
An Incremental Approach to Abstraction-Carrying

Code

Elvira Albert1, Puri Arenas1, and Germán Puebla2

1 Complutense University of Madrid, {elvira,puri}@sip.ucm.es
2 Technical University of Madrid, german@fi.upm.es

Abstract. Abstraction-Carrying Code (ACC) has recently been proposed
as a framework for proof-carrying code (PCC) in which the code supplier
provides a program together with an abstraction (or abstract model of the
program) whose validity entails compliance with a predefined safety policy.
The abstraction plays thus the role of safety certificate and its generation
(and validation) is carried out automatically by a fixed-point analyzer. Ex-
isting approaches for PCC are developed under the assumption that the
consumer reads and validates the entire program w.r.t. the full certificate at
once, in a non incremental way. In the context of ACC, we propose an incre-

mental approach to PCC for the generation of certificates and the checking
of untrusted updates of a (trusted) program, i.e., when a producer provides
a modified version of a previously validated program. By update, we refer
to any arbitrary change on a program, i.e., the extension of the program
with new procedures, the deletion of existing procedures and the replace-
ment of existing procedures by new versions for them. Our proposal is that,
if the consumer keeps the original (fixed-point) abstraction, it is possible to
provide only the program updates and the incremental certificate (i.e., the
difference of abstractions). The first obvious advantage is that the size of the
transmitted certificate can be considerably reduced. Furthermore, it is now
possible to define an incremental checking algorithm which, given the new
updates and its incremental certificate, only re-checks the fixpoint for each
procedure affected by the updates and the propagation of the effect of these
fixpoint changes. As a consequence, both certificate transmission time and
checking time can be reduced significantly. To the best of our knowledge, this
is the first incremental approach to PCC.

1 Introduction

Proof-Carrying Code (PCC) [12] is a general technique for mobile code safety which
proposes to associate safety information in the form of a certificate to programs.
The certificate (or proof) is created at compile time by the certifier on the code
supplier side, and it is packaged along with the code. The consumer who receives or
downloads the (untrusted) code+certificate package can then run a checker which
by an efficient inspection of the code and the certificate can verify the validity of
the certificate and thus compliance with the safety policy. The key benefit of this
“certificate-based” approach to mobile code safety is that the consumer’s task is
reduced from the level of proving to the level of checking, a task which should be
much simpler, efficient, and automatic than generating the original certificate.

Abstraction-carrying code (ACC) [3] has been recently proposed as an enabling
technology for PCC in which an abstraction (i.e., an abstract model of the program)
plays the role of certificate. An important feature of ACC is that not only the check-
ing, but also the generation of the abstraction (or fixpoint) is automatically carried

out by a fixed-point analyzer. Lightweight bytecode verification [14] is another PCC
method which relies on analysis techniques (namely on type analyses in the style
of those used for Java bytecode verification [9]) to generate and check certificates
in the context of the Java Card language. In this paper, we will consider analyzers
which construct a program analysis graph which is interpreted as an abstraction of
the (possibly infinite) set of states explored by the concrete execution. Essentially,
the certification/analysis carried out by the supplier is an iterative process which
repeatedly traverses the analysis graph until a fixpoint is reached. A key idea in
ACC is that, since the certificate is a fixpoint, a single pass over the analysis graph
is sufficient to validate the certificate in the consumer side.

Existing models for PCC (ACC among them) are based on checkers which receive
a “certificate+program” package and read and validate the entire program w.r.t. its
certificate at once, in a non incremental way. However, there are situations which
are not well suited to this simple model and which instead require only rechecking
certain parts of the analysis graph which has already been validated. In particular,
we consider possible untrusted updates of a validated (trusted) code, i.e., a code
producer can (periodically) send to its consumers new updates of a previously sub-
mitted package. By updates, we mean any modification over a program including:
1) the addition of new data/procedures and the extension of already existing proce-
dures with new functionalities, 2) the deletion of procedures or parts of them and 3)
the replacement of certain (parts of) procedures by new versions for them. In such a
context of frequent software updates, it appears inefficient to submit a full certificate
(superseding the original one) and to perform the checking of the entire updated pro-
gram from scratch, as needs to be done with current systems. In the context of ACC,
we investigate an incremental approach to PCC, both for the certificate generation
as well as for the checking process.

Regarding the first issue, when a program is updated, a new fixpoint has to be
computed for the updated program. Such fixpoint differs from the original fixpoint
stored in the certificate in a) the new fixpoint for each procedure affected by the
changes and b) the update of certain (existing) fixpoints affected by the propaga-
tion of the effect of a). However, certain parts of the original certificate may not
have affected by the changes. Our proposal is that, if the consumer still keeps the
original abstraction, it is possible to provide, along with the program updates, only
the difference of both abstractions, i.e., the incremental certificate. Essentially, the
incremental certificate will contain the subset of the new fixpoint which is different
from the original fixpoint. The first obvious advantage of our incremental approach
is that the size of the certificate may be substantially reduced by submitting only
the increment.

The second issue in incremental PCC is that the task performed by the checker
can also be further reduced. In principle, a non-incremental checker (like the one
in [3]) requires a whole traversal of the analysis graph where the entire program +
updates is checked against the (full) certificate. However, it is now possible to define
an incremental checking algorithm which, given the updates and its incremental
certificate, only rechecks the part of the analysis graph for the procedures which have
been affected by the updates and, also, propagates and rechecks the effect of these
changes. In order to perform such propagation of changes, the dependencies between
the nodes of the original analysis graph have to be stored by the consumers, together
with the original certificate. With this, the checking process is carried out in a single
pass over the part of the abstraction affected by the updates. Thus, the second
advantage of our incremental approach is that checking time is further reduced. We

believe that our incremental approach contributes to the practical uptake of PCC
systems since it can significantly reduce certificate size and checking time in the
context of program updates.

The paper is organized as follows. Section 2 introduces briefly some notation and
preliminary notions on abstract interpretation and ACC. In Section 3, we present
an overview of incremental ACC. Section 4 recalls the notion of full certificate and
Section 5 introduces the concepts of incremental certificate and incremental certifier.
In Section 6, we instrument a non incremental checking algorithm with dependencies
in order to support incrementally. In Section 7, we present an incremental abstract
interpretation-based checker. Finally, Section 8 concludes.

2 Abstraction-Carrying Code

We assume some familiarity with abstract interpretation (see [6]), (Constraint) Logic
Programming (C)LP (see, e.g., [11, 10]) and PCC [12].

An abstract interpretation-based certifier is a function Certifier: Prog×ADom×
AInt 7→ ACert which for a given program P ∈ Prog , an abstract domain Dα ∈
ADom and an abstract safety policy Iα ∈ AInt generates an abstract certificate
Certα ∈ ACert , by using an abstract interpreter for Dα, which entails that P sat-
isfies Iα. In the following, we denote that Iα and Certα are specifications given as
abstract semantic values of Dα by using the same subscript α.

The basics for defining such certifiers (and their corresponding checkers) in ACC
are summarized in the following five points:

Approximation. We consider an abstract domain 〈Dα,v〉 and its corresponding
concrete domain 〈2D,⊆〉, both with a complete lattice structure. Abstract values
and sets of concrete values are related by an abstraction function α : 2D → Dα, and
a concretization function γ : Dα → 2D. An abstract value y ∈ Dα is a safe approx-
imation of a concrete value x ∈ D iff x ∈ γ(y). The concrete and abstract domains
must be related in such a way that the following holds [6] ∀x ∈ 2D : γ(α(x)) ⊇
x and ∀y ∈ Dα : α(γ(y)) = y. In general v is induced by ⊆ and α. Similarly, the
operations of least upper bound (t) and greatest lower bound (u) mimic those of 2D

in a precise sense.

Analysis. We consider the class of fixed-point semantics in which a (monotonic)
semantic operator, SP , is associated to each program P . The meaning of the program,
[[P]], is defined as the least fixed point of the SP operator, i.e., [[P]] = lfp(SP). If
SP is continuous, the least fixed point is the limit of an iterative process involving
at most ω applications of SP starting from the bottom element of the lattice. Using
abstract interpretation, we can usually only compute [[P]]α, as [[P]]α = lfp(Sα

P). The
operator Sα

P is the abstract counterpart of SP .

analyzer(P,Dα) = lfp(Sα
P) = [[P]]α (1)

Correctness of analysis ensures that [[P]]α safely approximates [[P]], i.e., [[P]] ∈
γ([[P]]α). Thus, such abstraction can be used as certificate.

Certificate. Let Certα be a safe approximation of P . If an abstract safety specifi-
cation Iα can be proved w.r.t. Certα, then P satisfies the safety policy and Certα

is a valid certificate:

Certα is a valid certificate for P w.r.t. Iα iff Certα v Iα (2)

Together, Equations (1) and (2) define a certifier which provides program fix-
points, [[P]]α, as certificates which entail a given safety policy, i.e., by taking Certα =
[[P]]α.

Checking. A checker is a function Checker: Prog × ADom × ACert 7→ bool

which for a program P ∈ Prog , an abstract domain Dα ∈ ADom and certificate
Certα ∈ ACert checks whether Certα is a fixpoint of Sα

P or not:

checker(P, Dα, Certα) returns true iff (Sα
P (Certα) ≡ Certα) (3)

Verification Condition Regeneration. To retain the safety guarantees, the con-
sumer must regenerate a trustworthy verification condition –Equation (2)– and use
the incoming certificate to test for adherence of the safety policy.

P is trusted iff Certα v Iα (4)

A fundamental idea in ACC is that, while analysis –Equation (1)– is an iterative
process, checking –Equation (3)– is guaranteed to be done in a single pass over the
abstraction.

