
UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE INFORMÁTICA

DOBLE GRADO DE INGENIERÍA INFORMÁTICA Y

MATEMÁTICAS

TRABAJO DE FIN DE GRADO 2017/2018

TOWARDS COMPUTING DISTANCES
AMONG ABSTRACT INTERPRETATIONS

Autor: Ignacio Casso San Román

Director: Francisco J. López Fraguas

Co-director: Manuel V. Hermenegildo

Madrid, September 15, 2018

Contents

1 Introduction 7

2 Preliminaries 9
2.1 Abstract Interpretation of Logic Programs 9

2.1.1 Basic Lattice Theory Definitions 9
2.1.2 Abstract Interpretation . 11
2.1.3 Abstract Interpretation of Logic Progams 12

2.2 Ciao . 14
2.2.1 Ciao Assertions . 14
2.2.2 The Ciao verification framework and the Ciao preprocessor 15
2.2.3 CiaoPP abstract domains . 17

3 Distances in Abstract Domains 20
3.1 Abstract Distances . 20
3.2 Distances between sets . 25
3.3 Distances in complete lattices . 28
3.4 Distances through other domains . 32
3.5 Distances in Ciao Domains . 34

3.5.1 Distance in the groundness domain 34
3.5.2 Distances in the sharing domain 34
3.5.3 Distances in the Sharing-Freeness Domain 36
3.5.4 Distances in the Regular Types Domain 36
3.5.5 Distance between elements of different aliasing-mode domains . . 38

4 Distances between analyses 40
4.1 First approach: top results of the analysis 42
4.2 Second approach: program points . 43
4.3 Third approach: whole abstract execution tree 45
4.4 Distance between analyses of different programs 48

5 Evaluation and Experiments 49
5.1 Evaluation of proposed distances . 49
5.2 Experiments . 50

5.2.1 Analysis Precision and Trust Assertions 51
5.2.2 Analysis Precision vs. Analysis Cost 53

2

6 Conclusions 55
6.1 Applications and Future Work . 55

Bibliography 57

3

Acknowledgments

I would like to express my gratitute and dedicate this work to all the people that have
supported me throughout its development and my university years.

To my advisors Jose Francisco Morales and Manuel Hermenegildo at the IMDEA
Software Institute and Francisco Javier López Fraguas at UCM, for their supervision and
continuous support and for giving me the opportunity to work on this exciting topic. They
shared with me a lot of their expertise and research insight, as well as their general wis-
dom and energy.

To my colleagues at IMDEA and the CLIP group, and especially to my office mates
Isabel Garcı́a and Nataliia Stulova, for being always there to solve doubts and hear my
complaints, and for their valuable advice.

To the many current and past members of the CLIP group who made the Ciao Prolog
and the CiaoPP preprocessor systems possible, on which my work is based.

And of course, to my friends and family, for their love, support and patience.

Finally, I am grateful to the institutions which have funded my research activities: the
IMDEA Software Institute, the Universidad Complutense de Madrid (UCM), the Madrid
Regional Government under the N-GREENS program, and the Spanish MINECO under
the TRACES project.

4

Abstract

Abstract interpretation is a technique which safely approximates the execution of pro-
grams. These aproximations can then be used by static analysis tools to reason about prop-
erties that hold for all possible executions, in order to optimize, verify or debug programs,
among other applications. Different abstractions, called abstract domains, and analysis
algorithms, computing the fixpoints involved in different ways, are used in this process,
resulting in different aproximations, all of which are correct but may have different preci-
sion.

This use of abstract interpretations is purely qualitative: it relies on an order ⊑ in the
abstract domains and the fact that one abstract interpretation over-aproximates or under-
aproximates the actual (or some given) semantics of programs. A quantitative use of ab-
stract interpretations is not covered by the existing theory, that is, there is no way to
measure how close two abstract interpretations are to each other, even when one over-
aproximates the other. However, the structure of abstract domains and (logic) programs
suggests that one could define distances and metrics among those abstract domains and
abstract interpretations, and those distances could arguably find many applications, such
as comparing the precision of different analyses.

In this work we develop theory and tools to work with abstract interpretations quanti-
tatively, in the context of the Ciao and CiaoPP environment. First, we develop a theory for
distances in abstract domains and propose distances for CiaoPP domains. Later, we ex-
tend those distances to distances between whole analyses of programs. Finally, we apply
successfully those distances in experiments to measure the precision of different analyses.

Keywords: Abstract interpretation, static analysis, logic programming, metrics, dis-
tances, complete lattices, program semantics, program comparison.

5

Resumen

La interpretación abstracta es una técnica que permite aproximar correctamente la
semántica de los programas. Para ello se usan distintas abstracciones, llamadas domi-
nios abstractos, y algoritmos de análisis, lo cual da lugar a aproximaciones correctas con
distinta precisión. Esas aproximaciones son después usadas por herramientas de análisis
estático para razonar acerca de las propiedades que se cumplen para todas las posibles
ejecuciones del programa, y ası́ poder optimizar, verificar o depurar los programas, entre
otras aplicaciones.

Este uso de la técnica de interpretación abstracta es totalmente cualitativo: se basa en
una relación de orden ⊑ en los dominios abstractos y en el hecho de que una interpretación
abstracta sobreaproxime la semántica real (o una dada) del programa en cuestión. La
teorı́a actual no contempla un uso cuantitativo de las interpretaciones abstractas, es decir,
no permite medir cómo de parecidas son dos interpretaciones abstractas. Sin embargo, la
estructura de los dominios abstractos y de los programas sugiere que se podrı́an definir
distancias en esos dominios y entre interpretaciones abstractas, las cuales se podrı́an usar
para medir la precisión de distintos análisis, entre otras aplicaciones.

