
Universidad Politécnica de Madrid

Escuela Técnica Superior de Ingenieros
Informáticos

A scalable static analysis framework for
reliable program development exploiting

incrementality and modularity
Ph.D. Thesis

Isabel García Contreras
MSc. in Artificial Intelligence

Departamento de Inteligencia Artificial

Escuela Técnica Superior de Ingenieros Informáticos

A scalable static analysis framework for
reliable program development exploiting

incrementality and modularity

Submitted in partial fulfillment of the requirements for the degree of:
PhD. in Artificial Intelligence

Author: Isabel García Contreras, MSc.

Director: Manuel V. Hermenegildo, PhD.

Co-director: José F. Morales, PhD.

Defended on: July 21st, 2021

Isabel García Contreras: A scalable static analysis framework for reliable program
development exploiting incrementality and modularity.

Abstract1

Automatic static analysis tools allow inferring properties about software without exe-
cuting it and without the need for human interaction. When these tools are based on
formal methods, the properties are guaranteed to hold and come with a mathematical
proof. The usage of these tools during the coding, testing, and maintenance phases
of the software development cycle helps reduce efforts in terms of time and cost, as
they contribute to the early detection of bugs, automatic optimizations, or automatic
documentation. The increasing importance of the reliability of evolving software
is evidenced by the current number of tools and on-line platforms for continuous
integration and deployment. In this setting, when changes happen fast, analysis tools
are only useful if they are precise and, at the same time, scalable enough to provide
results before the next change happens.

In this thesis we study scalable analyses in the context of abstract interpretation.
Since a way to improve scalability is to perform coarser abstractions, we first inspect
what effect this may have in effectively proving the absence of bugs. Second, we present
a framework for scalable static analyses which is generic, that is, independent of the
data abstraction of the program. We present several algorithms for incrementally
reanalyzing whole programs in a context-sensitive manner, reusing as much as possible
previous analysis results. A key novel aspect of the approach is to take advantage of
the modular structure of programs, typically as defined by the programmer, while
keeping a fine-grained relation between the analysis result and the source program.
Additionally, we present a mechanism for the programmer to help the analyzer in
terms of precision and performance by means of assertions. We show that these
assertions together with incremental analysis are specially useful when analyzing
generic code. All these algorithms have been implemented and evaluated for different
abstract domains within the CiaoPP framework. Lastly, we present an application of
the analysis framework to perform on-the-fly assertion checking, providing continuous
and almost instantaneous feedback to the programmer as the code is written. Here
the incrementality and modular nature of the presented algorithms, and the locality
of the changes, are key to achieving fast response times.

1 This is the revised and updated version of the thesis after the defense.

i

Resumen

Las herramientas automáticas de análisis estático permiten inferir propiedades del
software sin ejecutarlo y sin necesidad de intervención humana. Si dichas herramientas
se basan en métodos formales, éstas proporcionan garantías matemáticas de que las
propiedades se cumplen. El uso de estas herramientas durante las fases de codificación,
prueba y mantenimiento del ciclo de desarrollo del software ayuda a reducir esfuerzo en
términos de tiempo y coste, ya que contribuye a la detección temprana de errores, a la
optimización automática y a la documentación automática. La creciente importancia
de la fiabilidad de un software en constante evolución se ha puesto de manifiesto por
el número de herramientas y plataformas disponibles on-line para la integración y
despliegue continuos de software. En este contexto, en el que los cambios ocurren
rápido, las herramientas de análisis son útiles sólo si son precisas y lo suficientemente
escalables como para proporcionar resultados más rápidamente de lo que ocurren los
cambios.
En esta tesis estudiamos análisis escalables en el ámbito de la interpretación

abstracta. Dado que una forma de mejorar la escalabilidad es generalizar las abs-
tracciones, primero estudiamos qué efecto tienen estas generalizaciones en la eficacia
del dominio para demostrar la ausencia de errores. Segundo, presentamos un marco
para el análisis estático que es genérico, es decir, independiente de la abstracción
de los datos del programa. Presentamos diferentes algorithmos para reanalizar in-
crementalmente programas enteros, de forma sensible al contexto, reutilizando lo
máximo posible un resultado anterior. Un aspecto novedoso y clave de nuestro
enfoque es aprovechar la estructura modular de los programas, típicamente defi-
nida por la persona programadora, pero manteniendo una relación precisa entre
el programa original y el resultado del análisis. Adicionalmente, presentamos un
mecanismo para que la programadora pueda ayudar al analizador en términos de
precisión y rendimiento mediante aserciones. Mostramos que estas aserciones junto
con un análisis incremental son especialmente útiles para analizar código genérico.
Todos los algoritmos han sido implementados y evaluados para diferentes dominios
abstractos dentro de la herramienta CiaoPP. Por último, presentamos una aplicación
de este marco de análisis para realizar comprobación de aserciones en tiempo de
compilación al vuelo, de forma que se proporciona una retroalimentación continua
a la programadora mientras escribe el código. Aquí, la naturaleza incremental y
modular de los algoritmos, además de la localización de los cambios, son clave para
lograr tiempos de respuesta rápidos.

iii

Acknowledgements

These acknowledgements have been written in Spanish, to capture my gratitude in
the best possible way. Their translation can be found below.

Gracias, en primer lugar, a mis directores Manuel y Jose sin los cuales este docu-
mento no existiría. Gracias por todo el apoyo, dedicación, enseñanzas y empujones
finales que me habéis brindado a lo largo de estos años. Desde que llegué un día
diciendo que quería hacer la tesis de máster sobre “eso de la interpretación abstracta”
hasta ahora. Me habéis enseñado, además de investigación, paciencia y perseverancia.
Gracias por no escatimar en nada y por todas las oportunidades que me habéis
ofrecido para mejorar.
Gracias a los miembros del tribunal Patrick Cousot, John Gallagher, Roberto

Giacobazzi, Arie Gurfinkel, Yahong Annie Liu, Manuel Carro y Pedro Lopez-Garcia.
Gracias a todas las personas que desinteresadamente me han ayudado con este
proyecto, incluyendo a los revisores anónimos (también al revisor 2). Gracias a Patrick
Cousot y Arie Gurfinkel por la revisión de este documento y por vuestros inestimables
comentarios. Gracias a Roberto Giacobazzi por enseñarme computabilidad y por las
discusiones interesantes. Gracias a todos mis co-autores.
Gracias a todos los miembros del grupo CLIP, cada uno de vosotros me habéis

aportado una visión diferente de la investigación: Nata, Max, Ignacio, Víctor, Miguel
Ángel, Bish, Pedro, Manuel C, Joaquín y Umer. Especialmente quiero dar las gracias
a Nata por compartir conmigo su sabiduría y por ayudarme desde el primer día que
compartimos despacho. También por enseñarme qué esperar.
Gracias a Francisco Bueno (R.I.P.) por despertar mi interés en la programación

lógica y la interpretación abstracta.
Gracias a todos los investigadores de IMDEA Software, en especial, a aquellos que

comíamos juntos, por irme acercando un poco cada día al mundo de la investigación.
Por nombrar algunos: Germán, Srdjan, Platon, Miriam, Miguel, Elena, Pedro, Borja,
Alejandro, Chana e Ignacio.

Gracias también a todos los que trajeron tarta.
Gracias Ignacio por sentarte conmigo, por tu paciencia, tu amabilidad y tu experi-

encia sin las cuales esta tesis no sería posible.
Gracias a Bruno Dutertre, Ashish Gehani y especialmente a Jorge Navas por

acogerme en SRI International y enseñarme otros puntos de vista en la investigación
y a Arie Gurfinkel por su inestimable guía y consejos.

v

Gracias a todo equipo administrativo de IMDEA Software por su amabilidad y
ayuda a lo largo de estos años. Gracias también a Irene y Pilar.

Gracias a todas las investigadoras que han venido antes de mi, allanando el camino
y haciéndolo más amigable para las que venimos después. También a todas ellas con
las que he compartido el camino del doctorado: Alba, Alejandra, Ana, Anaïs, Betxu,
Chana, Elena, Kyveli, Marta, Marta, Marta, Miriam, Nata, Niki, y Silvia.

Gracias a Liss, Alba, Alejandra y Roi por las necesarias cervezas y los desahogos.
Gracias a mis amigos de la carrera Pablo, Mónica y Javi. Y al grupo HPCN, donde

hice investigación por primera vez, en especial a Rafa, Juan, Rubén, Jose y Sergio.
Gracias a mis profesores del instituto Ricardo Fernández y Luis de Peña por

despertar mi interés en entender cómo y por qué funcionan las cosas.
Gracias a mi familia por ayudarme a llegar hasta aquí. Gracias a mi madre, a

mi padre, a mi hermano Ginés, a mi tía Luci, a mis abuelas Ana y María por
acompañarme en los atascos del autobús y a mis abuelos aunque ya no estén. Gracias
a Isa, Javier y Javi por vuestro apoyo y por el viaje a comprar turrones.

Gracias, Diego, por tu apoyo continuo, tu optimismo, tus hackeos matemáticos y
tu todo.

English. I thank, in the first place, my advisors Manuel and Jose, without whom this
document would not exist. Thank you for your support, commitment, teachings, and
final pushes that you have provided me with all these years, from the first day that I
told you that I wanted to do a master thesis “about that abstract interpretation thing”
until now. You have taught me, aside from research skills, patience and perseverance.
Thanks for being so generous and all the opportunities that you have given me.

I thank the thesis committee members Patrick Cousot, John Gallagher, Roberto
Giacobazzi, Arie Gurfinkel, Yahong Annie Liu, Manuel Carro, and Pedro Lopez-
Garcia. I thank all the people that contributed selflessly to this thesis project,
also including the anonymous reviewers (and also reviewer 2). Thanks to Patrick
Cousot and Arie Gurfinkel for reviewing this document and their invaluable comments.
Thanks to Roberto Giacobazzi for teaching me computability and the very interesting
discussions. Thanks to all my co-authors.

I thank the members of the CLIP research group, each of you have showed to me
a different perspective to research: Nata, Max, Ignacio, Víctor, Miguel Ángel, Bish,
Pedro, Manuel C, Joaquín y Umer. I want to thank specially Nata for sharing with
me her wisdom and helping me from the very first day that we shared our office.
Thank you also for showing me what to expect.

I thank Francisco Bueno (R.I.P.) for bringing logic programming and abstract
interpretation to me.

vi

I thank all researchers all researchers at IMDEA Software, specially those that
shared lunch with me. Just to name a few: Germán, Srdjan, Platon, Miriam, Miguel,
Elena, Pedro, Borja, Alejandro, Chana e Ignacio. Thanks as well to those that brought
cake.

Thanks Ignacio for taking so much time to help me, for your patience, your kindness
and for sharing your experience, without which this thesis would not have been
possible.
I thank Bruno Dutertre, Ashish Gehani, and, specially, Jorge Navas for having

me at SRI International and teaching me other ways of tackling research, and Arie
Gurfinkel for his guidance and advice.
Thanks to the whole administrative team at IMDEA Software for their kindness

and help provided all these years. Thanks also to Irene and Pilar.
Thanks to all the women in science that came before me, making the path easier

and friendlier for those of us that come after. Thanks also to all of them that shared
with me the road to the PhD: Alba, Alejandra, Ana, Anaïs, Betxu, Chana, Elena,
Kyveli, Marta, Marta, Marta, Miriam, Nata, Niki, and Silvia.

Thanks to Liss, Alba, Alejandra, and Roi the beers and the reliefs.
Thanks to my friends in undergrad Pablo, Mónica, and Javi. And to the HPCN

lab, where I first started doing research, especially Rafa, Juan, Rubén, Jose, and
Sergio.

I thank my high school teachers Ricardo Fernández and Luis de Peña for arousing
my interest in learning how and why things work.
I thank my family for helping me to get here. Thanks to my mother, my father,

my brother Ginés, my aunt Luci, my grandmothers Ana and María for keeping me
company during the bus traffic jams, and to my grandfathers even though they are
not with us any more. Thanks, Isa, Javier, and Javi for your support and for the
trip to buy turrón.

Thank You, Diego, for your continuous support, your optimism, your math hacks,
and your everything.

This thesis has been partially funded by the FPU grant 16/04811 of the Spanish
Ministerio de Educación y Ciencia, MINECO TIN2015-67522-C3-1-R TRACES
project, MICINN PID2019-108528RB-C21 ProCode project, the Madrid M141047003
N-GREENS and P2018/TCS-4339 BLOQUES-CM programs.

vii

Contents
List of Algorithms xii
List of Figures xiii
List of Tables xv
1 introduction 1

1.1 Static analysis of large code bases . 4
1.2 Contributions of the thesis . 6
1.3 Overview of the thesis . 8

2 background 9
2.1 (Constraint) Logic Programs . 9

2.1.1 Concrete Semantics. 11
2.2 Abstract Interpretation . 17

2.2.1 Abstract domains . 18
2.3 Abstract Interpretation of (Constraint) Logic Programs 20

2.3.1 Correctness . 26
2.4 Analyzing other languages . 27
2.5 The Ciao System . 28

2.5.1 The CiaoPP Program Processor 29
2.5.2 Assertions . 31
2.5.3 Practical uses of assertions 34
2.5.4 Modular Logic Programming in Ciao 36
2.5.5 Modular generic logic programming: traits 37

3 abstract extensionality 41
3.1 Introduction . 42
3.2 Related work . 45
3.3 Preliminaries . 47

3.3.1 Program Semantics . 48
3.3.2 Abstract Semantics . 50

3.4 Abstract extensionality . 54
3.5 Completeness and incompleteness cliques 56
3.6 Reducing completeness to incompleteness 58
3.7 Rice extensionality of the abstract semantics 65
3.8 Conclusion . 67

ix

x contents

4 a framework for fixpoint computation in abstract
interpretation 69
4.1 The monolithic and incremental fixpoint algorithm 70

4.1.1 Operation of the algorithm 72
4.1.2 Differences w.r.t. the original monolithic incremental algorithm 73
4.1.3 Correctness and precision of IncAnalyze95 73
4.1.4 Correctness of IncAnalyze 77
4.1.5 Starting from partial analyses 78

4.2 The intermodular fixpoint algorithm 80
4.2.1 Modular analysis results . 81
4.2.2 Operation of the algorithm 83
4.2.3 Correctness of ModAnalyze 85
4.2.4 Correctness and precision of ModAnalyzeI95 86

4.3 Running example of IncAnalyze 87
5 incremental and modular context-sensitive analysis 93

5.1 Towards combining incrementality and modularity 93
5.2 Analysis graphs for modular and incremental analysis 94
5.3 Operation of the algorithm . 94

5.3.1 Enhancing the deletion strategy 97
5.3.2 Precision using IncAnalyze95 98
5.3.3 Running examples of the algorithm 98

5.4 Fundamental results of the algorithm 101
5.4.1 Correctness of ModIncAnalyze 101
5.4.2 Correctness and precision of ModIncAnalyzeI95 103

5.5 Analyzers amenable to incrementalizing 105
5.6 Related work . 105

6 assertion-guided analysis 107
6.1 Run-time semantics of assertions . 108
6.2 Abstract semantics of assertions. 109
6.3 Operation of the algorithm . 110
6.4 Fundamental properties of GuidedIncAnalyze 112
6.5 Related work . 114

7 incremental analysis of programs with (changing) as-
sertions 117
7.1 Motivating examples . 118
7.2 Operation of the algorithm . 120
7.3 Correctness of GIAwAC . 122
7.4 Related work . 124

8 experimental evaluation 125

contents xi

8.1 Implementation within the CiaoPP framework 125
8.2 Incremental and Modular Analysis: Stress test 125

8.2.1 Overhead of incremental analysis: analyzing from scratch . . 127
8.2.2 Analysis time per action . 130
8.2.3 Accumulated analysis time 131
8.2.4 Distribution of analysis times 135
8.2.5 Correlations to benchmark and analysis graph characteristics 137
8.2.6 Memory Usage . 137

8.3 Studying the effect of using assertions during analysis 139
9 application: on-the-fly assertion checking 143

9.1 Assertion verification . 143
9.2 VeriFly: The On-the-fly IDE Integration 144

9.2.1 VeriFly in action . 147
9.3 Some Performance Results . 148
9.4 Related work . 152
9.5 Conclusion . 152

10 conclusion 153
10.1 Future work . 156

a additional plots 179
a.1 Additional experimental results . 179

a.1.1 Detailed analysis times per step for analysis with def 179
a.1.2 Average analysis times split by domain 179
a.1.3 Speedup split by domain . 186
a.1.4 Accummulated analysis times 188
a.1.5 Speedup vs. size of the analysis 190

List of Algorithms

1 IncAnalyze: monolithic, context-sensitive, incremental fixpoint algo-
rithm. 71

2 ModAnalyze: Modular fixpoint algorithm. 84
3 ModIncAnalyze: Incremental and modular fixpoint algorithm. . . 96
4 Enhanced modular deletion strategy for ModIncAnalyze. 98
5 GuidedIncAnalyze: monolithic, context-sensitive, incremental fix-

point algorithm using (not changing) assertion conditions. 110
6 GIAwAC: Incremental analysis of programs with assertions. 120

xii

List of Figures

Fig. 1 Some successive and trees. Figure adapted from [22]. 13
Fig. 2 Hasse diagram of the Bits lattice. 18
Fig. 3 An abstract domain using program variables X and Y , and the

Bits lattice. 19
Fig. 4 and-or graph . 20
Fig. 5 The analysis graph that corresponds to the and-or graph of

Fig. 4. 22
Fig. 6 Program specialization implicit in the analysis after version

materialization. 23
Fig. 7 Graph after the modification operations. 25
Fig. 8 A high-level view of the Ciao system [80]. 29
Fig. 9 Architecture of the CiaoPP verification framework. 30
Fig. 10 Some simple programs. 43
Fig. 11 A modular version of the program in Example 2.1. 81
Fig. 12 A monolithic (left) and a modular (right) analysis result of the

program in Fig. 11. 82
Fig. 13 Analysis result for the program in Fig. 11, keeping a local analysis

graph per module. 95
Fig. 14 Different program states. 98
Fig. 15 Analysis results in several reanalysis steps. 100
Fig. 16 Edges of nodes potentially affected by changes in assertion

conditions. 121
Fig. 17 Architecture of the CiaoPP framework supporting incrementality.126
Fig. 18 Analysis time (ms) for warplan with def for both experiments. 130
Fig. 19 Accumulated analysis time (normalized

w.r.t mon) adding clauses. The order inside each set of bars
is: |mon|mon-inc|mod|mod-inc|. 132

Fig. 20 Accumulated analysis time (normalized w.r.t mon) delet-
ing clauses. The order inside each set of bars is:
|mon|mon-inc|mon-scc|mod|mod-inc|mod-scc|. 133

Fig. 21 Distribution over time of instances of the addition (left) and
deletion (right) experiments for warplan with def. 136

xiii

xiv list of figures

Fig. 22 Distribution over time of instances of the addition (left) and
deletion (right) experiments for boyer with def. 136

Fig. 23 Speedup vs. monolithic depending on the number of nodes in
the analysis graph. 137

Fig. 24 Speedup vs. modular depending on the number of calls to >. . 138
Fig. 25 Integration of the CiaoPP framework in the Emacs-based IDE. 145
Fig. 26 The CiaoPP option browser. 146
Fig. 27 An assertion within a parallelizer (ann). 147
Fig. 28 Sorting with incomplete data structures. 148
Fig. 29 A property incompatibility bug detected statically. 149
Fig. 30 Static detection of bugs without the need for assertions. 149
Fig. 31 Static verification of determinacy, termination, and cost (errors

detected). 150
Fig. 32 Static verification of determinacy, termination, and cost (verified).150
Fig. 33 Analysis times (ms) for both experiments with def for smaller

benchmarks. 181
Fig. 34 Analysis times (ms) for both experiments with def for larger

benchmarks (1). 182
Fig. 35 Analysis times (ms) for both experiments with def for larger

benchmarks (2). 183
Fig. 36 Accumulated analysis time (normalized

w.r.t mon) adding clauses. The order inside each set of bars
is: |mon|mon_inc|mod|mod_inc|. 188

Fig. 37 Accumulated analysis time (normalized w.r.t mon) delet-
ing clauses. The order inside each set of bars is:
|mon|mon_td|mon_scc|mod|mod_td|mod_scc|. 189

Fig. 38 Speedup vs monolithic depending on the number of nodes in
the analysis graph. 190

Fig. 39 Speedup vs modular depending on the number of nodes in the
analysis graph. 190

List of Tables

Table 8.1 Benchmark characteristics sorted by lines of code. 127
Table 8.2 Analysis times from scratch (ms). 129
Table 8.3 Analysis times (ms) per action of the clause addition experiment

with def. 131
Table 8.4 Analysis times (ms) per action of the clause deletion experiment

with def. 134
Table 8.5 Speedups of the clause addition (left) and deletion (right) ex-

periments with def. 135
Table 8.6 Maximum memory usage for the experiments with def in bytes. 139
Table 8.7 Analysis time for LPdoc adding one backend at a time (time in

seconds). 140
Table 9.1 Average response time (seconds) for the experiments only chang-

ing assertions. 151
Table 9.2 Average response time (seconds) for the experiments with any

program edit. 151
Table A.1 Analysis time (ms) per benchmark of the add experiment (pdb). 179
Table A.2 Analysis time (ms) per benchmark of the del experiment (pdb). 180
Table A.3 Analysis time (ms) per benchmark of the add experiment (gr). 180
Table A.4 Analysis time (ms) per benchmark of the del experiment (gr). 184
Table A.5 Analysis time (ms) per benchmark of the add experiment (shfr).184
Table A.6 Analysis time (ms) per benchmark of the del experiment (shfr). 185
Table A.7 Speedups of the clause addition (left) and deletion (right) ex-

periments (pdb). 186
Table A.8 Speedups of the clause addition (left) and deletion (right) ex-

periments (gr). 186
Table A.9 Speedups of the clause addition (left) and deletion (right) ex-

periments (shfr). 187

xv

1
Introduction

I had a running compiler and nobody would touch it.
. . . they carefully told me, computers could only do
arithmetic; they could not do programs.

— Grace Hopper

In the past few years, the impact of software in our daily lives has vastly increased.
Software is now present everywhere: from the industries that first used it (banking,
nuclear, aeronautics, . . .), to medical and home appliances, cars, phones, and even
government administrations. This naturally induced the creation of on-line plat-
forms for hosting software projects, where the amount of code and programmers is
massive and growing. Remarkable examples include GitHub with 56M+ developers,
3M+ organizations, 100M+ repositories; GitLab with 100K+ organizations; and
SourgeForce with 502K+ projects. Lastly, the Software Heritage Project is a recent
effort “to collect all publicly available software”, which, so far, has crawled almost
10B source files, 2.2B+ commits, and 154M+ projects, from more than ten software
archives. Not only is the number of projects growing fast, but so is their size and
dependencies with external code.

Regardless of how critical a software is, full functionality and absence of incorrect
or unexpected behaviors is of course always desired. The increasing importance of
code reliability and robustness in both industrial and academic software projects
is evidenced by the recent appearance and use of multiple tools and frameworks
for continuous integration/continuous deployment (CI/CD) and code review, such
as GitLab CI/CD pipelines, GitHub Actions, Azure DevOps, Jenkins, Phabricator,
among others.
The continuous integration (CI) workflow aims to consider always the whole

software project while developing a new feature or fixing a bug, as opposed to
independently developing or maintaining one of its components. The process typically
consists on triggering a set of (semi-)automatic processes to guarantee that every
change to a project meets some standards. These processes range from syntactic
convention checking to regression testing (checking if some functionality was lost), and

1

https://github.com/about
https://about.gitlab.com/company/
https://sourceforge.net/about
https://archive.softwareheritage.org/
https://docs.gitlab.com/ee/ci/pipelines/
https://github.com/features/actions
https://azure.microsoft.com/en-us/services/devops/
https://www.jenkins.io/
https://www.phacility.com/phabricator/

2 introduction

are organized in different and possibly independent stages in a pipeline. Additionally,
other developers may review the code manually, interacting with the author of the
change, who typically addresses the issues and resubmits changes, triggering again
the whole process. The reader can immediately see that the benefits of this workflow
in an evolving software project are significant. However, a drawback to this approach
is that it can slow down the development process, as a manual (human) review takes
time. Moreover, running software analysis tools may be quite expensive. Therefore it
is crucial that the tools are as efficient as possible and that they scale up to whole
software projects. Another drawback is that the analysis tools need to be configured
and specifications need to be written, so the tools must ease these tasks and automate
them as much as possible.
Taking CI one step further is known as continuous delivery and later continuous

deployment. The first one extends CI to automatically deploy all code changes to
a testing and/or production environment. This consists on an automated release
process, where the application is later deployed at any time by clicking a button.
Continuous deployment goes one step even further, as every change that passes
all checks of the production pipeline is released directly to the customers. There
is no human intervention, and only a failed stage will prevent a new change from
being deployed. The reliability of these tools is, hence, essential as failure to comply
with a contract may result in economic/client loss. In these cases, having a formal
(mathematical) background theory to support the tool can help convince ourselves
(and possibly clients) that the process is indeed trustworthy.

Finding mistakes before introducing them in projects is great but can be further
improved if error detection is brought forward to code writing. In the past few
years, many code analyzers have appeared in different IDEs, the vast majority are
syntactic checkers, e.g., in Eclipse’s marketplace 96 plugins are listed as “Source Code
Analyzer”1; Intellij IDEA includes plugins for finding probable bugs, locating dead
code, detecting performance issues, improving code structure and maintainability,
conforming to coding guidelines and standards, and conforming to specifications2;
Netbeans developed Code Inspect3, “a tool for finding potential problems and detecting
inconsistencies” in Java programs; and built-in analyzers are now included in Visual
Studio4, to improve code style and quality for .Net and C++ programs. In this setting,
performance is even more critical, as continuously reporting back to the programmers
on-the-fly means having to reanalyze, as precisely as possible, in a matter of a few
seconds.

1 https://marketplace.eclipse.org/taxonomy/term/14%2C31/title
2 https://www.jetbrains.com/idea/docs/StaticCodeAnalysis.pdf
3 https://netbeans.apache.org//kb/docs/java/code-inspect.html
4 https://docs.microsoft.com/en-us/visualstudio/code-quality/?view=vs-2019

https://marketplace.eclipse.org/taxonomy/term/14%2C31/title
https://www.jetbrains.com/idea/docs/StaticCodeAnalysis.pdf
https://netbeans.apache.org//kb/docs/java/code-inspect.html
https://docs.microsoft.com/en-us/visualstudio/code-quality/?view=vs-2019

introduction 3

The trend pattern is clear: automatic source code analysis and verification is of
great importance both at the level of software development and software maintenance.
A wide range of tools has appeared including syntactic checkers, software dependency
management, testing, documentation generation, static analyzers, and deploymen-
t/publishing. Specifically, automatic static analyzers allow inferring properties about
software without actually executing it and without the need for human interaction.
The underlying techniques behind these tools are of different natures, distributed
into three main areas: software engineering, empirical methods and formal methods.
Software engineering tools study the code from the perspective of software quality
measurement and assessment. Empirical methods are typically statistical methods,
and use large code bases to infer coding rules, to then check if a program differs from
the inferred coding rules. These two are typically based on syntactic analysis.
Formal methods, on the other hand, are based on rigorous mathematical techniques

that provide formal guarantees about the software [35]. Unfortunately, the use of
formal method-based tools is not extended across all kinds of companies in practice,
but rather localized to the software that is required to interact with critical systems.
A number of possible causes have been identified [36, 76], e.g., higher computational
cost, having to train the developers on the underlying formalisms, and/or the need
of extensive program annotations or specifications.
On top of that, Rice proved in 1953 [153] that an algorithm cannot be designed

to decide for all programs if they meet some functional property that is non trivial.
Namely, there does not exist a non trivial functional property about a program
(i.e., from an input/output perspective) that is computable. Due to this well-known
impossibility result, and aiming to be sound, i.e., always give a correct result, static
analysis tools must choose between always producing an answer or to being complete
(i.e., finding all bugs).

Abstract interpretation is a framework that allows safely approximating all possible
behaviors of programs. The mathematical characterization of all these possible
behaviors of a program when executed for all possible input data is called the
program’s semantics. Abstract interpretation guarantees that the static analysis is
effective (always produces an answer) if the mathematical abstraction meets some
conditions. Given the undecidability result of Rice, effective abstract interpretations
give up completeness for soundness and termination, that is, it always produces a
correct answer, but with the caveat that the answer may be ‘I do not know’. This
thesis focuses on such abstract interpretations, but complete abstractions can be
designed although they are not guaranteed to terminate. The approach of using
static analysis as a program development tool was pioneered within the abstract
interpretation community, and in particular by the Ciao system [82, 145, 83], which
the work in this thesis extends.

4 introduction

Taking a step back to observe the common ground of static analysis tools, one can
see the static software analysis process of a program as a black box that, given a
program, infers a set of properties about the program. Tools then give different uses to
these properties. For example, a verifier uses the properties to prove or disprove some
specification about the program; an optimizer uses them to transform the program
to improve some run-time characteristics, e.g., execution time, memory usage or
security guarantees. Meanwhile, a parallelizer takes advantage of the properties to
automatically generate a version of the program that can be run in several processes;
a documenter uses the properties to produce some documentation or manual about a
tool. Needless to say, any of the mentioned tools can be built directly, not necessarily
in two steps of analysis and later processing. But the analysis part is common to all
of them. This thesis contributes to improving the scalability of the analysis part that
is relevant for all of such applications. In addition, we also address its relevance for
verification.

Some contributions and findings of this thesis are written in terms of the logic
programming paradigm. This logic programming approach to computing investigates
the use of logic as a programming language and explores computational models based
on controlled deduction. Deduction can hence be viewed as a form of computation
in which deducing a statement is interpreted procedurally as deducing its premise,
typically a list of other statements. An execution of a program then consists on
determining whether a logical statement is a consequence of the program. Logic
programming provides a framework that is useful both for programming and for
reasoning about other programs and program semantics. This is due to the fact
that program specifications are usually written as logic formulae. If such formulae
can be expressed in a logic program then the program is correct ’by construction’
but also machine-checkable, since the specification can be executed as part of the
program. In fact, the techniques developed for logic programs have expanded beyond
logic programming to a large variety of other programming languages, including
imperative, functional, object-oriented, and concurrent ones [137, 77, 123, 71, 74, 75,
47, 94, 116, 138, 59, 45].

1.1 Static analysis of large code bases: scalability and its related challenges

In this thesis we address the performance and scalability issues that arise when
analyzing large software projects, which can be divided into four specific goals.

Taking advantage of localized changes. Large, real-life programs typically have a
complex structure combining a number of modules with system libraries. Global

1.1 static analysis of large code bases 5

analysis of such large code bases is expensive, and this is specially problematic in
interactive uses of analyzers. In this scenario, triggering an entire reanalysis for each
change set is often too costly. A key observation is that very often changes in the
program are small and isolated inside a few components. This characteristic can be
taken advantage of to reduce the cost of re-analysis in two ways: reusing as much
information as possible from previous analyses, and avoiding the maintenance of
analysis information for unaffected components. Thus, our first goal is to:

Design and evaluate static analysis algorithms that leverage program
modularity and localization of changes to recompute program properties
reusing previous results as much as possible. [G1]

User-guided approximations. Approximations during program analysis are a nec-
essary evil, as they ensure essential properties, such as soundness and termination
of the analysis, but they also imply not always producing useful results. Automatic
techniques have been studied to prevent precision loss, typically at the expense of
larger resource consumption. In both cases, that is, when analysis produces inaccurate
results and when resource consumption is too high, it is necessary to have some
means for users to provide information to guide analysis and thus improve precision
and/or performance. We want to study:

Techniques for supporting within an abstract interpretation framework a
rich set of assertions to improve the precision and performance of fixpoint
computation processes. [G2]

Dealing with (incomplete) generic code. In modern coding it is rarely necessary to
write everything from scratch. Modules and interfaces allow dividing the program into
manageable and interchangeable parts. Generic components are a further abstraction
over the concept of modules, introducing dependencies on other (not necessarily
available) components implementing specified interfaces. They have become a key
concept in large and complex software applications [172, 100, 51, 88]. Despite un-
deniable advantages, generic code is also anti-modular. Precise analysis requires
such code to be instantiated with concrete implementations, potentially leading to
expensive combinatorial explosion. In such cases both whole program analysis and
user annotations can help alleviate the anti-modularity nature of generic code. An
initial specification of the generic component provided by the user that can be later
refined when the code is available can be a good compromise to achieve a precise,
and yet not so expensive analysis while the application is being developed. Thus we
are interested in studying:

6 introduction

Techniques for a precise analysis of programs involving generic code that
can be guided by programmer annotations. [G3]

Coping with imprecision. Program analysis is concerned with intensional properties
not just because semantically equivalent programs may exhibit different abstract
properties, but also because semantically different programs may appear identical
abstractly. This familiar phenomenon can be overcome by increasing the precision
of program analysis; but the incurred costs make it into one of the main chal-
lenges in program analysis, and into one of the main obstacles to the scalability of
general-purpose program analysis. Being aware of the precision flaws of an abstract
interpretation is equivalent to studying its completeness. Completeness encodes the
greatest achievable precision when abstracting the concrete behavior of a program
on an abstract interpreter. Here, the only loss of precision is due to the expressivity
of the abstract domain, and not the abstraction functions or the abstract interpreter.
Incomplete abstract interpretations give rise to weaker properties than those en-
countered under direct inspections of effective computations of the program. This
means that in debugging, abstract interpretations yield false alarms. Studying the
classification of programs in terms of being complete/incomplete for an abstract
interpretation would shed some light in the systematic removal or introduction of
false alarms. Our goal is then twofold:

Adapt the concept extensional (functional) equivalence of programs to
abstract equivalences induced by abstract interpretations as a new family
of index sets for partial recursive functions. Use this equivalence to study
the classes of complete and incomplete programs for a given abstract
interpretation and how they are related. [G4]

1.2 Contributions of the thesis

This thesis makes the following contributions, related to the aforementioned goals:

• We generalize the notion of extensional (functional) equivalence of programs
to abstract equivalences induced by abstract interpretations. The generalized
framework gives rise to interesting and important new properties, and allows
refined, non-extensional analyses. In particular, since programs turn out to be
extensionally equivalent if and only if they are equivalent just for the concrete
interpretation, it follows that any non-trivial abstract interpretation uncovers
some intensional aspect of programs (G4). In collaboration with R. Bruni,
R. Gori, R. Giacobazzi, and D. Pavlovich [21].

1.2 contributions of the thesis 7

• We introduce a novel technique for building cliques of extensionally equivalent
yet abstractly distinguishable programs. The obtained results also shed a new
light on the relation between the techniques of code obfuscation and precision in
program analysis (G4). In collaboration with R. Bruni, R. Gori, R. Giacobazzi
and D. Pavlovich [21].

• We present a new formalization of existing (incremental and modular) ab-
stract interpretation fixpoint algorithms for logic programs. We extend the
description by including explicitly the description of the extrapolation steps
via widening, which was left implicit in previous work. Then we provide some
new theoretical results about the correctness and precision of such algorithms
and how incrementality may affect analysis results (G1). In collaboration with
J. F. Morales and M. Hermenegildo [64].

• We propose an algorithm that performs goal-directed, top-down, multivariant,
and incremental abstract interpretation of modular programs. The analyzer
takes a program (target), a set of initial call states, and, optionally, analy-
sis results of a previous version of the program, and information about the
changes w.r.t. the target program. We also provide theoretical results about
the correctness and precision (G1). In collaboration with J. F. Morales and
M. Hermenegildo [64].

• We present techniques for supporting within an abstract interpretation frame-
work a rich set of assertions that can deal with multivariance/context-sensitivity,
and can handle different run-time semantics for those assertions that cannot
be discharged at compile time. We show how the proposed approach can be
applied to both improve precision and accelerate analysis. We also provide
some formal results on the effects of such assertions on the analysis results
(G2). In collaboration with J. F. Morales and M. Hermenegildo [61].

• We propose a simple encoding of generic programs as traits, for logic pro-
gramming using open predicates and assertions (G3). In collaboration with
J. F. Morales and M. Hermenegildo [62].

• We extend the modular, incremental analysis algorithm to react incrementally
not only to changes in program clauses, but also to changes in the assertions,
upon which large parts of the analysis graph may depend (G3). In collaboration
with J. F. Morales and M. Hermenegildo [62].

• We show how the techniques presented for incremental analysis can be used
to perform on-the-fly assertion checking to give continuous semantic feed-
back to the programmer as the program is edited (G1). In collaboration with

8 introduction

M. A. Sanchez-Ordaz, V. Perez-Carrasco, J. F. Morales, P. Lopez-Garcia, and
M. Hermenegildo [160], contributing specially to the integration of incremental
analysis and static verification.

• Finally, we have implemented and included all the algorithms in the CiaoPP
framework and performed an extensive experimental evaluation (G1, G2, G3).
In collaboration with J. F. Morales and M. Hermenegildo [64, 60].

1.3 Overview of the thesis

Chapter 2 briefly introduces the preliminaries relevant to this thesis. Chapter 3 tackles
the problem of imprecision and completeness in abstract interpretation, studied from
the point of view of computability theory, by extending the notion of functional
equivalence of programs to abstract equivalence of programs. In Chapter 4 we provide
a description of the existing baseline incremental and modular fixpoint computation
algorithms which will serve as a basis for the rest of the algorithms presented in the
thesis. This includes a new formalization of their correctness properties. Chapter 5
presents an algorithm for modular and incremental fixpoint algorithm together
with its theoretical properties. Chapter 6 presents the proposed algorithm that
includes guidance using assertions. Chapter 7 presents an algorithm that reacts
incrementally to both changes in assertions and in program clauses. Chapter 8
presents the experimental evaluation of the proposed fixpoint algorithm, together
with some case studies. Chapter 9 presents the application of incremental analysis to
compile-time assertion checking, and shows the feasibility of the approach to give
continuous verification feedback through an IDE. Chapter 10 concludes the thesis
and describes lines of future work.

2
Background

This chapter presents the basic notions the thesis is based on.

2.1 (Constraint) Logic Programs

The logic programming approach to computing investigates the use of logic as
a programming language and explores computational models based on controlled
deduction. Deduction can be viewed as a form of computation in which deducing
a statement is interpreted procedurally as deducing its premise, typically a list of
other statements. Therefore, the execution of a program consists on determining
whether a logical statement is a consequence of the program. Logic programming
provides a framework that is useful both for programming and for reasoning about
other programs and other program semantics. This is due to the fact that program
specifications are usually written as logic formulae. If such formulae can be expressed
in a logic program then the program is both correct “by construction” and machine-
checkable, since the specification can be executed as part of the program.

A Constraint Logic Program (CLP) is a set of clauses of the form:

H :- A1, . . . ,An

where A1, . . . ,An are literals that form the body and H is an atom said to be the
head of the clause. This is equivalent to a logic formula:

A1 ∧ . . .∧An → H

with all variables in the clause universally quantified. An atom is normalized if it
is of the form p(x1, . . . ,xm) where p is an m-ary predicate symbol and x1, . . . ,xm
are distinct variables. A set of clauses with the same head is called a predicate (or
procedure). To refer to predicates we use normalized atoms or p/N where p is the
name of the predicate and N is its arity, i.e., its number of arguments. The literals
in the body are either predicate calls or primitive constraints (also called built-ins).

9

10 background

A primitive constraint is defined by the underlying domain(s) and is of the form
c(e1, . . . , ek) where c is a k-ary predicate symbol and the e1, . . . , ek are expressions.
A fact is a clause whose body is true. When CLP programs are used for verification
purposes only, i.e., they are not intended to be executed, the term Constrained Horn
Clauses (CHCs) is often used in the literature. See [45] for a recent survey of how
the two research communities are related. In the examples we use Prolog syntax,
therefore variables are encoded using capital letters, and implication (←) is denoted
with the symbol “:-”.

Example 2.1 (A logic program).
The program on the right computes the parity of
a list of 1s and 0s, i.e., the exclusive or of all the
elements. The parameters in a call par(L,P0,P)
are a list L, an initial value of the parity, P0, and
the parity, P, of the elements in L together with
P0. The predicate xor(A,B,C) succeeds if C is the
XOR operation of A and B. Note that no primitive
constraints are involved in this program.

�
1 par([], P, P).
2 par([C|Cs], P0, P) :-
3 xor(C, P0, P1),
4 par(Cs, P1, P).
5
6 xor (0 ,0 ,0).
7 xor (0 ,1 ,1).
8 xor (1 ,0 ,1).
9 xor (1 ,1 ,0).� �

The predicate par(L,P0,P) defines the parity in a recursive manner. The base case
(line 1) is a fact, and states that if L is the empty list, the parity P is P0. In the
recursive case (lines 2-4), that is, if the list has one or more elements, the xor of P0
and C, the character currently being processed, is obtained in P1 (line 3) and then
used to compute the parity of the rest of the list, P (line 4). xor/3 is defined by
declaring all four cases as facts (lines 6-9).

For presentation purposes, the heads of the clauses of each predicate in the program
are referred to with a unique subscript attached to their predicate name (the clause
number), and the literals of their bodies with dual subscripts (clause number, body
position), e.g., Ak :- Ak,1, . . . Ak,nk . For the program in Example 2.1, par/31 denotes
the head of the first clause of par/3, i.e., par([], P, P) and par/32,2 denotes the
second literal of the second clause of, i.e., the recursive call par(Cs, P1, P).

A query to a logic program is a means of executing it, and is equivalent to asking if a
relation is defined in the program. A query is a pair of an atom and a set of constraints,
e.g., Q = 〈par([0, 1], 0, P), true〉 (same as Q = 〈par(L, 0, P), {L = [0, 1]}〉).
For queries we also use the Prolog notation for conciseness: :- par([0, 1], 0, P).
Intuitively, the answers or solutions of a query are found by executing each of the
clauses whose head matches with the atom in the query. The variables of the query
are renamed to be expressed in terms of the variables of the clause. Then, this
resulting constraint is used to find whether the body of the clause holds, which is
equivalent to executing the body by executing each of its literals. If the literal is a

2.1 (constraint) logic programs 11

primitive constraint, it is interpreted in the corresponding theory. If it is a predicate,
it is treated as a new query, and the whole process is repeated again.

Example 2.2 (Queries to a logic program). The predicate par/3 in Example 2.1
may be queried to:

1. compute the parity of a list, for example with the query :- par([0,1],0,P),
whose answer is (true if) P = 1 ;

2. find lists of a given parity, e.g., :- par(L,0,1), which has an unbounded number
of answers, e.g., L = [1], L = [1,0], L = [1,1,1,1,1], ...;

3. check that a list is of a certain parity, e.g., :- par([0,1],0,0), whose answer
is false.

2.1.1 Concrete Semantics.

We use a semantics of (Constraint) Logic Programs that is query-dependent, or
“top-down”, based on Selective Linear Definite (SLD) resolution [154], and its
generalization to Constraint Logic Programming [89, 122], where the standard logic
programming domain of Herbrand terms with unification is seen as a constraint
system that solves equality constraints over these terms, and is generalized by
allowing other constraint domains and constraint solving procedures. The results
of [89] imply that, provided certain defined conditions are met by the constraint
domains used, all the standard results for logic programming carry over to constraint
logic programming. Based on these results, and without loss of generality, we often
phrase the discussion in terms of substitutions, i.e., equality constraints over the
Herbrand domain. However, the results also apply to other constraint domains. We
reduce the discussion for simplicity to top-down, left-to-right execution of CLP,
although it can be generalized easily to other computations and search rules.
The traditional description of the resolution procedure [112, 7, 89] builds a tree

structure in which the nodes contain resolvents. However, when used as a basis for
top-down program analyses, this construction is typically adorned so that nodes in
the resolution tree include representations of the constraints both before and after
completing the branch in which they appear. These are then called the call and
success states for that node, also called call and success substitutions (of the states).
This is because the aim of goal-directed, top-down program analysis is to obtain
information on the constraints before and after each program point. This idea of
splitting call and success states is present in the notion of generalized and trees
of [22], that we use as basis for the main semantic representation structure used
throughout the thesis, analysis graphs [126]. In the following we recall some basic

12 background

notation and notions of the resolution procedure, as well as how to represent the
execution of a CLP program first as and trees as then as generalized and trees. We
follow [112, 7] and [22].

Resolution Basics. A substitution is a set θ = {V1/t1, . . . ,Vn/tn} with Vi distinct
variables and ti terms. We usually denote (concrete) substitutions by θ or σ. We
say that ti is the value of Vi in θ. The set {V1, . . . ,Vn} is the domain of θ; the
range is the set of variables appearing in t1, . . . , tn. By vars(t) we denote the set
of variables occurring in t, by vars(θ) the union of the domain and the range of
θ. The composition of two substitutions σ and θ is denoted by σθ. A resolvent
is represented by ← (A1, . . . ,An)σi where σi = θ1 . . . θi is the composition of the
substitutions applied so far (the accumulated substitution). For the initial resolvent
(the query) we have σ0 = ε, the empty substitution. To perform a logical inference,
the computation rule selects the leftmost literal A1σi. The search rule then selects
a clause H ← (B1, . . . ,Bm), renames it, and unifies the head H with A1σi. If
the unification is successful with most general unifier θi+1, then the resolvent ←
(B1, . . . ,Bm,A2, . . . ,An)σi+1 is derived with σi+1 = σiθi+1. The new state is the
immediate successor of the previous one. Because a literal can match different clause
heads, a resolvent can have several immediate successors.

and trees. It is common to represent resolvents as proof trees, also referred to as
and trees, where the literals in the resolvent (calls) are the leaves of the tree, also
showing the origin of the calls. A sequence . . . ti, tj . . . of and trees is such that tj is
the immediate successor of ti. The set of all and trees which can originate from a
given set of queries specifies completely the procedural behavior of a program for that
set of queries. Fig. 1 illustrates this representation of proof states (i.e., resolvents) as
and trees, and program execution as a sequence of such states.

Generalized and trees. An and tree contains more information than needed for
analysis purposes; it shows the whole state of the computation (all variables). To
characterize the procedural behavior, it suffices to know the instance of procedure
calls immediately before their execution and immediately after their completion.
This is why [22] suggests representing a sequence of successive and trees using a
generalized and tree. These trees are built starting with an initial node, which is
the query Q, adorned on the left with a substitution θ, and with the domain of θ a
subset of vars(Q). θ is then called the call substitution of Q, and the rest of the tree
is built by expanding the leaf nodes in the following way:

• If L is a leaf adorned on the left with the call substitution θi, then:

2.1 (constraint) logic programs 13

Qθ0

← Qθ0

(a)

Qθ1
H0θ1

A1θ1

← (A1,

A2θ1

A2)θ1

(b)

Qθ2
H0θ2

A1θ2
H0θ2

B1θ2

← (B1,

B2θ2

B2,

A2θ2

A2)θ2

(c)

Qθ3
H0θ3

A1θ3
H1θ3

B1θ3
H2θ3

← (H2,

B2θ3

B2,

A2θ3

A2)θ3

(d)

Fig. 1: Some successive and trees. Figure adapted from [22].

– If C is a properly renamed clause, H ← B1, . . . ,Bn, defining L, then the
tree is expanded by pairing L with H and adding the calls B1, . . . ,Bn as
children of L. B1 is adorned on the left with the call substitution θi+1.
The domain of θi+1 is vars(H ← B1, . . . ,Bn). If the clause C is a fact,
θi+1 adorns an empty body and is also the success substitution of the
body.

– If L is a built-in, then the tree is expanded by adorning L on the right
with a substitution θi+1. The domain of θi+1 is vars(clause of L). θi+1 is
the success substitution of L. With L the last call of its clause, θi+1 is also
the success substitution of the body; otherwise it is the call substitution
of the next call.

• If a node (call) L is adorned on the left with a call substitution but not adorned
with a substitution on the right, such that L is the parent of a clause body
with success substitution θi. The tree is expanded by adorning L on the right
with a substitution θi+1. The domain of θi+1 is vars(clause of L). θi+1 is the

14 background

success substitution of L. With L the last call of its clause (the query), θi+1 is
also the success substitution of the body (the query); otherwise it is the call
substitution of the next call.

To obtain the whole tree of a successful SLD derivation of a program the previous
steps must be repeated until the root node of the tree is adorned on the right with
the success substitution. Note that for a given query a number of trees may exist,
considering the different clauses that may be unifiable.

Generalized and trees are specially convenient for analysis. Accumulated substitu-
tions in a concrete domain, can result in having an unbounded number of variables.
Also, it becomes easy to compare substitutions adorning different instances of the
same clause, something which is essential for the treatment of recursive clauses. The
only additional requirement is that procedure exit must recover a different restriction
of the same accumulating substitution.

It is also often interesting to consider trees with also or nodes, i.e., and-or trees,
rather than considering sets of and trees. and-or trees capture the semantics in
a useful way for analyses such as determinacy [115, 99], cardinality [19] and non-
failure [49], among others, but for simplicity we will limit the discussion herein to
concrete semantics based on generalized and trees.
Since generalized and trees will form the basis of the concrete semantics used in

the thesis we will sometimes refer to generalized and trees simply as trees.

Concrete Semantics. The concrete semantics JP KQ of a program P for a given set of
queries Q is the set of trees that represent the execution of the queries in Q for P . We
will represent queries (i.e., initial resolvents) as Q = 〈A, θc〉, meaning the resolvent
← (A1, . . . ,An)θc, i.e., A is a normalized atom or conjunction of atoms and θc is the
initial substitution. We refer to the nodes in the tree with 〈p(V1, . . . ,Vn), θc, θs〉, where
p is a predicate in P , and θc, θs are, respectively, the call and success substitutions
over the variables V1, . . . ,Vn. Nodes that are part of failing (or looping) branches
have empty success fields, i.e., are of the form 〈p(V1, . . . ,Vn), θc, ∅〉.

Example 2.3 (Generalized and tree). Let P be the program in Example 2.1.
The following is the tree for the only successful SLD derivation of the query Q =

{〈par([0, 1], 0, P), true〉}, i.e., the tree in JP KQ:

2.1 (constraint) logic programs 15

true :- par([0, 1], 0,P). }query
par([C|Cs],P0,P) :- }head

C = 0,
Cs = [1],

P0 = 0

xor(C,P0,P1),
xor(0, 0, 0).

C = 0,
Cs = [1],

P0 = 0,
P1 = 0

par(Cs, P1, P).
par([C|Cs], P1, P) :-

C = 1,
Cs = [],
P0 = 0

xor(C,P0,P1),
xor(1, 0, 1).

C = 1,
Cs = [],
P0 = 0,
P1 = 1

par(Cs, P1, P).
par([], P , P).

C = 1,
Cs = [],
P0 = 0,
P1 = 1
P = 1

C = 0, Cs = [1],
P0 = 0, P1 = 0,

P = 1

P = 1

2,1 2,2

2,1 2,2

1 2

Nodes in this tree represent calls to predicates. Both the query and the head with
which it is unified is depicted. The indices in the edges store the literal and clause
to which the child corresponds. Dotted boxes describe the constraints at that point
in the derivation in terms of the variables in the body. Constraints underlined and
in green are the ones newly discovered by the execution of a predicate. When the
query is performed, the second clause of par/3 is selected, adding as children the
two literals in the body. The first literal is adorned on the left with the substitution
that resulted from renaming (C = 0, Cs = [1], P0 = 0) and the expansion step is
finished. Next, node 1 is expanded, by unifying it with the only fact of xor/3 that
unifies, and this results in adorning it on the right with the substitution immediately
after the execution of the literal (including P1 = 0). Then, node 2 , the second literal
of the clause, is processed, again selecting the second clause of par/3. This consists
on expanding the node to have 2 child nodes, repeating an equivalent process. When
this subtree is fully expanded and node 2 is adorned on the right, the tree is finally
obtained by adorning the initial query on the right after renaming.

Note that in general there are a number of unsuccessful trees, for all combinations
of clauses whose head does not unify or leads to deriving false.

Example 2.4 (Generalized and tree of a query that does not succeed). Let P
be the program in Example 2.1. The following is an execution tree for the query
Q = {〈par([1], 0, 0), true〉}, which always fails (the answer is false):

16 background

true :- par([1], 0, 0).
par([C|Cs],P0, P) :-

C = 1, Cs = [],
P0 = 0, P = 0

xor(C,P0,P1),
xor(1, 0, 1).