3 An Overview of Incremental ACC

ok

Program

 Updated
program

Cert

Ext_Cert

Cert
disk

Prog
disk

Inc_Cert

 Upd

Ext_Cert

Program

Upd

 Updated
program

Cert
disk
Cert

disk
Prog

INCREMENTAL CERTIFICATION INCREMENTAL CHECKING

INCREMENTALINCREMENTAL

 CERTIFIER CHECKER

Upd

Fig. 1. Overview of Incremental Abstraction-Carrying Code

Figure 1 presents an overview of incremental ACC. On the left side, the producer
starts from an Updated Program, UP , w.r.t. a previously certified Program, P . It first
retrieves from disk P and its certificate, Cert, computed in the previous certification
phase. Next, the process “ª” compares both programs and returns the differences
between them, Upd(P), i.e, the program Updates which applied to P result in UP ,
written as Upd(P) = UP ª P . Note that, from an implementation perspective, a
program update should contain both the new updates to be applied to the program
and instructions on where to place and remove such new code. This can be easily
done by using the traditional Unix diff format for coding program updates. An
Incremental Certifier generates from Cert, P and Upd(P) an incremental certificate,
Inc Cert, which can be used by the consumer to validate the new updates. The
package “Upd(P)+Inc Cert” is submitted to the code consumer. Finally, in order to

have a compositional incremental approach, the producer has to update the original
certificate and program with the new updates. Thus, the resulting Ext Cert and UP

are stored in disk replacing Cert and P , respectively.
On the right side of the figure, the consumer receives the untrusted package. In

order to validate the incoming update w.r.t. the provided (incremental) certificate, it
first retrieves from disk P and Cert. Next, it reconstructs the updated program by us-
ing an operator “⊕” which applies the update to P and generates UP = P⊕Upd(P).
This can implemented by using a program in the spirit of the traditional Unix patch
command as ⊕ operator. An Incremental Checker now efficiently validates the new
modification by using the stored data and the incoming incremental certificate. If
the validation succeeds (returns ok), the checker will have reconstructed the full
certificate. As before, the updated program and extended certificate are stored in
disk (superseding the previous versions) for future (incremental) updates. In order
to simplify our scheme, we assume that the safety policy and the generation of the
verification condition [12] are embedded within the certifier and checker. However,
in an incremental approach, producer and consumer could perfectly agree on a new
safety policy to be implied by the modification. It should be noted that this does not
affect our incremental approach and the verification condition would be generated
exactly as in non incremental PCC.

Let us now characterize the types of updates we consider and how they can
be dealt within the ACC scheme. Given a program P , we define an update of P ,
written as Upd(P), as a set of tuples of the form 〈A,Add(A),Del(A)〉, where A =
p(x1, . . . , xn) is an atom in base form, and:

– Add(A) is the set of rules which are to be added to P for predicate p. This
includes both the case of addition of new procedures, when p did not exist in P ,
as well as the extension of additional rules (or functionality) for p, if it existed.

– Del(A) is the set of rules which are to be removed from P for predicate p.

Note that, for the sake of simplicity, we do not include the instructions on where
to place and remove such code in the formalization of our method. We distinguish
three classes of updates: the addition of procedures occurs when ∀A, Del(A) = ∅,
the deletion of procedures occurs if ∀A, Add(A) = ∅ and the remaining cases are
considered arbitrary changes.

Addition of Procedures. When a program P is extended with new procedures or
new clauses for existing procedures, the original certificate Certα is not guaranteed
to be a correct fixpoint any longer, because the contribution of the new rules can lead
to a more general answer. Consider P add the program after applying some additions
and Certadd

α the certificate computed from scratch for P add. Then, Certα v Certadd
α .

This means that Certα is no longer valid in order to entail safety. Therefore, we need
to lub the contribution of the new rules and submit, together with the extension,
the new certificate Certadd

α (or the difference of both certificates). The consumer will
thus test the safety policy w.r.t. Certadd

α .

Deletion of Procedures. The first thing to note is that in order to entail the safety
policy, unlike extensions over the program, we need not change the certificate at all
when some procedures are deleted. Consider P del the program after applying some
deletions and Certdel

α the certificate computed from scratch for P del. The original
certificate Certα is trivially guaranteed to be a correct fixpoint (hence a correct
certificate), because the contribution of the rules were lubbed to give Certα and
so it still correctly describes the contribution of each remaining rule. By applying

Equation 2, Certα is still valid for P del w.r.t. Iα since Certα v Iα. Therefore, more
accuracy is not needed to ensure compliance with the safety policy. This suggests
that the incremental certificate can be empty and the checking process does not
have to check any procedure. However, it can happen that a new, more precise,
safety policy is agreed by the consumer and producer. Also, this accuracy could be
required in a later modification. Although Certα is a correct certificate, it is possibly
less accurate than Certdel

α , i.e., Certdel
α v Certα. It is therefore interesting to define

the corresponding incremental algorithm for reconstructing Certdel
α and checking the

deletions and the propagation of their effects.

Arbitrary Changes. The case of arbitrary changes considers that rules can both
be deleted from and added to an already validated program. In this case, the new
certificate for the modified program can be either equal, more or less precise than the
original one, or even not comparable. Imagine that an arbitrary change replaces a
rule Ra, which contributes to a fixpoint Certa

α, with a new one Rb which contributes
to a fixpoint Certbα such that Certab

α = Alub(Certaα, Certbα) and Certaα @ Certab
α and

Certbα @ Certab
α . The point is that we cannot just abstract the new rule and add it

to the previous fixpoint, i.e., we cannot use Certab
α as certificate and have to provide

the more accurate Certbα. The reason is that it might be possible to attest the safety
policy by independently using Certa

α and Certbα while it cannot be implied by using
their lub Certab

α . This happens for certain safety policies which contain disjunctions,
i.e., Certaα ∨ Certbα does not correspond to their lub Certab

α . Therefore, arbitrary
changes require a precise recomputation of the new fixpoint and its proper checking.

4 The Full Certificate

Although ACC and Incremental ACC, as overviewed above, are general proposals
not tied to any particular programming paradigm, our developments for incremental
ACC (as well as for the original ACC framework [3]) are formalized in the context
of (C)LP. Very briefly, a constraint is essentially a conjunction of expressions built
from predefined predicates (such as term equations or inequalities over the reals)
whose arguments are constructed using predefined functions (such as real addition).
An atom has the form p(t1, ..., tn) where p is a predicate symbol and ti are terms.
A literal is either an atom or a constraint. A goal is a finite sequence of literals.
A rule is of the form H:-D where H, the head, is an atom and D, the body, is a
possibly empty finite sequence of literals. A constraint logic program, or program,
is a finite set of rules. Program rules are assumed to be normalized: only distinct
variables are allowed to occur as arguments to atoms. Furthermore, we require that
each rule defining a predicate p has identical sequence of variables xp1

, . . . xpn
in the

head atom, i.e., p(xp1
, . . . xpn

). We call this the base form of p. This is not restrictive
since programs can always be normalized, and it will facilitate the presentation of
the checking algorithms.

For concreteness, we rely on an abstract interpretation-based analysis algorithm
in the style of the generic analyzer of [7]. This goal-dependent analysis algorithm,
which we refer to as Analyze, given a program P and abstract domain Dα, receives
a set Sα ∈ AAtom of Abstract Atoms (or call patterns) and constructs an analysis
graph [5] for Sα. The elements of Sα are pairs of the form A : CP where A is a
procedure descriptor and CP is an abstract substitution (i.e., a condition of the
run-time bindings) of A expressed as CP ∈ Dα.1 Then, the analysis graph is an

1 We sometimes omit the subscript α from Sα when it is clear from the context.

abstraction of the (possibly infinite) set of (possibly infinite) trees explored by the
concrete execution of initial calls described by Sα in P . The program analysis graph
computed by Analyze(Sα) for P in Dα can be implicitly represented by means of
two data structures, the answer table and the dependency arc table (which are in
fact the result of the analysis algorithm).

– Answer Table. Its entries correspond to the nodes in the analysis graph. They are
of the form A : CP 7→ AP, where A is always an atom in base form. They should
be interpreted as “the answer pattern for calls to A satisfying precondition (or
call pattern), CP, accomplishes postcondition (or answer pattern), AP.”

– Dependency Arc Table. The dependencies correspond to the arcs in the analysis
graph. The intended meaning of a dependency Ak : CP ⇒ Bk,i : CP1 associated
to a program rule Ak:-Bk,1, . . . , Bk,n with i ∈ {1, ..n} is that the answer for
Ak : CP depends on the answer for Bk,i : CP1, say AP1. Thus, if AP1 changes
with the update of some rule for Bk,i then, the arc Ak : CP ⇒ Bk,i : CP1 must
be reprocessed in order to compute the new answer for Ak : CP . In particular,
the rule for Ak has to be processed again starting from its body atom Bk,i.

All the details and the formalization of the algorithm can be found in [7]. Certi-
fication in ACC [3] consists in using the complete set of entries stored in the answer
table as certificate. Dependencies are not needed for certificate generation neither for
non incremental checking though they will be needed later for incremental certificate
checking.

Definition 1 (certificate [3]). Let P ∈ Prog, Dα ∈ ADom and Sα ∈ AAtom.
We define Cert ∈ ACert, the certificate for P and Sα, as the set of entries stored
in the answer table computed by Analyze(Sα) [7] for P in Dα.

Example 1. The next example shows a piece of a module which contains the following
(normalized) program for the naive reversal of a list and uses an implementation of
app with several base cases (e.g., added automatically by a partial evaluator [8] for
efficiency purposes).

(rev1) rev(X, Y) : − X = [], Y = [].

(rev2) rev(X, Y) : − X = [U|V], rev(V, W), T = [U], app(W, T, Y).

(app1) app(X, Y, Z) : − X = [], Y = Z.

(app2) app(X, Y, Z) : − X = [U], Z = [U|Y].

(app3) app(X, Y, Z) : − X = [U, V], Z = [U, V|Y].

(app4) app(X, Y, Z) : − X = [U|V], Z = [U|W], app(V, Y, W).

