
Towards Data-Aware QoS-Driven Adaptation
for Service Orchestrations

March 2010

facultad de informática

universidad politécnica de madrid

Dragan Ivanović
Manuel Carro

Manuel Hermenegildo
Pedro López-Garcia

Edison Mera

TR Number CLIP 5/2009.1

1

Technical Report Number: CLIP 5/2009.1
March,2010

Authors

Dragan Ivanović
idragan@clip.dia.fi.upm.es
Computer Science School
Universidad Politécnica de Madrid (UPM)

Manuel Carro
mcarro@fi.upm.es
Computer Science School
Universidad Politécnica de Madrid (UPM)

Manuel Hermenegildo
herme@fi.upm.es
Computer Science School
Universidad Politécnica de Madrid (UPM)
and IMDEA Software, Spain

Pedro López
pedro.lopez@imdea.org
Computer Science School
Universidad Politécnica de Madrid (UPM)
and IMDEA Software, Spain

Edison Mera
edison@fdi.ucm.es
Facultad de Informática
Universidad Complutense de Madrid (UCM)

Acknowledgements

This research has been funded by the EU 7th. FP NoE S-Cube 215483, and partially by FET
IST-231620 HATS, EUREKA 06042 ES_PASS, MICINN TIN-2008-05624 DOVES, MIN FIT-
340005-2007-14, and CM project P2009/TIC/1465 (PROMETIDOS).

ii

Abstract

Several activities in service oriented computing can benefit from knowing properties of a given
service composition ahead of time. We will focus here on properties related to computational
cost and resource usage, in a wide sense, as they can be linked to QoS characteristics. In order
to attain more accuracy, we formulate computational cost / resource usage as functions on input
data (or appropriate abstractions thereof) and show how these functions can be used to make
more informed decisions when performing composition, proactive adaptation, and predictive
monitoring. We present an approach to, on one hand, automatically synthesize these functions
from orchestrations and, on the other hand, to effectively use them to increase the quality of
non-trivial service-based systems with data-dependent behavior. We validate our approach by
means of simulations with runtime selection of services and adaptation due to service failure.

Keywords: Service Orchestrations, Resource Usage Analysis, Data Awareness, Monitoring,
Adaptation.

iii

Contents

1 Introduction 1

2 Computation Cost Analysis and Services 1
2.1 A Motivating Example . 1
2.2 Computational Cost of Service Networks . 2
2.3 Approximating Actual Behavior . 4
2.4 Upper and Lower Bounds . 4

3 Analysis of Orchestrations 5
3.1 Overview of the Translation . 5
3.2 Restrictions on Input Orchestrations . 7
3.3 Type Translation and Data Handling . 7
3.4 Basic Service and Activity Translation . 8
3.5 A Translation Example . 9

4 An Experiment in Adaptation 10

5 Conclusions 12

References 13

iv

Towards Data-Aware Cost-Driven Adaptation 1

1 Introduction

Service Oriented Computing (SOC) is a well-established paradigm which aims at expressing
and exploiting the computation possibilities of loosely coupled systems which interact remotely.
Such systems expose themselves via service interfaces whose description may include operation
signatures, descriptions of behavior, and others, while the implementation is completely hidden.
Services can be combined to accomplish more complex tasks through service compositions,
which are usually expressed using either a general-purpose programming language or languages
designed to express business processes and compositions [4, 8]. These compositions can in turn
expose themselves as full-fledged services.

One distinguishing feature of SOC systems is that they are expected to be active during long
periods of time and span across geographical and administrative boundaries. These character-
istics require having monitoring and adaptation capabilities at the heart of SOC. Monitoring
compares the actual and expected system behavior. If a too large deviation is detected, an
adaptation process (which may involve, e.g., rebinding to another provider of a service) may
be triggered. When deviations can be predicted before they actually happen, both monitoring
and adaptation can act ahead of time (being termed, respectively, predictive and proactive),
performing prevention instead of healing.