C = 0, Cs = [],
P0 = 0, P = 0

P1 = 1

par(Cs, P1, P).
par([], P, P). ∅

∅

2,1 2,2

Consulting the trees. The calling context of a predicate given by the predicate
descriptor A defined in P for a set of queries Q is the set calling_context(A,P ,Q) =
{θc | ∃T ∈ JP KQ s.t. ∃〈A′, θc, θs〉 in T ∧ ∃σA′ = σ(A)}, where σ is a renaming
substitution over variables in the program, i.e., a substitution that replaces each
variable in the term it is applied to with distinct, fresh variables. In the following we
use σ to denote such renaming substitutions. We denote by answers(P ,Q) the set
of answers (success constraints) computed by P for queries Q, i.e., answers(P ,Q) is
{θs | s.t. ∃T ∈ JP KQ ∧ 〈A, θc, θs〉 = root(T)}. We denote by children(P ,Q, 〈A, θ〉) the
set of tuples of child nodes of 〈A, θ〉 together with their position in the clauses (k) and
literals (l) that define the predicate (〈B, θB〉, k, l) of computed by P for queries Q.
A sequence of calls of the form 〈A1, θ1〉 →k1,l1 〈A2, θ2〉 →k2,l2 . . .→kn−1,ln−1 〈An, θn〉
is a path in a tree iff for all 1 ≤ i < n ∃(〈Ai+1, θi+1〉, ki, li) ∈ children(P ,Q, 〈Ai, θ〉).

Example 2.5 (Calling context of a predicate). Let P be the program
in Example 2.1 and Q = {〈par([0, 1], 0, P), true〉}. The calling con-
text of xor/3, i.e., how the predicate is called if the program is ex-
ecuted with Q, calling_context(xor(A,B,C),P ,Q) is the set of constraints:
{(A = 0, B = 0), (A = 1, B = 0)}, one per node in the tree of Example 2.3.

Example 2.6 (Answers to a query). Let P be the program in Example 2.1 and
Q = {〈par([0, 1], 0, P), true〉}. The answers of the query in Q, answers(P ,Q) is
the set {(P = 1)}.

Example 2.7 (Children of a node). Let P be the program in Example 2.1 and Q =

{〈par([0, 1], 0, P), true〉}. Let n be the node 〈par(Cs, P1, P), {Cs = [1], P1 =

0, P0 = 0}〉 in the tree of Example 2.3. The children of n, children(P ,Q,n), is the
set:

{(〈xor(C, P0, P1), {C = 1, P0 = 0}〉, 2, 1),
(〈par(Cs, P1, P), {Cs = [], P1 = 1, P = 1}〉, 2, 2)}

2.2 abstract interpretation 17

Example 2.8 (A path in a generalized and tree). The following path is a valid path
in the tree of Example 2.3:

〈par([0,1],0,P), true〉 →2,2

〈par(Cs,P1,P), (Cs = [1], P1 = 1)〉 →2,1

〈xor(P,P0,P1), (C = 1, P0 = 0)〉

2.2 Abstract Interpretation

Abstract interpretation [37, 38] has been developed as an effective method for
constructing sound-by-construction program analysis tools. The underlying idea is to
extract properties of a program by approximating its semantics, which is implemented
by interpreting program structures in an abstract domain. Let us first define some
basic notation.

Sets and order. Given two sets S and T , we denote with ℘(S) the powerset of S,
with S \ T the set-difference between S and T , with S ⊂ T strict inclusion, with
S ⊆ T inclusion, with S set complementation, and with |S| the cardinality of S. A
set S is finite if |S| < ω. A set L with ordering relation v is a poset, and it is usually
denoted as 〈L,v〉. A poset 〈L,v〉 is a lattice, denoted 〈L,v,t,u,>,⊥〉, if ∀x, y ∈ L
we have that the least upper bound (lub) xt y, the greatest lower bound (glb) xu y,
the greatest element (top) >, and the least element (bottom) ⊥ belong to L. It is
complete when for every X ⊆ L we have that ⊔X,

d
X ∈ L. We use subscripts, like

in ⊥L, >L, or
⊔
LX to disambiguate the underlying lattice when it is not evident

from the context.

Functions. Given f : S → T and g : T → Q we denote with g ◦ f : S → Q

their composition, i.e., (g ◦ f)x = g(f(x)). We let idS : S → S be the identity
function over S, and omit the subscript S when clear from the context. A function
f : L→ D on complete lattices is additive (resp. co-additive) if for any non-empty
Y ⊆ L, f(tLY) = tDf(Y) (resp. f(uLY) = uDf(Y)). Continuity is kept when
f preserves lubs of increasing (non-empty) chains. If f : L → D we overload the
notation by writing f : ℘(L)→ ℘(D) for the additive extension of f to sets of values
(i.e., for any non-empty S ∈ ℘(L) we have f(S) = {f(v) | v ∈ S}). For a continuous
function f , the least fixed point lfp(f) = u{x | x = f(x)} = tn∈Nf

n(⊥) where
f0(⊥) = ⊥ and fn+1(⊥) = f(fn(⊥)). Note that additive functions are continuous.

18 background

>

b

z o

⊥

Fig. 2: Hasse diagram of the Bits lattice.

2.2.1 Abstract domains

Let C (concrete) and A (abstract) be complete lattices. Values in A and C are related
via a pair of monotone functions α : C → A and γ : A → C. A pair (α, γ) forms
an adjunction or a Galois connection between C and A if for any c ∈ C and a ∈ A
we have α(c) vA a⇔ c vC γ(a). The function α (resp. γ) is the left-adjoint (resp.
right-adjoint) to γ (resp. α) and it is additive (resp. co-additive). A Galois connection
such that α ◦ γ = idA is called a Galois insertion.
Given a Galois connection, we call A = 〈A,v,t,α, γ〉 an abstract domain, with

join operator t. An abstract domain satisfies the ascending chain condition (ACC) if
it has no infinite ascending chain. In such cases the fixpoint of any monotone function
can be effectively computed in a finite number of steps, or by the use of a widening
operator ∇ [37].

Example 2.9 (Abstracting constants 1 and 0). Let the concrete domain of integers
be DInt = 〈℘(Z),⊆,∪,∩, ∅, Z〉, let CBits = {⊥, z, o, b,>}, and γ : CBits → ℘(Z) and
α : ℘(Z)→ CBits be defined as

γ(x) =

∅ if x = ⊥
{1} if x = o

{0} if x = z

{0, 1} if x = b

Z otherwise

α(x) =

⊥ if x = ∅
o if x = {1}
z if x = {0}
b if x = {0, 1}
> otherwise

Let vBits⊆ (CBits × CBits) be defined as x vBits y iff γ(x) ⊆ γ(y). The Hasse
diagram of the lattice induced by vBits is shown in Fig. 2. The lattice 〈CBits,vBits〉,
together with γ can be used to capture the property “the program returns values 1
or 0”. For instance, assuming that a program can return any natural number, the
output of the abstract interpretation process would be a value in CBits corresponding
to an over approximation to the set of actual values of the execution.

2.2 abstract interpretation 19

>

{X/b,Y /b}

(X/z,Y /b) (X/o,Y /b)(X/b,Y /z) (X/b,Y /o)

(X/z,Y /z) (X/o,Y /z) (X/z,Y /o) (X/o,Y /o)

⊥

Fig. 3: An abstract domain using program variables X and Y , and the Bits lattice.

Being able to only represent input/output values of a program is very limiting, as,
in general, abstract values are related to variables in the program. This is typically
represented using sets of Var/AbstractVal pairs.

Example 2.10 (Abstracting constants 1 and 0 for the variables in a program). A
domain to infer whether the variables in a program take values 1 or 0, DBits, is built
using the lattice 〈CBits,vBits〉. Given a program P , the set of values in the abstract
domain is AP = {X/v | X ∈ vars(P), v ∈ CBits}. That is, the Cartesian product of
the program variables and the values in CBits. The ordering vDBits is built extending
vBits to the pairwise (i.e., variable per variable) comparison of the values assigned
to each of the variables in dom(λ),λ ∈ AP . Fig. 3 shows a lattice for an abstract
domain for a program with two variables X,Y using CBits.

Note that, in general, in the Var/AbstractVal pairs, abstract values can actually be
any term, including variables, thus allowing the represention of relational properties,
i.e., properties that represent relations between variables, e.g., “x > y”. Also note
that since the number of variables in the program is known (and finite), if we have
a finite lattice, one can always build a finite lattice of Var/AbstractVal pairs. Of
course, this is only computable if the terms used as abstract values are finite.1

1 Using abstractions of this shape is not a requirement, but rather a general way of representing
domains that abstract properties w.r.t. program variables. In fact, many implementations of abstract
domains use other representations for efficiency.

20 background

X/z :- par(Msg,X,P)

par([],P,P) par([C|Cs],P0,P)

P0/z xor(C,P0,P1)

xor(0,0,0) xor(1,0,1)

P0/z
C/b,
P1/b

par(Cs,P1,P)

par([],P,P) par([C|Cs],P0,P)

P/b xor(C,P0,P1)

xor(0,0,0) xor(0,1,1) xor(1,0,1) xor(1,1,0)

P0/b,
C/b,
P1/b

par(Cs,P1,P)

P0/b,
C/b,
P1/b,
P/b

P0/z,
C/b,
P1/b,
P/b

X/z,
P/b

par/31 par/32

par/32,1

xor/31 xor/33

par/32,2

par/31 par/32

par/32,1

xor/31 xor/32 xor/33 xor/34

par/32,2
par/32,2

or

or

or

or

or

Fig. 4: and-or graph

2.3 Abstract Interpretation of (Constraint) Logic Programs

We perform query-dependent abstract interpretation, whose result is an abstraction
of the generalized and tree semantics. The purpose of this abstraction is to represent
as a finite object the (possibly infinite) set of (possibly infinite) generalized and
trees in the execution of a CLP program. The input to the abstract interpretation
process is the program P , an abstract domain Dα, and a set of initial abstract queries
Qα = {〈Ai,λci 〉}, where each Ai is a normalized atom, and λci ∈ Dα (calls). Qα
defines the (typically infinite) set of concrete queries Q that the analysis must be
correct for, JP KQ = JP Kγ(Qα). With some abuse of notation we represent the set
γ(Qα) as Q = {〈A, θ〉 | θ ∈ γ(λ) ∧ 〈A,λ〉 ∈ Qα}.
To represent a set of generalized and trees, Bruynooghe [22] proposes to encode

choices among several clauses using or nodes. Thus, the abstract semantics is called
an abstract and-or graph, where (or) nodes with cycles in the graph represent
recursive calls, i.e., they abstract an infinite number of trees. When building such
graphs, edges forming cycles are added whenever the same abstract call is inferred.
If the domain is infinite, a generalization of the successive (increasing) abstract calls
via a widening results in eventually finding the same abstract calls (and build the
cycles).

2.3 abstract interpretation of (constraint) logic programs 21

Example 2.11 (and-or graph of Example 2.1). Fig. 4 shows an and-or graph,
using elements of DBits as abstract substitutions, for the abstract query Qα =

{〈par(Msg,X,P), (X/z)〉}. Consequently, it abstracts the trees in Examples 2.3
and 2.4. Nodes in green (with no children) represent facts, nodes in pink are the and
nodes, and they capture the execution of a clause. Nodes in black represent the or
nodes, and represent the execution of a predicate. When an abstract call substitution
is encountered twice, the call is tabulated and the abstract success substitution is
reused. This is the case of the recursive call to par/3 in the bottom right of the
graph of Fig. 4.

The and-or graph example has been included for completeness, however, this
work is based on a compact representation of the and-or graphs: analysis graphs.
They were originally designed in [126, 127, 129] with performance in mind, and they
store explicitly only the or nodes, i.e., the predicate calls. Analysis graphs (Def. 2.1)
are the elements in our abstract domain, and thus represent the abstract properties
of programs.

An analysis graph is a (directed) call graph and a mapping function from predicate
descriptors and call substitutions to answer substitutions, both elements of Dα. A
node in an analysis graph represents that a call to a predicate (〈A,λc〉) is possibly
made, and it has an associated answer λs (if succeeds), through the mapping, 〈A,
λc〉 7→ λs, with λc,λs ∈ Dα. This represents that the answer pattern for calls to
predicate A with calling pattern λc is λs, and it implies that for any node in the
concrete trees in JP KQ of the form 〈A, θc, θs〉, there must exist a node 〈A,λc〉 7→
λs in the analysis graph such that θc ∈ γ(λc) and θs ∈ γ(λs). Therefore, analysis
graphs must capture all the call–success pairs, i.e., all the nodes in the and trees
of the concrete semantics. For a given predicate A, the analysis graph may contain
more than one node capturing different call situations. A call mapped to ⊥ (〈A,
λc〉 7→ ⊥) indicates that all calls to predicate A with substitution θ ∈ γ(λc) either
fail or loop, that is, they never succeed.
An edge in an analysis graph is of the form 〈A,λc〉 →k,i 〈B,λc′〉. This represents

that calling predicate A with calling pattern λc may cause predicate B to be called
(via the literal Ak,i) with calling pattern λc′. Correctness with respect to the concrete
semantics requires that if in any concrete tree in JP KQ the clause Ak is executed
with a calling pattern θc that causes predicate B (the literal Ak,i) to be called
with some calling pattern θc′ , then there must be an edge in the graph 〈A,λc〉 →k,i
〈B,λc′〉 and θc ∈ γ(λc), θc′ ∈ γ(λc′). These edges capture the dependencies between
the immediate calls of a predicates, i.e., given a node in the tree, the immediately
following nodes. For simplicity, we omit k, i when not relevant in the context.

22 background

〈par(Msg,X,P),
(X/z)〉 7→
(X/z,P/b)

〈xor(C,P0,P1),
(P0/z)〉 7→
(C/b,P0/z,P1/b)

〈par(Msg,X,P),
X/b〉 7→
(X/b,P/b)

〈xor(C,P0,P1),
(P0/b)〉 7→
(C/b,P0/b,P1/b)

2, 1 2, 2

2, 1

2, 2

1

Fig. 5: The analysis graph that corresponds to the and-or graph of Fig. 4.

Example 2.12. Fig. 5 shows an analysis graph that corresponds to the and-or
graph of Fig. 4. In the examples we mark with a bold outline the initial nodes (i.e.,
the calls in Qα). Node 1 (〈par(Msg,X,P), (X/z)〉 7→ (X/z,P/b)) captures that
par/3 may be called with X bound to any in γ(z) = {0} and, if it succeeds, the
third argument P is bound to any of γ(b) = {1, 0}. Note that a different node (the
one below) captures that there are other calls to par where X/b holds. The edges in
the graph represent the 〈A,λc〉 →k,i 〈B,λc′〉 relation. For example, two such edges
exist starting at node 1 , denoting (right) that it may call xor/3 and (below) that it
may call itself with a different call substitution.

The information in the and-or graph can be reconstructed from the analysis
graph by renaming and projecting abstract substitutions that appear in it, which
keeps the information only at the predicate and literal level.
Note that if a predicate is called from different points of the program with the

same abstract substitution there will be an edge from each of the clauses to that
predicate. There may also be more than one edge between two nodes if the same
predicate appears several times in the body of a clause or clauses. In these cases the
edges necessarily differ by the tag k,i.

Multivariance (a.k.a., polyvariance, context- and path-sensitivity). As seen in
the example, these analysis graphs allow representing the different call patterns
encountered during the execution, separating the cases in which such calls differ,
even if some of them subsume some others. This feature is traditionally referred to
as multivariance in the context of analysis of logic programs, and here it serves two
purposes:

2.3 abstract interpretation of (constraint) logic programs 23

�
1 % 〈par(Msg,X,P),>〉 7→ (X/z,P/b)
2 par([], P, P).
3 par([C|Cs], P0, P) :-
4 xor_1(C, P0, P1).
5 par_2(Cs, P1, P).
6
7 % 〈par(Msg,X,P), (X/b)〉 7→ (X/b,P/b)
8 par_2([], P, P).
9 par_2([C|Cs], P0, P) :-

10 xor_2(C, P0, P1),
11 par_2(Cs, P1, P).
12
13 % 〈xor(C,P0,P1), (P0/z)〉 7→ (C/b,P0/z,P1/b)
14 xor_1 (0 ,0 ,0).
15 xor_1 (0 ,1 ,1). % After abstract partial eval.:
16 xor_1 (1 ,0 ,1). % xor_1 (0 ,0 ,0).
17 xor_1 (1 ,1 ,0). % xor_1 (1 ,0 ,1).
18
19 % 〈xor(C,P0,P1), (P0/b)〉 7→ (C/b,P0/b,P1/b)
20 xor_2 (0 ,0 ,0).
21 xor_2 (0 ,1 ,1).
22 xor_2 (1 ,0 ,1).
23 xor_2 (1 ,1 ,0).� �

Fig. 6: Program specialization implicit in the analysis after version materialization.

1. Precision: Different calling patterns to the same predicate are stored depending
from which exact clause and literal this predicate is called from and with which
call pattern. This idea of storing multiple calling contexts in this way is used in
recent implementations of context sensitivity in imperative program analyses
(e.g., [97, 170]) where it is referred to as keeping multiple value contexts.

2. Efficiency: For the same literal and clause in the program, storing different
calling patterns allows keeping the fixpoint computation localized to only those
patterns that change.

While beyond the scope of this thesis, note also that multivariance is a form of
multiple specialization of predicates. For example, the graph in Fig. 5 contains two
versions of predicate par/3 and another two of xor/3, and implies the specialization
shown in Fig. 6. The tuples written as comments (lines 1, 7, 13, and 19) contain the
corresponding inferred abstract substitutions (for call and success). This is referred
to as materializing the versions in the analysis graph [129].

Reconstructing the paths of concrete executions. The analysis graph, through the
edges (〈A,λc〉 →k,i 〈B,λc′〉) relation, provides an abstraction of the paths explored

24 background

in the concrete executions of the program, represented by the concrete trees. In
particular, it is possible to reconstruct, for every node, all possible (and possibly
infinite) execution trees that lead to the call pattern described by the node, by
following the edges of the analysis graph. The analysis graph thus embodies two
different abstractions (two different abstract domains): the graph itself is a regular
approximation of the paths through the program, using a domain of regular structures.
Separately, the abstract values (call and success patterns) contained in the graph
nodes are finite representations of the states occurring at each point in the program
paths, by means of the data abstract domain. Note that the path abstraction implicit
in the graph is more powerful than the call stack representation in the well known
call-strings method introduced in [163] (see, e.g., [97, 170] for two recent examples
of use), as this method only keeps track of the callers of the abstracted call, and
typically as a limited-length sequence [163], whereas the analysis graph approach
captures, as a regular structure, all the arbitrarily large sequences of procedures
executed before that call, i.e, not only its direct callers or a limited-depth sequence.
As mentioned before, the analysis also includes the call patterns and paths leading
to failure or non-termination in the concrete semantics, whose answer is ⊥ (s.t.
γ(⊥) = ∅).

Analysis graphs and paths. We introduce some basic notation for graphs. The
following abstract transformers over an analysis result g allow us inspecting and
manipulate analysis results.

〈A,λc〉 ∈ g : returns a boolean answer to whether there is a node in the call graph
of g with key 〈A,λc〉.

〈A,λc〉 7→ λs ∈ g : returns a boolean answer to whether there is a node in g with
key 〈A,λc〉 and the answer mapped to that call is λs.

n→k,i m ∈ g : returns a boolean answer to whether there are two nodes n,m in g
and there is an edge from n to m with tag k, i.

del(g, {ni}) : returns a graph after removing from g nodes ni and its incoming and
outgoing edges and unsets the element in the mapping function (it becomes
undefined for all ni).

upd(g,n 7→ λs) : returns a graph after overwriting in g the value of n in the mapping
function. If a node with key n did not exist in g, it is added.

upd(g, {n→k,i m}) : returns a graph after adding to g an edge from node n to
node m with tag k, i. If an edge already existed from n with the same tag, it is
removed.

2.3 abstract interpretation of (constraint) logic programs 25

〈par(Msg,X,P),
(X/z)〉 7→
((((

((X/z,P/b)>

〈xor(C,P0,P1),
(P0/z)〉 7→
(C/b,P0/z,P1/b)

〈par(Msg,X,P),
X/b〉 7→
(X/b,P/b)

〈xor(C,P0,P1),
(P0/b)〉 7→
(C/b,P0/b,P1/b)

2, 1 2, 2

2, 1

1

2

3

2, 2

2,
1

(n
ew

)
Fig. 7: Graph after the modification operations.

upd(g, {ei}) : returns a graph after performing upd(g, ei) for each element of {ei}.

A sequence of calls of the form 〈A1,λ1〉 →k1,l1 〈A2,λ2〉 →k2,l2 . . .→kn−1,ln−1 〈An,λn〉
is a path in a graph g iff for all 1 ≤ i < n there exists an edge 〈Ai,λi〉 →ki,li
〈Ai+1,λi+1〉 in g.

Example 2.13. To illustrate the graph operations we show some examples of
operations done to the analysis graph of Fig. 5, to which we refer with A . The
following operations do not modify the graph.

• Check if there is a call to par/3 with the second argument as z
〈par(Msg,X,P), (X/z)〉 ∈ A . This is true (node 1).

• Check if there is a call to par/3, that, if it succeeds the second argument is a
bit: 〈par(Msg,X,P), (X/z)〉 7→ (X/z,P/b) ∈ A . This is true (entry node).

• Check if there is a literal with xor/3 in any of the clauses of par/3:
〈par(M,P0,P), (P0/z)〉 → 〈xor(C,P0,P1), (P0/b)〉 ∈ A . This is false, there
is a path from par/3 to a node containing xor/3 but there is not a direct call.

Example 2.14. The following examples perform graph modification operations over
the analysis graph of Fig. 5, referred to again with A .

• Remove the node for the abstract call 〈xor(C,P0,P1), (P0/z)〉:
del(A , {〈xor(C,P0,P1), (P0/z)〉}) (see 1 in Fig. 7).

• Update the node for par/3 with a more general success pattern:
upd(A , 〈par(Msg,X,P), (X/z)〉 7→ >) (see 2 in Fig. 7).

26 background

• Add an edge from node 1 to the remaining node for xor/3:
upd(A , {〈par(M,X,P), (X/z)〉 → 〈xor(C,P0,P1), (P0/b)〉}) (see 3 in Fig. 7).

After these operations, the state of the analysis graph is depicted in Fig. 7. Note
that, since we have replaced all calling patterns with more general abstractions, this
analysis graph approximates the behaviors of Fig. 5.

2.3.1 Correctness

We now introduce some definitions that are instrumental for determining correctness
of analysis results. We first define a well-formed graph, which is valid for a given
program and is restricted syntactically by it.

Definition 2.1 (A well-formed analysis graph for a program). Let P be a program
and A an analysis graph. A is well formed for P if:

• for every edge 〈A,λcA〉 →k,i 〈B,λcB〉 ∈ A there exists a clause k of predicate
A, and B is the i-th literal of the clause, and

• it does not contain two different nodes with the same key 〈A,λc〉.

Note that the same graph may be well formed for several programs. E.g. if a graph
is well formed for a program P and this program is extended with some clauses to
form P ′, the graph is also well formed for P ′. Also note that an empty graph is well
formed for all programs. Henceforth, in the definitions we only consider well-formed
analysis graphs. The following Definitions 2.2 to 2.5 determine how the concrete
semantics of a program is correctly abstracted by a well-formed analysis graph.

Definition 2.2 (Correctly approximated calls). Let P be a program, Q a set of initial
concrete queries, and A an analysis graph. We say that A correctly approximates
the calls in JP KQ if all encountered call patterns during the concrete execution are
contained in A . That is, for all predicates A in P :

∀θc ∈ calling_context(A,P ,Q).∃〈A,λc〉 ∈ A s.t. θc ∈ γ(λc).

Definition 2.3 (Correctly approximated answers). Let P be a program, Q a set
of initial concrete queries, and A an analysis graph. We say that the answers in A

correctly approximate the answers in JP KQ if they abstract all the answer patterns
to the encountered call patterns. That is, for all predicates A of P :

∀〈A,λc〉 7→ λs ∈ A , ∀θc ∈ γ(λc) if θs ∈ answers(P , {〈A, θc〉}) then θs ∈ γ(λs).

2.4 analyzing other languages 27

Definition 2.4 (Correctly approximated call dependencies). Given a program P

and initial concrete queries Q, and an analysis graph A . We say that A correctly
approximates the call dependencies in JP KQ if for every node 〈A, θcA〉 in JP KQ for
every child (〈B, θcB〉, k, i) ∈ children(P ,Q, 〈A, θcA〉), there is an edge:

〈A,λcA〉 →k,i 〈B,λcB〉 ∈ A s.t. θcA ∈ γ(λcA) ∧ θcB ∈ γ(λcB).

Definition 2.5 (Correct global analysis). Let P be a program, Q a set of initial
concrete queries, and A a well-formed analysis graph for P . A is correct for P ,Q if

a) A correctly approximates the calls for P , Q (Def. 2.2),
b) A correctly approximates the answers for P , Q (Def. 2.3), and
c) A correctly approximates the call dependencies for P , Q (Def. 2.4).

2.4 Analyzing other languages

The analysis graph approach can be applied to other programming languages outside
of the logic programming paradigm, although depending on the characteristics of
the language some parts of the approach (e.g., or-nodes) may not be used. As an
example, in [134] the base algorithms that we extend in this work were shown to be
directly applicable to Java bytecode. However, rather than this direct application,
it is often advantageous to use a separation of concerns approach and divide the
process into two steps: first a translation from the original program to a set of Horn
clauses (a CLP program), as an intermediate representation, so that the semantics
of the Horn clauses captures correctly the semantics of the original program, and
then application of the analysis techniques. In the rest of the thesis we will assume
that input programs are either CLP programs or they are converted to this Horn
clause-based intermediate representation, on a modular basis. The conversion itself
is beyond the scope of this thesis (and obviously dependent on the source language).
It is trivially direct in the case of (C)LP programs or (eager) functional programs.
For imperative programs we refer the reader to, e.g., [77, 123, 5, 59, 116, 138, 45]. In
fact, Horn clauses have since been used successfully as intermediate representations
for many different programming languages and compilation levels (e.g., bytecode,
llvm-IR, ISA, . . .), in a good number of analysis and verification tools [12, 135,
73, 90, 3, 108, 116, 16, 46, 75, 15, 107, 117, 48, 92]. We note that some of these
approaches use the bottom-up semantics on the Constrained Horn Clauses (CHC)
side, and then typically the small-step semantics in the translation, while others,
including ours, exploit the complementary approach of using the top-down semantics
on the CHC side, and then typically the big-step semantics in the translation,

28 background

but some combine, e.g., big-step with bottom-up [75]. Big-step and small-step are
nicknames often used to refer to, respectively, Kahn’s natural semantics [93] and
Plotkin’s structural operational semantics [141]. In the big-step semantics approach,
the clause-based encoding is equivalent to a block-based control flow graph, which is in
turn a well-established intermediate representation for program analysis. Each block
is represented by a clause, constraints or built-ins in a clause represent the primitives
of the language (bytecodes, machine instructions, commands, etc.), literals represent
calls to other blocks, and predicates with multiple clauses implement alternatives
such as conditionals, case statements, dynamic dispatch, etc. (see, e.g., [123, 116]).
This approach is particularly well-suited for programs with structured control flow.
See [59, 45] for a more detailed discussion of this topic.

2.5 The Ciao System

Ciao [80] is a modern, multiparadigm programming language with an advanced
programming environment. The main motivation behind the system is to develop
a combination of programming language and development tools that together help
programmers produce better code in less time and with less effort. This can be
helped, concretely, by two approaches: verification and testing. The former uses
formal methods to prove automatically or interactively some specification of the
code, while the latter mainly consists in executing the code for concrete inputs
or test cases and checking that the program input-output relations (and behavior,
in general) are the expected ones. The Ciao language introduced a development
workflow [145, 82, 84] that integrates the two approaches above. In this model,
program assertions (see Sec. 2.5.2) are fully integrated in the language, and serve
both as specifications for static analysis and as run-time check generators, unifying
run-time verification and unit testing with static verification and static debugging.
Assertions are optional and the model admits from the start that some parts of
assertions may not be checkable at compile-time and will then generate run-time
tests for them when possible. This model represents an alternative approach for
writing safe programs without relying on full static typing, which is specially useful
for dynamic languages like Prolog. The intention is to combine the best elements
from static and dynamic language approaches [79] and is an antecedent to the now
popular gradual- and hybrid-typing approaches [57, 164, 151].
A high-level view of the Ciao System is shown in Fig. 8. Blue-colored boxes

represent user-written code; green boxes represent different tools within the system:
the compiler, LPdoc and the CiaoPP Program Processor; and the red box represents
the execution environment of the system, i.e., its run-time abstract machine and
libraries. In this thesis, only some of them are detailed, as not all of them are used.

2.5 the ciao system 29

Compiler

Development Environment
Emacs based, command line,

top-levels (compilation, analysis)

Source (user and library)
Packages
(multi-paradigm)

fsyntax

hiord
clpr

...

Modules
(w./wo. assertions)

mod1

mod2

...
modn

user interaction

Front-end Compiler
(implements module system)

Expanded Code
(Kernel Language)

Annotated/
Transformed Code

CiaoPP

Analysis (types,
modes, resources, . . .)

Verification (static check-
ing of assertions)

Optimization (parallelism,
specialization, . . .)

Back-end Compiler
(optimized from annotations)

Executable Code
(bytecode, native code)

Documenter
(automatic

documentation
from programs
with assertions)

Run-time Engine and Libs.
Multi-platform

Parallel, sequential, tabled, . . .

Compile-time Messages
Errors/warnings
Static Violations

Run-time Messages
Debugging

Dynamic Violations

Fig. 8: A high-level view of the Ciao system [80].

2.5.1 The CiaoPP Program Processor

CiaoPP [127, 129, 25, 82, 145, 84] (see the right part of Fig. 8, and Fig. 9) is the
abstract interpretation-based program (pre)processor of Ciao, and the most relevant
part of the system for the thesis. CiaoPP performs a number of program debugging,
analysis, and source-to-source transformation tasks. It can be applied to (Ciao)
Prolog programs and, as mentioned in Sec. 2.4, also to many other high- and low-
level languages. However, herein we will concentrate, without loss of generality, on
programs represented in the core Horn clause-based intermediate representation used
by the tool. The tasks performed by CiaoPP include:

30 background

src Source DB

Transform

Clause DB

Libraries DB

Assertion DB

Static
Analyzer Analysis DB

Static
Checker

:- check

:- false

:- checked

Dynamic
Annotator

Error

Warning

Verified

RT
safe
src

CiaoPP

Front-end

Fig. 9: Architecture of the CiaoPP verification framework.

• Inference of properties at the level of predicates and literals of the program,
including types, modes and other variable instantiation properties, non-failure,
determinacy, bounds on computational cost, bounds on sizes of terms in the
program, etc.

• Static debugging and verification. This includes checking how programs call
system library predicates and also checking the assertions present in the program
or in other modules used by the program.

• Source to source program transformations such as partial evaluation, including
slicing and specialization, and program parallelization (with granularity con-
trol). It also produces run-time test annotations for assertions which cannot be
checked completely at compile-time, so that the program can be run safely by
dynamically checking properties.

• Producing abstract models of programs that act as certificates of the correctness
of the code. The system is used to certify that code is safe w.r.t. the given
policy. I.e., an abstraction-carrying code approach to mobile code safety [6]. 2

All the aforementioned features rely on the statically inferred properties based on
fixpoint computation. Fig. 9 is an overview of the components in CiaoPP. CiaoPP
has a Front-end that transforms programs (possibly written in a different language)
to extract clauses and assertions (specification of the program). The Static Analyzer
component has several fixpoint computation algorithms that are used to produce
analysis graphs (stored in the Analysis DB). The information in the Analysis DB

2 The code and a certificate is provided so that the fixpoint result can be checked efficiently. For
example providing the invariants of recursive predicates so that no iteration is necessary.

2.5 the ciao system 31

(true assertions) is used to statically check the assertions in the Static Checker. For
each assertion originally with status check, the result of this process (boxes on the
right of Fig. 25) can be: that it is verified (the new status is checked), that a violation
is detected (the new status is false), or that it is not possible to decide either way,
in which case the assertion status remains as check, as detailed in Sec. 2.5.2. In such
cases, optionally, a warning may be displayed and/or a run-time test generated by
the Dynamic Annotator component for the (the part of) the assertion that could not
be discharged at compile-time, test cases generated, etc.

Using the Horn clause transformation approach (Sec. 2.4) CiaoPP has been applied
to the analysis, verification, and optimization of a number of languages (besides Ciao)
ranging from very high-level ones to bytecode and machine code, such as Java, XC
(C like) [116], Java bytecode [133, 135], ISA [108], LLVM IR [107], Michelson [138],
etc., and properties ranging from pointer aliasing and heap data structure shapes to
execution time, energy, or smart contract “gas” consumption [124, 106].

2.5.2 Assertions

Assertions are linguistic constructions that allow stating properties of a program,
such as, conditions on the state (current substitution or constraint) that hold or must
hold at certain points of program execution. In this thesis we use the Ciao assertion
language [82, 145, 144, 84]. These assertions are instrumental for many purposes, such
as expressing the results of analysis, providing specifications, guiding the analysis,
and documenting. Such assertions can express a wide range of properties, including
functional (state) properties (e.g., shapes, modes, sharing, aliasing, . . .) as well as
non-functional (i.e., global, computational) properties such as resource usage (energy,
time, memory, . . .), determinacy, non-failure, or cardinality. The set of properties
that can be used in assertions is extensible and new abstract domains can be defined
as “plug-ins” to support them. Without loss of generality, we use for concreteness a
subset of the syntax of the pred assertions of [23, 82, 144], which allows describing
sets of preconditions and conditional postconditions on the state for a given predicate
as well as global properties. A pred assertion is of the form:

:- [Status] pred Head [: Pre] [=> Post] [+ Comp].
where Head is a predicate descriptor (i.e., a normalized atom) that denotes the
predicate that the assertion applies to, and Pre and Post are conjunctions of property
literals, i.e., literals corresponding to predicates meeting certain conditions which
make them amenable to checking [144]. Pre expresses properties that hold when
Head is called, namely, at least one Pre must hold for each call to Head. Post states
properties that hold if Head is called in a state compatible with Pre and the call
succeeds. Comp describes properties of the whole computation such as resource usage,

32 background

termination, determinism, non-failure, etc., and they apply to calls to the predicate
that meet Pre. Pre, Post, and Comp can be empty conjunctions (meaning true), and
in that case they can be omitted. Status is a qualifier of the meaning of the assertion.
The following statuses are intended to be specified by the programmer:

• check: the assertion expresses properties that must hold at run-time, i.e., that
the analyzer should prove (or else generate run-time checks for). check is the
default status, and can be omitted.

• trust: the assertion represents an actual behavior of the predicate that the
analyzer assumes to be correct although it may not be able to infer it auto-
matically.

The following statuses are intended to be used as communication between the
different components and providing information to the user, as part of the analy-
sis/verification process (corresponding to the ovals in Fig. 9):

• checked: the analyzer proved that the property holds in all executions.
• true: the analyzer inferred the assertion.
• false: the analyzer proved that the property does not hold in some execution.

As mentioned before, parts of assertions that cannot be discharged statically will
remain in check status and run-time tests will be generated for them if necessary.

Example 2.15. The following assertions describe different behaviors of the pow
predicate that computes P = XN: (1) is stating that if the exponent of a power is
an even number, the result (P) is non-negative, (2) states that if the base is a
non-negative number and the exponent is a natural number the result P also is
non-negative:�

1 :- pred pow(X,N,P) : (int(X), even(N)) => P ≥ 0. % (1)
2 :- pred pow(X,N,P) : (X ≥ 0, nat(N)) => P ≥ 0. % (2)
3 pow(_, 0, 1).
4 pow(X, N, P) :-
5 N > 0,
6 N1 is N - 1,
7 pow(X, N1, P0),
8 P is X * P0.
9

10 :- prop even /1.
11 even(N) :-
12 0 is N mod 2.� �
Here, the even/1 property is defined by the user, while int/1 and nat/1 are assumed
to be understood by the abstract domain. The predicate defining the property is

2.5 the ciao system 33

analyzed using the abstract domain, thus inferring the abstract meaning of the
user-defined property, and that meaning is used. Different treatment is required when
the assertion is used for analysis or for verification, this is detailed in Chapter 6 and
Chapter 9.

In addition to pred assertions we also consider program-point assertions. They are
expressed as regular literals using as predicate name their Status, i.e., trust(Cond)
and check(Cond). They imply that whenever the execution reaches a state originated
at the program point in which the assertion appears, Cond (should) hold. Exam-
ple 2.16 illustrates their use. Program-point assertions can be translated to pred
assertions,3 so without loss of generality we limit the discussion to pred assertions.

Definition 2.6 (Meaning of a Set of Assertions for a Predicate). Given a predi-
cate represented by a normalized atom Head, and a corresponding set of assertions
{a1 . . . an}, with ai = “:- pred Head : Prei => Posti.” the set of assertion con-
ditions for Head is {C0,C1, . . . ,Cn}, with:

Ci =

 calls(Head,∨nj=1 Prej) i = 0
success(Head, Prei, Posti) i = 1 . . . n

where calls(Head, Pre)4 states conditions on all concrete calls to the predicate de-
scribed by Head, and success(Head, Prei, Posti)) describes conditions on the success
constraints produced by calls to Head if Prei is satisfied. These allow representing
behaviors for the same predicate for different call substitutions (multivariance). If
the assertions ai above, i = 1, . . . ,n, include a + Comp field, then the set of as-
sertion conditions also include conditions of the form comp(Head, Prei, Compi), for
i = 1, . . . ,n, that express properties of the whole computation for calls to Head if
Prei is satisfied. In this thesis we will concentrate fundamentally on dealing with Pre
and Post conditions.
The assertion conditions for the assertions in Example 2.15 are:
calls(pow(X,N ,P), ((int(X), even(N)) ∨ (X ≥ 0,nat(N)))),
success(pow(X,N ,P), (int(X), even(N)), (P ≥ 0)),
success(pow(X,N ,P), (X ≥ 0,nat(N)), (P ≥ 0))

3 E.g., we can replace line 4 in Example 2.16, by “assrt_aux(Z),”, and add a predicate to the program,
assrt_aux(_)., with an assertion “:- pred assrt_aux(Z) : Z = 2.”.

4 We denote the calling conditions with calls (plural) for historic reasons, and to avoid confusion with
the higher order predicate in Prolog call/2.

34 background

2.5.3 Practical uses of assertions

Assertions are also a means for providing information that isn’t available to the
analyzer for different reasons. Here we show some examples.

Example 2.16 (Regaining precision during analysis). The analysis of the following
program with the (non-relational) intervals domain would infer for Z that it can be
“any integer” (line 3). However, it can be seen that Z = 2 for any X and Y. The
programmer can provide this information to the analyzer with an assertion (line 4).
The analyzer trusts this information even if it cannot be inferred by composing
each of the abstraction of the literals (being non-relational), even if the property is
representable in the domain.�

1 p(Y) :- % (Y > 0)
2 X is Y + 2, % (X > 2, Y > 0)
3 Z is X - Y, % (int(X), X > 2, Y > 0)
4 trust(Z = 2), % (Z = 2, X > 2, Y > 0)
5 % implementation continues� �
Example 2.17 (Bridging external proofs with the analyzer). This is equivalent to
using interfaces to other languages in compilation. It is safe to reuse these properties
during analysis because they have been proven to be safe in some external tool. For
example with a proof assistant.�

1 :- trust pred pow(X,N,P) : (int(X), even(N)) => (P > 0) + proof (1).
2 :- trust pred pow(X,N,P) : (X > 0, nat(N)) => (P > 0) + proof (2).
3 pow(_, 0, 1).
4 pow(X, N, P) :- N > 0,
5 N1 is N - 1,
6 pow(X, N1, P0),
7 P is X * P0.� �
Example 2.18 (Speeding up analysis). Very precise domains suffer less from loss of
precision and are useful for proving complex properties, but can be very costly. In
some cases less precise information in enough. In this code extracted from LPdoc [78],
the Ciao documentation generator, html_escape/2 is a predicate that takes a string
of characters and transforms it to html:

2.5 the ciao system 35

�
1 :- trust pred html_escape (S0, S) => (string (S0), string (S)).
2 html_escape ("‘‘"||S0, "“"||S) :- !, html_escape (S0, S).
3 html_escape ("’’"||S0, "”"||S) :- !, html_escape (S0, S).
4 html_escape ([34|S0], """||S) :- !, html_escape (S0, S).
5 html_escape ([39|S0], "'"||S) :- !, html_escape (S0, S).
6 % ...
7 html_escape ([X|S0], [X|S]) :- !, character_code (X),

html_escape (S0, S).
8 html_escape ([],[]).
9

10 % string (Str) :- list(Str , int).� �
Analyses based on regular term languages, e.g. eterms [173] infer precise regular
types with subtyping, which is often costly. In this example it would be equivalent
to computing an accurate regular language that over-approximates the HTML text
encoding. The trust assertion provides a general invariant that the analyzer uses
instead of inferring a more complex type.

Example 2.19 (Defining abstract usage or specifications of libraries or dynamic
predicates). When sources are not available, or cannot be analyzed, assertions
can provide the missing abstract semantics. The following assertions describe the
behavior of predicates receive and send in a sockets library (e.g., written in C).
The assertion in this case transcribes what is stated in natural language in the
documentation of the library. Note that if no annotations were made, the analyzer
would have to assume the most general abstraction (>) for the library arguments.�
1 :- trust pred receive (S, M) : (socket (S), var(M)) => list(M, utf8).
2 :- trust pred send(S, M) : (socket (S), list(M, utf8)).� �
Example 2.20 ((Re)defining the language semantics for abstract domains). Lastly,
trust assertions are also a useful tool for defining the meaning (transfer function) of
the basic operations of the language. In this example we define some basic properties
of the product predicate in a simple types-style abstract domain:�

1 :- trust pred ’*’(A, B, C) : (int(A), int(B)) => int(C).
2 :- trust pred ’*’(A, B, C) : (flt(A), int(B)) => flt(C).
3 :- trust pred ’*’(A, B, C) : (int(A), flt(B)) => flt(C).
4 :- trust pred ’*’(A, B, C) : (flt(A), flt(B)) => flt(C).� �
The semantics of bytecode or machine instructions can be specified for each domain
after transformation into Horn Clauses.

Lastly, assertions are also a means to report the results in the nodes of the analysis
graphs back to the programmer.

36 background

Example 2.21 (Reporting analysis results). The following assertions report the
analysis graph of Fig. 5.�

1 :- true pred par(M,X,P) : (z(X)) => (z(X), b(P)). % abstract query
2 :- true pred par(M,X,P) : (b(X)) => (b(X), b(P)).
3 par([], P, P).
4 par([C|Cs], P0, P) :-
5 xor(C, P0, P1),
6 par(Cs, P1, P).
7
8 :- true pred xor(C,P0,P1) : (z(P0)) => (b(C), z(P0), b(P1)).
9 :- true pred xor(C,P0,P1) : (b(P0)) => (b(C), b(P0), b(P1)).

10 xor (0 ,0 ,0).
11 xor (0 ,1 ,1).
12 xor (1 ,0 ,1).
13 xor (1 ,1 ,0).
14
15 % properties
16 b(0).
17 b(1).
18
19 z(0).� �

The assertion language allows stating any property that can be expressed as a
logic program. Thus, in general, these properties may not be representable in the
abstract domain. To be able to use such properties they need to be approximated.
This issue is addressed in Sections 6.1 and 9.1.

2.5.4 Modular Logic Programming in Ciao

Modularity is a basic notion in modern computer languages. Modules allow dividing
programs into several parts, which have their own independent name spaces and
a clear interface with the rest of the program. This isolated way of seeing the
code has two main advantages. It allows a divide-and-conquer approach to program
development and maintenance and, in terms of efficiency, tools which work with
programs can be more efficient if they can process a single program at a time.

Defining Modules: The source of a Ciao module is typically contained in a single file.
The fact that a file contains a module is flagged by the presence of a “:- module(...)”
declaration at the beginning of the file. The predicates defined within a module are
visible only if they are exported.

Imports and Exports: Predicates in a module are exported, i.e., made available
outside the module, via explicit :- export declarations or in an export list in the
:- module(...) declaration.

2.5 the ciao system 37

Also, it is possible to import a number of individual predicates or also all predicates
from another module, by using :- use_module and :- import declarations. Those
predicate must be previously exported by the concrete module.

Visibility Rules: The set of predicates which are visible in a module are predicates
defined in that module plus the predicates imported from other modules. It is possible
to refer to predicates with or without a module qualification. A module-qualified
predicate name has the form module:predicate. An example of this form is the call
lists:append(A,B,C).

Modular Partitions of Programs. A partition of a program is said to be modular
when its source code is distributed in several source units, each defining its interface
with other such units of the program. We refer to these units as modules. The interface
of a module contains the names of the predicates it exports and the names of the
modules it imports. Modular partitions of programs may be synthesized, or specified
by the programmer, for example, via a strict module system, i.e., a system in which
modules can only communicate via their interface. We use M and M ′ to denote
modules. Given a module M :

• exports(M) denotes the set of predicate names exported by module M ,
• imports(M) is the set of modules which M imports, and
• mod(A) denotes the module in which the predicate corresponding to atom A

is defined. We sometimes abuse notation and denote the module of a query
as mod(Q), to refer to the module of the predicate called in the query, i.e., if
Q = 〈A,λc〉 then mod(Q) = mod(A).

2.5.5 Modular generic logic programming: traits

In this section we present a simple approach to modular generic programming for
logic programs without static typing. The concept of open predicates can be reused to
deal with generic code. We propose a simple syntactic extension for logic programs for
writing and using generic code (traits) and its translation to plain clauses. Generic
code offers many opportunities for the application of the new analysis techniques
proposed in this thesis. For example: standalone analysis of trait-based code without
particular implementations by using the (trust) assertions in the interfaces; refinement
of standalone analysis for particular implementations; or reuse of analysis results
when more implementations are made available.

38 background

Open vs. closed predicates. Traditionally, in a module system for logic programming,
predicates are distributed in modules, each predicate name belongs to a particular
module, and module dependencies are explicit in the program [27]. Closed predicates
within a module are those whose complete definition is available in the module. In
contrast, the definition of open predicates (traditionally declared as multifile in
many Prolog systems) can be scattered across different modules, and thus not known
until all the application modules are linked (note that programs still use the closed
world assumption). Despite its flexibility, open predicates are “anti-modular” (in a
similar way to typeclasses in Haskell). Here we only consider static predicates and
modules. Predicates whose definition may change during execution, or modules that
are dynamically loaded/unloaded at run time can also be dealt with, using various
techniques, and in particular the incremental analysis proposed.

Open as “multifile.” The following example shows an implementation of a generic
password-checking algorithm in Prolog:�

1 :- multifile dgst /3.
2
3 check_passwd (User) :-
4 get_line (Plain), % Read plain text password
5 passwd (User,Hasher,Digest,Salt), % Consult password database
6 append (Plain,Salt,Salted), % Append salt
7 dgst(Hasher,Salted,Digest). % Compute and check digest� �
The code above is generic w.r.t. the selected hashing algorithm (Hasher). Note that
there is no explicit dependency between check_passwd/1 and the different hashing
algorithms. The special multifile predicate dgst/3 acts as an interface between
implementations of hashing algorithms and check_passwd/1. While this type of
encoding is widely used in practice, the use of multifile predicates is semantically
obscure and error-prone. Instead we propose traits as a syntactic extension that
captures the essential mechanisms necessary for writing generic code.5

Traits. A trait is defined as a collection of predicate specifications (as predicate
assertions)6. For example:�

1 :- trait hasher { :- pred dgst(Str, Digest) : string (Str) => int(Digest). }.� �
5 Here we only focus on traits as interfaces. The actual design in Ciao supports default implementations,
which makes them closer to traits in Rust.

6 See http://ciao-lang.org/ciao/build/doc/ciao.html/traits_doc.html for the full documenta-
tion.

http://ciao-lang.org/ciao/build/doc/ciao.html/traits_doc.html

2.5 the ciao system 39

defines a trait hasher, which specifies a predicate dgst/2, which must be called with
an instantiated string, and obtains an integer in Digest.

As a minimalistic syntactic extension, we introduce a new head and literal notation
(X as T).p(A1, . . . ,An), which represents the predicate p for X implementing trait
T . Basically, this is equivalent to p(X,A1, . . . ,An), where X is used to select the trait
implementation. In literals, X is annotated with a trait, which can be different for
each call due to dynamic typing and multiple trait implementations for the same data.
Such annotations could be reduced in many cases by automatically inferring them
locally with simple static typing rules. When X (the implementation) is unknown at
compile-time, this is equivalent to dynamic dispatch. The check_passwd/1 predicate
using the trait above is:�

1 check_passwd (User) :-
2 get_line (Plain),
3 passwd (User,Hasher,Digest,Salt),
4 append (Plain,Salt,Salted),
5 (Hasher as hasher).dgst(Salted,Digest).� �

The following translation rules transform code using traits into code with traditional
predicates. We rely on the underlying module system to add module qualification to
function and trait (predicate) symbols. Calls to trait predicates are done through
the interface (open) predicate, which also carries the predicate assertions declared in
the trait definition:�

1 % open predicates and assertions for each p/n in the trait
2 :- multifile ’T.p’/(n+ 1).
3 :- pred ’T.p’(X,A1, . . . ,An) : . . . =>
4 % call to p/n for X implementing T
5 . . . :- . . ., ’T.p’(X,A1, . . . ,An), . . . % (X as T).p(A1, . . . ,An)� �
A trait implementation is a collection of predicates that implements a given trait,
indexed by a specified functor associated with that implementation. E.g.:�

1 :- impl(hasher , xor8 /0).
2 (xor8 as hasher).dgst(Str, Digest) :- xor8_dgst (Xs, 0, Digest).
3
4 xor8_dgst ([], D, D).
5 xor8_dgst ([X|Xs], D0, D) :- D1 is D0 # X, xor8_dgst (Xs, D1, D).� �
declares that xor8 implements a hasher. In this case, xor8 is an atom but trait
syntax allows arbitrary functors. The implementation for the dgst/2 predicate is
provided by (xor8 as hasher).dgst(Str, Digest).

The translation rules to plain predicates are as follows:

40 background

�
1 % the implementation of the trait is a closed predicate (head renamed)
2 ’<f/k as T>.p’(f (. . .),A1, . . . ,An) :- . . . % (f (. . .) as T).p(A1, . . . ,An)
3
4 % bridge from interface (open predicate) to the implementation
5 ’T.p’(X,A1, . . . ,An) :- X=f(. . .), ’<f/k as T>.p’(X,A1, . . . ,An).� �

This generates predicate names based on the original names of the traits and the
implementations.
In line 1, ’<f/k as T>.p’ is the name generated for the predicate that imple-

ments the trait. Line 2 contains the clause that bridges the predicates in the trait
with the predicates in the implementation. For example, (xor8 as hasher).dgst
is expanded to the predicate name ’<xor8/0 as hasher>.dgst’ and then, this
predicate is the one called from the predicate in the trait. This is done in line 5,
our example would generate: ’hasher.dgst’(X,A1,A2) :- X=xor8, ’<xor8/0 as
hasher>.dgst’(X,A1,A2)..
Adding new implementations is simple, e.g.:�

1 :- impl(hasher , sha256 /0).
2 (sha256 as hasher).dgst(Str, Digest) :- . . .� �

This predicate would be renamed to ’<sha256/0 as hasher>.dgst’ and a clause
would be added to the ’hasher.dgst’ predicate, ’hasher.dgst’(X,A1,A2) :-
X=sha256, ’<sha256/0 as hasher>.dgst’(X,A1,A2).

This approach preserves some interesting modular features: trait names can be
local to a module (and exported as other predicate/function symbols), and trait
implementations (e.g., sha256/0) are just function symbols, which can also be made
local to modules in the underlying module system.�

1 % sha256 .pl
2 :- impl(hasher , sha256 /0).
3 (sha256 as hasher).dgst(Str, Digest) :- ...
4
5 % sha512 .pl
6 :- impl(hasher , sha512 /0).
7 (sha512 as hasher).dgst(Str, Digest) :- ...
8
9 % passwd .pl

10 passwd (don ,xor8 ,0x6d ," eNfwuBhtN9CwogBugeUHxg =="). % password : 000000
11 passwd (pete ,sha256 ,0 xed8f...,"a2Fy+w+ g4XNIAR31ot +3Sg=="). % password :

123123
12 passwd (peggy ,sha512 ,0 xe653...,"9 t68Vz9rcPqP1u4HMB5Hfg =="). % password :

qwerty� �
This concludes the background required for the thesis.