En este trabajo proponemos teorı́a y herramientas para trabajar cuantitativamente con
la técnica de interpretación abstracta, en el contexto del lenguaje de programación Ciao
y su preprocesador CiaoPP. En primer lugar se desarrollan bases teóricas para definir dis-
tancias en dominios abstractos y se proponen algunas distancias para los dominios usados
en CiaoPP. Después se extienden esas distancias en dominios a distancias entre interpre-
taciones abstractas completas de los programas. Finalmente, se aplican esas distancias en
experimentos para medir la precisión de distintos análisis.

Palabras clave: Interpretación abstracta, análisis estático, programación lógica, métri-
cas, distancias, retı́culos completos, semántica de programas, comparación de programas.

6

Chapter 1

Introduction

Abstract interpretation [10] is a well-known theory and framework for modeling static
analysis and constructing static analyzers. The basic idea behind it is to interpret (i.e exe-
cute) a program over a special abstract domain Dα, in order to approximate the collecting
semantics of the program in the concrete and intended domain D (i.e., the set of all states
potentially reached in an execution). During the process of abstract interpretation, each
operation µD used during the normal execution is interpreted as a corresponding abstract
operation µDα in Dα. If the abstract domain and those abstract operations obey some
safety properties (e.g., D and Dα are complete lattices and enjoy a Galois connection, the
abstract operations are monotonous in Dα, all ascending chains in the lattice are finite or
there is a suitable widening operator, etc.), then the analysis is ensured to terminate and
the execution over Dα to over-approximate every possible execution in D. Then it can be
reasoned safely (but perhaps imprecisely) about the properties that hold for all the execu-
tions in D, and that information can be used to verify, optimize, or debug the program,
among other applications.

The technique of abstract interpretation has been shown to be practical and effective
for building static analysis tools, starting from early successes in applications such as au-
tomatic program parallelization [9] (by the PLAI analyzer and parallelizer, now contained
within the CiaoPP system used in this work) to the verification of the primary flight con-
trol software of the Airbus A340 by the Astrée analyzer [11], to gradually becoming a
mainstream tool. Indeed, abstract interpretation is currently in regular use for code verifi-
cation at all major computer companies such as Google, Facebook, or Microsoft.

However, abstract interpretation has, of course, also its limitations. One of them is its
exclusively qualitative nature: currently there is barely any theory or technique to work
with abstract interpretations in a quantitative way. By design, abstract interpretation is
safe and correct, but that notion of safety or correctness is of topological nature, and we
would like to work with abstract interpretations as something more metric. For example,
we know that the semantics computed is an over-approximation of the real one, but the
theory does not provides a way to tell how precise that approximation is. Even if we
knew the actual semantics, there is no way to measure the difference between it and the
computed one.

Our goal for this thesis is developing theory and techniques for working with abstract

7

interpretations and abstract domains in a quantitative way. The context will be that of logic
programming: we will be working with Ciao [18], a logic-based programming language,
and CiaoPP [20], its state-of-the-art preprocessor based on abstract interpretation. Our
approach will be the following: defining distances among abstract domains and abstract
interpretations. We will not deal with the abstract interpretation process and the analyzers,
but with its results: the elements of the abstract domains and the semantics of the programs
analyzed over those domains.

Our working plan will be the following. First we will try to develop a solid theory of
distances in abstract domains and define a few distances for the most common CiaoPP
domains. Then we will try to extend them to distances between analysis results or ab-
stract semantics. And finally, we will propose and implement a few experiments to test
and evaluate those distances, mainly focused in measuring the precision of an analysis,
by computing the distance between the true semantics and the one inferred by the prepro-
cessor.

The rest of this document is structured as follows: in Chapter 2 we provide an overview
on abstract interpretation of logic programming and Ciao and its preprocessor. In Chap-
ter 3 we develop theory for defining distances in abstract domains and propose distances
for some Ciao domains. In Chapter 4 we try to extend those distances to distances between
analyses of a program. In Chapter 5, we evaluate those distances with a few experiments.
In Chapter 6, we provide our conclusions. The Ciao code developed can be found here.

8

http://cliplab.org/~ignacio.decasso/tfg_code/

Chapter 2

Preliminaries

In this chapter we provide a quick overview on some of the required background for
this work, that is, abstract interpretation of logic programs and the Ciao programming
language and its preprocessor. Other background, like the basics of logic programming
and its terminology [23],[1], is assumed to be already known by the reader.

2.1 Abstract Interpretation of Logic Programs

In this section we provide an overview on the basic concepts and ideas of abstract
interpretation, specifically in logic programs. First, we introduce the required background
on lattice theory [2]. Then, we explain the basic ideas behind the technique, illustrating
them with an example. And finally, we explain how abstract interpretation is applied and
implemented in the context of logic programs and logic programs semantics. For the two
later points we follow the description in [29].

2.1.1 Basic Lattice Theory Definitions

Definition 1 (Partial Order). A partial order (X,⊑) is a binary relation ⊑ on a set X that
is reflexive, transitive and antisymmetric.

Definition 2 (Hasse diagram). A finite partially ordered set can be represented graphi-
cally with a Hasse diagram. In that diagram, each element is represented as a vertice in
the plane, and two related elements are connected by a segment that goes upward from
the lower to the greater. Below it can be found an example for the powerset of the set
{x, y} ordered by inclusion.

9

Definition 3. Let (X,⊑) be a partial order and a, b ∈ X . The greatest lower bound of a
and b, denoted by a ⊓ b, is the greatest element in X that is still lower than both of them.
Formally, a ⊓ b verifies the following properties:

• (a ⊓ b) ⊑ a

• (a ⊓ b) ⊑ b

• if c ⊑ a and c ⊑ b then c ⊑ (a ⊓ b).

The greatest lower bound of a lattice, if exists, must be unique. The greatest lower bound
of two elements a and b is also called the infimum (or meet) of a and b.

Definition 4. Given a partial order (X,⊑) and a, b ∈ X , the least upper bound of a and
b, denoted by a ⊔ b, is the smallest element in X that is still greater than both of them.
Formally, a ⊔ b verifies the following properties:

• a ⊑ (a ⊔ b)

• b ⊑ (a ⊔ b)

• if a ⊑ c and b ⊑ c then (a ⊔ b) ⊑ c.