The description domain that we use in our examples is the definite Boolean
functions [4], denoted Def . The key idea in this description is to use implication
to capture groundness dependencies. The reading of the function x → y is “if the
program variable x is (becomes) ground, so is (does) program variable y.” For exam-
ple, the best description of the constraint f(X, Y) = f(a, g(U, V)) is X ∧ (Y ↔ (U ∧ V)).
Groundness information is useful for many program optimizations and is also of
great importance as a safety property, in order to verify that (C)LP programs are
“well moded”. The most general description > does not provide information about
any variable. The least general substitution ⊥ assigns the empty set of values to
each variable.

For the analysis of our running example, we consider the calling pattern rev(X, Y) : >,
i.e., no entry information is provided on X nor Y. The analysis algorithm of [7] com-
putes the following analysis graph (we have notably simplified the graph by not
showing the constraints in order to facilitate the understanding):

¨

§

¥

¦
>rev(X, Y)X↔Y

A1

D1
rz mmm

m
mm

mm
D2&.TTTT

>rev(X, Y)X↔Y

77
¨

§

¥

¦
>app(X, Y, Z)(X∧Y)↔Z

A2

D3®¶
>app(X, Y, Z)(X∧Y)↔Z

RR

The nodes in the graph are labeled with their call pattern (left superscript) and
answer pattern (right superscript). When a node is already in the graph, it is not
expanded any further and the currently available answer is used. This is illustrated
in the graph with backwards arrows. In order to compute A1 and A2, the analysis
algorithm has to iterate twice over each of the dependencies D1, D2 and D3 in
the graph until the fixpoint is reached. Intuitively, D2 denotes that the answer for
rev(X, Y) : > may change if the answer for app(W, T, Y) : > changes. In such a case,
the second rule for rev must be processed again starting from atom app(W, T, Y) in
order to recompute the fixpoint for rev(X, Y) : >. D1 and D3 reflect the recursivity
of rev(X, Y) : > and app(W, T, Y) : >, respectively, since they depend on themselves.
The detailed steps performed by the algorithm can be found in [7] for the same
program without the rules app2 and app3. However these rules do not add any
further information to the fixpoint computation and the steps performed there still
apply for our example.

(State 0) The above graph is returned by Analyze by means of the following
answers (nodes in the graph) and dependencies (arrows in the graph):

(A1) rev(X, Y) : > 7→ X ↔ Y

(A2) app(X, Y, Z) : > 7→ (X ∧ Y) ↔ Z

(D1) rev(X, Y) : > ⇒ rev(V, W) : >
(D2) rev(X, Y) : > ⇒ app(W, T, Y) : >
(D3) app(X, Y, Z) : > ⇒ app(V, Y, W) : >

According to Definition 1, the certificate Cert for this example is composed of all
entries in the answer table, i.e., A1 and A2 .

5 Incremental Certificate and Incremental Certifier

When a program is updated, it appears inefficient to generate, transmit, and check
the full certificate Ext Cert for the updated program UP defined as UP = P⊕Upd(P).
Our proposal is that it is possible to submit only the new program update Upd(P)
together with the incremental certificate Inc Cert, i.e., the difference of Ext Cert

w.r.t. the original certificate, Cert. The bottom line is that the full fixpoint Ext -

Cert differs from Cert in 1) the new fixpoint for each procedure directly affected by
the updates which may be equal, more, less precise or incomparable depending on
the kind of update (see Section 3), and 2) the update of other fixpoints possibly
indirectly affected by the propagation of the effect of 1. However, there may be large
parts of Cert which have not been affected by the changes and which do not need
to be submitted nor checked again. In order to materialize this idea and achieve a
compositional approach to incremental PCC, it is necessary that the consumer is
able to reconstruct Ext Cert. To do this, the consumer has to store Cert and then
properly extend it with the upcoming incremental certificate. Some storage vs time
trade-offs are discussed in Sect. 8.

Definition 2 (incremental certificate). In the
conditions of Def. 1, we consider Upd(P) ∈ UProg, the update of P . Let Cert be the
certificate for P and Sα. Let Ext Cert be the certificate for P ⊕Upd(P) and Sα. We
define Inc Cert, the incremental certificate for Upd(P) w.r.t. Cert, as the difference
of certificates Ext Cert − Cert.

The difference of two certificates, Ext Cert−Cert, is defined as the set of entries
B : CPB 7→ APB ∈ Ext Cert such that:

1. B : CPB 7→ 6∈ Cert or,
2. A : CPA 7→ APA ∈ Cert, A : CPA = B : CPB and APA 6= APB (modulo

renaming).

Intuitively, Inc Cert contains the subset of Ext Cert which corresponds to the
extensions and modifications w.r.t. Cert. The first obvious advantage of the incre-
mental approach is that Inc Cert can be much smaller than Ext Cert. On the other,
the following example illustrates that updating a program can require the change in
the analysis information previously computed for other procedures whose fixpoint is
indirectly affected by the updates, although their definitions have not been directly
changed.

Example 2. Consider the following new definition for predicate app which is a spe-
cialization of the previous app to concatenate lists of a’s of the same length :

(Napp1) app(X, Y, Z) : − X = [], Y = [], Z = [].
(Napp2) app(X, Y, Z) : − X = [a|V], Y = [a|U], Z = [a, a|W], app(V, U, W).

The update consists in deleting all rules for predicate app in Example 1, and replacing
them by Napp1 and Napp2. Upd(P) is composed of the following information:

Add(app(X, Y, Z)) = {Napp1, Napp2}
Del(app(X, Y, Z)) = {app1, app2, app3, app4}

After running the (incremental) analysis algorithm in [7], the following answer
table and dependencies are computed (State 1):

(NA1) rev(X, Y) : > 7→ X ∧ Y

(NA2) app(X, Y, Z) : > 7→ X ∧ Y ∧ Z

(NA3) app(X, Y, Z) : X 7→ X ∧ Y ∧ Z

(ND1) rev(X, Y) : > ⇒ rev(V, W) : >
(ND2) rev(X, Y) : > ⇒ app(W, T, Y) : W
(ND3) app(X, Y, Z) : X ⇒ app(V, U, W) : V

Note that the analysis information has changed because the new definition of app
allows inferring that all its arguments are ground upon success (NA2 and NA3). This
change propagates to the answer of rev and allows inferring that, regardless of the
calling pattern, both arguments of rev will be ground on the exit (NA1).
According to Definition 2, the incremental certificate Inc Cert contains NA3 as it
corresponds to a new calling pattern (by point 1) and contains also NA1 and NA2

since their answers have changed w.r.t. the ones in certificate of State 0 (by point
2).

The next definition introduces the notion of incremental certifier which, given the
original certificate and program and an update of the program, returns the incremen-
tal certificate iff the safety policy can still be entailed from the extended certificate.

Definition 3 (incremental certifier). We define function Inc Certifier: Prog×
UProg×ADom×AAtom×AInt×ACert 7→ ACert which takes P ∈ Prog, Upd(P) ∈
UProg, Dα ∈ ADom, Sα ∈ AAtom, Iα ∈ AInt, the certificate Cert ∈ ACert for P

and Sα. Let Ext Cert ∈ ACert be the full certificate for P ⊕Upd(P). Then, it returns
Inc Cert, the incremental certificate for Upd(P) w.r.t. Cert, iff Ext Cert v Iα.

Note that the above definition does not depend on the particular analysis algo-
rithm used to generate Ext Cert. Incremental analysis algorithms (like the ones in
[16, 7, 13, 15]) are very well suited to do this task. They reanalyze only the part of
the analysis graph affected by the increment. Thus, the time required to generate
the certificate on the producer side can be reduced. Although this optimization on
the producer side is always desirable, it is not as critical within the PCC scheme
as the reduction of the package transmission time or the checking time, which take
place on the consumer side and that we discuss in the next section.

Following the scheme in Figure 1, the producer has started by retrieving P and
Cert from disk. In its last phase, if certification for the new updated program has
succeeded, then P and Cert will be superseded in disk by the updated program and
the extended certificate, respectively.

6 A Checking Algorithm with Support for Incrementallity

In this section, we present a checking algorithm for full certificates which is in-
strumented with a Dependency Arc Table (DAT in the following). The DAT stores
the dependencies between the atoms in the analysis graph (see Section 4). This struc-
ture is not required by non incremental checkers [3] but it is fundamental to support
an incremental design. Intuitively, our abstract interpretation-based checking algo-
rithm receives a certificate Cert and constructs a program analysis graph in a single
iteration by assuming the fixpoint information in Cert. The original dependencies are
not required because they can be reconstructed from the program. While the graph
is being constructed, the obtained answers are stored in ATmem and compared with
the corresponding fixpoints stored in Cert. If any of the computed answers is not
consistent with the certificate (i.e., it is greater than the fixpoint), the certificate is
considered invalid and the program is rejected. Otherwise, Cert gets checked. The
checker returns the reconstructed answer table ATmem and the set of dependencies
DATmem which have been traversed.

Algorithm 2 presents our checker which is parametric w.r.t. the abstract domain
of interest. It is hence defined in terms of five abstract operations on a selected
domain Dα:

– Arestrict(CP, V) performs the abstract restriction of a description CP to the set
of variables in the set V , denoted vars(V);

– Aextend(CP, V) extends the description CP to the variables in the set V ;

– Aadd(C,CP) performs the abstract operation of conjoining the constraint C with
the description CP;

– Aconj(CP1,CP2) performs the abstract conjunction of two descriptions;

– Alub(CP1,CP2) performs the abstract disjunction of two descriptions.