3
Abstract Extensionality – On the properties of
incomplete abstract intepretations

Program analysis is concerned with intensional properties not just because semanti-
cally equivalent programs may exhibit different abstract properties, but also because
semantically different programs may appear identical abstractly. This familiar phe-
nomenon can be overcome by increasing the precision of program analysis; but the
incurred costs make it into one of the main challenges in program analysis, and into
one of the main obstacles of general-purpose program analysis. Furthermore, scalable
analyses are often achieved by making abstractions even coarser. Being aware of the
precision flaws of an abstract interpretation is equivalent to studying its completeness.
Completeness encodes the greatest achievable precision when abstracting the concrete
behavior of a program on an abstract interpreter. If an interpretation of a program is
complete, the only loss of precision is due to the expressivity of the abstract domain,
and not the abstraction functions or the abstract interpreter. Incomplete abstract
interpretations give rise to weaker properties than those encountered under direct
inspections of effective computations of the program. This means that in debugging,
incomplete abstract interpretations yield false alarms. The immediate consequence
is that assertions that could be proved are now reported to be potentially violated.
Our goal is to study how abstract interpreters partition the program space in equiv-
alence classes induced by abstract program equivalence, and the intersection of these
equivalence classes with the completeness and incompleteness properties of abstract
interpretations.
In this chapter we study completeness of program analysis from a computabil-

ity perspective. We generalize the notion of extensional (functional) equivalence of
programs to abstract equivalences induced by abstract interpretations. The stan-
dard notion of extensional equivalence is recovered as the special case, induced by
the concrete interpretation. Some properties of the extensional equivalence, such
as the one spelled out in Rice’s theorem, lift to the abstract equivalences in suit-
ably generalised forms. On the other hand, the generalized framework gives rise

41

42 abstract extensionality

to interesting and important new properties, and allows refined, non-extensional
analyses. In particular, since programs turn out to be extensionally equivalent if and
only if they are equivalent just for the concrete interpretation, it follows that any
non-trivial abstract interpretation uncovers some intensional aspect of programs.
This striking result is also effective, in the sense that it allows constructing, for any
non-trivial abstraction, a pair of programs that are extensionally equivalent, but
have different abstract semantics. The construction is based on the fact that abstract
interpretations are always sound, but that they can be made incomplete through
suitable code transformations that inject code that cannot be understood by the
domain [44]. A further consequence is that the class of incomplete programs for a
non-trivial abstraction is Turing complete.

3.1 Introduction

The main tradition of theory of computation [155] has been concerned with ex-
tensional aspects of computation, i.e. with properties of programs reduced to the
functions that they implement: two programs (often represented as indices in an
enumeration of all programs) are extensionally equivalent if they produce the same
outputs on the same inputs. From this point of view we cannot tell apart any pair of
extensionally equivalent programs. In other words, it studies properties of computable
functions. Much less is known about the intensional properties of programs, which
distinguish different algorithms for computing the same function, or different descrip-
tions in programming languages, or different executions [1]. The intensional side of
computation includes everything that happens after the input data is read, and before
the output data is written: all states and state changes, how many steps are made,
how much memory is used, namely all possible side effects. But besides the widely
studied properties such as program complexity, the intensional properties include
relations of programs with programmers, such as understandability and quality;
or with other programs, such as optimizing compilers, static analyzers, software
debuggers; or with abstract interpreters. In any case, intensional properties are the
central concern of software design, and maintenance, and they lie at the heart of
software process in general.
Abstract interpretations usually approximate some extensional properties of the

computations induced by programs. When abstract interpretations are guaranteed
to terminate, reasoning about programs is reduced to total computable functions,

3.1 introduction 43

P :

x := 10;
while @ (x > 0)

do x := x− 1;

Q :

x := 10;
while @ (x > 1)

do x := x− 2;

R :

x := −9;
while @ (x < 0)

do x := x+ 2;

Fig. 10: Some simple programs.

in contrast with the traditional, concrete interpretation, which associates with each
program the partial function that it computes, and reason about such functions.1

We illustrate the sensitivity of program analysis to code structure with an example.

Example 3.1. Consider the abstract domain of intervals DInt. Each element in the
domain corresponds to an interval [a, b], where a, b ∈ Z∪{−∞,+∞} and a ≤ b. This
domain is an abstraction of properties of integer valued variables; i.e., DInt abstracts
the set ℘(Z) of sets of integers. Consider the programs P and Q in Fig. 10, where
the symbol @ is used to mark some program points that interest us. Suppose that we
want to prove the Hoare triples {x ∈ Z}P{x = 0} and {x ∈ Z}Q{x = 0}. It is easy
to see that the programs are extensionally equivalent, and that they always output
x = 0. However, interpreted in DInt, the programs P and Q exhibit different abstract
semantics. At the point @ of the program Q, the values are approximated by the
increasing sequence of intervals: [10, 10] ⊂ [8, 10] ⊂ [6, 10] ⊂ [4, 10] ⊂ [2, 10] ⊂ [0, 10].
When the loop condition becomes false, and the execution exits the loop, the
postcondition x ≤ 1 ∧ x ∈ [0, 10] is reached, which is true if and only if x ∈ [0, 1].
Intepreting Q in DInt thus only allows proving {x ∈ Z}Q{x ∈ [0, 1]}, whereas it
is easy to see that interpreting P in DInt we can prove the stronger postcondition
{x ∈ Z}P{x = 0}. This shows that the intervals domain DInt is incomplete for
abstract interpretation of the program Q, while it remains complete for the program
P .

It is well known that the abstract semantics of complete abstract interpretations
produces the same property approximations as the direct abstraction of the concrete
semantics [38, 70]. On the other hand, incomplete abstract interpretations give rise
to weaker properties than those encountered under direct inspections of effective
computations of the program. This means that in debugging, abstract interpretations
yield false alarms. And this is not a rare phenomenon, since incompleteness is in
program analysis more common than completeness [67].

1 Here the tacit assumption is that the program is deterministic and effect-free. Otherwise, the
reasoning is reduced to more general families of functions, often captured by computational monads.
In any case, all such functions are extensional objects, which is the main point here.

44 abstract extensionality

Example 3.2. Now consider the programs Q and R in Fig. 10. These two satisfy the
Hoare triples {x ∈ Z}Q{x = 0} and {x ∈ Z}R{x = 1}, so their extensional semantics
are different; yet their abstract semantics in DInt are the same: {x ∈ Z}R{x ∈ [0, 1]}.

This striking disparity between abstract semantics and concrete semantics gives
rise to a basic question: Can the extensional program equivalence be extended based
on abstract semantics? If this is possible, then it may be of great interest to explore
the properties of this abstract notion of program equivalence, and its potential
applications.

In the rest of the chapter we explore abstract interpretation from the perspective
of computable functions. We introduce a new family ΠA of index sets for partial
recursive functions which are parameterized by a given abstraction A. The indices
represent programs, assumed to be enumerated in some way, as it is usually done
in theory of computation. The family of index sets ΠA is obtained by replacing
the usual concrete program equivalence with an equivalence based on the abstract
semantics induced by A. The results are properties of programs captured by what an
abstract interpreter computes rather than what the actual programs compute. We
call these properties abstract program properties. The main contributions are:
(1) We prove that abstract program properties are the union of equivalence

classes, where two programs are considered equivalent if they have the same abstract
semantics. These classes are not in general extensional, i.e., they are not closed w.r.t.
standard semantic equivalence of programs. Indeed, we prove that these equivalence
classes are extensional if and only if the abstraction is trivial (see Theorem 3.18),
i.e., it is the identity abstraction (no approximation) making the abstract semantics
coincide with the concrete one, or it is the abstraction that is unable to distinguish
any pair of programs (the greatest possible approximation).
(2) We introduce two classes of programs called respectively completeness and

incompleteness cliques. The completeness (resp., incompleteness) clique C(P ,A)
(resp., C(P ,A)) of a program P and an abstraction A is the set of all programs that
are semantically equivalent to P and for which A is complete (resp., incomplete).
These two classes have interesting properties: C(P ,A) represents the class of all
variants of P for which the analysis based on A is precise (no false alarms) while
C(P ,A) is instead the class of all variants of P for which A is imprecise. The
connections between C(P ,A) and C(P ,A) are our main focus.
(2a) We prove that there is an infinity of non-trivial abstractions for which the

systematic computable removal of false alarms for all programs is impossible, namely
under mild assumptions on the abstraction A there is no many-to-one reducibility of
C(P ,A) to C(P ,A) (see Theorem 3.8).
(2b) For a wide class of abstract domains, called variable finite (see Def. 3.4),

we provide a systematic reduction of C(P ,A) into C(P ,A), namely an effective

3.2 related work 45

transformation that maps any program P into another program τ (P) which is
equivalent to P with respect to the concrete semantics but that is distinguished from
P by the abstraction A (see Corollary 3.16). In this case, although τ preserves the
concrete semantics, the abstract semantics distinguishes any complete program P

from τ (P), because τ (P) produces false alarms.
(3) As a consequence of our construction we prove that the class of all programs

that are incomplete for a given non-trivial variable finite abstraction A is Turing
complete.
Our results give new insights about the impossibility to automatically remove

false alarms from program analyses. In particular we expose the typical structure of
incomplete programs. These include predicates that the abstract interpreter fails to
evaluate. Their structure turns out to arise from the structure of the abstract domain
from which the abstract interpreter is designed. We believe that this result, together
with the proof system in [67], may suggest a practical path towards specific strategies
for code transformations with the goal to improve the precision of program analysis.
Moreover, the Turing completeness of the class of all programs that are incomplete
for a given non-trivial variable finite abstraction A, suggests specific code protecting
transformations against reverse engineering. Given any (non-trivial) abstract domain
A, every computable function can be implemented by a program that is incomplete
on A, i.e. every computable function can be intentionally obfuscated against a given
non-trivial program analysis. This establishes a possibility result concerning code
obfuscation when the attack model is any non-trivial abstract interpreter.

3.2 Related work

Interesting results concerning the possibility of widening standard recursion theory
towards intensional aspects of code have been produced in the last decade. These
include, among others, the results in computational complexity via programming
languages in [14], the intentional contents of Rice theorem in the case of Blum’s com-
plexity in [10], the semantics of intensionality [95], the field of implicit computational
complexity (see [43] for a short survey), until the more recent Analyzing Program
Analyses in [67] and the comparison of the hardness of program analysis with respect
to program verification in [42].
The very first recursive theoretic account of complete abstract interpretations is

in [67], where the notion of completeness class for an abstract interpretation was
introduced. Given an abstract interpretation A, the completeness class of A, denoted
C(A), is the set of all programs for which A is complete, i.e., for which A produces
no false alarms. The complement set C(A) is instead the set of programs that are
incomplete for A. These two classes have many interesting properties but they fail

46 abstract extensionality

to capture the extensional behaviour of programs, namely, within C(A) and C(A)
there may coexist programs that are semantically different, just because they have
complete or incomplete abstract semantics respectively.
We consider here the notion of completeness clique which is a transposition of

the complexity cliques introduced in [10] for Blum’s complexity to abstract inter-
pretations. We prove some recursion-theoretic properties of completeness and, in
particular, incompleteness cliques. For the latter case we provide effective transforma-
tions that allow transforming any program for which a given abstract interpretation
is complete (it belongs to a completeness clique) into an extensionally equivalent
one (i.e., preserving its concrete semantics) for which the same abstract interpreter
produces false alarms, i.e., it is in the corresponding incompleteness clique. As a
consequence this allows us proving properties and limitations of control and data-
flow semantics-preserving obfuscating transformations [31]. In particular we can go
beyond [118, 52] and prove that semantics-preserving transformations cannot be
extended to all abstract domains when applied for data-flow obfuscations, hence
formally justifying the need of data-type complication in data-flow obfuscation of
programs, as postulated in [52], while they can always be implemented when dealing
with control-flow obfuscations.

The systematic construction of generic abstraction-agnostic semantics-preserving
obfuscators for a given abstract interpreter or model checker was also considered
in [66, 44, 65] and more recently in [20]. Here we generalize those approaches and
consider the more general problem of correlating the completeness and incompleteness
cliques, therefore providing a more general setting to reason about the precision of an
abstract interpretation. In [68] and [69] the authors introduced model deformations
making a semantics respectively complete and incomplete, with the aim of giving a
measure of the strength of obfuscation. None of these approaches however considered
extensional equivalence as requirement.

The possibility of establishing a sound representation of the extensional equivalence
of two programs by abstract interpretation is studied in [136]. The authors introduce
the notion of correlating program, i.e., a new program P ./ Q obtained as the
combination of P and Q, together with a correlating abstract domain such that the
analysis of P ./ Q gives information about the extensional equivalence of P and Q.
In the light of our results, it is therefore always possible to transform P ./ Q in
order to break the completeness of the proof of equivalence, and hence to foil the
equivalence analysis. We believe that this has reflections on the structure of both
P and Q, i.e., when P and Q have some specific shape, and include the predicates
that expose the incompleteness of the analysis, the differencing analysis is imprecise.
The early detection of these predicates may help in driving the use of the correlating
program method in [136] to achieve the best of the analysis.

3.3 preliminaries 47

3.3 Preliminaries

Programs We will consider a basic deterministic while-language Imp with arithmetic
and Boolean expressions, as defined, e.g., in [175], whose syntax is as follows:

AExp 3 a ::= v ∈ Z | x ∈ Var | f(ã)
BExp 3 b ::= tt | ff | a = a | a > a | b ∧ b | ¬b
Imp 3 P ::= skip | x := a | P; P | if b then P else P | while b do P

where Z denotes the set of integers, Var is a denumerable set of program variables,
f ranges over total recursive functions, and ã denotes a list of arithmetic expressions.
As usual we denote by var(P) the finite set of variables that occur in the program P .

Abstract interpretation In the following we consider program analyzers as specified
by Galois insertion-based abstract interpreters (see [37, 38] for details). Our results
are based on some hypotheses that are often left implicit in the context of program
analysis. Here, in order to emphasise their role, we prefer to name them explicitly as
[H1], [H2] and [H3] in the text that follows.
We say that A is strict if γ(⊥A) = ⊥C . We say that an element c ∈ C is exactly

represented in A if (γ ◦ α)c = c. We say that an abstract domain is trivial if it is
isomorphic to the concrete domain, i.e., γ ◦α = idC , or if it consists of only one
element A = {>A}, i.e., for all c ∈ C, (γ ◦α)c = >C . The former is called identity
abstraction, and the latter top abstraction, in which case we denote A = >> and
γ ◦α = >.

In the rest of the chapter we only consider Galois insertions over strict
or trivial abstract domains. [H1]

As a consequence of [H1], any non-trivial abstract domain is assumed strict (>> is
not strict).

Sound and complete abstractions Given an abstract domain A = 〈A,≤,t,α, γ〉 and
a monotone operator f : C → C, we say that a function f] : A → A is a correct
abstract interpretation of f if α(f(c)) ≤ f](α(c)) for any c ∈ C. Note that if f] is
a correct abstract interpretation of f then we have also fixpoint correctness, i.e.,
α(lfp(f)) ≤ lfp(f]). An abstract function fα is the best correct approximation of f
in A iff fα

def
= α ◦ f ◦ γ : A→ A, because for any correct abstract interpretation f]

it holds that fα(a) ≤ f](a) for any a ∈ A. Note that this does not imply the best
fixpoint.

We say that f] is complete if α ◦ f = f] ◦α. We say that A is a complete abstraction
for f if there exists a complete abstract interpretation f] of f . Completeness of f]

48 abstract extensionality

intuitively encodes the greatest achievable precision when abstracting the concrete
behaviour of f on A. In complete abstractions the only loss of precision is due to the
abstract domain and not to the abstract functions f]. If f] is complete for f then we
have fixpoint completeness (also called fixpoint transfer): α(lfp(f)) = lfp(f]), which
follows from α ◦ f ≤ f] ◦α. It turns out that completeness α ◦ f = f] ◦α holds iff
α ◦ f = α ◦ f ◦ γ ◦α. Thus, the possibility of defining a complete approximation f] of
f on some abstract domain A only depends upon the best correct approximation of
f in A, i.e., completeness is a property of the concrete semantics and of the abstract
domain only [70]. We will say both “A is complete for f” and “f is complete on A”
to refer to completeness. Note that the identity and the top abstractions, id and >>,
are both complete for any f .
It is also worth noting that by replacing the abstract join operator t, defined

in the abstract domain A, with a widening operator ∇ : A×A → A, such that
for any a, b ∈ A: at b ≤ a∇b and ∇ extrapolates the possibly infinite chain of the
iterates of f] to a finite chain, see [37], we always reduce the precision of the fixpoint
computed in A, i.e., lfp(f]) ≤ ∇n<ωf]

n
(⊥A). This means that if a widening-based

program analysis on the abstract domain A is complete for f] then A is complete for
f . Because we are interested in the recursive properties of the class of programs for
which an abstract interpreter defined on an abstract domain A is incomplete, in the
following we do not consider widening-based fixpoint extrapolating operators to force
termination in program analysis, and consider the tighter condition of incompleteness
caused by the Galois insertion specifying A.

3.3.1 Program Semantics

Our denotations are stores, i.e., partial functions m in S
def
= Var → Z that assign

values only to a finite set of variables. We will often represent a store m ∈ S as a tuple
〈x1/v1, . . . ,xn/vn〉 of its defined values, i.e., such that m(y) = $ if y 6∈ {x1, . . . ,xn}
and m(xi) = vi for all i ∈ [1,n]. As usual we let var(m) =

{
x ∈ Var

∣∣∣ m(x) 6= $
}
.

Without loss of generality, in the following instead of dealing with values in the
set Z ∪ {$} we assume that the default value $ is just a chosen element of Z. In
this sense a store m is seen as a total function where $ is the default value for
unused variables. For S a set of stores, we denote by var(S) the set ⋃m∈S var(m) ={
x ∈ Var

∣∣∣ ∃m ∈ S ∧m(x) 6= $
}
.

Programs represent partial recursive functions from input stores to output stores.
Store update is written m[x 7→ v] with

m[x 7→ v](y) =

 v if y = x

m(y) otherwise

3.3 preliminaries 49

As a matter of notation, for a set of values V , we write m[x 7→ V] for the set
of stores where x is updated with values in V : m[x 7→ V] = {m[x 7→ v] | v ∈ V }.
Similarly, for a set of stores S we let S[x 7→ V] = {m[x 7→ v] | m ∈ S ∧ v ∈ V }. The
semantics of arithmetic and boolean expressions are the functions La M : S→ Z and
LbM : S→ {tt,ff} defined as usual.

Abstract interpretations consider collecting semantics of programs, which are the
additive extension of the standard semantics, defined as partial recursive functions
on stores, to functions on properties of stores. The collecting semantics of arithmetic
expressions a ∈ AExp, JaK : ℘(S) → ℘(Z), is defined as JaKS def

= {La Mm | m ∈ S} for
any set of stores S. Similarly, for boolean expressions b ∈ BExp, JbK : ℘(S)→ ℘(S) is
defined as JbKS def

= {m ∈ S | LbMm = tt}, i.e., JbKS filters the stores of S which make
b true. The collecting semantics of a program P is the function JP K : ℘(S)→ ℘(S),
defined inductively as follows:

JskipKS def
= S

Jx := aKS def
= { m[x 7→ La Mm] | m ∈ S }

JP1;P2KS
def
= JP2K(JP1KS)

Jif b then P1 else P2 KS def
= JP1K(JbKS) ∪ JP2K(J¬bKS)

Jwhile b do PKS def
= J¬bK

(
lfp(λT . S ∪ JP K(JbKT))

)
.

In this case λm ∈ S . JP K{m} is the partial recursive function computed by P , where
JP K{m} = ∅ means non-termination of program P when evaluated in the store m.
Conversely, when a program terminates on a store m we have JP K{m} = {m′} for a
suitable store m′. Note that, when P does not contain any assignment to a variable
x, if JP K{m} = {m′} then m′(x) = m(x).
Despite the definition of collecting semantics applies to any subset of S, in the

following we consider only sets of stores that predicate over a finite (possibly un-
bounded) set of variables, as is always the case in abstract interpretation. This still
allows assigning the same variable x infinitely many different values by the stores in
a set S ⊆ S.

Definition 3.1 (Variable finite sets of stores). We say a set of stores S ⊆ S is
variable finite if |var(S)| < ω. We denote by ℘̂(S) the powerset of variable finite sets
of stores, together with the top element S, i.e.

℘̂(S)
def
=
{
S ⊆ S

∣∣∣ |var(S)| < ω ∨ S = S

}
.

Lemma 3.1. 〈℘̂(S),⊆,∪,∩, S,∅〉 is a complete lattice.

50 abstract extensionality

Proof. Obviously the bottom element is ∅ and the top element is S. The fact that
℘̂(S) is closed under intersection follows from the fact that countable intersection of
variable finite sets is also variable finite. For countable union, if the ordinary union
is not variable finite, then we can always take S as the lub.

Because programs always manipulate a finite set of variables, the concrete collecting
semantics J·K : ℘(S) → ℘(S) defined above can be seen as restricted to ℘̂(S), that
is J·K : ℘̂(S)→ ℘̂(S). We will often abuse notation and represent with JP K both the
above mentioned collecting semantics (i.e., a total function from set of stores to
set of stores) and the ordinary denotational semantics of P (i.e., a partial function
λx. JP K({x}) from stores to stores).
Some points of the concrete domain are particularly important because their

membership can be effectively tested with computable predicates. We call such sets
of stores recursive.

Definition 3.2 (Recursive set of stores). Let m|V : Var → Z be the restriction of m
to the set V ⊆ Var defined as

m|V (x)
def
=

 m(x) if x ∈ V
$ otherwise

and similarly let S|V
def
= {m|V | m ∈ S}.

We say that S ∈ ℘̂(S) is recursive iff there exists a total recursive function fS that
decides membership in

{
m ∈ S

∣∣∣ m|var(S) ∈ S|var(S)

}
.

Note that for any finite set of variables V the set of stores S|V belongs to ℘̂(S)
and for any S ∈ ℘̂(S) we have S ⊆ S|var(S).

3.3.2 Abstract Semantics

We now define the abstract semantics for a generic abstract domain A =〈A,≤,t,α, γ〉.
As usual in abstract interpretation, we are interested in abstract domains whose
elements represent recursive properties (sets) of stores. This because membership, i.e,
whether any concrete computed store satisfies the property detected by the analyzer
at a given program point, must be decidable in order for the analysis to be useful.

Definition 3.3 (Recursive abstract domain). Given an abstract domain A, an
abstract store S] ∈ A is recursive if γ(S]) is recursive (according to Def. 3.2). A is
recursive if all its elements are recursive.

3.3 preliminaries 51

In the following we only consider recursive or trivial abstractions of ℘̂(S).
[H2]

Note that >> is recursive while id is not.
It is well known that abstract interpretation is not compositional, namely the

composition of two best correct abstract semantics may not be the best correct
abstraction of the semantics of the two components. This is indeed the main source
of imprecision in program analysis, in addition to the abstract domain, e.g. >>.
In the following, for the sake of simplicity, we will focus only on loss of precision
induced by the inductive composition of commands. Therefore, for arithmetic or
boolean expressions e ∈ AExp∪ BExp, we consider as abstract semantics their best
correct approximating semantics in A, i.e., we consider the ideal situation where the
function JeKA def

= α ◦ JeK ◦ γ is computable and introduces no loss of information in our
language. This way the abstract semantics of expressions is computed independently
from their syntax, and we focus on the composition of commands as the main source
of imprecision in our presentation. This assumption can be of course weakened by
composing the abstract semantics of sub-expressions, at the price of further loss of
precision which is not relevant to our purposes.
The best correct abstract semantics JP KA : A → A of a program P ∈ Imp is

therefore inductively defined on the syntax of commands as composition of the
best correct approximations of their concrete semantics. As above, we assume that
the best correct approximation of assignments are computable in our language. In
particular in any Galois insertion, the abstract join t is by definition the best correct
approximation of the concrete join ∪. If S] ∈ A is an abstract store:

JskipKAS] def
= S]

Jx := aKAS] def
= α({ m[x 7→ La Mm] | m ∈ γ(S]) })

JP1;P2KAS]
def
= JP2KA(JP1KAS])

Jif b then P1 else P2 KAS] def
= JP1KA(JbKAS]) t JP2KA(J¬bKAS])

Jwhile b do PKAS] def
= J¬bKA

(
lfp(λT].S] t JP KAJbKAT])

)
Note that the best correct approximation of an assignment Jx := aKA does not
rely on the best correct abstract semantics JaKA of the arithmetic expression a.
Moreover in the least fixpoint definition for Jwhile b do PKA, the abstract function
λT].S] t JP KA(JbKAT]) turns out to be the best correct approximation on A of the
concrete function λT .S ∪ JP KJbKT . Because the abstract semantics J·KA above is fully
determined by the abstract domain A, we often abuse notation and indicate A as
abstract semantics or abstract interpretation.

52 abstract extensionality

In the following we assume that the best correct approximation in A of
expressions and assignments are computable in our language. [H3]

Example 3.3. As a running example of an abstract interpretation, consider the
abstract domain of intervals Int on the integers Z, already mentioned in the Intro-
duction. Elements of Int are finite intervals [a, b] with a ≤ b, or infinite intervals of
the form [−∞, b] or [a,∞], together with the empty interval ∅ (the bottom element).
The top element is [−∞,∞]. Intervals are ordered by inclusion. The concretization
function γ is defined as expected, while the abstraction function α maps a set of
integers to the smallest interval that contains it [37].
In this context, let the default value $ be 0, so that in the abstract store the

default value is the interval [0, 0]. Moreover, since the abstraction is non-relational,
an abstract store S] maps a finite number of variables to (non-default) intervals of
the form [a, b] with

γ(S]) = { m | ∀y, a, b. S](y) = [a, b]⇒ a ≤ m(y) ≤ b }

and for any set of stores S we let

α(S)(y) = [min
m∈S

m(y), max
m∈S

m(y)]

Let us consider the program

P
def
= if x = 1 then y := 1

else y := 3

and the concrete set of stores S = {〈x/1〉, 〈x/2〉}. In the collecting semantics we have
of course JP KS = {〈x/1, y/1〉, 〈x/2, y/3〉}. Let S] = α(S)(x). Clearly S](x) = [1, 2].
Then, we have

JP KAS] = Jy := 1KA(Jx = 1KAS]) t Jy := 3KA(Jx 6= 1KAS])

Now let Jx = 1KAS] = S]1 and Jx 6= 1KAS] = S]2, then S]1(x) = [1, 1] and S]2(x) =

[2, 2]. Therefore

JP KAS] = (Jy := 1KAS]1) t (Jy := 3KAS]2) = T]

with T](x) = [1, 2] and T](y) = [1, 3]. Thus, in this particular case we have
α(JP KS) = JP KAα(S).

Below we list some technical lemmas about the abstract semantics of programs
that will be used in the proofs of our main results. The proofs of these results are
quite standard since they are derived directly from the definitions.

3.3 preliminaries 53

Lemma 3.2. For any arithmetic expression a ∈ AExp, boolean expression b ∈ BExp,
and program P ∈ Imp, we have that JaKA, JbKA and JP KA are monotone.

Lemma 3.3. For any boolean expression b ∈ BExp and any abstract store S] ∈ A,

JbKA(JbKAS]) = JbKAS] .

Lemma 3.4. For any program P ∈ Imp and any S],T] ∈ A, if S] ≤ T] we have

JP KAS] t JP KAT] = JP KAT] .

Lemma 3.4 follows by monotonicity of JP KA (Lemma 3.2).
Some abstract domains preserve, in the abstraction, the variable finiteness condition

of the concrete domain. We will exploit this condition to prove some important
properties of the abstraction.

Definition 3.4 (Variable finite abstract domains). We say that an abstract domain
A is variable finite if for any S ∈ ℘̂(S) we have var((γ ◦ α)S) = var(S).

The condition of variable finiteness amounts to require that the abstraction does
not introduce information about unused variables and therefore preserves the variable
finiteness of any concrete set S 6= S. It is worth noting that except for the top
abstraction, most standard abstract domains in abstract interpretation are variable
finite. This is because programs manipulate a finite set of variables and it is always
possible to increase the number of variables of interest by building a new program.
Abstract domains are therefore usually defined having V as parameter.

A simple consequence of Def. 3.4 is that for any variable finite abstract domain
A we have that α(S) = α(S) implies S = S. This because any S 6= S satisfies that
S ⊆ S|var(S) and therefore we have α(S) ≤ α(S|var(S)) < α(S). The following lemma
says that when A is variable finite, then JP KA cannot map to top an abstract element
which is different from top.

Lemma 3.5. If A is variable finite, for any P ∈ Imp and S] 6= α(S), we have that
JP KAS] 6= α(S).

The proof of Lemma 3.5 is by structural induction on the program P , exploiting
the variable finiteness condition on the abstract domain and the fact that P can only
manipulate a finite number of variables.

It is worth noting that, as a consequence of [H2], if a domain is variable finite and
recursive then it is not trivial. In fact the identity abstraction is not recursive and
the top abstraction is not variable finite.

54 abstract extensionality

Completeness classes The notion of completeness class of programs has been in-
troduced in [67] as the set of all programs for which an abstract interpretation is
complete:

C(A) def
=
{
P ∈ Imp

∣∣∣ α ◦ JP K = JP KA ◦ α
}

.

Roughly speaking, the completeness class C(A) is defined to be the set of all programs
whose static analysis on a given abstraction A will never produce false alarms. By
complement notation, we denote by C(A) the set of all programs whose abstract
analysis can produce false alarms. This is a property of programs with respect to
a fixed abstraction. It is worth noting that the number of programs that meet this
property is always infinite. For any abstract domain A whose abstraction function is
computable we have that |C(A)| = ω. This is shown by a straightforward padding
argument by observing that skip ∈ C(A) for any A and because the composition of
two complete functions is complete, therefore the sequential composition of complete
commands is still complete, i.e., if P ∈ C(A) then skip;P ∈ C(A). In [67] the authors
proved that C(A) = Imp if and only if A is trivial, moreover C(A) is a non-recursive
enumerable set for non-trivial abstractions.

3.4 Abstract extensionality

A set (i.e., a property) of programs Π ⊆ Imp, or an index set for partial recursive
functions, is Rice-extensional when

P ∈ Π ∧ JP K = JQK =⇒ Q ∈ Π (3.1)

In this case P ∈ Π is the index of the partial recursive function JP K. We recall that
an index set Π is recursive if and only if it is trivial, i.e., Π = ∅ or Π = Imp. This
is the well known Rice theorem [153]. In the following we generalise this notion by
replacing the concrete semantics J·K with a generic abstract semantics J·KA for an
abstract domain A. This allows us introducing a parametric notion of extensionality,
called abstract extensionality which depends upon the abstraction A.

Definition 3.5. Let A be an abstract domain. An (abstract) A-index set for partial
recursive functions or abstract program property is any ΠA ⊆ Imp such that

P ∈ ΠA ∧ JP KA = JQKA =⇒ Q ∈ ΠA

Abstract program properties are properties of programs that are closed by abstract
semantics. All properties in program analysis as formalized by abstract interpretation
are abstract semantic properties, or equivalently induce an abstract index set for
partial recursive functions. This models precisely program analysis as an equivalence
relation on programs.

3.4 abstract extensionality 55

Theorem 3.6. If A is trivial then ΠA is Rice-extensional.

Proof. If A = 〈A,≤,t,α, γ〉 is trivial then γ ◦α = id or γ ◦α = >>. In the first
case any abstract program property Πid coincides precisely with the notion of Rice-
extensionality, as JP Kid = JQKid iff JP K = JQK. In the second case, if Π>> = ∅ then
Π>> is vacuously Rice-extensional. If instead Π>> 6= ∅ then Π>> = Imp, because for
any P ,Q ∈ Imp: JP K>> = JQK>> = >A, and thus Π>> is Rice-extensional.

We know that, in general, an abstract program property ΠA can be non Rice-
extensional and that a Rice-extensional property may not be an abstract program
property, so that the two notions of Rice-extensional property of programs and
abstract program property are in general incomparable (e.g., see Examples 3.1
and 3.2).

Given an abstraction A, we consider the following similarity relation on programs
based on the equivalence of the analysis performed by the abstract interpreter induced
by A:

P ≈A Q iff JP KA = JQKA

In the same way that Rice-extensional properties of programs are the union of
equivalence classes of programs, where two programs are equivalent if they represent
the same partial recursive function, abstract program properties are union of similar
classes, where two programs are considered equivalent if they have the same abstract
semantics, i.e., the same analysis. The following proposition us straightforward from
the definitions.

Proposition 3.7. For any abstraction A = 〈A,≤,t,α, γ〉:

• ≈A is an equivalence relation.

• For any ΠA there exists F ⊆ A→ A such that

ΠA =
⋃
f∈F

{
P ∈ Imp

∣∣∣ JP KA = f
}

.

• ΠA =
⋃
P∈ΠA [P]≈A.

In order to understand the structure of abstract program properties as sets of
indices of partial recursive functions we need to study the structure of the equivalence
classes of programs as induced by an abstract semantics J·KA. In particular we are
interested in determining whether such equivalence classes are Rice-extensional,
namely, if they are closed under the Rice-extensional equivalence. We will prove
that a partition of programs into Rice-extensional equivalence classes induced by
an abstract semantics is possible if and only if the abstraction is trivial, i.e., all the

56 abstract extensionality

equivalence classes of programs induced by meaningful abstract interpretations are not
Rice-extensional. This formalizes the widely accepted folklore for which in program
analysis it is always possible to transform a program into a semantically equivalent
one for which the abstract semantics (i.e., the analysis) of the source is different from
the one of the transformed program [105, 65]. In order to prove this result we need
to find a program Q such that for a given P ∈ ΠA: JP K = JQK but JQKA 6= JP KA.
In the following we prove that for any non-trivial (recursive) abstraction there

exist such P ,Q. Moreover, for a large class of abstractions, those based on variable
finite abstract domains (see Def. 3.4), we prove the stronger result that for any
complete program P we can always find a program Q and an abstract store S] such
that JP K = JQK and JP KAS] < JQKAS] (Theorem 3.15). This can be formalized in
terms of incompleteness of Q, i.e., Q is an incomplete version of P with respect
to a non-trivial program analysis A (Corollary 3.16). In the case of non variable
finite domains we just provide two sample programs P and Q such that P ∈ ΠA:
JP K = JQK but JQKA < JP KA (see Theorem 3.17). This means that Q is semantically
equivalent to P but its abstract semantics produces more false alarms.

3.5 Completeness and incompleteness cliques

Given an abstract interpretation A, the incompleteness (resp. completeness) clique of
a program P ∈ Imp is the set of all programs that compute the same partial function
as P and whose abstract semantics is incomplete (resp. complete). Hence in a clique
every two distinct programs are semantically equivalent on the concrete domain of
stores. In an incompleteness clique these programs produce, when analysed, false
alarms, while in a completeness clique they produce no false alarms.

Definition 3.6 (Completeness clique). The completeness clique of P ∈ Imp w.r.t. A
is

C(P ,A) def
=
{
Q
∣∣∣ JP K = JQK

}
∩C(A).

Definition 3.7 (Incompleteness clique). The incompleteness clique of P ∈ Imp w.r.t.
A is

C(P ,A) def
=
{
Q
∣∣∣ JP K = JQK

}
∩C(A).

Completeness (incompleteness) cliques model precisely the notion of semantically
equivalent programs for which completeness (incompleteness) holds with respect to
a given abstract semantics A. Note that C(P ,A) 6= C(P ,A), because C(P ,A) only
contains programs that compute the same partial function as P , while this is not the
case for C(P ,A). The cliques C(P ,A) and C(P ,A) form a partition of the set [P]≈id

of extensively equivalent programs to P , therefore C(P ,A) and C(P ,A) cannot be

3.5 completeness and incompleteness cliques 57

both empty. Whenever A is trivial we have that C(A) = Imp and thus C(P ,A) = ∅
and C(P ,A) = [P]≈id . Also note that it may well happen that P 6∈ C(P ,A) or
that P 6∈ C(P ,A), because A can be either complete or incomplete for P . Moreover
for any P ∈ Imp: (1) if P ∈ C(A) then |C(P ,A)| = ω and (2) if P ∈ C(A) then
|C(P ,A)| = ω. This is indeed obvious in both cases by padding P with skip.
As well as complexity cliques [10], completeness and incompleteness cliques are

not in general extensional and enjoy interesting recursive properties that show the
nature of false alarms in program analysis and the limit of their systematic removal.
In particular, there are infinitely many abstract domains for which it is impossible to
systematically remove false alarms by effective code transformations. This is proved
by the following theorem, where we denote by X �m Y the many-to-one reducibility,
i.e., the existence of a total recursive function f such that x ∈ X ⇔ f(x) ∈ Y .

Theorem 3.8. For any strict ACC abstract domain A, there exists P ∈ Imp such
that if C(P ,A) 6= ∅ then C(P ,A) 6�m C(P ,A).

Proof. Note that any strict ACC abstract domain A is non-trivial: The identity
abstraction is not ACC and the topmost abstraction is such that γ(⊥A) = S

contradicting the strictness condition γ(⊥A) = ∅. Assume by contradiction that for
all P ∈ Imp: C(P ,A) 6= ∅ and C(P ,A) �m C(P ,A). C(P ,A) �m C(P ,A) implies
that if C(P ,A) = ∅ then also C(P ,A) = ∅, which contradicts the hypothesis. Then
we can conclude that C(P ,A) 6= ∅. By the above assumption, for any P ∈ Imp there
exists fP : Imp→ Imp which is total recursive and Q ∈ C(P ,A)⇔ fP (Q) ∈ C(P ,A).
Hence for any P ∈ Imp, any program Q ∈ C(P ,A) is such that JP K = JfP (Q)K and
fP (Q) ∈ C(A). Because A is strict then α(S) = ⊥A iff S = ∅, therefore for any S:

JP KS = JfP (Q)KS = ∅ ⇔ α(JfP (Q)KS) = ⊥A ⇔ JfP (Q)K
Aα(S) = ⊥A

because fP (Q) ∈ C(A). We know that the abstract domain A is ACC therefore
it is decidable whether JfP (Q)K

Aα(S) = ⊥A, namely whether JP KS = ∅, for any
S ∈ ℘̂(S). It would therefore be possible to effectively transform any program P into
an equivalent one fP (Q) for which termination is decidable, which is impossible.

Our goal now is to show that, when A is variable finite and not trivial, for any
program P ∈ Imp we can always effectively generate a program τ (P) ∈ C(P ,A),
therefore for any P ∈ Imp: C(P ,A) 6= ∅. This has relevant consequences on the
structure of the class of incomplete programs C(A). In the above case, C(A) includes
at least a program for all computable functions, i.e., it is a Turing complete language.

58 abstract extensionality

3.6 Reducing completeness to incompleteness

In this section we investigate the code transformation aiming at making the analysis
of a program incomplete for a given non-trivial abstract domain, still preserving the
concrete semantics. As observed above, trivial abstract domains A, being complete for
any program, cause C(P ,A) to be empty, making the definition of a transformation
in these cases unfeasible. For non-trivial abstract domains, our goal is to define
a transformation function τ : C(P ,A) → C(P ,A) that must satisfy the following
conditions:

1. Semantics preservation: For each P ∈ Imp : JP K = Jτ (P)K.

2. Incompleteness: There exists S ∈ ℘̂(S) : α(Jτ (P)KS) < Jτ (P)KAα(S).

The first condition states that transformed programs must have the same functional
behaviour on every variable. The second condition requires that the abstract analysis
is incomplete for at least one set of stores.
We introduce a simple control-flow transformation that injects in the program

some dead code that is not recognized by the abstract semantics. The main idea is
to exploit the dead code assigning fixed values to unused variables of the program so
that the abstract semantics of the transformed program would report that change.
We use a conditional statement with an opaque predicate [31] in the abstraction so
that the abstract control-flow has to take both branches into account, even if only
one of them is actually taken in any concrete execution.

In order to define our control-flow transformation we just require that the abstract
domain is variable finite (see Def. 3.4) and recursive (see Def. 3.3). Equivalently,
these are the variable finite abstract domains that are not trivial (because of our
hypothesis [H2]).

The next lemma guarantees that recursive abstract domains cannot be the identical
abstraction on recursive sets, namely there exists a concrete recursive set S that is not
exactly represented in the abstract domain. The main results in this section (namely,
Theorems 3.14 and 3.15 and Corollary 3.16) additionally require that the abstract
element α(S) is different than top, which is a consequence of the variable finiteness
condition (see Corollary 3.10). We will exploit this S to inject incompleteness in
arbitrary programs in Imp.

Lemma 3.9. For any recursive abstract domain A there exists a recursive set
S ∈ ℘̂(S) that is not exactly represented in A.

Proof. Towards a contradiction, assume that all recursive sets in ℘̂(S) are exactly
represented in A, i.e., (γ ◦α)S = S for any recursive set S ∈ ℘̂(S). Let Uk be the set

3.6 reducing completeness to incompleteness 59

of indices of Turing machines that after k steps on input 0 do not terminate. For any
k ∈N: Uk is a recursive set. With each Uk we can associate a variable finite set of
stores Sk =

{
〈x/v〉

∣∣∣ v ∈ Uk }
. Clearly the set U =

⋂
k Uk is the set of indices of

Turing machines that on input 0 do not terminate, which is not recursive. Let S ={
〈x/v〉

∣∣∣ v ∈ U }
. Because the pair 〈α, γ〉 forms a Galois insertion: ∧k α(Sk) ∈ A.

Being A recursive, the set T = γ(
∧
k α(Sk)) is also recursive. Since γ is co-additive

we have T = γ(
∧
k α(Sk)) =

⋂
k γ(α(Sk)). Since we have assumed that all recursive

sets are exactly represented, we have T =
⋂
k γ(α(Sk)) =

⋂
k Sk = S, which yields a

contradiction, because T is recursive while S is not.

Corollary 3.10. If A is variable finite and recursive, then there exists a recursive
S ∈ ℘̂(S) such that

S ⊂ (γ ◦ α)S ⊂ S .

Proof. The existence of a recursive set S such that S ⊂ (γ ◦ α)S is guaranteed by
Lemma 3.9. Since A is variable finite it follows that for any V ⊂ V ar:

|V | < ω =⇒ α(S|V) < α(S).

This means that, for any finite set of variables V , the abstract domain has to
represent the set S|V of all stores defined at most on V , and this abstract object
α(S|V) cannot represent the set of all stores. Clearly, S ⊆ S|var(S), and thus (γ ◦α)S ≤
(γ ◦ α)(S|var(S)) < S, by the properties of Galois insertions and because the abstract
domain is variable finite.

Let S be a set satisfying the hypothesis of Corollary 3.10. Let V = var((γ ◦α)S) =
var(S), by the variable finiteness condition. Since S is recursive, there exists a total
recursive function f such that

f(m) =

1 if m ∈

{
m
∣∣∣∣ m|V ∈ S|V

}
0 otherwise

Since f is at most concerned with only a finite list of variables x̃ ⊆ V it can
be expressed as an arithmetic expression f(x̃) such that Lf(x̃)Mm = 1 if m ∈{

m
∣∣∣ m|V ∈ S|V

}
and Lf(x̃)Mm = 0 otherwise. We let the predicate In(S) be

defined as f(x̃) = 1. We prove that In(S) is an opaque predicate for the abstract
interpreter, i.e., the abstract interpreter cannot decide whether In(S) is true or false
on some input property of memories. In this way In(S) may drive the injection in
the abstract semantics of values that are not computed in the concrete semantics.
We design this by an assignment that will produce some store outside the scope

60 abstract extensionality

of P . Since (γ ◦ α)S ⊂ S, then there exists at least one store m′ 6∈ (γ ◦ α)S.
Moreover, for any program P , we have JP KAα(S) < α(S) by Lemma 3.5, because
(γ ◦α)S ⊂ S. Therefore, without loss of generality, we can find a store m′ 6∈ (γ ◦α)S
such that var(m′) is disjoint from var((γ ◦ JP KA ◦ α)S), because the (non-top)
points of our concrete domain ℘̂(S) predicate over finite set of variables. Suppose
m′ = 〈x1/v1, . . . ,xn/vn〉 with var((γ ◦ α)S) \ var(m′) = {xn+1, ...,xn+k} we let
Set(m′,S) be the program

x1 := v1; . . . ;xn := vn;xn+1 := $; . . . ;xn+k := $

We transform P into:

τm′,S(P)
def
= if In(S) then

if ¬In(S) then Set(m′,S)
else P

else P

The intuition of the transformation is the following: since S ⊂ (γ ◦ α)S there will
be at least one set of stores that can go through both branches in the abstract
evaluation. As a consequence Set(m′,S) is dead code for the concrete semantics but
it is not dead code for the abstract one, marking τm′,S(P) incomplete for A.

Note that in τm′,S(P), the choice of S may be independent of P , while that of m′
is not. For brevity we denote by τ (P) the code injection transformation τm′,S(P) for
suitable m′ and S.

Proposition 3.11. For any P ∈ Imp, with τ defined as above, Jτ (P)K = JP K.

Proof. In the following we let

Q
def
= if ¬In(S) then Set(m′,S)

else P

such that τ (P) = if In(S) then Q else P . Then, for any m ∈ S we have:

Jτ (P)Km = JQK(JIn(S)Km) ∪ JP K(J¬In(S)Km)

= JSet(m′,S)K(J¬In(S)K(JIn(S)Km))

∪ JP K(JIn(S)K(JIn(S)Km)) ∪ JP K(J¬In(S)Km)

= JP K(JIn(S)Km) ∪ JP K(J¬In(S)Km)

= JP Km

because J¬In(S)K(JIn(S)Km) = ∅ and either JIn(S)Km = {m} and J¬In(S)Km = ∅
or JIn(S)Km = ∅ and J¬In(S)Km = {m}.

3.6 reducing completeness to incompleteness 61

We show in Theorem 3.14 that the above control-flow transformation makes any
program incomplete. In the proof we exploit the following two technical lemmas.

Lemma 3.12. Let A be variable finite and let S ∈ ℘̂(S) be a recursive set such that
S ⊂ (γ ◦ α)S ⊂ S. Then JIn(S)KAα(S) = α(S).

Proof. By definition, JIn(S)KA = α ◦ JIn(S)K ◦ γ. Thus JIn(S)KAα(S) = (α ◦
JIn(S)K ◦ γ ◦ α)S = α({LIn(S)Mm | m ∈ (γ ◦ α)S}). Let V = var((γ ◦ α)S) =

var(S). We recall that LIn(S)Mm = tt iff m ∈ {m | m|V ∈ S|V }. Now, for
m ∈ (γ ◦α)S, we have m|V ∈ S|V iff m ∈ S. Therefore we have that {LIn(S)Mm | m ∈
(γ ◦ α)S} = S and JIn(S)KAα(S) = α(S).

Lemma 3.13. Let A be variable finite and let S ∈ ℘̂(S) be a recursive set s.t.
S ⊂ (γ ◦ α)S ⊂ S. Then ⊥ < J¬In(S)KAα(S) ≤ α(S).

Proof. By definition, J¬In(S)KA = α ◦ J¬In(S)K ◦ γ. Thus

J¬In(S)KAα(S) = (α ◦ J¬In(S)K ◦ γ ◦ α)S
= α({L¬In(S)Mm | m ∈ (γ ◦ α)S})

Let S′ = {L¬In(S)Mm | m ∈ (γ ◦ α)S} ⊆ (γ ◦ α)S. By monotonicity α(S′) ≤
(α ◦ γ ◦ α)S = α(S) (because the abstract domain defines a Galois insertion). Let
V = var((γ ◦ α)S) = var(S). We recall that L¬In(S)Mm = tt iff m 6∈ {m | m|V ∈
S|V }. Since (γ ◦α)S ⊃ S, there exists some m′′ ∈ (γ ◦α)S and m′′ 6∈ {m | m|V ∈ S|V }.
It follows that m′′ ∈ S′ 6= ∅. Since A is strict we have α(S′) > α(∅) = ⊥.

Theorem 3.14. Let A be variable finite and recursive. Let S ∈ ℘̂(S) be a recursive
set such that S ⊂ (γ ◦ α)S ⊂ S, and τ be defined as above. Then for any P ∈ Imp:
α(Jτ (P)KS) < Jτ (P)KAα(S).

Proof. We have:

Jτ (P)KAα(S) = JSet(m′,S)KA(J¬In(S)KA(JIn(S)KAα(S)))

t JP KA(JIn(S)KA(JIn(S)KAα(S)))

t JP KA(J¬In(S)KAα(S))

By Lemmas 3.3 and 3.12: JIn(S)KA(JIn(S)KAα(S)) = JIn(S)KAα(S) = α(S). More-
over, since

J¬In(S)KAα(S)) ≤ α(S),

62 abstract extensionality

by Lemma 3.4: JP KA(J¬In(S)KAα(S)) t JP KA(JIn(S)KAα(S)) = JP KAα(S). Thus

Jτ (P)KAα(S) = JSet(m′,S)KA(J¬In(S)KAα(S))

t JP KAα(S)

By Lemma 3.13 there exists S′ with ⊥ < α(S′) ≤ α(S) such that J¬In(S)KAα(S) =
α(S′) and thus JSet(m′,S)KAα(S′) = α({m′}), because Set(m′,S) sets to $ all
variables in var((γ ◦ α)S) \ var(m′) and α(S′) ≤ α(S). Hence Jτ (P)KAα(S) =

α({m′}) t JP KAα(S). By hypothesis var(m′) is disjoint from the set of variables
manipulated by JP KAα(S), therefore we have:

Jτ (P)KAα(S) = α({m′}) t JP KAα(S) > JP KAα(S) ≥ α(JP KS) = α(Jτ (P)KS)

where the last equality follows from Prop. 3.11.

Theorem 3.15. Let A be variable finite and recursive. Let S ∈ ℘̂(S) be a recursive
set such that S ⊂ γ ◦α(S) ⊂ S, and τ be defined as above. Then for any P ∈ C(P ,A):
JP KAα(S) < Jτ (P)KAα(S).

Proof. We have

JP KAα(S) = α(JP KS) (because P ∈ C(P ,A))
= α(Jτ (P)K)S (by Prop. 3.11)
< Jτ (P)KAα(S) (by Theorem 3.14)

As a straightforward consequence, the semantics-preserving transformation de-
scribed above can be used to define an effective transformation τ : C(P ,A) →
C(P ,A).

Corollary 3.16. If A is variable finite and recursive and C(P ,A) 6= ∅ then there
exists a computable code transformation τ : C(P ,A)→ C(P ,A).

It follows immediately that if A is variable finite and recursive then for any program
P ∈ Imp: |C(P ,A)| = ω. This is because the control-flow transformation introduced
above is semantics-preserving. Therefore for any P ∈ Imp, τ (P) ∈ C(P ,A). Then by
padding with skip, or by applying any number of further transformation steps, we
obtain infinitely many programs that are equivalent to P but incomplete for A.

Example 3.4. Consider the abstract domain of intervals Int on integer numbers Z

already discussed in the Example 3.3. Clearly Int is strict, recursive, variable finite

3.6 reducing completeness to incompleteness 63

and of course non-trivial. A simple Imp program belonging to C(Int) is for example
x := x+ n for any n ∈ Z. Indeed for any store m we have Jx := x+ nKm = m[x 7→
m(x) + n] and for any set of stores S

α(Jx := x+ nKS)(y) =

[min
m∈S

m(y), max
m∈S

m(y)] if y 6= x

[min
m∈S

(m(x) + n), max
m∈S

(m(x) + n)] if y = x

while

Jx := x+ nKAα(S) = α({ m[x 7→ m(x) + n] | m ∈ γ(α(S)) })

= α({ m[x 7→ m(x) + n] | ∀y. m(y) ∈ γ([min
m′∈S

m′(y), max
m′∈S

m′(y)]) })

= α({ m[x 7→ m(x) + n] | ∀y. min
m′∈S

m′(y) ≤ m(y) ≤ max
m′∈S

m′(y) }).

Thus:

(Jx := x+ nKAα(S))(y) =

[min
m∈S

m(y), max
m∈S

m(y)] if y 6= x

[min
m∈S

(m(x) + n), max
m∈S

(m(x) + n)] if y = x

Therefore x := x+ n ∈ C(Int) and therefore C(x := x+ n, Int) is not empty. Let
P = x := x+ 1 ∈ C(Int). We plan to apply our control-flow transformation to
derive a program τ (P) that is equivalent to P but such that τ (P) ∈ C(Int) or, in
other terms, τ (P) ∈ C(x := x+ 1, Int). To this aim, let us take the set of stores
S = {〈x/1〉, 〈x/3〉} and m′ = 〈y/2〉. We have in this case In(S) = (x = 1)∨ (x = 3).
P is then transformed into (@ is an annotation of the program point to ease the
presentation):

τ (P)
def
= if In(S) then

if ¬In(S) then (y := 2;x := 0)
else x := x+ 1 (@1)

else x := x+ 1 (@2)

64 abstract extensionality

We show that program τ (P) is incomplete for the abstract domain Int. We have
α(Jτ (P)KS) = α(Jx := x+ 1KS) = α(S[x 7→ {2, 4}]) = α(S)[x 7→ [2, 4]]. Moreover
because α(S)(x) = [1, 3] and ∀z 6= x,α(S)(z) = [0, 0], we have:

JIn(S)KAα(S) = α(S)

J¬In(S)KAα(S) = α(S)[x 7→ [2, 2]]
Jτ (P)KAα(S) = Jy := 2;x := 0KA(J¬In(S)KA(JIn(S)KAα(S)))

t Jx := x+ 1 (@1)KA(JIn(S)KA(JIn(S)KAα(S)))

t Jx := x+ 1 (@2)KA(J¬In(S)KAα(S))

= Jy := 2;x := 0KA(J¬In(S)KAα(S))

t Jx := x+ 1 (@1)KAα(S)

t Jx := x+ 1 (@2)KA(α(S)[x 7→ [2, 2]])

= Jy := 2;x := 0KA(α(S)[x 7→ [2, 2]]) t α(S)[x 7→ [2, 4]] t α(S)[x 7→ [3, 3]]

= α(S)[y 7→ [2, 2],x 7→ [0, 0]] t α(S)[x 7→ [2, 4]] = α(S)[x 7→ [0, 4], y 7→ [0, 2]])

This shows that the interval abstraction Int is incomplete for the program τ (P),
because e.g.