The least upper bound of a lattice, if exists, must be unique. The least upper bound of two
elements a and b is also called the supremum (or join) of a and b.

Definition 5 (Lattice). A lattice is a poset for which any two elements a and b have a great
lower bound and a least upper bound

Definition 6 (Complete Lattice). We extend in the natural way the definition of supremum
and infimum to subsets of L. Thus, a lattice (L,⊑) is complete if every subset S (possibly
infinite) of L has both a supremum sup(S) and an infimum inf(S). The maximum element
of a a complete lattice, sup(L) is called top or ⊺, and the minimum, inf(L), bottom or �.

Definition 7. Let (L1,⊑1) and (L2,⊑2) be two partially ordered sets. Let f ∶ L1 Ð→ L2

and g ∶ L2 Ð→ L1 be two applications such that

∀x ∈ L1, y ∈ L2 ∶ f(x) ⊑1 y ⇐⇒ x ⊑2 g(y)

Then the quadruple ⟨L1, f,L2, g⟩ is a Galois connection, written

L1 −−−→←−−−
f

g
L2

If α ○ γ = id, then the quadruple is called a Galois insertion

10

2.1.2 Abstract Interpretation

Abstract interpretation [10] is an elegant and useful technique for performing a global
analysis of a program in order to compute, at compile-time, characteristics of the terms to
which the variables in that program will be bound at run-time for a given class of queries.
In principle, such an analysis could be done by an interpretation of the program which,
starting from the set of all possible queries, computed the set of all possible substitutions
(collecting semantics) which can occur at each step of execution. If a property holds for all
the substitutions considered, then that property can be assumed in the compilation of the
program, i.e., in general the aim of the analysis is to show that given some property p and a
set of substitutions Θ, ∀θ, θ ∈ Θ⇒ p(θ). However, the computed sets of substitutions can
in general be infinite and thus such an approach can lead to non-terminating computations.

Abstract interpretation offers an alternative in which the program is interpreted using
abstract substitutions instead of actual substitutions. An abstract substitution is a finite
representation of a, possibly infinite, set of actual substitutions in the concrete domain.
The set of all possible abstract substitutions for a clause represents an “abstract domain”
(for that clause) which is usually a complete lattice or cpo of finite height. Abstract sub-
stitutions and sets of concrete substitutions are related via a pair of functions referred to
as the abstraction (α) and concretization (γ) functions. In addition, each primitive opera-
tion u of the language (unification being a notable example) is abstracted to an operation
u′ over the abstract domain. Soundness of the analysis requires that each concrete opera-
tion u be related to its corresponding abstract operation u′ as follows: for every x in the
concrete computational domain, u(x) ⊑ γ(u′(α(x))).

More formally, abstract interpretation relies on two core concepts: the notion of ap-
proximation and the notion of finite representation. Approximation is based on the ob-
servation that if we construct a set Θa ⊇ Θ, and prove that ∀θ, θ ∈ Θa ⇒ p(θ), then
the property holds also for Θ. Θa is said to be a safe approximation of Θ. Any func-
tion (such as unification, for example) can also be approximated in a similar way. In
particular, a semantic function for a program can be approximated: let the meaning of
a program P be a mapping FP from input to output, input and output values ∈ “stan-
dard” domain D: FP ∶ D → D. Let’s ‘lift’ this meaning to map sets of inputs to sets
of outputs F ∗

P ∶ ℘(D) → ℘(D) where F ∗
P (S) = {FP (x)∣x ∈ S} and ℘(S) denotes

the powerset of S. A function G ∶ ℘(D) → ℘(D) is a safe approximation of F ∗
P if

∀S,S ∈ ℘(D),G(S) ⊇ F ∗
P (S). Using the notion of approximation, properties which are

proved using G hold for F ∗
P .

The second basic concept is that of finite representation. The domain ℘(D) can be rep-
resented by an “abstract” domain Dα whose elements are finite representations of (pos-
sibly) infinite objects in ℘(D). Thus, in the case of analyzing substitutions in a clause,
the concrete domain D is the set of all substitutions for the variables in that clause. The
abstract domain Dα is then the set of all “abstract substitutions,” an abstract substitution
λ being a finite representation of a, possibly infinite, set of actual substitutions. The rep-
resentation of ℘(D) by Dα is expressed by a (monotonic) function called a concretization
function: γ ∶Dα → ℘(D) such that γ(λ) = d if d is the largest element (under ⊆) of ℘(D)
that λ describes. Note that (℘(D),⊆) is obviously a complete lattice. We can also define
(not strictly needed) a (monotonic) abstraction function α ∶ ℘(D)→Dα, where α(d) = λ

11

if λ is the “least” element of Dα that describes d.
An abstract semantic function can then be defined as Fα ∶ Dα → Dα which is a safe

approximation of the standard semantic function if ∀λ,λ ∈Dα, γ(Fα(λ)) ⊇ F ∗
P (γ(λ)). It

is then possible to prove a property of the output of a given class of inputs represented by
λ by proving that all elements of γ(Fα(λ)) have such property.

The set inclusion relation among sets of substitutions in the concrete domain induces
an ordering relation in the abstract domain herein represented by “⊑.” Under this relation
the abstract domain is usually a complete lattice or cpo of finite height (more precisely
“ascending chain finite” [24]), such finiteness required, in principle, for termination of
fixpoint computations, and (D,α,℘(D), γ) is a Galois insertion.

