
Universidad Politécnica de Madrid

Escuela Técnica Superior de
Ingenieros Informáticos

Máster Universitario en Inteligencia Artificial

CODE SEARCH: A SEMANTIC, ABSTRACT
INTERPRETATION-BASED APPROACH

Author: Isabel Garcia-Contreras

Director: Manuel V. Hermenegildo

Co-director: José F. Morales

Madrid, April 2, 2017

CODE SEARCH: A SEMANTIC, ABSTRACT
INTERPRETATION-BASED APPROACH

Author: Isabel Garcia-Contreras
Director: Manuel V. Hermenegildo

Co-director: José F. Morales

Departamento de Inteligencia Artificial
Escuela Técnica Superior de Ingenieros Informáticos

Universidad Politécnica de Madrid

April 2, 2017

Thanks

This research has received funding from the EU FP7 agreement no 318337, ENTRA,
Spanish MINECO TIN2012-39391 StrongSoft and TIN2015-67522-C3-1-R TRACES
projects, and the Madrid M141047003 N-GREENS program.

Resumen

Los programadores tienen acceso actualmente a un gran número de repositorios de
código que aumenta cada día. Sin embargo, el gran potencial en cuanto a reuti-
lización que ofrecen estos servicios se ve limitado por el hecho de que encontrar el
código apropiado es una tarea muy difícil. La mayor parte de los buscadores de
código actualmente están basados en técnicas sintácticas, como signature matching,
o extracción de palabras clave. Estas técnicas son imprecisas (porque dependen
básicamente de la documentación) y a la vez no ofrecen unos lenguajes de búsqueda
muy expresivos. En esta tesis de máster se propone un nuevo enfoque basado en
preguntar a los buscadores por características semánticas del código, obtenidas au-
tomáticamente del mismo. Los programas se pre-procesan utilizanto técnicas de
análisis estático, basadas en la interpretación abstracta, lo que permite obtener
aproximaciones semánticas seguras. Se presenta un nuevo lenguaje de búsqueda
usado para expresar las características semánticas deseadas como especificaciones
parciales. Se encuentra código relevante comparando estas especificaciones parciales
con la semántica inferida de cada elemento de los programas. Nuestro enfoque es
totalmente automático y no depende de anotaciones de los programadores o docu-
mentación. Es más potente y flexible que signature matching porque es dependiente
del dominio abstracto y las propiedades (en vez de sólo de los tipos). También es
capaz de razonar con relaciones entre propiedades, como la implicación o la abstrac-
ción, en lugar de sólo la igualdad. Es más robusto frente a diferencias sintácticas en
el código. En este documento se describe este enfoque y se evalúa la implementación
de un prototipo en el sistema Ciao.

i

ii

Abstract

Programmers currently enjoy access to a very high number of code repositories and
libraries of ever increasing size. The ensuing potential for reuse is however hampered
by the fact that searching within all this code becomes an immensely difficult task.
Most code search engines are based on syntactic techniques such as signature match-
ing or keyword extraction. However, these techniques are at the same inaccurate
(because they basically rely on documentation) and at the same time do not offer
very expressive code query languages. We propose a novel approach that focuses on
querying for semantic characteristics of code obtained automatically from the code
itself. Program units are pre-processed using static analysis techniques, based on
abstract interpretation, obtaining safe semantic approximations. A novel, assertion-
based code query language is used to express desired semantic characteristics of the
code as partial specifications. Relevant code is found by comparing such partial
specifications with the inferred semantics for each program element. Our approach
is fully automatic and does not rely on user annotations or documentation. It is
more powerful and flexible than signature matching because it is parametric on the
abstract domain and properties. Also, it reasons with relations between proper-
ties, such as implication and abstraction, rather than just equality. It is also more
resilient to syntactic code differences. We describe the approach and report on a
prototype implementation within the Ciao system.

iii

iv

Contents

1 Introduction 1
1.1 Related work . 1

1.1.1 Keyword extraction . 1
1.1.2 Signature matching . 2

1.2 Our approach . 2
1.3 Structure of the document . 3

2 The Ciao System 5
2.1 The Ciao Module System . 5
2.2 Ciao Assertions . 7
2.3 The Documentation Generator . 8

3 Traditional search 11
3.1 Regular expression search . 11
3.2 Fuzzy string search . 12

3.2.1 Metric . 12
3.2.2 Fuzzy predicate search . 14

4 Abstract Code Search 15
4.1 Preliminaries and Concrete Semantics 15
4.2 Inferring the Program Semantics by Abstract interpretation 16
4.3 Abstract Code Search . 18
4.4 ’Calls’ Condition Matching . 21
4.5 ’Success’ Condition Matching . 24
4.6 Combining information from different domains 26
4.7 Algorithms . 28

4.7.1 Pre-analysis . 28
4.7.2 Module inspecting . 29
4.7.3 Predicate matching . 29

5 Implementation 31
5.1 Putting all together . 31
5.2 Searching with the prototype . 33

v

CONTENTS

5.3 Performance results . 34

6 Prototype Manual 35

7 Conclusions 89
7.1 Future Work . 90

Bibliography 91

Appendices 95

A Example code 97

B Additional tables 99

vi

List of Figures

2.1 A high-level view of the Ciao system [11]. 6
2.2 Overall operation of LPdoc. 8

4.1 Program with assertions that define different calls. 22
4.2 A simple program analyzed. 25
4.3 Inferred lattice of the module in Figure 4.2. 25

5.1 pretty_finder search example. 32

6.1 Bundle structure. 44

A.1 Fragment from ugraphs.pl (Ciao library). 97
A.2 named_graphs.pl (Ciao library) . 98

vii

LIST OF FIGURES

viii

List of Tables

5.1 Assertion Checking times (µs). 34

B.1 Analysis statistics from core/lib modules: time(ms) and memory(B)
consumption. 99

B.2 Analysis dump files statistics from core/lib modules. 101

ix

LIST OF TABLES

x

1
Introduction

The code sizes of current software systems and libraries grow continuously. The
open-source revolution implies that programmers currently enjoy access to many
repositories which are very often large. While this code abundance brings great
potential for code reuse, with the ensuing coding time savings, it also brings about a
new problem: searching within these code bases is becoming an immensely difficult
task.

1.1 Related work

Most code search engines have so far addressed this problem through syntactic
techniques such as keyword extraction and signature matching.

1.1.1 Keyword extraction

[14] is an early example of the work based on information retrieval techniques. It
used keywords extracted from man pages described in natural language. More recent
code search engines like Black Duck Open Hub (http://code.openhub.net) use
the same techniques but including also keyword extraction from variable names in
the code itself. They combine those keywords with very simple specifications of
the kind of code the user is looking for (e.g., whether it is classes, methods, or
interfaces). Other recent work has used a similar approach combined with ranking

1

http://code.openhub.net

CHAPTER 1. INTRODUCTION

techniques. For example, [15] uses annotations in code instead of man pages in
order to cluster features from Java packages. The idea is that multiple users will
rank over time how the packages match the search. Google code search (https://
github.com/google/codesearch) is based on regular expressions. While keyword
and regular expression search is obviously useful, the fact that these techniques rely
on documentation (including the names of identifiers in the code) means that they
also have shortcomings. They are clearly of limited use if the code has no comments,
existing comments are wrong, or other elements like variable, module, or procedure
names are not representative and/or not easy to match against. In general, searching
for keywords can miss a lot of matches (so that code will be overlooked) because
things can be expressed in different ways or even in a different (natural) language.
Also, the code query languages offered are limited in the sense that they do not
allow expressing semantic characteristics of the programs to look for.

1.1.2 Signature matching

An alternative to keyword search is to query instead the signatures present in the
code, an approach already proposed in [24] for finding code written in a functional
language. In this work, the solver within λProlog was used to match the signatures
present in the code against some pre- and post-condition specifications used as search
keys. The Haskell code browser Hoogle [16] combines this type of signature matching
with keyword matching. In the same line [23] combines these two techniques with
test cases as a means for specification. Signature matching is a more formal approach
than keyword matching, but it is still essentially syntactic, relies on the presence of
signatures in the program, and is limited to the properties of the language of the
signatures, i.e., generally types.

1.2 Our approach

We propose a new approach that focuses on querying for semantic characteristics of
code that are inferred automatically from the code itself. Instead of relying on user-
provided signatures, comments, or identifier names, the code bases are pre-analyzed
using static analysis techniques based on abstract interpretation, obtaining safe
approximations of the meaning and behavior of the program. The use of different
abstract domains allows generating a wide (and user extensible) variety of properties
(generalized types, instantiation modes, variable sharing, constraints on values, etc.)
that can be queried. To this end we also propose a flexible code query language based
on assertions that expresses specifications composed of these very general properties.
These abstract query specifications are used to reason against the abstract semantics
inferred for the code, in order to select code elements that comply with the queries.

2

https://github.com/google/codesearch
https://github.com/google/codesearch

CHAPTER 1. INTRODUCTION

Our approach is fully automatic and does not rely on user annotations or docu-
mentation. Although assertions in the code can also help the analysis, they are not
needed, i.e., the approach works even if the code contains no assertions or signatures,
since the program semantics is inferred by the abstract interpreter. It is thus more
powerful than signature matching methods (which it subsumes), which require such
signatures and/or type definitions.

The proposed approach also reasons with relations between properties, such as
implication and abstraction, rather than just matching, which allows much more ex-
pressive search and more accurate results. Our approach is also much more flexible,
since it is parametric on the abstract domain and properties, i.e., the inference and
the search can be based on any property for which an abstract domain is available
and not just syntactic match of the properties in the signature language (gener-
ally types). It can also be tailored through new abstract domains to fit particular
applications. Our approach can be more powerful than (and in any case is comple-
mentary to) keyword-based information-retrieval systems because its is based on a
semantic analysis of the code, and is thus independent of documentation. It is also
more resilient to syntactic differences (including code obfuscation techniques) such
as, e.g., non descriptive names of functions/variables.

1.3 Structure of the document

In the rest of the thesis, we start by describing in Chapter 2 the Ciao system,
the framework that we have used to develop our prototype and within we will be
looking for code. In Chapter 3 we present some keyword matching techiques and
how they are included in the Ciao System. Chapter 4 contains our theoretical
basis: preliminaries and notation, a review of program semantics approximation
by Abstract Interpretation, and a description of our code query language and code
search procedure. In Chapter 5 we report on a prototype implementation of our
approach that uses the abstract analysis engines of the within the Ciao system
and provide some performance results. Chapter 6 provides the User Manual and
documentation for the prototype, including the module structure. Finally, Chapter 7
contains our conclusions and some proposals for future work.

3

CHAPTER 1. INTRODUCTION

4

2
The Ciao System

Ciao [11] is a modern, multiparadigm programming language with an advanced
programming environment. The main motivation behind the system is to develop
a combination of programming language and development tools that together help
programmers produce better code in less time and with less effort.

A high-level view of the Ciao System is shown in Fig. 2.1. Blue-coloured boxes
represent user-written code; green boxes represent different tools within the system:
the compiler, LPdoc (detailed in Sect. 2.3) and the Ciao Preprocessor; and the red
box represents the interpreter of the system. In this thesis, only some of them will
be detailed, as not all of them are used.

In the following sections we explain how source files are organized in Ciao (the
Ciao Module System), the Ciao asserions, and how documentation is generated (with
LPdoc), based on such assertions.

2.1 The Ciao Module System

In this section we detail the main points of the Ciao Module System [3]. Mod-
ularity is a basic notion in modern computer languages. Modules allow dividing
programs into several parts, which have their own independent name spaces and a
clear interface with the rest of the program.

This isolated way of seeing the code has two main advantages. It allows a divide-

5

CHAPTER 2. THE CIAO SYSTEM

Figure 2.1: A high-level view of the Ciao system [11].

and-conquer approach to program development and maintenance and, in terms of
efficiency, tools which work with programs can be more efficient if they can process
a single program at a time.

Defining Modules: The source of a Ciao module is typically contained in a sin-
gle file. The fact that a file contains a module is flagged by the presence of a
“:- module(...” declaration at the beginning of the file. The predicates defined
within a module will be visible only if they are exported.

Imports and Exports: A number of predicates in a module can be exported,
i.e., made available outside the module, via explicit :- export declarations or in an
export list in the :- module(... declaration.

Also, it is possible to import a number of individual predicates or also all pred-

6

CHAPTER 2. THE CIAO SYSTEM

icates from another module, by using :- use_module and :- import declarations.
Those predicate must be previously exported by the concrete module.

Visibility Rules: The set of predicates which are visible in a module are predi-
cates defined in that module plus the predicates imported from other modules. It
is possible to refer to predicates with or without a module qualification. A module-
qualified predicate name has the form module:predicate. An example of this form is
the call lists:append(A,B,C).

2.2 Ciao Assertions

Assertions are linguistic constructions for expressing abstractions of the meaning and
behavior of programs. Herein, we will use the pred assertions of [19]. Such pred
assertions allow specifying certain conditions on the state (current substitution or
constraint store) that must hold at certain points of program execution. They are
very useful for detecting deviations of behavior (symptoms) with respect to such
assertions, or to ensure that no such deviations exist (correctness). In particular,
they allow stating sets of preconditions and conditional postconditions for a given
predicate. Such pred assertions take the form:

:- pred Head : Pre => Post.

where Head is a normalized atom that denotes the predicate that the assertion
applies to, and the Pre and Post are conjunctions of “prop” atoms, i.e., of atoms
whose corresponding predicates are declared to be properties [19, 21]. Both Pre and
Post can be empty conjunctions (meaning true), in that case they can be omitted.
The following example illustrates the basic concepts involved:

Example 1 These assertions describe different modes for calling a length predi-
cate: either for (1) generating a list of length N, (2) to obtain the length of a list
L, or (3) to check the length of a list:�

1 :- pred length(L,N) : (var(L), int(N)) => list(L). %(1)
2 :- pred length(L,N) : (var(N), list(L)) => int(N). %(2)
3 :- pred length(L,N) : (list(L), int(N)). %(3)
4

5 :- prop list /1.
6 list ([]).
7 list([_|T]) :- list(T).� �

Note also the definition of the list/1 property (in this case a regular type)
in line 7. Other properties (int/1 –a base regular type, and var/1 –a mode) are

7

CHAPTER 2. THE CIAO SYSTEM

assumed to be loaded from the libraries (native_props in Ciao for these properties).
2

The following definition relates a set of assertions for a predicate to the nodes
which correspond to that predicate in the generalized and tree for the current
program P and initial set of queries Q:

Definition 1 (The Set of Assertion Conditions for a Predicate) Given a pred-
icate represented by a normalized atom Head, and a corresponding set of assertions
A = {A1 . . . An}, with Ai = “:- pred Head : Prei => Posti.” the set of asser-
tion conditions for Head determined by A is {C0, C1, . . . , Cn}, with:

Ci =

{
calls(Head,

∨n
j=1 Prej) i = 0

success(Head, Prei, Posti) i = 1..n

where calls (Head,Pre) states conditions on θc in all nodes 〈L, θc, θs〉 where L ∧
Head holds, and success(Head,Pre,Post) refers to conditions on θs in all nodes
〈L, θc, θs〉where L ∧Head and Pre ∧ θc hold.