Example 3. For the domain Def in Example 1, these abstract operations are defined
as follows:

1: procedure checking(P, S, Cert,ATmem ,DATmem)
2: ATmem := ∅; DATmem := ∅; CPchecked := ∅;
3: for all A : CP ∈ S do process node(P,A : CP , Cert,ATmem ,DATmem ,CPchecked);
4: return Valid;

5: procedure process node(P,A : CP , Cert,ATmem ,DATmem ,CPchecked)
6: if (∃ a renaming σ s.t. σ(A : CP 7→ AP) in Cert) then

7: add A : CP 7→ σ−1(AP) to ATmem ;
8: CPchecked := CPchecked∪{A : CP};
9: Cert = Cert− {σ(A : CP 7→ AP)};

10: else return Error;
11: process set of rules(P, P |A,A : CP 7→ σ−1(AP), Cert,ATmem ,DATmem , CPchecked);

12: procedure process set of rules(P, R,A : CP 7→ AP , Cert,ATmem ,DATmem ,CPchecked)
13: for all rule Ak ← Bk,1, . . . , Bk,nk

in R do

14: W := vars(Ak, Bk,1, . . . , Bk,nk
); CPb :=Aextend(CP, vars(Bk,1, . . . , Bk,nk

));
15: CPRb := Arestrict(CPb, Bk,1);
16: CPa :=process rule(P ,A : CP ,Ak ← Bk,1, . . . , Bk,nk

,W ,CPb ,CPRb , Cert,ATmem ,DATmem ,CPchecked);

17: AP1 := Arestrict(CPa, vars(Ak)) ;
18: AP2 := Alub(AP1, AP);
19: if (AP <> AP2) then return Error;

20: procedure process rule(P,A : CP , Ak ← Bk,j , . . . , Bk,nk
, W,CPb ,CPRb , Cert,ATmem ,DATmem ,CPchecked)

21: for all Bk,i in the rule body i = j, ..., nk do
22: CPa := process arc(P ,A : CP ,Bk,i : CPRb, CPb, W, Cert,ATmem ,DATmem , CPchecked);
23: if (i <> nk) then CPRa := Arestrict(CPa, var(Bk,i+1));
24: CPb := CPa; CPRb := CPRa;
25: return CPa;

26: procedure process arc(P ,A : CP ,Bk,i : CPRb, CPb, W, Cert,ATmem ,DATmem ,CPchecked)
27: if (Bk,i is a constraint) then CPa := Aadd(Bk,i, CPb);
28: else
29: if (6 ∃ a renaming σ s.t. σ(Bk,i : CPRb 7→ AP ′) in ATmem) then
30: process node (P ,Bk,i : CPRb, Cert,ATmem , DATmem ,CPchecked);
31: AP1 := Aextend (ρ−1(AP), W); where ρ is a renaming s.t. ρ(Bk,i : CPRb 7→ AP) in ATmem

32: CPa := Aconj (CPb, AP1);
33: add A : CP ⇒ Bk,i to DATmem ;
34: return CPa;

Fig. 2. Checking Algorithm 2 with Support for Incrementallity

Arestrict(CP, V) = ∃−V CP Aconj(CP1,CP2) = CP1 ∧ CP2

Alub(CP1,CP2) = CP1 t CP2 Aextend(CP, V) = CP

Aadd(C,CP) = αDef (C) ∧ CP

αDef (X = t) = (X ↔
V

{Y ∈ vars(t)})

where ∃−V F represents ∃v1, . . . , vnF , where {v1, . . . , vn} = vars(F)−V , and t is the
least upper bound (lub) operation over the Def lattice. For instance, Aconj(X,Y ↔
(X∧Z))=X∧(Y ↔ Z). Aadd(X = [U |V], Y)=(X ↔ (U∧V))∧Y . Alub(X,Y)=X∨Y .
2

Let us briefly explain the main functions of Algorithm 2.

1. Function checking(P ,S,Cert,ATmem ,DATmem), receives as parameters a program
P , a set S of call patterns, the certificate Cert returned by Analyze, and two
output variables ATmem and DATmem which are initially empty (Line 2 of pro-
cedure checking). If it succeeds (L4), ATmem coincides with Cert, and DATmem

stores all dependencies generated during the checking process.

2. For each abstract atom A : CP ∈ S, checking calls process node (L3). This
corresponds to the creation of a node in the analysis graph. Firstly, process node

checks if there exists an answer for A : CP in Cert and stores it in ATmem (L6-
7), removing it from Cert (L9). All calls to be checked must have its answer in
Cert or the certificate is not valid and an error is issued (L10). It then proceeds
to compute an answer for A : CP by processing all rules (L11) defining A in a
depth-first, left-to-right fashion.

3. This is done in procedure process set of rules where the answers obtained for
each rule in (L16) are lubbed (L18) with those stored in ATmem (the fixpoint)
to check that they are less or equal than the fixpoint. Otherwise an error is issued
(L19).2 As notation, given the set of rules (or arcs) R, R|A denotes the set of
rules (or arcs) in R applicable to atom A.

4. Each particular rule is handled by procedure process rule, which traverses the rule
body (L21) and processes its corresponding atoms from left-to-right by using the
answer obtained for Bk,i : CPRb as calling pattern for processing Bk,i+1 (L23).
When all body atoms have been processed, the last answer is returned as final
answer (L25).

5. Finally, procedure process arc creates the dependencies which correspond to the
arcs in the analysis graph. Constraints are simply added to the current answer
and no dependency is created for them (L27). As for each literal, procedure
process arc looks up for an answer for it (L29) in ATmem (i.e., the answer copied
from Cert). This avoids rechecking the same literal several times and ensures
termination. If it does not exist, then a (recursive) call to process node (L30)
computes a solution for the atom.

The main difference of the checking Algorithm 2 and the one in [3] is that our
checker stores the dependencies in the analysis graph. This is done in procedure
process arc (L33). During analysis, dependencies are used for achieving efficient im-
plementations of fixed-point re-computations. Naturally, they have not been used
in non incremental checking algorithms since re-computation should never happen
when one assumes the fixpoint. In contrast, DATmem will be fundamental for the
design of our incremental checker, as we will see in the next section. We use the out-
put parameter CPchecked (L8) to store the calling patterns which have been already
checked during the validation process. This will allow the incremental checking to
avoid useless rechecking later. Also, we remove from the certificate the entries which
are going to be checked (L9). In the incremental checking, this will be instrumental
to detect the entries unrelated to the updates (see Section 7.1).

Example 4. As an example, we illustrate the steps carried out by the checker to
validate the rules app1 and app4 of Example 1 w.r.t. a certificate Cert composed of
the entry A2. We take as call pattern app(X, Y, Z) : >. Consider the call to procedure
process node for app(X, Y, Z) : >. The entry A2 is added (L7) to ATmem (initially
empty), and app(X, Y, Z) : > is marked as checked (by inserting it in CPchecked) and
removed from Cert. A call to process set of rules is generated for the call pattern at
hand w.r.t. rules app1 and app4 (L11). Let us consider the processing of the two
rules.

2 This is the main difference with an analyzer. The latter needs to iterate if the new lub is
different from the previously stored one (i.e., the fixpoint has not been reached). To do
this iteration efficiently, dependencies detect the parts of the analysis graph which need
to be reprocessed.

1. The call to process rule for app1 (L16) executes process arc (L22) for each of the
two constraints in the body. The final answer CPa ≡ X ∧ (Y ↔ Z) (L16) for app1
is built up from the abstract conjunction (L32) between X (partial answer from
first constraint) and Y ↔ Z (from second constraint). Since the least upper bound
(L18) between CPa and the answer A2 is A2, then no Error is issued (L19) and
the first rule app1 gets successfully checked.

2. As before, the call to process rule for app4 executes process arc for the first two
constraints and computes as (partial) solution CPa ≡ (X ↔ (U ∧ V)) ∧ (Z ↔ (U ∧ W))
(L22). Since we are not in the last atom of the rule (L23), CPa is restricted to
the variables in app(V, Y, W), giving as result CPRa ≡ >. Now, the next call to
process arc for the rightmost body atom app(V, Y, W) : > computes as final solu-
tion (X ↔ (U ∧ V)) ∧ (Z ↔ (U∧ W)) ∧ (V ∧ (Y ↔ W)), which is simplified to A2. The
corresponding dependency is stored in the DAT. Thus, the call to process rule

for app4 computes as solution A2 (L16), the same answer stored in Cert, and no
Error is issued (L19).

Therefore, both rules have been successfully checked in one pass over them and the
checker returns Valid. 2

In order to support Incrementallity, the final values of the data structures ATmem ,
DATmem and P must be available after the end of the execution of the checker.
Thus, we denote by ATpersist , DATpersist and Ppersist the copy in persistent memory
(i.e., in disk) of such structures.

Definition 4 (checker). We define function checker:Prog ×ACert ×AAtom ×
ADom 7→ boolean which takes a program P ∈ Prog and its certificate Cert ∈ ACert
for Sα ∈ AAtom in Dα ∈ ADom and

1. It returns the result of checking(P, Sα,Cert,ATmem , DATmem).
2. If it does not issue an Error, then it stores in memory ATpersist := ATmem ,

DATpersist := DATmem and Ppersist := P .

7 Incremental Checking

In this section, we propose an incremental checking algorithm which deals with
all possible updates over a program in a unified form. The basic idea is that the
task performed by an incremental checker has to be optimized such that it only:
a) rechecks the part of the abstraction for the procedures which have been directly
affected by an update and, b) propagates and rechecks the indirect effect of these
changes. In order to do this, we will take as starting point the checker in Algorithm 2.
Its DAT will allow the incremental algorithm to propagate the changes and carry out
the process in a single pass over the subgraph affected by the updates. Algorithm 3
presents our implementation of this intuition. The intuitive idea is that we start
by removing all (possibly incorrect or inaccurate) information directly affected by
the updates from the answer table and DAT (i.e., the information for the updated
procedures) and, then, we check it from scratch against the answers provided in
the incremental certificate. If the “direct” checking succeeds, we proceed to check
the information indirectly affected by such changes in a similar way (i.e., delete
the information for them from answer and DAT and recheck it from scratch). This
iterative process successfully finishes when all direct and indirect affected information
gets checked. Otherwise, an Error is issued.