α(Jτ (P)KS)(y) = (α(S)[x 7→ [2, 4]])(y) = [0, 0] < [0, 2] = (JIn(S)KAα(S))(y).

Example 3.5. As a second example, we consider a simple relational domain formed
by two-variables inequalities: A = {⊥,x− y < 0,x− y > 0,x− y = 0,x− y R 0},
where ⊥ is the bottom element, x− y R 0 is the top element, and the other three
elements are pairwise incomparable. The concrete denotation of an abstract element
S] is the set of stores satisfying all the relationships in S]. For example, given the
singleton S = {〈x/1, y/2〉} we have:

α(S) = {∀z 6= y. y− z > 0, ∀z 6= x, y. x− z > 0, ∀z1, z2 6= x, y. z1 − z2 = 0 } .

Then we take m′ = 〈w/3〉 and consider the (complete) program P
def
= u := x. We

have:

τ (P)
def
= if (x = 1∧ y = 2) then

if (x 6= 1∨ y 6= 2) then (w := 3;x := 0; y := 0)
else P

else P

3.7 rice extensionality of the abstract semantics 65

By some simple calculation we get

JP K = Jτ (P)K
Jx = 1∧ y = 2KAα(S) = α(S)

Jx 6= 1∨ y 6= 2KAα(S) = α(S)

α(JP KS) = JP KAα(S) = { ∀z 6= y. y− z > 0, ∀z 6= x, y,u. x− z > 0,
∀z 6= x, y,u. u− z > 0, ∀z1, z2 6= y. z1 − z2 = 0 }

Jτ (P)KAα(S) = Jw := 3;x := 0; y := 0KA(Jx 6= 1∨ y 6= 2KA(Jx = 1∧ y = 2KAα(S)))

t JP KA(Jx = 1∧ y = 2KA(Jx = 1∧ y = 2KAα(S)))

t JP KA(Jx 6= 1∨ y 6= 2KAα(S))

= Jw := 3;x := 0; y := 0KAα(S)

t JP KAα(S)

= { ∀z 6= w. w− z > 0, ∀z1, z2 6= w. z1 − z2 = 0 } t JP KAα(S)

= { ∀z 6= y,w. y− z R 0, ∀z 6= x, y,u,w. x− z R 0,
∀z 6= x, y,u,w. u− z R 0, ∀z 6= w. w− z R 0,
∀z1, z2 6= y,w. z1 − z2 = 0 }

This shows that the abstraction is incomplete for τ (P) because Jτ (P)KAα(S) 6=
α(JP KS) = α(Jτ (P)KS) .

3.7 Rice extensionality of the abstract semantics

The top trivial abstraction is an example of non variable finite abstraction. The next
theorem proves that whenever A is neither variable finite trivial nor trivial, there
exists a pair of programs P and Q such that they have the same concrete semantics
JP K = JQK, but different abstract semantics JP KA < JQKA.

Theorem 3.17. If A is neither variable finite nor trivial then there exist P ,Q ∈ Imp
such that JP K = JQK, and JP KA < JQKA.

Proof. Since A = 〈A,≤,t,α, γ〉 is not trivial, it must be strict, and since A is not
variable finite then there exists a set of stores S ∈ ℘̂(S) such that var(S) ⊂ var((γ ◦
α)S). Thus, there exist a store m ∈ (γ ◦α)S and a variable x ∈ var((γ ◦α)S) \ var(S)

66 abstract extensionality

with m(x) = v 6= $. Moreover, we have that γ(α(∅)) = ∅, because A is strict. We
can now build P and Q such that JP K = JQK, and JP KA < JQKA in the following way.

P
def
= while tt do skip

Q
def
= if x 6= v then

if x = v then skip
else P

else P

Clearly JP K = JQK. Next we prove that JP KAα(S) < JQKAα(S). In fact, for any
abstract store S] (including α(S)): JP KAS] = ⊥ ≤ JQKAS]. Moreover, as far as α(S)
is concerned we have:

JQKAα(S) = JskipKA(Jx = vKA(Jx 6= vKAα(S)))

t JP KA(Jx 6= vKA(Jx 6= vKAα(S)))

t JP KA(Jx = vKAα(S))

= JskipKA(Jx = vKA(Jx 6= vKAα(S)))

t ⊥

= JskipKA(Jx = vKA(Jx 6= vKAα(S)))

Note that all the memories in S are such that m(x) 6= v, thus Jx 6= vKAα(S) =
α(S). Thus

JQKAα(S) = JskipKA(Jx = vKAα(S))

= JskipKAα(S′)

= α(S′)

for some S′ ⊃ {m} ⊃ ∅. Since A is strict, α(S′) > ⊥. Hence, we have that
JP KAα(S) < JQKAα(S) and therefore JP KA < JQKA.

We are now in the position of proving that the equivalence classes [P]≈A , e.g.,
those forming a non-trivial abstract program property ΠA, are Rice-extensional if
and only if A is trivial.

Theorem 3.18. An abstract domain A is trivial iff [P]≈A is Rice-extensional, for
any P ∈ Imp.

3.8 conclusion 67

Proof. Let A = 〈A,≤,t,α, γ〉. If A is trivial then by Theorem 3.6 for any P ∈ Imp:
[P]≈A is Rice-extensional. For the converse implication, assume A is non-trivial. If
A is variable finite then consider P ∈ [P]≈A . By Prop. 3.11: JP K = Jτ (P)K and
Theorem 3.14 JP KA 6= Jτ (P)KA, which proves that [P]≈A is not Rice-extensional.
If instead A is not variable finite then by Theorem 3.17 we have that there exist
P ,Q ∈ Imp such that P ∈ [P]≈A , JP K = JQK and JP KA 6= JQKA, which implies that
[P]≈A is not Rice extensional.

3.8 Conclusion

In this chapter we proved that the equivalence induced by abstract semantics on
programs is an index set of partial recursive functions if and only if the abstraction
is trivial. We considered the strongest possible scenario in order to establish when
incompleteness can be injected. In particular the assumption [H1] ensures the existence
of the best correct approximation, so that making this approximation incomplete
would make incomplete any other weaker approximations, i.e., we proved that
incompleteness can be injected in every program also when the abstraction is designed
to be the most precise one. This result has important consequences in program analysis
and abstract interpretation:

(1) It shows that any non-trivial abstraction of extensional (functional) properties of
programs is susceptible to their intensional structure. This means that any non-trivial
abstract interpretation always unveils implicitly also properties concerning the way
programs are written. While true alarms only concern the extensional (functional)
behaviour of the program, false alarms always concern their intensional structure.
Stated in a different way: we can look at the log of alarms generated by an abstract
interpreter to classify programs according to extensional—what they compute, and
intensional—how they are implemented, similarity. This log is a footprint of the
code analysed which, to the best of our knowledge, has never been used for program
analysis, e.g., in the context of program similarity by encompassing both semantic
and implementation similarity.

(2) Program analysis behaves precisely as other well known intensional properties
of programs, like computational complexity [10]. This relates program analysis with
computational complexity in an unexpected and remarkable way. The question of
whether these two fields can be unified under a unique formal setting and what
properties and structures are shared by both is still an open question. This is the
very first step towards this ambitious goal: What is left of the standard model of
recursive functions when intensional aspects of computation are considered?

(3) We concentrated our attention on the class C(P ,A). This is the space of action
of any code protecting transformations whose aim is to foil program analysis and

68 abstract extensionality

therefore foil any tool supporting reverse engineering. We proved that the set of all
programs that are incomplete for any non-trivial abstraction A, i.e., the set C(A), is
a very rich structure: a Turing complete language! This means that it is possible to
build a compiler that compiles any program P into an equivalent program in C(P ,A),
therefore justifying code transformations that protect code against program analysis.
On the other side, the expressivity of the class C(A) of all programs that are complete
for a non-trivial abstraction A is still obscure. We know by Theorem 3.8 that for
terminating non-trivial program analyses we cannot find a many-to-one reduction of
C(P ,A) into C(P ,A). This implies that C(A) cannot be always Turing complete,
otherwise by the first Futamura projection (e.g., see [58, 91]) we could build inside
C(A) a compiler τ mapping any program in C(P ,A) into C(P ,A), and conversely
any program outside C(P ,A) into a program outside C(P ,A). The question: Given
a non-trivial abstraction A, what are the functions that we can program in C(A)? is
still open. This question may have relevant applications in automating systematic
false alarm removal by refactoring code snippets.
(4) The proofs of our results show that effective program transformations can

be derived under a very weak hypothesis, what we called variable finiteness of an
abstraction. The connection with code obfuscation is particularly interesting here.
Being C(P ,A) Turing complete, we believe that code obfuscation, which is nowadays
mostly considered a cryptographic concept [13], can be fully reconciled with recursion
theory and programming languages.

4
A Framework for Fixpoint Computation in
Abstract Interpretation

We now turn to the abstract interpretation procedure per se and present a series of
abstract interpretation-based analysis algorithms for logic programs. These are the
fixpoint-calculating procedures that infer analysis graphs (see Sec. 2.3). Incremental
algorithms are those that can recompute such analysis graphs after program changes,
without having to start the process from scratch. Modular algorithms (in contrast to
monolithic algorithms) are those that are capable of analyzing subsets (of modular
partitions) of programs without having to load or treat the whole program at any given
step. In this chapter we present the two existing fixpoint algorithms [86, 146] that
constitute our baseline. We also extend them by including explicitly the description
of the generalization steps via widening, which was left implicit in previous work,
and providing a new, unified view of the correctness and precision results of those
algorithms.

Abstract Domain Operations. All these abstract interpretation-based algorithms are
parametric on the abstract domain, i.e., they are independent of the data abstractions
used. Each abstract domain is defined by providing the basic domain operations
(v,u,t and, optionally, the widening ∇ operator); the abstract semantics of the
primitive constraints (representing the built-ins, or basic operations of the source
language) via transfer functions (fα); and the following additional instrumental
operations over abstract substitutions:

• Aproj(λ, Vs): restricts λ to the set of variables Vs.

• Aextend(Ak,n,λp,λs): propagates the success λs, defined over the variables of
the literal Ak,n, to λp, that includes all the variables of the clause k of A.

• Acall(A,λ,Ak): performs the abstract call. That is, the unification (conjunc-
tion) of a call in a literal 〈A,λ〉 with the head of a clause, Ak. The result is a
new substitution in terms of the variables of clause k of A.

69

70 a framework for fixpoint computation in abstract interpretation

• Aproceed(Ak,λsk,A): performs the abstract proceed. That is, the reverse oper-
ation of Acall. It unifies head of the clause (Ak) and the abstract substitution
at the end of the clause (λsk) with the original call A to produce the success
substitution over the variables of A.

• Ageneralize(λ, {λi}): joins λ with the set of abstract substitution {λi}, all
of them over the same variables. The result is an abstract substitution that
is greater than or equal to λ. It either returns λ, when no generalization is
needed, performs the least upper bound (t), or performs the widening (∇) of
λ together with {λi}, depending on termination or performance needs.

In the presentation of the algorithms for simplicity we not consider narrowing
(∆). However, we believe that narrowing would also benefit from the incremental
algorithms, since the strategies used on the incremental algorithms can also be used
to propagate the improvements in precision, as already suggested in [86], which
already included some initial ideas in this direction.

4.1 The monolithic and incremental fixpoint algorithm

As baseline for the thesis, we first present the monolithic incremental analysis
algorithm of [85, 86], but, as mentioned before, including explicitly the widening
steps (Algorithm 1). The discussion is based on the PLAI algorithm [127, 129], using
the presentation of [86]. A = IncAnalyze(P ,Qα, ∆, A0) takes as input a program
P , a set of initial abstract queries Qα, the differences ∆ of P with respect to a
previous version P ′, and an analysis graph A0 that is well formed for P ′. It returns
an analysis graph A that is correct for P and Qα. Note that, if the algorithm is called
with A0 empty, i.e, from scratch, then it behaves as the traditional monolithic PLAI
algorithm [127, 129]. As mentioned before, we refer to this algorithm as monolithic
because it assumes that all the predicates executed in the target program P are
provided to the analyzer, i.e., this algorithm treats only whole programs. That is,
if no code is available for a predicate, they assume it never succeeds and infer ⊥.
For efficiency, in this algorithm the edges of the analysis graph are annotated with
additional information, denoted by λp, i.e., of the form 〈A,λcA〉

λp

−−→k,i〈B,λcB〉. λp is
the abstract substitution right before the execution of the i-th literal of the k-th
clause of predicate A and describes the variables of that clause.

Intuitively, generating an analysis graph consists of the execution of the program
by building the generalized and tree with two main differences: (i) instead of the
concrete operations for the substitutions, the operations from the abstract domain
Dα are used, (ii) in the construction of the graph, call descriptions are tabulated so
that, if the abstract call constraint of a node is not equal to (or, optionally, subsumed

4.1 the monolithic and incremental fixpoint algorithm 71

Algorithm 1 IncAnalyze: monolithic, context-sensitive, incremental fixpoint
algorithm.

IncAnalyze (P ,Qα, ∆, A)

1: for all 〈A,λc〉 ∈ Qα do
2: add-event(newcall(〈A,λc〉))
3: deleteClauses(∆)
4: addClauses(∆)
5: while events() 6= ∅ do
6: E := next-event()
7: process(E)
8: removeUnreachable(A ,Qα)
9: return A

proc addClauses(Cls)
10: for all Ak :- Ak,1, . . . ,Ak,nk

∈ Cls do
11: for all 〈A,λc〉 7→ λs ∈ A do
12: λp := Acall(A,λc,Ak)
13: λc1 := Aproj(λp, vars(Ak,1))

14: add-event(arc(〈A,λc〉 λp

−−→k,1〈Ak,1,λc1〉))

proc deleteClauses(Cls)
15: Calls := {〈A,λc〉|〈A,λc〉 ∈ A ,
16: (A :- . . .) ∈ Cls}
17: Ns := {n ∈ A |n c ∈ A , c ∈ Calls}
18: del(A , Ns)
func lookupAnswer(〈A,λc〉)
19: if 〈A,λc〉 7→ λs ∈ A then
20: return λs
21: else
22: add-event(newcall(〈A,λc〉))
23: return ⊥
proc removeUnreachable(A ,Qα)
24: U := {n ∈ A | 6 ∃q n ∈ A , q ∈ Qα}
25: del(A , U)

proc process(newcall(〈A,λc〉))
26: for all Ak :- Ak,1, . . . ,Ak,nk

∈ P do
27: λp := Acall(A,λc,Ak)
28: λc1 := Aproj(λp, vars(Ak,1))

29: add-event(arc(〈A,λc〉 λp

−−→k,1 〈Ak,1,λc1〉))

proc process(arc(〈A,λc0〉
λp

−−→k,i〈B,λc1〉))

30: Calls := {λ | 〈A,_〉 →k,i 〈B,λ〉 ∈ A }
31: λc := Ageneralize(λc1, Calls)
32: if B is a built-in then
33: λs0 := fα(〈B,λc〉)
34: else
35: λs0 := lookupAnswer(〈B,λc〉)
36: upd(A , 〈A,λc0〉

λp

−−→k,i〈B,λc〉)

37: λr := Aextend(Ak,i,λp,λs0)
38: if λr 6= ⊥ and i 6= nk then
39: λc2 := Aproj(λr, vars(Ak,i+1))

40: add-event(arc(〈H,λc0〉
λr

−−→k,i+1〈B,λc2〉))
41: else if i = nk then
42: λsk := Aproj(λr, vars(Ak))
43: λs := Aproceed(A,λsk,Ak)
44: insertAnswerInfo(〈A,λc0〉,λs)

proc insertAnswerInfo(〈A,λc〉,λs)
45: if 〈A,λc〉 7→ λs0 ∈ A then
46: λs1 := Ageneralize(λs, {λs0})
47: else λs0 := ⊥, λs1 := λs

48: upd(A , 〈A,λc〉 7→ λs1)
49: if λs0 6= λs1 then
50: reanalyzeUpdated(〈A,λc〉)

proc reanalyzeUpdated(〈A,λc〉)
51: for all E := 〈B,λc0〉

λp

−−→k,i〈A,λc〉 ∈ A do
52: add-event(arc(E))

by) that of a node already present, the graph is not extended, and instead, a back
edge is introduced pointing to that node, and (iii) dependencies are tracked, as
mentioned before, to speed up convergence.

For presentation purposes and without loss of generality in the following we assume
that all atoms are normalized. However, in the examples we also use non normalized
atoms for brevity.

72 a framework for fixpoint computation in abstract interpretation

4.1.1 Operation of the algorithm

Algorithm 1 is centered around processing two kinds of events. The newcall events
control which predicate calls need reanalysis, while the arc events abstractly execute
one literal of the body of a clause for an abstract call. The algorithm starts by
queueing a newcall event for each of the abstract calls that need to be (re)computed.
This triggers process(newcall(〈A,λc〉)), which schedules the analysis of each of
the clauses of the predicate. This is done by performing the abstract call using
Acall(which includes the renaming) and adding an arc event for the first literal
(lines 26-29). The procedure process(arc(〈A,λc0〉

λp

−−→k,i〈B,λc1〉)) performs a single
step of the left-to-right traversal of a clause body. Since the algorithm is multivariant,
an infinite number of different call patterns may be encountered, even if the domain
has finite height. Therefore, the calls are generalized in the Ageneralize operation
(lines 30-31) via a widening. Then, if the literal Ak,i is a built-in, its transfer function
is applied (line 33); otherwise, it is a call to a predicate, and the answer λs is looked
up (line 35). This is done by lookupAnswer (lines 19-23). It returns the answer in the
analysis graph if available, or creates a newcall event for 〈A,λc〉 if not (to schedule
its analysis, because it has not been analyzed yet). Then, in line 36, an edge is added
to capture this call dependency; it is at this point where cycles may be added to the
graph, if the same call pattern is encountered twice, either directly by abstracting
the call or after generalizing it via widening (in line 31). In line 37, the answer is
combined with λp, the substitution immediately before the execution of the literal
Ak,i to obtain λr, the substitution immediately after the execution of the literal. This
is used either to process the next literal, scheduling an arc event (lines 38-40), or to
update the answer of the predicate (lines 41-44) if it is the last literal in the body. The
function insertAnswerInfo combines the new answer of a clause with the semantics
of the previous answers and previously analyzed clauses. To ensure termination when
analyzing with abstract domains not satisfying the ACC, the answer is generalized
(lines 45-46). Lastly, the new answer is propagated if it differs from the existing
one, meaning that fixpoint has not been reached yet (lines 49-50). The procedure
reanalyzeUpdated propagates the information of newly computed answers across
the analysis graph by creating arc events for the literals from which the analysis has
to be restarted (lines 51-52). After the fixpoint is reached, in line 8, the procedure
removeUnreachable deletes from the analysis graph nodes or subgraphs that are
not reachable from the initial queries. As, for instance, they may have existed in a
previous analysis but are not useful now. This allows improving precision or removing
redundant (temporary) nodes, e.g., the ones produced as intermediate results before
the fixpoint is reached.

4.1 the monolithic and incremental fixpoint algorithm 73

The procedure addClauses schedules the analysis of new clauses. It suffices, for
every clause (line 10), to queue arc events for each of encountered calls to the
predicates that they define (lines 11-14). These trigger the analysis of each clause
and the later update of the callers to these predicates A by following the edges in
the graph (done in insertAnswerInfo).

The deleteClauses procedure deletes the information that is potentially imprecise.
That is, the nodes representing calls to the predicates defined by the deleted clauses
(line 16), because the success information is potentially inaccurate, and all their
callers (line 17). The scheduling of events is not necessary, because events for the
queries are always scheduled, and this will trigger the reanalysis of the necessary
parts.

At the end of the chapter, Example 4.3 shows a detailed execution of the algorithm.

4.1.2 Differences w.r.t. the original monolithic incremental algorithm

Algorithm 1, IncAnalyze, extends the algorithm first described in 1995 [85], the
latter is henceforth consequently called IncAnalyze95. As mentioned before, widen-
ing was considered in [86] but here we incorporate it explicitly in Algorithm 1. In
particular, lines 30 and 31, which perform the widening of the encountered calls for
the cases in which the abstract domain has infinite width/height; and in line 46, that
performs the widening on the success for the cases in which the abstract domain is
of infinite height. IncAnalyze95 is then obtained by:

• replacing lines 30-31 by “λc := λc1”,
• and replacing line 46 by “λs1 := λs t λs0”.

4.1.3 Correctness and precision of IncAnalyze95

We now present the fundamental results of the algorithms. Lemmas 4.2 to 4.4
and Theorem 4.5 were formulated and proved in [86]. However, we present a more
generalized view and justification of such results. To this end, we propose a new
ordering for well-formed analysis graphs that will be instrumental to understand
how the algorithm computes the supremum of Kleene sequences of functions that
manipulate such graphs. Note that we are only interested in comparing graphs for
the same program, since the program is not going to be modified while computing
the fixpoint. Therefore, in the following, we assume that we only compare graphs for
the same program P .

74 a framework for fixpoint computation in abstract interpretation

Partial order of analysis graphs. Henceforth we denote by AG the set of all possible
analysis graphs that has as call and success values elements in a domain Dα. The
following pre-orders encapsulate, among other things, the notion that an analysis
graph g2 is finer than another analysis g1. Moreover, observe that both definitions
below are parametric on Dα.

Definition 4.1. Given two nodes n = 〈A,λn〉,m = 〈B,λm〉 we say n vnode m if

∃ a renaming σ such that A = Bσ ∧ λn vDα
λmσ

Definition 4.2. Given two well-formed analysis graphs g1, g2 for a program P we
say g1 vAG g2 if

1) ∀n1 ∈ g1.∃n2 ∈ g2.n1 vnode n2,
2) ∀n 7→ λs1 ∈ g1.∃n 7→ λs2 ∈ g2 ∧ λs1 vDα

λs2, and
3) ∀(n1 →k,i m1) ∈ g1.∃(n2 →k,i m2) ∈ g2.(n1 vnode n2) ∧ (m1 vnode m2).

In particular, note that two nodes n,m are only vnode-comparable if they describe
calls to the same predicate. In addition, if g1 vAG g2 then g2 abstracts all the nodes
in g1, i.e., the analysis graph g2 is finer than the analysis graph g1.

Remark. Observe that vAG is not a partial order in the set AG, as one may have
analysis graphs g1 and g2 such that g1 vAG g2 and g2 vAG g1, but g1 6= g2 as graphs.
However, one can consider the equivalence relation g1 ∼vAG g2 given by g1 vAG g2
and g2 vAG g1. In this setting, it is routine to show that vAG defines a partial order
in the ∼vAG -equivalence classes. We hence slightly abuse notation, and say that vAG
defines a partial order in AG. Likewise, we denote vAG simply by v for notational
simplicity.
Remark. Observe that there exists a v-minimal correct analysis graph, which we
call the least correct analysis graph. This is the smallest (well-formed) analysis graph,
with the most precise (smallest) calls or answers, that correctly over-approximates
the behavior of a program (Def. 2.5).
Lastly, note that λp is not relevant in the partial order because it is included in the
algorithm only for efficiency.

Let us first state an interesting property of the removeUnreachable procedure.

Lemma 4.1. Let A be an analysis graph, Qα a set of queries, and let A ′ =

removeUnreachable(A ,Qα). Then A ′ abstracts the same trees as A w.r.t. Qα.

Proof. By definition, removeUnreachable does not remove edges in paths starting
from the query in A . The nodes in A that are not reachable from Qα, i.e., for which

4.1 the monolithic and incremental fixpoint algorithm 75

there is not a path from any q ∈ Qα, do not belong in any of the trees that A

represents. Therefore, if they are removed, the trees abstracted by the nodes starting
in Qα remain the same.

This implies that if A is correct for some program P and queries Qα, then A ′ is
correct as well. Note that this implies that if A is in the class of least program
analysis graphs then A ′ remains in the class of least program analysis graphs as well.

Let us now recall the correctness and precision results of IncAnalyze95 from [86].
We simply reformulate those guarantees and give an intuition as to why they hold in
terms of obtaining the fixpoint by computing the supremum of Kleene sequences of
functions manipulating analysis graphs, provided that they are continuous, additive,
or join preserving. The least fixed point (lfp) of such functions is the least correct
analysis graph of the program being analyzed.
Given a program P and a set of abstract queries Qα, let fP : AG → AG be the

function that processes an arc event in Algorithm 1. According to the graph ordering
the processing of these events always causes the analysis graphs to become greater
because the insert (greater) answers (insertAnswerInfo) or insert new nodes with
edges (line 36). Thus, processing events is a monotone increasing process, and ACC
is guaranteed because we only consider finite domains. In the explanations we omit
Qα for conciseness, as it does not change during the fixpoint computation process.

Lemma 4.2 (Correctness and precision of IncAnalyze95 from scratch). Let
P be a program, and Qα a set of abstract queries. The analysis result A =

IncAnalyze95(P ,Qα, ∅, ∅) is the least correct analysis graph for P and γ(Qα).

In abstract interpretation, the fixpoint of a set of (monotonic) clauses is computed
by repeatedly composing the abstract semantics of each of the clauses iterating in a
chaotic manner. If the iteration is started at ⊥, it is guaranteed that the least fixed
point of the system is found. When starting from an empty analysis, IncAnalyze
computes the lfp, which, in this case is the least analysis graph by applying fP (X) a
number of times:

⊥ v fP (⊥) v fP (fP (⊥)) v f3
P (⊥) v . . . v fkP (⊥) = . . . = fk+nP (⊥) = lfp(P)

In the sequence above, the fixpoint value is found in the k-th step of the iteration.
However, this value is not yet known to be the fixpoint. The chaotic iteration process
needs to continue until all the clauses have been exhaustively applied and the value
of the fixpoint is kept, this is represented by the n steps exectued after fkP . Note that
the number of steps k and n depends highly on the strategy for the chaotic iteration.
In our case, we safely reduce them by keeping the dependencies between clauses.
Also note that the order in which the intermediate steps (f iP) of the Kleene chain are

76 a framework for fixpoint computation in abstract interpretation

computed does not affect the analysis results (since t is commutative). Therefore,
the order in which events are processed in the algorithm does not affect the final
analysis graph. Lastly, by Lemma 4.1, the result is guaranteed to be safe and the lfp.

Lemma 4.3 (Correctness and precision of IncAnalyze95 adding clauses). Let P
and P ′ be two programs such that ∆ = (Cadd , ∅), P = (P ′ ∪Cadd), and Qα a set of
abstract queries. If A0 = IncAnalyze95(P ′,Qα, ∅, ∅), then

IncAnalyze95(P ,Qα, ∆, A0) = IncAnalyze95(P ,Qα, ∅, ∅)

As mentioned before, A0 is well formed for P and P ′. Therefore it is comparable
when reusing it to analyze P . For both P and P ′ there exists a valid sequence to
compute their fixpoints that consists in processing first all the clauses in P ′:

⊥ v fP ′(⊥) v fP ′(fP ′(⊥)) v . . . v fkP ′(⊥) = AP ′ (lfp(P ′))
equivalent computation steps ↓ reuse
⊥ v fP (⊥) v fP (fP (⊥)) v . . .︸ ︷︷ ︸ v fkP (⊥) v . . . v fnP (⊥) = AP (lfp(P))

avoided steps

Therefore restarting the analysis of P with A0 = lfp(P ′) produces a safe and accurate
result.

Lemma 4.4 (Correctness and precision of IncAnalyze95 deleting clauses). Let
P and P ′ be two programs such that ∆ = (∅,Cdel), P = P ′ \Cdel , and Qα a set of
abstract queries. If A0 = IncAnalyze95(P ′,Qα, ∅, ∅), then

IncAnalyze95(P ,Qα, ∆, A0) = IncAnalyze95(P ,Qα, ∅, ∅)

That is, if the program P ′ is analyzed for entries Qα, obtaining A0, and A is
incrementally recomputed deleting the clauses Cdel , the analysis result of P will be
the same as when analyzing it from scratch.

A first approach would consist in taking advantage of the existence of a sequence
of applications of fP ′ s.t. by going back to the k-th step (backwards) of the Kleene
sequence supremum computation we would have exactly the lfp of fP .

⊥ v fP ′(⊥) v fP ′(fP ′(⊥)) v . . . v fkP ′(⊥) v . . . v fnP ′(⊥) = AP ′

↓ reuse ← go back
⊥ v fP (⊥) v fP (fP (⊥)) v . . .︸ ︷︷ ︸ v fkP (⊥) = AP

avoided steps

4.1 the monolithic and incremental fixpoint algorithm 77

Note that this is infeasible in practice. It would imply storing each of the interme-
diate steps of fixpoint computation, and, most importantly, this intermediate state
k only exists if we specifically analyze in a sequence that leaves processing to the
semantics of Ci to the end. It is therefore desirable to be able remove any clause(s)
from the program, not only the last processed by the algorithm.

To this end, the algorithm deletes subgraphs to obtain a state of the analysis that
corresponds to an earlier state of analysis sequence in which the processing of clauses
that depend on the deleted clauses is left for the end.

⊥ v fP ′(⊥) v . . . v f iP ′(⊥) v . . . v . . . v fnP ′(⊥) = AP ′

accurate reuse ↓ ← ← delete subgraph
⊥ v fP (⊥) v . . .︸ ︷︷ ︸ v f jP (⊥) v . . . v fmP (⊥) = AP

avoided steps

Theorem 4.5 (Correctness and precision of IncAnalyze95). Let P ,P ′ be pro-
grams, such that P differs from P ′ by ∆, let Qα a set of abstract queries, and
A0 = IncAnalyze95(P ′,Qα, ∅, ∅) be the least analysis graph. The following hold:

• If A = IncAnalyze95(P ,Qα, ∅, ∅), then A is the least analysis graph for P
and γ(Qα), and

• IncAnalyze95(P ,Qα, ∆, A0) = IncAnalyze95(P ,Qα, ∅, ∅).

That is, when analyzing from scratch, the most precise result is always produced,
and when reusing a least program analysis graph in the incremental analysis, the
new result is the least program analysis graph as well.

4.1.4 Correctness of IncAnalyze

We now formulate the correctness results of Algorithm 1, i.e., the algorithm of [86] ex-
tended with generalization (extrapolating using widening). The abstract interpretation
technique guarantees that generalization with a widening operation preserves sound-
ness, and guarantees termination at the expense of losing precision and monotonicity.
Given the definitions of Sec. 2.3, the following Lemmas 4.6 to 4.8 and Theorem 4.9
of [86] hold, because, as stated earlier, generalization via a widening guarantees
correctness:

Lemma 4.6 (Correctness of IncAnalyze from scratch). Let P be a program, and
Qα a set of abstract queries. The analysis result A = IncAnalyze(P ,Qα, ∅, ∅) for
P with Qα is correct for P and γ(Qα).

78 a framework for fixpoint computation in abstract interpretation

Lemma 4.7 (Correctness of IncAnalyze adding clauses). Let P and P ′ be
two programs such that ∆ = (Cadd , ∅), P = (P ′ ∪ Cadd), and Qα a set of ab-
stract queries. If A0 = IncAnalyze(P ′,Qα, ∅, ∅), then the analysis result A =

IncAnalyze(P ,Qα, ∆, A0) for P with Qα is correct for P and γ(Qα).

Lemma 4.8 (Correctness of IncAnalyze deleting clauses). Let P and P ′ be
two programs such that ∆ = (∅,Cdel), P = P ′ \ Cdel , and Qα a set of ab-
stract queries. If A0 = IncAnalyze(P ′,Qα, ∅, ∅), then the analysis result A =

IncAnalyze(P ,Qα, ∆, A0) for P with Qα is correct for P and γ(Qα).

Theorem 4.9 (Correctness of IncAnalyze). Let P and P ′ be two programs that
differ by ∆, and Qα a set of abstract queries. If A0 = IncAnalyze(P ′,Qα, ∅, ∅),
then the analysis result A = IncAnalyze(P ,Qα, ∆, A0) for P with Qα is correct
for P and γ(Qα).

Note that if we have a different program P ′′ and A ′′ = IncAnalyze(P ′′,Qα, ∅, ∅),
A 2 = IncAnalyze(P ,Qα, ∆P′′ , A ′′), A and A 2 are both correct for P and γ(Qα)
but may not be comparable because ∇ is not associative and not monotone.

4.1.5 Starting from partial analyses

Theorems 4.5 and 4.9 show that, if A0 is a (precise and) correct analysis, then the
incremental analysis result is (precise and) correct. However, the conditions on A0
can be relaxed if the conditions on the queries are strengthened and still guarantee
the same correctness and precision results. In the following we state conditions to
guarantee precision and correctness when (re)starting from a partial analysis result.

Lemma 4.10 (Correctness of IncAnalyze starting from a correct partial analysis).
Let P be a program, Qα be a set of abstract queries, and fix q ∈ Qα. Suppose that A0
is the analysis result A0 = IncAnalyze(P ,Qα \ {q}, ∅, ∅). Then the analysis result
A = IncAnalyze(P ,Qα, ∅, A0) is correct for P and γ(Qα).

Proof. The proof goes case by case, and there are three cases. If q ∈ A the analysis is
correct by assumption. If q is independent from A0 then A is correct by Lemma 4.6.
Otherwise, q depends on some nodes of A0, and since the algorithm triggers the
reanalysis of all dependent calls, it analyzes these nodes. This procedure eventually
leads to the former two cases.

Theorem 4.11 generalizes Theorem 4.9 and Lemmas 4.6 to 4.8.

Theorem 4.11 (Correctness of IncAnalyze starting from a partial analysis). Let
P be a program, Qα a set of abstract queries, and A0 a well-formed analysis graph

4.1 the monolithic and incremental fixpoint algorithm 79

for P . Suppose for all concrete queries q ∈ γ(Qα), for all nodes n from which there
is a path in the concrete execution q n in JP KQ, and for all nα ∈ A 0 such that
n ∈ γ(nα) either:

a) nα ∈ Qα, or
b) the subgraph with root nα is correct for P and {γ(nα)}.

Then A = IncAnalyze(P ,Qα, ∅, A0) is correct for P and γ(Qα).

The subgraph of A0 with root nα is the result of removeUnreachable(A0, {nα}).

Proof. The proof goes case by case. For a fixed query q ∈ Qα either:

• A0 does not abstract any calls in the execution of γ({q}), whence Aq =

IncAnalyze(P , {q}, ∅, A0) is correct by Lemma 4.6.
• A0 is itself correct for γ({q}), and hence so is Aq = IncAnalyze(P , {q}, ∅, A0)

correct for γ({q}) by Lemma 4.10.
• A0 is not correct for P , γ({q}) but Aq = IncAnalyze(P , {q}, ∅, A0) is correct

for P , γ({q}).
• Otherwise, if Aq = IncAnalyze(P , {q}, ∅, A0) is not correct for P , γ({q}),

then there exists Qα′ ⊂ Qα, q 6∈ Qα′ such that Aq = IncAnalyze(P , {q} ∪
Qα
′, ∅, IncAnalyze(P ,Qα′, ∅, A0)) is correct for P , γ({q}). Indeed, note that

if the reused graph is not correct, then condition (b) in the statement of the
theorem is not met, and by condition (a) the root of the subgraph is included
in Qα.

That is, for any query q ∈ Qα there is Qα′ ⊆ Qα with q ∈ Qα
′ such that the

analysis AQα
′ = IncAnalyze(P ,Qα′, ∅, A0) is correct for P and γ(q). Therefore,

the analysis A is correct for P and γ(Qα) by iteratively applying Lemma 4.10.

Note that A0 is not assumed to be the (correct) output of a previous analysis, it
can be any analysis (below, above, or incomparable with the fixpoint). Also note that
if all nodes in the analysis graph are included (together with the original queries), in
Qα the result is guaranteed to be correct.

If A0 already contains information about q, it needs to be rechecked by recomputing
the analysis of all the nodes in which q depends by including them inQα. Theorem 4.11
is a generalization because, implicitly, procedures addClauses and deleteClauses
are doing this. Either removing subgraphs, adding the respective queries so that they
are computed from scratch, or adding the necessary queries (by directly creating the
corresponding newcall events) for the subgraphs that are not yet correct.

The following theorem generalizes Theorem 4.5 and Lemmas 4.2 to 4.4, i.e., about
the algorithm not using widening.

80 a framework for fixpoint computation in abstract interpretation

Theorem 4.12 (Correctness and precision of IncAnalyze95 starting from a partial
analysis). Under the same conditions as Theorem 4.11, if A0 v A , then:

IncAnalyze95(P ,Qα, ∅, ∅) = IncAnalyze95(P ,Qα, ∅, A0).

Proof. Starting from a partial analysis is equivalent to computing the Kleene fixpoint
of the original program together with a new “abstract clause”, which is a constant
representing the initial results. Let us call this clause A0. Our goal is to prove that
chaotic iteration of fP with A0 also results in the lfp(P) if A0 v lfp(P).

By definition, for any k-th step of the iteration fkP (⊥) v lfp(P), also, by hypothesis,
A0 v lfp(P). Therefore, for any k and applying any random clause, A0 t fkP (⊥) v
lfp(P). So, if we “plug in” the initial analysis A0 at any point of the chaotic iteration
over fP , because the semantics of the clauses of P are monotonic, for any k, fP (A0 t
fkP (⊥)) v fP (lfp(P)), and precision is preserved. Concretely, this also implies that
precision is preserved if we start from fP (A0).

The condition imposed on the set of queries guarantees that the chaotic iteration
includes all the clauses that the iteration needs to be rerun with (see Theorem 4.11).
This justifies not reprocessing the clauses that are not affected by the changes in the
algorithm, since the corresponding steps can be skipped safely.

4.2 The intermodular fixpoint algorithm

We now present the reference algorithm for analyzing modular programs, originally
described in [24, 146]. As expected, the approach consists in analyzing partitions
of programs making assumptions about the code that is external to each partition.
Several possibilities were proposed in that work for making such assumptions, e.g.,
assuming that nothing is known about the answer (>), computing the “topmost”
abstraction of the call (as before but taking into account any local information
available), or strategies with better precision but, in general, more costly, such as
assuming ⊥ temporarily for the unknown answers and later reanalyzing whenever
the correct abstraction of the answer is available. Note that these abstractions help
in achieving scalability, as one can disable precise abstractions for some components,
and still obtain results that are meaningful. In this work we do not want to give
up precision to obtain scalability and therefore fix the strategy to the latter one to
obtain the best precision. Additionally, note that module analysis order may affect
the speed at which the fixpoint computation converges. Some scheduling policies
were studied in [33] but this is out of the scope of this thesis.

In this chapter we provide a new pseudocode for the algorithm of [146], specialized
for the case in which the maximum precision is aimed for. Then, we provide new formal
results about correctness and precision of this algorithm. Also, both for generality

4.2 the intermodular fixpoint algorithm 81

�
1 :- module (main , [main /1]).
2
3 :- use_module (bitops).
4 main(Msg, P) :-
5 par(Msg, 0, P).
6
7 par([], P, P).
8 par([C|Cs], P0, P) :-
9 xor(C, P0, P1),

10 par(Cs, P1, P).� �

�
1 :- module (bitops , [xor /3]).
2
3 xor (0 ,0 ,0).
4 xor (0 ,1 ,1).
5 xor (1 ,0 ,1).
6 xor (1 ,1 ,0).� �

Fig. 11: A modular version of the program in Example 2.1.

and reusability, although not required for our results, we propose a formulation of
the algorithm that is parametric on the analysis used within each modular partition,
which in our case is instantiated to IncAnalyze. Let us begin by looking at an
example of a modular program.

Example 4.1 (A modular program). Fig. 11 shows a modular version of the program
in Example 2.1. The program contains two modules, as declared by the Ciao system
module annotations (see Sec. 2.5 for the detailed description of the syntax). The
program contains two modules: main and bitops. The module main imports (all the
predicates in) bitops and exports the predicate main/1 that computes the parity of
a list. This means that par/3 is not accessible to any module outside of main. The
module bitops exports the predicate xor/3.

4.2.1 Modular analysis results

To store the overall analysis result of the program and keep track of fine-grain
dependencies between modules, we propose to use also an analysis graph structure at
the inter-modular level. One can see this as a “projection” of the monolithic analysis
graph, described in Sec. 2.3, where only the predicate calls across module boundaries
are kept. As before, nodes represent calls to predicates and edges capture the relations
between the predicates in the boundaries of the partitions (exported/imported pred-
icates) with arcs 〈A,λc〉 → 〈B,λc′〉 meaning a call to A in mod(A) with description
λc may cause a call to B with description λc′ and mod(B) ∈ imports(mod(A)). The
precision of the inferred calls and successes of the predicates is independent of the
analysis graph being modular or not. From this point on, we use G to denote the
modular (global) analysis graph. In contrast, local analysis graphs, denoted by L ,
contain the abstraction of the single module being analyzed.

82 a framework for fixpoint computation in abstract interpretation

〈main(Msg,P),
>〉 7→
(P/b)

〈par(Msg,X,P),
(X/z)〉 7→
(X/z,P/b)

〈xor(C,P0,P1),
(P0/z)〉 7→
(C/b,P0/z,P1/b)

〈par(Msg,X,P),
X/b〉 7→
(X/b,P/b)

〈xor(C,P0,P1),
(P0/b)〉 7→
(C/b,P0/b,P1/b)

〈main(Msg,P),
>〉 7→
(P/b)

〈xor(C,P0,P1),
(P0/z)〉 7→
(C/b,P0/z,P1/b)

〈xor(C,P0,P1),
(P0/b)〉 7→
(C/b,P0/b,P1/b)

1, 1

2, 1

2, 2

2, 1

2, 2

Fig. 12: A monolithic (left) and a modular (right) analysis result of the program in Fig. 11.

Example 4.2 (Modular analysis result). Fig. 12 shows a comparison between a
monolithic and a modular analysis result for the program in Fig. 11. The nodes
of this (global) analysis graph encode that calling the exported predicate main/1
of module main may cause a call to xor/3 exported by module bitops with two
different call descriptions (two edges).

We now formalize the notion of correct modular analysis. To distinguish between
the queries defined by the user and the intermediate queries done internally by the
modular analysis algorithm, the latter are called entries and referred to with E.

Definition 4.3 (Intermodular calls). Given a modular program P , a set of concrete
queries Q, and E a set of calls to predicates exported by any module in P. The set,
int-calls(E, JP KQ), of intermodular calls from any e ∈ E is the set of c to which there
is a path e cn in any tree of JP KQ with e = c0 of the form (c0 → c1 → . . .→ cn)

for all 0 ≤ i < n, mod(ci) = mod(c0) ∧mod(cn) ∈ imports(mod(c0)).

Note that we are not interested in which clause and literal generates the call. We
abuse notation and use int-calls to refer to the intermodular calls in analysis graphs.

Definition 4.4 (Correctly approximated intermodular calls). Let P be a program
and Q a set of concrete queries, G an analysis graph, and E a set of entries, and let I

4.2 the intermodular fixpoint algorithm 83

be the transitive closure of int-calls(Q, JP KQ). We say that G correctly approximates
the intermodular calls of JP KQ if it abstracts all the calls in I. That is:

∀〈A, θc〉 ∈ I.∃〈A,λc〉 ∈ G ∧ θc ∈ γ(λc).

That is, G contains all the calls of the exported predicates that were originated from
a different module in which they are defined, and that are reachable from Q. Note
that this set in the concrete execution may be infinite, e.g., in the case in which an
imported predicate is called inside a loop.

Definition 4.5 (Correctly approximated intermodular dependencies). Given P , Q,
G, E, and I as in Def. 4.4. We say that G correctly approximates the intermodular
dependencies of JP KQ if for every two c1, c2 ∈ I, if ∃c2 ∈ int-calls({c1}, JP KQ), then
there is an edge c1 → c2 in G.

Definition 4.6 (Correct modular analysis). Given a modular program P , and a set
of concrete queries Q, we say a modular analysis graph G is correct for P ,Q if:

a) it approximates the intermodular calls correctly (see Def. 4.4) and
b) it approximates the answers correctly (see Def. 2.3).
c) it approximates the intermodular dependencies correctly (see Def. 4.5).

Note again that this correctness definition does not require changes to the concrete
semantics of the program. The concrete semantics are not modular.

4.2.2 Operation of the algorithm

The algorithm ModAnalyze(P ,Qα) takes as input a (partitioned) program P =

{Mi}, some initial queries Qα to any exported predicate of the program, i.e., any
〈A,λc〉 ∈ Qα,A ∈ exports(mod(A)). If there are mutually-recursive dependencies
between modules, the modules in each clique is grouped and analyzed as a whole
module (after doing the necessary renamings). Each of the modules in the program
is analyzed independently, and possibly several times.

Algorithm 2 shows the pseudocode. For each module, the algorithm keeps a set of
all the calls that need to be (re)analyzed. The queue is initialized with an entry for
each of the abstract queries (line 1). Modular analysis is controlled by this queue
that contains the calls with possibly incomplete answers (added with procedure
add-entries). At each iteration of the loop a module is reanalyzed independently for
its set of annotated entries (E) extracted from the queue (line 3). This is done by
the procedure next-entries which extracts from the queue entries that are reachable
from the initial Qα in G. At every iteration one module is analyzed from scratch.

84 a framework for fixpoint computation in abstract interpretation

Algorithm 2 ModAnalyze: Modular fixpoint algorithm.
ModAnalyze(P = {Mi},Qα)
1: add-entries({k ∈ Qα | k 6∈ G}), upd(G, {k 7→ ⊥ | k ∈ Qα})
2: while entries(G,Qα) 6= ∅ do
3: (M ,E) := next-entries(G,Qα)
4: L := ∅
5: upd(L , {〈A,λc〉 7→ λs ∈ G | ∃e ∈ E ∧ e→ 〈A,λc〉 ∈ G) . PreloadImported
6: L := IncAnalyze(M ,E, ∅, L)
7: for 〈A,λc〉 7→ λsl ∈ L .〈A,λc〉 7→ λsg ∈ G ⇒λsl 6= λsg do
8: λs := Ageneralize(λsl , {λsg})
9: upd(G, 〈A,λc〉 7→ λs) . StoreAnswers

10: add-entries({k | k → 〈A,λc〉 ∈ G})
11: del(G, {e→ k | e ∈ E, e→ k ∈ G})
12: R = int-calls(E, L)
13: for k → 〈B,λct〉 ∈ R do
14: Calls := {λ | 〈B,λ〉 ∈ G}
15: λc := Ageneralize(λct , Calls)
16: upd(G, {k → 〈B,λc〉}) . StoreDependencies
17: if 〈B,λc〉 6∈ G then
18: add-entries(〈B,λc〉}) . ScheduleNewCalls
19: removeUnreachable(G,Qα)
20: return G

This means that, in principle, the analysis of module M with entries E should
be performed by L = IncAnalyze(M ,E, ∅, ∅). However, IncAnalyze assumes
that all code is available for analysis. Since this is not so in this modular case,
IncAnalyze needs to be provided with an abstraction of the predicates imported by
M . To this end, in line 5 (PreloadImported), the nodes and answers of the global
graph G of predicates imported by M are added to L . After a local analysis of the
module (line 6), G is updated, by storing the newly computed answers, provided
that a generalization is made before to ensure termination (lines 8-9). Then the
dependencies of the predicates in the boundary of the modules are updated. For this,
first the old dependencies of the entries are deleted (line 11). The new dependencies,
obtained in line 12, are included in the graph (lines 13-18). First they are generalized
if necessary (lines 14-15), and updated in the graph (line 16). Newly encountered
calls are scheduled for reanalysis (line 18). Finally, removeUnreachable has the same
purpose as in Algorithm 1.

4.2 the intermodular fixpoint algorithm 85

4.2.3 Correctness of ModAnalyze

As mentioned earlier, IncAnalyze assumes that either the procedures executed by a
program are defined in the clauses provided to the analyzer, or they are basic, built-in
operations of the language, i.e., they are interpreted applying their corresponding
transfer function. This is not the case when analyzing programs module by module,
and assumptions need to be made about the imported code. The following lemma
states that the analysis graph inferred by IncAnalyze is correct assuming the
answers of L0 if it only contains abstractions of the imported predicates. In other
words, if L0 correctly over-approximates the behavior of the imported predicates,
then the analysis of the module is correct.

Lemma 4.13 (Correctness of IncAnalyze modulo imported predicates). Let M
be a module of program P , E a set of abstract queries. Let L0 be an analysis graph
such that ∀〈A,λc〉 ∈ L0.mod(A) ∈ imports(M). The analysis result

L = IncAnalyze(M ,E, ∅, L0)

is correct (see Def. 2.5) for M and γ(E) assuming L0.

Proof. The argument is similar to that of Lemma 4.10. Since, L0 contains only
information about the imported predicates, L is correct for M and γ(E), assuming
that the original information in L0 is correct.

Theorem 4.14 (Correctness of ModAnalyze). Let P be a modular program, and
Qα a set of abstract queries. The modular analysis graph:

G = ModAnalyze(P ,Qα)

is correct (Def. 4.6) for P and γ(Qα).

Proof. By induction on the number of modular partitions. If there is only one
partition, the conditions in Def. 4.4 hold trivially because the only intermodular call
patterns are the Qα (added in line 1). Since L is correct by Lemma 4.6 and the
results are updated in line 9 the conditions in Def. 2.3 hold. And no further iteration
is required.

If the program P is partitioned into n modules, we need to prove that if analyzing
n− 1 modules finishes, then analyzing all n modules also finishes. Assuming that
the analysis of the first n− 1 modules finishes and is correct, the result of these
n− 1 modules could be seen as one module, reducing this general case to the case of
2 modules. Hence, without loss of generality, we restrict ourselves to the case of 2
modules. To prove this the following invariant of the algorithm is used:

86 a framework for fixpoint computation in abstract interpretation

Before extracting from the queue via next-entries (line 2), either the results in G
are correct, or the queue is not empty.

This invariant trivially holds immediately after initializing the queue with the
queries in line 1. Then, at each iteration of the while loop, since there are only 2
modules, when one is extracted from the queue, the queue is empty. After analyzing
(line 4), we know L is correct if G was correct. If no answers changed w.r.t. G, no
modules are added and the fixed point was reached. If the results change, every
answer that changed is generalized and updated in G, which results in adding an
entry to it (line 9). Then, since there are only two modules, there can be at most one
module in the queue, since the one being processed is extracted. If after processing
one module the nodes and answers (excluding the answers to Qα) stay the same,
no new events will be added to the queue. In this case, then the analysis is already
correct, by Lemma 4.13, because IncAnalyze was performed assuming already
correct information. Otherwise, if new answers were encountered it means that the
previous information was incomplete, these answers are stored (line 9), and the entries
that depend on these answers are added to the queue, so the invariant holds. If new
call patterns were encountered, then it means that the analysis was not completed
yet. The algorithm, after generalization, schedules them to be reanalyzed (line 18),
and therefore the invariant holds as well.

Intermodular dependencies are correctly approximated because the L is an over-
approximation and we use int-calls(E, L) to compute them.
Lastly, by Lemma 4.1, since removeUnreachable does not remove any inferred

behavior and the result is guaranteed to be correct.

As mentioned earlier, this algorithm was not designed to perform incremental
analysis but rather to reduce the working set of the basic (monolithic) analyzer. In
fact, in [146], the authors neither provide a clear strategy to tackle the problem of
reusing the analysis result after modifying the program nor performed experiments.

4.2.4 Correctness and precision of ModAnalyzeI95

We now show the precision guarantees when analyzing with finite abstract domains,
only if the generalization step is removed (no ∇ is performed). Henceforth we refer
to this algorithm by ModAnalyzeI95, which is ModAnalyze modified by:

• replacing lines 15-14 by “λc := λct”,
• replacing line 8 by “λs := λsl t λsg”, and
• replacing the call to IncAnalyze by a call to IncAnalyze95.