Detecting deviations requires a behavioral model, which is used to check the current behavior
or to predict a future behavior. Naturally, the more precise a model is, the better adaptation
/ monitoring results will be achieved. In this paper we will develop and evaluate models
which, based on a combination of static analysis and actual run-time data, increase accuracy
by providing upper and lower approximations of computational cost / resource usage measures
which can be related to QoS characteristics. For example, the number of service invocations
can be related to execution time when information about network speed is available.

2 Computation Cost Analysis and Services

Computational cost analysis aims at statically determining the computational cost (in terms of,
e.g., execution steps or number of instructions) of a given algorithm for some input data. Tools
to perform this kind of analysis have been developed in the field of programming languages.

However, to the best of the authors’ knowledge, no similar work exists for SOC, although
several approaches to automatically deriving QoS characteristics for compositions have been
proposed [3, 2]. While these have much in common with our proposal, they do not treat
data operations or relate QoS estimation with the characteristics of input data. Instead, some
execution characteristics (e.g., number of iterations in a loop) are often either fixed or modeled
statistically. Also, aggregating QoS characteristics of service compositions exposed as services
is often not done. Some proposals [1] aim at performing global optimization, but still ignore
data-related issues. Our proposal addresses both dimensions (global information and data-
sensitivity) while still aiming at a completely automatic analysis.

2.1 A Motivating Example

We illustrate the relevance of taking actual data into account when generating QoS expressions
for service compositions with a motivating example.

Fig. 1 shows a fragment of a (stylized) car part reservation system. A part Provider serves its

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 2

Client Provider

Maker 1

Maker K

Request Cance
l

part r
eq.

OK / not O
K

Part req.
Cancel

OK / not OK

Figure 1: Simplified car part reservation system.

A

B1

B2

TA(n) = 2n+ 3 + nS(n)

TB1
(n) = n+ 1

TB2
(n) = 0.1n+ 7

bind
ing to B1?

binding to B
2?

Figure 2: Invoking other services.

Client by reserving a number of part types from a pool of part Makers. The protocol only allows
the Provider to reserve one part type per service invocation to a Maker. An invoked Maker
replies ok if the part type is available and not ok otherwise; in this case the Provider goes to
another Maker. If no Maker can reserve some car part type, the Provider cancels all previously
reserved part types with a cancel message. Since every service invocation takes some time to
complete, the number of car part types impacts the total time that Provider needs to complete
a reservation for Client. Thus, a precise model of the time needed by Provider should take into
account the Request, and more accurate time estimations should be expressed as functions on
properties (e.g., number of types) of the incoming Request message.

2.2 Computational Cost of Service Networks

The function which results from the analysis of computational cost depends on the internal
logic of the service composition (the Provider, in our example), but also on the behavior of the
invoked services (the Makers), as they may, in turn, send additional messages which add to the
global count.

Fig. 2 depicts this scenario in some detail. The input message is abstracted in this example
as a parameter n (i.e., the number of car part types in our example) on which some mea-
sure of computational cost depends. The cost of service A is TA(n). As A invokes n times
another service, (represented by a generic S), for which B1 and B2 are two candidates with
different computational cost, its overall computational cost depends as well on which service
is selected to perform the composition. Using the T (n) values from Fig. 2, the computational
cost corresponding to these two options would be:

TA1
(n) = 2n+ 3 + n(n+ 1) = n2 + 3n+ 3 {AB1}

TA2
(n) = 2n+ 3 + n(.1n+ 7) = 0.1n2 + 9n+ 3 {AB2}

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 3

 20

 40

 60

 80

 100

 120

 140

 4 5 6 7 8 9 10

Q
oS

 /
C

om
pu

ta
tio

na
l C

os
t

Input data size (for a given metric)

QoS / Comp Cost for A+B1
QoS / Comp Cost for A+B2

Figure 3: Computational cost, services AB1 and AB2.

and to decide between B1 or B2, TA1 and TA2 have to be compared (Fig. 3). This opens up
the possibility of taking into account the size n of the data to select a configuration depending
on the expected usage, and it requires information about B1 and B2 in order to automatically
work out the resulting overall computational cost.

