflows from incoming transitions, assuming that •p is non-empty. Places with an
empty set of incoming transitions must be treated as exogenous factors.

4.3 An Example ODE Model

To illustrate the approach to construction of the ODE model, we look at the PT-net
representation of our working example, shown in Figure 2. The PT-net model has the
starting place pin and the final place pout. Transitions that correspond to invocations of
partner services are marked with letters A..H, and we assume that the corresponding
average execution times TA..TH are non-zero. Other transitions are assumed to be in-
stantaneous, and with the exception of the AND-join transition (marked J), they simply
propagate their inflow. Places p4 and p5 are decision nodes, and their outgoing links are
annotated with weight factors corresponding to branch probabilities. With reference to

d
dt

A(t) = pin(t)− p1(t) oF (t) = F(t)/TF

p1(t) = A(t)/TA p6(t) = p4(t)w4nh+ p5(t)w5nh

p2(t) = p1(t)
d
dt

G(t) = p6(t)−oG(t)

d
dt

B(t) = p2(t)− p8(t) oG(t) = G(t)/TG

p8(t) = B(t)/TB p7(t) = p4(t)w4h+oG(t)+ p5(t)w5h

p3(t) = p1(t)+oF (t)
d
dt

Jp8(t) = p8(t)− p9(t)

d
dt

C(t) = p3(t)− p4(t)
d
dt

Jp7(t) = p7(t)− p9(t)

p4(t) =C(t)/TC

d
dt

E(t) = p4(t)w4mh− p5(t) p9(t) =

{
p8(t) Jp8(t)≤ Jp7(t)
p7(t) Jp7(t)< Jp8(t)

p5(t) = E(t)/TE
d
dt

H(t) = p9(t)− pout(t)

d
dt

F(t) = p5(t)w5p−oF (t) pout(t) = H(t)/TH

Fig. 9. ODE model for PT-net from Fig. 2

Figure 1, index “h” stands for “hit”, “nh” for “no hit”, “mh” for “multiple hits”, and
“p” for “precision not ok.” Weights for other (single) place-transition links are implic-
itly set to 1. For simplicity, the PT-model does not represent auxiliary computations that
in reality take some definite, if small, time to execute.

Figure 9 shows the corresponding ODE model. Some obvious simplifications were
applied. For instance, when for a p ∈ P, •p = {m} it is not necessary to represent om(t)
and p(t) separately, so we use the latter. Also, for a place m ∈M where •m = {p} and
Tm = 0, we omit the equation for d

dt m(t) (which is always 0), and directly propagate
p(t)wpm as om(t).

The AND-join transition J has two input places, and thus two auxiliary token stocks
Jp7(t) and Jp8(t). Since the join is instantaneous, at least one of these two stocks is
always zero, and the outflow p9(t) copies the inflow of the smaller stock.

We assume that the initial marking of the PT-model contains only pin. Consequently,
we implicitly assume that the initial condition for all transitions (A(0), B(0), etc.) is
zero. Since that place has no input transitions in the model, we assume that pin(t) is
exogenous. Conversely, pout has no output transitions, and we assume that it is the
terminal place of the model. The function pout(t) thus gives the finishing rate of the
orchestrations in the ODE model, relative to the start rate pin(t).

4.4 Asynchronous Composition And Failures

The example PT-net in Figure 2 is simplified as it does not involve asynchronous mes-
saging with partner services, nor accounts for potential failures during service invoca-

· · ·

As

sA

Ae

rA

· · ·

Ar

Fig. 10. Asynchronous messaging scheme.

· · ·

m

· · ·

m
1−φm

Φ

φm

⇒

Fig. 11. Failure accounting scheme.

tions. Both can be built into the model automatically, when translating from a concrete
orchestration language with known formal semantics. Here we discuss a way to deal
with asynchronicity and faults in a general case.

Figure 10 shows a usual pattern of asynchronous communication with a partner
service A. Transition As sends a message to A via a dedicated place sA, and transition Ar
receives the reply through a synchronizing place rA. The same representation applies to
synchronous messaging as well, with Ar directly following As, and rA as its single input
place.