4.3 running example of incanalyze 87

Lemma 4.15 (Correctness and precision of IncAnalyze95 modulo imported
predicates). Let M be a module of program P , E a set of abstract queries. Let L0
be an analysis graph such that ∀〈A,λc〉 ∈ L0.mod(A) ∈ imports(M) correctly and
precisely approximates the behavior of the imported predicates. The analysis result

L = IncAnalyze95(M ,E, ∅, L0)

is the least analysis graph for M and γ(E) assuming L0.

Proof. By hypothesis, since all values reused are the least fixed point, no imprecision
is introduced by L0. Correctness follows from Lemma 4.13.

Theorem 4.16 (Correctness and precision of ModAnalyzeI95). Let P be a modular
program and Qα a set of abstract queries. The modular analysis result

G = ModAnalyzeI95(P ,Qα)

is the least modular analysis graph for P and γ(Qα).

Proof. Since no imprecision is introduced during the modular processing, and all
answers are started assuming ⊥ (line 1), each of the calls to IncAnalyze95 produces
results that are below or exactly the least fixed point. Correctness follows from
Theorem 4.14.

4.3 Running example of IncAnalyze

Example 4.3. (Analysis of Example 2.1, Fig. 5) In this example we show how
events are queued and processed to produce the analysis graph of the program in
Example 2.1 with initial query 〈par(Msg,X,P), (X/z)〉 and the abstract domain of
Figs. 2 and 3, i.e., the graph in Fig. 5. The algorithm starts by adding a newcall
event for the initial query.

88 a framework for fixpoint computation in abstract interpretation

Algorithm processing Pending

Add a newcall event for each initial query q: newcall(q) (E1) E1

Process E1: newcall(〈par(Msg,X,P), (X/z)〉)
Analyze par/31,1:

l.27 λp = Acall(par(Msg,X,P), (X/z), par([], P, P)) = (P/z)

l.28 λc1 = Aproj(λp, vars(true)) = >

l.29 q = 〈par(Msg,X,P), (X/z)〉, add-event(arc(q →1,1 〈true,>〉)) (E2).

Analyze par/32,1:

l.27 λp = Acall(par(Msg,X,P), (X/z), par([C|Cs], P0, P)) = (P0/z)

l.28 λc1 = Aproj(λp, vars(xor(C, P0, P1))) = (P0/z)

l.29 n1 = 〈xor(C,P0,P1), (P0/z)〉, add-event(arc(q →1,1 n1)) (E3).

E2,E3

Process E2: arc(〈par(Msg,X,P), (X/z)〉 →1,1 〈true,>〉)
l.31 λc = >

l.33 λs0 = > (true is a built-in)

l.37 λr = Aextend(true,λp,>) = (P0/z)

l.42 λsk = Aproj(λr, vars(par([], P, P))) = (P0/z) (true is the last literal)

l.43 λs = Aproceed(par([], P, P),λsk, par(Msg,X,P)) = (X/z,P/z)

l.48 upd(A , 〈par(Msg,X,P), (X/z)〉 7→ (X/z,P/z)) (in
insertAnswerInfo, no generalization)

E3

Process E3: arc(〈par(Msg,X,P), (X/z)〉 →1,1 〈xor(C,P0,P1), (P0/z)〉)
l.31 λc = (P0/z)

l.22 add-event(newcall(xor(C,P0,P1)(P0/z))) (E4)

l.35 λs0 = ⊥ (not analyzed)

l.36 n2 = 〈xor(C,P0,P1), (P0/z)〉 upd(A , arc(n1 →2,1 n2)

l.37 λr = Aextend(xor(C,P0,P1),λp,⊥) = ⊥

l.42 λsk = Aproj(λr, vars(par([C|Cs], P0, P))) = ⊥

l.38 Do not analyze par/32,2.

E4

Process E4: newcall(xor(C,P0,P1)(P0/z))
Analyze xor/31,1:

l.27 λp = Acall(xor(C,P0,P1), (P0/z), xor(0, 0, 0)) = (C/z,P0/z,P1/z)

l.28 λc1 = Aproj(λp, vars(true)) = >

l.29 n3 = 〈xor(C,P0,P1), (P0/z)〉, add-event(arc(n3 →1,1 〈true,>〉))
(E5).

Analyze xor/32,1:

l.27 λp = Acall(xor(C,P0,P1), (P0/z), xor(0, 1, 1)) = ⊥ abstract substi-
tution and the head do not unify and the clause is not analyzeda.

Analyze xor/33,1:

l.27 λp = Acall(xor(C,P0,P1), (P0/z), xor(1, 0, 1)) = (C/o,P0/z,P1/o)

l.28 λc1 = Aproj(λp, vars(true)) = >

l.29 add-event(arc(n3 →1,1 〈true,>〉)) (E6).

Analyze xor/34,1:

l.27 λp = Acall(xor(C,P0,P1), (P0/z), xor(1, 1, 1)) = ⊥ abstract substi-
tution and the head do not unify and the clause is not analyzed.

a This happens because the example that is not normalized. Actually,
analysis of facts is optimized in the implementation.

E5, E6

4.3 running example of incanalyze 89

Process E5: arc(〈xor(C,P0,P1), (P0/z)〉 →1,1 〈true,>〉)
l.31 λc = >

l.33 λs0 = > (true is a built-in)

l.37 λr = Aextend(true,λp,>) = (P0/z)

l.42 λsk = Aproj(λr, vars(xor(0, 0, 0))) = > (no variables, last literal)

l.43 λs = Aproceed(xor(0, 0, 0)),λsk, xor(C,P0,P1)) = (C/z,P0/z,P1/z)

l.48 upd(A , 〈xor(C,P0,P1), (P0/z)〉 7→ (C/z,P0/z,P1/z)) (in
insertAnswerInfo, no generalization)

l.52 add-event(arc(q →2,1 n1)) in reanalyzeUpdated (E6)

E6, E7

Process E6: arc(〈xor(C,P0,P1), (P0/z)〉 →3,1 〈true,>〉)
l.31 λc = >

l.33 λs0 = > (true is a built-in)

l.37 λr = Aextend(true,λp,>) = (P0/z)

l.42 λsk = Aproj(λr, vars(xor(1, 0, 1))) = > (no variables, last literal)

l.43 λs = Aproceed(xor(1, 0, 1)),λsk, xor(C,P0,P1)) = (C/o,P0/z,P1/o)

l.46 λs1 = (C/z,P0/z,P1/z) t (C/o,P0/z,P1/o) = (C/b,P0/z,P1/b)

l.48 upd(A , 〈xor(C,P0,P1), (P0/z)〉 7→ λs1)

l.52 add-event(arc(q →2,1 n1)) in reanalyzeUpdated (already added)

E7

Process E7: arc(〈par(Msg,X,P), (X/z)〉 →1,1 〈xor(C,P0,P1), (P0/z)〉)
l.31 λc = (P0/z))

l.35 λs0 = (C/b,P0/z,P1/b)

l.37 λr = Aextend(xor(C,P0,P1),λp,λs0) = (C/b,P0/z,P1/b)

l.38 Analyze then next literal, par/32,2

l.39 λsk = Aproj(λr, vars(par(Cs, P1, P))) = (P1/b)

l.40 n3 = 〈par(Cs,P1,P), (P1/b)〉, add-event(arc(n1 →2,2 n3)) (E8)

E8

Process E8: arc(〈par(Msg,X,P), (X/z)〉 →1,1 〈par(Cs,P1,P), (P1/b)〉)
l.31 λc = (P0/b))

l.22 add-event(newcall(par(Cs,P1,P)(P1/b))) (E9)

l.35 λs0 = ⊥ (not analyzed)

l.36 n4 = 〈par(Cs,P1,P), (P1/b)〉 upd(A , arc(n2 →2,2 n4))

l.37 λr = Aextend(xor(C,P0,P1),λp,⊥) = ⊥

l.42 λsk = Aproj(λr, vars(par([C|Cs], P0, P))) = ⊥

E9

Process E9: newcall(par(Cs,P1,P)(P1/b)):
Analyze par/31,1:

l.27 λp = Acall(par(Cs,P1,P), (X/b), par([], P, P)) = (P/b)

l.28 λc1 = Aproj(λp, vars(true)) = >

l.29 add-event(arc(n4 →1,1 〈true,>〉)) (E10).

Analyze par/32,1:

l.27 λp = Acall(par(Cs,P1,P), (P1/b), par([C|Cs], P0, P)) = (P0/b)

l.28 λc1 = Aproj(λp, vars(xor(C, P0, P1))) = (P0/b)

l.29 n5 = 〈xor(C,P0,P1), (P0/b)〉, add-event(arc(n4 →1,1 n5)) (E11).

E10, E11

90 a framework for fixpoint computation in abstract interpretation

Process E10: arc(〈par(Cs,P1,P), (P1/b)〉 →1,1 〈true,>〉)
Similar to processing E2, replacing X/z by X/b. E11

Process E11: arc(〈par(Cs,P1,P), (P1/b)〉 →1,1 〈xor(C,P0,P1), (P0/b)〉)
Similar to processing E3, replacing X/z by X/b. In l.22 add-
event(newcall(xor(C,P0,P1)(P0/b))) (E12)

E12

Process E12: newcall(〈xor(C,P0,P1), (P0/b)〉)
xor/31:

l.27 λp = Acall(xor(C,P0,P1), (P0/b), xor(0, 0, 0)) = (C/z,P0/b,P1/z)

l.28 λc1 = Aproj(λp, vars(true)) = >

l.29 add-event(arc(n5 →1,1 〈true,>〉)) (E13).

xor/32:

l.27 λp = Acall(xor(C,P0,P1), (P0/z), xor(0, 1, 1)) = (C/z,P0/b,P1/o)

l.28 λc1 = Aproj(λp, vars(true)) = >

l.29 add-event(arc(n5 →2,1 〈true,>〉)) (E14).

xor/33:

l.27 λp = Acall(xor(C,P0,P1), (P0/z), xor(1, 0, 1)) = (C/o,P0/b,P1/o)

l.28 λc1 = Aproj(λp, vars(true)) = >

l.29 add-event(arc(n5 →3,1 〈true,>〉)) (E15).

xor/34:

l.27 λp = Acall(xor(C,P0,P1), (P0/z), xor(1, 1, 1)) = (C/o,P0/b,P1/o)

l.28 λc1 = Aproj(λp, vars(true)) = >

l.29 add-event(arc(n5 →4,1 〈true,>〉)) (E16).

E13, E14, E15, E16

Process E13, E14, E15, E16:
Similar to E5 In l.52 add-event(arc(n4 →2,2 n5)) in reanalyzeUpdated (E17) E17

Process E17: arc(〈par(Cs,P1,P), (P1/b)〉 →2,2 〈xor(C,P0,P1), (P0/b)〉)
l.31 λc = (P0/b))

l.35 λs0 = (C/b,P0/b,P1/b)

l.37 λr = Aextend(xor(C,P0,P1), (P0/z),λs0) = (C/b,P0/b,P1/b)

l.38 Analyze then next literal, par/32,2

l.39 λsk = Aproj(λr, vars(par(Cs, P1, P))) = (P1/b)

l.40 n3 = 〈par(Cs,P1,P), (P1/b)〉, add-event(arc(n1 →2,2 n3)) (E18)

E18

Process E18: arc(〈par(Cs,P1,P), (X/b)〉 →2,2 〈par(Cs,P1,P), (P1/b)〉)
l.31 λc = (P1/b))

l.35 λs0 = (C/b,P0/b,P1/b)

l.37 λr = Aextend(xor(C,P0,P1), (C/b,P0/b,P1/b),λs0) =
(C/b,P0/b,P1/b,P/b)

l.42 λsk = Aproj(λr, vars(par([C|Cs], P0, P))) = (P0/b,P/b) (last literal)

l.43 λs = Aproceed(par([C|Cs], P0, P),λsk, par(Msg,X,P)) = (X/b,P/b)

l.48 upd(A , 〈par(Cs,P0,P1), (P0/b)〉 7→ (P0/b,P1/b))
(insertAnswerInfo)

l.40 add-event(arc(q →2,2 n1)) (E19) (reanalyzeUpdated)

E19

Process E19: arc(〈par(Msg,X,P), (X/z)〉 →2,2 〈par(Cs,P1,P), (P1/b)〉)
l.31 λc = (P1/b))

l.35 λs0 = (P1/b,P/b)

l.37 λr = Aextend(par(Cs,P1,P), (C/b,P0/z,P1/b),λs0) =
(C/b,P0/z,P1/b,P/b)

l.42 λsk = Aproj(λr, vars(par([C|Cs], P0, P))) = (C/b,P0/z,P/b)

l.43 λs = Aproceed(par([C|Cs], P0, P),λsk, par(Msg,X,P)) = (X/z,P/b)

l.48 upd(A , 〈par(Msg,X,P), (X/z)〉 7→ (X/z,P/b)) (insertAnswerInfo)

fixpoint reached

4.3 running example of incanalyze 91

There are no nodes that are unreachable nodes from the initial query so the graph
remains the same.

This concludes the chapter. A practical evaluation of the algorithms is presented
in Chapter 8. In the following chapters we present extensions and uses of these
algorithms aiming to improve performance and thus scalability of fixpoint algorithms.

5
Incremental and Modular Context-sensitive
Analysis

As mentioned in the thesis introduction, our overall objective is to reduce the
response times and increase the scalability of abstract interpretation-based analysis
and verification of real-life programs, specially for interactive scenarios. Such real-life
programs typically have a complex structure combining a number of modules with
system libraries. At the same time, very often changes in the program are small and
isolated inside a few components. To be able exploit these two aspects simultaneously,
we turn our attention in this chapter to the combination of the two techniques studied
in the previous chapter: incrementality and modularity. We provide a new analysis
algorithm that performs a goal-directed, top-down, multivariant, incremental abstract
interpretation of modular logic programs. This can be seen as the equivalent in analysis
of modular recompilation. However, note that, unlike in compilation, this process
requires iterating and possibly analyzing the same module several times, until an
intermodular fixpoint is found.

5.1 Towards combining incrementality and modularity

As already introduced in the previous chapter, in the field of abstract interpretation,
there have been proposals to deal with the following two cases: a) context-sensitive
fine-grain incremental fixpoint algorithms [147, 96, 86, 4, 8, 169], which reuse in-
formation but still need to work with the program as a whole (incremental but
monolithic analyzers), such as Algorithm 1 ; and b) modular algorithms, aimed at
reducing the memory consumption or working set size [30, 24, 39, 146, 33, 41, 55],
which work on a module at a time but do not support changes in the program, such
as Algorithm 2. These help in scalability of analysis because they allow different
levels of abstraction for each software component, and thus being more efficient at the
expense of precision, e.g., for some components. Surprisingly, the combination of both
techniques has not been explored to date. The monolithic incremental analyzers are

93

94 incremental and modular context-sensitive analysis

not directly applicable in the modular setting due to two issues: first, these analyzers
do not deal with code that is partially available, i.e., they have no provisions to
make assumptions about code that is external. Even though one could see builtin
operations of the language as external calls, as they are obviously not defined in the
module, the semantics of these are typically “hardwired” in the analyzer as transfer
functions. This leads to the second issue: even though the monolithic analyzers can
make assumptions using this mechanism, these algorithms are not prepared to deal
in a correct and precise way with updates to these assumptions.

In order to bridge this gap, using the monolithic incremental analysis algorithm as
a a starting point, we develop a modular, incremental analyzer capable of performing
fine grain incremental analysis across modular program partitions. Our algorithm
is based on (re)computing local fixpoints on one module at a time; identifying,
invalidating, and recomputing only those parts of the analysis results that are
affected by these fine-grain program changes; and propagating the fine-grained
analysis information across module boundaries.

5.2 Analysis graphs for modular and incremental analysis

We propose to keep, in addition to G, a local analysis graph per modular partition
M , referred to with LM . This helps us processing partitions of programs modularly
but, at the same time, being able to update localized information. The analysis result
then consists on a set of graphs {G, {Li}}. An example of an analysis result of this
shape is depicted in Fig. 13. The information of the local analysis graphs is drawn
in black. The left box corresponds to the main module, Lmain, and the box on the
left to the bitops module, Lbitops. The nodes in blue show the information in the
global analysis graph G, which coincides with Fig. 12.

5.3 Operation of the algorithm

The algorithm ModIncAnalyze(P = {Mi},Qα,G, {Li}, ∆) takes as input a (par-
titioned) program P = {Mi}, some abstract queries Qα, a previous correct analysis
result {G, {Li}}, and a set of program edits in the form of additions and deletions
(∆Mi), which collect the differences w.r.t. the previous state for each module. The
pseudocode of the algorithm is detailed in Algorithm 3. Before starting the analysis
process, the entries of edited modules and new queries are marked to be (re)analyzed.
Each of the scheduled modules will be analyzed independently, and possibly several
times. Modular analysis is, again, controlled by a queue to which entries with possibly
incomplete answer substitutions are added (with the procedure add-entries). At each

5.3 operation of the algorithm 95

G: global analysis graph

〈main(Msg,P),
>〉 7→
(P/b)

〈par(Msg,X,P),
(X/z)〉 7→
(X/z,P/b)

〈xor(C,P0,P1),
(P0/z)〉 7→
(C/b,P0/z,P1/b)

〈par(Msg,X,P),
X/b〉 7→
(X/b,P/b)

〈xor(C,P0,P1),
(P0/b)〉 7→
(C/b,P0/b,P1/b)

1, 1

2, 1

2, 2

2, 1

2, 2

Lbitops

Lmain

Fig. 13: Analysis result for the program in Fig. 11, keeping a local analysis graph per module.

iteration of the loop a module is reanalyzed independently for its set of annotated
entries (E) extracted from the queue. This is done by procedure next-entries which
extracts from the queue entries that are reachable from the initial Qα in G. Incre-
mentally analyzing a module consists of updating the information about the calls
to imported predicates in LM , by removing possibly inaccurate results and adding
the newly computed ones, and calling IncAnalyze. Finally, G is updated, which
includes updating the newly computed answers, updating the dependencies of the
predicates in the boundary of the modules, and adding to the queue to reanalyze the
dependent predicates and call patterns. The description of each set of operations is:

AnalyzeOutdated Adds to the analysis queue the entries of modules that changed,
i.e, those whose diff (∆) is not empty.

AnalyzeNew Adds to the queue the entries that have not been analyzed yet.

Imported Collects the current approximations made about the predicates imported
by the module to be analyzed.

IncorrectImported Collects in Ic the nodes of the LM that are incorrect (below
the fixpoint), i.e., the ones whose approximation in the LM was smaller than
in the G to reanalyze them later.

96 incremental and modular context-sensitive analysis

Algorithm 3 ModIncAnalyze: Incremental and modular fixpoint algorithm.
ModIncAnalyze(P = {Mi},Qα,G, {Li}, ∆)
1: add-entries({k = 〈A,λc〉 | k ∈ G, ∆mod(A) 6= ∅}) . AnalyzeOutdated
2: add-entries({k ∈ Qα | k 6∈ G}), upd(G, {k 7→ ⊥ | k ∈ Qα}) . AnalyzeNew
3: while entries(G,Qα) 6= ∅ do
4: (M ,E) := next-entries(G,Qα)
5: I := {〈A,λc〉 7→ λs ∈ LM | mod(A) ∈ imports(M)} . Imported
6: Ip := {k | k 7→ λs ∈ I,n 7→ λs′ ∈ G,λs 6v λs′} . ImpreciseImported
7: Ic := {k′ | k′ k ∈ LM , n 7→ λs ∈ I,n 7→ λs′ ∈ G,λs′ < λs})
8: . IncorrectImported
9: del(LM , {k | kc ∈ Ip, k kc ∈ LM or (na kc ∈ LM ∧ ka k ∈ LM)})

10: . DelImprecise
11: upd(LM , {〈A,λc〉 7→ λs ∈ G | mod(A) ∈ imports(M)}) . PreloadImported
12: LM := IncAnalyze(M ,E ∪ Ic, ∆M , L), ∆M ← ∅
13: for 〈A,λc〉 7→ λsl ∈ LM .〈A,λc〉 7→ λsg ∈ G ⇒λsl 6= λsg, mod(A) 6=M do
14: λs := Ageneralize(λsl , {λsg})
15: upd(G, 〈A,λc〉 7→ λs) . StoreAnswers
16: add-entries({k | k → 〈A,λc〉 ∈ G})
17: del(G, {〈A,λc〉 → k′ ∈ G}) . UpdateDependencies
18: R = int-calls(E,G)
19: for k → 〈B,λct〉 ∈ R do
20: Calls := {λ | 〈A,λ〉 ∈ G}
21: λc := Ageneralize(λst , Calls)
22: if 〈B,λc〉 6∈ G then . ScheduleNewCalls
23: add-entries(〈B,λc〉})
24: upd(G, {k → 〈B,λc〉})
25: removeUnreachable(G,Qα)
26: return G, {Li}

ImpreciseImported Collects in Ip all the imported nodes that are potentially
imprecise, i.e., those in which in the abstraction LM that are bigger than the
current stored in G.

DelImprecise Deletes from LM the nodes that relied on assumptions that depend
on Ip, because they are potentially imprecise.

PreloadImported Preloads the inferred behaviors of the imported predicates in LM

to avoid unnecessary module swaps. the unused ones are removed immediately
after analyzing.

Analyze The IncAnalyze function is called with entries for: the calls scheduled by
the modular analyzer (E), the nodes that depended on imported information

5.3 operation of the algorithm 97

that may be below the fixpoint (Ic). Note that no entries will be added for the
nodes that were imprecise as its information will be removed up to the entries
that they were triggered by, which guarantees that the analysis will be correct
and precise for those entries.

StoreAnswers Updates the answer substitutions of the global analysis graph,
after generalizing them, and adding the dependent call substitutions to be
reanalyzed. This process is the same as in the original modular analysis shown
in Algorithm 2.

UpdateDependencies Updates the dependencies of exported-imported predicates
by traversing the local analysis graph to find which exported predicate called
imported predicates and with which call substitutions.

ScheduleNewCalls Adds to the analysis queue any newly encountered call substi-
tutions, before generalizing them if needed. This process is the same as in the
original modular analysis shown in Algorithm 2.

5.3.1 Enhancing the deletion strategy

The proposed deletion strategy is quite pessimistic. Updating imprecise information
about imported predicates most of the times means reusing only a few answers that
did not depend on the changes per module. However, it may occur that the analysis
does not change after these changes occur, or that some nodes/edges are still correct
and precise. A solution is to partially reanalyze the program without removing these
potentially useful results. Our proposed algorithm allows performing such a partial
reanalysis, by partitioning the desired module into smaller partitions, for example,
using information on strongly connected components. This can be achieved within
the algorithm by replacing line 9 (DelImprecise) with Algorithm 4. This runs
the algorithm with a partition of the current module as input program, which is
split using the (static) SCCs of the clauses (split-sources-scc). This includes also
partitioning the results (split-in-scc) to initialize G using LM , and setting as Qα the
initial E of this modular analysis. The reanalysis of this partitioned module will be
given in a modular form, so it has to be flattened back for it to be compatible with
the rest of the analysis results. This process consists in merging all the graphs in
which the analysis was performed into one graph that contains all the nodes and
edges except the edges in G ′′.

98 incremental and modular context-sensitive analysis

Algorithm 4 Enhanced modular deletion strategy for ModIncAnalyze.
DelImprecise
1: Calls = {k | k 7→ λs ∈ LM , k ∈ Ip}
2: {M ′i}, IM ′i = split-sources-scc(M , Ip)
3: {G ′, {L ′

i }} = split-in-scc(LM)

4: {G ′′{L ′
i }} := ModIncAnalyze({M ′i}, IM ′i , {G

′, {L ′
i }}, ∅)

5: LM := flatten({G ′′{L ′
i }})

6: ∆M ← ∅

M : (unchanged) main module�
1 :- module (main , [main /1]).
2
3 :- use_module (bitops).
4 main(Msg, P) :-
5 par(Msg, 0, P).
6
7 par([], P, P).
8 par([C|Cs], P0, P) :-
9 xor(C, P0, P1),

10 par(Cs, P1, P).� �
B0: initial state of bitops�

1 :- module (bitops , [xor /3]).
2 xor (0 ,0 ,0).� �

B1: clauses added to bitops�
1 :- module (bitops , [xor /3]).
2 xor (0 ,0 ,0). % also in B0
3 xor (0 ,1 ,1).
4 xor (1 ,0 ,1).
5 xor (1 ,1 ,0).� �
B2: a clause is deleted from
bitops�

1 :- module (bitops , [xor /3]).
2 xor (0 ,0 ,0).
3 xor (0 ,1 ,1).
4 xor (1 ,0 ,1).
5 % xor (1 ,1 ,0). %%% commented� �

Fig. 14: Different program states.

5.3.2 Precision using IncAnalyze95

If generalization is removed from the algorithm by:

• replacing lines 21-20 by “λc := λct”,
• replacing line 14 by “λs := λsl t λsg”, and
• replacing the call to IncAnalyze by a call to IncAnalyze95.

We obtain, again, an algorithm, henceforth called ModIncAnalyzeI95 that is
precise for finite abstract domains.

5.3.3 Running examples of the algorithm

To show the algorithm in action we now analyze incrementally different versions of
the program that computes the parity (some of which are incomplete). The different

5.3 operation of the algorithm 99

states of the sources are shown in Fig. 14. Initially we have the analysis result of
P0 = {M ,B0}, see A0 in Fig. 15. This was the result of running the algorithm
from scratch A0 = ModIncAnalyze(P0,Qα, ∅, (∅, ∅)), with initial query Qα =

{〈main(M ,P), (>)〉}. In this version it was inferred that if main(M, P) succeeded
then P is 0 (γ(z)).

Example 5.1 (Adding clauses). If some clauses are added to bitops resulting
in B1, the program to be (re)analyzed becomes P1 = {M ,B1}. Incremental anal-
ysis by running ModIncAnalyze(P ,Qα, A0, ({xor2, xor3, xor4}, ∅)) proceeds as
follows. The entries of bitops are added to the queue and it is analyzed with
E = {〈xor(C,P0,P1),P0/z〉} and the analysis result changes to (C/b,P0/z,P1/b)
(shown in A ′0). This change needs to be propagated to module main, which is
analyzed next in the queue. Following the steps of the algorithm:

AnalyzeOutdated The entries to the module main are added.

AnalyzeNew No entries are added because there are no new queries.

Imported I = {〈xor(C,P0,P1),P0/z〉}

IncorrectImported Ic = {〈xor(C,P0,P1),P0/z〉}

ImpreciseImported Ip = ∅ since the only imported node was below the fixed
point.

Analyze The analyzer is called with E = {〈main(M,P),>〉} and Ic as described.

StoreAnswers 〈main(M, P),>〉 7→ (P/z) is updated in G, no (parent) entries need
to be added to the queue because it is the initial query.

UpdateDependencies All the edges of G from nodes of main to bitops are re-
moved. R = {〈main(M,P),>〉 → 〈xor(C,P0,P1), (P0/z)〉,
〈main(M,P),>〉 → 〈xor(C,P0,P1), (P0/b)〉}

ScheduleNewCalls A newly encountered call substitution is added in add-entries,
〈xor(C,P0,P1), (P0/b)〉, and all the edges in R are added to G.

Next, module bitops needs to be analyzed again, only for the pending call substitu-
tion 〈xor(C,P0,P1), (P0/b)〉, the new answer (C/b,P0/b,P1/b) will be updated in
G, adding again an entry for predicate main. The next iteration of the analysis loop,
the answer will be updated but it will not imply any changes in the analysis result
of the module, therefore the algorithm reached a fixed point (A1 in Fig. 15).

100 incremental and modular context-sensitive analysis

A0 (P = {M ,B0})

〈main(Msg,P),
>〉 7→
(P/b)

〈par(Msg,X,P),
(X/z)〉 7→
(X/z,P/b)

〈xor(C,P0,P1),
(P0/z)〉 7→
(C/b,P0/z,P1/b)

1, 1

2, 1

2, 2

Lbitops

Lmain

A ′0 = A0 + inc. analyzed bitops (B1)

〈main(Msg,P),
>〉 7→
(P/b)

〈par(Msg,X,P),
(X/z)〉 7→
(X/z,P/b)

〈xor(C,P0,P1),
(P0/z)〉 7→

((((
((((hhhhhhhh(C/b,P0/z,P1/b)

(C/b,P0/z,P1/b)

1, 1

2, 1

2, 2

Lbitops

Lmain

A ′′0 = A′0 + inc. analyzed main (M)

〈main(Msg,P),
>〉 7→
(��HHP/z P/b)

〈par(Msg,X,P),
(X/z)〉 7→
(X/z,��HHP/z P/b)

〈xor(C,P0,P1),
(P0/z)〉 7→
(C/b,P0/z,P1/b)

〈par(Msg,X,P),
X/b〉 7→
(X/b,P/b)

〈xor(C,P0,P1),
(P0/b)〉 7→
⊥

1, 1

2, 1

2, 2

2, 1

2, 2

Lbitops

Lmain

A1 (P = {M ,B1})

〈main(Msg,P),
>〉 7→
(��HHP/z P/b)

〈par(Msg,X,P),
(X/z)〉 7→
(X/z,��HHP/z P/b)

〈xor(C,P0,P1),
(P0/z)〉 7→
(C/b,P0/z,P1/b)

〈par(Msg,X,P),
X/b〉 7→
(X/b,P/b)

〈xor(C,P0,P1),
(P0/b)〉 7→
�Z⊥(C/b,P0/b,P1/b)

1, 1

2, 1

2, 2

2, 1

2, 2

Lbitops

Lmain

Fig. 15: Analysis results in several reanalysis steps.

5.4 fundamental results of the algorithm 101

Example 5.2 (Deleting clauses). The bitops module is edited from B1 to B2, and
the program to be analyzed is P2 = {M ,B2}. Incremental analysis by ModInc-
Analyze(P2,Qα, A1, (∅, {xor4})) proceeds as follows. Module bitops was changed,
so it is analyzed with E = {〈xor(C,P0,P1), (P0/z)〉, 〈xor(C,P0,P1), (P0/b)〉}. The
answers are recomputed from scratch, however, the overall result of the module does
not change, so nothing needs to be done in G, and it is not necessary to recompute
the analysis graph of module main, and A2 = A1.

5.4 Fundamental results of the algorithm

In this section we provide the correctness and precision guarantees of the proposed
algorithm. We use the same notation as in Sec. 4.1.3. The incremental analysis of a
module within the algorithm (in the body of the while loop in the pseudocode lines 5
to 12) is denoted with the function:

LM ′ = LocIncAnalyze(M ′,E,G, LM , ∆M),

where M ′ is a module, LM is the analysis result of M for E, ∆M are the differences
between M ′ and M , LM ′ is the analysis result of M ′, and G contains the (possibly
temporary) information for the predicates imported by M ′.
Lastly, we represent performing an iteration of the while loop (lines 5 to 24) as

the high-level operation of updating the newly computed information in G:

MA(M ′,E,G, LM , ∆M) = upd(G, LocIncAnalyze(M ′,E,G, LM , ∆M))

Note that, after a number of (chaotic) iterations, MA is monotonic, and ultimately
stationary due to the use of the widening operator.
Let MAI 95 and LocIncAnalyzeI95 the counterparts of the functions MA and

LocIncAnalyze when referred to in ModIncAnalyzeI95 (Sec. 5.3.2).

5.4.1 Correctness of ModIncAnalyze

The following lemma shows that if a module M is analyzed for entries E assuming
some G obtaining LM , if the assumptions change to G ′, incrementally updating these
assumptions produces an analysis graph L ′

M that is correct assuming G ′.
Lemma 5.1 (Correctness updating L modulo G). Let M be a module of program
P and E a set of entries. Let G be a previous state of the global analysis graph, if
LM is correct for M and γ(E) assuming G. If G changes to G ′ the analysis result

L ′
M = LocIncAnalyze(M ,E,G ′, LM , ∅)

is correct (see Def. 2.5) for M and γ(E) assuming G.

102 incremental and modular context-sensitive analysis

Proof. To prove this we need to show that all the answers that differ from G to G ′ for
the calls to predicates imported byM are included in E. Since these are the requisites
in Theorem 4.11 to guarantee that the result is correct. The ImpreciseImported
are collected and removed, therefore it is guaranteed that all the entries in E that
depended on these will be correct (the analysis is empty). When collecting the
IncorrectImported only those nodes are added to the entries. However, because
LM was assumed to be correct, it is guaranteed that adding these entries is enough,
because LM correctly over-approximates the parts of JP KQ that were already in LM

and the ones that are missing are guaranteed to be correct by Lemma 4.10.

The following Prop. 5.2 captures the correctness of the algorithm when starting
from an empty analysis result, i.e., starting with an empty G and LMi . Note that
this is not the same as running the traditional modular analysis, as information is
reused when iterating between modules, whereas in ModAnalyze every iteration
the L ’s are clean.

Proposition 5.2 (Correctness of ModIncAnalyze from scratch). Let P be a
modular program, and Qα a set of abstract queries. Then, if:

{G, {LMi}} = ModIncAnalyze(P ,Qα, ∅, ∅)

G is correct (see Def. 4.6) for P and γ(Qα).

Proof. Correctness follows using the same argument as in Theorem 4.14, with the
difference that instead of applying Lemma 4.13 to IncAnalyze, we apply Lemma 5.1
to LocIncAnalyze.

Theorem 5.3 (Correctness of ModIncAnalyze). Let P ,P ′ be modular
programs that differ by ∆, Qα a set of abstract queries, and A =

ModIncAnalyze(P ,Qα, ∅, (∅, ∅)), then if:

{G ′, {L ′
Mi
}} = ModIncAnalyze(P ′,Qα, A , ∆)

G ′ is correct (see Def. 4.6) for P and γ(Qα).

Proof. We proceed by induction on the number of modular partitions. By assump-
tion, the partitions of program P in n modules have no recursive dependencies on
predicates between modules. This condition ensures that if removing some clause
in LM is needed all the dependent information for recomputing is indeed removed
(nothing imprecise is reused from some other LM ′).

5.4 fundamental results of the algorithm 103

• If program P has one module it is the case of the monolithic algorithm, and
correctness follows from Theorem 4.9.

• As in the proof of Theorem 4.14, if program P is partitioned into n modules,
we need to prove that if we finish analyzing n− 1 modules, then we finish
analyzing all n modules. Assuming that the analysis of the first n− 1 modules
finishes and it is correct, this n− 1 result could be seen as one module, reducing
this general case to the case of 2 modules.

• If the program P = {Ma,Mb} is partitioned into 2 modules let us further
assume that Ma imports Mb. Let us assume that we reanalyze Mb first. We
study the reanalysis cases of G ′ = MA(Mb,E,G, LMb

, ∆Mb):
1. If G ′ = G the procedure is equivalent to the program P having one module.
2. If G < G ′, then analysis results need to be propagated to A. Once the

results of A are updated, the analysis iterations of A and B will be
equivalent as when analyzing from scratch, only new call patterns may
appear.

3. If G ′ < G these analysis results need to be propagated to the analysis of
A, which will be reanalyzed. Once A and B have updated their incompa-
rable information the further (re)analyses can only become smaller, but
since MA is monotonic, and there are no recursive dependencies between
modules, the imprecise information is eventually removed, a fixpoint is
reached, which is correct for P , since the computation of each of the
modules is correct.

4. Else, the information is incomparable. This can only happen if there were
additions and deletions. This information needs to be propagated to Ma

and the reanalysis of Ma will only lead to cases 1, 2, or 3.

Note that the correctness of the proposed enhanced deletion strategy follows from
Theorem 5.3.

5.4.2 Correctness and precision of ModIncAnalyzeI95

We now show the precision guarantees of the algorithm when analyzing with finite
abstract domains with ModIncAnalyzeI95. First note that for the MA function,
since the lfp is monotonic w.r.t. the initial assumptions and upd is monotonic, if
generalization is disabled then G will be the least program analysis graph, as the lfp
of each of the individual modules was computed.

104 incremental and modular context-sensitive analysis

The following lemma shows that if a module M is analyzed for E assuming some
G obtaining LM , then if the assumptions change to G ′, incrementally updating these
assumptions will produce an analysis graph L ′

M that is the same as analyzing M
with assumptions G from scratch. That is, the least analysis graph for module M .

Lemma 5.4 (Correctness and precision updating L modulo G). Let M be a module
contained in program P , E a set of entries. Let G be a previous state of the global
analysis graph, if LM = LocIncAnalyzeI95(M ,E,G, ∅, ∅). If G changes to G ′ the
analysis result:

LocIncAnalyzeI95(M ,E,G ′, LM , ∅) = LocIncAnalyzeI95(M ,E,G ′, ∅, ∅)

is the same as analyzing from scratch, i.e., the least correct analysis graph of M , E.

Proof. The proof of this lemma follows from the proof of Lemma 5.1 and the guarantee
that LM is the least analysis graph when using IncAnalyze (Theorem 4.12).

Proposition 5.5 (Correctness and precision of ModIncAnalyzeI95 from scratch).
Let P be a modular program and Qα a set of abstract queries. The analysis result

A = ModIncAnalyzeI95(P ,Qα, ∅, ∅) = ModAnalyzeI95(P ,Qα)

such that A = {G, {LMi}}, then G = G ′.

Proof. Since the lfp is monotonic w.r.t. the initial assumptions and upd is monotonic,
MA is monotonic. Therefore, chaotic iteration of MA with the different modules of a
program will reach a fixpoint which is the least analysis graph, because the separated
lfp of each of the modules is computed. Chaotic iteration is guaranteed in the same
way as correctness in Prop. 5.2. Termination is guaranteed because MA is monotonic
and Dα is finite.

If P is changed to P ′ by edits ∆ and it is reanalyzed incrementally, the algorithm
will return a G that encodes the same global analysis result as if P ′ is analyzed from
scratch, i.e., the least program analysis graph.

Theorem 5.6 (Correctness and precision of ModIncAnalyzeI95). Let P and
P ′ be modular programs that differ by ∆, Qα a set of abstract queries, and A =

ModIncAnalyzeI95(P ,Qα, ∅, (∅, ∅)), then

ModIncAnalyzeI95(P ′,Qα, ∅, (∅, ∅)) = ModIncAnalyzeI95(P ′,Qα, A , ∆).

Proof. This is proved by following the same strategy as in Theorem 5.3, replacing
the termination condition that relied on the widening operator with the guarantees
that the abstract domain is finite and that MA is monotonic, and the guarantee of
Lemma 5.4 that no imprecision is introduced analyzing each individual module.

5.5 analyzers amenable to incrementalizing 105

5.5 Analyzers amenable to incrementalizing

Even though we proposed a modular algorithm that reuses [86], the monolithic
analyzer presented so far (represented by IncAnalyze) can be replaced by another
one that meets the following conditions:

1. Conditions on the analysis result representation. There is a relation
between program points and analysis results. This is vital to be able to partially
reuse or discard information. This condition is met by the proposed analysis
graph, as analysis results are related with program point via predicate names.
Namely, we can assign any node of the analysis graph to the predicate and
literals to which it corresponds.

2. Conditions on the analysis output. There is a partial order defined over
the results of the analysis. This is necessary to detect convergence, and which
parts need to be recomputed.

3. Conditions on the analysis input. The analyzer has as optional input initial
guesses (A0) of the results. This serves two purposes, first, since our algorithm
analyzes modules independently, this is a means for providing results for code
that is external to the module (not analyzable at that point). And, second, to
provide the analyzer with already computed results, thus avoiding unnecessary
recomputation.

5.6 Related work

Modular analysis [39] is based on splitting large programs into smaller parts (e.g.,
based on the source code structure). Exploiting modularity has proved essential in
industrial-scale analyzers [41, 55]. Despite the fact that separate analysis provides
only coarse-grained incrementality, there have been surprisingly few results studying
its combination with fine-grained incremental analysis.

Classical data-flow analysis. Since the first algorithm for incremental analysis was
proposed in [156], there has been considerable research and proposals in this topic
(see the bibliography of [150]). Depending on how data flow equations are solved,
these algorithms can be separated into those based on variable elimination, which
include [26], [28], and [158]; and those based on iteration methods which include [32]
and [142]. A hybrid approach is described in [119]. Our algorithms are most closely
related to those using iteration. Early incremental approaches such as [32] were
based on restarting iteration. That is, the fixpoint of the new program’s data flow

106 incremental and modular context-sensitive analysis

equations is found by starting iteration from the fixpoint of the old program’s data
flow equations. This is always safe, but may lead to unnecessary imprecision if the old
fixpoint is not below the lfp of the new equations [159]. Reinitialization approaches
such as [142] improve the accuracy of this technique by reinitializing nodes in the
data flow graph to bottom if they are potentially affected by the program change.
Thus, they are as precise as if the new equations had been analyzed from scratch.
These algorithms are generally not based on abstract interpretation. Reviser [8]
extends the more generic IFDS [152] framework to support incremental program
changes. However IFDS is limited to distributive flow functions (related to condensing
domains) while our approach does not impose any restriction on the domains.

Constraint Logic Programs. Apart from the work that we extend [86, 147], incre-
mental analysis was proposed (just for incremental addition) in the Vienna abstract
machine model [102, 103]. It was studied also in compositional analysis of modules
in (constraint) logic programs [30, 17], but it did not consider incremental analysis
at the level of clauses.

Datalog and tabled logic programming. In a related line to the previous one, other
approaches are based on datalog and tabled logic programming. FLIX [117] uses
a bottom-up semi-naive strategy to solve Datalog programs extended with lattices
and monotone transfer functions. This approach is similar to CLP analysis via
bottom-up abstract interpretation. However it has not been extended to support
incremental updates. Incremental tabling [167] offers a straightforward method to
design incremental analyses [54], when they can be expressed as tabled logic programs.
While these methods are much closer to our incremental algorithm, they may suffer
similar problems to generic incremental computation, as they may be difficult to
control.

Generic incremental computation frameworks. Obviously, the possibility exists of
using a general incrementalized execution algorithm. Incremental algorithms compute
an updated output from a previous output and a difference on the input data,
with the hope that the process is (computationally) cheaper than computing from
scratch a new output for the new input. The approach of [169] takes advantage of
an underlying incremental evaluator, IncQuery, and implements modules via the
monolithic approach. There exist other frameworks for incremental computation [111,
177, 110, 2, 109], which greatly simplify writing incremental algorithms, but in return
it is difficult to control the costs of the additional data structures.

This concludes the chapter. An experimental evaluation of this algorithm, and also
the algorithms in Chapter 4, is presented in Chapter 8.

6
Assertion-guided Analysis

After developing a combined incremental and modular analysis, in order to address
scalability and response-time concerns, we now turn our attention to the issue of
precision. Approximations during program analysis are a necessary evil, as they
ensure essential properties, such as soundness, termination, and performance, but they
also imply not always producing useful results. If approximations are not carefully
designed, the information reported by the analyzer may not be accurate enough for the
intended application, such as, performing optimizations or verifying properties. Much
work has been done towards improving both the accuracy and efficiency of analyzers
through the design of automatic analysis techniques that include clever abstract
domains, widening and narrowing techniques [11, 173, 34, 176], and sophisticated
fixpoint algorithms [18, 40, 120, 126, 147, 96, 4, 8, 169]. Despite these advances, the
impossibility results shown in Chapter 3 show that there will be always cases where
it is necessary for the user to provide input to the analyzer to guide the process in
order to regain accuracy, prevent imprecision from propagating, and improve analyzer
performance [23, 50].
In this chapter we focus on techniques that provide a means for the programmer

to be able to optionally annotate program parts in which precision needs to be
recovered. Examples are the entry declarations and trust assertions (see Sec. 2.5.2) of
CiaoPP [23, 144] and the known facts of Astrée [40, 50]. Such user annotations help
dealing with program constructs for which the analysis is not complete or the source is
only partially available. A number of additional analyzer-related roles for assertions,
beyond the usual of providing program specifications, were proposed as part of the
Ciao assertion language design [82, 144]. These included, in addition to guiding the
analysis as mentioned before, serving as a means for expressing the analysis output
in a user-friendly way or for example for communication of analysis results between
modules during modular analysis. Surprisingly, there is little information in the
literature on these assertions beyond a sentence or two in the user manuals or some
examples of use in demo sessions. In particular, no precise descriptions exist on how
these assertions affect the fixpoint computation process and its results.

107

108 assertion-guided analysis

We propose a user-guided multivariant fixpoint algorithm that makes use of
information contained in different kinds of assertions, and provide formal results on
the influence of such assertions on the analysis. We also extend the semantics of
the assertions to control if precision can be relaxed, and also to deal with both the
cases in which the program execution will and will not incorporate run-time tests for
unverified assertions. Note that almost all current abstract interpretation systems
assume in their semantics that the run-time checks will be run. In languages like
C, this is to ensure that the semantics is well defined. Soundness is then that the
analysis is valid at runtime up to the first time the semantics is undefined (whether
there is a runtime check or not), so the analysis can assume that the test is passed.
However, due to efficiency considerations, assertion checking is often turned off in
production code, specially for complex properties [101].

6.1 Run-time semantics of assertions

As stated in Sec. 2.5.2, assertions provide a means for the programmer to be able to
optionally annotate program parts in which precision needs to be recovered. Such
user annotations allow dealing with program constructs for which the analysis is not
complete or the source is only partially available. Most systems make assumptions
during analysis with respect to the run-time semantics of assertions. For example,
Astrée assumes that they are always taken into account, while CiaoPP assumes
conservatively that they may not be (because in general they may in fact be disabled
by the user, e.g., in production code).
In the Ciao system, the run-time behavior intended by the programmer is given

by qualifying the assertion with a status. For trust assertions, their information is
used by the analyzer but they are never checked at run time. For check assertions
(provided that they have not been discharged statically) run-time checks must always
be performed. When an assertion is checked, the execution will not pass beyond
that point if the conditions are not met.1 This means that check assertions can also
be “trusted,” in a similar way to trust assertions, because execution only proceeds
beyond them if they hold. For some interesting usages of assertions we refer the
reader to Sec. 2.5.3.
Recall that the calls and success conditions in the assertions are sets of property

literals. The following definitions (adapted from [145]) are instrumental to correctly
approximate the properties of the assertions. The following shows the set of calls for
which a property formula trivially succeeds.

1 This strict run-time semantics for check assertions is described in [166].

6.2 abstract semantics of assertions. 109

Definition 6.1 (Trivial Success Set of a Property Formula). Given a conjunction L
of property literals and the definitions for each of these properties in P , we define
the trivial success set of L in P as:

TS(L,P) = {θ|vars(L) s.t. ∃θ′ ∈ answers(P , {〈L, θ〉}), θ |= θ′}

where θ|vars(L) above denotes the projection of θ onto the variables of L, and
|= denotes that θ′ is a more general constraint than θ (entailment). Intuitively,
TS(L,P) is the set of constraints θ for which the literal L succeeds without adding
new constraints to θ (i.e., without constraining it further). For example, given the
following program P :�

1 list([]).
2 list([_|T]) :- list(T).� �
and L is list(X), both θ1 = {X = [1, 2]} and θ2 = {X = [1,A]} are in the trivial
success set of L in P , since calling (X = [1, 2], list(X)) returns X = [1, 2] and
calling (X = [1,A], list(X)) returns X = [1,A]. However, θ3 = {X = [1|_]} is
not, since a call to (X = [1|Y], list(X)) would further constrain the term [1|Y],
returning X = [1|Y],Y = [].

6.2 Abstract semantics of assertions.

We recall abstract counterparts for Def. 6.1, as proposed in [145, 140]. These ab-
stractions come useful when the properties expressed in the assertions cannot be
represented exactly in the abstract domain.

Definition 6.2 (Abstract Trivial Success Subset of a Property Formula). Under
the same conditions of Def. 6.1, given an abstract domain Dα, λ−TS(L,P) ∈ Dα is an
abstract trivial success subset of L in P iff γ(λ−TS(L,P)) ⊆ TS(L,P).

Definition 6.3 (Abstract Trivial Success Superset of a Property Formula). Under
the same conditions of Def. 6.2, an abstract substitution λ+TS(L,P) is an abstract
trivial success superset of L in P iff γ(λ+TS(L,P)) ⊇ TS(L,P).

That is, λ−TS(L,P) and λ
+
TS(L,P) are, respectively, safe under- and over-approximations

of TS(L,P). Note that they are always computable by choosing the closest element,
if it exists, or otherwise a close element in the abstract domain. At the limit ⊥ is a
trivial success subset of any property formula and > is a trivial success superset of
any property formula. In the following, when P is a fixed program, given a property
d from an assertion condition (Pre or Post), let λ−d = λ−TS(d,P),λ

+
d = λ+TS(d,P) be the

abstract values for the under- and over-approximations of the property d.

110 assertion-guided analysis

Algorithm 5 GuidedIncAnalyze: monolithic, context-sensitive, incremental fix-
point algorithm using (not changing) assertion conditions.
global flag: speed-up
GuidedIncAnalyze (P ,Qα, ∆, A)

1: for all 〈A,λc〉 ∈ Qα do
2: add-event(newcall(〈A,λc〉))
3: deleteClauses(∆)
4: addClauses(∆)
5: while events() 6= ∅ do
6: E := next-event()
7: process(E)
8: removeUnreachable(A ,Qα)
9: return A

func applyCall(A,λc)
10: if ∃σ.λt = λ+Pre σ∧ calls(H, Pre) ∈ P ∧Hσ =

A then
11: if speed-up then return λt
12: else return λc u λt
13: else return λc

func applySucc(A,λc,λs0)
14: app = {λ | ∃ σ.success(H, Pre, Post) ∈ P ∧

Hσ = A, λ = λ+Post σ ∧ λ
−
Pre σ w λ

c}
15: if app 6= ∅ then
16: λt =

d
app

17: if speed-up then
18: return λt
19: else return λt u λs0
20: else return λs0

proc process(arc(〈A,λc0〉
λp

−−→k,i〈B,λc1〉))

21: Calls := {λ | 〈A,_〉 →k,i 〈B,λ〉 ∈ A }
22: λc := Ageneralize(λc1, Calls)
23: λa := applyCall(B,λc, As)
24: if B is a built-in then
25: λs0 := fα(〈B,λa〉)
26: else
27: λs0 := lookupAnswer(〈B,λa〉)
28: upd(A , 〈A,λc0〉

λp

−−→k,i〈B,λa〉)

29: λr := Aextend(λp,λs0)
30: if λr 6= ⊥ and i 6= nk then
31: λc2 := Aproj(λr, vars(Ak,i+1))

32: add-event(arc(〈H,λc0〉
λr

−−→k,i+1〈B,λc2〉))
33: else if i = nk then
34: λsk := Aproj(λr, vars(Ak))
35: λs := Aproceed(A,λsk,Ak)
36: insertAnswerInfo(〈A,λc0〉,λs)

proc insertAnswerInfo(〈A,λc〉,λs)
37: if 〈A,λc〉 7→ λs0 ∈ A then
38: λs1 := Ageneralize(λa, {λs0})
39: else λs0 := ⊥, λs1 := λs

40: λa := applySucc(A,λc,λs1, As)
41: upd(A , 〈A,λc〉 7→ λa)
42: if λs0 6= λa then
43: reanalyzeUpdated(〈A,λc〉)

6.3 Operation of the algorithm

Algorithm 5 presents GuidedIncAnalyze, an extension of IncAnalyze (Algo-
rithm 1) to apply assertions during analysis. The omitted procedures do not re-
quire any modification, i.e., procedures addClause, deleteClauses, lookupAnswer,
reanalyzeUpdated, and process(newcall(〈A,λc〉)) are as described in Algorithm 1.
The algorithm shows in orange the operations and abstract values that comprise
the extension. Assertions can be used to either refine the analysis results or to try to
speed up convergence of the fixpoint. This is controlled by the boolean global flag
speed-up.

The initialization and processing of events (lines 1-9) also remain as in Algorithm 1.
Call conditions are used in line 23, that is, whenever a call to a literal is prepared to
be abstractly executed. The assertion condition is used after generalization so that

6.3 operation of the algorithm 111

some precision is regained after possibly performing a widening (line 22). The refined
abstract call is later used to either compute the success of a primitive constraint,
if the literal is a built-in, or to look for the answer if it is a predicate call. Last, a
new edge and node are added in the graph for the call, if it did not exist (line 28).
Success conditions are used in line 40, that is, whenever the success to an abstract
call is computed. The refinement is done after generalization so that some precision
is recovered after widening (line 38). The refined success is later included in the
analysis graph and used to update the results of all literals that are calls of the form
being processed (line 41).

Functions applyCall(A,λc, As) and applySucc(A,λc,λs, As) abstract the mean-
ing of the calls and success assertion conditions. The implementations of the operations
of Definitions 6.2 and 6.3 are assumed to be monotonic. Note that if the properties
can be expressed in the abstract domain, no over or under-approximations are needed.

