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Abstract

The properties of data and activities in workflows can be used to greatly facilitate several relevant tasks
performed at design- and run-time, such as fragmentation, conformance checking, or top-down design.
We present an approach to mechanically infer domain attributes of workflow components, such as data
items, activities, or elements of sub-workflows, based on basic characteristics of workflow inputs, the
structure of the workflow, and the results of sharing analysis applied to a Horn clause representation of
the workflow. The analysis is applicable to workflows featuring complex control and data dependen-
cies, embedded control constructs, such as loops and branches, and embedded component services. As
Service-Oriented Computing is quite often used to implement workflows, we relate the techniques we
present with the technologies and approach taken by SOC.
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Figure 1: An example drug prescription workflow.

1 Introduction

Service-Oriented Computing is a paradigm that stresses interoperability between services, which
are loosely coupled and platform-independent software components with standardized data type de-
scriptions and interfaces. While back-end services essentially implement indivisible operations, ser-
vice compositions express higher-level (and potentially long running) business processes in an exe-
cutable form, often across organizational boundaries. Compositions are usually described by specifying
the sequencing of workflow activities and the routing of data using a language that allows process
modelers and designers to capture the essential elements of business logic and processing require-
ments [Obj09, JeaO7, vdAP06, vdAtHOS].

Due to this relationship, inferring properties of workflows is valuable for several important design-
and run-time activities in the service life cycle, such as driving the design and checking it, transforming
and refactoring workflows, identifying patterns, facilitating run-time instrumentation, reshaping, or per-
forming the distributed enactment of service compositions [MWLO08]. Furthermore, it can serve as an
input for verification of service systems based on their conversational patterns [BFHS03].

In this paper we focus on the inference of domain-specific attributes for data items and activities in
service workflows. These attributes can be related to data contents, privacy and security, quality, or
other interesting concepts. At the same time, we want to deal with workflows with a complex struc-
ture involving parallel flows, rich control and data dependencies between activities, complex control
constructs (e.g. branches and loops), as well as component services with known structure.

We apply techniques developed in the realm of static program analysis [NNHOS5] to perform attribute
inference. Building on our previous work [ICH10], we use the notion of sharing between data items
(and, by extension, activities). The application of general program analysis techniques allows us to
produce a characterization of data items and activities in workflows, which can then be used to feed, for
instance, fragmentation algorithms [KhaO7]. The formalism we start with avoids the dependence on a
particular business process description language some other analysis [KKLO7] have, and significantly
relaxes constraints on the shape of the workflows that can be treated [FYGO09, YGO7].
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Figure 2: An example component service for selection of new medication.

2 Motivation

To motivate our approach, let us take a simplified example of a drug prescription workflow, given
in standard BPMN notation [Obj09] in Fig. 1. The process is initiated by the arrival of a patient with
an appropriate identification, shown as the data item x in the figure. Next, two parallel activities are
run to retrieve the patient’s medical history (activity a;), and to retrieve the patient’s medication record
(activity ap). The data items that result from these two activities are marked as y (medical history)
and z (medication record), respectively. Additionally, while retrieving the medical history, activity as
indicates whether the health situation of the patient has been stable or not. Depending on that, either
the last prescription is continued (activity a3), or a new medication is selected (activity a4). Finally, the
treatment of the patient is logged (activity as).

From an engineering point of view, design-time analysis of data flow in the given workflow can be
used to obtain interesting results useful for several tasks, including:

Fragmentation: In a distributed environment, a workflow can be broken into several fragments that
can for example be farmed out for execution within different organizational (business) domains.
Different criteria and constraints can be used to decide whether two activities can belong to a
single fragment. In our example, a healthcare organization may wish to delegate some parts
of the workflow to business partners that handle registry and medical checks. Confidentiality
of information handled by individual activities may require that either the medical history or
the medication record (or both) be hidden from some of the partners. In our case, that would
mean separating the activities from the process in Fig. 1 into several swim-lanes corresponding to
different organizational domains, and assigning activities accordingly.