The computational cost-related information for B1 and B2 can be made available in much the
same way as other service-related information (e.g., interfaces or XML schemes) is published.
It needs to include, at least, the expected computational cost (preferably as a function of
input data characteristics) and (possibly) the relationship between the sizes of the input and
output data for every operation in the interface. The availability of these descriptions can
make it possible to automatically work out TA1

and TA2
to compare them. In turn, A should

publish the information it synthesizes, so that it can then be used by other compositions. In
our view, this repeated process of synthesis, comparison, and publishing, is a step towards
simultaneously achieving true dynamicity and optimal selection in the creation and adaptation
of service networks.

Note that these abstract descriptions do not compromise the privacy of the implementation
of the service being described, as they act as a high-level contract on the behavior of the service.
Besides, in an open ecosystem of services, those which publish such descriptions would have
a competitive advantage, as they make it possible for customers to make better decisions on
which services to bind to.

Given a service A, if we assume that any services it invokes have a constant computational cost
TBi(n) = 1, then the computational cost obtained for A measures how much its structure alone
contributes to the total computational cost. We have termed this the structural computational
cost of a service, and it will be used later as an approximation of the real computational cost.

Two key questions are: to which point functions expressing the cost of the computations are
applicable to determining QoS, and to which point these functions can be automatically (and
effectively) inferred for service compositions.

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 4

2.3 Approximating Actual Behavior

The computational cost measures we will deal with count relevant events which are determin-
istically related to the input data: processing steps, number of service invocations, size of the
messages, etc. To infer such computational costs we follow the approach to resource analysis
of [7] which, given data on how much a few selected basic operations contribute to the usage
of some resource, tracks how many times such basic operations are performed through loops
and computes the overall consumption of the resource for a complete computation. Since the
number of loop iterations typically depends on the input, the overall consumption is given as a
function that, for each input data size, returns (possibly upper and lower bounds to) the overall
usage made of such resource for a complete computation.

Different higher-level QoS characteristics can then be derived from these functions: execution
time can be approximated by aggregating the number of basic activities executed and the num-
ber of invocations, and multiplying them by an estimation of the time every (type of) activity
and invocation takes; availability of a composed service can be expressed as the product of the
availability of the services it invokes (assuming independence between them) and, therefore, the
availability of the composition will depend on which services are invoked and how many times
they are invoked, which in turn depends on the input data.

Estimations of the time used, availability, etc. of basic components are approximate and
they thus introduce some noise which also makes the derived QoS functions approximations.
However, because they are functions on input data they are likely to predict more accurately the
behavior for a given input than a global statistical measure (we return to this later). Besides,
for cases where comparison between two different QoS functions (and not their absolute value)
is relevant, as in Fig. 2, the noise introduced can be expected to mutually cancel to some extent.

2.4 Upper and Lower Bounds

Automatically inferred computational cost functions can sometimes be exact, but in general
only safe upper and lower bounds can be generated. These are guaranteed to be smaller than
or equal to (resp. greater or equal) the function they approximate. This can be traced back to
limitations of the static analysis, to the actual function depending on more parameters than,
e.g., data size, and others. When these bound functions are combined with estimations to
determine QoS from computational cost functions, data-aware approximations of the actual
bounds are created.

While this may seem to be a disadvantage when it comes to predicting future behavior, upper
/ lower bounds of the actual computational cost are actually useful to ensure that some QoS
characteristic is met, because it falls above / below the predicted threshold. As an example,
Fig. 4 portrays upper and lower bound computational cost functions for two compositions for
some QoS characteristic which depends on input data. Depending on the QoS meaning, we
may want to make sure that we stay above or below some value. The former case needs to
consider the lower bound and, conversely, the latter requires considering the upper bound.
Note also that, in the example portrayed in the figure, which service will give better results
clearly depends on the actual data size at run-time.