1: procedure incremental checking(P ,Upd(P),Inc Cert,ATmem ,DATmem)
2: Pmem := P ⊕ Upd(P);
3: update answer table(ATmem ,Inc Cert);
4: call patterns to check(Upd(P),ATmem ,CPtocheck);
5: CPchecked := ∅; % call patterns already checked

6: check affected entries(Pmem ,Inc Cert,ATmem ,DATmem ,CPtocheck ,CPchecked);
7: unrelated entries(Pmem , Inc Cert,ATmem ,DATmem ,CPtocheck ,CPchecked);
8: return Valid;

9: procedure update answer table(ATmem ,Inc Cert)
10: for all entry A : CP 7→ AP in ATmem do
11: if (∃ A : CP 7→ APA in Inc Cert and AP 6= APA (modulo renaming)) then
12: replace entry for A : CP 7→ AP in ATmem by A : CP 7→ APA;

13: procedure call patterns to check(Upd(P),ATmem ,CPtocheck)
14: CPtocheck := ∅; % call patterns required to be checked

15: for all entry A : CP 7→ ∈ ATmem do
16: if A is updated in Upd(P) then CPtocheck :=CPtocheck∪{A : CP};

17: procedure check affected entries(Pmem ,Inc Cert,ATmem ,DATmem ,CPtocheck ,CPchecked)
18: while CPtocheck ! = ∅ do
19: select A : CP from CPtocheck ;
20: remove previous info(A : CP ,ATmem ,DATmem);
21: if A : CP 6∈ Inc Cert then
22: let A : CP 7→ AP the entry for A : CP in ATmem ;
23: Inc Cert = Inc Cert ∪ {A : CP 7→ AP};
24: propagate:= false;
25: else propagate:= true;
26: process node(Pmem ,A : CP , Inc Cert,ATmem ,DATmem , CPchecked);
27: CPtocheck := CPtocheck− CPchecked ;
28: if propagate then propagate effects(A : CP ,DATmem , CPtocheck ,CPchecked);

29: procedure remove previous info(A : CP ,ATmem , DATmem)
30: remove entry for A : CP from ATmem ;
31: remove from DATmem all dependencies of the form A : CP ⇒ ;

32: procedure propagate effects(A : CP ,DATmem , CPtocheck ,CPchecked)
33: for all B : CPB ⇒ A : CP ∈ DATmem do
34: if B : CPB 6∈ CPchecked∪ CPtocheck then CPtocheck :=CPtocheck∪{B : CPB};

Fig. 3. Incremental Checking Algorithm 3

The incremental checker is defined as follows: replace the procedure checking

by the new procedure incremental checking in Algorithm 3 and use the remaining
procedures defined in Algorithm 2. Essentially, the additional tasks that an incre-
mental checker has to perform w.r.t. the non incremental one in Algorithm 2 are the
following:
1. Retrieve stored data. After checking the original package, the structures ATpersist ,

DATpersist and the program Ppersist have been stored in persistent memory (see
Definition 4). Our checker retrieves such stored data and initializes, respectively,
the parameters ATmem , DATmem and P with them.

2. Update program and answer table. Prior to proceeding with the proper checking,
the incoming updates Upd(P) are applied (by means of the operator ⊕) to P in
order to generate Pmem (L2). Also, the procedure update answer table updates
the answer table by updating the answers for those call patterns in ATmem which
have a different answer in Inc Cert (L10-12). The new entries not yet present in
ATmem will be asserted in it upon request, as it is done in the usual checking
process (L7 of Algorithm 2).

3. Initialize call patterns to check. The procedure call patterns to check initializes
the set CPtocheck with those call patterns with an entry in ATmem which corre-

spond to a rule directly affected by an update (L15-16). During the execution
of the checker, the set CPtocheck will be dynamically extended to include the
additional call patterns whose checking is indirectly affected by the propagation
of changes (L34).

4. Check affected procedures. Procedure check affected entries is encharged of launch-
ing the checking of all procedures affected by the updates, i.e., the call patterns
in CPtocheck− CPchecked . As mentioned in Section 4, the set CPchecked is used
to avoid rechecking the same call pattern more than once, if it appears several
times in the analysis subgraph to be checked. Three actions are taken in order
to check a call pattern:3

– remove its analysis information (L20),
– proceed to check it by calling process node of Algorithm 2 (L26) and,
– propagate the effects of type b) if needed (L28).

We only propagate effects if the answer provided in Inc Cert for the call pattern
at hand is different from that originally stored in ATpersist (L25). As a techni-
cal detail, in L23, we add to Inc Cert the information which, although has not
changed w.r.t. ATmem , needs to be checked and, therefore, it must be available
in Inc Cert (or process node would issue an error in L10 of Algorithm 2).

5. Remove previous analysis information. Before proceeding with the checking, we
need to get rid of previous (possibly incorrect or inaccurate) analysis information.
Procedure remove previous info eliminates the entry to be checked from ATmem

(L30) and all its dependencies from DATmem (L31).
6. Propagate effects. After processing the updated rules, the procedure propagate effects

introduces in the set CPtocheck (L34) the calling patterns whose answer depends
on the updated one, i.e., those which are indirectly affected by the updates.
Their checking will be later required in L18.

7. Store data. Upon return, the checker has to store the computed ATmem , DATmem

and Pmem, respectively, in ATpersist , DATpersist , and Ppersist for achieving a
compositional design of our incremental approach.

Definition 5 (incremental checker). We define
function Incr Checker: UProg×ACert× 7→ boolean which takes Upd(P) ∈ UProg

and its incremental certificate Inc Cert ∈ ACert and

1. It retrieves from memory ATmem := ATpersist , DATmem := DAT persist and
P := Ppersist.

2. It returns the result of incremental checking(P,Upd(P), Inc Cert, ATmem ,DATmem)
for P .

3. If it does not issue an Error, then it stores ATpersist := ATmem , DATpersist

:= DATmem and Ppersist := Pmem .

An important point to note is that the safety policy has to be tested w.r.t. the
answer table for the extended program. Therefore, the checker has reconstructed,
from Inc Cert, the answer table returned by Analyze for the extended program,
Ext Cert, in order to test for adherence to the safety policy –Equation (4), i.e.,
AT persist ≡ Ext Cert.

It should be noted that the design of our incremental checking algorithm is no-
tably different from the design of an incremental analyzer (like the ones in [7, 13]). In

3 Note that an updated rule which does not match any entry in ATmem does not need to
be processed by now. Its processing may be required by some other new rule or they can
simply not be affected by the checking process.

particular, the treatment of deletions and arbitrary changes is completely different.
In our case, we can take advantage of the information provided in the certificate in
order to avoid the need to compute the strongly connected components (see [7]).
This was necessary in the analyzer in order to ensure the correctness of the incre-
mental algorithm. We additionally have had to include the detection of no valid
certificates. Unlike [7, 13], we have integrated in a single algorithm all incremen-
tal updates over a program in a seamless way. In Section 7.3, we will identify the
particular optimizations of our unified algorithm for certain types of updates.

Our first example is intended to illustrate a situation in which the task performed
by the incremental checker is optimized such that it only checks a part of the analysis
graph.

Example 5. Consider the deletion of rules app2 and app3 of Example 1. The analysis
algorithm of [7] returns the same state (State 0) since the eliminated rules do not
affect the fixpoint result, i.e., they do not add any further information. Thus, the
incremental certificate Inc Cert associated to such an update is empty. The checking
algorithm proceeds as follows. Initially, ATmem and DATmem are initialized with
the values in State 0. Pmem is composed of the rules rev1, rev2, app1 and app4.
Procedure update answer table (L3) does not modify ATmem . The execution of pro-
cedure call patterns to check (L4) adds E1 ≡ app(X, Y, Z) : > to CPtocheck . Procedure
check affected entries selects E1 from CPtocheck . The next call to remove previous info

(L20) removes A2 from ATmem and D3 from DATmem . It then inserts A2 in Inc Cert.
The variable “propagate” takes the value false. We now jump to the non incremen-
tal checking with a call to procedure process node (L26). This process corresponds
exactly to the checking illustrated in Example 4. Upon return from process node,
since the variable “propagate” is false, no effects have to be propagated.

The important point to note is that the incremental checker has not had to
recheck the rules for rev since its answer is not affected by the deletion. Once Inc Ce-

rt has been validated, the consumer mems the answer table ATmem , the dependency
arc table DATmem (which are those of State 0) and the program Pmem in disk. 2

Our second example is intended to show how to propagate the effect of a change
to the part of the analysis graph affected by such update.

Example 6. Let us illustrate the checking process carried out to validate the up-
date proposed in Example 2 with an incremental certificate, Inc Cert, which con-
tains the entries NA1 , NA2 and NA3 . The incremental checker retrieves State 0
from disk. Next, procedure update answer table returns as new ATmem the entries
NA1 and NA2 which replace the old entries A1 and A2, respectively. Then, the set
CPtocheck is initialized with E1 ≡ app(X, Y, Z) : >. Procedure check affected entries

first executes remove previous info, which elim-
inates E1 from ATmem and dependency D3 from DATmem . Moreover, the variable
“propagate” is initialized to true. This annotates that effects have to be propagated
later. The execution of process node for E1 succeeds and adds the dependency D3

to DATmem and the set CPchecked is returned with E1 marked as checked. Upon
return, since the variable “propagate” is true, a call to propagate effects is generated
which forces the checking of rev. After inspecting D2 and D3 (the two dependencies
for E1), only the entry E2 ≡ rev(X, Y) : > is added to CPtocheck . The dependency
for D3 will not be checked because E1 has been already processed (hence, it belongs
to CPchecked). Now, procedure check affected entries takes E2 from CPtocheck , and
similarly to the previous case, successfully executes process node, and replaces D2

by ND2 . During the checking of rule rev2, a new call to process node is generated for

E3 ≡ app(X , Y, Z) : X which introduces E3 in CPchecked , and replaces the dependency
D3 in DATmem by the new one ND3 of Example 2. Upon return, since the variable
“propagate” is true, a call to propagate effects is generated from it. But the affected
dependency D1 is not processed because E1 was processed already and belongs to
CPchecked .