Example 1. Using the notation of the previous paragraph, and denoting with Pvar the set
of variables in the program, which we consider to be bound at run time to real numbers,
then the concrete domain would be D = ℘(Pvar → R). If we denote I the set of all
intervals in R with integer endpoints, that is, I = {(l, u) ∣ l, u ∈ Z, l <= u}, then we
could define an abstract domain Dα = (Pvar → I). This domain is called the intervals
domain, and informally it abstracts a set of real numbers to the smallest interval that
contains it. The concretization function would be γ({X1 ← I1, . . . ,Xn ← In}) = {{X1 ←
r1, . . . ,Xn ← rn} ∣ ∀i = 1 . . . n, ri ∈ Ii}. The abstraction function would be α(Θ) =
{X1 ← (l1, u1), . . . ,Xn ← (ln, un)}, where ∀i = 1, . . . , n, li = sup{z ∣ z ∈ Z,∀θ ∈ Θ, z ≤
θXi}, ui = inf{z ∣ z ∈ Z,∀θ ∈ Θ, z ≥ θXi}. I can be given an order relation ⊑, such that
(l1, u1) ⊑ (l2, u2) ⇐⇒ l2 ≤ l1 ≤ u1 ≤ u2, and that order relation can be lifted elementwise
to an order relation in Dα, under which it would be a complete lattice if we include � and
⊺ elements, and (D,⊆) −−−→←−−−α

γ
(Dα,⊑) would be a Galois insertion. A safe aproximation of

the operationX = Y +Z would map an abstract substitution λ to λ[X ← (l1+ l2, u1+u2)],
where λX = (l1, u1), λY = l2, u2

◻

2.1.3 Abstract Interpretation of Logic Progams

In the case of abstract interpretation for logic programs, the input to the abstract inter-
preter is a set of clauses (the program) and set of “query forms” i.e., names of predicates
which can appear in user queries and their abstract substitutions. The goal of the abstract
interpreter is then to compute the set of abstract substitutions which can occur at all points
of all the clauses that would be used while answering all possible queries which are con-
cretizations of the given query forms. It is convenient to give different names to abstract
substitutions depending on the point in a clause to which they correspond. Consider, for
example, the clause h :- p1, . . . , pn. Let λi and λi+1 be the abstract substitutions to the left
and right of the subgoal pi,1 ≤ i ≤ n in this clause. See figure 2.1(b).

Definition 8. λi and λi+1 are, respectively, the abstract call substitution and the abstract
success substitution for the subgoal pi. For this same clause, λ1 is the abstract entry sub-
stitution (also represented as βentry) and λn+1 is the abstract exit substitution (also repre-
sented as βexit).

12

Figure 2.1: Illustration of the abstract interpretation process.

Control of the interpretation process can itself proceed in several ways, a particu-
larly useful and efficient one being to essentially follow a top-down strategy starting
from the query forms.1 The following description is based on the top-down framework
of Bruynooghe [3].

In a similar way to the concrete top-down execution, the abstract interpretation pro-
cess can be represented as an abstract AND-OR tree, in which AND-nodes and OR-
nodes alternate. A clause head h is an AND-node whose children are the literals in its
body p1, . . . , pn (figure 2.1(b)). Similarly, if one of these literals p can be unified with
clauses whose heads are h1, . . . , hm, p is an OR-node whose children are the AND-nodes
h1, . . . , hm (figure 2.1(a)). During construction of the tree, computation of the abstract
substitutions at each point is done as follows:

● Computing success substitution from call substitution: Given a call substitution
λcall for a subgoal p, let h1, . . . , hm be the heads of clauses which unify with p (see fig-
ure 2.1(a)). Compute the entry substitutions β1entry, . . . , βmentry for these clauses. Com-
pute their exit substitutions β1exit, . . . , βmexit as explained below. Compute the success
substitutions λ1success, . . . , λmsuccess corresponding to these clauses. The success substi-
tution λsuccess is then the least upper bound (LUB) of λ1success, . . . , λmsuccess. Of course
the LUB computation is dependent on the abstract domain and the definition of the ⊑
relation.

● Computing exit substitution from entry substitution: Given a clause h :- p1, . . . , pn
whose body is non-empty and an entry substitution λ1, λ1 is the call substitution for p1.
Its success substitution λ2 is computed as above. Similarly, λ3, . . . , λn+1 are computed.
Finally, λn+1 is obtained, which is the exit substitution for this clause. See figure 2.1(b).
For a unit clause (i.e. whose body is empty), its exit substitution is the same as its entry
substitution.

This conceptual model if coded directly does not render an efficient implementation.
However, efficient fixpoint frameworks (using memo tables) have been developed, in par-
ticular the PLAI algorithm [27, 28, 30], that result in very efficient and effective analyses.

1More precisely, this strategy can be seen as a top-down driven bottom up computation, since some
degree of fixpoint, bottom up computation is required in the presence of recursive predicates.

13

2.2 Ciao
Ciao [18] is a modern, general-purpose, modular, multiparadigm programming lan-

guage with an advanced programming enviroment, which includes a static analyzer based
in abstract interpretation, with which we will be conducting the practical part of this work.
In the cited paper a detailed description of Ciao and its more attractive characteristics can
be found. In this section we will just introduce the Ciao components most relevant to our
work: its assertion framework and its powerful preprocessor, CiaoPP [20].

Assertions are linguistic constructs which allow expressing properties of programs.
Syntactically they appear as an extended set of declarations, and semantically they allow
talking about preconditions, (conditional-) postconditions, whole executions, program
points, etc. The preprocessor, CiaoPP, is a collection of static analysis and debugging
tools designed to optimize and verify Ciao programs. Its main component is an abstract
interpretation based static analyzer, capable of inferring properties of the predicates and
literals of a program, including types, variable instantiation properties (e.g modes or shar-
ing), non-failure and determinacy, computational cost, etc. Both the assertions framework
and the preprocessor are deeply connected, and in a way it could be said that the assertions
are the interface to the analyzer for the programmer: they allow to specify and guide the
analysis, and the result of the analysis is usually outputed as Ciao assertions. Let us see
the more relevant details about both:

2.2.1 Ciao Assertions
Ciao assertion language syntax and meaning: For clarity of exposition, we will focus
on the most commonly-used subset of the ciao assertion language: pred assertions. A
detailed description of the full language can be found in Puebla et al [33] or in the Ciao
reference manual [4].