Comparing data-aware approximating functions with the probabilistic approximations used
in many approaches to QoS-driven service compositions can be illustrative. Average approxi-
mations which summarize QoS characteristics in a single point clearly cannot provide behavior
guarantees, as they do not provide ranges for maximum and minimum values, and they do not

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 5

 20

 40

 60

 80

 100

 120

 140

 4 5 6 7 8 9 10

Q
oS

 /
C

om
pu

ta
tio

na
l C

os
t

Input data size (for a given metric)

Upper bound QoS / Comp Cost for A+B1
Lower bound QoS / Comp Cost for A+B1
Upper bound QoS / Comp Cost for A+B2
Lower bound QoS / Comp Cost for A+B2

Figure 4: Using upper/lower bounds.

take data ranges into account. The statistical approach can be extended in two directions: an
interval can be used to represent the maximum and minimum of the QoS, measured across all
the possible input data range. But it is a coarse approximation, as it does not take into account
any correlations of the QoS with input data. The other direction corresponds to using a func-
tion which, for every possible input data, represents some average value of the characteristic.
This can be more precise than using a single point, but again it does not provide any bounds
(not even approximate) for the QoS values.

Combining these two extensions boils down to using functions over input data which repre-
sent upper and lower bounds, and which are transformed into QoS functions by appropriately
plugging in actual execution characteristics, as suggested in Section 2.3. While the results are
not strictly safe, we claim that these QoS bounds can be used to predict whether the future
history will stay within some predefined limits with better accuracy than just a static point,
static bounds, or an average. In any of the latter cases, less information than with the upper /
lower bound approximate functions is provided, so any decision will be less informed.

3 Analysis of Orchestrations

Our approach is based on translating process definitions into a language for which automatic
computational cost analysis tools are available. We will now give details on this process,
sketched in Fig. 5.

3.1 Overview of the Translation

Our input languages are a subset of BPEL 2.0 for the process definitions and WSDL for the
associated meta-information. These are translated into an intermediate language (Table 1)

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 6

BPEL

WSDL

Intermediate
language

Logic
program

Analysis
results

Transl
ation

Translation

T
ra
ns
la
ti
on

A
na

ly
si
s

Feedback

Feedback

Figure 5: The overall process.

Declarations and definitions
Complex type definition :-struct(QName, Members).
Port type definition :-port(QName,Operations).
External service :-service(PortName,Operation,

{TrustedProperties}).
Service definition service(Port , Operation,

InMsg , OutMsg):-Activity .
Activities

Variable assignment Var <- Expr
Service invocation invoke(PortName, Operation,

OutMsg, InMsg).
Reply and exit reply(OutMsg)
Sequence Activity1,Activity2
Conditional execution if(Cond, ActThen, ActElse)
While loop while(Cond, Activity)
Repeat-until loop repeatUntil(Activity, Cond)
For-each loop forEach(Var, Start, End, Activity)
Scope scope(VarDecl, ActivityList)
Scope fault handler handler(FaultName, Activity)
Parallel flow flow(LinkDecl, Activities)
Activity in a flow float(Attributes, Activity)

Table 1: Abstract orchestration elements.
which can also be used to cover other orchestration languages.1 This intermediate representation
is then translated into the Ciao logic programming language [6], which includes assertions to
express types and input / output modes for arguments, as well as resource definitions and
functions describing resource usage bounds. The resulting logic program is then analyzed by
the CiaoPP tool [5], which is able to infer upper and lower bounds for computational costs [7],
among other analyses.

A BPEL process definition is translated into a service definition which associates a port name
and an operation with an activity that represents the orchestration body. BPEL processes
forming a service network are translated into predicates which call each other to mimic service
invocations.

The intermediate language can describe namespace prefixes, XML schema-derived data types
1Although it currently models mainly BPEL constructs.

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 7

:- regtype ’factory->resData’/1.
’factory->resData’(’factory->resData’(A, B, C)):-

num(A), num(B), list(C, ’factory->partInfo’).