Condition Checking: When putting several services together to form a business process (such as
aj ...as in our example), an organization needs to make sure that the information content used by a
component service is adequate from the point of view of the desired behavior. This is related to the
problem of verifying systems of Web services from the conversational point of view [BFHS03].
Syntactic compliance with the XML message formats is not sufficient. In our example, the pa-
tient ID (which may be a national identity card, a driving license, a passport, a health insurance
card or something else) may or may not contain at runtime sufficient information required for the
retrieval of, e.g., a medical history. Or, a particular combination of retrieved medical histories and
medication records may not contain the necessary pieces of information required for the success-
ful completion of the (possibly outsourced) service in charge of selecting new medication. Some
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Figure 3: Overview of the approach.

of these potential problems can be detected at design time, by tracking the data flow from one
activity to another, and analyzing which pieces of information are shared between activities. E.g.,
the retrieval of the medication record (activity ap) may require the social security number, while
running additional medical tests (activity a41) may require the patient’s address.

Top-Down Component Specification: Business process modeling can start at a high level, and gradu-
ally elaborate components in a top-down fashion. Some of the components may contain complex
structured constructs, or be developed into separate, reusable services. Data flow analysis at the
process level can help us identify features of inputs and outputs from such components, but ad-
ditional results can be obtained for sub-activities of a component. For instance, if the workflow
component a4 is separated into a reusable service of its own with the structure given in Fig. 2, it
would be interesting to derive from the process data flow attributes of the criterion c. The process
can be repeatedly applied to the components a4; and a4y of the sub-workflow.

The goal of this paper is to address the problem of inferring domain specific attributes of relevant
entities, such as data items and activities, within a workflow which possibly features complex control
structures (branches, loops) and component sub-workflows. The inference is based on characteristics of
the inputs to the workflow and the data flow between workflow activities. The inferred attributes can be
used by design-time tools to achieve some of the above mentioned results.

3 Overview of the Approach

Fig. 3 depicts an overview of our approach. From the users’ perspective, the starting point is a descrip-
tion of the workflow using an appropriate formalism (such as the BPMN notation used in our example),
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and an input data context: a list of objects which constitute the input to the workflow, described using
a repertoire of relevant attributes from the business domain of the workflow. The result is presented
as a resulting context that lists all data items and the activities of the workflow, and assigns them the
attributes that are inferred by the analysis. The user (or a tool) can then inspect the resulting context
and use the descriptions of the workflow entities for further analysis of the workflow, transformation, or
other design-time tasks.

The aforementioned initial context, which lists concepts and attributes, is used to set up a concept
lattice (Sec. 4). Concept lattices are the main vehicle to prepare the input to the sharing analysis and
to interpret the results of the analysis. The sharing analysis works on Horn clause program which
results from translating the workflow definition into Horn clauses and the initial concept lattice into
input logical variable substitutions (Sec. 5). Finally (Sec. 6), the abstract substitutions which result from
the sharing analysis are used to produce the resulting context.

Note that all steps in Fig. 3 can be fully automated using already existing tools and technologies,
with the possible exception of the translation of the workflow into a Horn clause program. The last
one depends on the particular workflow description formalism used, and needs specific translations. A
particular example for a rich workflow model was shown in [ICH10], and we reuse that notation here.

Automating the steps in Fig. 3 means that the end user does not have to understand concepts such as
lattices, the structure and elements of the Horn clause program, abstract substitutions, or the mechanism
of the sharing analysis per se. All of those technical details can be hidden “under the hood,” and the user
would be able to work at the level of the top row in Fig. 3, through a simple and intuitive interface which
focuses on contexts. Modules that implement, for example, a particular refactoring or transformation
task (such as fragmentation) can access the analysis results given in the simple form of the resulting
context (Sec. 6).

4 From Contexts to Concept Lattices

To describe relevant properties of the data fed into the workflow, we will use Formal Concept Analysis
(FCA) [DP02, GSWO05], a mathematical apparatus for representing and analyzing data using formal
contexts and concept lattices, which we will explain with depth just enough to follow this paper. The
reader is kindly referred to the existing literature for more in-depth treatment of FCA.

4.1 Contexts and Concepts

A context is defined as an assignment of a set of attributes to a set of objects. We will assume that both
the set of attributes and the set of objects are finite. These may, but need not necessarily, be objects and
attributes in the object-oriented design sense. In our case, objects represent data items given as inputs to
the workflow, data items produced by the workflow activities, and the activities themselves. Attributes
are predicates that may be true or not for an object: we then say that the object has the attribute (or not).