Such pred assertions allow specifying certain conditions on the state (current substi-
tution) that must hold at certain points of program execution. They are very useful for
detecting deviations of behavior (symptoms) with respect to such assertions, or to ensure
that no such deviations exist (correctness). In particular, they allow stating sets of precon-
ditions and conditional postconditions for a given predicate. Such pred assertions take
the form:

:- pred Head : Pre => Post.

where Head is a normalized atom that denotes the predicate that the assertion applies to,
and the Pre and Post are conjunctions of “prop” atoms, i.e., of atoms whose correspond-
ing predicates are declared to be properties [33, 35]. Both Pre and Post can be empty
conjunctions (meaning true), in that case they can be omitted. The following example
illustrates the basic concepts involved:

Example 2. The following assertions describe different modes for calling a length pred-
icate: either for (1) generating a list of length N, (2) to obtain the length of a list L, or
(3) to check the length of a list.

Note also the definition of the list/1 property (in this case a regular type) in line 7.
Other properties (int/1 –a base regular type, and var/1 –a mode) are assumed to be

14

:- pred length(L,N) : (var(L), int(N)) => list(L). %(1)

:- pred length(L,N) : (var(N), list(L)) => int(N). %(2)

:- pred length(L,N) : (list(L), int(N)). %(3)

:- prop list/1.

list([]).

list([_|T]) :- list(T).

loaded from the libraries (native props in Ciao for these properties).
◻

Assertion status: Each assertion can be in a verification status, marked by prefixing the
assertion itself with the keywords check, trust, true, checked, and false. This speci-
fies respectively whether the assertion is provided by the programmer and is to be checked
or to be trusted, or is the output of static analysis and thus correct (safely approximated)
information, or the result of processing an input assertion and proving it correct or false.
The check status is assumed by default when no explicit status keyword is present (as in
the examples so far).

Uses of assertions: Assertions find many uses in ciao, ranging from testing [26] to
verification [35, 31], documentation [17], or guiding the analysis [5, 16]. For our work,
the most relevant is the later: guiding the static analysis. We can specify the abstract
queries for the abstract interpretation of the program with entry assertions (e.g :- en-

try length(L,N) : (var(L), int(N))). We can provide the true semantics of the
program at certain points with trust assertions, and the preprocessor will consider that
information as truthful during the analysis . We can even describe the semantics of code
not yet written or written in other languages, which allows analyzing partially developed
code. And of course, we can specify the intended semantics of our programs with normal
check pred assertions, which will be checked against the result of the analysis.

2.2.2 The Ciao verification framework and the Ciao preprocessor
We now describe the Ciao verification framework [7, 19, 34], which is implemented

in the Ciao preprocessor, CiaoPP. Figure 2.2 depicts the overall architecture. Hexagons
represent tools and arrows indicate the communication paths among them. It is a design
objective of the framework that most of this communication be performed also in terms of
assertions. This has the advantage that at any point in the process the information is easily
readable by the user. The input to the process is the user program, optionally including a
set of assertions; this set always includes any assertion present for predicates exported by
any libraries used (left part of Figure 2.2).

Run-time checking of assertions: after (assertion) normalization in the Assertion Nor-
malizer component (which, e.g., takes away syntactic sugar) the RT-check module trans-
forms the program by adding run-time checks to it that encode the meaning of the asser-

15

Assertions
(in user
code,
builtins,
libraries)

:- check

:- trust

Code
(user code,
builtins,
libraries)

Assertion
Normalizer
& Library
Interface

Static
Analysis
(Fixpoint)

Analysis Info

:- true

Static
Com-

parator

Run-time
Check

Annotator

:- check

:- false

:- checked

Compile-time
error

Verification
warning(s)

Verified as-
sertion(s)

Code with
Run-time
Checks

Run-time
error

PreprocessorProgram

Figure 2.2: The Ciao Verification Framework.

tions (assume for now that the Comparator simply passes the assertions through). Note
that the fact that properties are written in the source language and runnable is very useful
in this process. Failure of these checks raises run-time errors referring to the correspond-
ing assertion. Correctness of the transformation requires that the transformed program
only produce an error if the assertion is in fact violated.

Compile-time checking of assertions: even though run-time checking can detect vi-
olations of specifications, it cannot guarantee that an assertion holds. Also, it introduces
run-time overhead. The framework performs compile-time checking of assertions by com-
paring the results of static analysis (Figure 2.2) with the assertions. This analysis is typ-
ically performed by abstract interpretation or any other mechanism that provides safe
upper or lower approximations of relevant properties, so that comparison with assertions
is meaningful despite precision losses in the analysis. The type of analysis may be se-
lected by the user or determined automatically based on the properties appearing in the
assertions. Analysis results are given using also the assertion language, to ensure interop-
erability and make them understandable by the programmer. As a possible result of the
comparison, assertions may be proved to hold, in which case they get checked status –
Figure 2.2. As another possible result, assertions can be proved not to hold, in which case
they get false status and a compile-time error is reported. Even if a program contains
no assertions, it can be checked against the assertions contained in the libraries used by
the program, potentially catching bugs at compile time. Finally, and most importantly, if
it is not possible to prove nor to disprove (part of) an assertion, then such assertion (or
part) is left as a check assertion, for which optionally run-time checks can be generated
as described above. This can optionally produce a verification warning.

16

2.2.3 CiaoPP abstract domains

CiaoPP has a wide variety of abstract domains to perform analysis with. We will be
working mainly with the two most used: shfr and eterms. The former abstracts information
about the sharing and freeness of the variables, and the later about their shape or type. In
this section we introduce the basics of both of them, that is, their lattice structure and their
abstraction and concretization functions. A more formal definition, including the abstract
operations required to perform the analysis, can be found in [29] and [38].