The assertion conditions for the assertions in the example above are:
calls(length(L,N), ((var(L) ∧ int(N)) ∨ (var(N) ∧ list(L)) ∨ (list(L) ∧ int(N))),

success(length(L,N), (var(L) ∧ int(N)), list(L)),
success(length(L,N), (var(N) ∧ int(L)), int(N)),

2.3 The Documentation Generator

LPdoc is a tool within the Ciao system [9] that automatically generates program
documentation for (C)LP systems. Its main functionality is to generate a reference
manual automatically from one or more source files of (constraint) logic programing
systems. The operation of LPdoc is illustrated in Fig. 2.2.

Figure 2.2: Overall operation of LPdoc.

8

CHAPTER 2. THE CIAO SYSTEM

It combines the information from a number of user and system files (as specified
in an user-provided configuration file –SETTINGS in Fig. 2.2) an produces manuals
in a number of formats which can include bibliographic citations and images.

The quality of the generated documentation can be greatly enhanced by including
within the program text assertions for the predicates in the program. The assertions
and comments included in the source file need to be written using the Ciao assertion
language [20].

The manual describing the implementation of the prototype included within
this thesis was generated from the implementation itself using LPdoc (see DeepFind
Manual).

9

CHAPTER 2. THE CIAO SYSTEM

10

3
Traditional search

Searching with keywords is sometimes really useful but it can be limited if the user
does not know the exact words used within the code that he/she is looking for. In
this section we explore two different options, that can be combined, to easily improve
the exact word search.

3.1 Regular expression search

The first improvement that we will explore are regular expressions. Regular expres-
sions are sequences of characters that define a pattern. They can be useful when
the user does not know the exact name of the predicate or wants to find code that
contains a concrete word or set of characters. Including this kind of expressions for
specifying keyword requirements improves the expressivity of the search.

The Ciao System already contains and implementation of regular expression-
based search in the librowser library: apropos/1. It uses the POSIX regular ex-
pression language. The usage of this library is detailed in the User’s Manual. In
the following example we want to find the predicates with a name beginning with
“write” and of arity 2:

?- apropos(’write.*’/2).
dht_misc:write_pr/2
profiler_auto_conf:write_cc_assertions/2
mtree:write_mforest/2

11

CHAPTER 3. TRADITIONAL SEARCH

transaction_concurrency:write_lock/2
transaction_logging:write/2
provrml_io:write_vrml_file/2
provrml_io:write_terms_file/2
...

yes
?-

3.2 Fuzzy string search

Although searching with regular expressions can be very useful, if the user makes a
spelling mistake, writes a small letter instead of a capital letter, misses a dash, etc,
many results can be overlooked.

To deal with these mistakes, and to improve the amount of found predicates, we
have implemented a basic fuzzy search algorithm (also known as a similarity search
algorithm). Fuzzy search algorithms are characterized by a metric, i.e., a function
of distance between two words, which provides a measure of their similarity.

3.2.1 Metric

Formally, a metric on a set X is a function

d : X ×X → [0,∞)

where [0,∞) is the set of non-negative real numbers, and for all x, y, z ∈ X, the
following conditions are satisfied:

1. d(x, y) ≥ 0

2. d(x, y) = 0 ⇐⇒ x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z)

We have explored a number of metrics, such as Hamming, Levenshtein and
Damerau-Levenshtein distances (see [6]). Hamming distance [8] is a metric for sets
of words of equal lenght, which is not really useful in practice because it does not
cover all the types of mistakes that we exposed earlier, like forgetting a letter.

12

CHAPTER 3. TRADITIONAL SEARCH

Levenshtein distance

Informally, the Levenshtein distance [13] between two words is the minimum num-
ber of single-character edits (i.e. insertions, deletions or substitutions) required to
change one word into the other.

Mathematically, to express the Levenshtein distance between two strings a and b
a function leva,b(i, j) is defined, whose value is a distance between an i-symbol prefix
(initial substring) of string a and a j-symbol prefix of b. The Levenshtein distance
between two strings a, b (of lenght |a| and |b| respectively) is given by leva,b(|a|, |b|)
where:

leva,b(i, j) =

max(i, j) if min(i, j) = 0,

min

leva,b(i− 1, j) + 1
leva,b(i, j − 1) + 1
leva,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise

where 1(ai 6=bj) is the indicator function equal to 0 when ai = bj and equal to 1
otherwise.

Some examples of this function:
• DistLev(append, apend) = 1
• DistLev(append, appennd) = 1
• DistLev(append, appemd) = 1
• DistLev(append, appedn) = 2

As the examples show, this function is very useful for measuring edits, insertions
and deletions. Transpositions, on the other hand, are not counted as one mistake
(last example). This function can be easily extended in order to “correctly” count
those errors.

Damerau-Levenshtein distance

The Damerau-Levenshtein distance [5] between two words is the minimum number
of operations needed to transform one string into the other. Operations are defined
as an insertion, deletion, or substitution of a single character, or a transposition of
two adjacent characters. In [5], it is stated that this set of errors correspond to more
than 80% of all human misspellings and that they should be corrected with at most
one edit operation.

Formally, to express the Damerau-Levenshtein distance between two strings a
and b a function dama,b(i, j) is defined, whose value is a distance between an i-
symbol prefix (initial substring) of string a and a j-symbol prefix of b. The function

13

CHAPTER 3. TRADITIONAL SEARCH

is defined recursively as follows:

dama,b(i, j) =

max(i, j) if min(i, j) = 0,

min

dama,b(i− 1, j) + 1
dama,b(i, j − 1) + 1
dama,b(i− 1, j − 1) + 1(ai 6=bj)
dama,b(i− 2, j − 2) + 1

if i, j > 1 and ai = bj−1
and ai−1 = bj,

min

dama,b(i− 1, j) + 1
dama,b(i, j − 1) + 1
dama,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise.

where 1(ai 6=bj) is the indicator function equal to 0 when ai = bj and equal to 1
otherwise.

With this distance, the same examples as above:

• DistDam(append, apend) = 1

• DistDam(append, appennd) = 1

• DistDam(append, appemd) = 1

• DistDam(append, appedn) = 1

3.2.2 Fuzzy predicate search

We have determined that the most practical distance is the Damerau-Levenshtein
distance because it counts transposition as one mistake.

We have implemented a simple linear search algorithm that checks all exported
predicates in a given set of Ciao modules. Linear search performs well: checking the
specifications against the set of exported predicates of 1300 modules takes from 1.5s
to 4s approximately. Here is an example of usage, we try to find predicates with the
name “write” but we misspell it:

?- apropos(’wirte’).
Predicate wirte not found. Similar predicates:

transaction_logging:write/2
write:write/1
write:write/2

yes
?-

14

4
Abstract Code Search

In this chapter we detail our new approach to code searching: searching with seman-
tic characteristics. After introducing some preliminaries and notation in Section 4.1
and reviewing program semantics approximation by Abstract Interpretation in Sec-
tion 4.2, in Section 4.3 we present our code query language, in Section 4.4 and
Section 4.5 we describe our code search procedure and give some examples. In Sec-
tion 4.7 we present the pseudocode of the algorithms needed for the implementation
of this approach.

4.1 Preliminaries and Concrete Semantics

We denote by VS, FS, and PS the set of variable, function, and predicate symbols, re-
spectively. Variables start with a capital letter. Each p ∈ PS is associated with a nat-
ural number called its arity, written ar(p) or ar(f). The set of terms TS is inductively
defined as follows:1 VS ⊂ TS, if f ∈ FS and t1, . . . , tn ∈ TS then f(t1, . . . , tn) ∈ TS
where ar(f) = n. An atom has the form p(t1, ..., tn) where p is a predicate symbol
and ti are terms. A predicate descriptor is an atom p(X1, . . . , Xn) where X1, . . . , Xn

are distinct variables. A clause is of the form H:-B1, . . . , Bn where H, the head, is
an atom and B1, . . . , Bn, the body, is a possibly empty finite conjunction of atoms.
In the following, we assume that all clause heads are normalized, i.e., H is of the

1We limit for simplicity the presentation to the Herbrand domain, but the approach and results
apply to constraint domains as well. In the rest of the work we will refer interchangeably to
substitutions or constraints, and to the current substitution or the constraint store.

15

CHAPTER 4. ABSTRACT CODE SEARCH

form of a predicate descriptor. Furthermore, we require that each clause head of a
predicate p have identical sequence of variables Xp1 , ..., Xpn . We call this the base
form of p. This is not restrictive since programs can always be put in this form, and
it simplifies the presentation. However, in the examples and in the implementation
we handle non-normalized programs. A definite (constraint) logic program, or pro-
gram, is a finite sequence of clauses. Let ren denote a set of renaming substitutions
over variables in the program at hand. The concrete semantics used for reasoning
about goal-dependent compile-time semantics of logic programs will use the notion
of generalized and trees, described in [1]. A generalized and tree represents the
execution of a query to a Prolog predicate. Basically, every node of a generalized
and tree contains a call to a predicate, adorned on the left with the call substitution
to that predicate, and adorned on the right with the corresponding success substi-
tution. The concrete semantics of a program P for a given set of queries Q, JP KQ,
is the set of generalized and trees that represent the execution of the queries in Q
for the program P . We will denote a node in a generalized and tree with 〈L, θc, θs〉,
where L is the call to a predicate p in P , and θc, θs are the call and success substi-
tutions over vars(L) adorning the node, respectively. The calling_context(L, P,Q)
of a predicate given by the predicate descriptor L defined in P for a set of queries Q
is the set {θc|∃T ∈ JP KQ s.t. ∃〈L′, θc, θs〉 in T ∧ ∃σ ∈ ren Lσ = L′}, where ren is a
set of renaming substitutions over variables in the program at hand. We denote by
answers(P,Q) the set of answers (success substitutions) computed by P for query
Q.

4.2 Inferring the Program Semantics by Abstract
interpretation

As mentioned in the introduction, our approach for finding predicates semantically
is based on pre-processing program units using static analysis techniques, in order
to obtain safe approximations of the semantics of the predicates in these units. Our
basic technique for this purpose is abstract interpretation [4], an approach for static
program analysis in which execution of the program is simulated on an abstract
domain (Dα) which is simpler than the actual, concrete domain (D). Although not
strictly required, we assume Dα has a lattice structure with meet (u), join (t), and
less than (v) operators. Abstract values and sets of concrete values are related via
a pair of monotonic mappings 〈α, γ〉: abstraction α : D → Dα, and concretization
γ : Dα → D. Concrete operations on D values are approximated by corresponding
abstract operations on Dα values. The key result for abstract interpretation is that
it guarantees that the analysis terminates, provided that Dα meets some conditions
(such as finite ascending chains) and that the results are safe approximations of
the concrete semantics (provided Dα safely approximates the concrete values and
operations).

16

CHAPTER 4. ABSTRACT CODE SEARCH

Goal-dependent abstract interpretation: We will be using goal-dependent
abstract interpretation, concretely the PLAI algorithm [18], available within the
Ciao/CiaoPP system [10, 12]. PLAI takes as input a program P , an abstract domain
Dα, and an abstract initial call pattern2 Qα = L:λ, where L is an atom, and λ is a
restriction of the run-time bindings of L expressed as an abstract substitution λ ∈
Dα. The algorithm computes a set of triples analysis(P,L:λ,Dα) = {〈L1, λ

c
1, λ

s
1〉,

. . . , 〈Ln, λcn, λsn〉}. In each 〈Li, λci , λsi 〉 triple, Li is an atom, and λci and λsi are,
respectively, the abstract call and success substitutions, elements of Dα. Let Q be
the set of concrete queries described by L:λ, i.e., Q = {Lθ | θ ∈ γ(λ)}. In addition to
termination, correctness of abstract interpretation provides the following guarantees:

• The abstract call substitutions cover all the concrete calls which appear during
execution of initial queries in Q. Formally:
∀p′ ∈ P ∀θc ∈ calling_context(p′, P,Q)

∃〈L′, λc, λs〉 ∈ analysis(P,L:λ) s.t. θc ∈ γ(λc),
where L′ is a base form of p′.

• The abstract success substitutions cover all the concrete success substitutions
which appear during execution, i.e., ∀i = 1 . . . n ∀θc ∈ γ(λci) (which, as we
saw before, cover all the calling contexts) if Liθc succeeds in P with computed
answer θs then θs ∈ γ(λsi).

The abstract interpretation process is monotonic, in the sense that more specific
initial call patterns yield more precise analysis results. As usual in abstract in-
terpretation, ⊥ denotes the abstract substitution such that γ(⊥) = ∅. A tuple
〈Pj, λcj,⊥〉 indicates that all calls to predicate pj with substitution θ ∈ γ(λcj) either
fail or loop, i.e., they do not produce any success substitutions.

Multivariance. The analysis (as well as the assertion language presented later) is
designed to discern among the various usages of a predicate. Thus, multiple usages
of a procedure can result in multiple descriptions in the analysis output, i.e., for
a given predicate P multiple 〈P, λc, λs〉 triples may be inferred and queried. This
will allow finding code more accurately. More precisely, the analysis is said to be
multivariant on calls if more than one triple 〈P, λc1, λs1〉, . . . , 〈P, λcn, λsn〉 n ≥ 0 with
λci 6= λcj for some i, j may be computed for the same predicate. In this work we use
analyses that are multivariant on calls.

The analysis is said to be multivariant on successes if more than one triple
〈P, λc, λs1〉, . . . , 〈P, λc, λsn〉 n ≥ 0 with λsi 6= λsj for some i, j may be computed for the
same predicate p and call substitution λc. Different analyses may be defined with
different levels of multivariance. Our analysis allows both types of multivariance,
but multivariance on calls is switched on by default while multivariance on success
is off by default, for efficiency reasons.

2We use sets of calls patterns in subsequent sections –the extension is straightforward.

17

CHAPTER 4. ABSTRACT CODE SEARCH

Analysis target. We will look for predicates in a predefined set of programs or
modules. Each of them will be analyzed independently and we will denote with
analysis(m,Dα,Qα) the analysis of a module m with respect to the set of call
patterns Qα in domain Dα. The reason for this kind of analysis is that normally
users are looking for independent libraries to reuse. Code will be asumed to be
written within the Ciao module system, specified in Chapter 2. When performing
the analysis, only the exported predicates will be considered for the initial calls. We
will use exported(m) to express the set of predicate names exported by module m.