In Figure 2, we have combined As, sA, Ae, rA, and Ar into a single transition A
characterized with an overall average execution time TA. The rate sA(t) is the send rate,
to be connected with the input rate parameter of the sub-model of Ae, while rA(t) is the
reply rate from the sub-model, to be connected with the receive rate in the main OCT
model. Examples of “wrapper” sub-models for Ae are: {rA(t) = sA(t)} (short circuiting,
zero time), and {rA(t) = Ae(t)/TAe ; d

dt Ae(t) = sA(t)− rA(t)} (black box, definite time).
Failures can be accounted for by introducing failure probabilities φm for each tran-

sition in the PT-net model, and decorating the transitions as shown in Figure 11. Fault
handling is represented by Φ . In the simplest case of unrecoverable faults, Φ is an
instantaneous transition to a terminal fault place pfail.

4.5 A Sample Resource Model

For a sample resource model, we model threads that execute orchestration activities on
the provider’s infrastructure. In the sample, shown on Figure 12, we assume that ser-
vices A, B, G and H from Figure 2 (corresponding to the Formatting, Logging, Adding
and Storage services) are “back-end” services hosted by the orchestration provider, so
that their each execution occupies a (logical) thread. The number of occupied threads in
the resource model is shown as X . The current capacity (available number of threads)
is shown as X̂ , and γ is the degree of utilization. The blocking factor β is 1 if some
capacity is free, 0 otherwise.

γ = X/X̂

X = A+B+G+H

β =

{
1, γ < 1
0, γ ≥ 1

Xp

Cap. perception
rp = (X−Xp)/Trp

X̂

Current capacity

Initial capacity

Adjustment time Trp

r̂ = bXp−XcB ·δ (0)

B

Fig. 12. Thread reasource model.

On the management side, we form a perception Xp of the number of threads re-
quired to meet the needs. That perception changes at a rate rp that is driven by the
adjustment time Tp. That is a well known method of approximating formation of per-
ception/trend reporting based on exponential smoothing [7]. Finally, we assume that we
can increase/decrease capacity X̂ in batches of size B, e.g. corresponding to addition or
removal of machines in the provider’s cluster. The adjustment rate r̂ adds or removes
resources when the difference between the target Xp and the current X̂ is a multiple of
B. The form bxcB is a shortcut for B ·bx/Bc; δ (0) is the Dirac impulse that ensures finite
change in infinitesimal time.

5 Simulation Experiment

To validate the proposed approach for automatic construction of OCT models, we have
run an experiment based on the example from Section 2. The orchestration was im-
plemented using a service test-bed based on the full service stack, but replacing ac-
tual implementations of the partner services (A-H) from Figure 2 with minimal substi-
tutes that introduced time delays in order to mimic execution of their real counterparts.
Implementations of the substitute services used the (uniform) random number gener-
ation to indicate the result type at branching points (corresponding to places p4 and
p5 in Figure 2). Along with comparatively greater average execution times, substitutes
for human-provided services (Formatting, Calibration, Checking) introduced additional
outliers with respect to the basic distribution. Table 1 shows the usual statistical sum-
mary of the distributions for simulated execution times of the partner services (all times
measured in seconds).

For validation purposes, we simulated the predicted and the actual execution times
in the controlled simulation environment. The histogram on Figure 13 shows the distri-
bution of orchestration running times from 30 simulated runs. The median running time
was 154, and the average was 214 (seconds).

In order to compare the OCT model prediction of the orchestration running time, we
have taken the ODE model from figure 9 and set the input rate pin = δ (0), to simulate
execution of a single orchestration instance that starts at t = 0. Because the orchestration
model is lossless (there is no failure rate), the only outgoing rate is pout, which therefore
gives the probability distribution over execution times.

Service Min. 1st Qu. Median Mean 3rd Qu. Max.
Formatter 15.00 55.50 60.00 63.00 73.00 107.00
Searcher 4.00 4.00 5.00 4.89 6.00 6.00
Checker 0.00 0.00 1.00 0.53 1.00 1.00
Calibrator 59.00 74.00 78.00 81.73 85.50 133.00
Logger 1.00 1.00 1.00 1.00 1.00 1.00
Adder 0.00 0.00 0.50 0.50 1.00 1.00
Storage 1.00 1.00 1.00 1.40 2.00 2.00

Table 1. Statistical parameters of service substitutes.