The sharing-freenes domain

The shfr domain is defined as Dα = ℘(℘(Pvar))×℘(Pvar → {G,F,NF}), where ℘
denotes the powerset of a set, and Pvar the set of variables of interest in a clause. Each
abstract substitution in the domain is therefore a 2-tuple. Intuitively, the first element holds
the sharing information, while the second holds the freeness information.

The sharing component provides information about potential aliasing and variable
sharing among the program variables (as well as groundness). The sharing component of
the abstract substitution for a clause is defined to be a set of sets of program variables in
that clause. Informally, a set of program variables appears in the sharing component if the
terms to which these variables are bound share a variable.

More formally, a (concrete) substitution for the variables for a clause is a mapping
from the set of program variables in that clause (Pvar) to terms that can be formed from
the universe of all variables (Uvar), and the constants and the functors in the given pro-
gram and query. We consider only idempotent substitutions.

The function Occ takes two arguments, θ (a substitution) and U (a variable in Uvar)
and produces the set of all program variables X ∈ Pvar such that U occurs in vars(Xθ).
The domain of a substitution θ is written as dom(θ). The instantiation of a term t under a
substitution θ is denoted as tθ and vars(tθ) denotes the set of all variables in tθ.

Definition 9 (Occ).

Occ(θ,U) = {X ∣X ∈ dom(θ), U ∈ vars(Xθ)}

The sharing component of the abstraction of a substitution θ is defined as:

Definition 10 (Abstraction(sharing) of a substitution).

Asharing(θ) = {Occ(θ,U) ∣ U ∈ Uvar}

The freeness component of an abstract substitution for a clause gives the mapping
from its program variables to an abstract domain {G,F,NF} of freeness values i.e.
Dα freeness = ℘(Pvar → {G,F,NF}). X/G means that X is bound to only ground
terms at run-time. X/F means that X is free, i.e., it is not bound to a term containing a
functor. X/NF means that X is potentially non-free, i.e., it can be bound to terms which

17

have functors. The three freeness values are related to each other by the following partial
order: � ⊑ F ⊑ NF, � ⊑ G ⊑ NF

More formally, the freeness value of a term is defined as follows:

Definition 11 (Abstraction(freeness) of a Term).

Afreeness(Term) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

if vars(Term) = ∅ then G
if vars(Term) = {Y } ∧ Term ≡ Y then F
else NF

Both components of the abstract domain could be abstract domains on their own, and
in fact, the sharing component is. In Ciao that domain is called share [27], and we will
also be using it in our work.

The regular types domain

A regular type [12] is a type representing a class of terms that can be described by a
deterministic regular term grammar. A regular term grammar, or grammar for short, de-
scribes a set of finite terms constructed from a finite alphabet F of ranked function sym-
bols or functors. A grammar G = (S,T ,F ,R) consists of a set of non-terminal symbols
T , one distinguished symbol S ∈ T , and a finite set R of productions T Ð→ rhs, where
T ∈ T is a non-terminal and the right hand side rhs is either a non-terminal or a term
f(T1, . . . , Tn) constructed from an n-ary function symbol f ∈ F and n non-terminals.

The non-terminals T are types describing (ground) terms built from the functors in
F . The concretization γ(T) of a non-terminal T is the set of terms derivable from its
productions, that is,

γ(T) = ⋃
(TÐ→rhs)∈R

γ(rhs)

γ(f(T1, . . . , Tn)) = {f(t1, . . . , tn) ∣ ti ∈ γ(Ti)}

To be able to describe terms containing numbers and variables we introduce two dis-
tinguished symbols num and any, plus an additional �. The concretization of num is the
set of all numbers, the concretization of any is the set of all terms (including variables),
and the concretization of � is the empty set of terms. These symbols are non-terminals but
they are considered terminals to the effect of regarding a grammar as deterministic.

Non-terminals, and therefore, grammars are ordered by the relation of containment,
or type inclusion, (T1 ⊑ T2)⇔ γ(T1) ⊆ γ(T2). Based on this, the set of all grammars G is
a complete lattice with top element any and bottom element �. The least upper bound is
given by type union, (T1⊔T2), and the greatest lower bound by type intersection, (T1⊓T2).

In an abstract interpretation-based type analysis, a type is used as an abstract de-
scription of a set of terms. Given variables of interest {x1, . . . , xn}, any substitution
θ = {x1 ← t1, . . . , xn ← tn} can be approximated by an abstract substitution {x1 ←
Tx1 , . . . , xn ← Txn} where ti ∈ γ(Txi) and each type Txi ∈ G. We will write abstract substi-
tutions as tuples ⟨T1, . . . , Tn⟩. Concretization is lifted up to abstract substitutions straight-
forwardly, except that we consider a distinguished abstract substitution � as a representa-

18

tive of any ⟨T1, . . . , Tn⟩ such that there is Ti = �. An ordering on the domain is obtained as
the natural element-wise extension of the ordering on types. The domain is a lattice with
bottom element � and top element ⟨T1, . . . , Tn⟩ such that T1 = . . . = Tn = any. The great-
est lower bound and lowest upper bound domain operations are lifted also element-wise.
Using the adjoin α of γ as abstraction function, it can be shown that (℘(Θ), α,Ω, γ) is a
Galois insertion, where Θ is the domain of concrete substitutions and Ω that of abstract
substitutions.

Other abstract domains

We will also be working with two other abstract domains. One of them is the definite-
ness abstract domain or def [25, 13]. For each variable X , it expresses if it is ground or
which sets of variables uniquely determine X , that is, making those variables ground
makes X ground too. The other is a simple groundness domain implemented in the
CiaoPP system by Claudio Vaucheret. For each variable, this domain expresses if it is
ground or not ground, or potentially both, in a completely analogous way to the freeness
component in shfr. The domain is Dgr = ℘(Pvar → {G,NG,ANY }), the relation be-
tween the groundness values is � ⊑ G ⊑ ANY, � ⊑ NG ⊑ ANY , and the abstraction
function is

Agroundness(Term) = { if vars(Term) = ∅ then G
else NG

19

Chapter 3

Distances in Abstract Domains

The first natural step towards comparing quantitatively abstract interpretations is to be
able to compare quantitatively elements of abstract domains. To that end, we would want
to endow those abstract domains with some kind of metric. The purpose of this chapter
is to propose such metrics for some abstract domains in CiaoPP, like shfr and eterms.
In order to do that, we first explore some theory and insights for defining distances in
arbitrary abstract domains.