An issue in the computation performed by analysis(m,Dα,Qα) is that, from the
point of view of analysis, the code of the module m to be analyzed taken in isolation
is incomplete, in the sense that the code for procedures imported from other modules
is not available to analysis. The direct consequence is that, during the analysis of
a module m, there may be calls P : CP such that the procedure P is not defined
in m but instead it is imported from another module m′. A number of alternatives
are available (and implemented in the system in which we conduct our experiments,
Ciao) in order to deal with these inter-modular connections [2]. We assume, without
loss of generality, that for these external calls, we will trust the assertions present
in the imported modules for the predicates they export, and use their information
in the individual module analysis.

4.3 Abstract Code Search

We now propose the mechanism for defining abstract searches for predicates. Our
objective now is not describing concrete predicates as before, but rather to state some
desired semantic characteristics and perform a search over the set of predicates in
some code P (our set of modules) looking for a subset of predicates meeting those
characteristics. To this end we define the concept of query assertions, inspired by
the anonymous assertions of [25]. This requires extending our syntax so that in
the normalized atoms that appear in the Head positions of these assertions, the
predicate symbol can be a variable from VS.

Definition 2 (Query assertion) A query assertion is an expression of the form:

:- pred L : Pre => Post.

where L is of the form X(V1, ..., Vn) and Pre and Post are (optional) DNF
formulas of prop literals.

We will use this concept to express conditions on the search. The intuition is
that a query assertion is an assertion where the variable X ∈ V S in the predicate
symbol location of L will be instantiated during the search for code to predicate

18

CHAPTER 4. ABSTRACT CODE SEARCH

symbols from PS that comply with some query assertions. The following predicate
defines the search:

Definition 3 (Predicate query) A predicate query is of the form:

?- findp({ As }, M:Pred/A, Residue, Status).

where:

• As is a set of query assertions, with the same arity and the same variable
Pred as main functor of the different assertion Heads. This set can also
include definitions of properties (e.g., regtypes or other props) used in the
query assertions.

• M:Pred/A is a predicate descriptor, referring to a predicate Pred with arity
A and defined in module M that corresponds to the information in the other
arguments.

• Residue is a set of pairs of type (condition, list(domain, status)) which ex-
presses the result of the proof of each condition in each domain. The status will
be checked for those conditions that were proved to hold in the given domain.
It will be false if they were proven not to hold in that domain. Lastly, it will
be check for conditions for which nothing could be proved.

• Status is the overall result of the proof for the whole set of conditions in the
query assertion. It will be checked if all conditions are proved to be checked.
It will be false if one condition is false. It will be check if neither checked nor
false can be proved.

Predicate queries are our main means for conducting the semantic search for
predicates. The query assertions and property definitions in As induce a series of
calls and success assertion conditions (as per Def. 1) which are used to perform the
filtering of candidate predicates. I.e., the calls conditions encode that the admissi-
ble calls of the matching predicates should be within the set of Pre conditions. The
success conditions encode that, if Pre holds at the time of calling the matching
predicate, and the execution succeeds, then the Post conditions hold.

Example 2 Given code P , the predicate query:�
1 ?- findp({ :- pred X(A,B) : (list(A), var(B)) => int(B). },
2 M:X/2, Residue , Status)}).� �
indicates that the user is looking for predicates p ∈ P with ar(p) = 2, such that on
calls the first argument is instantiated to a list and the second is a free variable, and
that, when called in this way, if p succeeds, its second argument will be instantiated
to an integer. A predicate that could match this query is, for example, the length/2

19

CHAPTER 4. ABSTRACT CODE SEARCH

predicate of arity 2 defined in module lists. The call to findp would unify M:X to
lists:length. If the match is not complete for some reason, there may be some
conditions “left to prove” in Residue. Status will summarize the result. 2

We now address how a predicate matches the conditions in a predicate query in
the form of Def. 3. To this end we provide some definitions (adapted from [22, 21])
which will be instrumental in order to connect the literals in query assertions to the
results of analysis.

Definition 4 (Trivial Success Set of a Property Formula) Given a conjunc-
tion L of properties and the definitions for each of these properties in P , we define
the trivial success set of L in P as:

TS(L, P) = {∃̄Lθ |∃θ′ ∈ answers(P, (L, θ)) s.t. θ |= θ′}.

where ∃̄Lθ denotes the projection of θ onto the variables of L. Intuitively, it is the
set of constraints θ for which the literal Lθ succeeds without adding new “relevant”
constraints to θ (i.e., without constraining it further).

For example, given the following program P :�
1 list ([]).
2 list([_|T]) :- list(T).� �
and L = list(X), both θ1 = {X = [1, 2]} and θ2 = {X = [1, A]} are in the trivial
success set of L in P , but θ = {X = [1|_]} is not, since a call to (X = [1|_],
list(X)) will instantiate the second argument of [1|_]. We now define abstract
counterparts for Def. 4:

Definition 5 (Abstract Trivial Success Subset of a Property Formula) Given
a conjunction L of properties, the definitions for each of these properties in P , and
an abstract domain Dα, an abstract constraint or substitution λ−TS(L,P) ∈ Dα is an
abstract trivial success subset of L in P iff γ(λ−TS(L,P)) ⊆ TS(L, P).

Definition 6 (Abstract Trivial Success Superset of a Property Formula) Under
the same conditions of Def. 5 above, an abstract constraint or substitution λ+TS(L,P)

is an abstract trivial success superset of L in P iff γ(λ+TS(L,P)) ⊇ TS(L, P).

I.e., λ−TS(L,P) and λ
+
TS(L,P) are, respectively, a safe under-approximation and a safe

over-approximation of the trivial success set for the property formula L with defini-
tions P .

We assume that the code P under consideration has been analyzed for an abstract
domain Dα, for a set of queries Q. Let Qα be the representation of those queries,

20

CHAPTER 4. ABSTRACT CODE SEARCH

i.e., it is the minimal element of Dα so that γ(Qα) ⊇ Q. We derive Qα from the code
by including in it queries for all exported predicates, affected by the calls conditions
of any assertions that appear in the code itself affecting such predicates (this is safe
because if analysis is not able to prove them, they will be checked in any case via
run-time checks). If no assertions appear in the code for a given exported predicate,
the analyzer will assume > for the corresponding query.

We will now relate, using the concepts above, the abstract semantics inferred by
analysis for this set of queries with the search process. As stated in Def. 1, a set of
assertions denotes different types of conditions (calls and success). We provide the
definitions for each type separately.

4.4 ’Calls’ Condition Matching

The idea of ’calls’ conditions is to restrict the search with properties that must hold
before the code is executed. This properties are usually defined by the author of the
code via regular Ciao assertions.

Intuitively, a ’calls’ condition C = calls(X(V1, . . . , Vn), P re) is checked for a
predicate if the admissible calls of the predicate are within the set of Pre conditions.

Definition 7 (Checked Predicate Matches for a ‘calls’ Condition) A calls con-
dition calls(X(V1, . . . , Vn), P re) is abstractly ‘checked’ for a predicate p ∈ P w.r.t.
Qα in Dα iff ∀〈L, λc, λs〉 ∈ analysis(P,Dα,Qα) s.t. ∃σ ∈ ren, L = p(V ′1 , . . . , V

′
n) =

X(V1, . . . , Vn)σ, λc v λ−TS(Pre σ,P).

Intuitively, a condition C = calls(X(V1, . . . , Vn), P re) is false for a predicate if
the admissible calls of the predicate and the set of Pre conditions are disjoint.

Definition 8 (False Predicate Matches for a ‘calls’ Condition) A calls con-
dition calls(X(V1, . . . , Vn), P re) is abstractly ‘false’ for a predicate p ∈ P w.r.t.
Qα in Dα iff ∀〈L, λc, λs〉 ∈ analysis(P,Dα,Qα) s.t. ∃σ ∈ ren, L = p(V ′1 , . . . , V

′
n) =

X(V1, . . . , Vn)σ, λc u λ+TS(Pre σ,P) = ⊥.

Note that in these definitions we do not use directly the Pre and Post conditions,
although they already are abstract substitutions. This is because the properties
in the conditions stated by the user in assertions might not exist as such in Dα.
However, it is possible to compute safe approximations (λ−TS(Pre,P) and λ+TS(Pre,P))
by running the analysis on the code of the property definitions usingDα (or using the
available trust assertions, for built-ins). The fact that the resulting approximations
are safe ensures correctness of the procedure both when checking calls and success
conditions.

21

CHAPTER 4. ABSTRACT CODE SEARCH

�
1 :- module(_, [my_length/2, get_length /2, check_length /2,

gen_list /2], [assertions]).
2

3 :- pred my_length(L,N) : (list(L), var(N)) => int(N).
4 :- pred my_length(L,N) : (list(L), int(N)).
5 % :- calls length(L,N) : ((mshare(L), ground(N)) ;

(mshare ([[L],[L,N],[N]]), var(N)).
6 my_length(L,N) :- length(L,N).
7

8 :- pred check_length(L,N) : (list(L), int(N)).
9 % :- calls check_length(L,N) : (mshare(L), ground ([N])).

10 check_length(L,N) :- length(L,N).
11

12 :- pred get_length(L,N) : (list(L), var(N)).
13 % :- calls get_length(L,N) : (mshare ([[L],[L,N],[N]]), var(N)).
14 get_length(L,N) :- length(L,N).
15

16 :- pred gen_list(L,N) : (var(L), var(N)) => (list(L), int(N))
17 # "Generates a list of random elements of random size".
18 %:- calls gen_list(L,N) : (mshare ([[L],[L,N],[N]]), var(L),

var(N)).
19 gen_list(L,N) :- length(L,N).
20

21 % Implementation of length /2 ...� �
Figure 4.1: Program with assertions that define different calls.

Example 3 Several checks against ‘calls’ conditions

Consider the program in Figure 4.1 and the classic sharing and freeness (shfr)
abstract domain [17]. This analysis will infer the calls substitutions written in
comments in Figure 4.1, where var/1 and ground/1 have the usual meaning and
mshare/1 describes variable sharing (intuitively, two variables are in the same list
if they may share, singletons mean that there may also be other non-shared vari-
ables). Note that, while the var/1 property is understood natively by the shfr
analyzer, other properties that appear in the assertions (list/1, int/1, etc.) are
not. However, they also imply groundness and freeness information. The analysis
approximates this information to the shfr domain. In the case of built-ins such as
int/1 this is done using the associated (trust) assertions in the libraries. Thus, if
an argument is stated to have the property integer on calls (i.e., it is bound to an
integer at call time, as in length and check_length) it is expressed as a ground
term in the shfr domain. In the case of properties that are defined by programs,
such as list/1, the property definition itself is analyzed with the target domain
(shfr). However, shfr cannot infer too much about list/1 since it does not have
a representation for “definitely non-var.” Other modes domains may be able to infer
“non-var but not necessarily ground.”

Assume now that we would like to find predicates that generate tuples of lists and

22

CHAPTER 4. ABSTRACT CODE SEARCH

their size, i.e., the predicate has to accept a usage in which both of the arguments
are free variables. This search can be expressed with the following predicate query:
?- findp({:- pred P(L, Size) : (var(L), var(Size)).}, M:P/A,
Residue, Status).

The corresponding calls condition is: calls(X(L, Size), (var(L), var(Size))).
We discuss some interesting aspects of the search results:

• gen_list/2: This is a predicate of interest in the context of the predicate
query because it expects both of its arguments to be variables, and they will
be bound during the execution to what we might want (a list and an integer).
Formally, the conditions are proved to hold for this predicate, because:

(λ−TS((var(L),var(Size)),P) = {var(L), var(Size)}) w (λc = var(L), var(Size)).

• check_length/2: This is not a predicate of interest because its calling modes
require both arguments to be instantiated. Formally, the condition is ab-
stractly false for check_length because:

(λ+TS((var(L),var(Size)),P) = {var(L), var(Size)})u({mshare(L), ground(Size)} = ⊥).

• Both my_length/2 and get_length/2 are predicates which do not match what
we are looking for, because they require at least one argument to be instanti-
ated. However, using only the shfr domain this cannot be proved (it would
if the domain could represent nonvar/1, which would then be incompatible
with var/1). The status for this condition for these predicates will be check,
meaning that the finder could not infer information regarding those conditions
for the predicate, but still the user might be interested in it. 2

2

The point of filtering by calling modes is to avoid mixing behaviors. This can
be interesting for example with predicates that, depending on the call, on success
return in an argument either a free variable or an instantiated term. Consider
an (admittedly not very nice) predicate read_line(Line, Size) such that if a
line is correctly read, its size will be Size and if not, Size will be a free vari-
able. Assume that we would like instead an error to be displayed if the line is
not correctly read. Then, we need a predicate that requires Size to be an integer.
check_length is a relevant predicate then (and can be combined with read_line/2
as: read_line(Line, Size), check_length(Line, Size).). In this case length
is not useful, since it accepts the second argument as a free variable.

Similarly to what we did for calls conditions, we provide definitions for stating
whether a predicate matches for a given success condition and when it does not:

23

CHAPTER 4. ABSTRACT CODE SEARCH

4.5 ’Success’ Condition Matching

Similarly to what we did for calls conditions, we provide definitions for stating
whether a predicate matches for a given success condition and when it does not.

Intuitively, a success condition C = success(X(V1, . . . , Vn), P re, Post) is checked
for a predicate if, if Pre holds at the time of calling the predicate and the execution
succeeds then the Post conditions hold. Formally,

Definition 9 (Checked Predicate Matches for a ‘success’ Condition) A suc-
cess condition C = success(X(V1, . . . , Vn), P re, Post) is abstractly ‘checked’ for
predicate p ∈ P w.r.t. Qα in Dα iff ∃ L = p(V ′1 , ..., V

′
n) s.t. ∀〈L, λc, λs〉 ∈

analysis(P,Qα) s.t. ∃σ ∈ ren, L = p(V ′1 , . . . , V
′
n) = X(V1, . . . , Vn)σ,

λc w λ+TS(Pre σ,P) → λs v λ−TS(Post σ,P)

Intuitively, a predicate does not hold the properties in a success assertion C =
success(X(V1, . . . , Vn), P re, Post) if, given that Pre conditions hold and the pred-
icate succeeds, the success conditions of the predicate and the Post conditions are
disjoint.

Definition 10 (False Predicate Matches for a ‘success’ Condition) A success
condition C = success(X(V1, . . . , Vn), P re, Post) is abstractly false for p ∈ P w.r.t.
Qα in Dα iff ∃L = p(V ′1 , . . . , V

′
n) s.t. ∀〈L, λc, λs〉 ∈ analysis(P,Qα) s.t. ∃σ ∈

ren, L = p(V ′1 , . . . , V
′
n) = X(V1, . . . , Vn)σ, λc v λ−TS(Pre σ,P)∧(λsuλ+TS(Post σ,P) = ⊥)

Example 4 Several checks against a ‘success’ condition.

Assume that we analyze the module in Figure 4.2 with a shape abstract domain
Dα. Originally, the code had no assertions, so the analysis was performed for any
possible entry. The inferred information is shown in comments (omitting calls for
simplicity). The generated lattice for the abstract elements is shown in Figure 4.3.