The conclusion is that a single pass has been performed on the three provided
entries in order to validate the certificate. 2

The correctness of the checking algorithm amounts to saying that, if our checker
does not issue an error, then it returns as computed answer table the extended
certificate for the updated program. Moreover, we ensure that it does not iterate
during the reconstruction of any answer.

Theorem 1 (correctness). Let P ∈ Prog, Upd(P) ∈ UProg, Dα ∈ ADom and
Sα ∈ AAtom. Consider:

– Cert: the certificate for P and Sα.
– Ext Cert: the certificate for P ⊕ Upd(P) and Sα.
– Inc Cert: the incremental certificate for Upd(P) w.r.t. Cert.

If Incr Checker(Upd(P), Inc Cert) does not issue an Error, then the validation
of Inc Cert is done in a single pass over Inc Cert and:

– ATpersist ≡ ATmem

– DATpersist ≡ DATmem

where ATmem and DATmem are, respectively, the answer table and DAT returned by
checking(P ⊕ Upd(p), Sα, Ext Cert, ATmem ,DATmem).

The proof of this theorem can be found in the appendix.

7.1 Entries unrelated to updates

The incremental setting has to take into account a new type of Error which does
not occur in non incremental PCC. This corresponds to a situation in which the
producer includes in the incremental certificate certain entries for calling patterns
which are unrelated to the updates, i.e., they do not correspond to the updated
procedures nor to the propagation of their effects. However, they are related with
procedures stored in Ppersist in some previous iteration. These entries may have been
included in the certificate by the producer in order to provide a new, more precise
fixpoint for some procedure which, for instance, has been obtained by using a higher
quality analyzer. In principle, this information may seem not useful as the previous
fixpoint in ATpersist was already valid to entail the safety policy. Nevertheless, it
could be the case that the safety policy is later changed and one needs the more
precise information received in this incremental certificate in order to imply such
policy. Also, this accuracy could be required in a later modification.

Since the procedures of Algorithm 3 described so far only check the new updates
and their demanded entries, we check in a posterior phase that the entries unrelated
to the updates are valid fixpoints or, otherwise, issue an error. This is done by the
following procedure unrelated entries which is executed from L7 in Algorithm 3.

procedure unrelated entries(Pmem , Inc Cert,ATmem ,DATmem ,CPtocheck ,CPchecked)
CPtocheck := ∅;

for all A : CP ∈ Inc Cert do
CPtocheck := CPtocheck∪ {A : CP};

check affected entries (Pmem ,Inc Cert, ATmem , DATmem ,CPtocheck ,CPchecked)

Note that we can easily identify the entries unrelated to the updates because
they are the only ones which remain in Inc Cert after having checked the affected
procedures. This happens because in L9 of Algorithm 2 we remove from Inc Cert

those entries which are being checked.
By checking unrelated answers as well, we can now ensure that any invalid fix-

point will be rejected by the consumer. The proof can be found in [1].

Theorem 2. In the conditions of Theorem 1, if an answer in Inc Cert is not a
Valid fixpoint, then Incr Checker(Upd(P), Inc Cert) issues an Error.

It should be noted that in order to ensure that all valid certificates get checked
with the incremental checker, we have to provide all the information required by
the checker within the incremental certificate. This can be ensured by using an
incremental analyzer which uses the same graph traversal strategy than the checker
in order to generate the incremental certificates. More details can be found in the
appendix.

7.2 Cleaning up the Certificate

Those entries for A : CP in ATmem (and which are not in S) corresponding to
deleted rules can be removed from the final answer table. We can identify them by
exploring the new dependencies. If there is no entry which depends on it, then we
can remove such entry. This is a rather standard procedure performed in analysis
algorithms to eliminate useless entries.

procedure remove useless entries(ATmem ,DATmem)
for all A : CP ∈ ATmem and A : CP 6∈ S do

if 6 ∃B : CPB ⇒ A : CP ∈ DATmem then
remove A : CP from ATmem

As an example, consider the following program and S = {p(X, Y) : >}:

p(X, Y) :- q(X), h(Y).
q(X) :- X = a.

h(Y) :- Y = b.

By using the analysis algorithm in [7], we have that Cert is made up of

{ p(X, Y) : > 7→ X ∧ Y,

q(X) : > 7→ X,

h(Y) : > 7→ Y }

The checker stores in disk memory ATpersist ≡ Cert and DATpersist is:

{ p(X, Y) : > ⇒ q(X) : >
p(X, Y) : > ⇒ h(Y) : > }

Suppose that the unique rule for h is deleted and the unique rule for p is replaced
by the new one:

p(X, Y) :- q(X).

The producer sends to the consumer such an update along with Inc Cert={p(X, Y) :
> 7→ X}. Then Incr Checker, starting from ATpersist and DATpersist , rechecks

p(X, Y) : >, removing its old answer from ATmem and its dependencies from DATmem .
The checking process introduces in ATmem the new answer for p, and in DATmem

only the dependency related to q. Now, procedure remove useless entries compares
ATmem with the new computed dependency. Since h does not belong to S and does
not occur in the right hand side of the dependency, then the entry h(Y) : > 7→ Y is
removed from ATmem .

The purpose of the above procedure is clearly to reduce the size of the persistent
certificate. Its execution can be switched off when the higher priority is to reduce
the checking time w.r.t. optimize storage resources.

7.3 Optimizations to the generic algorithm

Our generic incremental checking algorithm admits an optimization which avoids
rechecking some useless call patterns in certain cases. When an entry A : CP 7→ AP

in the new certificate is affected by the update of B : CPB , the call pattern A : CP

is fully checked with a call to process node which traverses all rules for A from their
leftmost positions. This is done because if one considers any possible update, the
old answer for A : CP 7→ AP ′ may be inaccurate in the case of deletion or arbitrary
change when AP ′ 6v AP . Therefore, we cannot assume AP and the checking for
A : CP has to delete all its previous information and start from scratch.

However, when we know that the old answer AP ′ is lesser than AP , i.e., AP ′ v
AP , we can process only the part of the subgraph associated to checking A : CP

which depends on the update of B : CPB . This always happens in the addition
of predicates and it can eventually happen in the deletion and arbitrary changes
(see Section 3). We can easily find out this point in the algorithm through the
dependency Ak : CP ⇒ Bk,i : CPB . In particular, we will replace in such a case the
call to process node for A : CP by a call to process rule for the rule for Ak starting
from its body atom Bk,i. As an example, consider the program given in Example
5, where Inc Cert is empty because, after updating the program, all entries have
remained the same. In such a case, the only call pattern app(X, Y, Z) : > affected by
the update does not need to be checked, since its answer is still correctly described
by the remaining rules.

The implementation of this idea in the algorithm, although conceptually clear,
gets technically more involved due to the need of ensuring that the remaining arcs
from Ak to its body atoms to the right of Bk,i are checked only once. For the case
of the addition of rules only, an optimized incremental checker can be found in [2].
For an arbitrary update, we do not integrate the same optimization here by lack of
space (but can be found in our technical report [1]).

8 Conclusions

Our approach to incremental ACC aims at reducing the size of certificates and the
checking time when a supplier provides an untrusted update of a (previously) vali-
dated package. Essentially, when a program is subject to an update, the incremental
certificate we propose contains only the difference between the original certificate
for the initial program and the new certificate for the updated one. Checking time
is reduced by traversing only those parts of the abstraction which are affected by
the changes rather than the whole abstraction. An important point to note is that
our incremental approach requires the original certificate and the dependency arc
table to be stored by the consumer side for upcoming updates. The appropriateness

of using the incremental approach will therefore depend on the particular features
of the consumer system and the frequency of software updates. In general, our ap-
proach seems to be more suitable when the consumer prefers to minimize as much
as possible the waiting time for receiving and validating the certificate while storage
requirements are not scarce. We believe that, in everyday practice, time-consuming
safety tests would be avoided by many users, while they would probably accept to
store the safety certificate and dependencies associated to the package. Neverthe-
less, there can sometimes be situations where storage resources can be very limited,
while runtime resources for performing upcoming checkings could still be sufficient.
We are now in the process of extending the ACC implementation already available in
the CiaoPP system to support incrementallity. Our preliminary results in certificate
reduction are very promising. We expect optimizations in the checking time similar
to those achieved in the case of incremental analysis (see, e.g., [7]).

References

1. E. Albert, P. Arenas, and G. Puebla. An Incremental Approach to Abstraction-
Carrying Code. Technical Report CLIP3/2006, Technical University of Madrid (UPM),
School of Computer Science, UPM, March 2006.

2. E. Albert, P. Arenas, and G. Puebla. Incremental Certificates and Checkers for
Abstraction-Carrying Code. In Sixth Workshop on Issues in the Theory of Security,
March 2006.

3. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc. of

LPAR’04, number 3452 in LNAI, pages 380–397. Springer-Verlag, 2005.
4. T. Armstrong, K. Marriott, P. Schachte, and g H. Søndergaard. Boolean functions for

dependency analysis: Algebraic properties and efficient representation. In Springer-
Verlag, editor, Static Analysis Symposium, SAS’94, number 864 in LNCS, pages 266–
280, Namur, Belgium, September 1994.

5. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Pro-
grams. Journal of Logic Programming, 10:91–124, 1991.

6. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Fourth ACM

Symposium on Principles of Programming Languages, pages 238–252, 1977.
7. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of

Constraint Logic Programs. ACM Transactions on Programming Languages and Sys-

tems, 22(2):187–223, March 2000.
8. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program

Generation. Prentice Hall, New York, 1993.
9. Xavier Leroy. Java bytecode verification: algorithms and formalizations. Journal of

Automated Reasoning, 30(3-4):235–269, 2003.
10. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edition,

1987.
11. Kim Marriot and Peter Stuckey. Programming with Constraints: An Introduction. The

MIT Press, 1998.
12. G. Necula. Proof-Carrying Code. In Proc. of POPL’97, pages 106–119. ACM Press,

1997.
13. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Analysis

of Logic Programs. In Proc. of SAS’96, pages 270–284. Springer LNCS 1145, 1996.
14. K. Rose, E. Rose. Lightweight bytecode verification. In OOPSLA Workshop on Formal

Underpinnings of Java, 1998.
15. B. Ryder. Incremental data-flow analysis algorithms. ACM Transactions on Program-

ming Languages and Systems, 10(1):1–50, 1988.
16. Tim A. Wagner and Susan L. Graham. Incremental analysis of real programming

languages. In SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 31–43, 1997.

A Correctness of the Incremental Checking

Definition 6. Let P ∈ Prog, Upd(P) ∈ UProg, Dα ∈ ADom and Sα ∈ AAtom.
Consider:

– Cert: the certificate for P and Sα.
– Ext Cert: the certificate for P ⊕ Upd(P) and Sα.
– Inc Cert: the incremental certificate for Upd(P) w.r.t. Cert.

We define the set of unchanged entries in Ext Cert as:

unchanged(Ext Cert) = {A : CP ∈ Ext Cert | A : CP ∈ Cert, A : CP 6∈ Inc Cert}

Note that when a program is updated, it is possible that there exists entries in
Cert not occurring in Ext Cert, as shown in Section 7.1. On the other hand, it holds
trivially that unchanged(Ext Cert) is the set of entries in Ext Cert which preserve
their answers in Cert after an update of the original program.

As notation, given any dependency arc table DAT and call pattern A : CP , we
define the set dependencies(DAT , A : CP) as the set of all dependencies in DAT of
the form A : CP ⇒ B : CPB .

Definition 7. Let P ∈ Prog, Upd(P) ∈ UProg, Dα ∈ ADom and Sα ∈ AAtom.
Consider:

– Cert: the certificate for P and Sα.
– Ext Cert: the certificate for P ⊕ Upd(P) and Sα.
– Inc Cert: the incremental certificate for Upd(P) w.r.t. Cert.

Let DATmem be the dependency arc table computed by the call checking(P⊕Upd(P),S,
Ext Cert, ATmem ,DATmem). We say that an entry A : CP ∈ Ext Cert is safe if:

– A : CP ∈ unchanged(Ext Cert), i.e, A : CP ∈ Cert and A : CP 6∈ Inc Cert.
– A has not an entry in Upd(P).
– For all dependency A : CP ⇒ B : CPB ∈ dependencies(DATmem , A : CP),

B : CPB ∈ unchanged(Ext Cert).

The following proposition ensures that the checking process for P w.r.t. Cert behaves
similarly to that for P ⊕ Upd(P) w.r.t. Ext Cert, for those call patterns being safe.

Proposition 1. Let P ∈ Prog, Upd(P) ∈ UProg, Dα ∈ ADom and Sα ∈ AAtom.
Consider:

– Cert: the certificate for P and Sα.
– Ext Cert: the certificate for P ⊕ Upd(P) and Sα.
– Inc Cert: the incremental certificate for Upd(P) w.r.t. Cert.

Consider the calls:

(O) checking(P ,S,Cert,ATO
mem ,DATO

mem)
(E) checking(P ⊕ Upd(P),S,Ext Cert,ATE

mem ,DATE
mem)

Then, for all A : CP ∈ Ext Cert being safe, an for all rule r ≡ A :- B1, . . . , Bn ∈ P

for A, the calls:

(Or) process rule(P ,A : CP ,r,W ,CPb , CPRb ,Cert,ATO
mem ,DATO

mem ,CPO
checked)

(Er) process rule(P ⊕Upd(P),r,W ,CPb , CPRb,Ext Cert,ATE
mem ,DATE

mem ,CPE
checked)

where W = vars(r), CPb = Aextend(CP, vars(B1, . . . , Bn)), CPRb = Arestrict(CPb, B1),
compute the same answer CPa, and

dependencies(DATO
mem , A : CP) = dependendies(DATE

mem , A : CP)

Proof. Let r ≡ A :- B1, . . . , Bn ∈ P be a rule for A. Calls (Or) and (Er) require
n calls to procedure process arc (L22 of Algorithm 2) in order to compute the final
solution. Let us prove that, for all 1 ≤ k ≤ n, the k-th call to process arc for (Or)
and (Er) is done with the same parameters

(∗) Bk : CPRk , CPk

and returns the same solution CPa, adding the same dependencies for A in DATO
mem

and DATE
mem . We reason by induction on k.

Base case (k = 1). Trivially, both calls verify (*). We distinguish two cases:

1. B1 is a constraint. Then, both calls to process arc computes the same solution
(L27).

2. B1 is an atom. Since A : CP is safe, then B1 : CPR1 ∈ unchanged(Ext Cert).
But then, Definition 6 ensures that B1 : CPR1 has the same solution in
Cert and Ext Cert, i.e, B1 : CPR1 7→ AP1 ∈ Cert ∩ Ext Cert. But, the calls
(O) and (E) do not issue an Error (both certificates are valid), then, along
the computation, they store B1 : CPR1 7→ AP1 in ATO

mem and ATE
mem

respectively, after calling to process node for B1 : CPR1 . Hence both calls to
process arc compute the same solution AP1 and store the same dependency
A : CP ⇒ B1 : CPRb in DATO

mem and DATE
mem respectively (L33).

Inductive case (1 ≤ k < n). The inductive hypothesis is that the result holds for
the first 1 ≤ k < n calls to function process arc. Hence, the k+1 call to process arc

verifies trivially (*). Reasoning similarly to the base case, and considering that
Bk+1 : CPRk+1 ∈ unchanged(Ext Cert), it holds that both calls to process arc

computes the same answer and store the same dependencies for A.

Hence, since all calls to process arc for (Or) and (Er) compute the same solution and
store the same dependencies for A, then trivially, the calls (O) and (E) also compute
the same solution and store the same dependencies for A. 2

Note that the above proposition ensures that the calls (O) and (E) behave simi-
larly in presence of safe call patterns. Thus, safe call patterns does not require to be
rechecked when a program is updated.

In the following, we will call original checking to the checking process executed for
P w.r.t. Cert, and extended checking to the checking process executed for P⊕Upd(P)
w.r.t. Ext Cert. We will denote by ATO

mem and DATO
mem to the answer table and

the dependency arc table computed by the original checking, and by ATE
mem and

DATE
mem to the corresponding ones computed by the extended checking.

Proposition 2. Let P ∈ Prog, Upd(P) ∈ UProg, Dα ∈ ADom and Sα ∈ AAtom.
Consider:

– Cert: the certificate for P and Sα.

– Ext Cert: the certificate for P ⊕ Upd(P) and Sα.
– Inc Cert: the incremental certificate for Upd(P) w.r.t. Cert.

If incremental checking(P ,Upd(P),Inc Cert,ATmem ,DATmem), where ATmem ≡ Cert

≡ ATO
mem , and DATmem ≡ DATO

mem , does not issue an Error then, for all non safe
A0 : CP0 ∈ Ext Cert, it holds that A0 : CP0 ∈ CPchecked .

Proof. By Definition 7, if A0 : CP0 is not safe, then A0 : CP0 verifies at least one of
the following conditions:

(A) A0 : CP0 6∈ Cert.
(B) A0 : CP0 ∈ Cert ∩ Inc Cert.
(C) A0 has an entry in Upd(p).
(D) There exists a dependency A0 : CP0 ⇒ B : CPB ∈ dependencies(DATE

mem , A0 :
CP0) such that B : CPB 6∈ unchanged(Ext Cert).

On the other hand, note that A0 : CP0 only may belong to CPchecked iff A0 : CP0

belonged previouly to the set CPtocheck . The corresponding call to process node (L26
of Algorithm 3) for A0 : CP0 will introduce A0 : CP0 in CPchecked (L8 of Algorithm
2). Let us analyze all the above cases:

• (Case B) If A0 has an entry in Upd(P) then, since A0 : CP0 ∈ ATmem , then
A0 : CP0 was initially introduced in CPtocheck (L16 in Algorithm 3) by procedure
calls patterns to check. Hence, a call to process node (L26) was generated, introduc-
ing A0 : CP0 in CPchecked (L8 in Algorithm 2).

Suppose that A0 has no entries in Upd(P). Since A0 : CP0 ∈ Cert ∩ Inc Cert,
then there exists at least a rule r ∈ P for A0 such that the calls to process rule for
r in the original and the extended checking process, computed a different answer.
Furthermore, at least one of such rules r0 verifies that there exists at least an atom
Bj0 in r0 such that:

– The original and extended checking process generated a call to process arc for
Bj0 : CPRj0 and they computed different answers.

– Bj0 : CPRj0 ∈ Cert ∩ Inc Cert.
– Bj0 : CPRj0 6≡ A0 : CP0 .

Note that if r0 does not exist, then A0 : CP0 only could have changed its answer
(from the original to the extended checking) because of an update of its rules. But
we are assuming that A0 has no entries in Upd(P). Now, we distinguish two cases:

– If Bj0 has an entry in Upd(P) then, since Bj0 ∈ ATmem , it holds that Bj0 :
CPRj0 was initially introduced in CPtocheck (L16 in Algorithm 3) by procedure
calls patterns to check. But Bj0 : CPRj0 ∈ Inc Cert, then procedure check affec-

ted entries (L25) initializes variable propagate to true, calling to procedure prop-

agate effects (L28) after calling to process node (L26) for Bj0 : CPRj0 . But
A0 : CP0 ∈ Cert∩Ext Cert and A0 has no entries in Upd(P), then the dependency
A0 : CP0 ⇒ Bj0 : CPRj0 ∈ DATmem . Hence, A0 : CP0 ∈ CPchecked (L34).