The purpose of contexts is to express properties of objects that are relevant in some domain of dis-
course. A simple and intuitive way of presenting contexts is in the form of a table, with rows for objects
and columns for attributes (Fig. 4). Checkmarks are equivalent to logical truth, and absence of check-
marks denotes logical falsity. Fig. 4(a) shows a simple context describing the content that is retrieved
from the medical history and the medication record databases, in terms of (among many other possi-
ble) attributes denoting the content of retrieved records: the observed / treated symptoms, the medical
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| Name Address PIN SSN
Passport v v
\ Symptoms Tests Coverage National Id Card v v v
Medical history DB v v Driving Licence v v
Medication record DB v v Social Security Card v v v
(a) Characteristics of medical databases. (b) Types of identity documents.

Figure 4: Two examples of contexts.

tests run on the patient, and the insurance coverage for the medication. Likewise, Fig. 4(b) shows a
context describing different types of documents used to identify the patient in terms of the information
they contain: name, address, the personal identification number (PIN), and the social security number
(SSN). Contexts can be easily combined or split by grouping and projecting over objects and attributes,
respectively.

A concept in FCA is a pair (O, A) of a subset of objects O and a subset of attributes A such that (1) all
attributes that objects from O have in common are in A, and (2) all objects that have all attributes from
A are in O. This way of relating the two subsets is usually called a Galois connection. If with O’ we
denote the set of attributes common to all objects in O, and with A’ we denote the set of all objects that
have all of the attributes from A, then for concept (0,A) we have O’ = A, A’ = O, and thus 0" = O and
A" = A. Therefore, we will often keep track of just the attributes of a concept, since the objects can be
derived using ().

4.2 Concept Lattices

While contexts are a convenient and intuitive mechanism for knowledge representation, to make them
useful for analysis they need to be transformed into concept lattices.

A lattice is a mathematical structure (L, <,V,A) built around a set L (in our case containing concepts
from a context), a partial order relation <, the least upper bound operation V, and the greatest lower
bound operation A. For arbitrary x,y € L, the element xVy = z has the property x < zand y < z, but it
is also the least such element, i.e., for any other w € L such that x < w and y < w, we have z < w. The
case for the greatest lower bound operation A is symmetric. In this paper, we deal only with finite and
complete lattices, where for any arbitrary non-empty subset of lattice elements the least upper and the
greatest lower bounds exist in L; such lattices have unique greatest (T ) and least (L) elements.

For concept lattices, the ordering relation < between two concepts (O1,A;) and (O2,A7) holds if and
only if O1 C 0, or, equivalently, if and only if Ay C Ay; in other words, a higher concept includes
all objects from a lower (or derived) one, and lower concepts are derived from higher ones by adding
attributes. Consequently, the least upper bound is obtained using A; N A5, and the greatest lower bound
using A UA>.

The usual way of depicting context lattices is a variant of Hasse diagrams given in Fig. 5. Nodes in the
lattice correspond to concepts, with the top concept visually on the top, and the bottom concept placed
accordingly. Annotations associated with a concept (using dashed lines) show the attributes introduced
by the concept (besides the derived attributes from the higher concepts) above the line, and the objects
that directly belong to the concept below the line. Concepts may have either the part of the annotation
empty, or both parts — for instance when they just introduce new attributes, or combine attributes from
several higher concepts. When both parts are empty, the annotation is not shown; that is the case with
the bottom elements in all cases in the figure.
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(c) A combined concept lattice.
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Figure 5: Concept lattices for contexts from Fig. 4.

Fig. 5(a) presents the concept lattice for the medical database context from Fig. 4(a). The top (i.e., the
most general) concept here introduces the attribute Symptoms, since it is shared by all medical database
objects. However, no object has only that attribute, so the top concept has no directly associated objects.
Two descendant concepts introduce the attributes Test and Coverage, respectively, which discriminate
between the Medical history database and the Medication record database.

Fig. 5(b) shows a slightly more complex concept lattice corresponding to the context for identity
documents from Fig. 4(b). All identity documents contain the patient’s Name (introduced by the top
concept), while, e.g., the National ID inherits all attributes from the top concept, the Passport concept,
and the Driving License concept. Two concept lattices that have disjoint sets of attributes and objects
(which is the case in our example) can be combined as shown in Fig. 5(c).