The regular type b was included in the program and types t1 and t2 were inferred
by the analyzer. Suppose that we execute the query:

?- findp({:- pred P(V) : term(V) => b(V).}, M:P/A, Residue, Status).

The success condition of this query is C = success(X(V), term(V), b(V)). We
discuss how the predicates match this condition:

• simple:perfect/1. This predicate behaves exactly as specified in the predi-
cate query, because on success it produces an output of the same type as spec-
ified. Formally, the analysis infers 〈perfect(V),>(V), b(V)〉 and λ−TS(b,P) = b

(trivially). Then, λs v λ−TS(b,P), because b v b.

24

CHAPTER 4. ABSTRACT CODE SEARCH

�
1 :- module(simple , _, [assertions , regtypes]).
2

3 %:- true pred perfect(A) => b(A). :- true pred mixed(X) => top(X).
4 perfect(b1). mixed(b0).
5 perfect(b0). mixed(b1).
6 mixed(z).
7 %:- true pred reduced(A) => t1(A).
8 reduced(b1). %:- true pred hard(X) => top(X).
9 hard(X) :- functor(b1(_), X, _).

10 %:- true pred outb(A) => t2(A).
11 outb(z).
12

13 :- regtype b/1. %:- regtype t1/1 :- regtype t2/1.
14 b(b0). %t1(b1). t2(z).
15 b(b1).� �

Figure 4.2: A simple program analyzed.

>
t2b

t1

⊥

Figure 4.3: Inferred lattice of the module in Figure 4.2.

• simple:reduced/1. Intuitively, this predicate does not match as well as
perfect but all possible outputs are within γ(b), therefore, it is a valid predi-
cate. Formally, the analysis infers 〈reduced(V),>(V), t1(V)〉, and λ−TS(b,P) = b

(trivially). As t1 v b, i.e., t1 =⇒ b, this predicate meets the condition of
Def. 9 to be checked.

• simple:outb/1. This predicate is of no use, because its output (z) is com-
pletely different from the one in the query (b). Formally, the analysis infers
〈outb(V),>(V), t2(V)〉 and λ−TS(b,P) = b so the conditions of the definition
hold: λc v λ−TS(Pre,P) holds because (λc = >) v (λ−TS(term,P) = >) and
(λs u λ+TS(Post,P) = ⊥) holds because (λs = t2) u (λ+TS(b,P) = b) = ⊥.

Some predicates do not match any of the two statuses presented so far (checked
or false conditions). This may be due to two reasons. The first is that the predicate
may actually behave in such a way that the conditions in the query are really not
checked or false. The second one is that the abstract domain may not provide
accurate enough information to prove whether the conditions hold or not.

Intuitively, predicate simple:mixed/1 is not what we are looking for because,
although its possible outputs can be of type b, it can produce also type t2. For-

25

CHAPTER 4. ABSTRACT CODE SEARCH

mally, the condition cannot be proved to hold or not, since the analysis inferred
〈mixed(V),>(V),>(V)〉:

• It cannot be checked, because the output type is more general than speci-
fied, and therefore it does not satisfy the condition in Def. 9: (λc = >) w
(λ+TS(Pre,P))→ (λs = >) v (λ−TS(b,P) = b) (true → false).

• It is also not false because some of the outputs are the ones required in the
specification. Formally, it does not satisfy the second condition of Def. 10:
(λs = >) u (λ+TS(b,P) = b) = b 6= ⊥.

We now show how an abstract domain may not be precise enough to find all
matching predicates. Assume that we have the same analysis results as before.
Intuitively, the success condition of the example should hold for hard/1 because its
output type is more restrictive than specified. However, the analyzer cannot infer
that its output will be always b0 because functor/3 can produce any atom, and
thus the inferred tuple will be 〈hard(V),>(V),>(V)〉. The reasoning process to set
the status of proof of this condition as check is the same as with mixed/1. 2

4.6 Combining information from different domains

Sometimes the information inferred using an abstract domain is not accurate enough
to prove whether a condition holds or not but the information in another domain
is. It depends on how the user expresses the query, and how accurately the ab-
stract properties of the query can be approximated in each domain. An exam-
ple is when properties of different domains are used in a query. For example:
in :- pred X(A,B) : (list(A), var(B)), the property var(X) cannot be rep-
resented in the regular types domain, so it will assume > for B which will lead to
not being able to check it.

Combining domains is a useful technique to increase accuracy. An assertion
condition is proved to hold (status checked) or not (status false) if the result can be
proved in any analysis domain. The reason for this is the correctness of the analysis,
which always computes safe approximations. This ensures that properties proved
in each domain separately for the same set of queries cannot be contradictory. At
most, if a property can be proved in a domain, other domains may not be accurate
enough to decide that the property holds. Summarizing, the status of a condition
given its proof status for a set of domains will be:

Status =

false if proved false in at least one domain
checked if proved checked in at least one domain
check otherwise

26

CHAPTER 4. ABSTRACT CODE SEARCH

Example 5 Checking with different domains

Assume the program in Figure 4.1 and the analysis in Ex. 3, but that an analysis
of regtypes is also performed (e.g., [7] or [26]):

Predicate λc (regtypes) λc (shfr)
gen_list(L,N) (term(L), term(N)) (mshare([[L], [L,N], [N]]), var(L), var(N))
get_length(L,N) (list(L), term(N)) (mshare([[L], [L,N], [N]]), var(N))
check_length(L,N) (list(L), int(N)) (mshare(L), ground([N]))
my_length(L,N) (list(L), term(N)) (mshare(L), ground(N))
my_length(L,N) (list(L), int(N)) (mshare([[L], [L,N], [N]]), var(N))

The combination of both domains is really useful for proving certain condi-
tions because they complement each other. Assume that we want to find predicate
that checks the length of a list. The condition to be satisfied is calls(X(L, Size),
(list(L), num(Size))). According to the definitions of matching, the results in each
domain will be:

PredName/A regtypes proof shfr proof combined proof (Sum)
gen_list/2 check false false

get_length/2 check false false
check_length/2 checked check checked
my_length/2 check check check

The intuitive explanation of these results is:

• gen_list: In the regtypes domain this condition cannot be proved because
the domain has no information about var. However, in the shfr domain it can
be proved that the condition does not hold because it requires both arguments
to be non-free variables, and the calling mode does the opposite. Then, that
condition is false for this predicate.

• get_length: This case is similar to gen_list. It cannot be proved in the types
domain because one argument was specified with instantiation information but
it can be proved in the modes domain that is false.

• check_length/2: Matches the condition in the types domain, because the
types are exactly the ones we were looking for. For this predicate, the mode
domain is not useful because the information in the program assertions was
specified with types only.

• my_length/2: At first sight this predicate matches the query because there is
one calling mode that matches exactly as stated in the condition. However,
according to the definition of calls condition, all admisible calling modes must
be within the condition, and there is one calling mode that does not comply:
the mode for calculating the length of the list. 2

2

27

CHAPTER 4. ABSTRACT CODE SEARCH

4.7 Algorithms

In this section we explain the pseudocode of the main algorithms used for the proto-
type implementation. The process of finding code has several phases: pre-analysis,
module inspecting and predicate matching, which are detailed in the following sec-
tions.

4.7.1 Pre-analysis

The first step for finding code is to make sure that the code is analyzable, i.e., its
semantic characteristics can be inferred in a finite (or in our case viable) amount of
time and/or memory. To this end, we perform a generic pre-analysis with a timeout.
We store which modules are analyzable and which are not in an auxiliary file. This
way, we also store which have been already analyzed, allowing us to perform the
pre-analysis incrementally.

The pre-analysis algorithm is detailed in Algorithm 1. It takes as an input a
path in which modules or programs are located. In this path, source module files are
extracted recursively. Each program unit will be loaded and analyzed independently
and a report will be generated containing errors and/or timing statistics of the
module. The information inferred is dumped to disk and can be used for matching
later.

This algorithm is independent from the search. It has to be done only before
the first search is executed. Once pre-analysis is done, search can be performed an
arbitrary number of times.

Algorithm 1 Precompute Analysis
Input: Path of modules/programs
Output: Module analysis status, Analysis results, Timing report
1: for all Module m ∈ Path do
2: if load(m) has errors then store load errors
3: else
4: for all d ∈ Abstract Domains do
5: if analyze(d) has errors then store analysis errors
6: else if analyze(d) timeouts then store analysis errors and timeout
7: else store analysis
8: end if
9: end for
10: end if
11: store module status
12: end for

28

CHAPTER 4. ABSTRACT CODE SEARCH

4.7.2 Module inspecting

Each time the search is performed, all modules in the specified Path are inspected
for matching predicates. Before restoring an analysis or re-analyzing a module we
check whether it contains predicates with the appropriate arity and that meet the
keyword specifications or not. Filtering is a much lighter task than analyzing, this is
the reason why we to it at this point, to avoid spending time and resources analyzing
modules that do not contain desired predicates.

If the module contains predicates that meet the specifications, its analysis is
restored or it is reanalyzed. All conditions specified in the user’s query are checked
against each predicate, which will produce a residue. The residue is summarized in
order to obtain an overall result of the conditions, as stated in Definition 3. The
algorithm returns a list containing all filtered predicates, their residue and their
summary. The pseudocode of this algorithm is shown in Algorithm 2.

Algorithm 2 Search Predicate
Input: As = Assertions (Arity), Keyword Specification, Modules
Output: list of (Predicate, Residue, Summary)
1: for all Module m ∈ Modules do
2: Preds = {p ∈ exported(m) | ar(p) = Arity ∧meets(p,Keyword_Spec)}
3: if Preds 6= ∅ then
4: Analyze module/Restore analysis (depending on flag)
5: for all Predicate p ∈ Preds do
6: for all C ∈ As do
7: Obtain Matching Residue of C for p
8: end for
9: Summary = summarize_conditions(Residue)
10: return p, Residue, Summary
11: end for
12: end if
13: end for

4.7.3 Predicate matching

Algorithms 3 and 4 are used to decide whether a predicate is proven to match a
condition (that condition is checked or false) or that it cannot say anything about
that property holding (check).

29

CHAPTER 4. ABSTRACT CODE SEARCH

Algorithm 3 Matching Status of a calls condition for a predicate p
Input: Analysis(P,Dα,Qα), p ∈ P , C = calls(H, (Pre1; ...;Pren))
Output: Residue
1: if ∀〈H, λc, λs〉 ∈ Analysis s.t. H = p(X1, ..., Xn),

∨
i λ
−
TS(Prei,P) w λc then

2: Status = Checked
3: else if ∀〈H,λc, λs〉 ∈ Analysis s.t. H = p(X1, ..., Xn),

∨
i λ
−
TS(Prei,P) u λc = ⊥

then
4: Status = False
5: else
6: Status = Check
7: end if

Algorithm 4 Matching Status of a success condition for a predicate p
Input: Analysis(P,Dα,Qα), p ∈ P , C = success(H,Pre, Post)
Output: Residue
1: if ∃ 〈H, λc, λs〉 ∈ Analysis s.t. H = p(X1, ..., Xn), λc = λ+TS(Pre,P) then
2: if λs v λ−TS(Post,P) then
3: Status = Checked
4: else if λs u λ+TS(Post,P) = ⊥ then
5: Status = False
6: else
7: Status = Check, analysis accurate enough
8: end if
9: else if ∃ 〈H,λc, λs〉 ∈ Analysis s.t. H = p(X1, ..., Xn), λc = λ+TS(Pre,P) then
10: if λs v λ−TS(Post,P) then
11: Status = Checked
12: else if λs u λ+TS(Post,P) = ⊥ then
13: Status = False
14: else
15: Status = Check, Refine analysis
16: end if
17: else
18: Status = Check, No information for that calls, Refine analysis
19: end if

30

5
Implementation

We have developed a prototype implementation on top of the Ciao/CiaoPP system.
In this chapter, we explain shortly the features of the prototype, we show some
interesting search examples. Finally, we evaluate the performance of the search.

5.1 Putting all together

In our prototype we have combined the semantic approach described in Chapter 4
with the traditional code search described in Chapter 3. Keyword specifications can
be made with an optional directive, “apropos”. Here there is a query to try to find
predicates that write in streams, i.e., predicates that contain the word write and the
first argument is of type stream:

?- findp({
:- pred P(X, Y) => stream(Y).
:- apropos(’.*write.*’).
}, P, Residue, Status).

P = strings:write_string/2,
Residue = ...,
Status = checked ? ;

P = fastrw:fast_write/2,
Residue = ...,

31

CHAPTER 5. IMPLEMENTATION

Status = checked ?

yes
? -

We also have developed a module that outputs the results in html format to
ease the search visualization. This view offers explanations for predicates for which
properties could not be proved to hold. The module also generates links to the on-
line Ciao documentation of the found predicates and their correspondent modules.
An example of searching with this module is shown in Figure 5.1. Ideally, we want
to use the documentation generator (LPdoc) described in section 2.3 in order to
automatically generate information for any piece of code.

Figure 5.1: pretty_finder search example.

These and other features are fully detailed in the User’s and Reference Manual
in Chapter 6.

32

CHAPTER 5. IMPLEMENTATION

5.2 Searching with the prototype

To demonstrate some of the potential of our approach, let us consider looking for
code that operates with graphs in the Ciao libraries. First we need to guess how
graphs may be represented, i.e., their shape. Here there are two possible guesses:�

1 % mathematical definition structure
2 :- regtype math_graph(Graph).
3 math_graph(graph(Vertices , Edges)):-
4 list(Vertices),
5 list(Edges , pair).
6

7 :- regtype pair /1.
8 pair((_, _)).
9

10 % adjacency list structure
11 :- regtype al_graph(_).
12 al_graph(A) :-
13 list(A, al_graph_elem).
14

15 :- regtype al_graph_elem /1.
16 al_graph_elem(Vertex -Neighbors) :-
17 list(Neighbors).� �

where math_graph is based on the mathematical definition: an ordered pair (V, E)
comprising a set V of vertices, together with a set E of edges, which are 2-element
subsets of V. The al_graph property captures an alternative representation for
graphs as a list of vertices and their corresponding neighbors.

A query assertion for finding code using the first representation could be

:- pred P(X,Y) => math_graph(Y).1

The prototype finds complete_graph/2 and cycle_graph/2 in module named_gra-
phs.pl (see Fig.A.2) by matching this query against a generic analysis of the mod-
ule. Note that this code is found although the module named_graphs.pl has no
assertions nor shape definitions, i.e., it only contains plain Prolog code.