3.1 Abstract Distances
Definition 12 (Metric). A metric on a set S is a function d ∶ S × S → R satisfying:

• Non-negativity: ∀x, y ∈ S, d(x, y) ≥ 0.

• Identity of indiscernibles: ∀x, y ∈ S, d(x, y) = 0 ⇐⇒ x = y.

• Symmetry: ∀x, y ∈ S, d(x, y) = d(y, x).

• Triangle inequality: ∀x, y, z ∈ S, d(x, z) ≤ d(x, y) + d(y, z).

A set S in which a metric is defined is called a metric space.
We can relax some of the above conditions and get new and more general notions of

metric spaces. Two of them that are relevant in our work are the following:
A pseudometric is a metric where the two different elements are allowed to have dis-

tance 0. We call the left implication of the identity of indiscernibles, weak identity of
indiscernibles.

A semimetric is a metric that does not necessarily fulfill the triangle inequality.

We want to extend that definition to abstract domains to define a notion of metric in
them, which we will call abstract distance. However, we cannot use that definition as it
is. On the one hand, an abstract domain is not an arbitrary set: it has some properties,
like a lattice structure and a Galois connection with a concrete domain, which should
be reflected in our definition of abstract distance. On the other, we do not know yet if

20

that definition is general enough: perhaps some of those conditions would be too big of a
restriction for our abstract distances.

Let us study then which properties could be expected of an abstract distance, and we
will try later to define formally the notion of abstract distance from that. We will include
examples of distances fulfilling those properties in the intervals domain, which we saw in
example 1

Apart from the common definition of a metric, there are mainly two points to take into
account when defining an abstract distance, and from which we will derive new sets of
properties.

The first one is the relation of the abstract domain with the concrete domain, and
how an abstract distance is interpreted under that relation. In that sense, we can observe
that a distance dα in an abstract domain will induce a distance in the concrete one, as
d(A,B) = dα(α(A), α(B)), and vice versa: a distance d in the concrete domain induces
an abstract distance in the abstract one, as dα(a, b) = d(γ(a), γ(b)). We will see later that
these induced distances inherit most metric properties. Thus, an abstract distance can be
interpreted as an abstraction of a distance in the concrete domain, or as way to define a
distance in it. In fact, it is when is interpreted that way that an abstract distance makes
more sense from a semantics point of view. From that characterization, and studying what
properties the distances in the concrete domain should fulfill, we can derive new properties
for our abstract distances.

The other aspect to take into account is the structure of the abstract domain as a com-
plete lattice. The distance defined should respect that structure, and thus we will derive
properties that relate that distance with the order relation ⊑ in the domain.

We will see that the set of properties that come from the lattice structure and the set
that comes from the relation with a distance in the concrete domain are closely related.
That is not surprising at all, since in fact the order in the abstract domain is just induced
by the inclusion order in the concrete one, and most desired properties in the concrete
domain will be related to that order.

Let us see then what properties should be expected for our abstract distances consid-
ering all this.

Metric Properties

First of all, we have all the properties that define a metric. Those are the non-negativity,
the identity of indiscernibles, the symmetry and the triangle inequality. We would expect
them both in the abstract distance and in the related distances in the concrete domain. In
fact, the following proposition says that both are almost equivalent.

Proposition 1. Let us consider an abstract domainDα, that abstracts the concrete domain
D, with abstraction function α ∶ D → Dα and concretization function γ ∶ Dα → D. Both
domains are complete lattices and α and γ form a Galois connection. Then:

(1) If dα ∶ Dα × Dα → R is a metric in the abstract domain, then d ∶ D × D →
R, d(A,B) = dα(α(A), α(B)) is a pseudometric in the concrete domain.

(2) If d ∶ D × D → R is a metric in the concrete domain, then dα ∶ Dα × Dα →

21

R, dα(a, b) = d(γ(a), γ(b)) is a pseudometric in the abstract domain. If the Galois con-
nection is a Galois insertion, then d is a full metric.

Proof. (1) d is a pseudometric:

• Non-negativity: d(A,B) = dα(α(A), α(B)) ≥ 0, since dα is non-negative
• Weak identity of indiscernibles : d(A,A) = dα(α(A), α(A)) = 0, since dα fulfills

the identity of indiscernibles
• Symmetry: d(A,B) = dα(α(A), α(B)) = dα(α(B), α(A)) = d(B,A), since dα is

symmetric
• Triangle inequality: d(A,C) = dα(α(A), α(C)) ≤ dα(α(A), α(B))+dα(α(B), α(C)) =
d(A,B) + d(B,C), since dα fulfills the triangle inequality

(2) dα is a pseudometric: analogous. Besides, if the Galois connection is a Galois
insertion, then γ is injective (otherwise, ∃ a ≠ b ∈ Dα t.q γ(a) = γ(b) Ô⇒ α(γ(a)) =
α(γ(b)) Ô⇒ a = b, which is absurd). But then dα(a, b) = 0 Ô⇒ d(γ(a), γ(b)) =
0 Ô⇒ γ(a) = γ(b) Ô⇒ a = b, and therefore dα is a full metric

Example 3. d(I1, I2) = { 0 if I1 = I2
1 otherwise

, fulfills trivially all of those properties.

Order Preserving Properties

It is reasonable to expect, for both (D,⊆) and (Dα,⊑), that given a chain of elements,
closer elements in the chain should have smaller distances to each other. Let us define this
property:

Definition 13 (Order-preserving function). LetD be a complete lattice, and d ∶D×D → R
a function.