Safely including calls conditions. In applyCall(A,λc, As), if there is a call condition
for A (line 10), an over-approximation is performed. Depending on the speed-up
flag, this is used directly as an over-approximation of the call (line 11) or to refine
the inferred call (line 12). If no conditions are available, the original λc is returned
(line 13).

Safely including success conditions. In applySucc(A,λc,λs, As), given an atom A,
an abstract call λc and its corresponding abstract success λs, all success conditions
whose precondition applies (λc v λ−Pre) are collected in app (line 14). Making an
under-approximation of Pre is necessary to only apply the conditions that can be
ensured by the abstract domain to be in the inferred abstract call, i.e., only if it would
be applied in the concrete executions of the program. An over-approximation of Post
needs to be performed since otherwise success states that actually happen in the
concrete execution of the program may be removed. If no conditions are applicable
(i.e., app is empty), the original success is returned (line 20). Then, if the speed-up
flag is true, this is used directly as an over-approximation of the success (line 18) or
to refine the inferred call (line 19).

Finally, note that the existence of guidance assertions for a predicate does not
save having to analyze the code of the corresponding predicate if it is available,
since otherwise any calls generated within that predicate would be omitted and not
analyzed for, resulting in an incorrect analysis result.

112 assertion-guided analysis

6.4 Fundamental properties of GuidedIncAnalyze

We claim the following properties for analysis of a program P applying assertions as
described in the previous sections. The inferred abstract execution is covered by the
calls and (applicable) success assertion conditions. This is, of course, limited by how
well they can be represented in the abstract domain Dα chosen to analyze with. The
following hold both when the value of the speed-up flag is true and when it is false.

Lemma 6.1 (Applied calls condition). Let P be a program with an asser-
tion condition calls(H, Pre), and Qα a set of abstract queries. Let A =

GuidedIncAnalyze(P ,Qα, ∅, ∅). For any call 〈A,λc〉 ∈ A , if A = Hσ for some
renaming σ then λc v λ+Pre σ.

Proof. Function applyCall obtains in λt the trusted value for the call. It restricts
the encountered call λc or uses it as is, in any case λc v λt = λ+Pre. Hence if this
function is applied whenever inferred call patterns are introduced in the analysis
results, the lemma holds.

Since, by hypothesis, the initial analysis graph is empty, the lemma holds. Let us
reason about how the algorithm changes the results. Call nodes are only inserted in
A at line 28 (adding an edge includes adding the corresponding nodes if not present
already). The procedure adds nodes to the analysis whenever new calls are found,
it is called right after applyCall, and therefore it only inserts call patterns taking
into account calls conditions, and all calls are added taking into account the call
conditions.

Lemma 6.2 (Applied success condition). Let P be a program with an asser-
tion condition success(H, Pre, Post), and Qα a set of abstract queries. Let A =

GuidedIncAnalyze(P ,Qα, ∅, ∅). For any 〈A,λc〉 7→ λs ∈ A , if A = Hσ for some
renaming σ then λc v λ−Pre σ ⇒ λs v λ+Post σ.

Proof. Function applySucc computes the t of all applicable assertion conditions
(checking λc v λ−Pre), if existing. Since the t of all applied conditions is obtained,
λs v

d
λ+Posti v λ

+
Post for any Post. Hence if all results inserted in the analysis result

have been previously processed by applySucc, the lemma holds. Since, by hypothesis,
the initial analysis graph is empty, the lemma holds. In the rest of the algorithm,
answers are only updated in A at line 41.

Correctness in a guided analysis Lemmas 6.1 and 6.2 guarantee that the analysis
indeed uses the information in the assertions to improve the precision. However, to
guarantee analysis correctness, the conditions must correctly describe the behavior
of the program. The following definitions formalize this.

6.4 fundamental properties of guidedincanalyze 113

Definition 6.4 (Correct calls condition). Let P be a program with an assertion
condition C = calls(H, Pre). C is correct for a query Q to P if for any predicate A,
s.t. A = Hσ for some renaming σ:

∀θc ∈ calling_context(A,P ,Q).θc ∈ γ(λ+Pre σ).

Definition 6.5 (Correct success condition). Let P be a program with an assertion
condition C = success(H, Pre, Post). C is correct for P if for any predicate A, s.t.
A = Hσ for some renaming σ:

θc ∈ γ(λ−Pre σ) ∧ θ
s ∈ answers(P , {〈A, θc〉})⇒ θs ∈ γ(λ+Post σ).

If all assertion conditions of a program are correct, then the analysis results correctly
over-approximate all concrete executions.

Theorem 6.3 (Correctness of GuidedIncAnalyze from scratch). Let P be a
program with correct assertion conditions and Qα a set of abstract queries. The
analysis result A = GuidedIncAnalyze(P ,Qα, ∅, ∅) is correct (Def. 2.5) for P
and γ(Qα).

Proof. If there are no assertion conditions, the theorem trivially holds (Lemma 4.6). If
assertion conditions are used to generalize, the theorem also holds because λc = λ+Pre
and λs = λ+Post are by definition (Definitions 6.4 and 6.5, respectively) correct over-
approximations. If then assertion conditions are used to regain precision then all the
conditions of Def. 2.5 are satisfied:

• (correct calls): following the argument of Lemma 6.1, the only point in the
analysis in which possible concrete calls are pruned from the analysis result is
in line 28. Since an over approximation of the concrete property is used, and u
is assumed to correctly over-approximate the concrete operation, by hypothesis
(the call assertion conditions are correct) no actual behaviors are removed from
the analysis result by this process, and correctness follows from Lemma 4.6.

• (correct successes): following the argument of Lemma 6.2, as before, the only
point in the analysis in which possible concrete successes are pruned from the
analysis result is in line 41. The function applySucc conservatively applies the
success assertions whose Pre is representable in the abstract domain, and with
an over-approximation of Post. Again, by hypothesis, (the success assertion
conditions are correct) no actual behaviors are removed from the analysis result
by this process, and correctness follows from Lemma 4.6.

• (correct dependencies) the extensions of Algorithm 5 do not affect how call
dependencies among nodes of the analysis graph are computed, only the

114 assertion-guided analysis

precision of the calls. Therefore correctness follows from Theorem 4.9 (for
Algorithm 1).

In other words, Theorem 6.3 and Lemmas 6.1 and 6.2 ensure that correct assertion
conditions bound imprecision in the result, without affecting correctness. By applying
the assertion conditions no actual concrete states are removed from the abstractions.
These are actually independent from the mechanisms of the algorithm to incrementally
recompute the analysis results.

Theorem 6.4 (Correctness of GuidedIncAnalyze). Let P and P ′ be programs
that differ by clauses ∆, with correct assertion conditions, and Qα a set of abstract
queries. If A0 = GuidedIncAnalyze(P ′,Qα, ∅, ∅), then the analysis result A =

GuidedIncAnalyze(P ,Qα, ∆, A0) is correct for P and γ(Qα) (Def. 2.5).

Proof. Since all operations used during fixpoint computation are assumed to be
monotonic (to guarantee termination), and applying correct assertion conditions
preserves that approximations of concrete executions are safe by Theorem 6.3,
correctness then follows from Theorem 4.9.

Detecting potentially incorrect trusted conditions. Although checking that the con-
ditions of Definitions 6.4 and 6.5 hold is not computable in general, the fixpoint
algorithm can be instrumented with checks at the points where assertion semantics
are incorporated in the results, i.e., when calling applyCall or applySucc. At that
point, let λa be the correct approximation of a condition and λ be an inferred
abstract state. If λu λa = ⊥ the inferred information is incompatible with that in
the condition, therefore it is likely that the assertion is erroneous or that the program
has a bug. If λ 6v λa then the algorithm inferred more concrete execution states than
described in the assertion and the analysis results may also be wrong. In both cases
it is trivial to instrument the algorithm to warn the user when the situations appear.
At the same time, it is possible to perform program analysis without taking into

account assertions (using IncAnalyze), and then check the assertion conditions
offline, by comparing their properties against the results in A . A full description of
this checking procedure is described in [145, 166], and in Chapter 9.

6.5 Related work

The inference of arbitrary semantic properties of programs is known to be both
undecidable and potentially very expensive. Thus, most realistic and industrial imple-
mentations require user interaction. That interaction comes in two forms: parameters

6.5 related work 115

or user annotations. In static verification and theorem proving approaches,
for classical examples such as type checking in statically typed languages, as types
become more expressive and closer to System-F, annotations become mandatory.
In theorem provers such as ACL2 the user is required to complete the proofs by
identifying necessary lemmas. Additionally in Coq and Isabelle/HOL, it is possible
to guide the proof search via tactics (in their own domain-specific language). These
approaches often require advanced knowledge of the type or proof system. Finally,
verifiers that use SMT-based techniques are guided by the assertions to be proven
(e.g., as assert statements in C programs). This means that they take the assump-
tion that run-time checks always run. Abstract interpreters allow the selection
of different domains and parameters for such domains (e.g., polyhedra,
octagons, regtypes with depth-k, etc.), as well as their widening operations (e.g.,
type shortening, structural widening, etc.). Other parameters include policies for
partial evaluation and other transformations (loop unrolling, inlining, slicing, etc.).
These parameters are orthogonal or complementary to the issues discussed here. To
the extent of our knowledge the use of program-level annotations (such as asser-
tions) to guide abstract interpretation has not been widely studied in the literature,
contrary to their (necessary) use in verification and theorem proving approaches. The
Cibai [113] system includes trust-style annotations, while sources are processed to
encode some predefined runtime semantics. In [72] the analysis is guided by modifying
the analyzed program to restrict some of its behaviors. However, this guidance affects
the order of program state exploration, rather the analysis results, as in our case. As
mentioned in the introduction, the closest to our approach is Astrée, that allows
assert-like statements, where correctness of the analysis is ensured by the presence
of compulsory runtime checks, and trusted (known facts) asserts. These refine and
guide analysis operations at program points. Like in CiaoPP, the analyzer shows
errors if a known fact can be falsified statically. However, as with the corresponding
Ciao assertions, while there has been some examples of use [50], there has been no
detailed description of how such assertions are handled in the fixpoint algorithm.

7
Incremental analysis of programs with (changing)
assertions

As mentioned in the thesis introduction, generic components are a further abstraction
over the concept of modules, introducing dependencies on other (not necessarily
available) components implementing specified interfaces. They have become a key
concept in large and complex software applications and in modern coding it is rarely
necessary to write everything from scratch. Interfaces are needed to connect software
components with each other. They typically consist in a set of specifications, which
are used as a place holder for (possibly different) implementations meeting such
requirements.
However, despite its undeniable advantages, generic code is known to be in fact

anti-modular, and its analysis poses several challenges: parts of the code are un-
available, and the interface specifications may not be descriptive enough to allow
verifying the specifications for the whole application. Several approaches are possible
in order to balance separate compilation with precise analysis and optimization.
First, it is possible to analyze generic code by trusting its interface specifications, i.e.,
analyzing the client code and the interface implementations independently, flattening
the analysis information inferred at the boundaries to that of the interface descrip-
tions. This technique can reduce global analysis cost significantly at the expense of
some loss of precision. Some of it may be regained by, e.g., enriching specifications
manually for the application at hand. Alternatively, for a closed set of interface
implementations, it may be desirable to analyze the whole application together with
these implementations, keeping different specialized versions of the analysis across
the interfaces. This allows getting the most precise information, specializations, com-
piler optimizations, etc., but at a higher cost. Instantiating the code with concrete
implementations potentially leads to a prohibitive number of possible combinations
of implementations, as seen when compiling C++ templates [172].
Generic code offers many opportunities for the application of the new analysis

techniques proposed in this thesis. For example: standalone analysis of trait-based

117

118 incremental analysis of programs with (changing) assertions

code without particular implementations by using the (trust) assertions in the
interfaces; refinement of standalone analysis for particular implementations; or reuse
of analysis results when more implementations are made available. Note that fine-
grained incremental analysis seems even more interesting when using generic code,
where the scope of a program change may implicitly be scattered across many
modules, as described in the traits for logic programming proposed in Sec. 2.5.5.

However note that reacting to assertion changes is also useful in more applications
using abstract interpretation. For example, when using it interactively as a theory
for verification; in the setting of frequent changes in the specification, e.g., when
the application of the analysis is inferring energy consumption of a program and the
physical models vary; or when the code depends on some libraries being developed.

7.1 Motivating examples

In the following examples we assume that we analyze with a shape domain in which
the properties in the assertions can be exactly represented. Also, for simplicity, we
only represent the nodes in the graph and not their abstract calls and successes.

Example 7.1 (Reusing a pre-analyzed generic program). Consider a slightly modified
version of the program that checks a password, as shown in Sec. 2.5.5, but only
allows the user to write passwords with lowercase letters. Until we have a concrete
implementation for the hasher it is not possible to analyze precisely this program.
However, we can pre-analyze it by using the information in the assertion in the trait
to obtain the following simplified analysis graph:�
1 :- trait hasher { :- pred dgst(Str, Digest)
2 : lowercase (Str) => int(Digest). }.
3
4 check_passwd (User) :-
5 get_line (Plain),
6 passwd (User,Hasher,Digest,Salt),
7 append (Plain,Salt,Salted),
8 (Hasher as hasher).dgst(Salted,Digest).
9

10 passwd (don ,xor8 ,0x6d ," eNfwuBhtN9CUHxg ==").� �

check_passwd/1 get_line/2

passwd/4

append/3

dgst/2

1,1

1,2

1,3

1,
4

The node for dgst/2 represents the call 〈dgst(S,D), (S/lowercase,D/num)〉 7→
(S/lowercase,D/int). In this case D was inferred to be a number because of the
success of passwd/4. If we add a very naive implementation that consists in counting
the number of times some letters appear in the password, reanalyzing causes the
addition to the graph of some new nodes, which are shown with dashed borders:

7.1 motivating examples 119

�
1 :- impl(hasher , naive /0).
2 (naive as hasher).dgst(Str, Digest) :-
3 naive_count (Xs, 0, Digest).
4
5 naive_count (L, D0 , D) :-
6 count(L,’a’,Na), D1 is D0 + Na*1,
7 count(L,’b’,Nb), D2 is D1 + Nb*2,
8 count(L,’c’,Nc), D3 is D2 + Nc*3,
9 %% implementation continues� �

check_passwd/1 get_line/2

passwd/4

append/3

dgst/2

naive_count/2

count/2

1,1

1,2

1,3

1,
4

1,1

1,
2

1,1

1,
3

We detect that none of the previous nodes need to be recomputed due to tracking
dependencies for each literal. The analysis was performed by going directly to the pro-
gram point of dgst/2 and inspecting the new clause (that was generated automatically
by the translation) that calls naive_count/2. By analyzing naive_count/2 we ob-
tain nodes 〈naive_count(S,D), (S/lowercase,D/num)〉 7→ (S/lowercase,D/int),
and 〈count(L,C,N), (S/lowercase,C/char)〉 7→ (S/lowercase,C/char,N/int).
As no information needs to be propagated, because the head does not contain any
of the variables of the call to digest, we are done, and we avoided reanalyzing any
caller to check_passwd/2, if any existed.

Example 7.2 (Weakening assertion properties). Consider the program and analysis
result of Example 7.1. We realize that allowing the user to write only passwords with
lowercase letters is not very secure. We can change the assertion of the trait to allow
any string as a valid password.�

1 :- trait hasher { :- pred dgst(Str, Digest) : string (Str) => int(Digest). }.� �
When reanalyzing, node 〈dgst(S,D), (S/lowercase,D/num)〉
becomes 〈dgst(S,D), (S/string,D/num)〉, and the same for naive_count/3. A
new call pattern appears for count/3 〈count(L,C,N), (S/string,C/char)〉 7→
(S/string,C/char,N/int), leading to the same result for dgst/2, i.e., we only
had to partially analyze the library, instead of the whole program.

Our objective in this chapter it to modify GuidedIncAnalyze (Algorithm 5) so
that a call to it produces results that are correct and precise after assertion changes, by
inspecting and updating appropriately the analysis graph. We call this new analyzer
GIAwAC, short for GuidedIncAnalyze-w/AssertionChanges (Algorithm 6).
We also reuse applyCall and applySucc from Algorithm 5. Additionally, we extend
the annotations of the edges of the analysis graphs to store, for efficiency, the
substitution upon return of calls in literals, namely λr, and the resulting edge is:
〈A,λ〉 λp

−−→
λr k,n〈B,λc〉. Moreover, λr can always be constructed by obtaining the

answer λs of 〈B,λc〉 via the mapping function in the analysis result and performing
λs
l
= Aproceed(B,λs,Ak,n) and λr = Aextend(Ak,n,λp,λs

l
).

120 incremental analysis of programs with (changing) assertions

Algorithm 6 GIAwAC: Incremental analysis of programs with assertions.
GIAwAC (P = (Cls, As), ∆Cls, ∆As,Qα, A)

1: R := ∅
2: for each predicate A in P do
3: if ∆As[P] 6= ∅ then
4: updCallsPred(A, As, A ,R)
5: updSuccsPred(A, As, A ,R)
6: R := Qα ∪R
7: A := GuidedIncAnalyze(P ,R, ∆Cls, A)
8: removeUnreachable(A ,Qα)
9: return A

func treatChange(〈A,λ〉 λp

−−→
λr k,n〈B,λc〉,λs, A)

10: λr
new

:= Aextend(λp,λs)
11: if λr = λr

new
then return ∅

12: del(A , 〈A,λ〉 →k,n _)
13: upd(A , 〈A,λ〉 λp

−−−→
λr

new

k,n〈B,λc〉)

14: if λr < λr
new

then return {〈A,λ〉}
15: else if λr 6v λr

new
then

16: Lits := {e | e = (〈A,λ〉 →k,i _) ∈ A ∧ i >
n}

17: I := {e | e l ∈ A ∧ l ∈ Lits}
18: del(A , I)
19: return I

proc updCallsPred(A, As, A ,Q)
20: for each 〈B,λ〉 λp

−−→
λr k,l〈A,λcold〉 ∈ A do

21: λc := Aproj(λp, vars(Bk,l))
22: λcnew := applyCall(A,λc, As)
23: if ∃〈A,λcnew〉 7→ λs ∈ A then
24: λsnew := λs

25: else λsnew := ⊥
26: Ch = 〈B,λ〉 λp

−−→
λr k,l〈A,λcnew〉

27: Q := Q ∪ treatChange(Ch,λsnew, A)

proc updSuccsPred(A, As, A ,Q)
28: for each 〈A,λc〉 7→ λs ∈ A do
29: λ := ⊥
30: for each 〈A,λc〉 −−→

λr k,last〈B,λ〉 ∈ A do

31: λs := Aproj(λr, vars(Ak))
32: λ := λ t applySucc(A,λc,λs, As)
33: for each e = (n→ 〈A,λc〉) ∈ A do
34: Q := Q ∪ treatChange (e,λ, A)

7.2 Operation of the algorithm

Algorithm 6 starts with a preprocessing phase (lines 1-5) that inspects all the literals
affected by the changes in the assertions. It updates the analysis graph, and obtains
which calls need to be reanalyzed, and which successes need to be updated by the
incremental analyzer. This is done by collecting additional abstract queries that need
to be included together with the queries defined by the user to guarantee that the
analysis is correct, taking advantage of Theorem 4.11.

Procedures updCallsPred and updSuccsPred compute, respectively, if changes in
conditions affect the inferred calls or successes of predicates. In both cases, the overall
idea is to obtain a substitution encoding the semantics of the previous version of the
program if no assertions were present. Then functions applyCall and applySuccess
obtain the abstraction with the meaning of the new assertions. Finally, treatChange,
processes the potential changes.

7.2 operation of the algorithm 121

〈A,λcold〉 7→ λs

c 1
, l

1
c 2

, l 2
cn

, ln

(a) Edges affected by a calls(A, Pre)
condition change.

〈A,λc〉 7→ λs
c1 , llast

c
n , lla

s
t

c2 , llast

c 1
, l

1
c 2

, l 2

cn, l
n

(b) Edges affected by a
success(A, Pre, Post) condi-
tion change.

Fig. 16: Edges of nodes potentially affected by changes in assertion conditions.

In the case of calls conditions (updCallsPred), all the literals from which it is
called are reviewed (line 20), by checking the incoming edges of the nodes of that
predicate. For each of them the substitution of the clause (λp) is projected to the
variables of the literal to obtain the call as if no assertions would be specified (line
21). Then, the new conditions are applied (line 22), and this is used to check if the
call is already in the analysis graph, i.e., it was already analyzed (line 23). If so, the
answer for that call is reused (line 24), if not, ⊥ is assumed (line 25). Last, the new
answer is treated by treatChange. Fig. 16a shows, intuitively, which edges need to
be reviewed after a change in a calls condition, namely all incoming edges to a node
that has a call to the predicate that the assertion describes.

In the case of success conditions (updSuccsPred), for each of the calls in the graph
(line 28) the success needs to be recomputed. This is done by obtaining the success
of each of the clauses defining the predicate, by using λr of the edges of the last
literals (line 30), projecting them to the variables in the head of the clause (line 31),
and finally applying the new assertions (line 32), and joining it with the meaning of
the previous clauses. Then, each of the callers of this predicate (line 33) is treated
(line 34). Fig. 16b gives an intuition of the affected edges. The orange edges contain
the success substitution of each of the clauses defining the predicate, therefore they
can be used to obtain the substitution without the assertion. Once this is computed,
the changes in the success need to be propagated to the callers of the predicate, in
the Figure these are the edges drawn in blue and dashed.

Amending the analysis results. The procedure treatChange processes an edge that
points to a literal whose success potentially changed. It first recomputes the answer of
that clause by extending the success to the analysis result (line 10). If the answer did
not change, it returns an empty set as reanalysis is required for that edge (line 11).

122 incremental analysis of programs with (changing) assertions

If reanalysis is required, the edge is updated in the analysis graph (line 13). Then, if
the new substitution (λr

new
) is more general than the previous one (λr), the previous

set of assertions were pruning more concrete states than the new one. Thus, there are
potentially missing concrete executions and this call needs to be reanalyzed, and the
query is returned (line 14). Else, if λr 6v λr

new
, i.e., the new abstract substitution is

more concrete or incompatible, some parts of the analysis graph may not be accurate,
these are collected in Lits (line 16). Therefore, they are removed from the graph, and
returned for reanalysis (lines 17-19).

Lastly, removeUnreachable removes from the graph nodes that may have been
included in R but were not actually necessary to produce a correct analysis for Qα.

7.3 Correctness of GIAwAC

In the following let (A ′,R) = PreProc(P , ∆As, A) be the preprocessing phase of
the algorithm (lines 1-5), with A ′ the analysis graph after updating the changes in
the assertions and R the set of abstract queries, containing the user-defined queries
and the additional ones to guarantee correctness of reanalysis.

Lemma 7.1 (Correctness of GIAwAC from scratch). Let P be a program with
correct assertion conditions (Definitions 6.4 and 6.5), Qα a set of abstract queries.
The analysis A = GIAwAC(P ,Qα, ∅, ∅, ∅) for P with Qα is correct (Def. 2.5) for
P and γ(Qα).

Proof. Since PreProc only modifies information that is already in the initial analysis
and it is empty, correctness follows from Theorem 6.4.

In terms of precision, we want to ensure that the meaning of the new assertions is
precisely included in the analysis result. Recall that this is up to the point that the
conditions can be effectively expressed in the abstract domain, since we are using
Definitions 6.2 and 6.3.

Lemma 7.2 (Precision of calls after PreProc). Let P , P ′ be programs that differ by
assertions ∆As and Qα a set of abstract queries. Let A0 = GIAwAC(P ,Qα, ∅, ∅, ∅)
and (A ′,_) = PreProc(P , ∆As, A0). Then:

∀〈A,λc〉 ∈ A ′.∃ calls(A, Pre) ∈ P ⇒ λc v λ+Pre.

Proof. First note that if the call depends on some callee whose abstraction is impre-
cise, after all predicates have been processed the node is removed, thus not being
considered in this Lemma. For every other predicate A there are two possibilities.

7.3 correctness of giawac 123

1. The calls condition for this predicate did not change, in this case, nothing is
done, and the lemma follows from Lemma 6.1.

2. If the condition changed, for every caller, the original call (i.e., without assertion)
is recovered in line 21. Then, the new condition is applied by applyCall, λcnew ,
which, by definition, meets the conditions in the lemma. This is later inserted
in the analysis graph by treatChange in line 13, after removing the node in
line 12. Thus the Lemma holds.

Lemma 7.3 (Precision of successes after PreProc). Under the conditions of
Lemma 7.2. If (A ′,_) = PreProc(P , ∆As, A0), then

∀〈A,λc〉 7→ λs ∈ A ′.∀ success(A, Pre, Post) ∈ P .λc v λ−Pre ⇒ λs v λ+Post

Proof. Note that, similarly to the proof of Lemma 7.2, if the success depends on
some called predicate whose abstraction is imprecise, after all predicates have been
processed the node is removed, thus not being considered in this Lemma. For every
predicate A there are two possibilities.

1. The success condition for this predicate did not change, in this case, nothing is
done, and the lemma follows from Lemma 6.2.

2. If the condition changed, for every caller, the new success is computed by
joining the semantics of each of the clauses of the predicate in line 32. Then, in
treatChange, in line 14 if the old success is greater than the new one, then
nothing is done and the Lemma holds. Otherwise, the nodes are deleted from
the graph and we would not be considering it for this Lemma.

As shown in Theorem 4.11, given a well-formed analysis graph, we can ensure cor-
rectness of the reanalysis if we guarantee that all calls that need to be reanalyzed are
included in Qα. We want to show that the set Q of queries collected in treatChange
is enough to guarantee the correctness of the result.

Lemma 7.4 (Queries collected in PreProc). Under the conditions of
Lemma 7.2, i.e., (A ′,R) = PreProc(P , ∆As, A0), R guarantees that A =

GuidedIncAnalyze(P ,R, ∅, A ′) is correct for P and γ(Qα).

Proof. We split the proof into two cases: (a) The assertions change only for one
predicate: because A is correct, by Theorem 4.11, since A is an over-approximation
of JP KQ, and Theorem 4.11 is true.

124 incremental analysis of programs with (changing) assertions

(b) The assertions change for more than one predicate: after processing the first
predicate A may not be correct, as treatChange removes nodes. However, every
node that is removed is added to the set of queries. This means that the nodes that
are unreachable when processing the following predicates were already stored before,
and therefore, Theorem 4.11 also holds.

Theorem 7.5 summarizes all correctness and precision guarantees of the algorithm.

Theorem 7.5 (Correctness of GIAwAC). Let P and P ′ be programs with
correct assertion conditions that differ by ∆Cls and ∆As, and Qα a set of
abstract queries. If A0 = GIAwAC(P ′,Qα, ∅, ∅, ∅), then the analysis A =

GIAwAC(P ,Qα, ∆Cls, ∆As, A0):

(a) is correct for P and γ(Qα),
(b) ∀〈A,λc〉 ∈ A .calls(A, Pre) ∈ P ⇒ λc v λ+Pre, and
(c) ∀〈A,λc〉 7→ λs ∈ A .∀ success(A, Pre, Post) ∈ P .λc v λ−Pre ⇒ λs v λ+Post.

Proof. (a) follows from Lemmas 7.1, 4.1 and 7.4 and Theorem 6.4. (b) and (c) follow
from Lemmas 6.1, 6.2, 7.2, and 7.3.

7.4 Related work

Languages like C++ require specializing all parametric polymorphic code (e.g.,
templates [172]) to monomorphic variants. While this is more restrictive than runtime
polymorphism (variants must be statically known at compile time), it solves the
analysis precision problem, but not without additional costs. First, it is known to
be slow, as templates must be instantiated, reanalyzed, and recompiled for each
compilation unit. Second, it produces many duplicates which must be removed later
by the linker. Rust [100] takes a similar approach for unboxed types.

Runtime polymorphism or dynamic dispatch can be used in C++ (virtual methods),
Rust (boxed traits), Go [51] (interfaces), or Haskell’s [88] type classes. However, in
this case compilers and analyzers do not usually consider the particular instances,
except when a single one can be deduced (e.g., in C++ devirtualization [131]).

Mora et al. [125] perform modular symbolic execution to prove that some (versions
of) libraries are equivalent with respect to the same client. Chatterjee et al. [29]
analyze libraries in the presence of callbacks incrementally for data dependence
analysis. That is, they preanalyze the libraries and when a client uses it reuses the
analysis and adds incrementally possible calls made by the client. We argue that
when using our Horn clause encoding, both high analysis precision and compiler
optimizations can be achieved more generally by combining the incremental static
global analysis that we have proposed with abstract specialization [143].

8
Experimental Evaluation

In this chapter we present the experimental evaluation of the algorithms proposed
in this thesis. We start by describing how they have been implemented within the
CiaoPP framework. Then we show stress tests for the different configurations of the
algorithm. We finish by evaluating the algorithms when (re)analyzing after making
different changes to the code of a real-life application, LPdoc, the Ciao documenter.
Additional experiments are presented in Chapter 9 as part of the extension of the
system to perform on-the-fly verification.

8.1 Implementation within the CiaoPP framework

The different new incremental and modular algorithms have been implemented
within the CiaoPP framework, as detailed in Sec. 2.5.1 (Fig. 17).1 In the original
implementation of the monolithic incremental algorithm, the incremental analysis
state was kept in the process so that incremental operation required keeping the
analysis process running. The internal databases have been made instead persistent
after the analysis is performed, and are reused and updated with program changes.
Also, much improved tracking of programs changes has been implemented within the
front-end. This front-end is in charge of checking the current clause database to find
which clauses differ, and communicate the difference to the Static Analyzer. The
Static Analyzer uses the reported changes and the current state of the analyzer (a
correct analysis for the previous version of the program) to recompute the fixpoint
reusing as much as possible.

8.2 Incremental and Modular Analysis: Stress test

We start our analysis with a stress test of the incremental and modular analysis,
for which we use a selection of well-known benchmarks from previous studies of

1 https://github.com/ciao-lang/ciaopp

125

https://github.com/ciao-lang/ciaopp

126 experimental evaluation

src v1

src v2

src v3

Transform

Source DB

Clause DB

Libraries DB

Assertion DB

Static
Analyzer Analysis DB

Static
Checker

:- check

:- false

:- checked

Dynamic
Annotator

Error

Warning

Verified

RT
safe
src

(∆)

∆

CiaoPP

Front-end

Fig. 17: Architecture of the CiaoPP framework supporting incrementality.

incremental analysis, e.g., ann (a parallelizer) and boyer (a theorem prover kernel),
which are programs with a relatively large number of clauses located in a small
number of modules. In contrast, bid is a more modularized program (see Table 8.1 for
more details, and https://github.com/ciao-lang/ciaopp_tests/tree/master/
tests/incanal for the source code of the benchmarks). We used the original modular
structure as modular partition, and evaluated five strategies:

• mon: the baseline non-modular, non-incremental algorithm [129], i.e., IncAna-
lyze described in Sec. 4.1 with initial results always empty.

• mon-inc: the monolithic incremental algorithm IncAnalyze of Sec. 4.1.

• mon-scc: the monolithic incremental algorithm IncAnalyze of Sec. 4.1 with
the bottom-up deletion strategy of [86].

• mod: as a coarse-grain modular algorithm, which consists on ModIncAnalyze
without keeping each of the local analysis graphs. Note that this is not the
same as the ModAnalyze of Sec. 4.2, as it did not consider modifying the
program.

• mod-inc: the proposed modular incremental algorithm ModIncAnalyze
(Chapter 5).

• mod-scc: for the experiments that include deleting clauses, ModIncAnalyze
and the alternative strategy for updating the analysis following the strongly
connected components of the program (Sec. 5.3.1).

We performed experiments with four different abstract domains: a simple reachabil-
ity domain (pdb), a groundness domain (gr), a dependency tracking via propositional

https://github.com/ciao-lang/ciaopp_tests/tree/master/tests/incanal
https://github.com/ciao-lang/ciaopp_tests/tree/master/tests/incanal

8.2 incremental and modular analysis: stress test 127

Bench # Modules # Predicates # Clauses LOC

hanoi 2 4 6 46
aiakl 4 8 15 71
qsort 3 8 17 49

progeom 2 10 18 73
bid 7 21 48 207

rdtok 5 15 57 293
cleandirs 3 36 81 528

read 3 25 94 352
warplan 3 37 114 281

boyer 4 29 145 279
peephole 3 33 169 377

witt 4 69 176 618
ann 3 69 229 641

manag_proj 8 105 143 805
check_links 4 220 504 2042

Table 8.1: Benchmark characteristics sorted by lines of code.

clauses domain [53] (def), and the sharing and freeness abstract domain [128] (pointer
sharing and uninitialized pointers, shfr). We use the exported predicates from the
main module (with > call pattern) as the set of initial queries (i.e., no additional
information is provided in the program).
We ran all experiments on a Linux machine (kernel 4.9.0-8-amd64) with Debian

9.0, a Xeon Gold 6154 CPU, and 16 GB of RAM. However, running the test in a
standard laptop shows similar performance.

8.2.1 Overhead of incremental analysis: analyzing from scratch

We first study the analysis from scratch of all the benchmarks for all approaches,
to observe the overhead introduced by the bookkeeping of the algorithms. The
analysis times in milliseconds are shown in Table 8.2. For each benchmark, four
rows are shown, corresponding to the four analysis algorithms mentioned earlier:
monolithic (mon), monolithic incremental (mon-inc), modular (mod), and, lastly,
modular incremental (mod-inc), i.e., the proposed approach. In the monolithic
setting, the overhead introduced is negligible. Interestingly, the incremental modular
analysis performs better overall than simply modular even in analysis from scratch.
This is due to the reuse of local information specially in complex benchmarks such
as ann, peephole, warplan, or witt. In the best cases (e.g., witt, cleandirs, or
check_links analyzed with shfr) the performance of incremental modular competes

128 experimental evaluation

with monolithic thanks to the incremental updates, dropping from 20s to 3s, from
1.2s to 0.8s, and from 2.5s to 1.2s respectively.

Note that a smaller program does not necessarily imply that the analyzer will run
faster, it depends on the structure of the code and the kind of data that the program
operates with. Also, the cost of performing a modular analysis highly depends on
the module scheduling policy, and whether the modular partitions were correctly
produced. In this case, if the programmer divided the program in a reasonable
manner. For example, analyzing boyer (with any domain) modularly comes at no
cost, while in the case of cleandirs it is 3 times slower than doing it monolithically.

Clause addition/deletion experiment. As a stress test for the proposed algorithm,
we measured the cost of re-analyzing the program incrementally adding (or removing)
one clause at a time, until the program is completed (or empty). That is, for the
addition experiment, the analysis was first run for the first clause only. Then the next
clause was added and the resulting program (re)analyzed. This process was repeated
until all the clauses in all the modules were added. For the deletion experiment,
starting from an already analyzed program, the last clause was deleted and the
resulting program (re)analyzed. This process was repeated until no clauses were left.
The experiment was performed for all the approaches using the initial (top-down)
deletion strategy (mod-inc) and the SCC-partition deletion strategy of Sec. 5.3.1
(mod-scc).

In our experiments we observed that the analyses performed with the gr and def
domains were the most relevant to evaluate the usefulness of the algorithm. This is
due to the domain operations being fairly simple (when compared with the cost of
executing the fixpoint algorithm), so that, the complexity of the algorithm is not
completely hidden by the complexity of the domain operations (e.g. shfr). At the
same time, they are complex enough that there is some fixpoint iteration (which
does not occur in, e.g., pdb, since > is assumed for every call pattern). Therefore, in
this section we focus mainly in the analysis with the def domain, but include as well
some discussion about gr. Nevertheless, for the results for the remaining domains we
refer the reader to Appendix A.
Fig. 18 shows the addition and deletion experiments for the warplan benchmark

analyzed with def. Each point represents the time taken to reanalyze the program
after incrementally adding/deleting one clause. The horizontal axis denotes the
number of clauses added/deleted at that point of the experiment. We observe that
the proposed incremental algorithm outperforms overall the non-incremental settings
when the time needed to reanalyze is large. We find that for smaller benchmarks
our algorithm performs up to 8 times faster than the traditional monolithic, non-
incremental algorithm, and, in the worst cases performs as fast as the traditional

8.2 incremental and modular analysis: stress test 129

Benchmark pdb gr def shfr Benchmark pdb gr def shfr

hanoi (mon) 5.2 2.9 2.2 10.7 warplan 46.0 24.5 20.1 63.3
(mon-inc) 5.3 3.0 2.2 10.2 41.0 26.6 16.6 64.3

(mod) 12.3 7.2 5.8 22.1 71.7 52.7 35.8 180.7
(mod-inc) 10.0 6.2 4.6 18.3 57.0 37.1 24.1 102.9

aiakl 5.9 6.4 4.6 7.9 boyer 38.3 24.1 14.9 50.0
7.6 7.3 5.8 8.4 37.0 31.5 17.4 51.5

15.0 18.9 14.0 18.0 48.3 39.3 21.5 68.2
16.0 15.5 13.0 16.4 44.9 37.3 19.1 65.4

qsort 7.8 8.3 4.0 9.5 peephole 67.0 43.2 19.2 157.6
8.0 8.5 4.3 10.5 64.1 45.6 21.2 156.4

21.7 21.6 13.5 24.9 155.8 75.6 43.6 392.8
19.5 20.3 10.0 20.1 115.1 62.4 40.2 267.0

progeom 5.4 5.4 5.1 6.4 witt 183.4 11.6 33.5 2490.4
6.1 5.4 5.4 7.1 186.0 16.4 38.8 2491.2

24.1 23.6 21.6 28.7 1134.6 6.7 120.8 20550.3
18.4 18.7 14.8 20.3 414.8 9.8 71.1 3222.9

bid 18.8 14.8 9.9 22.9 ann 84.5 58.4 35.0 120.5
17.7 15.4 10.2 26.8 85.4 64.1 38.5 123.7
61.0 55.1 39.1 68.3 264.1 174.5 89.7 296.6
42.4 42.1 32.4 55.7 145.3 127.0 60.6 241.5

rdtok 33.5 44.0 15.7 63.3 manag_proj 111.0 24.1 51.3 18049.2
51.3 29.2 17.8 66.0 98.3 28.3 48.8 17967.3
85.1 61.3 40.2 122.0 291.3 54.7 150.3 37184.9
52.3 53.5 36.6 90.9 221.8 44.4 104.7 34595.0

cleandirs 33.2 27.6 26.2 384.1 check_links 701.7 301.6 167.5 803.3
31.7 29.1 27.7 389.0 678.9 251.5 178.5 819.2

145.5 123.8 140.3 1189.2 1292.6 680.8 600.5 2530.3
93.8 77.2 80.5 778.3 776.1 360.8 267.2 1162.5

read 217.5 116.5 47.8 399.0
172.3 105.0 35.0 400.7
192.0 118.4 45.1 422.4
189.9 126.9 45.5 472.4

Table 8.2: Analysis times from scratch (ms).

130 experimental evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120

Ti
me
 (
ms
)

of clauses

Adding - warplan

mon
mon-inc

mod
mod-inc

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

Ti
me
 (
ms
)

of clauses

Deleting - warplan

mon
mon-inc
mon-scc

mod
mod-inc
mod-scc

Fig. 18: Analysis time (ms) for warplan with def for both experiments.

modular algorithm. The detailed analysis times per iteration for the remaining
benchmarks are available in Appendix A.

We observe that, even when analyzing takes less time, i.e., when the program has
fewer clauses, the analysis time of the algorithm proposed is faster overall. Moreover,
as the analysis grows in complexity, the cost our approach grows significantly slower
than that of the traditional algorithm. In the case of the deletion experiments, we
observe also clear advantages, specially when using the strategy of partitions in SCC
presented in Sec. 5.3.1.

8.2.2 Analysis time per action

In order to get an overall idea of the cost in terms of the time taken by the analysis we
have included Tables 8.3 and 8.4 for the addition and deletion experiment respectively.
They show, split by benchmark and analysis configuration, the mean, maximum, and
minimum analysis times after each modification made in the experiment, for each
program. The objective is to provide intuition for the “response times” of the analyses
after each such modification. We center our attention on the costlier instances of the
benchmarks, i.e., the (re)analysis runs which take the longest after a modification
is performed in the program for the traditional, monolithic analysis. In absolute
terms these are check_links, with the largest analysis time (608.6ms), followed by
witt (177.7ms), read (177.4ms), and manag_proj (100.8ms). In terms of overall cost
(mean) of the reanalysis we have read (38.5ms), check_links (29.3ms), and boyer
(21.5ms). These high differences between the mean and maximum analysis times are
due to the very small values for the first additions, in which the program is very small

8.2 incremental and modular analysis: stress test 131

mon mon-inc mod mod-inc

bench mean max min mean max min mean max min mean max min

aiakl 2.2 5.6 1.0 1.8 5.9 1.3 1.8 14.9 0.5 1.7 14.1 0.5
ann 7.2 76.8 1.1 3.3 51.8 1.6 2.5 156.8 0.3 2.3 133.9 0.6
bid 3.4 18.1 1.5 2.6 11.9 1.9 2.5 32.7 0.3 2.3 26.6 0.5
boyer 21.5 46.4 1.5 3.2 13.0 1.4 6.0 15.1 0.4 1.9 14.8 0.5
check_links 29.3 608.6 2.6 14.5 571.5 5.5 21.6 889.4 0.4 7.1 664.1 0.8
cleandirs 9.1 28.9 1.5 4.5 18.6 1.9 6.2 96.5 0.9 3.7 63.4 0.9
hanoi 2.4 4.7 0.7 1.8 5.3 1.1 2.9 11.5 0.4 2.1 10.0 0.4
manag_proj 19.7 100.8 4.4 8.3 35.2 4.8 6.9 97.7 0.3 4.6 69.5 0.4
peephole 9.6 64.8 1.5 2.7 30.2 1.6 2.1 95.8 0.4 1.9 76.5 0.6
progeom 2.3 5.4 1.1 1.6 3.4 0.7 2.3 10.2 0.8 2.2 9.7 0.8
read 38.9 177.4 1.1 13.4 151.3 1.3 18.5 214.2 0.8 9.9 165.2 0.6
qsort 2.8 11.0 1.1 1.8 4.4 1.1 2.8 10.5 0.4 2.4 9.5 0.5
rdtok 8.2 31.1 1.2 6.2 57.6 1.3 6.0 27.2 0.3 6.0 59.3 0.4
warplan 10.2 35.0 0.8 4.2 18.5 1.5 5.4 30.7 0.7 2.5 21.3 0.9
witt 15.2 177.7 1.5 5.5 142.0 2.2 11.1 653.2 0.3 4.8 323.4 0.4

Table 8.3: Analysis times (ms) per action of the clause addition experiment with def.

and there are no iterations. The analysis times for the remaining experiments are
available in detailed analysis times for each step are provided in Appendix A. These
should be in principle the benchmarks that we should focus on incrementalizing, as
more time is saved. This applies not only to the monolithic analysis, but also to the
modular analysis. To observe the increase in performance obtained, Table 8.5 shows
the speedup of our algorithm with respect to: mon-inc, in the case of the addition
experiments, and mod-scc, in the case of the deletion experiment. The analysis times
for the remaining speedups are provided in Appendix A

8.2.3 Accumulated analysis time

To observe in a more detailed manner how the analyzers behave we present in Figs. 19
and 20 the accumulated analysis times, i.e., the analysis time of all the experiments
aggregated by benchmark, divided by how much time was spent in the different parts
of the algorithm. The results are for the gr and def abstract domains, and each of
the bars shows of the full set of addition and deletion experiments.

132 experimental evaluation

gr

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

hanoi aiakl qsort progeom bid rdtok cleandirs readwarplan boyer peephole witt ann manag_proj check_links

def

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

hanoi aiakl qsort progeom bid rdtok cleandirs readwarplan boyer peephole witt ann manag_proj check_links

Fig. 19: Accumulated analysis time (normalized w.r.t mon) adding clauses. The order inside
each set of bars is: |mon|mon-inc|mod|mod-inc|.

8.2 incremental and modular analysis: stress test 133

gr

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

hanoi aiakl qsort progeom bid rdtok cleandirs readwarplan boyer peephole witt ann manag_proj check_links

def

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

hanoi aiakl qsort progeom bid rdtok cleandirs readwarplan boyer peephole witt ann manag_proj check_links

Fig. 20: Accumulated analysis time (normalized w.r.t mon) deleting clauses. The order inside
each set of bars is: |mon|mon-inc|mon-scc|mod|mod-inc|mod-scc|.

134 experimental evaluation

mon mon-inc mon-scc mod mod-inc mod-scc

bench mean max min mean max min mean max min mean max min mean max min mean max min

aiakl 2.6 7.2 1.3 1.9 6.9 1.3 1.4 6.1 0.9 2.0 15.2 0.5 1.8 13.4 0.4 1.5 13.7 0.3
ann 7.9 85.8 1.2 4.0 80.4 1.8 3.3 80.3 1.5 8.8 197.1 0.3 3.4 153.6 0.6 2.8 153.1 0.6
bid 3.0 17.1 1.6 2.5 19.4 1.6 1.9 18.3 1.4 3.4 59.8 0.5 2.9 53.1 0.4 2.6 50.3 0.4
boyer 21.1 51.5 1.3 11.4 35.3 1.3 2.2 36.2 1.1 6.3 44.9 0.4 5.3 45.3 0.6 1.6 45.1 0.3
check_links 29.0 635.6 1.5 28.3 674.8 6.4 20.9 598.2 5.5 22.6 946.0 0.3 17.0 720.1 0.7 13.3 716.0 0.5
cleandirs 9.2 27.5 1.6 5.6 32.1 1.7 3.3 30.1 1.4 6.2 128.9 0.9 4.4 90.8 0.7 3.5 86.5 0.6
hanoi 2.6 5.3 0.8 1.8 5.6 0.9 1.5 5.9 0.7 3.5 13.8 0.5 2.7 12.4 0.7 2.5 12.6 0.5
manag_proj 20.9 103.6 4.5 9.3 98.3 4.5 7.7 90.1 4.1 7.9 259.3 0.3 5.7 212.1 0.3 5.8 217.7 0.3
peephole 10.3 100.6 1.7 3.4 67.4 1.5 2.3 65.4 1.3 5.6 138.6 1.1 3.7 113.4 1.0 2.7 116.2 0.9
progeom 2.3 5.3 1.1 1.8 5.5 1.0 1.2 6.3 0.9 2.7 22.0 0.7 2.5 19.3 0.7 2.1 18.6 0.6
read 39.0 184.7 1.1 33.8 189.1 1.1 3.9 171.9 1.0 17.9 185.7 0.7 19.4 191.3 0.7 5.8 187.2 0.6
qsort 2.5 7.5 1.1 2.2 8.5 1.2 1.4 9.3 0.8 3.6 22.3 0.4 3.4 20.4 0.6 3.1 20.8 0.5
rdtok 8.2 29.7 1.5 7.3 31.8 1.3 2.2 31.8 1.1 6.6 61.8 0.3 8.2 54.1 0.6 4.8 54.8 0.3
warplan 11.1 52.7 1.0 6.2 40.2 1.3 2.0 39.3 1.0 5.5 63.2 0.8 4.1 56.0 1.0 2.7 53.7 0.7
witt 14.6 174.8 1.2 7.1 179.3 2.1 4.5 185.2 1.9 15.0 1,021.7 0.3 7.9 461.3 0.4 7.1 423.9 0.4

Table 8.4: Analysis times (ms) per action of the clause deletion experiment with def.

Fig. 19 shows the accumulated analysis time for the addition experiments. As
mentioned before the bars are split to show the time taken in each operation: analyze
is the time spent in the module analyzer, incAct is the time spent updating the
local analysis results, preProc is the time spent processing clause relations (e.g.,
calculating the SCCs), updG is the time spent updating G, and procDiff the time
spent applying the changes to the analysis. This last parameter only appears in
the incremental settings. The bars are normalized with respect to the monolithic
non-incremental (mon) algorithm, which is assumed to take “1” measure of time to
execute. For instance, if analyzing rdtok with the gr domain for the monolithic
non-incremental setting is taken as 1, the modular incremental (mod-inc) setting
takes approx. 0.6, so it is approx. 1.67 times faster.
As before, the benchmarks are sorted by number of LOC. Because of this, it can

be observed that the incremental analysis does tend to be more useful as program
size grows. Overall, the incremental settings (mon-inc, mod-inc) are always faster
than the corresponding non-incremental settings (mon, mod). Furthermore, while the
traditional modular analysis is sometimes slower than the monolithic one (for the
small benchmarks: hanoi and qsort), our modular incremental algorithm always
outperforms both, obtaining 10× overall speedup over monolithic in the best cases
(boyer analyzed with def or peephole analyzed with shfr). Furthermore, in the

8.2 incremental and modular analysis: stress test 135

addition: mod-inc deletion: mod-scc

vs. vs. vs. vs. vs. vs. vs. vs.
bench mon mon-inc mod mon mon-inc mon-scc mod mod-inc

aiakl 1.3 1.1 1.0 1.7 1.2 0.9 1.3 1.2
ann 3.1 1.4 1.1 2.9 1.4 1.2 3.2 1.2
bid 1.5 1.1 1.1 1.2 1.0 0.7 1.3 1.1
boyer 11.6 1.7 3.2 13.0 7.1 1.4 3.9 3.3
check_links 4.1 2.1 3.1 2.2 2.1 1.6 1.7 1.3
cleandirs 2.5 1.2 1.7 2.6 1.6 1.0 1.8 1.3
hanoi 1.2 0.9 1.4 1.1 0.7 0.6 1.4 1.1
manag_proj 4.3 1.8 1.5 3.6 1.6 1.3 1.4 1.0
peephole 5.0 1.4 1.1 3.8 1.3 0.9 2.1 1.4
progeom 1.1 0.7 1.1 1.1 0.9 0.6 1.3 1.2
read 3.9 1.4 1.9 6.8 5.9 0.7 3.1 3.4
qsort 1.2 0.7 1.2 0.8 0.7 0.5 1.2 1.1
rdtok 1.4 1.0 1.0 1.7 1.5 0.5 1.4 1.7
warplan 4.1 1.7 2.2 4.2 2.3 0.8 2.1 1.6
witt 3.1 1.1 2.3 2.1 1.0 0.6 2.1 1.1

Table 8.5: Speedups of the clause addition (left) and deletion (right) experiments with def.

larger benchmarks modular incremental outperforms even the monolithic incremental
approach.

Fig. 20 shows the results of the deletion experiment. The analysis performance of
the incremental approaches is in general better than the non-incremental approaches,
except some cases for small programs. Again, our proposed algorithm shows very good
performance, in the best case 10× speedup (read analyzed with shfr), and overall
5× speedup (ann, peephole, and witt), competing with monolithic incremental scc
and outperforming in general monolithic incremental td. The SCC-guided deletion
strategy seems to be more efficient than the top-down deletion strategy. This confirms
that the top-down deletion strategy tends to be quite pessimistic when deleting
information, and modular partitions limit the scope of deletion. For the accumulated
analysis time of the remaining domains, please see Appendix A.

8.2.4 Distribution of analysis times

Next, we study how the analysis time of the experiments is distributed. Figs. 21
and 22 show histograms that illustrate the number of analyzed instances of the
experiments with respect to the analysis time, regardless of the order in which
the experiments were performed, and for each configuration. In the vertical axis
we plot the number of tests, i.e., how many different instances of the addition or
deletion experiment that were performed could be analyzed in that time or less. In the

136 experimental evaluation

5 10 15 20 25 30 35
Analysis time (ms)

0

20

40

60

80

100

of
 t

es
ts

Histogram of analysis time per addition of warplan

mon
mon-inc
mod
mod-inc

10 20 30 40 50 60
Analysis time (ms)

0

20

40

60

80

100

of

 t
es

ts

Histogram of analysis time per deletion of warplan

mon
mon-inc
mon-scc
mod
mod-inc
mod-scc

Fig. 21: Distribution over time of instances of the addition (left) and deletion (right) experi-
ments for warplan with def.

10 20 30 40
Analysis time (ms)

0

20

40

60

80

100

120

140

of

 t
es

ts

Histogram of analysis time per addition of boyer

mon
mon-inc
mod
mod-inc

10 20 30 40 50
Analysis time (ms)

0

20

40

60

80

100

120

140

of
 t

es
ts

Histogram of analysis time per deletion of boyer

mon
mon-inc
mon-scc
mod
mod-inc
mod-scc

Fig. 22: Distribution over time of instances of the addition (left) and deletion (right) experi-
ments for boyer with def.

horizontal axis we represent the analysis time. For example, on the left-hand side
of Fig. 21, for 5ms in the vertical axis, starting from the bottom of the graph we
first find the red line corresponding to the monolithic analysis (mon). This means
that approx. 55 of the analyses performed in warplan finished in 5ms or less. Then
we find the yellow line (mod analysis): for this setting, 70 of the instances of the
addition experiment were analyzed in 5ms or less. The next line that we find is the
purple line, corresponding to the mon-inc configuration. In this case 78 instances
were analyzed in 5ms or less. Finally, we have our configuration, mod-inc, that was
able to analyze 99 instances of the addition experiment in 5ms. Figs. 21 and 22 show
that, overall, the analysis time of the proposed algorithm is faster than that of the
previous configurations.