4.3 Describing Data with Concept Lattices

In our analysis, the data items that are fed into the workflow as inputs need to mapped to the appro-
priate objects in the input concept lattice. In the case of the medication prescription workflow example
(Fig. 1), we would need to map the Patient ID input data item to either Passport, National ID, Driving
License, or Social Security Card. In our example, each of those objects maps to a different concept in
the lattice, but in general, and especially when we project over attributes, several objects used in building
the context can map to the same concept in the lattice.

The prerequisite for using concept lattices is to create an adequate context on a level of abstraction
that captures a sufficient amount of information in order to represent all relevant concepts and their
attributes. A more complex model can always be simplified by projecting over attributes, and thus
keeping only those that discriminate between different concepts. There are several available tools that
facilitate the process of elicitation and exploration of knowledge using the FCA mathematical apparatus,
such as ConExp, Lattice Miner, Colibri and others [CR04]. Such tools usually offer functionality to:

e Check consistency and completeness of the context and ask for counterexamples. For instance,
the user can be asked to verify that all identification documents contain the person’s name (which
is true), or that all medical databases of interest contain data on symptoms, which may or may not
be true, and in the latter case the user is asked to introduce a counter-example.

o Investigate Boolean and probabilistic associations that exist between the attributes.

e Discretize attributes that range over numeric values.
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W =(A,C,D)

A ={a,az,a3,a4,as}

C ={pre-a4 = done-a; A —succ-a; Adone-as,
pre—a; = done-a; Asucc—a; Adone—ay,
pre-as = done-a3 V done-ay }

D ={y,z},y={ar1,{az,as}), z= (a2, {as,as})

Figure 6: The abstract notation for the medical workflow.

e Visually explore the resulting Context Lattice, run queries, and engage in reasoning on the knowl-
edge contained in it.

Another important point is that some data sources may not be explicitly shown on a workflow. In
our example from Fig. 1, the retrieval activities (a; and a,) both need to access some external data
sources from which they extract the records using the input Patient ID. Obviously, the characteristics
of the retrieved records depend on properties of these implicit data sources. Therefore, both need to be
mapped to appropriate objects, in this case the Medical history DB and the Medication record DB from
Fig. 5(a).

5 Applying Sharing Analysis

5.1 Representing Workflows as Horn Clause Programs

In order to apply sharing analysis, the workflow under consideration needs to be represented in the
form of a Horn clause program [Llo87]: a series of logical implications which can be understood as
stating which subgoals are needed to accomplish a given goal. The translation from the original form in
which the workflow is designed into a Horn clause program does not need to preserve the operational
semantics of the original formalism. It instead needs to focus on representing the data flow correctly.
In our previous work [ICH10], we have given an example of translation from an abstract notation for
workflows with logical link dependencies between activities expressed as logic formulas, explicit de-
scription of input and output data items for each activity, and complex constructs such as branches and
loops. That abstract notation has been purposefully crafted to reflect the most common elements used
in business process design using languages such as BPMN [Obj09], BPEL [Jea07], or XPDL [Wor08],
and can be used as an intermediate representation in the process of translation from the original formal-
ism. Our abstract workflow notation does not support the full range of workflow patterns [vdAtHKBO3],
and it does not preclude the possibility of (or need) for advanced direct or customized translation from
specific workflow languages when necessary.

Fig. 6 shows the abstract notation for the medical workflow (Fig. 1), given in a condensed form
and stripped of activity/data descriptions. Details of the abstract notation can be found in our previous
work [ICH10], while here we focus on the key elements of the notation and its correspondence with
the original BPMN diagram. In the abstract notation, an activity can start executing as soon as its
preconditions are met, and any number of activities can execute in parallel. As the activities a; and a,
do not have preconditions, a parallel AND-split (<—<>—) from Fig. 1 is assumed. Activities are annotated
with the symbolic names of their inputs (above the line) and output (below the line) data items; those
are the same symbolic names from Fig. 1: x stands for the Patient ID, y for the Medical history, z for the
Medication record, etc. Note that two new data items, d and e, appear in Fig. 6. They stand here for the
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as : repeat-until loop ‘ @ W'={a'.C'.D'}
A ={as,an}

exit depends on p vz C' —{pre—as» = done—au;}
body : subworkflow W'¢ D' ={c}, c = (as1, {as})

e

Figure 7: The abstract notation for the complex activity ay.