:- regtype ’factory->partInfo’/1.
’factory->partInfo’(’factory->partInfo’(A, B)):-

atm(A), atm(B).
Figure 6: Translation of types.

for messages, service port types, and also known properties of external services of interest to the
analysis (when such services are not analyzed). The activities supported by the intermediate
language include generic constructs (assignment, sequences, loops. . .) and specific constructs to
model orchestration workflows: flow, float, scope/handler, and invoke. flow corresponds
to the similarly named BPEL activity, while the float construct annotates an activity within
a flow with a description of outgoing links and their values, join conditions based on incoming
links, and a specification of the behavior in case of a join failure.

A relevant observation regarding the translation is that it does not need to follow strictly the
operational semantics of the orchestration language: it has to capture enough of it to ensure
that the analyzers will infer correct information while minimizing precision loss due to the
translation. Despite this, in our case the translated program is executable, and mirrors quite
closely (but not exactly) the operational semantics of the BPEL process under analysis.

3.2 Restrictions on Input Orchestrations

Our analysis is restricted to orchestrations which follow a receive–reply pattern, where all ac-
tivities start after receiving an initial message and finish by dispatching either a reply or a
fault notification. Additionally, we currently do not support the analysis of stateful service
callbacks using correlation sets or WS-Addressing schemes. In the future we plan to relax both
restrictions by identifying orchestration fragments that correspond to the receive–reply pattern.

In our intermediate language, we support a variant of the scope construct, which introduces
local variables and fault / compensation handlers. We do not fully support compensation
handlers, which in BPEL “undo” the effects of a successfully completed scope using snapshots
of variables recorded at successful completion of the scope. Except for recording snapshots,
compensation handlers can be treated as pseudo-subroutines on a scope level, and inlined at
their invocation place.

3.3 Type Translation and Data Handling

The simple types in XML schemata are abstracted as three disjoint types: numbers, strings
(translated into atoms), and booleans. Complex XML types are translated into predicates
specifying how the type is built. Fig. 6 shows the translation corresponding to a fragment of
the reservation scenario in Section 2.1. The type named ’factory->resData’ is a structure
with three fields: two numbers and a list of elements of type ’factory->partInfo’. Each of
these elements is in turn a structure with two fields (atoms).

The accepted expression language is a subset of XPath which allows node navigation only
along the descendant and attribute axes. This ensures that navigation is statically de-
cidable and XML structures can be deforested to pass the addressed components as sepa-

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 8

A Translation of T ([A|R], η, V)

empty T (R, η, V) (Empty action)
Aj , Ak T ([Aj , Ak|R], η, V) (Sequence)
reply(v) V = reply(η(v)) (End of orchestration)
throw(f) V = fault(f) (No fault handler)

T ([H], η, V) (Insert fault handler)

Table 2: Inline translations.
A Translation of T ([A|R], η, Y)

v <-e a(η, Y)← E(e, η,X), T (R, η[X/v], Y)

invoke(p, o, v, w) a(η, Y)← sp:o(η(v), Z),
(Z = fault(F)→ T ([throw(F)], η, Y)
; Z = result(X)→ T (R, η[X/w], Y))

if(c, A′, A′′) a(η, Y)← C(c, η), !, T ([A′|R], η, Y)
a(η, Y)← T ([A′′|R], η, Y)

while(c, A′) a(η, Y)← C(c, η), !, T ([A′, A], η, Y)
a(η, Y)← T (R, η, Y)

scope(D,A′
H) a(η, Y)← T ([A′

H], η[D], Z),
(var(Z)→ T (R, η, Y)
; Z = fault(F)→ T ([throw(F)], η, Y)
; Y = Z)

Table 3: Translation into predicates.
rate arguments when necessary to improve analyzer accuracy. For example, the expression
’$req.body/item[1]/@qty’ in the intermediate language refers to the attribute qty of the
first item element in the body part of a message stored in variable req. A set of standard
XPath operators and basic functions, such as position() and last(), are supported.