8.2 incremental and modular analysis: stress test 137

 0.1

 1

 10

 100

 1000

 1 10 100

Sp
ee

du
p

vs

mo

n

of calls with top

hanoi
aiakl
qsort

progeom
bid

rdtok
cleandirs

read
warplan

boyer
peephole

witt
ann

manag_proj
check_links

Speedup (mon/mod-inc) vs. # of calls with top

Fig. 23: Speedup vs. monolithic depending on the number of nodes in the analysis graph.

8.2.5 Correlations to benchmark and analysis graph characteristics

We also looked for correlations between benchmark characteristics and the speedups
observed. While this topic would require a study of its own, we have observed some
correlations with benchmark-related analysis characteristics. Figs. 23 and 24 show
scatter plots of the speedup obtained with respect to two such characteristics: the
number of nodes in the analysis graph an the number of calls to >. The plots
show that there is some correlation between the size of the analysis graph and
the speedup obtained: we observed that the incremental and modular analysis
proposed is beneficial for larger analysis graphs. The sizes of the analysis graphs
depend themselves on the complexity of the abstract domain (due to the algorithm
being multivariant), the size of the program, and the size of the strongly connected
components of the program. Also, we observed that the slowdowns encountered
correspond to very small runtimes of the algorithms, e.g., for smaller programs, which
are likely to be due to the overhead of the additional bookeeping required by the
algorithm. This is, however, not very concerning, as they are small.

8.2.6 Memory Usage

We also studied the memory usage for the structures needed for analysis, that is, the
analysis graphs, and the other structures needed for memoizing. Table 8.6 contains

138 experimental evaluation

 0.1

 1

 10

 100

 1 10 100

Sp
ee

du
p

vs

mo

d

of calls with top

hanoi
aiakl
qsort

progeom
bid

rdtok
cleandirs

read
warplan
boyer

peephole
witt
ann

manag_proj
check_links

Speedup (mod/mod-inc) vs. # of calls with top

Fig. 24: Speedup vs. modular depending on the number of calls to >.

the maximum memory needed for these structures for any of the modifications
analyzed for each benchmark, i.e., the memory high water mark. For the monolithic
case, this is the maximum memory necessary to keep the analysis results, and for
the modular case, the maximum size of the analysis results of a module and the
intermodular information. We do not show any distinction between the different
deletion strategies of the incremental algorithm as the necessary bookkeeping of both
is the same.
First, note that, since the incremental algorithms (mon-inc and mod-inc) need

to perform additional bookkeeping, they always need more memory than the corre-
sponding non incremental ones (mon and mod). However, this difference is small and
arguably a very reasonable price to pay for the significant reductions in analysis times.
Also note that the modular analyses (mod and mod-inc) always bring a reduction in
the memory required to be able to complete every analysis instance. This is of course
important because, while it is always possible to wait a bit longer for an analysis
result, if the analysis does not fit in the available memory, either the performance
will be much worse, due to swapping, or the analysis simply cannot be completed, if
virtual memory is depleted.

More importantly, we observe that we obtain a reduction in the memory use of
the proposed modular incremental algorithm, mod-inc, with respect to the original
monolithic incremental algorithm, mon-inc. This is shown in the last column of
Table 8.6. The memory usage reduction obtained ranges between 59% for the ann
benchmark and 13% for the read benchmark. Ideally, we would like to achieve a

8.3 studying the effect of using assertions during analysis 139

bench mon mon-inc mod mod-inc reduction
(mon-inc vs mod-inc)

hanoi 16K 16K 12K 12K 0.75 (25%)
aiakl 28K 28K 8K 16K 0.57 (43%)
qsort 28K 32K 12K 16K 0.50 (50%)
progeom 24K 32K 20K 20K 0.63 (37%)
bid 80K 80K 36K 40K 0.50 (50%)
rdtok 100K 112K 68K 80K 0.71 (29%)
cleandirs 200K 204K 144K 152K 0.75 (25%)
read 304K 308K 260K 268K 0.87 (13%)
warplan 144K 156K 116K 128K 0.82 (18%)
boyer 140K 144K 76K 80K 0.55 (44%)
peephole 200K 208K 108K 116K 0.56 (44%)
witt 504K 524K 352K 364K 0.69 (30%)
ann 316K 324K 120K 132K 0.41 (59%)
manag_proj 464K 460K 248K 268K 0.58 (42%)
check_links 2.3M 2.3M 1.8M 1.8M 0.78 (22%)

Table 8.6: Maximum memory usage for the experiments with def in bytes.

reduction of memory proportional to the number of modules in which the program is
distributed, but on one hand there is overhead due to the fact that each module needs
to keep information for the calls to predicates imported from other modules, and in
addition a very large reduction in maximum memory usage requires the partitions
to be of similar size, quite independent, and with similarly-sized analysis graphs.
Our benchmarks instead typically contain a module with the main functionality and
some libraries with simpler code, so that the distribution of code among the modules
is not even, and so the correlation between memory usage reduction and number of
modules in the program is not direct. However, we expect that in actual applications,
which tend to have a much larger number of modules and use a good number of
libraries, the memory usage reduction will be much larger.

8.3 Studying the effect of using assertions during analysis

In order to study the effect of using assertions during analysis we have implemented
GIAwAC (and GuidedIncAnalyze) within the CiaoPP system [84] and performed
some preliminary experiments to test the use case described in Example 7.1. Our
test case is the LPdoc documentation generator tool [78, 81], which takes a set
of Prolog files with assertions and machine-readable comments and generates a
reference manual from them. LPdoc consists of around 150 files, of mostly (Ciao)

140 experimental evaluation

domain no backend + texinfo + man + html

reachability 1.7 2.1 3.4 3.9
reachability inc 1.7 1.2 1.0 1.6

gr 2.1 2.2 2.3 2.6
gr inc 2.1 1.4 0.9 1.8

def 6.0 7.1 7.8 9.7
def inc 6.0 2.2 1.3 3.5

sharing 27.2 28.1 24.2 28.5
sharing inc 27.2 3.9 1.4 5.1

Table 8.7: Analysis time for LPdoc adding one backend at a time (time in seconds).

Prolog code,with assertions (most of which, when written, were meant mainly for
documentation generation), as well as some auxiliary scripts in Lisp, JavaScript,
bash, etc. The Prolog code analyzed is about 22K lines. This is a tool in everyday
use that generates for example all the manuals and web sites for the Ciao system
(http://ciao-lang.org, http://ciao-lang.org/documentation.html), as well
as for all the different bundles developed internal or externally, processing around
20K files and around 1M lines of Prolog and interfaces to other languages. The LPdoc
code has also been adapted as the documentation generator for the XSB system [168].

LPdoc is specially relevant in our context because it includes a number of backends
in order to generate the documentation in different formats such as texinfo, Unix
man format, html, ascii, etc. The front end of the tool generates a documentation
tree with all the content and formatting information and this is passed to one out
of a number of these backends, which then does the actual, specialized generation
in the corresponding typesetting language. We analyzed all the LPdoc code with a
reachability domain, a groundness domain (gr), a domain tracking dependencies
via propositional clauses [53] (def), and a sharing domain with cliques [132]. The
experiment consisted in preanalyzing the tool with no backends and then adding
incrementally the backends one by one. In Table 8.7 we show how much time it took
to analyze in each setting, i.e., for the different domains and with the incremental
algorithm or analyzing from scratch. The experiments were run on a MacBook Pro
with an Intel Core i5 2.7 GHz processor, 8GB of RAM, and an SSD disk. These
preliminary results support our hypothesis that the proposed incremental analysis
brings performance advantages when dealing with these use cases of generic code.

http://ciao-lang.org
http://ciao-lang.org/documentation.html

8.3 studying the effect of using assertions during analysis 141

To conclude, in this chapter we presented the experimental evaluation of the
modular incremental fixpoint algorithm showing that we obtain almost immediate
response when the changes do not affect the result, up to 13× speedup w.r.t. the
original non-incremental algorithm. Being aware of modular structures is useful: up
to 2× speedup when compared with the original incremental algorithm. Modular
analysis from scratch is improved up to 9×, and the maximum size of analysis graphs
reduced. We also showed that keeping structures for incrementality produces small
overhead. For the algorithms using assertions we saw that assertions help in reducing
computation times when reanalyzing after instantiating new implementations of
generic code interfaces.

9
Application: On-the-fly Assertion Checking

A driving motivation throughout the thesis has been the fact that assertion checking
is an invaluable programmer’s tool for finding many classes of errors or verifying
their absence in dynamic languages such as Prolog. In this chapter we explore how
incremental abstract interpretation can help when verification is done on-the-fly, to
give continuous correctness feedback during program development, a context where
fast response times are essential. In particular, we illustrate how the incremental
analyses introduced in the thesis contribute to achieving a high level of reactivity in
an integration of the static analysis and verification framework within an integrated
development environment (IDE) that reflects analysis and verification results back as
colorings and tooltips directly on the program text—the CiaoPP tool’s VeriFly mode.
This mode was built on an existing Emacs-based development environment for

the Ciao language, and reuses in part off-the-shelf “on-the-fly” syntax checking
capabilities offered by the Emacs flycheck package. Emacs was chosen because it
is a solid platform and preferred by many experienced users. However, this low-
maintenance approach should be easily reproducible in other modern extensible
editors and mature program development environments.

9.1 Assertion verification

As mentioned before, the CiaoPP verification framework uses analyses based on the
abstract interpretation technique (the Static Analyzer in Fig. 25), in order to statically
compute safe approximations of the program semantics at different relevant program
points. Given a program, a set of abstract domains are automatically selected,
as determined by their relevance to the properties that appear in the assertions
written by the programmer or present in libraries. That is, domains are selected by
determining if they can (efficaciously) abstract the properties in the assertions. As
mentioned, domains implement the transfer functions of the built-in operations that
are relevant to them. If a property in an assertion is understood by a domain, the
domain is run. Typically a property may be understood by more than one domain.

143

144 application: on-the-fly assertion checking

In such cases, the tool applies heuristics to avoid redundancies. The analysis with the
selected domains is performed and the resulting safe approximations are compared
directly with these assertions (the Static Checker in Fig. 25) in order to prove the
program correct or incorrect with respect to them. For each assertion originally with
status check, the result of this process (boxes on the right of Fig. 25) can be: that it
is verified (the new status is checked), that a violation is detected (the new status
is false), or that it is not possible to decide either way, in which case the assertion
status remains as check, as detailed in Sec. 2.5.2. In such cases, optionally, a warning
may be displayed and/or a run-time test generated for (the part of) the assertion
that could not be discharged at compile-time, test cases generated, etc.
The main components for assertion checking in CiaoPP were proposed in [148,

145, 140]. We recall the definitions for checking calls and success conditions for a
monovariant analysis.

Definition 9.1 (Checked calls condition). A calls condition calls(p(V1, . . . ,Vn), Pre)
is abstractly checked for a predicate p w.r.t. Qα in Dα if there is 〈L,λc〉 7→ λs ∈
A s.t. ∃ a renaming σ, L = p(V ′1 , . . . ,V ′n) = p(V1, . . . ,Vn)σ,λc v λ−

TS(Pre σ,P).

Definition 9.2 (False calls condition). A calls condition calls(p(V1, . . . ,Vn), Pre) is
abstractly false for a predicate p ∈ P w.r.t. Qα in Dα if there is 〈L,λc〉 7→ λs ∈
A s.t. ∃ a renaming σ, L = p(V ′1 , . . . ,V ′n) = p(V1, . . . ,Vn)σ,λc u λ+

TS(Pre σ,P) = ⊥.

Note that in these definitions we do not use directly the Pre and Post conditions,
although they already are abstract substitutions. This is because the properties in
the conditions stated by the user in assertions might not exist as such in Dα. The
fact that the resulting approximations are safe ensures correctness of the procedure
when checking both calls and success conditions.

Definition 9.3 (Checked success condition). A success condition
success(p(V1, . . . ,Vn), Pre, Post) is abstractly checked for predicate p ∈ P w.r.t.
Qα in Dα if there is 〈L,λc〉 7→ λs ∈ A s.t. ∃ a renaming σ, L = p(V ′1 , . . . ,V ′n) =

p(V1, . . . ,Vn)σ λc u λ+TS(Pre σ,P) = ⊥ or λs v λ−
TS(Post σ,P).

Definition 9.4 (False success condition). A success condition
success(p(V1, . . . ,Vn), Pre, Post) is abstractly false for p ∈ P w.r.t. Qα in Dα if there
is 〈L,λc〉 7→ λs ∈ A s.t. ∃ a renaming σ, L = p(V ′1 , . . . ,V ′n) = p(V1, . . . ,Vn)σ,λc u
λ−
TS(Pre σ,P) 6= ⊥ and (λs u λ+

TS(Post σ,P) = ⊥).

9.2 VeriFly: The On-the-fly IDE Integration

Fig. 25 shows the overall architecture of VeriFly, the integration of the CiaoPP
framework with the new IDE components, represented by the new box to the left,

9.2 verifly: the on-the-fly ide integration 145

flycheck

ciao_flycheck

src v1

src v2

src v3

Transform

Source DB

∆
chars1∆
chars2

Clause DB

Libraries DB

Assertion
DB

Static
Analyzer Analysis DB

Static
Checker

:- check

:- false

:- checked

Dynamic
Annotator

Error

Warning

Verified

(∆)

∆

CiaoPP

Front-end
IDE (Emacs)

Report

Fig. 25: Integration of the CiaoPP framework in the Emacs-based IDE.

and the communication to and from CiaoPP. The original output of ciaopp (“Report”
box on the right) is parsed and used to highlight code and verified/falsified assertions.
As mentioned before, the tool interface is implemented within Emacs and the on-the-
fly support is provided by the Emacs “flycheck” package.1 Flycheck is an extension
developed for GNU Emacs originally designed for on-the-fly syntax checking, but
we use it here in a semantic context. However, as also mentioned before, a similar
integration is possible with any reasonably extensible IDE.
The overall architecture consists of a flycheck adaptor (implementing different

Ciao-based checkers, from syntactic to full analysis), a CiaoPP process that runs in
the background in daemon mode, and a lightweight client to CiaoPP. When a file
is opened, modified, or saved, as well as after some small period of inactivity, an
editor checking event is triggered. Edit events notify CiaoPP (via the lightweight
client) about program changes, which can be both in code and assertions. The
CiaoPP daemon receives these changes, and, behind the scenes, transforms them into
changes at the clause level (also checking for syntactic errors), and then incrementally
(re-)analyzes the code and (re-)checks any reachable assertions. The latter can be
in libraries, other modules, language built-in specifications, or of course (but not
necessarily) in user code. The results (errors, verifications, and warnings), from
static (and possibly also dynamic checks) are returned to the IDE and presented as
colorings and tooltips directly on the program text. This overall behavior is what we
have called in our tool the “VeriFly” mode of operation.
Details on the architecture. Currently, flycheck requires saving the contents of
the source being edited (Emacs buffer) into a temporary file and then invoking an

1 https://github.com/flycheck/flycheck

https://github.com/flycheck/flycheck

146 application: on-the-fly assertion checking

Fig. 26: The CiaoPP option browser.

external command. In our case the external command is a lightweight client that
communicates with a running CiaoPP process, executing as a an active module, a
daemon process that executes in the background and reacts to simple JSON-encoded
queries via a socket.2 This CiaoPP process is started once and kept alive for future
analyses, ensuring that no time is unnecessarily wasted in startup and cleanups, as
well as allowing caching some common analysis data, etc. for libraries. The approach
similar to other like LSP (Language Server Protocol). Finally, Ciao implements a
“shadow module” mechanism that allows the compiler to read alternative versions for
some given modules. We use this mechanism to make CiaoPP (and other Ciao-based
checkers) read the contents of temporary Emacs buffers during edition (saved as
temporary files with shadowed names). This is specially useful to work in intermodular
analysis where the analysis root is not necessarily the active buffer.
Customizing the analysis. In general, CiaoPP can be run fully automatically
and does not require the user to change the configuration or provide invariants or
assertions, and, for example, selects automatically abstract domains, as mentioned
before. However, the system does have a configuration interface that allows manual
selection of abstract domains, and of many parameters such as whether passes are
incremental or not, the level of context sensitivity, error and warning levels, the type
of output, etc. Fig. 26 shows the option browsing interface of the tool, as well as
some options (abstract domain selections) in the menus for the cost analysis, shape
and type analysis, pointer (logic variable) aliasing analysis, and numeric analysis.

2 JSON-encoded interaction capabilities have been added recently to support tool interoperability and
browser-based interactions, and to simplify future extensions.

9.2 verifly: the on-the-fly ide integration 147

Fig. 27: An assertion within a parallelizer (ann).

9.2.1 VeriFly in action

We now show some simple examples of the system in action. Fig. 27 shows an
assertion being verified within a medium-sized program implementing an automatic
program parallelizer. The add_annotations loop traverses recursively a list of blocks
and transforms sequential sections into parallel expressions. Upon opening the file the
assertion is underlined in green, meaning that it has been verified (checked status).
This ensures that upon entering the procedure there is no variable (pointer) sharing
between Info (the input) and Phrase, i.e., indep(Info,Phrase); that Phrase will
arrive always as a free variable; and that on output from the procedure, Ind and Gnd
will be ground terms (i.e., will contain no null pointers). Furthermore, this procedure
is guaranteed not to fail. The corresponding information is also highlighted in the
tool-tip (in yellow).

In Fig. 28 we show an implementation of quick-sort using open-ended (“difference”)
lists to construct the output lists (i.e., using pointers to append in constant time).

Examples 29, 30a, and 30b show static detection of, respectively, a property incom-
patibility bug, an illegal call to a library predicate, and a simple non-termination.
Fig. 31 shows naive reverse written using the functional notation library and

illustrates the detection of an error regarding unintended behavior w.r.t. cost. The
assertion in lines 5 and 6 of Fig. 31 (left) states that predicate nrev should be
linear in the length of the (input) argument A. This is expressed by the property

148 application: on-the-fly assertion checking

Fig. 28: Sorting with incomplete data structures.

steps_o(length(A)), meaning that the cost, in terms of resolution steps, of any
call to nrev(A, B) with A bound to a list and B a free variable, is in O(length(A)).
However, this worst case asymptotic complexity stated in the user-provided asser-
tion is incompatible with a safe, quadratic lower bound on the cost of such calls
(1

2 length(A)2 + 3
2 length(A) + 1) inferred by the static analyzer. In contrast, as-

sertion in lines 5 and 6 of Fig. 32 (left) states that predicate nrev should have a
quadratic worst case asymptotic complexity in the length of A, which is proved to
hold by means of the upper-bound cost function inferred by analysis (which coincides
with the lower bound above). Fig. 32 also shows the verification of determinacy,
non-failure, and termination properties.

9.3 Some Performance Results

We provide some performance results from our tool using the well-known chat-80
program3, which contains 5.2k lines of Prolog code across 27 files, and uses a number
of system libraries containing different Prolog built-ins and library predicates. The
experiments consisted in opening a specific module in the IDE, and activating the
checking of assertions with global analysis, i.e., analyzing the whole application
as well as the libraries, and then performing a series of small edits, observing the
total response time, i.e., the time from edit to graphical update of assertion coloring

3 https://github.com/ciao-lang/chat80

https://github.com/ciao-lang/chat80

9.3 some performance results 149

Fig. 29: A property incompatibility bug detected statically.

(a) Detection of illegal call to a library. (b) Detection of simple non-termination.

Fig. 30: Static detection of bugs without the need for assertions.

in the IDE. Concretely, we performed two kinds of edits, predicate and assertions
(E1), and only assertions (E2). The edits were performed on three selected files:
aggreg, readin, and talkr. To study whether incrementality improves response times
significantly, we included experiments enabling and disabling it. The experiments
were performed in a MacBook Air with the Apple M1 chip and 16 GB of RAM. We
evaluated the tool with three well-known abstract domains: a classic pair sharing [121]
(pairSh), a dependency tracking via propositional clauses domain [53] (def), and
sharing+groundness with clique-based widening [132] (ShGrC). The latter is the
most precise, and, hence, the most expensive. We used sharing/groundness domains
because they are known to be costly and at the same time, beyond mode inference,
necessary to ensure correctness of most other analyses in (C)LP systems that support
logical variables, and furthermore in any language that has pointers (aliasing).
Tables 9.2 and 9.1 show the response times of analyzing and checking assertions

in experiments E1 and E2 respectively. For each of the files that were modified the
table shows three columns: noinc is the response time in the non-incremental analysis

150 application: on-the-fly assertion checking

Fig. 31: Static verification of determinacy, termination, and cost (errors detected).

Fig. 32: Static verification of determinacy, termination, and cost (verified).

setting, inc is the response time in the incremental setting, and speedup is the speedup
of inc vs. noinc. Each of the rows in the table correspond to each of the abstract
domains. The reported time is the average of total roundtrip assertion checking time,
measured from the IDE, that is, what the programmer actually perceives.

In all of the experiments incrementality provides significant speedups. In the first
experiment, E1 (Table 9.2), for the pairSh and def domains, it allows keeping the
response time, crucial for the interactive use case of the analyzer that we propose,
under 2 s. For ShGrC, a significant speedup is also achieved (more than ×3.5). The
response time is borderline at 5 s. The reason for this is, as mentioned, that the
domain is more precise, an thus more computationally expensive, which in fact allows
(dis)proving more assertions. For the E2 experiment (Table 9.1), the tool detects that
no changes are required in the analysis results, and the assertions can be rechecked
w.r.t. the available (previous) analysis. The performance analyzing with ShGrC is
improved significantly (more than ×9) but, more importantly, the response times

9.3 some performance results 151

aggreg readin talkr

domain noinc inc speedup noinc inc speedup noinc inc speedup

pairSh 2.8 1.6 ×1.8 2.9 1.5 ×1.9 2.8 1.6 ×1.8
def 3.0 1.6 ×1.9 2.7 1.5 ×1.8 2.9 1.7 ×1.7

ShGrC 18.1 5.1 ×3.5 18.3 5.1 ×3.6 18.1 4.5 ×4.0

Table 9.1: Average response time (seconds) for the experiments only changing assertions.

aggreg readin talkr

domain noinc inc speedup noinc inc speedup noinc inc speedup

pairSh 2.8 1.7 ×1.6 2.7 1.6 ×1.7 2.9 1.7 ×1.7
def 3.1 1.5 ×2.0 2.9 1.4 ×2.0 3.0 1.6 ×1.9

ShGrC 18.2 2.0 ×9.1 18.1 1.9 ×9.6 18.2 1.9 ×9.6

Table 9.2: Average response time (seconds) for the experiments with any program edit.

are around 2 s. All in all, the incremental features allow using many domains and,
at least in some cases, even the most expensive domains.

Note that the experiments reveal also that an interesting configuration of this tool
is to run different analyses in a portfolio, where which analyses to run is decided
depending on the kind of change occurred. If only assertions have changed, it is
enough to recheck only with ShGrC. However if both the code and the assertions
changed, analysis for all domains can be run in parallel giving fast, less precise
feedback to the programmer as the results are available, and then refine the results
when the more precise results are ready.

Aside from the data in the tables, we observed a constant overhead of 0.4 s for
loading the code—parsing and prior transformations—in the tool. This is currently
still not fully incremental and has not been optimized yet to load only the parts that
change. Verification times are negligible w.r.t. analysis times and are approx. 0.1 s; this
is also non incremental, since we found that it is not currently a bottleneck, although
we plan to make it incremental in the future to push the limits of optimizations
forward.

152 application: on-the-fly assertion checking

9.4 Related work

The topic of assertion checking in logic programming, and in Prolog in particular,
has received considerable attention. A family of approaches involves defining static
type systems for logic programs [130, 104, 139] and several strongly-typed logic
programming systems have been proposed, notable examples being Mercury [165]
and Gödel [87]. Approaches for combining strongly typed and untyped Prolog modules
were proposed in [162, 161]. Most of these approaches impose a number of restrictions
that make them less appropriate for dynamic languages like Prolog. The Ciao
model introduced an alternative for writing safe programs without relying on full
static typing, but based instead the notions of safe approximations and abstract
interpretation, providing a more general and flexible approach than in previous
work, since assertions are optional and can contain any abstract property. This
approach is specially useful for dynamic languages—see, e.g., [79] for a discussion of
this topic. Some aspects of the Ciao model have been adopted or applied in other
recent Prolog-based approaches, such as, e.g., [161, 174] or the library for run-time
checking of assertions in SWI-Prolog. It can be considered an antecedent of the now
popular gradual- and hybrid-typing approaches [57, 164, 151]. There has been work
on incrementality within theorem proving-based verification approaches, such as,
e.g., [157, 171], and within SMT-based approaches [56, 9]. Additional references can
be found in the CiaoPP overview papers and the other citations provided.

9.5 Conclusion

We have shown how the integration of the CiaoPP static analysis and verification
framework within an integrated development environment (IDE) can take advantage
of incrementality to achieve a high level of reactivity at different levels of granularity.
Our initial experience with this integrated tool shows quite promising results, with
low latency times that provide early, continuous, and precise “on-the-fly” semantic
feedback to programmers during the development process. This allows detecting
many types of errors including swapped variables, property incompatibilities, illegal
calls to library predicates, violated numeric constraints, unintended behavior w.r.t.
termination, resource usage, determinism, covering and failure, etc. While presented
using the Emacs and the flycheck package, we argue that our techniques and results
should be applicable to any VeriFly-style integration into a modern extensible IDE. We
plan to continue our work to achieve further reactivity and scalability improvements,
enhanced presentations of verification results, and improved diagnosis, contributing to
further improve the programming environments available to the (C)LP programmer.

10
Conclusion

Every time we get to the finish line they move it. Every
time.

— Mary Jackson, Hidden Figures (2016)

Motivated by the increasing importance of the reliability of large software projects,
this thesis has aimed to design and evaluate scalable static analysis algorithms that
allow having semantic feedback during program development. The thesis is supported
in the theory of abstract interpretation, concretely for logic programs, and aimed to
provide a unified view of existing abstract interpretation-based algorithms together
with some new proposed algorithms. The latter algorithms were implemented and
evaluated and ultimately proven to be useful in the context of a novel interactive
semantic program development tool.

The work in this thesis has been developed motivated by the importance of software
in our daily lives. Its increased presence, and growing size and complexity, makes code
reliability a key factor, from the point of view of guarantees for the client and software
maintenance. As mentioned, formal methods-based techniques for automatic static
analysis of programs offer reliability guarantees about all program executions, based
on rigorous mathematical formalisms. These guarantees are obtained without having
to actually execute the program, and without the need of user interaction. The reduced
user interaction achievable by these techniques make them really good candidates
for their use in the continuous integration/continuous deployment (CI/CD) pipelines
as well as for tight integration with IDEs. However, the automatic nature of the
techniques is a double edge sword. Being completely automatic logically means having
a huge search space. So algorithms and abstractions need to be carefully designed. As
already stressed, scalability of such tools is crucial, otherwise, the analysis result can
become obsolete, if software changes occur faster than tools report. Our approach
to tackle the scalability challenges is to reuse as much as possible previous analysis
results, in order to avoid recomputing from scratch.

153

154 conclusion

At this point, we would like to summarize the contributions of the thesis and relate
them with these goals, as also stated in the introduction (Sec. 1.1), i.e., G1 to G4.

First, we studied the effects of the inherent precision loss of abstract interpretation
on false alarms. To this end we proposed a classification of programs in terms of being
complete/incomplete for an abstract interpretation (G4), based on the notion of
incompleteness/completeness cliques. We proved that the equivalence induced by the
abstract semantics on programs is an index set of partial recursive functions if and
only if the abstraction is trivial. We considered the strongest possible scenario in order
to establish when incompleteness can be injected. We proved that incompleteness can
be injected in every program, even when the abstraction is designed to be the most
precise one. We proved this using a transformation based on the structure of the
abstract domain. This result has important consequences in program analysis and
abstract interpretation: first, it shows that any non-trivial abstraction of extensional
(functional) properties of programs is susceptible to their intensional structure. This
means that any non-trivial abstract interpretation always unveils implicitly properties
concerning the way programs are written. Second, program analysis behaves as other
well known intensional properties of programs, like computational complexity. Lastly,
we studied the class C(P ,A), which is the space of action of any code protecting
transformations whose aim is to foil program analysis (and therefore foil any tool
supporting reverse engineering). We proved that the set of all programs that are
incomplete for any non-trivial abstraction is a Turing complete language. This means
that it is possible to build a compiler that compiles any program P into an equivalent
program that is incomplete for A, therefore justifying code transformations that
protect code against program analysis. On the other side, the expressivity of the
class C(A) of all programs that are complete for a non-trivial abstraction A is still
obscure. We know that for terminating non-trivial program analyses we cannot find
a many-to-one reduction of C(P ,A) into C(P ,A). This implies that C(A) cannot be
always Turing complete.

Second, we presented a new common framework for fixpoint computation algorithms
for logic programs, in where we formalized the guarantees of existing algorithms. We
extended these algorithms to obtain a modular and incremental context-sensitive
algorithm (G1). Our algorithm takes care of propagating the fine-grain change
information across module boundaries and implements all the actions required to
recompute the analysis fixpoint incrementally after additions and deletions in the
program. We have shown that the algorithm is correct and computes the most
precise analysis for finite abstract domains, while supporting widening for dealing
with infinite domains. We have also provided some new results for the baseline
algorithms. Moreover, we have implemented and benchmarked the proposed approach
within the CiaoPP framework, and our preliminary results show promising speedups

conclusion 155

for programs of medium and larger size when compared to existing non-modular,
fine-grain incremental analysis techniques, as well as improvements in memory
consumption. In addition, the finer granularity of the proposed modular incremental
fixpoint algorithm also brings improvements with respect to modular analysis alone
(which only preserved analysis results at the module boundaries), producing better
results even in the limit case of analyzing the whole program from scratch.
Furthermore, we proposed a user-guided multivariant incremental fixpoint algo-

rithm that makes use of assertion information (G2), and we have provided formal
results on the influence of such assertions on correctness. We have extended the
semantics of the guidance (and all) assertions to deal with both the cases in which
the program execution will and will not incorporate run-time tests for unverified
assertions, as well as the cases in which the assertions are intended for refining
the information or instead for losing precision in order to gain efficiency. We have
shown that these annotations are not only useful when dealing with incomplete code
but also provide the analyzer with recursion/loop invariants for speeding up global
convergence.

Lastly, regarding G3, our preliminary results support the conclusion that the novel
incremental analysis proposed brings promising analysis performance advantages for
generic code using traits. The notion and encoding of traits used is very close to the
underlying mechanisms used in other languages for implementing dynamic dispatch
or run-time polymorphism (like Go’s interfaces, Rust’s traits, or a limited form of
Haskell’s type clases), so we believe that our techniques and results can be generalized
to other languages. This also applies to our proposed algorithm for incremental
analysis with assertion changes, which can be applied to different languages through
the standard technique of translation to Horn-clause representation.

We closed this thesis with an application of incremental analysis in the context of
on-the-fly assertion verification. We have shown how the CiaoPP static analysis and
verification framework is connected within an integrated development environment
(IDE) and takes advantage of incrementality to achieve a high level of reactivity at dif-
ferent levels of granularity. Our initial experience with the integrated tool shows quite
promising results, with low latency times that provide early, continuous, and precise
“on-the-fly” semantic feedback to programmers during the development process. This
allows the early detection of many types of errors, including swapped variables, prop-
erty incompatibilities, illegal calls to library predicates, violated numeric constraints,
unintended behaviour w.r.t. termination, resource usage, determinism, covering and
failure (exceptions), etc.

156 conclusion

10.1 Future work

We want to end this thesis with some lines of future work.

Applications of fine-grain incremental analysis. Among the research lines that clearly
follow this thesis, one key goal is to research how this technique is relevant to the
numerous other applications of abstract interpretation.

• Improving performance when abstract interpretation is combined with program
transformations or partial evaluation. A technique for performing both tech-
niques in a tightly interconnected, interleaved fashion was proposed in [143],
and shown to be more powerful than either technique alone or non-interleaved
combinations.

• Semantic code search. In [63] we presented a technique for code search based
on abstract interpretation. It consisted in, first, statically preanalyzing a source
code database, e.g., the components of a software project, making a “best
effort” on the precision of the analysis. Queries to the database can then made
using assertions, to find predicates that meet such specifications, and this is
done by checking the assertions against the preanalysis results. The preanalysis
phase can clearly benefit from incremental algorithms as they improve the
recomputation of this information when the source code changes. Second, when
a query is made, the preanalysis may not be precise enough to find relevant
information. If this is the case, the analysis result can be incrementally refined,
reusing as much as possible the existing analysis so that more code can be
found precisely to fit the assertion.

• Parallel fixpoint computation. Being able to isolate fixpoint computation of
modular partitions of programs allows running the analysis of each of them
in parallel. When the semantics of the called modules is available, it can be
incrementally incorporated in the caller modules. This approach could be
combined with the algorithm proposed recently in [98].

Heuristics for parameter tuning. We have observed that, depending on the program
edit, with some settings of the algorithm the analysis is recomputed faster than with
others. A shallow and syntactic characterization has been presented here but a more
deep, and, probably, semantic characterization of such program changes could help
in automatically selecting which reanalysis settings will work better.

Abstract domains amenable to incrementality. Related with the previous point, it
may be worth studying which (abstract) data structures can make the proposed

10.1 future work 157

algorithms run at their best performance. As an example of the worst case, if checking
if a subgraph needs to be recomputed is as costly as recomputing it from scratch,
then this abstract domain is not amenable to incrementality.

Providing incremental analysis and verification to programs in other source languages.
Lastly, when analyzing CLP programs obtained by transforming a program in a
different source language, incrementality-aware transformations can help obtain the
maximum performance of the proposed techniques.

Bibliography

[1] S. Abramsky. Intensionality, definability and computation. In A. Baltag and
S. Smets, editors, Johan van Benthem on Logic and Information Dynamics,
pages 121–142. Springer, 2014.

[2] U. A. Acar. Self-adjusting computation: (an overview). In G. Puebla and
G. Vidal, editors, Proceedings of the 2009 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-based Program Manipulation, PEPM 2009,
Savannah, GA, USA, January 19-20, 2009, pages 1–6. ACM, 2009.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis
of Object-Oriented Bytecode Programs. Theoretical Computer Science (Special
Issue on Quantitative Aspects of Programming Languages), 413(1):142–159,
2012.

[4] E. Albert, J. Correas, G. Puebla, and G. Román-Díez. Incremental Resource
Usage Analysis. In Proceedings of the 2012 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, PEPM 2012, Philadelphia,
Pennsylvania, USA, January 23-24, 2012, pages 25–34. ACM Press, January
2012.

[5] E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java
Bytecode using Analysis and Transformation of Logic Programs. In Ninth
International Symposium on Practical Aspects of Declarative Languages (PADL
2007), number 4354 in LNCS, pages 124–139. Springer-Verlag, January 2007.

[6] E. Albert, G. Puebla, and M. V. Hermenegildo. Abstraction-Carrying Code.
In Proc. of LPAR’04, volume 3452 of LNAI. Springer, 2005.

[7] K. R. Apt. Introduction to logic programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, pages 493–576. Elsevier, 1990.

[8] S. Arzt and E. Bodden. Reviser: Efficiently Updating IDE-/IFDS-based Data-
flow Analyses in Response to Incremental Program Changes. In P. Jalote,
L. C. Briand, and A. van der Hoek, editors, 36th International Conference on
Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014,
pages 288–298. ACM, 2014.

159

160 bibliography

[9] S. Asadi, M. Blicha, A. E. J. Hyvärinen, G. Fedyukovich, and N. Sharygina.
Incremental Verification by SMT-based Summary Repair. In 2020 Formal
Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel, September
21-24, 2020, pages 77–82. IEEE, 2020.

[10] A. Asperti. The intensional content of rice’s theorem. In G. C. Necula and
P. Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008, pages 113–119. ACM, 2008.

[11] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset
domains. In G. Levi and B. Steffen, editors, Proceedings of the 5th International
Conference on Verification, Model Checking and Abstract Interpretation, volume
2937 of LNCS, pages 135–148. Springer, January 2004.

[12] G. Banda and J. P. Gallagher. Analysis of Linear Hybrid Systems in CLP. In
M. Hanus, editor, Logic-Based Program Synthesis and Transformation, 18th
International Symposium, LOPSTR 2008, Valencia, Spain, July 17-18, 2008,
volume 5438 of Lecture Notes in Computer Science, pages 55–70. Springer,
2009.

[13] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6,
2012.

[14] A. M. Ben-Amram and N. D. Jones. Computational complexity via pro-
gramming languages: constant factors do matter. Acta Inf., 37(2):83–120,
2000.

[15] N. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Rybalchenko. Horn Clause
Solvers for Program Verification. In L. D. Beklemishev, A. Blass, N. Dershowitz,
B. Finkbeiner, and W. Schulte, editors, Fields of Logic and Computation II
- Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday,
volume 9300 of Lecture Notes in Computer Science, pages 24–51. Springer,
2015.

[16] N. Bjørner, K. L. McMillan, and A. Rybalchenko. On solving universally
quantified Horn clauses. In Logozzo and Fähndrich [114], pages 105–125.

[17] A. Bossi, M. Gabbrieli, G. Levi, and M. Meo. A compositional semantics for
logic programs. Theoretical Computer Science, 122(1,2):3–47, 1994.

bibliography 161

[18] P. Bourdoncle. Interprocedural abstract interpretacion of block structured
languages with nested procedures, aliasing and recursivity. In Proceedings of the
International Workshop PLILP’90, number 456 in Lecture notes in Computer
Science, pages 84–97. Springer–Verlag, 1990.

[19] C. Braem, B. L. Charlier, S. Modart, and P. V. Hentenryck. Cardinality
analysis of Prolog. In Proc. International Symposium on Logic Programming,
pages 457–471, Ithaca, NY, November 1994. MIT Press.

[20] R. Bruni, R. Giacobazzi, and R. Gori. Code obfuscation against abstraction
refinement attacks. Formal Asp. Comput., 30(6):685–711, 2018.

[21] R. Bruni, R. Giacobazzi, R. Gori, I. Garcia-Contreras, and D. Pavlovic. Abstract
Extensionality – On the Properties of Incomplete Abstract Interpretations.
In Proc. ACM Symposium on Principles of Programming Languages 2020,
January 2020.

[22] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of
Logic Programs. Journal of Logic Programming, 10:91–124, 1991.

[23] F. Bueno, D. Cabeza, M. V. Hermenegildo, and G. Puebla. Global Analysis of
Standard Prolog Programs. In European Symposium on Programming, number
1058 in LNCS, pages 108–124, Sweden, April 1996. Springer-Verlag.

[24] F. Bueno, M. G. de la Banda, M. V. Hermenegildo, K. Marriott, G. Puebla, and
P. Stuckey. A Model for Inter-module Analysis and Optimizing Compilation.
In Logic-based Program Synthesis and Transformation, number 2042 in LNCS,
pages 86–102. Springer-Verlag, March 2001.

[25] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. V. Hermenegildo,
J. Maluszynski, and G. Puebla. On the Role of Semantic Approximations
in Validation and Diagnosis of Constraint Logic Programs. In Proc. of the
3rd Int’l. Workshop on Automated Debugging–AADEBUG’97, pages 155–170,
Linköping, Sweden, May 1997. U. of Linköping Press.

[26] M. Burke. An interval-based approach to exhaustive and incremental inter-
procedural data-flow analysis. ACM Transactions on Programming Languages
and Systems, 12(3):341–395, 1990.

[27] D. Cabeza and M. V. Hermenegildo. A New Module System for Prolog. In
International Conference on Computational Logic, CL2000, number 1861 in
LNAI, pages 131–148. Springer-Verlag, July 2000.

162 bibliography

[28] M. Carroll and B. Ryder. Incremental data flow analysis via dominator and
attribute updates. In 15th ACM Symposium on Principles of Programming
Languages (POPL), pages 274–284. ACM Press, 1988.

[29] K. Chatterjee, B. Choudhary, and A. Pavlogiannis. Optimal dyck reachability
for data-dependence and alias analysis. PACMPL, 2(POPL):30:1–30:30, 2018.

[30] M. Codish, S. Debray, and R. Giacobazzi. Compositional Analysis of Modular
Logic Programs. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages POPL’93, pages 451–464, Charleston, South Carolina,
1993. ACM.

[31] C. Collberg and J. Nagra. Surreptitious Software: Obfuscation, Watermarking,
and Tamperproofing for Software Protection. Addison-Wesley Professional,
2009.

[32] K. Cooper and K. Kennedy. Efficient computation of flow insensitive interpro-
cedural summary information. In ACM SIGPLAN Symposium on Compiler
Construction (SIGPLAN Notices 19(6)), pages 247–258. ACM Press, 1984.

[33] J. Correas, G. Puebla, M. V. Hermenegildo, and F. Bueno. Experiments in
Context-Sensitive Analysis of Modular Programs. In 15th International Sym-
posium on Logic-based Program Synthesis and Transformation (LOPSTR’05),
number 3901 in LNCS, pages 163–178. Springer-Verlag, April 2006.

[34] N. Courant and C. Urban. Precise widening operators for proving termination
by abstract interpretation. In A. Legay and T. Margaria, editors, Tools and
Algorithms for the Construction and Analysis of Systems - 23rd International
Conference, TACAS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Part I, volume 10205 of Lecture Notes in Computer Science, pages
136–152, 2017.

[35] P. Cousot. Abstract Interpretation Based Formal Methods and Future Chal-
lenges. In R. Wilhelm, editor, Informatics: 10 Years Back, 10 Years Ahead,
Lecture Notes on Computer Science, pages 138–156. Springer Berlin Heidelberg,
2001.

[36] P. Cousot. Is Static Analysis Successful? In A. Farzan, editor, Online seminar
series on Verification beyond 2020. U. Toronto, Canada, Tuesday, July 7 , 2020.

[37] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.

bibliography 163

In ACM Symposium on Principles of Programming Languages (POPL’77),
pages 238–252. ACM Press, 1977.

[38] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In Sixth ACM Symposium on Principles of Programming Languages, pages
269–282, San Antonio, Texas, 1979.

[39] P. Cousot and R. Cousot. Modular Static Program Analysis, invited paper.
In Eleventh International Conference on Compiler Construction, CC 2002,
number 2304 in LNCS, pages 159–178. Springer, 2002.

[40] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. The ASTREÉ analyzer. In 14th European Symposium on Program-
ming, ESOP 2005, pages 21–30, April 2005.

[41] P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, and X. Rival. Why does
Astrée scale up? Formal Methods in System Design (FMSD), 35(3):229–264,
December 2009.

[42] P. Cousot, R. Giacobazzi, and F. Ranzato. Program analysis is harder than
verification: A computability perspective. In H. Chockler and G. Weissenbacher,
editors, Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in
Computer Science, pages 75–95. Springer, 2018.

[43] U. Dal Lago. A Short Introduction to Implicit Computational Complexity. In
N. Bezhanishvili and V. Goranko, editors, Lectures on Logic and Computation
- ESSLLI 2010 Copenhagen, Denmark, August 2010, ESSLLI 2011, Ljubljana,
Slovenia, August 2011, Selected Lecture Notes, volume 7388 of Lecture Notes
in Computer Science, pages 89–109. Springer, 2011.

[44] M. Dalla Preda and R. Giacobazzi. Semantics-based code obfuscation by
abstract interpretation. Journal of Computer Security, 17(6):855–908, 2009.

[45] E. De Angelis, F. Fioravanti, J. P. Gallagher, M. V. Hermenegildo, A. Pettorossi,
and M. Proietti. Analysis and Transformation of Constrained Horn Clauses
for Program Verification. Theory and Practice of Logic Programming, August
2021.

[46] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. VeriMAP: A
Tool for Verifying Programs through Transformations. In E. Ábrahám and
K. Havelund, editors, Tools and Algorithms for the Construction and Analysis

164 bibliography

of Systems - 20th International Conference, TACAS 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes
in Computer Science, pages 568–574. Springer, 2014.

[47] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Semantics-based
generation of verification conditions by program specialization. In M. Falaschi
and E. Albert, editors, Proceedings of the 17th International Symposium on
Principles and Practice of Declarative Programming, Siena, Italy, July 14-16,
2015, pages 91–102. ACM, 2015.

[48] L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R.
Ramakrishnan and J. Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[49] S. Debray, P. Lopez-Garcia, and M. V. Hermenegildo. Non-Failure Analysis
for Logic Programs. In 1997 International Conference on Logic Programming,
pages 48–62, Cambridge, MA, June 1997. MIT Press, Cambridge, MA.

[50] D. Delmas and J. Souyris. Astrée: From research to industry. In Static Analysis,
14th International Symposium, SAS 2007, Kongens Lyngby, Denmark, August
22-24, 2007, pages 437–451, 2007.

[51] A. A. A. Donovan and B. W. Kernighan. The Go Programming Language.
Professional Computing. Addison-Wesley, October 2015.

[52] S. Drape, C. Thomborson, and A. Majumdar. Specifying imperative data
obfuscations. In J. A. Garay, A. K. Lenstra, M. Mambo, and R. Peralta,
editors, ISC - Information Security, volume 4779 of Lecture Notes in Computer
Science, pages 299 – 314. Springer Verlag, 2007.

[53] V. Dumortier, G. Janssens, W. Simoens, and M. García de la Banda. Combining
a Definiteness and a Freeness Abstraction for CLP Languages. In Workshop
on Logic Program Synthesis and Transformation, 1993.

[54] M. Eichberg, M. Kahl, D. Saha, M. Mezini, and K. Ostermann. Automatic
incrementalization of prolog based static analyses. In M. Hanus, editor, Practical
Aspects of Declarative Languages, 9th International Symposium, PADL 2007,
Nice, France, January 14-15, 2007, volume 4354 of Lecture Notes in Computer
Science, pages 109–123. Springer, 2007.

bibliography 165

[55] M. Fähndrich and F. Logozzo. Static Contract Checking with Abstract In-
terpretation. In Proceedings of the 2010 International Conference on Formal
Verification of Object-oriented Software, FoVeOOS’10, volume 6528 of Lecture
Notes in Computer Science, pages 10–30, Berlin, Heidelberg, 2011. Springer-
Verlag.

[56] G. Fedyukovich, A. Gurfinkel, and N. Sharygina. Incremental verification of
compiler optimizations. In J. M. Badger and K. Y. Rozier, editors, NASA
Formal Methods - 6th International Symposium, NFM 2014, Houston, TX,
USA, April 29 - May 1, 2014. Proceedings, volume 8430 of Lecture Notes in
Computer Science, pages 300–306. Springer, 2014.

[57] C. Flanagan. Hybrid Type Checking. In J. G. Morrisett and S. L. Peyton
Jones, editors, Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2006, Charleston, South
Carolina, USA, January 11-13, 2006, pages 245–256. ACM, 2006.

[58] Y. Futamura. Partial evaluation of computation process–an approach to a
compiler-compiler. Higher-Order and Symbolic Computation, 12(4):381–391,
1999.

[59] J. Gallagher, M. V. Hermenegildo, B. Kafle, M. Klemen, P. Lopez-Garcia, and
J. Morales. From big-step to small-step semantics and back with interpreter
specialization (invited paper). In Proceedings of the Eighth International
Workshop on Verification and Program Transformation (VPT 2020), Electronic
Proceedings in Theoretical Computer Science (EPTCS), pages 50–65. Open
Publishing Association (OPA), 2020. Co-located with ETAPS 2020.

[60] I. Garcia-Contreras, J. Morales, and M. V. Hermenegildo. Experiments in
Context-Sensitive Incremental and Modular Static Analysis in CiaoPP. In 10th
Workshop on Tools for Automatic Program Analysis (TAPAS’19), October
2019. (Extended Abstract).

[61] I. Garcia-Contreras, J. Morales, and M. V. Hermenegildo. Multivariant
Assertion-based Guidance in Abstract Interpretation. In Post-Proceedings of the
28th International Symposium on Logic-based Program Synthesis and Transfor-
mation (LOPSTR’18), number 11408 in LNCS, pages 184–201. Springer-Verlag,
January 2019.

[62] I. Garcia-Contreras, J. Morales, and M. V. Hermenegildo. Incremental Analysis
of Logic Programs with Assertions and Open Predicates. In Proceedings
of the 29th International Symposium on Logic-based Program Synthesis and

166 bibliography

Transformation (LOPSTR’19), volume 12042 of LNCS, pages 36–56. Springer,
2020.

[63] I. Garcia-Contreras, J. F. Morales, and M. V. Hermenegildo. Semantic Code
Browsing. Theory and Practice of Logic Programming, 32nd Int’l. Conference
on Logic Programming (ICLP’16) Special Issue, 16(5-6):721–737, September
2016.

[64] I. Garcia-Contreras, J. F. Morales, and M. V. Hermenegildo. Incremental and
Modular Context-sensitive Analysis. Theory and Practice of Logic Program-
ming, 21(2):196–243, January 2021.

[65] R. Giacobazzi. Hiding information in completeness holes - new perspectives in
code obfuscation and watermarking. In Proc. of the 6th IEEE Int. Conferences
on Software Engineering and Formal Methods (SEFM ’08), pages 7–20. IEEE
Press, 2008.

[66] R. Giacobazzi, N. D. Jones, and I. Mastroeni. Obfuscation by partial evaluation
of distorted interpreters. In Proc. of the ACM SIGPLAN Symp. on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM’12), pages
63–72. ACM Press, 2012.

[67] R. Giacobazzi, F. Logozzo, and F. Ranzato. Analyzing program analyses. In
Rajamani and Walker [149], pages 261–273.

[68] R. Giacobazzi and I. Mastroeni. Making abstract interpretation incomplete:
Modeling the potency of obfuscation. In A. Miné and D. Schmidt, editors,
Static Analysis - 19th International Symposium, SAS 2012, Deauville, France,
September 11-13, 2012. Proceedings, volume 7460 of Lecture Notes in Computer
Science, pages 129–145. Springer, 2012.

[69] R. Giacobazzi and I. Mastroeni. Making abstract models complete. Mathe-
matical Structures in Computer Science, 26(4):658–701, 2016.

[70] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretation
complete. Journal of the ACM, 47(2):361–416, March 2000.

[71] M. Gómez-Zamalloa, E. Albert, and G. Puebla. Decompilation of Java Byte-
code to Prolog by Partial Evaluation. Information and Software Technology,
51(10):1409–1427, October 2009.

[72] D. Gopan and T. Reps. Guided static analysis. In International Static Analysis
Symposium, pages 349–365. Springer, 2007.

bibliography 167

[73] S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko.
HSF(C): A Software Verifier Based on Horn Clauses - (Competition Contribu-
tion). In C. Flanagan and B. König, editors, TACAS, volume 7214 of LNCS,
pages 549–551. Springer, 2012.

[74] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing
software verifiers from proof rules. In J. Vitek, H. Lin, and F. Tip, editors, ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, pages 405–416. ACM, 2012.

[75] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The SeaHorn
Verification Framework. In Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceed-
ings, Part I, number 9206 in LNCS, pages 343–361. Springer, July 2015.

[76] R. Hähnle and M. Huisman. Deductive software verification: From pen-and-
paper proofs to industrial tools. In B. Steffen and G. J. Woeginger, editors,
Computing and Software Science - State of the Art and Perspectives, volume
10000 of Lecture Notes in Computer Science, pages 345–373. Springer, 2019.

[77] K. S. Henriksen and J. P. Gallagher. Abstract Interpretation of PIC Programs
through Logic Programming. In SCAM ’06, Proceedings of the Sixth IEEE
International Workshop on Source Code Analysis and Manipulation, pages
184–196. IEEE Computer Society, 2006.

[78] M. V. Hermenegildo. A Documentation Generator for (C)LP Systems. In
International Conference on Computational Logic, CL2000, number 1861 in
LNAI, pages 1345–1361. Springer-Verlag, July 2000.

[79] M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia, E. Mera, J. Morales,
and G. Puebla. The Ciao Approach to the Dynamic vs. Static Language
Dilemma. In Proceedings for the International Workshop on Scripts to Programs
(STOP’11), New York, NY, USA, 2011. ACM.

[80] M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia, E. Mera, J. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. Theory and
Practice of Logic Programming, 12(1–2):219–252, January 2012.

[81] M. V. Hermenegildo and J. Morales. The LPdoc Documentation Genera-
tor. Ref. Manual (v3.0). Technical report, UPM, July 2011. Available at
http://ciao-lang.org.