12 Ad=f (P2),

w(X,D,E,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5) : - a_4x(Y,Z.C2,P2,C,P,A4,A41,A42) .

A1=f1(X,D), % a_1

Z;;‘({;Xé?’y 02 a_4x(_,_,C,P,C,P,_,_, ).
7=t2 2(X,E), 16 a_4x(X,Z,_,_,C,P,Ad,Ad1,A42) -
- i a_4(X,Z,A4,A41,C,A42,P).

A3=£f3(Y,Z), 7 a_3
a_4(Y,Z,A4,A41,C,A42,P), % a_4

AB=£5(X). 4 a 5 w2(Y,Z,A41,C,A42,P) : -

20 A1=£41(Y,2), % a_41
a_4(Y,Z,A4,A41,C,A42,P) - 0 Zzggigg;’ 1 a_42
w2(Y,Z,A41,C2,A42,P2), petan pioy,

Figure 8: Horn clause program encoding for the medication prescription workflow.

implicit data sources from which activities a; and a,, respectively, retrieve the medical history and the
medication record for the patient. In the abstract workflow notation, these are also treated as inputs to
the workflow.

The AND-join (—$<) and the XOR-split (*@*) from Fig. 1 are fused into preconditions for the
activities a3 and a4, marked as pre—a3z and pre—ay in the set C of preconditions in Fig. 6. Both pre-
conditions are conjunctions involving completion of a; and a, (denoted by the symbols done—a; and
done-ay, respectively), while the options are discriminated on the basis of succ—a;, which stands for the
logical result of ay, in this case the indication of a stable health indicator. Finally, the OR-join 0=
from Fig. 1 is represented with the precondition for as. Data dependencies D for the internally generated
data items show the activity that creates the data item, and the set of activities that use it as input.

The sub-workflow for the complex activity a4 from Fig. 2 is similarly translated into the abstract
notation in Fig. 7. Note that the abstract notation is goto-free, and therefore a4 is explicitly annotated
as a repeat-until loop with the test depending on the internally generated data item p. The body of the
loop constitutes the sub-workflow W',

The translation of our example workflow from the abstract notation into a Horn clause program is
shown in Fig. 8. For the details of the Horn clause program notation and the translation process the
reader is again kindly referred to our previous work [ICH10]. The input and the intermediate data items,
as well as the workflow activities, are represented with the “top-level” variables (visible as the formal
arguments to w on line 1, and given in capital letters). The formal arguments to predicate a4 (line 10)
for complex activity a4, and the arguments to w2, which represents the sub-workflow in the body of the
repeat-until loop, play an analogous role.

5.2 Setting Up an Input Substitution

An input substitution sets up sharing between the input top-level variables in the Horn clause program.
It is a mapping from the top-level variables that represent the data items given as input to the workflow to
subsets of the “hidden” or “tagging” variables that do not appear in the logic program. That relationship
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init1(X,D,E):- 1+ init2(X,D,E):-
X=[Name,PIN], 2 X=[Name,Address,SSN],
D=[Symptoms,Tests], D=[Symptoms,Tests],
E=[Symptoms,Coverage] . 4 E=[Symptoms,Coverage] .

Figure 9: Setup of the initial substitution for the two cases.

is based on the notion of abstract substitution [MH91], and it means that the given top-level variable is
bound to a term that contains the associated subset of hidden variables.

Variable sharing can be represented as a lattice where nodes represent variable sets which share a
unique, hidden variable. The structure of such sharing lattice can be directly derived from the input
concept lattice by assuming hidden variables that correspond one to one to the input context attributes.
For clarity, we name those hidden variables as the corresponding attributes. Next, we map the top-level
variables to objects from the input context, and, therefore, to subsets of the hidden input variables, which
are the points in the sharing lattice. The ordering a T b in the input sharing lattice between arbitrary
top-level variables a and b holds if and only if A C B, where A and B are the corresponding subsets of the
associated hidden input variables. It directly follows that C in the sharing lattice is the exact opposite of
< in the concept lattice.

In the text that follows, we will take two cases for input substitutions:

Case 1: Patient ID (item x) maps to the Passport object (has the attributes Name and PIN).

Case 2: Patient ID (item x) maps to the Social Security Card object (has the attributes Name, Address
and SSN).