3.4 Basic Service and Activity Translation

An orchestration that implements operation o on port p is translated into a Horn clause
sp:o(X,Y)← T ([A], η, Y).

where X and Y correspond to the initial message and the final reply and T corresponds to the
translation of a list of activities (in this case just A, the body of the orchestration). η is an
environment that maps orchestration variables to logical variables, which initially just maps the
input message to X. New orchestration variables may be introduced with the scope construct.
On exit, Y can be bound to either reply(R), where R is the contents of the reply message, or
fault(F), where F is a fault identifier.

The translation operator T accepts a list of activities and produces a Prolog goal.2 Then
T ([], η, V) = true (nothing left to translate); otherwise the case is T ([A|R], η, V) and is driven
by the structure of A (Table 2). The empty activity is skipped. A sequence of activities is
unfolded and translated one by one. A reply(v) unifies the result V with the value of the
reply v in the current environment. If throw is executed in the scope of a fault handler H, it is
executed; otherwise the result is unified with the fault identifier.

In more complex cases (Table 3), each activity is translated as a call to a predicate. A variable
assignment v <-e generates a goal that evaluates e in η and unifies its result with variable X;
the remaining activities R are translated with η updated with the new binding [X/v]. Invoke

2Following Prolog notation an empty list is written [] and a list with head A and tail R is written [A|R].

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 9

<sequence>
<while name=’a_13’>
<condition>$i>0</condition>
<scope>
<assign name=’a_14’>
<copy><from>$i - 1</from><to variable=’i’/></copy>

</assign>
<assign name=’a_15’>
<copy><from>$resp.body/factory:part[$i]</from>
<to variable=’p’/></copy>

</assign>
<invoke name=’a_16’ portType=’factory:sales’
operation=’cancelReservation’ inputVariable=’p’
outputVariable=’r’/>

</scope>
</while>
<throw faultName=’factory:unableToCompleteRequest’/>

</sequence>
(a) A BPEL code fragment

while(’$i>0’, (% a_13
’$i’ <- ’$i␣-␣1’, % a_14
’$p’ <- ’$resp.body/factory:part[$i]’, % a_15
invoke(factory:sales,cancelReservation,’$p’,’$r’) % a_16

)),
throw(factory:unableToCompleteRequest)

(b) The intermediate representation.

a_13(A,B,C,D,E):- % ($i,$p,$resp.body/factory:part,$r,Y)
A>0, !, a_14(A,B,C,D,E).

a_13(A,B,C,D,E):-
E=fault(’factory->unableToCompleteRequest’).

a_14(A,B,C,D,E):-
F is A-1, a_15(F,B,C,D,E).

a_15(A,B,C,D,E):-
nth(A,C,F), a_16(A,F,C,D,E).

a_16(A,B,C,D,E):-
’service_factory->sales->cancelReservation’(B,F),
(F=fault(G) -> E=fault(G)
; F=reply(H) -> a_13(A,B,C,H,E)).

(c) Translation into logic program.

Figure 7: Translation example.

is similar, but it calls the target service predicate to obtain the result. if and while encode
their condition with a call to a predicate C and a cut.

A scope is translated by nesting the translation of the activity/fault handler A′H within
updated environment η[D], followed by a check for completion or faults. Faults within the scope
are handled by H, and outgoing faults are rethrown. flow is translated similarly to scope, but
without actually parallelizing the execution, since we are interested in the computational cost
of the flow regardless of the number of threads. Links are modeled as Boolean variables, and
dependent activities are sequenced to respect conditions on incoming/outgoing links. Dead-path
elimination is supported.

3.5 A Translation Example

A translation example is presented in Fig. 7. Subfigure (a) is a BPEL fragment of an or-
chestration, (b) is the corresponding intermediate form, and (c) is the translation into a logic
program. The orchestration traverses the list of part types to reserve from the external part

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 10

Resource With fault handling Without fault handling
(n ≥ 0: input arg. value) lower bound upper bound lower bound upper bound

Basic activities 2 7× n 5× n+ 2 5× n+ 2
Single reservations 0 n n n

Cancellations 0 n− 1 0 0

Table 4: Resource analysis results for the group reservation service.

Client

P1

UB1(m)

P2

UB2(m)

PN

UBN (m)

Tier 1

...