Let us search with the adjacency list representation. We want to find code to
modify existing graphs, i.e., predicates that take as an input a graph and a list of ele-
ments and produce a new graph: :- pred P(A,B,C) : (al_graph(A), list(B),
var(C)) => al_graph(C). No code is found to hold these properties. To find out
why, we extract the conditions from the query assertion:

C1 = calls(P (A,B,C), (al_graph(A), list(B), var(C))) and

C2 = success(P (A,B,C), (al_graph(A), list(B), var(C)), al_graph(C)),
1As mentioned before, the user-defined shapes (or any other properties), in this case the regtypes

above, must be included within queries. However, we just write the query assertion for brevity.

33

CHAPTER 5. IMPLEMENTATION

calls conditions can not be checked if the code to be found lacks hand-written
calls assertions. Therefore, we will focus on finding predicates that hold C2. As
the conditions of the calls substitution are very specific, a generic analysis may be
not accurate enough to prove these conditions. We refine the predicate matching by
executing predicates abstractly with the calls substitution in the success condition.
To ensure greater precision, we perform also an inter-modular analysis, i.e., we
analyze both modules main and imported, at the same time, so no information is lost.
This way the prototype finds that add_vertices/3, del_vertices/3, add_edges/3,
and del_edges/3 (see Fig. A.1) hold the success condition.

5.3 Performance results

Ar\Cnds 1 1-avg 2 2-avg 3 3-avg 4 4-avg
1 (85 pr) 19,064 224 53,530 630 180,246 2,121 298,292 3,509
2 (74 pr) 110,092 1,488 207,871 2,809 221,061 2,987 477,440 6,452
3 (47 pr) 294,962 6,276 3,757,208 79,941 3,806,917 80,998 6,127,015 130,362
4 (12 pr) 5,116 426 12,939 1,078 22,508 1,876 30,300 2,525

Table 5.1: Assertion Checking times (µs).

To measure the effectiveness and performance of the approach, we have set up an
experiment that consists in analyzing a large part of the Ciao libraries and finding
matching predicates of arity 1 to 4 and several assertion conditions. The experiments
are run on a Linux server (Intel Xeon CPU E7450, 2.40GHz) with 16GB of RAM. We
have selected 63 modules from the Ciao libraries to test the search, excluding those
that could not be analyzed under a 1 minute timeout. The detailed analysis statistics
are shown in ??. The selection includes modules that are costly for the analyzer and
others where the analysis is trivial (e.g., non-analyzable foreign code with trusted
assertions) but useful for the search. Pre-analysis took 45s to analyze all of them
(660ms on average), and they required 3.5MB of disk space to be stored (55.5KB
on average). Restoring the analysis results each query (the 63 modules) takes 21.5s
(343ms on average). Note that the size of the cached analysis is small and could
be kept in memory for subsequent queries.2 The performance of checking, once
the analysis results are available, depends on the arity, the number of predicates
available with that arity, and the conditions specified in the query. The detailed
timing results are shown in Table 5.1. Columns represent the number of assertion
conditions of each query and rows their arity (in parenthesis the number of predicates
present in the code with that arity). Cells represent the execution time needed to
exhaustively check the predicates in the 63 modules. The (AVG) column represents
the average time per predicate. It can take from 224µs (1 condition, 1 argument)
to 130ms (4 conditions, 3 arguments). Summarizing, it takes, on average, 25s to
execute a query, looking in all 63 modules, 21.5s of which are spent for restoring.

2This feature was not implemented in the current version of the prototype.

34

6
Prototype Manual

In this chapter we show the User’s and Reference Manual from our prototype. This
manual was generated from explanations written via assertions and computer read-
able coments with LPdoc.

35

CHAPTER 6. PROTOTYPE MANUAL

36

Deepfind
A semantic code finder for Ciao Prolog

Isabel Garcia Contreras

i

Table of Contents

1 Summary . 43

2 Introduction . 45
2.1 Overview of this document . 45

3 PART I - User’s Manual 47

4 DeepFind installation . 49
4.1 Quick installation . 49
4.2 Build and installation . 49
4.3 Installation for developers . 49

5 DeepFind Usage . 51
5.1 Load bundle modules . 51
5.2 Set code location . 51
5.3 Run a query . 51
5.4 Combining with keyword search . 52
5.5 Search options . 52
5.6 Some examples . 52

6 The Ciao library browser 57
6.1 Usage and interface . 58
6.2 Documentation on exports . 58

update/0 (pred) . 58
browse/2 (pred) . 59
where/1 (pred) . 59
describe/1 (pred). 59
system lib/1 (pred) . 60
apropos/1 (pred) . 60

6.3 Documentation on internals . 62
apropos spec/1 (regtype) . 62

7 PART II - Reference Manual 63

8 Bundle structure . 65

ii Deepfind

9 Finding code . 67
9.1 Usage and interface . 68
9.2 Documentation on exports . 68

findp/4 (pred) . 68
find set dir/1 (pred) . 68
find add mod/1 (pred) . 69
find remove mod/1 (pred) . 69
dump size/1 (pred) . 69
restore time/1 (pred) . 69
check time/1 (pred) . 69
clean search/0 (pred) . 69
clean search opts/0 (pred) . 70
display search stats/0 (pred) 70
set find flag/2 (pred) . 70
set pred class/1 (pred). 70

10 Normalizing the query 71
10.1 Usage and interface . 71
10.2 Documentation on exports . 72

save assertions/2 (pred) . 72
keyword spec/1 (pred) . 72

11 Temporary modules generation 73
11.1 Usage and interface . 73
11.2 Documentation on exports . 73

tmp mod/3 (pred) . 73
clean tmp mod/1 (pred) . 74
clean all tmp mods/0 (pred) 74

12 Auxiliary predicates . 75
12.1 Usage and interface . 75
12.2 Documentation on exports . 75

dump file/3 (pred) . 75
error file/3 (pred) . 75
newer/2 (pred) . 76
string contained/2 (pred) . 76

13 Analyzing code . 77
13.1 Usage . 77
13.2 Generated files . 77
13.3 Usage and interface . 78
13.4 Documentation on exports . 78

analyze all/1 (pred) . 78
safe/1 (pred). 78
any module/1 (pred) . 78

iii

14 Collecting prolog files . 81
14.1 Usage and interface . 81
14.2 Documentation on exports . 81

related files at/3 (pred) . 81

15 Collecting statistics . 83
15.1 Usage and interface . 83
15.2 Documentation on exports . 83

collect all stats/1 (pred) . 83
set flag restore time/1 (pred) 83
stat collecter set flag/2 (pred) 84

16 DeepFind UI . 85
16.1 Usage and interface . 85
16.2 Documentation on exports . 85

search/1 (pred) . 85
checked search/1 (pred) . 85

16.3 Documentation on internals . 86
assertion status/1 (pred) . 86

17 Benchmarking DeepFind 87
17.1 Usage and interface . 87
17.2 Documentation on exports . 87

main test/0 (pred) . 87
17.3 Documentation on internals . 87

summarize search/1 (pred) . 87

Chapter 1: Summary 43

1 Summary

Deepfind is a bundle for the Ciao System which allows finding code in set of modules
defined by the user by specifying abstract semantic characteristics of the arguments of the
predicates.

44 Deepfind

Chapter 2: Introduction 45

2 Introduction

Deepfind is a bundle for the Ciao System which allows finding Prolog code in set of
modules defined by the user by specifying abstract semantic characteristics of the arguments
of the predicates.

2.1 Overview of this document

This document is divided in two parts:

• Part I - User’s Manual. It explains the setup and usage of this bundle. DeepFind
Usage details how to use this bundle and its options. Also, several execution examples
are shown.

• Part II - Reference Manual. It details the Bundle structure and the specifications of
all implemented modules.

46 Deepfind

Chapter 3: PART I - User’s Manual 47

3 PART I - User’s Manual

☛ ✟
Author(s): Isabel Garcia Contreras.

In this Manual we show how to install Deepfind and find code using it.

✡ ✠

48 Deepfind

Chapter 4: DeepFind installation 49

4 DeepFind installation

4.1 Quick installation

Requirements

1. Ciao and CiaoPP

4.2 Build and installation

You can automatically fetch, build, and install this bundle using:

ciao get ciao-lang.org/deepfind

This command stores the source and generates the binaries in the Ciao workspace direc-
tory. This directory is given by the value of the CIAOPATH environment variable (or ~/.ciao
if unspecified).

Binaries are placed in the $CIAOPATH/build/bin directory (or ~/.ciao/build/bin).
To call a binary without specifying its full path it is recommended to include this directory
in your PATH:

export PATH=$CIAOPATH/build/bin:$PATH
or export PATH=~/.ciao/build/bin:$PATH

4.3 Installation for developers

For installing this bundle it is recommended to define CIAOPATH (E.g., ~/ciao) and clone
this repository in your workspace.

git clone ssh://gitolite@ciao-lang.org/deepfind

Remember to update registered bundles after cloning

ciao rescan-bundles ~/ciao

50 Deepfind

Chapter 5: DeepFind Usage 51

5 DeepFind Usage

5.1 Load bundle modules

?- use_package(deepfind(find_syntax)).
?- use_module(deepfind(find)).

5.2 Set code location

By default, DeepFind will look in your ciao installation directory ’core/lib’. This can be
changed with predicates for:

• Adding individual modules to search in:

?- find_add_mod(’~/ciao-devel/core/lib/llists.pl’).

• Setting a directory to search in recursively:

?- find_set_dir(’~/ciao-devel/core/lib’).

Once you have stablished in which directory you want to search, a pre-analysis has to
be made filter modules which are not analyzable, i.e. it takes too much time or too much
memory to get the results (otherwise the search could not finish).

This pre-analysis is made with an auxiliary bash script.

cd src/analysis
./batch_analyze [directory]

It can take a long time, depends of the quantity and complexity of the modules to be
analyzed. A file will be created in data/ directory (mod status.pl) with a list of modules in
which the analysis is feasible.

5.3 Run a query

Find predicates that performs operations with lists

?- findp({ :- pred ’_’(A,_,B) : list(A) => (list(A),list(B)). },P,R,S)

Some results:

P = idlists:substract/3,
Sum = checked,
Res = Explanation... ? ;

P = file_utils:stream_to_string/3,
Sum = false,
Res = Explanation... ? ;

P = set:ord_intersection/3,
Sum = check,

52 Deepfind

Res = Explanation... ? ;

If you want only the predicates that meet the conditions to be displayed, you can set
the last argument to checked:

?- findp({ :- pred ’_’(A,_,B) : list(A) => ((list(A),list(B)). },P,R,S),
S = checked.

5.4 Combining with keyword search

Restrictions over predicate names can be made with apropos directive

?- findp({ As. :- apropos(Spec)}, P, Res, S).

Spec can be a regular expression or a keyword. Checking if the predicate name meets
the requirements is made as in apropos/1 in the Ciao System.

Example:

?- findp({ :- pred ’_’/2 => term * string. :- apropos(write)}, P, Res, S).

5.5 Search options

There are two search options that can be chaged via flags:

• allow not preanalyzed

• on: analyzes modules although they might have not been analyzed before

• off: if a module wasn’t marked as safe it is not analyzed

This flag is useful if reanalysis is on, if not, preanalysis is needed for loading dumps.

• reanalyze

• on: modules are analyzed before searching. SLOW but allows user-defined types.

• off: information from dumps is loaded search in the module. QUICK but less
flexible. Useful for roughly discard predicates.

5.6 Some examples

Examples can be found in search_examples.pl. This module can be loaded and used
directly for using DeepFind.

For example:

?- search_demo(ID, _, Query, Comment, Explanation).

Comment = "Predicates that display strings",
Explanation = "We use a success assertion instead of a calls assertion
because code could lack of assertions and the condition would not be
checked. If the query requires this condition on exit, we avoid this
problem",
ID = strings,
Query = {:-pred P/1=>string} ?

Each example has:

Chapter 5: DeepFind Usage 53

• ID to differentiate it, all of them should be different.

• The arity of the query assertion.

• Query assertion.

• A short comment describing what kind of predicates the query is thought to gind.

• [Optional] An explanation of why this query is useful to find the code described in the
comment.

Here are some examples:

:- module(search_examples, [search_demo/5], [assertions]).

:- use_package(deepfind(find_syntax)).
:- use_package(regtypes).

search_demo(
strings, 1,
{ :- pred ’_’/1 => string. },
"Predicates that display strings",
"We use a success assertion instead of a calls assertion
because code could lack of assertions and the condition would
not be checked. If the query requires this condition on exit,
we avoid this problem").

search_demo(
transform_list, 2,
{ :- pred ’_’(A,B) : list(A) => (list(A), list(B)). },
"Predicates that transform lists", _).

search_demo(
insert_list, 3,
{ :- pred ’_’(A,_,B) : list(A) => (list(A), list(B)). },
"Predicates that insert elements in lists", _).

search_demo(
op_list_num, 2,
{ :- pred ’_’(A,B) : list(A, num) => num(B). },
"Predicates that gather a list of numbers: sum, etc ...",
"This search can be more general if the calls condition is moved
to the success conditions").

search_demo(sort, 2,
{ :- pred ’_’(A,B) : list(A) => list(B).

:- pred ’_’(A,B) : list(B) => list(A). },
"Sorting predicate", _).

search_demo(
graph_structure, 1,
{

:- use_package(regtypes).

54 Deepfind

:- regtype math_graph/1.

:- pred ’P’/2 => math_graph * term.

math_graph(graph(Vertices,Edges)) :-
list(Vertices),
list(Edges, pair).

:- regtype pair/1.
pair((_,_)).

},
"Looking for graph structures",
"We look for success because there may not exist calls. We expect
that a graph is a structure with a list of vertex (V) and a list
of edges (E). We dont specify the shape of the edges or vertex
because we do not know how they are represented in the code."

).

search_demo(
op_graph, 3,
{

:- use_package(regtypes).

:- pred ’P’(A,B,C) : (my_ugraph(A),list(B),var(C))
=> my_ugraph(C).

:- regtype my_graph_elem/1.
my_graph_elem(_Vertex-_Neighbors) :- list(_Neighbors).

:- regtype my_ugraph(_).
my_ugraph(A) :-

list(A,my_graph_elem).
},
"Looking for predicates for editing graphs",
"Given the ugraph A, we want to add B (list of edges or vertex)
and C will be the new constructed graph. We require therefore
that C is a free variable. This query does not mark the calls
condition as checked because the code does not have any calls
written. However, even the assertion were written, it would not
be checked because it does not work with combined domains."

).

search_demo(
op_graph2, 3,
{

:- use_package(regtypes).

:- pred ’P’(A,B,C) :

Chapter 5: DeepFind Usage 55

((nonvar(A), nonvar(B), var(C)) ; (my_ugraph(A), list(B)))
=> my_ugraph(C).

:- regtype my_graph_elem/1.

my_graph_elem(Vertex-Neighbors) :- list(Neighbors).

:- regtype my_ugraph(_).
my_ugraph(A) :- list(A,my_graph_elem).

},
"Predicates for editing graphs",
"This query is the same as in op_graph but with calls splited in
domains so once calls assertions are written they can be checked"

).