In both cases, the data source d for medical histories maps to the Medical history DB object (attributes
Symptoms and Tests), and the data source e for medication records maps to the Medication record DB
(attributes Symptoms and Coverage).

Producing an input substitution from a sharing lattice is straightforward. What we need to do is to
equate the top-level input variables to terms that contain exactly the associated hidden variables from
the input sharing lattice (Fig. 9). Since for the sharing analysis the actual shape of the terms is not
significant, we use lists of variables associated to the attributes.

5.3 Obtaining the Sharing Results

Sharing analysis is applied to the Horn clause program that consists of the translation of the workflow
in Fig. 8 and the code that sets up the initial substitutions for the cases of interest (Fig. 9). The underlying
technology for sharing analysis used here is abstract interpretation [CC77], a static analysis technique
that interprets the program by mapping concrete, possibly infinite sets of variable values onto (usually
finite) abstract domains, together with data operations, in a way that respects the original semantics
of the programming language. The abstract approximations of the concrete behavior are safe, in the
sense that properties proved in the abstract domain necessarily hold in the concrete case. However, its
precision depends in general on the problem and on the choice of the abstract domain.

We run the analysis using CiaoPP [HBC' 10, HPBGO05], one of the analysis tools that have been
developed for logic programs, which gives users the possibility of selecting different analysis algorithms
on input programs. We use the sharing, freeness and groundness analysis available in CiaoPP. While the
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Top-level variables ‘ Recovered hidden variables
[[X,D,E,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5],

X, A5 ; ;
[X,D,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5], & }I’:"ZZ’Z"%
[X,E,A1,Y,A2,Z,A3,A4,A41,C,A42,P,AB], b {u"u»";’;}
[X,A1,Y,A2,Z,A3,A4,A41,C,A42,P,A5], 1.7 {u"MZ’u5'u6 us, ur}
[D,E,A1,Y,A2,Z,A3,A4,A41,C,A42,P], ’ 1, 42, U3, B4, %5, 47
A1,Y, A42,C, P {uy, uz, uz, us, us, ug}

[D,A1,Y,A3,A4,A41,C,A42,P], 1304 141 Gt 1 ts et 107}
[E,AQ,Z,A3,A41]] B 3 1, U2, U3, Uq, Us, Ue, U7

(a) The resulting substitution (b) Points in the resulting sharing lattice.

Figure 10: Abstract substitution and the recovered hidden variables.

agp ¢

Figure 11: The resulting concept lattice.

applied sharing analysis of a logic program is, in the worst case, exponential in the number of variables,
in our experience in most cases it exhibits a reasonable speed.

The sharing analyzer outputs its results in a form known as an abstract substitution, shown in Fig. 10(a),
which is common to both cases of input data mapping. The difference will arise in the interpretation, as
described in the next section. Each row (1-7) contains a subset of the top-level variables (that represent
the items and activities in the workflow) that share at least one unique hidden variable. To the resulting
abstract substitution, we can apply the algorithm for recovery of a minimal set of the hidden output
variables [ICH10]: for each line i = 1...7 in Fig. 10(a), we introduce a new output hidden variable u;
(that is arbitrarily, but uniquely, named), and to each top-level variable we assign all resulting hidden
variables for the rows in which it appears. The result is shown in Fig. 10(b). Each row shows the
top-level variables associated to a set of the output hidden variables.

6 Interpreting Sharing Results as Concepts

The mapping of intermediate variables (those which are not initial top-level variables) to subsets of
the hidden output variables represents the new information on the relationship between the variables
based on the sharing analysis. The meaning of these output hidden variables has to be interpreted in
terms of the original attributes, starting from the known original attributes of the input data items. It
should be noted [ICH10] that the sharing analysis preserves the original relationship between the input
top-level variables: if two variables a and b were associated to subsets A and B, respectively, of attributes
in the input sharing lattice, such that A C B, then for the corresponding subsets A; and B; to which a
and b, respectively, map in the resulting sharing lattice, we also have the property A; C Bj.