– If Bj0 has not an entry in Upd(P), then reasoning similarly, there exists a rule
r1 ∈ P and an atom Bj1 in r1 such that, the original and extended checking
process generated a call to process arc for Bj1 : CPRj1 but computed different
answers. On the other hand, Bj1 : CPRj1 ∈ Cert ∩ Inc Cert and it is different
from A0 : CP0 and Bj0 : CPRj0 .

• If Bj1 has an entry in Upd(P), then Bj1 : CPRj1 was initially introduced
in CPtocheck . But Bj0 : CPRj0 ⇒ Bj1 : CPRj1 ∈ DATmem . Hence, as in
the above case, propagate effects introduces Bj0 : CPRj0 in CPtocheck (unless
Bj0 : CPRj0 ∈ CPchecked). But then, check affected entries processes Bj0 :
CPRj0 and propagates its effects. Since the dependency A0 : CP0 ⇒ Bj0 :
CPRj0 ∈ DATmem , then, again progagate effects introduces A0 : CP0 in
CPtocheck (unless A0 : CP0 ∈ CPchecked). Thus, finally A0 : CP0 ∈ CPchecked .

• If Bj1 has no an entry in Upd(P), then reasoning similarly and considering
that the process is finite, we obtain a sequence of arcs:

A0 : CP0 ⇒ Bj0 : CPRj0

Bj0 : CPRj0 ⇒ Bj1 : CPRj1

Bj1 : CPRj1 ⇒ Bj2 : CPRj2

.

Bjk
: CPRjk ⇒ Bjk+1

: CPRjk+1

such that Bji
: CPRji ∈ Cert ∩ Inc Cert, 0 ≤ i ≤ k + 1 and Bjk+1

has
an entry in Upd(P). Thus, Bjk+1

: CPRjk+1
∈ CPchecked , and propagating

dependencies (by procedure propagate effects), we obtain that A0 : CP0 ∈
CPchecked .

• (Case A) If A0 : CP0 6∈ Cert, then A0 : CP0 comes from the checking of some
rule, and the dependency:

B1 : CP1 ⇒ A0 : CP0 ∈ DATE
mem

We distinguish two cases:

– If B1 : CP1 ∈ Cert then, the rule associated to the dependency has necessarily
the form:

r ≡ B1 :- . . . , A, . . . , A0, . . .

and the original and extended checking process verify that a call to process arc

for A : CP ∈ Cert ∩ Inc Cert was generated computing different answers for
A : CP . But then, A : CP corresponds to (case B) previously proved, and hence
A : CP ∈ CPchecked . Then propagate effects introduces B1 : CP1 in CPtocheck .
But then, a call process node for B1 : CP1 is generated during the incremental
checking, which forces the checking of rule r. Since A0 : CP0 6∈ Cert, then a
call to process node for A0 : CP0 is generated (L30 in Algorithm 2), introducing
A0 : CP0 in CPchecked (L8). Note that it is possible that A0 : CP0 ∈ ATmem ,
before processing r. But in particular, since A0 : CP0 did not initially belong
to ATmem , this means that A0 : CP0 necessarily suffered a previous call to
process node, i.e., A0 : CP0 ∈ CPchecked .

– If B1 : CP1 6∈ Cert. Then reasoning as in the above case, there exists a sequence
of arcs in DATmem :

r0 ≡ B1 : CP1 ⇒ A0 : CP0

r1 ≡ B2 : CP2 ⇒ B1 : CP1

r2 ≡ B3 : CP3 ⇒ B2 : CP2

.

rn−1 ≡ Bn : CPn ⇒ Bn−1 : CPn−1

such that Bi : CPi 6∈ Cert, 1 ≤ i < n, Bn : CPn ∈ Cert. Then, the rule associated
to the dependency rn−1 has necessarily the form:

r ≡ Bn :- . . . , A, . . . , Bn−1, . . .

and its original and extended checking process verify that a call to process arc

for A : CP ∈ Cert ∩ Inc Cert was generated computing different answers for
A : CP . But then, A : CP corresponds to (case B) previously proved, and
hence A : CP ∈ CPchecked . Reasoning similarly to the above case, we obtain
that Bi : CPi ∈ CPchecked , 1 ≤ i ≤ n, and thus A0 : CP0 ∈ CPchecked .

• (Case C) A0 has an entry in Upd(P). We have two possibilities.

– If A0 : CP0 ∈ Cert, then A0 : CP0 ∈ ATmem . Hence, procedure call patterns to check

introduces A0 : CP0 in CPtocheck . Thus, finally A0 : CP0 will belong to CPchecked (af-
ter the corresponding call to process node for A0 : CP0).

– If A0 : CP0 6∈ Cert, then we are in (case A). Hence, the execution of procedure
incremental checking will introduce A0 : CP0 in CPchecked .

• (Case D) There exists a dependency A0 : CP0 ⇒ B : CPB ∈ DATE
mem such that

B : CPB 6∈ unchanged(Ext Cert). We distinguish several possibilities:

– If A0 : CP0 6∈ Cert, then the result holds by (case A).
– If A0 : CP0 ∈ Cert, then:

• If A0 : CP0 ∈ Inc Cert, then the result holds by (case B).
• If A0 : CP0 6∈ Inc Cert, then:

∗ If B : CPB 6∈ Cert, then by (case A), B : CPB ∈ CPchecked . Hence, the
incremental checking generates a call to process node for B : CPB and
also to propagate effects. The last call introduces A0 : CP0 in CPtocheck (if
A0 : CP0 was not previously introduced).

∗ If B : CPB ∈ Cert ∩ Inc Cert. Then, by (case B), B : CPB ∈ CPchecked ,
and reasoning as in the above case, it holds finally that A0 : CP0 ∈
CPchecked . 2

Theorem 1 (correctness) Let P ∈ Prog, Upd(P) ∈ UProg, Dα ∈ ADom and
Sα ∈ AAtom. Consider:

– Cert: the certificate for P and Sα.
– Ext Cert: the certificate for P ⊕ Upd(P) and Sα.
– Inc Cert: the incremental certificate for Upd(P) w.r.t. Cert.

If Incr Checker(Upd(P), Inc Cert) does not issue an Error, then the validation of
Inc Cert is done in a single pass over Inc Cert and:

– ATpersist ≡ ATmem

– DATpersist ≡ DATmem

where ATmem and DATmem are, respectively, the answer table and DAT returned by
checking(P ⊕ Upd(p), Sα, Ext Cert, ATmem ,DATmem).

Proof. First note that the validation of Inc Cert is done in one pass because of the use
of the sets CPtocheck and CPchecked . Firstly CPtocheck stores those call patterns A :
CP in Cert such that A has suffered some modification of its rules. The incremental
checking only adds call patterns to CPtocheck in procedure propagate effects but
firstly ensuring that such call patterns were not previously checked L34 (they do not
belong to the set CPchecked).

Incr Checker(Upd(P), Inc Cert) retrieves from memory ATpersist ≡ Cert ≡ ATO
mem

and DATpersist ≡ DATO
mem , and initializes ATmem and DATmem to such values,

respectively, when calling to procedure incremental checking(P,Upd(P), Inc Cert,

ATmem , DATmem). For all A : CP ∈ Ext Cert, A : CP is of one of the follow-
ing forms:

– A : CP is safe. Then A : CP ∈ Cert ∩ Ext Cert and A : CP 6∈ Inc Cert. Hence,
A : CP 7→ AP ∈ ATmem ∩ Ext Cert. By Definition 7, if A : CP is safe, then
A : CP 6∈ CPchecked . Note that this condition holds since A has no entries in
Upd(P) (then calls patterns to check can not add A : CP to CPtocheck), and all its
dependencies contains atoms B : CPB not belonging to Inc Cert (i.e., if B : CPB

is checked, variable propagate is always false, and no call to propagate effects is
generated). From Proposition 1, DATO

mem contains the same dependencies for
A : CP than DATE

mem . But, since A : CP 6∈ CPchecked , DATmem contains also
the same dependencies for A : CP than DATO

mem . Also Proposition 1 ensures
that safe call patterns do not require to be checked after an update of a program,
since the full and the extended checking process compute the same solutions.
Hence the result holds for safe call patterns.

– If A : CP is not safe. First note that procedure update answer table (L3) updates
ATmem with the information stored in Inc Cert. This ensures that all fixpoints
used in the incremental checking process will be correct, i.e., will be the same
those used by the extended checking. On the other hand, from Proposition 2, it
holds that after executing procedure incremental checking, A : CP ∈ CPchecked .
This means that a call to process node is generated for all non safe call patterns
A : CP , and their fixpoints are introduced in ATmem from Inc Cert. But, before
calling to process node for A : CP , the procedure remove previous info (L20)
removes the entry for A : CP from ATmem and the corresponding dependencies
from DATmem . If A : CP 6∈ Inc Cert (case in which A : CP has the same
fixpoint in the extended and original checking process but its rules has been
modified), then the fixpoint stored in ATmem is introduced in Inc Cert (L23)
in order to avoid an Error in procedure process node. Trivially, the incremental
checking and the extended checking compute the same dependencies for non
safe call patterns, and considering now that after updating ATmem , it holds that
ATmem ∪ Inc Cert = Ext Cert, then the result holds trivially. 2

B Security of the Incremental Checking

Theorem 2 In the conditions of Theorem 1, if an answer in Inc Cert is not a
Valid fixpoint, then Incr Checker(Upd(P), Inc Cert) issues an Error.

Proof. Assume that A : CP 7→ AP ∈ Inc Cert but AP is not a fixpoint for
A : CP . If A has an entry in Upd(P), then the call to process node for A : CP will
issue an Error when processing some of its rules (from the correctness Algorithm

2 [3]). If all rules for A remain the same but A : CP is introduced in CPtocheck be-
cause of the propagation of some change (procedure propagate effects), then again
the corresponding call to process node will issue an Error. If none of the both
previous cases occurs, procedure unrelated entries (L7) will introduce A : CP

in CPtocheck , calling to procedure check affected entries, which will detect the
Error when calling to process node. 2