Fig. 13. Distribution of execution times.

The smooth bold curve in Figure 13 shows pout in comparison to the histogram
that shows experimental execution times. The median value of the predicted execution
time was 142.82 and the average 197.55 (seconds). Although slightly more optimistic
than the experimental runs, on the overall the prediction qualitatively fits well with the
measured data, especially considering that the prediction does not take into account
message passing latencies, and that the experimental setting has used a mix of different
statistical distributions for execution times of individual services.

6 Conclusions and Future Work

The approach proposed in this paper can be used for developing dynamic models of
service composition provision, based on an automatically derived continuous-time or-
dinary differential equation model of the target orchestration. The orchestration model
is calibrated using empirical estimates of average activity execution times and branch-
ing probabilities, obtained from log analysis, event signaling, or other monitoring tools
at the infrastructure level. Several dynamic models of orchestrations provided together
can be composed in a modular way.

The resulting dynamic model of composition provision can be used for exploring
how the provision system reacts to different input rates (requests per unit of time), test-
ing and choosing different resource management strategies and their parameters, in the

style of management flight simulators. The model output can be used for both quan-
titative prediction and qualitative assessment of reference modes (growth, oscillation,
stagnation, etc.).

Our future work will concentrate on developing tools that allow simultaneous model
calibration/simulation using live monitoring data, along with using these data for or-
chestration process discovery, when the design and its representation in Petri Net form
is not given.

References

1. van der Aalst, W.: Don’t Go With the Flow: Web Services Composition Standards Exposed.
IEEE Intelligent Systems (Jan/Feb 2003)

2. Tony Andrews and Francisco Curbera and Hitesh Dholakia and Yaron Goland and Johannes
Klein and Frank Leymann and Kevin Liu and Dieter Roller and Doug Smith and Satish
Thatte and Ivana Trickovic and Sanjiva Weerawarana: Business Process Execution Language
for Web Services (2003)

3. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another workflow language. Inf.
Syst. 30(4) (2005) 245–275

4. Esparza, J., Lakos, C., eds.: Applications and Theory of Petri Nets 2002. Volume 2360 of
Lecture Notes in Computer Science. Springer Verlag (2002)

5. van der Aalst, W.: Pi calculus versus petri nets: Let us eat "humble pie" rather than further
inflate the "pi hype" (2003)

6. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive qos monitoring of
web services and event-based sla violation detection. In: MWSOC ’09: Proceedings of the
4th International Workshop on Middleware for Service Oriented Computing, New York, NY,
USA, ACM (2009) 1–6

7. Sterman, J.D.: Business Dynamics: Systems Thinking and Modeling for a Complex World.
Irwin McGraw-Hill (2000)

8. An, L., Jeng, J.J.: Web service management using system dynamics. In: ICWS, IEEE Com-
puter Society (2005) 347–354

9. Lee, J.H., Han, Y.S., Kim, C.H.: It service management case based simulation analysis
and design: Systems dynamics approach. In: Convergence Information Technology, 2007.
International Conference on. (21-23 2007) 1559 –1566

10. Orta, E., Ruiz, M., Toro, M.: A system dynamics approach to web service capacity manage-
ment. Web Services, European Conference on 0 (2009) 109–117

11. Zhao, H., Tong, H.: A dynamic service composition model based on constraints. In: GCC.
(2007) 659–662

12. Hamadi, R., Benatallah, B.: A petri net-based model for web service composition. In:
ADC ’03: Proceedings of the 14th Australasian database conference, Darlinghurst, Australia,
Australia, Australian Computer Society, Inc. (2003) 191–200

13. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Dis-
tributed and Parallel Databases 14(3) (July 2003) 5–51

14. WS-BPEL: Business Process Execution Language for Web Services Version 2.0 (April 2007)