I'The results presented here were obtained in 1.192ms using CiaoPP running on an Apple MacBook computer with Intel Core
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Item Name  PIN | Symptoms  Tests  Coverage Item Name  Address SSN | Symptoms  Tests  Coverage
X v v X v v v
d v v d v v
e v v e v v
a .z v v 4 v a ,z v v v 4 v
ai ,y.p, ap,c | v v 4 v ai .y, p, ap.c | v v v v v
a . as, an 4 v 4 v Vo a4, ar, as v v v v v v
as 4 v as v v v
_ | Mainmedicalworkiiftioyre 12: The regutting f8rHr R ditdtysis cases.
=
g a2 Run tests to no Result yes o
B = i i s y
= P teria specific?
= az: Continue last
S
e T T B e ) A
]
2 ay: Retrieve
< ‘medical history
= <
g =3
] = ai: Search
5 a: Retrieve !
=

as: Log patient

Registry
and
Archive

Figure 13: An example fragmentation for the drug prescription workflow.

In the next step, we construct a resulting concept lattice where the data items and activities are consid-
ered as objects, and the resulting hidden variables are considered as a new set of attributes. Such lattice
is shown in Fig. 11. The activities are highlighted, and the input data items from the input concept lattice
are set in boldface. In the resulting concept lattice, we first assign the original attributes to the input data
items, and then pass them down to all lower-level concepts. In that way, we obtain the resulting contexts
for the two analysis cases shown in Fig. 12. Note that only the attributes that are associated with some
input data item may appear.

Note that this may introduce a degree of over-approximation: sharing analysis is conservative and
indicates sharing between variables also in the case where the analysis could not prove that there is def-
initely no sharing. Therefore, although the analyzer aims at being as accurate as possible, if it cannot be
completely precise, it always errs on the safe side, by assuming potential sharing, rather than ignoring it.
Thus, the assignment of attributes to the workflow elements should be interpreted accordingly: absence
of an attribute means that the element certainly does not have the attribute, but its presence may be either
certain or potential.

We can illustrate the application of the information contained in the resulting context in the cases
mentioned in the motivation part:

Fragmentation: The health organization responsible for medicine prescription may want to fragment
and share the workflow with several partners, based on what kind of information about patients
they are allowed to see. Medical examiners, who run labs and outpatient care centers, need to
access the information on tests applied to a patient, but should not access the insurance coverage
data. Medication providers, on the other hand, do not need to see the details of the patient’s
medical tests, but need access to insurance coverage data in order to select the most effective

Duo processor, 2GB of RAM and MacOS X 10.6.5.
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medication. Any activity that needs access to data on both the tests and the coverage has to be
centrally executed by the home health organization. Finally, registrars have access only to the
patient’s identity. The four types of partners are shown as swimlines in Fig. 13.

Condition Checking: It may be known that a particular kind of information identifying a patient, such
as his/her SSN, is required for retrieving the patient’s medication record (activity a,), and that
the patient’s address is required for sending the results of tests (activity as4p). It can therefore
be detected at design time that unless the patient is identified with a Social Security Card, these
activities may fail. Therefore, the designer may either restrict the use of the workflow by requiring
the card, or try to choose among implementations of the mentioned activities that have weaker
success preconditions.

Top-Down Component Specification: Based on the characterization of the input data items, the de-
signer can derive the attributes of the data items nested into complex structures inside the work-
flow. For instance, the properties of the medicine search criterion (c) and the prescription candi-
date (p) can be inferred. As mentioned above, such inference is safe in that it may assign more
attributes than is strictly needed, due to loss of precision, but will never erroneously omit an
attribute that is actually shared.

7 Conclusions

Sharing analysis can be applied in an automated manner by workflow designers to infer business-
domain specific attributes of data items and activities inside (potentially complexly structured) service
workflows. Starting with business domain knowledge expressed in the form of object-attribute grids or
contexts, and by mapping workflow inputs to the appropriate objects with business meaning, the sharing
analysis produces results that are interpreted to provide inferred attributes for the rest of workflow data
items and activities. The inferred attributes can be then used at design time to drive, e.g., workflow
fragmentation, condition checking, and top-down design.

Our future work is planned to address the development of automatic translations from common busi-
ness process specification languages such as BPEL, XPDL, YAWL, into Horn clause programs amenable
to sharing analysis, with the objective of achieving full automation of the analysis process as well as
increasing the accuracy of the sharing analysis. Besides, we plan to explore other applications of the
sharing concept to services, aiming not only at (local) data sharing between activities, but also looking
towards the representation of stateful service conversations and quality aspects of services.
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