56 Deepfind

Chapter 6: The Ciao library browser 57

6 The Ciao library browser

Author(s): Angel Fernandez Pineda, Isabel Garcia Contreras.

The librowser library provides a set of predicates wich enable the user to interactively
find Ciao libraries and/or any predicate exported by them.

This is a simple example:

?- apropos(aggregates:’.*find.*’).

aggregates:findnsols/5
aggregates:findnsols/4
aggregates:findall/4
aggregates:findall/3

yes
?-

librowser is specially useful when inside GNU Emacs: just place the cursor over a
librowser response and press C-cTAB in order to get help on the related predicate. Refer
to the "Using Ciao inside GNU Emacs" chapter for further information.

58 Deepfind

6.1 Usage and interface☛ ✟
• Library usage:

It is not necesary to use this library at user programs. It is designed to be used at
the Ciao toplevel shell: ciaosh. In order to do so, just make use of use_module/1 as
follows:

use_module(library(librowser)).

Then, the library interface must be read. This is automatically done when calling any
predicate at librowser, and the entire process will take a little moment.So, you should
want to perform such a process after loading the Ciao toplevel:

Ciao 0.9 #75: Fri Apr 30 19:04:24 MEST 1999
?- use_module(library(librowser)).

yes
?- update.

Whether you want this process to be automatically performed when loading ciaosh,
you may include those lines in your .ciaorc personal initialization file.

• Exports:

− Predicates:

update/0, browse/2, where/1, describe/1, system_lib/1, apropos/1.

• Imports:

− System library modules:

regexp_code, read, fastrw, system, streams, lists, fuzzy_search, pathnames,
paths_extra, write.

− Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_

facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_
info, term_compare, term_typing, hiord_rt, debugger_support, internals.

− Packages:

prelude, nonpure, condcomp, assertions, regexp.✡ ✠
6.2 Documentation on exports

PREDICATEupdate/0:
This predicate will scan the Ciao system libraries for predicate definitions. This may
be done once time before calling any other predicate at this library.

update/0 will also be automatically called (once) when calling any other predicate at
librowser.

Usage:

Creates an internal database of modules at Ciao system libraries.

Chapter 6: The Ciao library browser 59

PREDICATEbrowse/2:
This predicate is fully reversible, and is provided to inspect concrete predicate speci-
fications. For example:

?- browse(M,findall/A).

A = 3,
M = conc_aggregates ? ;

A = 4,
M = aggregates ? ;

A = 3,
M = aggregates ? ;

no
?-

Usage: browse(Module,Spec)

Asocciates the given Spec predicate specification with the Module which exports it.

− The following properties should hold at call time:

Module is a module name (an atom) (module_name/1)

Spec is a Functor/Arity predicate specification (pred_spec/1)

PREDICATEwhere/1:
This predicate will print at the screen the module needed in order to import a given
predicate specification. For example:

?- where(findall/A).
findall/3 exported at module conc_aggregates
findall/4 exported at module aggregates
findall/3 exported at module aggregates

yes
?-

Usage: where(Spec)

Display what module to load in order to import the given Spec.

− The following properties should hold at call time:

Spec is a Functor/Arity predicate specification (pred_spec/1)

PREDICATEdescribe/1:
This one is used to find out which predicates were exported by a given module. Very
usefull when you know the library, but not the concrete predicate. For example:

60 Deepfind

?- describe(librowser).
Predicates at library librowser :

apropos/1
system_lib/1
describe/1
where/1
browse/2
update/0

yes
?-

Usage: describe(Module)

Display a list of exported predicates at the given Module

− The following properties should hold at call time:

Module is a module name (an atom) (module_name/1)

PREDICATEsystem lib/1:
It retrieves on backtracking all Ciao system libraries stored in the internal database.
Certainly, those which were scanned at update/0 calling.

Usage: system_lib(Module)

Module variable will be successively instantiated to the system libaries stored in the
internal database.

− The following properties should hold at call time:

Module is a module name (an atom) (module_name/1)

PREDICATEapropos/1:
This tool makes use of regular expresions in order to find predicate specifications.
It is very usefull whether you can’t remember the full name of a predicate. Regular
expresions take the same format as described in library patterns. Example:

?- apropos(’write.’).

write:writeq/1
write:writeq/2

yes
?- apropos(’write.*’/2).

dht_misc:write_pr/2
profiler_auto_conf:write_cc_assertions/2
mtree:write_mforest/2

Chapter 6: The Ciao library browser 61

transaction_concurrency:write_lock/2
transaction_logging:write/2
provrml_io:write_vrml_file/2
provrml_io:write_terms_file/2
unittest_base:write_data/2
write:write_canonical/2
write:writeq/2
write:write/2
write:write_term/2
strings:write_string/2
res_exectime_hlm_gen:write_hlm_indep_each/2
res_exectime_hlm_gen:write_hlm_indep_2/2
res_exectime_hlm_gen:write_hlm_dep/2
oracle_calibration:write_conf/2
bshare_utils:write_string/2
bshare_utils:write_string_list/2
bshare_utils:write_length/2
bshare_utils:write_neg_db_stream/2
bshare_utils:write_neg_db/2
bshare_utils:write_pos_db/2

yes

When no predicates are found with the exact search, this predicate will perform a
fuzzy search which will find predicates at a distance of one edit, swap, deletion or
insertion.

?- apropos(’wirte’).
Predicate wirte not found. Similar predicates:

transaction_logging:write/2
write:write/1
write:write/2

yes
?- apropos(apend).
Predicate apend not found. Similar predicates:

hprolog:append/2
lists:append/3
llists:append/2

yes
?-

Usage: apropos(RegSpec)

This will search any predicate specification Spec which matches the given RegSpec

incomplete predicate specification.

− The following properties should hold at call time:

62 Deepfind

RegSpec is a predicate specification Pattern, Pattern/Arity, Module:Pattern,
Module:Pattern/Arity. (apropos_spec/1)

6.3 Documentation on internals

REGTYPEapropos spec/1:
Defined as:

apropos_spec(Pattern) :-
atm(Pattern).

apropos_spec(Pattern/Arity) :-
atm(Pattern),
int(Arity).

apropos_spec(Module:Pattern/Arity) :-
atm(Pattern),
atm(Module),
int(Arity).

apropos_spec(Module:Pattern) :-
atm(Pattern),
atm(Module).

Usage: apropos_spec(S)

S is a predicate specification Pattern, Pattern/Arity, Module:Pattern,
Module:Pattern/Arity.

Chapter 7: PART II - Reference Manual 63

7 PART II - Reference Manual

☛ ✟
Author(s): Isabel Garcia Contreras.

This manual details structure of the Deepfind bundle and the documentation of all
modules involved.

✡ ✠

64 Deepfind

Chapter 8: Bundle structure 65

8 Bundle structure

The essential modules for finding code are:

Finder

Analysis

 DB

Batch

Analyzer
Module(s)

 Report

Analysis

run-time

statistics

Module(s)/

Directory

Path(s)

Condition

Checker

Query

Processor

Query

Condition(s)

Candidate

Predicate(s)

User's

Query

ReanalysisPre-analysis

• Batch Analyzer: This module performs the static analysis of a list of modules or the
modules located in a user-specified path. Modules are analyzed individually and the
analysis trusts the assertions for exported and imported predicates. The analysis results
are cached on disk (as CiaoPP dump files) and reused for each search. Also, a module
report can be generated with analysis memory and time data, and timeout information.

• Query Processor: Preprocesses user’s queries, i.e., normalizes the anonymous asser-
tions, extracts the assertion conditions and stores them so they can be checked later.
It extracts also predicate name requirements.

• Condition Checker: Its task is to prove that the conditions in the query hold or not
for all predicates that potentially could meet the requirementes, i.e., those which have
the same arity as specified in the query.

Other modules have been implemented that complement the previous ones:

• DeepFind pretty printer: Transform the prolog output of the query to html to improve
results visualization.

• DeepFind benchmark: Generates statistics about time spent checking conditions.

• Statistics Collecter: gathers the output from the Batch Analyzer and summarizes it.

66 Deepfind

Chapter 9: Finding code 67

9 Finding code

Author(s): Isabel Garcia Contreras.

This module contains the main functionality of DeepFind.

findp/4 is the predicate used for finding code in some determined modules. This mod-
ules are specified with find_add_mod/1 and find_set_dir/1.

Phases of findp/4:

• Process query. The information in the query is extracted:

• Query assertions.

• Keyword requirements (specified via :- apropos(String). directives).

• User-defined regular types.

• Check conditions against code, for each module:

• Get predicates with the specified arity.

• Filter predicates with keyword requirements.

• Restore analysis/ make analysis.

• Check conditions for the filtered predicates.

During this whole process, time and memory statistics are collected, and can be accessed
with dump_size/1, restore_time/1 and check_time/1.

68 Deepfind

9.1 Usage and interface☛ ✟
• Library usage:

:- use_module(deepfind(find)).

• Exports:

− Predicates:

findp/4, find_set_dir/1, find_add_mod/1, find_remove_mod/1, dump_

size/1, restore_time/1, check_time/1, clean_search/0, clean_search_

opts/0, display_search_stats/0, set_find_flag/2, set_pred_class/1.

• Imports:

− Application modules:

assertion_spec, file_collecter, find_aux, main_analysis, db_analysis.

− System library modules:

regexp_code, api_direc_assrt, driver, preprocess_flags, itf_db,
aggregates, lists, p_dump, pathnames, prolog_sys, read, streams, fastrw,
format, system, fuzzy_search.

− Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_

facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_
info, term_compare, term_typing, hiord_rt, debugger_support.

− Packages:

prelude, nonpure, condcomp, assertions, argnames, regexp, api(api_

internal_dec).✡ ✠
9.2 Documentation on exports

PREDICATEfindp/4:
Usage: findp(+Assertions,-Pred,-Residue,Status)

Finds a predicate matching Assertions, Pred is the predicate that matches, Residue
is how well it suits the assertions and Status is a summary of the residue

− The following properties should hold upon exit:

Status is an atom. (atm/1)

PREDICATEfind set dir/1:
Usage: find_set_dir(Path)

Sets a directory path within which code will be found.

− The following properties should hold at call time:

Path is an atom. (atm/1)

Chapter 9: Finding code 69

PREDICATEfind add mod/1:
Usage: find_add_mod(pl(Module,ModulePath))

Adds to the module search set within which code will be checked.

− The following properties should hold at call time:

Module is an atom. (atm/1)

ModulePath is an atom. (atm/1)

PREDICATEfind remove mod/1:
Usage: find_remove_mod(pl(Module,ModulePath))

Removes a Module from the search.

− The following properties should hold at call time:

Module is an atom. (atm/1)

PREDICATEdump size/1:
Usage: dump_size(S)

S is the amount of memory (in B) needed to store an analysis dump.

− The following properties should hold upon exit:

S is a number. (num/1)

The predicate is of type data.

PREDICATErestore time/1:
Usage: restore_time(T)

T is the time spent restoring modules.

− The following properties should hold upon exit:

T is a number. (num/1)

The predicate is of type data.

PREDICATEcheck time/1:
Usage: check_time(T)

T is the time spent checking conditions.

− The following properties should hold upon exit:

T is a number. (num/1)

The predicate is of type data.

70 Deepfind

PREDICATEclean search/0:
Usage:

Removes data and assertions from the previous analysis

PREDICATEclean search opts/0:
Usage:

Reset search options

PREDICATEdisplay search stats/0:
Usage:

Displays the list of individual modules within which code is to be found

PREDICATEset find flag/2:
Usage: set_find_flag(Flag,Status)

sets a search option: allownotpreanalyzed or reanalyze. Status can be on/off

− The following properties should hold at call time:

Flag is an atom. (atm/1)

Status is an atom. (atm/1)

PREDICATEset pred class/1:
Usage: set_pred_class(C)

Select predicate class C for searching, i.e., exported, defined... (exported by default).

− The following properties should hold at call time:

C is an atom. (atm/1)

Chapter 10: Normalizing the query 71

10 Normalizing the query

Author(s): Isabel Garcia.

Save set of assertions (specifications) in a query as temporary modules.

Asserts data of predicate name requirements made by :- apropos(Name). directive.

Example:

?- use_package(deepfind(find_syntax)).
?- save_assertions({ :- pred ’’(X) => int(X). :- apropos(length). }, M).

M = ’/tmp/modROKkyL’ ?

The generated file is /tmp/modROKkyL.pl:

:-module(_,[’Σpvar’/1],[assertions]).
:- pred ’Σpvar’(_A)

=> int(_A).

:-impl_defined(’Σpvar’/1).

10.1 Usage and interface☛ ✟
• Library usage:

:- use_module(deepfind(assertion_spec)).

• Exports:

− Predicates:

save_assertions/2, keyword_spec/1.

• Imports:

− Application modules:

tmp_mod.

− System library modules:

assrt_lib, write, dec10_io, assrt_write.

− Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_

facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_
info, term_compare, term_typing, hiord_rt, debugger_support.

− Packages:

prelude, nonpure, condcomp, doccomments, assertions, isomodes.✡ ✠

72 Deepfind

10.2 Documentation on exports

PREDICATEsave assertions/2:
Usage: save_assertions(Curly,File)

Saves a set of assertions (curly block) into a temporary File.

− The following properties should hold at call time:

Curly is currently a term which is not a free variable. (nonvar/1)

File is a free variable. (var/1)

− The following properties should hold upon exit:

File is an atom. (atm/1)

PREDICATEkeyword spec/1:
Usage: keyword_spec(Expression)

Expression is a regexp or a word that the found predicate name has to meet.

The predicate is of type data.

Chapter 11: Temporary modules generation 73

11 Temporary modules generation

Author(s): Isabel Garcia Contreras.

This module generates a module file in /tmp/ containing user-specified clauses.

When no module clause is specified, it is automatically generated exporting a given list
of predicates and importing no packages.

The module name is randomly generated of the form modXXXXXX where each X is a
random character or number verifying that there is no existing file with such name.

Example:

?- tmp_mod([(p(A) :- q(A)), (q(b))], [p], X).
X = ’/tmp/modbv5UNt’ ?

Module /tmp/modbv5UNt.pl:

:-module(_,[p],[]).
p(A) :-

q(A).
q(b).

11.1 Usage and interface☛ ✟
• Library usage:

:- use_module(deepfind(tmp_mod)).

• Exports:

− Predicates:

tmp_mod/3, clean_tmp_mod/1, clean_all_tmp_mods/0.

• Imports:

− System library modules:

system, system_extra, write.

− Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_

facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_
info, term_compare, term_typing, hiord_rt, debugger_support.

− Packages:

prelude, nonpure, condcomp, assertions.✡ ✠
11.2 Documentation on exports

PREDICATEtmp mod/3:
Usage: tmp_mod(Clauses,ExportedPreds,FileBase)

This predicate writes a list of clauses in a file with random name in /tmp.