168 bibliography

[82] M. V. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial
Specifications, and an Extensible Assertion Language for Program Validation
and Debugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren,
editors, The Logic Programming Paradigm: a 25–Year Perspective, pages 161–
192. Springer-Verlag, July 1999.

[83] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Program De-
velopment Using Abstract Interpretation (and The Ciao System Preprocessor).
In 10th International Static Analysis Symposium (SAS’03), number 2694 in
LNCS, pages 127–152. Springer-Verlag, June 2003.

[84] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Integrated
Program Debugging, Verification, and Optimization Using Abstract Interpreta-
tion (and The Ciao System Preprocessor). Science of Computer Programming,
58(1–2):115–140, October 2005.

[85] M. V. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental
Analysis of Logic Programs. In International Conference on Logic Programming,
pages 797–811. MIT Press, June 1995.

[86] M. V. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental
Analysis of Constraint Logic Programs. ACM Transactions on Programming
Languages and Systems, 22(2):187–223, March 2000.

[87] P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press, Cambridge
MA, 1994.

[88] P. Hudak, S. Peyton-Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M.
Guzman, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil,
W. Partain, and J. Peterson. Report on the Programming Language Haskell.
Haskell Special Issue, ACM Sigplan Notices, 27(5):1–164, 1992.

[89] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In ACM Symposium
on Principles of Programming Languages, pages 111–119. ACM, 1987.

[90] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa. TRACER: A symbolic
execution tool for verification. In P. Madhusudan and S. A. Seshia, editors,
Computer Aided Verification - 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume 7358 of Lecture Notes
in Computer Science, pages 758–766. Springer, 2012.

[91] N. D. Jones. Transformation by interpreter specialisation. Science of Computer
Programming, 52(17(1)):307–339, 2004.

bibliography 169

[92] B. Kafle, J. P. Gallagher, and J. F. Morales. RAHFT: A Tool for Verifying
Horn Clauses Using Abstract Interpretation and Finite Tree Automata. In
S. Chaudhuri and A. Farzan, editors, Computer Aided Verification - 28th
International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part I, volume 9779 of Lecture Notes in Computer Science, pages
261–268. Springer, 2016.

[93] G. Kahn. Natural semantics. In F. J. Brandenburg, G. Vidal-Naquet, and
M. Wirsing, editors, Proceedings of the 4th Annual Symposium on Theoretical
Aspects of Computer Science, STACS ’87, page 22–39, Berlin, Heidelberg, 1987.
Springer-Verlag.

[94] T. Kahsai, P. Rümmer, H. Sanchez, and M. Schäf. JayHorn: A framework for
verifying Java programs. In S. Chaudhuri and A. Farzan, editors, Computer
Aided Verification - 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Part I, volume 9779 of Lecture Notes in Computer
Science, pages 352–358. Springer, 2016.

[95] G. A. Kavvos. On the semantics of intensionality. In J. Esparza and A. S. Mu-
rawski, editors, Foundations of Software Science and Computation Structures -
20th International Conference, FOSSACS 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, volume 10203 of Lecture Notes in
Computer Science, pages 550–566, 2017.

[96] A. Kelly, K. Marriott, H. Søndergaard, and P. Stuckey. A generic object
oriented incremental analyser for constraint logic programs. In Proceedings of
the 20th Australasian Computer Science Conference, pages 92–101, 1997.

[97] U. P. Khedker and B. Karkare. Efficiency, precision, simplicity, and generality
in interprocedural data flow analysis: Resurrecting the classical call strings
method. In L. J. Hendren, editor, Compiler Construction, 17th International
Conference, CC 2008, Budapest, Hungary, March 29 - April 6, 2008, volume
4959 of Lecture Notes in Computer Science, pages 213–228. Springer, 2008.

[98] S. K. Kim, A. J. Venet, and A. V. Thakur. Deterministic parallel fixpoint
computation. Proc. ACM Program. Lang., 4(POPL):14:1–14:33, 2020.

[99] A. King, L. Lu, and S. Genaim. Detecting Determinacy in Prolog Programs. In
S. Etalle and M. Truszczynski, editors, Logic Programming, 22nd International
Conference, ICLP 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings,

170 bibliography

volume 4079 of Lecture Notes in Computer Science, pages 132–147. Springer,
2006.

[100] S. Klabnik and C. Nichols. The Rust Programming Language. No Starch Press,
San Francisco, CA, USA, 2018.

[101] M. Klemen, N. Stulova, P. Lopez-Garcia, J. F. Morales, and M. V.
Hermenegildo. Static Performance Guarantees for Programs with Run-time
Checks. In 20th Int’l. ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming (PPDP’18). ACM Press, September 2018.

[102] A. Krall and T. Berger. Incremental global compilation of Prolog with the
vienna abstract machine. In International Conference on Logic Programming.
MIT Press, June 1995.

[103] A. Krall and T. Berger. The VAMAI - an abstract machine for incremental global
dataflow analysis of Prolog. In M. G. de la Banda, G. Janssens, and P. Stuckey,
editors, ICLP’95 Post-Conference Workshop on Abstract Interpretation of Logic
Languages, pages 80–91, Tokyo, 1995. Science University of Tokyo.

[104] T. Lakshman and U. Reddy. Typed Prolog: A semantic reconstruction of the
Mycroft-O’Keefe type system. In International Logic Programming Symposium.
MIT Press, 1991.

[105] V. Laviron and F. Logozzo. Refining abstract interpretation-based static
analyses with hints. In Proc. of APLAS’09, volume 5904 of Lecture Notes in
Computer Science, pages 343–358. Springer-Verlag, 2009.

[106] U. Liqat, Z. Banković, P. Lopez-Garcia, and M. V. Hermenegildo. Inferring
Energy Bounds via Static Program Analysis and Evolutionary Modeling of
Basic Blocks. In F. Fioravanti and J. P. Gallagher, editors, Logic-Based Program
Synthesis and Transformation - 27th International Symposium, LOPSTR 2017,
Namur, Belgium, October 10-12, 2017, Revised Selected Papers, volume 10855
of Lecture Notes in Computer Science. Springer, 2018.

[107] U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V. Hermenegildo, J. P.
Gallagher, and K. Eder. Inferring Parametric Energy Consumption Functions
at Different Software Levels: ISA vs. LLVM IR. In M. V. Eekelen and U. D.
Lago, editors, Foundational and Practical Aspects of Resource Analysis: 4th
International Workshop, FOPARA 2015, London, UK, April 11, 2015. Revised
Selected Papers, volume 9964 of Lecture Notes in Computer Science, pages
81–100. Springer, 2016.

bibliography 171

[108] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech,
M. V. Hermenegildo, and K. Eder. Energy Consumption Analysis of Programs
based on XMOS ISA-level Models. In G. Gupta and R. Peña, editors, Logic-
Based Program Synthesis and Transformation, 23rd International Symposium,
LOPSTR 2013, Revised Selected Papers, volume 8901 of Lecture Notes in
Computer Science, pages 72–90. Springer, 2014.

[109] Y. A. Liu, J. Brandvein, S. D. Stoller, and B. Lin. Demand-driven incremental
object queries. In J. Cheney and G. Vidal, editors, Proceedings of the 18th
International Symposium on Principles and Practice of Declarative Program-
ming, Edinburgh, United Kingdom, September 5-7, 2016, pages 228–241. ACM,
2016.

[110] Y. A. Liu and S. D. Stoller. Dynamic Programming via Static Incrementaliza-
tion. High. Order Symb. Comput., 16(1-2):37–62, 2003.

[111] Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static Caching for Incremental
Computation. ACM Trans. Program. Lang. Syst., 20(3):546–585, 1998.

[112] J. Lloyd. Foundations of Logic Programming. Springer, second, extended
edition, 1987.

[113] F. Logozzo. Cibai: An abstract interpretation-based static analyzer for modular
analysis and verification of java classes. In VMCAI’07, number 4349 in LNCS.
Springer, Jan 2007.

[114] F. Logozzo and M. Fähndrich, editors. Static Analysis - 20th International
Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings,
volume 7935 of LNCS. Springer, 2013.

[115] P. Lopez-Garcia, F. Bueno, and M. V. Hermenegildo. Automatic Inference of
Determinacy and Mutual Exclusion for Logic Programs Using Mode and Type
Analyses. New Generation Computing, 28(2):117–206, 2010.

[116] P. Lopez-Garcia, L. Darmawan, M. Klemen, U. Liqat, F. Bueno, and M. V.
Hermenegildo. Interval-based Resource Usage Verification by Translation into
Horn Clauses and an Application to Energy Consumption. Theory and Practice
of Logic Programming, Special Issue on Computational Logic for Verification,
18(2):167–223, March 2018. arXiv:1803.04451.

[117] M. Madsen, M. Yee, and O. Lhoták. From Datalog to FLIX: a Declarative
Language for Fixed Points on Lattices. In C. Krintz and E. Berger, editors,
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language

172 bibliography

Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, pages 194–208. ACM, 2016.

[118] A. Majumdar, C. D. Thomborson, and S. Drape. A survey of control-flow
obfuscations. In A. Bagchi and V. Atluri, editors, Information Systems Security,
Second International Conference, ICISS 2006, Kolkata, India, December 19-21,
2006, Proceedings, volume 4332 of Lecture Notes in Computer Science, pages
353–356. Springer, 2006.

[119] T. Marlowe and B. Ryder. An efficient hybrid algorithm for incremental
data flow analysis. In 17th ACM Symposium on Principles of Programming
Languages (POPL), pages 184–196. ACM Press, 1990.

[120] K. Marriott and H. Sondergaard. Bottom-up dataflow analysis of logic pro-
grams. In Fifth International Conference and Symposium on Logic Program-
ming, pages 733–748, Seattle,Washington, August 1988. MIT Press.

[121] K. Marriott and H. Søndergaard. Precise and efficient groundness analysis for
logic programs. Technical report 93/7, Univ. of Melbourne, 1993.

[122] K. Marriott and P. J. Stuckey. Programming with Constraints: an Introduction.
MIT Press, 1998.

[123] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based
Approach to the Analysis of Object-Oriented Programs. In 17th International
Symposium on Logic-based Program Synthesis and Transformation (LOPSTR
2007), number 4915 in Lecture Notes in Computer Science, pages 154–168.
Springer-Verlag, August 2007.

[124] E. Mera, P. Lopez-Garcia, M. Carro, and M. V. Hermenegildo. Towards
Execution Time Estimation in Abstract Machine-Based Languages. In 10th
Int’l. ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP’08), pages 174–184. ACM Press, July 2008.

[125] F. Mora, Y. Li, J. Rubin, and M. Chechik. Client-specific equivalence checking.
In M. Huchard, C. Kästner, and G. Fraser, editors, Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, Montpellier, France, September 3-7, 2018, pages 441–451. ACM,
2018.

[126] K. Muthukumar and M. Hermenegildo. Determination of Variable Depen-
dence Information at Compile-Time Through Abstract Interpretation. In 1989

bibliography 173

North American Conference on Logic Programming, pages 166–189. MIT Press,
October 1989.

[127] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation
Algorithm for Top-down Abstract Interpretation of Logic Programs. Tech-
nical Report ACT-DC-153-90, Microelectronics and Computer Technology
Corporation (MCC), Austin, TX 78759, April 1990.

[128] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation. In
International Conference on Logic Programming (ICLP 1991), pages 49–63.
MIT Press, June 1991.

[129] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315–347, July 1992.

[130] A. Mycroft and R. A. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23(3):295–307, 1984.

[131] M. Namolaru. Devirtualization in GCC. In Proceedings of the GCC Developers’
Summit, pages 125–133, 2006.

[132] J. Navas, F. Bueno, and M. V. Hermenegildo. Efficient Top-Down Set-Sharing
Analysis Using Cliques. In 8th International Symposium on Practical Aspects
of Declarative Languages (PADL’06), number 2819 in LNCS, pages 183–198.
Springer-Verlag, January 2006.

[133] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe Upper-bounds Infer-
ence of Energy Consumption for Java Bytecode Applications. In The Sixth
NASA Langley Formal Methods Workshop (LFM 08), pages 29–32, April 2008.
Extended Abstract.

[134] J. Navas, M. Méndez-Lojo, and M. V. Hermenegildo. An Efficient, Context
and Path Sensitive Analysis Framework for Java Programs. In 9th Workshop
on Formal Techniques for Java-like Programs FTfJP 2007, July 2007.

[135] J. Navas, M. Méndez-Lojo, and M. V. Hermenegildo. User-Definable Resource
Usage Bounds Analysis for Java Bytecode. In Proceedings of the Workshop
on Bytecode Semantics, Verification, Analysis and Transformation (BYTE-
CODE’09), volume 253 of Electronic Notes in Theoretical Computer Science,
pages 65–82. Elsevier - North Holland, March 2009.

174 bibliography

[136] N. Partush and E. Yahav. Abstract semantic differencing for numerical pro-
grams. In Logozzo and Fähndrich [114], pages 238–258.

[137] J. Peralta, J. Gallagher, and H. Saǧlam. Analysis of imperative programs
through analysis of constraint logic programs. In G. Levi, editor, Static
Analysis. 5th International Symposium, SAS’98, Pisa, volume 1503 of LNCS,
pages 246–261, 1998.

[138] V. Perez-Carrasco, M. Klemen, P. Lopez-Garcia, J. Morales, and M. V.
Hermenegildo. Cost Analysis of Smart Contracts via Parametric Resource
Analysis. In D. Pichardie and M. Sighireanu, editors, Proceedings of the 27th
Static Analysis Symposium (SAS 2020), volume 12389 of LNCS, pages 7–31.
Springer, November 2020.

[139] F. Pfenning, editor. Types in Logic Programming. MIT Press, 1992.

[140] P. Pietrzak, J. Correas, G. Puebla, and M. V. Hermenegildo. Context-Sensitive
Multivariant Assertion Checking in Modular Programs. In 13th International
Conference on Logic for Programming Artificial Intelligence and Reasoning
(LPAR’06), number 4246 in LNCS, pages 392–406. Springer-Verlag, November
2006.

[141] G. Plotkin. A structural approach to operational semantics. Technical report
DAIMI FN-19, Computer Science Department, Aarhus University, Denmark,
1981.

[142] L. Pollock and M. Soffa. An incremental version of iterative data flow analysis.
IEEE Transactions on Software Engineering, 15(12):1537–1549, 1989.

[143] G. Puebla, E. Albert, and M. V. Hermenegildo. Abstract Interpretation with
Specialized Definitions. In The 13th International Static Analysis Symposium
(SAS’06), number 4134 in LNCS, pages 107–126. Springer, August 2006.

[144] G. Puebla, F. Bueno, and M. V. Hermenegildo. An Assertion Language
for Constraint Logic Programs. In P. Deransart, M. V. Hermenegildo, and
J. Maluszynski, editors, Analysis and Visualization Tools for Constraint Pro-
gramming, number 1870 in LNCS, pages 23–61. Springer-Verlag, September
2000.

[145] G. Puebla, F. Bueno, and M. V. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Logic-based
Program Synthesis and Transformation (LOPSTR’99), number 1817 in LNCS,
pages 273–292. Springer-Verlag, March 2000.

bibliography 175

[146] G. Puebla, J. Correas, M. V. Hermenegildo, F. Bueno, M. García de la Banda,
K. Marriott, and P. J. Stuckey. A Generic Framework for Context-Sensitive
Analysis of Modular Programs. In M. Bruynooghe and K. Lau, editors, Program
Development in Computational Logic, A Decade of Research Advances in
Logic-Based Program Development, number 3049 in LNCS, pages 234–261.
Springer-Verlag, Heidelberg, Germany, August 2004.

[147] G. Puebla and M. V. Hermenegildo. Optimized Algorithms for the Incremental
Analysis of Logic Programs. In International Static Analysis Symposium (SAS
1996), number 1145 in Lecture Notes in Computer Science, pages 270–284.
Springer-Verlag, September 1996.

[148] G. Puebla and M. V. Hermenegildo. Abstract Multiple Specialization and its
Application to Program Parallelization. J. of Logic Programming. Special Issue
on Synthesis, Transformation and Analysis of Logic Programs, 41(2&3):279–
316, November 1999.

[149] S. K. Rajamani and D. Walker, editors. Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015. ACM, 2015.

[150] G. Ramalingam and T. Reps. A Categorized Bibliography on Incremental
Computation. In ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages POPL’93, Charleston, South Carolina, 1993. ACM.

[151] A. Rastogi, N. Swamy, C. Fournet, G. M. Bierman, and P. Vekris. Safe &
Efficient Gradual Typing for TypeScript. In Rajamani and Walker [149], pages
167–180.

[152] T. W. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In POPL, pages 49–61, 1995.

[153] H. Rice. Classes of recursively enumerable sets and their decision problems.
Trans. Amer. Math. Soc., 74:358–366, 1953.

[154] J. A. Robinson. A Machine Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(23):23–41, January 1965.

[155] H. Rogers. Theory of recursive functions and effective computability. The MIT
press, 1992.

[156] B. Rosen. Linear cost is sometimes quadratic. In Eighth ACM Symposium on
Principles of Programming Languages (POPL), pages 117–124. ACM Press,
1981.

176 bibliography

[157] K. Rustan, M. Leino, and V. Wüstholz. Fine-grained caching of verification
results. In D. Kroening and C. S. Pasareanu, editors, Proc. of the 27th Inter-
national Conference on Computer Aided Verification, CAV 2015, volume 9206
of LNCS, pages 380–397. Springer, July 2015.

[158] B. Ryder. Incremental data-flow analysis algorithms. ACM Transactions on
Programming Languages and Systems, 10(1):1–50, 1988.

[159] B. Ryder, T. Marlowe, and M. Paull. Conditions for incremental iteration:
Examples and counterexamples. Science of Computer Programming, 11(1):1–15,
1988.

[160] M. A. Sanchez-Ordaz, I. Garcia-Contreras, V. Perez-Carrasco, J. F. Morales,
P. Lopez-Garcia, and M. Hermenegildo. VeriFly: On-the-fly Assertion Checking
with CiaoPP. In 6th Workshop on Formal Integrated Development Environment
(F-IDE 2021), May 2021.

[161] T. Schrijvers, V. S. Costa, J. Wielemaker, and B. Demoen. Towards typed
prolog. In M. G. de la Banda and E. Pontelli, editors, Logic Programming,
24th International Conference, ICLP 2008, Udine, Italy, December 9-13 2008,
Proceedings, volume 5366 of Lecture Notes in Computer Science, pages 693–697.
Springer, 2008.

[162] T. Schrijvers, V. Santos Costa, J. Wielemaker, and B. Demoen. Towards
Typed Prolog. In E. Pontelli and M. M. G. de la Banda, editors, International
Conference on Logic Programming, number 5366 in LNCS, pages 693–697.
Springer Verlag, December 2008.

[163] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
New York University. Courant Institute of Mathematical Sciences., 1978.

[164] J. G. Siek and W. Taha. Gradual Typing for Functional Languages. In Scheme
and Functional Programming Workshop, pages 81–92, 2006.

[165] Z. Somogyi, F. Henderson, and T. Conway. The Execution Algorithm of
Mercury: an Efficient Purely Declarative Logic Programming Language. Journal
of Logic Programming, 29(1–3):17–64, October 1996.

[166] N. Stulova, J. F. Morales, and M. V. Hermenegildo. Some Trade-offs in Reducing
the Overhead of Assertion Run-time Checks via Static Analysis. Science
of Computer Programming, 155:3–26, April 2018. Selected and Extended
papers from the 2016 International Symposium on Principles and Practice of
Declarative Programming.

bibliography 177

[167] T. Swift. Incremental Tabling in Support of Knowledge Representation and
Reasoning. Theory and Practice of Logic Programming, 14(4-5):553–567, 2014.

[168] T. Swift and D. S. Warren. XSB: Extending Prolog with Tabled Logic Pro-
gramming. Theory and Practice of Logic Programming, 12(1-2):157–187, Jan
2012.

[169] T. Szabó, S. Erdweg, and M. Voelter. Inca: a DSL for the definition of
incremental program analyses. In D. Lo, S. Apel, and S. Khurshid, editors,
Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, Singapore, September 3-7, 2016, pages 320–
331. ACM, 2016.

[170] M. Thakur and V. K. Nandivada. Mix your contexts well: Opportunities
unleashed by recent advances in scaling context-sensitivity. In Proceedings of
the 29th International Conference on Compiler Construction, CC 2020, pages
27–38, New York, NY, USA, 2020. Association for Computing Machinery.

[171] J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Usable verification of
object-oriented programs by combining static and dynamic techniques. In
G. Barthe, A. Pardo, and G. Schneider, editors, Proc. of the 9th International
Conference on Software Engineering and Formal Methods, SEFM 2011, volume
7041 of LNCS, pages 382–398. Springer, November 2011.

[172] D. Vandevoorde and N. M. Josuttis. C++ Templates. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[173] C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for Logic
Programs. In 9th International Static Analysis Symposium (SAS’02), volume
2477 of Lecture Notes in Computer Science, pages 102–116. Springer-Verlag,
September 2002.

[174] I. Wingen and P. Körner. Effectiveness of annotation-based static type infer-
ence. In M. Hanus and C. S. Coen, editors, Functional and Constraint Logic
Programming - 28th International Workshop, WFLP 2020, Bologna, Italy,
September 7, 2020, Revised Selected Papers, volume 12560 of Lecture Notes in
Computer Science, pages 74–93. Springer, 2020.

[175] G. Winskel. The Formal Semantics of Programming Languages. The MIT
Press, 1993.

[176] E. Zaffanella, R. Bagnara, and P. M. Hill. Widening Sharing. In G. Nadathur,
editor, Principles and Practice of Declarative Programming, volume 1702 of

178 bibliography

Lecture Notes in Computer Science, pages 414–432. Springer-Verlag, Berlin,
1999.

[177] Y. Zhang and Y. A. Liu. Automating Derivation of Incremental Programs. In
M. Felleisen, P. Hudak, and C. Queinnec, editors, Proceedings of the third ACM
SIGPLAN International Conference on Functional Programming (ICFP ’98),
Baltimore, Maryland, USA, September 27-29, 1998, page 350. ACM, 1998.

A
Additional plots

A.1 Additional experimental results

A.1.1 Detailed analysis times per step for analysis with def

A.1.2 Average analysis times split by domain

mon mon-inc mod mod-inc

bench mean max min mean max min mean max min mean max min

aiakl 1.8 4.1 1.1 1.6 4.0 1.1 1.9 16.6 0.5 1.3 10.7 0.5
ann 4.0 28.0 1.4 3.1 15.2 1.9 1.3 32.4 0.3 1.3 27.4 0.5
bid 2.5 10.0 1.4 1.9 5.5 1.5 1.8 22.5 0.5 1.6 19.6 0.5
boyer 7.6 13.2 1.1 2.6 4.1 1.4 2.2 6.4 0.3 1.5 3.9 0.6
check_links 7.2 98.1 2.2 13.2 96.2 5.7 3.5 221.6 0.4 5.7 212.2 0.8
cleandirs 7.2 22.6 1.1 4.4 16.1 1.7 5.4 86.4 0.7 3.0 54.1 0.6
hanoi 1.2 1.8 0.8 1.2 2.1 0.8 1.3 4.7 0.4 1.4 4.5 0.5
manag_proj 11.4 39.0 4.4 7.1 20.6 4.5 4.6 56.4 0.4 3.2 42.6 0.5
peephole 3.7 20.1 1.5 2.3 7.0 1.6 1.1 25.5 0.4 1.0 20.4 0.4
progeom 1.9 3.9 0.9 1.5 2.7 0.9 2.2 10.0 0.7 2.2 10.1 0.9
read 9.6 31.8 1.3 4.7 20.5 1.3 7.1 32.9 0.8 4.9 28.0 0.9
qsort 2.0 4.0 1.2 1.5 2.6 1.2 1.5 7.3 0.5 1.5 7.2 0.6
rdtok 5.1 13.9 1.5 5.1 21.9 1.3 3.8 12.8 0.5 4.8 23.8 0.4
warplan 6.0 13.5 0.9 2.3 4.4 1.2 3.4 10.6 0.6 2.1 6.3 1.0
witt 5.9 27.1 1.4 3.6 16.5 2.3 3.0 59.8 0.3 2.2 47.1 0.4

Table A.1: Analysis time (ms) per benchmark of the add experiment (pdb).

179

180 additional plots

mon mon-inc mon-scc mod mod-inc mod-scc

bench mean max min mean max min mean max min mean max min mean max min mean max min

aiakl 2.1 4.3 1.3 2.0 5.7 1.3 1.4 5.7 1.0 1.8 13.6 0.4 1.9 13.2 0.5 1.6 13.1 0.4
ann 4.0 29.4 1.2 3.6 32.7 1.8 2.8 33.3 1.5 2.4 48.4 0.3 1.9 57.2 0.6 1.9 57.8 0.5
bid 2.6 8.7 1.8 2.4 12.8 1.8 1.7 10.1 1.3 1.8 35.7 0.5 1.9 33.8 0.5 1.3 28.4 0.3
boyer 7.7 14.7 1.0 6.9 15.1 1.1 1.8 14.5 1.0 2.1 12.5 0.3 2.5 15.9 0.3 1.2 15.3 0.3
check_links 7.4 99.3 1.8 20.0 232.9 5.7 17.9 109.9 5.5 3.7 277.0 0.3 10.0 255.1 0.8 9.2 242.6 0.6
cleandirs 7.5 28.9 1.4 5.3 28.5 1.5 3.1 25.4 1.3 4.8 98.4 0.5 3.6 78.1 0.6 3.1 76.8 0.5
hanoi 1.5 3.1 0.7 1.2 2.5 0.8 1.0 2.5 0.7 1.4 5.0 0.4 1.7 6.3 0.6 1.4 6.0 0.4
manag_proj 12.0 40.4 4.3 7.7 46.3 4.1 7.1 41.7 4.3 4.4 104.8 0.3 3.5 94.4 0.4 3.3 94.3 0.4
peephole 3.3 17.2 1.4 2.6 22.5 1.6 1.9 22.6 1.2 2.3 35.4 0.7 1.9 35.5 0.8 1.6 33.1 0.7
progeom 2.1 4.1 1.2 1.8 5.1 1.1 1.1 4.9 0.8 2.6 20.9 0.9 2.6 18.7 0.9 2.6 23.9 0.6
read 9.1 28.5 1.1 10.5 35.7 1.1 2.0 30.7 1.0 6.2 38.9 0.5 8.4 45.6 0.6 2.9 42.6 0.5
qsort 1.9 3.7 1.2 1.8 4.6 1.1 1.2 4.4 0.9 1.9 11.3 0.5 1.8 10.9 0.5 1.6 11.4 0.5
rdtok 4.9 14.2 1.5 5.3 17.5 1.5 2.0 15.6 1.3 4.0 36.1 0.4 4.9 32.6 0.4 3.0 35.8 0.3
warplan 5.8 16.2 1.0 3.5 14.4 1.3 1.6 15.1 0.8 3.7 29.4 0.8 2.8 23.6 0.9 1.8 22.6 0.7
witt 6.1 26.1 1.4 4.5 32.3 2.2 3.8 32.9 2.0 3.4 90.1 0.3 2.6 70.0 0.4 2.4 69.1 0.4

Table A.2: Analysis time (ms) per benchmark of the del experiment (pdb).

mon mon-inc mod mod-inc

bench mean max min mean max min mean max min mean max min

aiakl 2.5 6.9 1.2 1.9 6.5 1.2 2.1 18.3 0.5 2.2 19.0 0.6
ann 5.2 50.0 1.0 3.4 36.5 1.7 2.1 98.5 0.3 1.8 83.9 0.5
bid 3.1 14.8 1.7 2.3 8.7 1.8 2.4 38.8 0.5 2.2 26.9 0.5
boyer 16.0 26.1 1.4 3.1 11.2 1.5 3.3 11.9 0.5 1.7 11.2 0.6
check_links 8.8 158.7 2.0 13.6 160.8 5.3 5.3 312.6 0.3 6.1 278.1 0.7
cleandirs 5.2 23.5 1.3 3.3 17.7 1.3 3.6 72.5 0.3 3.1 64.1 0.6
hanoi 1.5 2.3 0.9 1.4 2.9 0.9 2.0 7.0 0.5 1.4 5.6 0.4
manag_proj 6.9 13.4 5.0 5.9 10.8 4.3 2.8 10.3 0.3 2.2 12.1 0.4
peephole 6.8 42.0 1.7 2.3 20.2 1.4 1.6 62.4 0.4 1.5 43.9 0.5
progeom 2.1 4.8 0.9 1.4 2.6 0.8 2.1 9.9 0.7 2.0 7.7 0.7
read 23.3 102.8 1.1 8.7 65.6 1.1 11.1 100.7 0.6 7.5 81.4 0.8
qsort 2.7 7.2 1.1 1.7 3.5 1.0 2.9 12.2 0.5 2.0 10.0 0.4
rdtok 7.4 26.0 1.2 5.8 37.4 1.4 5.1 23.7 0.4 5.6 39.3 0.5
warplan 8.6 26.4 1.0 2.9 7.9 1.2 4.7 21.3 0.6 2.7 11.8 1.2
witt 1.6 2.7 1.2 3.0 7.0 2.0 0.7 2.4 0.3 1.1 2.5 0.4

Table A.3: Analysis time (ms) per benchmark of the add experiment (gr).

A.1 additional experimental results 181

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 1 2 3 4 5 6

Ti
me

(m

s)

of clauses

Adding - hanoi

mon
mon_inc

mod
mod_inc

 0
 100
 200
 300
 400
 500
 600

 0 1 2 3 4 5 6

Ti
me

(m

s)

of clauses

Deleting - hanoi

mon
mon_inc_td
mon_inc_scc

mod
mod_inc_td
mod_inc_scc

 0
 5

 10
 15
 20
 25

 0 2 4 6 8 10 12 14 16

Ti
me

(m

s)

of clauses

Adding - aiakl

mon
mon_inc

mod
mod_inc

 0
 5

 10
 15
 20
 25

 0 2 4 6 8 10 12 14 16

Ti
me

(m

s)

of clauses

Deleting - aiakl

mon
mon_inc_td
mon_inc_scc

mod
mod_inc_td
mod_inc_scc

 0
 2
 4
 6
 8

 10
 12
 14

 0 2 4 6 8 10 12 14 16 18

Ti
me

(m

s)

of clauses

Adding - qsort

mon
mon_inc

mod
mod_inc

 0
 5

 10
 15
 20
 25
 30
 35

 0 2 4 6 8 10 12 14 16 18

Ti
me

(m

s)

of clauses

Deleting - qsort

mon
mon_inc_td
mon_inc_scc

mod
mod_inc_td
mod_inc_scc

 0
 2
 4
 6
 8

 10
 12
 14

 0 2 4 6 8 10 12 14 16 18

Ti
me

(m

s)

of clauses

Adding - progeom

mon
mon_inc

mod
mod_inc

 0
 50
 100
 150
 200
 250
 300
 350

 0 2 4 6 8 10 12 14 16 18

Ti
me

(m

s)

of clauses

Deleting - progeom

mon
mon_inc_td
mon_inc_scc

mod
mod_inc_td
mod_inc_scc

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10 20 30 40 50

Ti
me

(m

s)

of clauses

Adding - bid

mon
mon_inc

mod
mod_inc

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 10 20 30 40 50

Ti
me

(m

s)

of clauses

Deleting - bid

mon
mon_inc_td
mon_inc_scc

mod
mod_inc_td
mod_inc_scc

Fig. 33: Analysis times (ms) for both experiments with def for smaller benchmarks.

182 additional plots

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

Ti
me

(m

s)

of clauses

Adding - rdtok

mon
mon_inc

mod
mod_inc

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 10 20 30 40 50 60

Ti
me

(m

s)

of clauses

Deleting - rdtok

mon
mon_inc_td
mon_inc_scc

mod
mod_inc_td
mod_inc_scc

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80

Ti
me

(m

s)

of clauses

Adding - cleandirs

mon
mon_inc

mod
mod_inc

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80

Ti
me

(m

s)

of clauses

Deleting - cleandirs

mon
mon_inc_td
mon_inc_scc

mod
mod_inc_td
mod_inc_scc

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

Ti
me

(m

s)

of clauses

Adding - read

mon
mon_inc

mod
mod_inc

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

 0 10 20 30 40 50 60 70 80 90 100

Ti
me

(m

s)

of clauses

Deleting - read

mon
mon_inc_td
mon_inc_scc

mod
mod_inc_td
mod_inc_scc

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120

Ti
me
 (
ms
)

of clauses

Adding - warplan

mon
mon-inc

mod
mod-inc

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

Ti
me
 (
ms
)

of clauses

Deleting - warplan

mon
mon-inc
mon-scc

mod
mod-inc
mod-scc

Fig. 34: Analysis times (ms) for both experiments with def for larger benchmarks (1).

A.1 additional experimental results 183

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100 120 140 160

Ti
me

(m

s)

of clauses

Adding - boyer

mon
mon_inc

mod
mod_inc

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160

Ti
me

(m

s)

of clauses

Deleting - boyer

mon
mon_inc_td
mon_inc_scc

mod
mod_inc_td
mod_inc_scc

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180

Ti
me

(m

s)

of clauses

Adding - peephole

mon
mon_inc

mod
mod_inc

 0
 20
 40
 60
 80
 100
 120
 140
 160

 0 20 40 60 80 100 120 140 160 180

Ti
me

(m

s)

of clauses

Deleting - peephole

mon
mon_inc_td
mon_inc_scc

mod
mod_inc_td
mod_inc_scc

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 20 40 60 80 100 120 140 160 180

Ti
me

(m

s)

of clauses

Adding - witt

mon
mon_inc

mod
mod_inc

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

Ti
me

(m

s)

of clauses

Deleting - witt

mon
mon_inc_td
mon_inc_scc

mod
mod_inc_td
mod_inc_scc

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 50 100 150 200 250

Ti
me

(m

s)

of clauses

Adding - ann

mon
mon_inc

mod
mod_inc

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250

Ti
me

(m

s)

of clauses

Deleting - ann

mon
mon_inc_td
mon_inc_scc

mod
mod_inc_td
mod_inc_scc

Fig. 35: Analysis times (ms) for both experiments with def for larger benchmarks (2).

184 additional plots

mon mon-inc mon-scc mod mod-inc mod-scc

bench mean max min mean max min mean max min mean max min mean max min mean max min

aiakl 2.3 5.9 1.1 2.1 8.0 1.3 1.5 7.9 0.9 2.2 20.8 0.4 1.9 16.2 0.4 1.9 18.3 0.5
ann 5.9 74.0 1.2 3.9 59.0 1.8 3.2 55.2 1.5 6.5 134.6 0.3 3.1 127.1 0.6 2.5 121.3 0.5
bid 2.8 12.9 1.8 2.2 16.0 1.5 1.9 15.8 1.4 2.3 45.2 0.4 2.8 44.8 0.5 1.9 39.3 0.3
boyer 15.7 30.5 1.3 10.3 26.2 1.1 2.0 23.6 1.0 3.1 33.1 0.3 3.4 36.7 0.4 1.6 35.6 0.5
check_links 10.0 175.5 1.6 22.9 367.2 5.9 20.0 186.0 5.6 6.4 411.7 0.5 12.9 335.0 0.8 12.9 337.4 0.6
cleandirs 5.7 23.0 1.5 4.3 26.5 1.8 2.9 26.8 1.3 4.1 95.6 0.4 3.3 83.3 0.5 2.9 82.1 0.4
hanoi 1.7 2.6 1.0 1.4 2.7 1.0 1.0 2.7 0.6 1.7 6.4 0.3 1.8 6.4 0.4 1.8 7.9 0.5
manag_proj 7.1 14.0 5.1 6.7 20.4 4.7 5.9 20.1 4.0 2.6 29.5 0.3 2.3 35.1 0.3 2.2 36.9 0.3
peephole 7.2 50.1 1.7 3.0 46.5 1.5 2.2 47.2 1.4 4.0 66.0 1.0 3.1 61.6 1.0 2.4 61.9 1.0
progeom 2.1 4.5 0.9 1.8 5.9 0.9 1.1 5.4 0.8 2.7 21.0 0.7 2.5 19.2 0.7 2.3 19.4 0.7
read 22.6 109.2 1.0 22.6 118.7 1.3 2.9 101.2 0.9 11.0 110.8 0.6 13.2 113.8 0.5 4.5 113.6 0.4
qsort 2.5 7.0 0.9 2.3 8.4 1.2 1.4 8.7 0.8 3.5 21.5 0.4 2.6 17.2 0.4 2.4 16.9 0.4
rdtok 7.5 29.3 1.4 6.1 27.8 1.2 2.1 26.7 1.1 5.3 53.5 0.3 6.4 44.9 0.4 3.4 43.7 0.3
warplan 9.0 23.1 1.0 4.8 25.4 1.3 1.9 29.6 0.9 4.9 48.1 0.8 3.8 39.6 1.2 2.4 37.2 0.7
witt 2.0 3.0 1.4 3.5 8.4 2.2 3.1 8.4 1.9 0.9 8.2 0.3 1.2 5.3 0.4 1.0 5.2 0.3

Table A.4: Analysis time (ms) per benchmark of the del experiment (gr).

mon mon-inc mod mod-inc

bench mean max min mean max min mean max min mean max min

aiakl 2.6 6.8 1.1 1.8 7.1 1.2 1.7 15.2 0.4 1.6 13.8 0.4
ann 10.3 123.2 1.3 3.9 84.5 2.1 4.2 201.9 0.4 2.8 175.9 0.6
bid 4.2 22.6 2.1 3.1 13.9 2.2 2.9 39.0 0.4 2.1 26.3 0.4
boyer 31.2 47.4 1.2 3.9 24.9 1.3 6.6 28.9 0.5 2.0 26.4 0.5
check_links 34.0 709.6 2.6 17.5 704.8 6.0 28.1 2,012.9 0.3 10.8 1,002.6 0.8
cleandirs 38.0 418.1 1.1 9.0 353.6 2.3 47.3 1,108.3 0.7 12.9 740.4 0.8
hanoi 4.9 9.6 1.3 3.1 10.2 1.6 5.7 22.6 0.5 3.8 18.0 0.6
manag_proj 1,151.8 17,937.2 13.4 186.2 15,469.2 12.5 43.8 1,589.1 0.3 17.1 1,086.8 0.4
peephole 19.7 155.0 1.8 3.6 58.9 1.7 4.1 167.2 0.3 3.1 120.1 0.5
progeom 2.9 6.6 1.2 1.7 3.3 1.0 2.7 12.3 0.7 2.1 9.4 0.7
read 84.3 413.2 1.1 24.6 321.8 1.3 37.5 424.4 1.0 16.7 341.4 0.7
qsort 2.6 9.1 0.9 1.8 4.9 1.0 3.2 12.6 0.4 2.5 10.2 0.6
rdtok 14.1 61.1 1.5 8.4 67.0 1.3 10.5 58.9 0.5 8.0 69.7 0.5
warplan 15.9 61.1 0.9 5.3 39.1 1.2 9.1 111.9 0.9 3.8 61.1 1.1
witt 140.4 2,494.9 1.4 28.0 1,759.9 2.1 128.3 10,786.0 0.3 20.6 2,062.8 0.4

Table A.5: Analysis time (ms) per benchmark of the add experiment (shfr).

A.1 additional experimental results 185

mon mon-inc mon-scc mod mod-inc mod-scc

bench mean max min mean max min mean max min mean max min mean max min mean max min

aiakl 2.6 7.4 1.2 2.0 8.2 1.2 1.5 8.1 1.0 1.6 15.0 0.3 1.8 16.3 0.4 1.5 15.1 0.3
ann 10.1 123.6 1.3 4.3 117.9 2.0 3.1 117.2 1.5 4.5 260.4 0.3 2.9 232.0 0.6 2.3 232.1 0.6
bid 3.9 23.4 2.1 2.6 23.8 1.7 2.2 23.2 1.5 2.8 62.1 0.3 2.7 54.4 0.4 2.4 52.3 0.3
boyer 32.8 50.6 1.6 14.0 62.3 1.3 2.4 50.8 1.1 6.7 60.7 0.4 5.5 61.6 0.5 1.8 60.8 0.3
check_links 33.5 740.9 2.0 36.5 1,799.2 6.0 19.3 728.9 5.5 28.9 2,091.5 0.3 22.4 1,362.3 0.7 9.9 1,126.0 0.6
cleandirs 38.0 388.9 1.1 10.8 381.9 2.2 8.2 386.7 1.5 52.1 1,169.5 0.9 18.4 782.8 0.8 18.4 813.0 0.7
hanoi 5.0 9.6 1.4 3.0 10.3 1.4 2.7 10.5 1.2 5.2 20.8 0.4 3.7 18.3 0.4 4.3 21.9 0.6
manag_proj 1,131.4 18,049.1 12.8 229.0 18,121.6 12.9 145.1 18,081.0 12.5 366.6 37,511.5 0.3 321.2 34,731.8 0.4 322.5 34,924.4 0.4
peephole 19.2 158.2 1.6 4.9 212.4 1.6 3.0 156.4 1.4 5.2 386.1 0.4 3.7 273.3 0.5 3.4 272.6 0.5
progeom 2.7 6.0 1.0 2.3 7.7 1.1 1.4 7.7 0.9 3.5 29.0 0.8 3.0 24.4 0.8 2.5 22.8 0.6
read 85.9 415.5 1.3 71.5 423.7 1.6 6.2 390.0 1.0 37.1 418.6 0.8 38.9 435.4 0.7 8.1 408.5 0.5
qsort 2.9 9.7 1.3 2.5 11.1 1.1 1.4 10.6 0.8 3.4 22.4 0.3 3.9 24.8 0.6 3.5 25.0 0.4
rdtok 13.1 60.4 1.4 12.0 63.4 1.6 2.9 67.4 1.3 11.5 117.7 0.3 12.4 88.4 0.6 7.9 91.6 0.4
warplan 16.3 61.6 1.1 7.7 64.2 1.1 2.5 65.7 1.0 9.6 159.7 0.9 5.6 109.0 1.2 3.9 114.6 0.9
witt 137.9 2,447.8 1.3 38.8 2,424.4 2.2 17.6 2,424.8 1.8 192.5 19,997.6 0.3 49.0 3,144.8 0.4 49.1 3,192.7 0.4

Table A.6: Analysis time (ms) per benchmark of the del experiment (shfr).

186 additional plots

A.1.3 Speedup split by domain

addition: mod-inc deletion: mod-scc

vs. vs. vs. vs. vs. vs. vs. vs.
bench mon mon-inc mod mon mon-inc mon-scc mod mod-inc

aiakl 1.4 1.2 1.4 1.3 1.3 0.9 1.1 1.2
ann 3.0 2.3 0.9 2.1 1.9 1.5 1.3 1.0
bid 1.6 1.2 1.1 1.9 1.8 1.3 1.4 1.5
boyer 5.1 1.8 1.5 6.5 5.8 1.5 1.8 2.1
check_links 1.3 2.3 0.6 0.8 2.2 1.9 0.4 1.1
cleandirs 2.4 1.5 1.8 2.4 1.7 1.0 1.5 1.2
hanoi 0.9 0.9 1.0 1.1 0.9 0.7 1.0 1.2
manag_proj 3.5 2.2 1.5 3.6 2.3 2.1 1.3 1.0
peephole 3.7 2.3 1.1 2.1 1.7 1.2 1.4 1.2
progeom 0.9 0.7 1.0 0.8 0.7 0.4 1.0 1.0
read 2.0 1.0 1.5 3.1 3.6 0.7 2.1 2.9
qsort 1.3 1.0 1.0 1.2 1.1 0.7 1.2 1.1
rdtok 1.1 1.1 0.8 1.6 1.8 0.7 1.3 1.6
warplan 2.8 1.1 1.6 3.2 1.9 0.9 2.0 1.5
witt 2.6 1.6 1.3 2.6 1.9 1.6 1.4 1.1

Table A.7: Speedups of the clause addition (left) and deletion (right) experiments (pdb).

addition: mod-inc deletion: mod-scc

vs. vs. vs. vs. vs. vs. vs. vs.
bench mon mon-inc mod mon mon-inc mon-scc mod mod-inc

aiakl 1.1 0.9 0.9 1.2 1.1 0.8 1.1 1.0
ann 2.9 1.9 1.1 2.4 1.6 1.3 2.6 1.2
bid 1.4 1.1 1.1 1.5 1.1 1.0 1.2 1.4
boyer 9.2 1.8 1.9 9.8 6.4 1.2 1.9 2.1
check_links 1.4 2.2 0.9 0.8 1.8 1.5 0.5 1.0
cleandirs 1.7 1.1 1.2 1.9 1.5 1.0 1.4 1.1
hanoi 1.0 1.0 1.4 1.0 0.8 0.5 1.0 1.0
manag_proj 3.1 2.7 1.3 3.2 3.0 2.6 1.2 1.0
peephole 4.6 1.5 1.1 3.0 1.2 0.9 1.6 1.3
progeom 1.1 0.7 1.0 0.9 0.8 0.5 1.2 1.1
read 3.1 1.2 1.5 5.0 5.0 0.6 2.4 2.9
qsort 1.3 0.8 1.5 1.0 1.0 0.6 1.5 1.1
rdtok 1.3 1.0 0.9 2.2 1.8 0.6 1.6 1.9
warplan 3.2 1.1 1.7 3.7 2.0 0.8 2.0 1.6
witt 1.5 2.8 0.7 2.0 3.4 3.0 0.9 1.2

Table A.8: Speedups of the clause addition (left) and deletion (right) experiments (gr).

A.1 additional experimental results 187

addition: mod-inc deletion: mod-scc

vs. vs. vs. vs. vs. vs. vs. vs.
bench mon mon-inc mod mon mon-inc mon-scc mod mod-inc

aiakl 1.7 1.2 1.1 1.8 1.3 1.0 1.1 1.2
ann 3.7 1.4 1.5 4.4 1.9 1.4 2.0 1.3
bid 2.0 1.5 1.4 1.6 1.1 0.9 1.2 1.1
boyer 16.0 2.0 3.4 17.8 7.6 1.3 3.6 3.0
check_links 3.1 1.6 2.6 3.4 3.7 2.0 2.9 2.3
cleandirs 2.9 0.7 3.7 2.1 0.6 0.4 2.8 1.0
hanoi 1.3 0.8 1.5 1.2 0.7 0.6 1.2 0.9
manag_proj 67.2 10.9 2.6 3.5 0.7 0.4 1.1 1.0
peephole 6.4 1.2 1.3 5.7 1.5 0.9 1.5 1.1
progeom 1.4 0.8 1.3 1.1 0.9 0.6 1.4 1.2
read 5.0 1.5 2.2 10.6 8.8 0.8 4.6 4.8
qsort 1.0 0.7 1.3 0.8 0.7 0.4 1.0 1.1
rdtok 1.8 1.0 1.3 1.7 1.5 0.4 1.5 1.6
warplan 4.2 1.4 2.4 4.2 2.0 0.6 2.5 1.4
witt 6.8 1.4 6.2 2.8 0.8 0.4 3.9 1.0

Table A.9: Speedups of the clause addition (left) and deletion (right) experiments (shfr).

188 additional plots

A.1.4 Accummulated analysis times

pdb

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

hanoi aiakl qsort progeom bid rdtok cleandirs readwarplan boyer peephole witt ann manag_proj check_links

shfr

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

hanoi aiakl qsort progeom bid rdtok cleandirs readwarplan boyer peephole witt ann manag_proj check_links

Fig. 36: Accumulated analysis time (normalized w.r.t mon) adding clauses. The order inside each
set of bars is: |mon|mon_inc|mod|mod_inc|.

A.1 additional experimental results 189

pdb

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3

hanoi aiakl qsort progeom bid rdtok cleandirs readwarplan boyer peephole witt ann manag_proj check_links

shfr

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

hanoi aiakl qsort progeom bid rdtok cleandirs readwarplan boyer peephole witt ann manag_proj check_links

Fig. 37: Accumulated analysis time (normalized w.r.t mon) deleting clauses. The order inside each
set of bars is: |mon|mon_td|mon_scc|mod|mod_td|mod_scc|.

190 additional plots

A.1.5 Speedup vs. size of the analysis

 0.1

 1

 10

 100

 1000

 1 10 100

Sp
ee

du
p

vs

mo

n

of nodes in the analysis graph

hanoi
aiakl
qsort

progeom
bid

rdtok
cleandirs

read
warplan
boyer

peephole
witt
ann

manag_proj
check_links

Speedup (mon/mod-inc) vs. # of nodes in the analysis

Fig. 38: Speedup vs monolithic depending on the number of nodes in the analysis graph.

 0.1

 1

 10

 100

 1 10 100

Sp
ee

du
p

vs

mo

d

of nodes in the analysis graph

hanoi
aiakl
qsort

progeom
bid

rdtok
cleandirs

read
warplan
boyer

peephole
witt
ann

manag_proj
check_links

Speedup (mod/mod-inc) vs. # of nodes in the analysis

Fig. 39: Speedup vs modular depending on the number of nodes in the analysis graph.

	Abstract
	Resumen
	Acknowledgements
	Contents
	List of Algorithms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Static analysis of large code bases
	1.2 Contributions of the thesis
	1.3 Overview of the thesis

	2 Background
	2.1 (Constraint) Logic Programs
	2.1.1 Concrete Semantics.

	2.2 Abstract Interpretation
	2.2.1 Abstract domains

	2.3 Abstract Interpretation of (Constraint) Logic Programs
	2.3.1 Correctness

	2.4 Analyzing other languages
	2.5 The Ciao System
	2.5.1 The CiaoPP Program Processor
	2.5.2 Assertions
	2.5.3 Practical uses of assertions
	2.5.4 Modular Logic Programming in Ciao
	2.5.5 Modular generic logic programming: traits

	3 Abstract Extensionality
	3.1 Introduction
	3.2 Related work
	3.3 Preliminaries
	3.3.1 Program Semantics
	3.3.2 Abstract Semantics

	3.4 Abstract extensionality
	3.5 Completeness and incompleteness cliques
	3.6 Reducing completeness to incompleteness
	3.7 Rice extensionality of the abstract semantics
	3.8 Conclusion

	4 A Framework for Fixpoint Computation in Abstract Interpretation
	4.1 The monolithic and incremental fixpoint algorithm
	4.1.1 Operation of the algorithm
	4.1.2 Differences w.r.t. the original monolithic incremental algorithm
	4.1.3 Correctness and precision of IncAnalyze95
	4.1.4 Correctness of IncAnalyze
	4.1.5 Starting from partial analyses

	4.2 The intermodular fixpoint algorithm
	4.2.1 Modular analysis results
	4.2.2 Operation of the algorithm
	4.2.3 Correctness of ModAnalyze
	4.2.4 Correctness and precision of ModAnalyzeI95

	4.3 Running example of IncAnalyze

	5 Incremental and Modular Context-sensitive Analysis
	5.1 Towards combining incrementality and modularity
	5.2 Analysis graphs for modular and incremental analysis
	5.3 Operation of the algorithm
	5.3.1 Enhancing the deletion strategy
	5.3.2 Precision using IncAnalyze95
	5.3.3 Running examples of the algorithm

	5.4 Fundamental results of the algorithm
	5.4.1 Correctness of ModIncAnalyze
	5.4.2 Correctness and precision of ModIncAnalyzeI95

	5.5 Analyzers amenable to incrementalizing
	5.6 Related work

	6 Assertion-guided Analysis
	6.1 Run-time semantics of assertions
	6.2 Abstract semantics of assertions.
	6.3 Operation of the algorithm
	6.4 Fundamental properties of GuidedIncAnalyze
	6.5 Related work

	7 Incremental analysis of programs with (changing) assertions
	7.1 Motivating examples
	7.2 Operation of the algorithm
	7.3 Correctness of GIAwAC
	7.4 Related work

	8 Experimental Evaluation
	8.1 Implementation within the CiaoPP framework
	8.2 Incremental and Modular Analysis: Stress test
	8.2.1 Overhead of incremental analysis: analyzing from scratch
	8.2.2 Analysis time per action
	8.2.3 Accumulated analysis time
	8.2.4 Distribution of analysis times
	8.2.5 Correlations to benchmark and analysis graph characteristics
	8.2.6 Memory Usage

	8.3 Studying the effect of using assertions during analysis

	9 Application: On-the-fly Assertion Checking
	9.1 Assertion verification
	9.2 VeriFly: The On-the-fly IDE Integration
	9.2.1 VeriFly in action

	9.3 Some Performance Results
	9.4 Related work
	9.5 Conclusion

	10 Conclusion
	10.1 Future work

	A Additional plots
	A.1 Additional experimental results
	A.1.1 Detailed analysis times per step for analysis with def
	A.1.2 Average analysis times split by domain
	A.1.3 Speedup split by domain
	A.1.4 Accummulated analysis times
	A.1.5 Speedup vs. size of the analysis