S1 ub1(n)

S2 ub2(n)

SN ubN (n)

Tier 2

...

Figure 8: Two-tier simulation setting.

maker sales service.3 If a fault arises, a fault handler tries to cancel already made reservations
before signaling failure to the client. The figure shows just the while loop, which finishes with
a reply.

The resource analysis finds out how many times external service invocations will be performed
during process execution, from which deducing the number of messages exchanged is easy. The
results for the complete orchestration are displayed in Table 4, where the estimated upper and
lower bounds are expressed as a function of the input message.4 We differentiate two cases: one
in which fault-free execution is assumed, and another where fault handlers can be executed,
which gives more cautious estimates. These two cases were obtained by turning on or off the
generation of Prolog code for fault handling –the last part of Fig. 7 (c).

4 An Experiment in Adaptation

To validate our approach, we performed a simulation to study the effectiveness of applying data-
aware computational cost functions to matchmaking and dynamic adaptation. We simulate a
service network (Figure 8) where a client C selects among a set of providers Pi to reserve
n = 1..50 sets of car parts. Each set consists of M = 5 different part types. The external client
chooses one Pi which in turn chooses from among a set of part suppliers Si, shared between
all the providers. All Pi and Si are known to be semantically equivalent, but vary in response
time as the QoS attribute of interest. A Pi or Si may fail with some probability pf . When this
happens, adaptation is triggered by searching for another (next-best) service from the pool.

The selection policies we have simulated are: random selection from the pool of candidates,
fixed preferences, and data-dependent QoS prediction based on computational cost.

3Unlike in the example in Section 2.1, this code does not query different factories.
4The analyzer took 1.811 seconds to infer this information on a Intel Core Duo 2GHz machine with 2GB

RAM and Darwin Kernel v10.2.0.

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 11

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50

ub_1(x)
ub_2(x)
ub_3(x)
ub_4(x)
ub_5(x)
ub_6(x)
ub_7(x)
ub_8(x)
ub_9(x)

ub_10(x)
ub_11(x)
ub_12(x)

lub(x)

Figure 9: Upper bounds for computational costs.

In the last case, we select the best candidate taking into account its upper bound complexity
(worst case behavior). Every service Si, 1 ≤ i ≤ 12 = N , has a different upper bound cost
function ubi(n) (portrayed in Figure 9), where n is the number of sets of a given part type. The
bold line highlights the lowest upper bound among all the services for each n. ubi(n) measures
the maximum number of messages exchanged by Si as a function of the size of the incoming
data. The computational cost for provider Pj is computed with the expression

UB j(n) = EPj
(n) +M +M × ub∗(n)

which takes into account both the structural computational cost EPj (using the same family of
curves in Figure 9) and that incurred by the services in the second layer: M times the cost ub∗
of a service S∗ selected for given n under the given selection policy.

Message exchanges are assigned a fixed time to convert them into execution time.5 In a real
scenario, this fixed amount of time can be updated as execution proceeds to reflect e.g. network
state or system load.

The fixed preferences policy ranks services using the expected response time for some rep-
resentative input; we chose n = 12. Therefore all queries whose data size is 12 are handled
equally by both the fixed preferences and the data-dependent complexity cost approaches.

For each selection policy and for each n in the range 1..50, one hundred simulations are run
and averaged. Each run performs matchmaking and simulates the execution of the selected
service. Besides failures, the simulated number of outgoing messages in the run is (uniformly)
randomly chosen between 60% and 100% of the upper bound, to model that sometimes this
upper bound may not be needed. The time associated with every message exchange is padded
with additional noise having a normal distribution to simulate the variations in the behavior of

5We are not taking into account the time associated to executing internal activities. The same technique
used to infer the number of messages can be used to infer the number of activities of every type associated to
some invocation, and can be accounted for in similarly to messages.