74 Deepfind

− The following properties should hold at call time:

Clauses is a list. (list/1)

ExportedPreds is a list. (list/1)

FileBase is a free variable. (var/1)

− The following properties should hold upon exit:

Clauses is a list. (list/1)

ExportedPreds is a list. (list/1)

FileBase is an atom. (atm/1)

PREDICATEclean tmp mod/1:
Usage: clean_tmp_mod(X)

Removes a previously created tmp file and its associated files

− The following properties should hold at call time:

X is an atom. (atm/1)

PREDICATEclean all tmp mods/0:
Usage:

Removes all the temporary files created by tmp mod

Chapter 12: Auxiliary predicates 75

12 Auxiliary predicates

Author(s): Isabel Garcia Contreras.

Auxiliary, generic predicates for DeepFind.

12.1 Usage and interface☛ ✟
• Library usage:

:- use_module(deepfind(find_aux)).

• Exports:

− Predicates:

dump_file/3, error_file/3, newer/2, string_contained/2.

• Imports:

− System library modules:

system, pathnames, lists.

− Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_

facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_
info, term_compare, term_typing, hiord_rt, debugger_support.

− Packages:

prelude, nonpure, condcomp, assertions.✡ ✠
12.2 Documentation on exports

PREDICATEdump file/3:
Usage: dump_file(FilePath,Module,DumpFile)

Given a FilePath and Module name, generates its associated DumpFile

− The following properties should hold at call time:

FilePath is an atom. (atm/1)

Module is an atom. (atm/1)

DumpFile is a free variable. (var/1)

PREDICATEerror file/3:
Usage: error_file(FilePath,Module,ErrFile)

Given a FilePath and Module name, generates its associated ErrFile

− The following properties should hold at call time:

FilePath is an atom. (atm/1)

Module is an atom. (atm/1)

ErrFile is a free variable. (var/1)

76 Deepfind

PREDICATEnewer/2:
Usage: newer(FileA,FileB)

FileA was modified later than FileB.

− The following properties should hold at call time:

FileA is currently instantiated to an atom. (atom/1)

FileB is currently instantiated to an atom. (atom/1)

PREDICATEstring contained/2:
Usage: string_contained(L1,L2)

L1 is a sublist of L2.

− The following properties should hold at call time:

L1 is a string (a list of character codes). (string/1)

L2 is a string (a list of character codes). (string/1)

Chapter 13: Analyzing code 77

13 Analyzing code

Author(s): Isabel Garcia Contreras.

Ciaopp summarizer takes as an input a set of directories. It analyzes all prolog modules
recursively contained in the directories and generates run time statistics.

13.1 Usage

This tool has to be used with an external timeout because the analysis of some modules
could require too much memory or time to be performed.

After executing analyze all/1, control.sh has to be started.

13.2 Generated files

• Analysis information: For each module abstract analysis information is stored in a
.dump file generated in the same location. This information and can be restored later.

• Run-time statistics: Statistics of time and memory used are stored in as a term in a
.err file in the same location as the original module. This file contains also the output
of the analyzer.

• Status of the analysis: For each module, information of load and analysis success is
stored in data/mod_status.pl.

This allows also the script to be incremental, i.e., it does not repeat ciaopp analysis for
a module if it has already been done.

If the the user wants the tool to redo an analysis for all files, mod_status.pl has to be
removed before starting.

• last_analyzed_file.pl: This file contains the file that is being analyzed.

78 Deepfind

13.3 Usage and interface☛ ✟
• Library usage:

:- use_module(deepfind(analysis/main_analysis)).

• Exports:

− Predicates:

analyze_all/1, safe/1, any_module/1.

• Imports:

− Application modules:

file_collecter, find_aux, db_analysis.

− System library modules:

lists, write, pathnames, aggregates, system, system_extra, port_reify,
streams, io_alias_redirection, file_utils, driver, preprocess_flags, p_
dump.

− Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_

facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_
info, term_compare, term_typing, hiord_rt, debugger_support.

− Packages:

prelude, nonpure, condcomp, assertions, regtypes.✡ ✠
13.4 Documentation on exports

PREDICATEanalyze all/1:
Usage: analyze_all(Paths)

Analyzes all prolog module files in a list of Paths if the have not been already analyzed.

− The following properties should hold at call time:

Paths is a list of atms. (list/2)

PREDICATEsafe/1:
Usage: safe(Module)

A Module is safe if it could be loaded and analyzed by ciaopp.

− The following properties should hold upon exit:

Module is an atom. (atm/1)

PREDICATEany module/1:
Usage: any_module(Module)

Module is a prolog module.

Chapter 13: Analyzing code 79

− The following properties should hold upon exit:

Module is an atom. (atm/1)

80 Deepfind

Chapter 14: Collecting prolog files 81

14 Collecting prolog files

Author(s): Isabel Garcia Contreras.

related_files_at is a predicate originally located in library/librowser modified to get
ciao modules, i.e., .pl files that have an associate .itf file

14.1 Usage and interface☛ ✟
• Library usage:

:- use_module(deepfind(analysis/file_collecter)).

• Exports:

− Predicates:

related_files_at/3.

• Imports:

− Application modules:

main_analysis.

− System library modules:

driver, lists, pathnames, system, dec10_io, write.

− Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_

facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_
info, term_compare, term_typing, hiord_rt, debugger_support.

− Packages:

prelude, nonpure, condcomp, assertions, hiord.✡ ✠
14.2 Documentation on exports

PREDICATErelated files at/3:
Usage: related_files_at(Dir,ModType,Files)

Files is a list of Modules of type ModType and their path located recursively in Dir

− The following properties should hold at call time:

Dir is an atom. (atm/1)

− The following properties should hold upon exit:

Files is a list. (list/1)

Meta-predicate with arguments: related_files_at(?,pred(1),?).

82 Deepfind

Chapter 15: Collecting statistics 83

15 Collecting statistics

Author(s): Isabel Garcia Contreras.

Collects statistics from .err files created while analyzing and summarizes them to pro-
duce an output in html or tex format.

15.1 Usage and interface☛ ✟
• Library usage:

:- use_module(deepfind(statistics_collecter)).

• Exports:

− Predicates:

collect_all_stats/1, set_flag_restore_time/1,
stat_collecter_set_flag/2.

• Imports:

− Application modules:

find_aux.

− System library modules:

lists, pathnames, system, format, streams, write, paths_extra, read, p_dump.

− Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_

facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_
info, term_compare, term_typing, hiord_rt, debugger_support.

− Packages:

prelude, nonpure, condcomp, assertions.✡ ✠
15.2 Documentation on exports

PREDICATEcollect all stats/1:
Usage: collect_all_stats(Paths)

Collects the time and memory statistics from .err files in a list of Paths

− The following properties should hold at call time:

Paths is a list. (list/1)

PREDICATEset flag restore time/1:
Usage: set_flag_restore_time(Status)

Predicate for setting the flag to collect statistics of restoring time

− The following properties should hold at call time:

Status is an atom. (atm/1)

84 Deepfind

PREDICATEstat collecter set flag/2:
Usage: stat_collecter_set_flag(Flag,Status)

Predicate for changing flags of the output. The available flags are:

• output. Modify output format; html or tex.

• show errors. on: display also modules that have errors while analyzing

• show timeouts. on: display also modules that did not finish before a timeout.

− The following properties should hold at call time:

Flag is an atom. (atm/1)

Status is an atom. (atm/1)

Chapter 16: DeepFind UI 85

16 DeepFind UI

Author(s): Isabel Garcia Contreras.

This module executes a findp query with some parameters already set, in order to make
it simpler.

The result of the search is shown in a html file with some explanations and links to
module/predicate documentation.

16.1 Usage and interface☛ ✟
• Library usage:

:- use_module(deepfind(pretty_finder)).

• Exports:

− Predicates:

search/1, checked_search/1.

• Imports:

− Application modules:

find, tmp_mod.

− System library modules:

http, html, streams, assrt_write, assrt_db, aggregates, system, system_

extra, file_utils, write, paths_extra, lists.

− Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_

facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_
info, term_compare, term_typing, hiord_rt, debugger_support.

− Packages:

prelude, nonpure, condcomp, assertions, argnames, regtypes, pillow,
api(api_internal_dec).✡ ✠

16.2 Documentation on exports

PREDICATEsearch/1:
Usage: search(As)

Displays information about how predicates meet the conditions specified in the As

query in a predefined path.

The results are shown in html format in data/query_report.html.

− The following properties should hold at call time:

As is currently a term which is not a free variable. (nonvar/1)

86 Deepfind

PREDICATEchecked search/1:
Usage: checked_search(As)

Displays only predicates that meet the conditions specified in As query in a predefined
path.

The results are shown in html format in data/query_report.html.

− The following properties should hold at call time:

As is currently a term which is not a free variable. (nonvar/1)

16.3 Documentation on internals

PREDICATEassertion status/1:
Usage 1: assertion_status(Status)

This type represents all possible status of proof of an assertion

• Status = (true ; checked). The conditions could be proved to hold.

• Status = false. Conditions were proved to be false.

• Status = check. Neither false nor true could be proved.

Chapter 17: Benchmarking DeepFind 87

17 Benchmarking DeepFind

Author(s): Isabel Garcia Contreras.

Module for testing time execution of queries with DeepFind

17.1 Usage and interface☛ ✟
• Library usage:

:- use_module(deepfind(find_test)).

• Exports:

− Predicates:

main_test/0.

• Imports:

− Application modules:

find.

− System library modules:

format.

− Internal (engine) modules:

term_basic, arithmetic, atomic_basic, basic_props, basiccontrol, data_

facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_
info, term_compare, term_typing, hiord_rt, debugger_support.

− Packages:

prelude, nonpure, condcomp, assertions, deepfind(find_syntax).✡ ✠
17.2 Documentation on exports

PREDICATEmain test/0:
Usage:

Executes a set of queries defined in test db.pl and generates a table in tex format
with total and avg times of execution

17.3 Documentation on internals

PREDICATEsummarize search/1:
Usage: summarize_search(As)

Collects run-time data of the execution of the query given the assertion query As

− The following properties should hold at call time:

As is currently a term which is not a free variable. (nonvar/1)

88 Deepfind

7
Conclusions

Motivated by the large size and number of the code bases available nowadays
to programmers, we have proposed a novel approach to the code search problem
based on querying for semantic characteristics of the programs. In order to obtain
such characteristics automatically, program units are pre-processed using abstract
interpretation-based static analysis techniques to obtaining safe semantic approxi-
mations. We have also proposed a novel, assertion-based code query language for
expressing the desired semantic characteristics of the code as partial specifications.
We have shown how relevant code can be found by comparing such partial specifi-
cations with the inferred semantics for each program element.

Our approach is fully automatic and does not rely on user annotations or doc-
umentation. We have also reported on a prototype implementation that provides
evidence that both the analysis and search are efficient despite the relatively naive
implementation. These results are encouraging regarding the overall practicality
of the approach. While we have prototyped our approach within the Ciao system,
we argue that the techniques are quite general and they are easily extensible to
other languages. However, the Ciao system does offer a number of advantages in
this application, such as having a strict module system despite being a "dynamic"
language. This allows obtaining results that at the same time are more accurate
and can be guaranteed to be correct. We believe that the proposed approach has
a number of additional applications, such as, for example, detection of duplicated
code.

89

CHAPTER 7. CONCLUSIONS

7.1 Future Work

Although our prototype is fully functional, there are many improvements that can
be made, in terms of search accuracy, usability, and performance.

Using the generic pre-analysis information is useful for quickly checking condi-
tions but, as we have seen, in some cases it is not precise enough. In the near future,
we want to automate reanalysis for specific entries. Abstractly executing a predicate
with the query calls substitution would highly improve the number of cases in which
the system is able to prove whether a predicate meets or not some properties. On
the other hand, this would also make the search process slower and this trade-off
needs to be studied. This reanalysis can also be refined by performing an inter-
modular analysis, i.e., to also execute abstractly for the specific calls substitutions
the imported predicates.

An obvious area of future research is to explore the many other abstract domains
and combinations available in the CiaoPP system and the literature. This will allow
us to search based on shape isomorphism, determinism, code complexity, arithmetic
relations among arguments, etc. Using these domains could improve the precision
of the search also.

In the current version of the prototype, the order of the arguments affects the
results of the query. Checking all possible combinations would presumably increase
the cost of the checking algorithm. We would like also to develop our theory to
consider partial evaluation of the code as a way to find the desired functionality.

Indexing the inferred properties could be a first solution to this problem (and
would in fact be useful overall). However, there is no trivial general way to index
these properties because they are domain dependent and we are not just looking for
equality but also for subsumption.

In order to make this prototype more accessible, we want to improve our simple
graphical interface to make it interactive. This includes for example connecting the
UI module to LPdoc to offer information about the code in various formats as well
as the source code (and its assertions), and also making the explanations provided
by the system more detailed, so that the user can have a better idea of why the code
meets or not his/her specifications.

In the medium term, we would like to enhance our prototype by extending the
query language to allow the specification of test cases or execution examples; and
by generalizing code analysis to other programming languages and combinations,
taking advantages of the capacity of CiaoPP.

Finally, we would like to explore other applications of the notion of semantic
search such as for example finding duplicated code and code synthesis.

90

Bibliography

[1] M. Bruynooghe. “A Practical Framework for the Abstract Interpretation of
Logic Programs”. In: Journal of Logic Programming 10 (1991), pp. 91–124.

[2] F. Bueno et al. “A Model for Inter-module Analysis and Optimizing Compi-
lation”. In: Logic-based Program Synthesis and Transformation. LNCS 2042.
Springer-Verlag, 2001, pp. 86–102.

[3] D. Cabeza and M. Hermenegildo. A New Module System for Prolog. Technical
Report CLIP8/99.0. Facultad de Informática, UPM, 1999.

[4] P. Cousot and R. Cousot. “Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints”.
In: Proc. of POPL’77. ACM Press, 1977, pp. 238–252.

[5] Fred J Damerau. “A technique for computer detection and correction of spelling
errors”. In: Communications of the ACM 7.3 (1964), pp. 171–176.

[6] Fuzzy string search. http://ntz-develop.blogspot.com.es/2011/03/
fuzzy-string-search.html. Accessed: 2016-02-30.

[7] J. Gallagher and D. de Waal. “Fast and Precise Regular Approximations of
Logic Programs”. In: Proc. of ICLP’94. MIT Press, 1994, pp. 599–613.

[8] Hamming distance. https://en.wikipedia.org/wiki/Hamming_distance.
Accessed: 2016-05-30.

[9] M. Hermenegildo. A Documentation Generator for Logic Programming Sys-
tems. Technical Report CLIP10/99.0. Facultad de Informática, UPM, 1999.