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 12

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45 50

Time [ms]

random
fixed
data

sim_s1_pf001.data

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45 50

Time [ms]

random
fixed
data

sim_s1_pf010.data

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45 50

Time [ms]

random
fixed
data

sim_s1_pf100.data

Figure 10: Simulation results for pf = 0.001,0.01,0.1 (left to right) and same noise distribu-
tion.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45 50

Time [ms]

random
fixed
data

sim_s2_pf001.data

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45 50

Time [ms]

random
fixed
data

sim_s2_pf010.data

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30 35 40 45 50

Time [ms]

random
fixed
data

sim_s2_pf100.data

Figure 11: Simulation results for pf = 0.001,0.01,0.1 (left to right) and different noise distri-
bution for each service.

the network.

Several sets of simulations with different time noise distribution parameters were performed,
of which we have chosen two representative ones. In Fig. 10 all services have the same per-
message average time (5 ms). In Fig. 11, services in both layers are assigned a different time
per message whose average is in the range 4-8 ms. The figures show plots for the three selection
policies, per each of the three failure probabilities used (left to right).

For most values of n, the data-dependent selection policy gives the best results and, notably,
they feature a homogeneous and predictable behavior w.r.t. failure rates pf ∈ {0.001, 0.01, 0.1}
and timing noise. Of course, it coincides with the selection made using the fixed preference
policy for n = 12, where the fixed preferences were calculated. In an extended set of simulations
(not appearing in this paper due to space constraints), the same behavior appears for even higher
failure rates.

5 Conclusions

We proposed using data-aware computational cost functions to predict QoS adaptations and
presented some preliminary results. We developed a translation-based scheme which, from
an orchestration (in BPEL+WSDL), generates a (logic) program that can be analyzed by
existing tools to automatically derive functions which are the upper and lower bounds of its
computational cost. These functions are used to build more precise QoS estimations taking
data characteristics into account which, in turn, can be used to, e.g., perform more precise
predictive monitoring and proactive adaptation. We have reported on the results of a series
of simulations where such data-aware QoS estimations were used to improve the efficiency of
dynamic, run-time adaptation. The results are promising in that the data-aware adaptation
always performs as well as any of the other policies studied, and in general gives better better
results, even for cases with a very large variability in service behavior.

Report No. CLIP 5/2009.1 March,2010

Towards Data-Aware Cost-Driven Adaptation 13

References

1. Mohammad Alrifai and Thomass Risse. Combining Global Optimization with Local Se-
lection for Efficient QoS-aware Service Composition. In International World Wide Web
Conference, pages 881–890. ACM, April 2009.

2. J. Cardoso. About the Data-Flow Complexity of Web Processes. In Int’l. WS on Business
Process Modeling, Development, and Support: Business Processes and Support Systems: De-
sign for Flexibility, pages 67–74, 2005.

3. J. Cardoso. Complexity analysis of BPEL web processes. Software Process: Improvement
and Practice, 12(1):35–49, 2007.

4. D. Jordan et al. Web Services Business Process Execution Language Version 2.0. Technical
report, IBM, Microsoft, et. al., 2007.

5. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Integrated Program Debug-
ging, Verification, and Optimization Using Abstract Interpretation (and The Ciao System
Preprocessor). Science of Computer Programming, 58(1–2):115–140, October 2005.

6. M. V. Hermenegildo, F. Bueno, M. Carro, P. López, J.F. Morales, and G. Puebla. An
Overview of The Ciao Multiparadigm Language and Program Development Environment
and its Design Philosophy. In Festschrift for Ugo Montanari, number 5065 in LNCS, pages
209–237. Springer-Verlag, June 2008.

7. J. Navas, E. Mera, P. López-García, and M. Hermenegildo. User-Definable Resource Bounds
Analysis for Logic Programs. In Int’l. Conf. on Logic Programming, volume 4670 of LNCS,
pages 348–363. Springer, 2007.

8. Wil van der Aalst and Maja Pesic. DecSerFlow: Towards a Truly Declarative Service Flow
Language. In The Role of Business Processes in Service Oriented Architectures, number
06291 in Dagstuhl Seminar Proceedings, 2006.

Report No. CLIP 5/2009.1 March,2010