[10] M. Hermenegildo et al. “Integrated Program Debugging, Verification, and
Optimization Using Abstract Interpretation (and The Ciao System Prepro-
cessor)”. In: Science of Computer Programming 58.1–2 (2005), pp. 115–140.
issn: ISSN 0167-6423. doi: 10.1016/j.scico.2005.02.006. url: http:
//dx.doi.org/10.1016/j.scico.2005.02.006.

[11] M. V. Hermenegildo et al. “An Overview of Ciao and its Design Philosophy”.
In: Theory and Practice of Logic Programming 12.1–2 (2012). http://arxiv.org/abs/1102.5497,
pp. 219–252. doi: doi:10.1017/S1471068411000457.

[12] M. V. Hermenegildo et al. “An Overview of Ciao and its Design Philosophy”.
In: TPLP 12.1–2 (2012). http://arxiv.org/abs/1102.5497, pp. 219–252.

91

http://ntz-develop.blogspot.com.es/2011/03/fuzzy-string-search.html
http://ntz-develop.blogspot.com.es/2011/03/fuzzy-string-search.html
https://en.wikipedia.org/wiki/Hamming_distance
http://dx.doi.org/10.1016/j.scico.2005.02.006
http://dx.doi.org/10.1016/j.scico.2005.02.006
http://dx.doi.org/10.1016/j.scico.2005.02.006
http://dx.doi.org/doi:10.1017/S1471068411000457

BIBLIOGRAPHY

[13] Levenshtein distance. https://en.wikipedia.org/wiki/Levenshtein_
distance. Accessed: 2016-05-30.

[14] Yoëlle S Maarek, Daniel M Berry, and Gail E Kaiser. “An information retrieval
approach for automatically constructing software libraries”. In: Software En-
gineering, IEEE Transactions on 17.8 (1991), pp. 800–813.

[15] Collin McMillan et al. “Recommending source code for use in rapid software
prototypes”. In: Proceedings of the 34th International Conference on Software
Engineering. IEEE Press. 2012, pp. 848–858.

[16] Neil Mitchell. “Hoogle Overview”. In: The Monad.Reader 12 (2008), pp. 27–35.

[17] K. Muthukumar and M. Hermenegildo. “Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation”. In: In-
ternational Conference on Logic Programming (ICLP 1991). MIT Press, 1991,
pp. 49–63.

[18] K. Muthukumar and M. Hermenegildo. “Compile-time Derivation of Variable
Dependency Using Abstract Interpretation”. In: Journal of Logic Programming
13.2/3 (1992). Ed. by S. Debray, pp. 315–347.

[19] G. Puebla, F. Bueno, and M. Hermenegildo. “An Assertion Language for Con-
straint Logic Programs”. In: Analysis and Visualization Tools for Constraint
Programming. LNCS 1870. Springer-Verlag, 2000, pp. 23–61.

[20] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for De-
bugging of Constraint Logic Programs. Technical Report CLIP2/97.1. Facultad
de Informática, UPM, 1997. url: ftp://cliplab.org/pub/papers/assert\
_lang_tr_discipldeliv.ps.gz.

[21] G. Puebla, F. Bueno, and M. Hermenegildo. “Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs”. In: Logic-based
Program Synthesis and Transformation (LOPSTR’99). LNCS 1817. Springer-
Verlag, 2000, pp. 273–292.

[22] G. Puebla and M. Hermenegildo. “Abstract Multiple Specialization and its
Application to Program Parallelization”. In: J. of Logic Programming. Special
Issue on Synthesis, Transformation and Analysis of Logic Programs 41.2&3
(1999), pp. 279–316.

[23] Steven P Reiss. “Semantics-based code search”. In: Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer Society.
2009, pp. 243–253.

[24] Eugene J Rollins and Jeannette M Wing. “Specifications as Search Keys for
Software Libraries.” In: ICLP. Citeseer. 1991, pp. 173–187.

[25] N. Stulova, J. F. Morales, and M. V. Hermenegildo. “Assertion-based Debug-
ging of Higher-Order (C)LP Programs”. In: 16th Int’l. ACM SIGPLAN Sym-
posium on Principles and Practice of Declarative Programming (PPDP’14).
ACM Press, 2014.

92

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
ftp://cliplab.org/pub/papers/assert_lang_tr_discipldeliv.ps.gz
ftp://cliplab.org/pub/papers/assert_lang_tr_discipldeliv.ps.gz

BIBLIOGRAPHY

[26] C. Vaucheret and F. Bueno. “More Precise yet Efficient Type Inference for
Logic Programs”. In: SAS’02. LNCS 2477. Springer, 2002, pp. 102–116. isbn:
ISBN 3-540-44235-9.

93

BIBLIOGRAPHY

94

Appendices

95

A
Example code

Sample code found with al_graph structure:�
1 :- module(ugraphs , [add_vertices /3], [assertions ,isomodes]).
2

3 :- use_module(library(sets), [ord_union /3]).
4 :- use_module(library(sort), [sort /2]).
5

6 :- pred add_vertices (+Graph1 , +Vertices , -Graph2)
7 # "Is true if @var{Graph2} is @var{Graph1} with @var{Vertices}

added to it.".
8 add_vertices(Graph0 , Vs0 , Graph) :-
9 sort(Vs0 , Vs),

10 Vs = Vs0 ,
11 vertex_units(Vs , Graph1),
12 graph_union(Graph0 , Graph1 , Graph).
13 % ...� �

Figure A.1: Fragment from ugraphs.pl (Ciao library).

97

APPENDIX A. EXAMPLE CODE

Sample code found with math_graph structure:�
1 :- module(named_graphs , [complete_graph /2, cycle_graph /2], []).
2

3 :- use_module(library(lists), [append /3]).
4

5 complete_graph(N, graph(V,E)) :-
6 count(N, V),
7 generate_complete_edges(V, E).
8

9 generate_complete_edges(V, E) :-
10 generate_complete_edges_(V, V, E).
11

12 generate_complete_edges_ ([], _, []).
13 generate_complete_edges_ ([V|Vs], AllV , E) :-
14 generate_complete_edges_for_vertex(V, AllV , E1),
15 append(E1, RestE , E),
16 generate_complete_edges_(Vs, AllV , RestE).
17

18 generate_complete_edges_for_vertex(_, [], []) :- !.
19 generate_complete_edges_for_vertex(V, [V|Vs], E) :- !,
20 generate_complete_edges_for_vertex(V, Vs , E).
21 generate_complete_edges_for_vertex(V, [V1|Vs], [(V, V1)|E]) :-
22 generate_complete_edges_for_vertex(V, Vs , E).
23

24 cycle_graph(N, graph(V,E)) :-
25 N = 2, !,
26 V = [1,2],
27 E = [(1 ,2) ,(2,1)].
28 cycle_graph(N, graph(V,E)) :-
29 N > 1,
30 count(N, V),
31 generate_cycle_edges(V, E).
32

33 generate_cycle_edges ([V1], [(V1, 1)]) :- !.
34 generate_cycle_edges ([V1, V2|Vs], [(V1 , V2)|Edges]) :-
35 generate_cycle_edges ([V2|Vs], Edges).
36

37 count(N, Lst) :-
38 count_(1, N, Lst).
39 count_(I, N, []) :-
40 I > N, !.
41 count_(I, N, [I|L]) :-
42 I1 is I+1,
43 count_(I1, N, L).� �

Figure A.2: named_graphs.pl (Ciao library)

98

B
Additional tables

Table B.1: Analysis statistics from core/lib modules: time(ms) and memory(B)
consumption.

Module name load
time

regtype
ana
time

regtype
global
stack
mem

shfr
ana
time

shfr
global
stack
mem

total
anal-
ysis
time

dict 480 20 669,312 3,712 772,472 3,732
sets 548 116 1,462,696 1,512 1,923,720 1,628
assrt_write 760 172 1,404,136 1,240 420,392 1,412
sort 544 184 877,104 992 222,288 1,176
optparse_tr 744 32 814,168 1,068 950,272 1,100
translation 516 108 3,415,632 564 471,456 672
exsteps 664 28 990,872 296 1,186,552 324
assrt_write0 724 80 1,030,808 96 271,688 176
assrt_lib_extra 724 108 1,103,072 48 314,680 156
term_list 488 72 867,120 24 160,944 96
civil_registry 508 76 554,032 16 621,504 92
assertions_props 556 44 1,385,760 40 1,722,832 84
pl2wam_tables 484 40 2,887,440 32 3,086,248 72
embedded_tr 832 24 680,736 44 792,152 68
terms 528 44 571,912 12 653,248 56
ceval1 496 48 522,152 4 582,896 52
unittest_base 516 36 630,600 16 740,344 52

(continued in next page)

99

APPENDIX B. ADDITIONAL TABLES

Table B.1: Analysis statistics from core/lib modules: time(ms) and memory(B)
consumption. (continued).

Module name load
time

regtype
ana
time

regtype
global
stack
mem

shfr
ana
time

shfr
global
stack
mem

total
anal-
ysis
time

ceval2 528 44 522,320 4 583,064 48
errhandle 540 28 620,024 16 747,456 44
goal_trans 484 32 582,088 12 673,952 44
llists 480 24 526,384 12 592,568 36
file_utils 564 20 641,728 12 758,024 32
foreign_compilation 584 28 541,280 4 618,072 32
qsort 484 24 483,552 8 528,312 32
srcdbg 720 4 2,540,064 28 2,570,376 32
meta_props 500 24 496,800 4 535,128 28
strings 532 16 693,304 12 809,928 28
libpaths 552 16 439,304 8 475,040 24
metatypes_tr 468 24 439,216 0 477,136 24
attr_bench 796 16 2,641,584 4 2,737,680 20
between 472 16 438,144 4 467,216 20
iso_char 496 12 599,032 8 679,024 20
length 540 20 437,240 0 456,896 20
phrase_test 512 8 556,144 8 644,392 16
optparse_rt 488 4 456,144 8 501,440 12
relationships 532 8 479,552 4 519,952 12
res_exectime_rt 632 8 480,568 4 495,480 12
resources_tr 476 8 419,248 4 444,992 12
resources_types 484 8 483,864 4 534,696 12
streams 532 8 468,608 4 518,952 12
ttyout 500 8 450,688 4 498,456 12
bundle_params 484 4 2,476,504 4 2,499,576 8
ctrlcclean 524 8 396,168 0 428,456 8
miscprops 460 4 448,888 4 480,056 8
odd 488 4 407,320 4 421,968 8
old_database 492 4 494,040 4 529,896 8
pretty_names 488 4 416,456 4 432,328 8
dict_types 512 4 413,912 0 439,584 4
fastrw 512 0 447,968 4 471,416 4
prf_ticks_rt 636 0 506,008 4 520,416 4
res_nargs_res 524 0 393,080 4 407,560 4
test1 500 4 367,368 0 382,456 4
test4 520 4 372,968 0 384,120 4
assrt_synchk 496 0 375,848 0 384,968 0
c_itf_props 480 0 414,208 0 435,624 0

(continued in next page)

100

APPENDIX B. ADDITIONAL TABLES

Table B.1: Analysis statistics from core/lib modules: time(ms) and memory(B)
consumption. (continued).

Module name load
time

regtype
ana
time

regtype
global
stack
mem

shfr
ana
time

shfr
global
stack
mem

total
anal-
ysis
time

compressed_bytecode 500 0 367,288 0 376,488 0
doc_flags 512 0 426,312 0 455,768 0
doc_props 520 0 366,272 0 375,344 0
regtypes_tr 484 0 415,608 0 434,712 0
res_litinfo 528 0 498,792 0 526,104 0
runtime_ops_tr 460 0 375,136 0 389,048 0
test2 488 0 367,704 0 382,864 0
unittest_examples 472 0 384,632 0 396,216 0
TOTAL (63) 34,088 1,680 47,436,912 9,924 44,316,888 11,604
AVG 541.1 26.7 752,966.9 157.5 703,442.7 184.2

Table B.2: Analysis dump files statistics from core/lib modules.

Module name dump
size(B)

restore
time(s)

assrt_write 566,132 2,440
sort 524,490 1,772
translation 314,227 1,652
assrt_write0 142,058 1,228
assrt_lib_extra 138,689 1,132
assertions_props 142,057 1,084
sets 212,735 1,028
exsteps 257,632 916
term_list 103,583 780
errhandle 51,222 640
attr_bench 47,920 548
terms 59,107 536
phrase_test 37,034 516
file_utils 50,810 484
embedded_tr 80,129 440
strings 36,279 400
optparse_tr 136,929 384
unittest_base 46,705 356
civil_registry 30,588 328
dict 106,704 308
iso_char 26,702 300
foreign_compilation 23,623 276

(continued in next page)

101

APPENDIX B. ADDITIONAL TABLES

Table B.2: Analysis dump files statistics from core/lib modules.

Module name dump
size(B)

restore
time(s)

goal_trans 44,771 276
llists 22,500 260
ceval2 24,122 248
ceval1 21,995 232
qsort 17,867 200
pl2wam_tables 17,649 184
ttyout 9,631 164
streams 12,383 160
metatypes_tr 12,959 156
meta_props 19,571 148
libpaths 11,676 124
old_database 13,462 112
dict_types 6,807 108
relationships 7,951 108
between 11,756 100
fastrw 6,754 100
ctrlcclean 7,474 96
srcdbg 31,936 92
miscprops 6,056 88
doc_flags 4,678 84
optparse_rt 8,713 84
res_litinfo 6,662 80
resources_tr 8,358 80
bundle_params 6,528 72
c_itf_props 2,474 68
resources_types 3,864 64
length 4,503 60
test2 1,519 52
test1 1,517 48
odd 2,498 44
pretty_names 4,875 44
prf_ticks_rt 2,271 44
res_exectime_rt 2,676 44
runtime_ops_tr 3,204 40
res_nargs_res 2,646 36
compressed_bytecode 782 32
regtypes_tr 884 28
test4 218 24
unittest_examples 58 24
assrt_synchk 58 20

(continued in next page)

102

APPENDIX B. ADDITIONAL TABLES

Table B.2: Analysis dump files statistics from core/lib modules.

Module name dump
size(B)

restore
time(s)

doc_props 396 20
TOTAL (63) 3,512,057 21,596
AVG 55,747 343

103

	Introduction
	Related work
	Keyword extraction
	Signature matching

	Our approach
	Structure of the document

	The Ciao System
	The Ciao Module System
	Ciao Assertions
	The Documentation Generator

	Traditional search
	Regular expression search
	Fuzzy string search
	Metric
	Fuzzy predicate search

	Abstract Code Search
	Preliminaries and Concrete Semantics
	Inferring the Program Semantics by Abstract interpretation
	Abstract Code Search
	'Calls' Condition Matching
	'Success' Condition Matching
	Combining information from different domains
	Algorithms
	Pre-analysis
	Module inspecting
	Predicate matching

	Implementation
	Putting all together
	Searching with the prototype
	Performance results

	Prototype Manual
	Conclusions
	Future Work

	Bibliography
	Appendices
	Example code
	Additional tables