We will say that d is order-preserving if ∀a, b, c ∈ D, a ⊑ b ⊑ c Ô⇒ d(a, b) ≤
d(a, c) , d(b, c) ≤ d(a, c).

We will say that d is strictly order-preserving if ∀a, b, c ∈D, a ⊏ b ⊏ c Ô⇒ d(a, b) <
d(a, c) , d(b, c) < d(a, c).

The following propositions relates that property for distances in the abstract domain
and in the concrete domain:

Proposition 2. Let us consider a concrete and an abstract domains D,Dα, with abstrac-
tions and concretization functions α ∶ D → Dα and γ ∶ Dα → D, which form a Galois
connection. Then:

(1) If dα ∶ Dα ×Dα → R is order-order preserving, then d ∶ D ×D → R, d(A,B) =
dα(α(A), α(B)) is too.

(2) If d ∶ D × D → R is order-preserving, then dα ∶ Dα × Dα → R, dα(a, b) =
d(γ(a), γ(b)) is too. If the Galois connection is a Galois insertion and d is strictly order-
preserving, then dα is too.

22

Proof. (1) If A ⊆ B ⊆ C, then α(A) ⊑ α(B) ⊑ α(B), since α is monotonic. But then
d(A,B) = dα(α(A), α(B)) ≤ dα(α(A), α(C)) = d(A,C), since dα is order-preserving.

(2) Order-preserving: Analogous. Strictly order-preserving: The same reasoning, but
observing that dα is now strictly monotonic, since it is injective.

Example 4. In the intervals domain, d(I1, I2) = {
0, if I1 = I2 = �
u − l, if I1 = (l, u), I2 = � or I1 = �, I2 = (l, u)
∣l1 − l2∣ + ∣u1 − u2∣, if I1 = (l1, u1), I2 = (l2, u2)

is strictly order-preserving.

Diamond Inequalities

If we consider the Hasse diagram of the lattices (D,⊆) and (Dα,⊑), (even if they are
not finite), a few other properties come to our mind.

One could be that, if we have four elements a, b, c, d in the lattice, such that c ⊓ d ⊑
a ⊓ b ⊑ a ⊔ b ⊑ c ⊔ d, then d(a, b) should be lower or equal than d(c, d). However, is
straightforward to see that this implies that d(a, b) = d(a ⊓ b, a ⊔ b), and the later implies
the former if d is order preserving, and that condition is too strong. We can weaken it
using ⊏ instead. Let us formalize all of this:

Definition 14 (Diamond inequalities). Let D be a complete lattice, and d ∶ D ×D → R a
function.

We will say that d fulfills the diamond equality if ∀a, b ∈D, d(a, b) = d(a ⊓ b, a ⊔ b)
We will say that d fulfills the strong diamond inequality if ∀a, b, c, d ∈D, c⊓d ⊑ a⊓b ⊑

a ⊔ b ⊑ c ⊔ d Ô⇒ d(a, b) ≤ d(c, d)
We will say that d fulfills the diamond inequality if ∀a, b, c, d ∈D, c⊓d ⊏ a⊓b ⊑ a⊔b ⊏

c ⊔ d Ô⇒ d(a, b) ≤ d(c, d)

Observation 1. Let D be a complete lattice and d ∶ D × D → R a distance in it. d
fulfills the strong diamond inequality ⇐⇒ d is order-preserving and fulfills the diamond
equality.

Example 5. The distance defined in example 4 does not fulfill the diamond inequality,
since for example if I1 = (0,1), I2 = (2,3), then d(I1, I2) = 4, d(I1 ⊓ I2, d1 ⊔ I2) = 3.
However, it is not difficult to see that if fulfills it when I1 ⊓ I2 ≠ �.

As opposed to the previous cases, this property is not necessarily inherited from dis-
tance in the concrete or abstract domain to the other. If (D1, α,D2, γ) is a Galois con-
nection, then it can be shown that α(a ⊔ b) = α(a) ⊔ α(b)) and γ(a ⊓ b) = γ(a) ⊓ γ(b).
However, the same can not be said about the meet of the abstraction or the join of the
concretization, and that is why those properties are not inherited

Other Properties

Those are the basic properties to be expected in general for all abstract distances.
However, there are many more properties that would be too strong of a requirement and

23

would only be fulfilled by some abstract distances, but that can still be useful to consider,
both from a theoretical and practical point of view. In particular, the lattice theory is very
rich, and for every type of lattice (modular, distributive, etc), there could be found new
interesting properties. Nonetheless, we will only consider one more.

This last property does not come from the mathematical nature or the structure of
abstract domains, but from the practical nature of our abstract distances. This property
will help us work better with them as a tool and is the following.

Definition 15. Let D be a complete lattice, and d ∶D ×D → R a distance in D.
We will say that d is normalized if ∀a, b ∈D, d(a, b) ≤ 1, and d(�,⊺) = 1

Abstract distance definition

Let us now consider all those properties one by one. We will decide which of them
should be included in our definition of abstract distance, and which others are just desir-
able or useful from a theoretic point of view, but should not be imposed. Basically, the
properties inherited by the abstraction of a distance will be imposed, and all others not,
seems it reasonable to expect the abstraction of a distance to be an abstract distance.

• Non-negativity and symmetry: These two properties will be imposed in our dis-
tances. It is true that signed distances could make sense in the context of ordered
sets and talk about orientation (d(a, b) = −d(b, a), d(a, b) > 0 ⇐⇒ a ⊐ b), but we
are not going to consider that.

• Identity of indiscernibles: We will impose the left implication (i.e the weak identity
of indiscernibles), but not the other, allowing pseudometrics to be abstract distances.
One of the reasons is that it is not inherited by the abstraction of a distance, unless
the domains enjoy a Galois insertion. But in general, we could say that dealing with
abstract domains involve in some cases operations that lose precision, and that loss
of precision will make necessary in some cases to allow two different elements to
have distance 0. We will see examples in later sections when we introduce distances
that are only pseudometrics.

• Triangle inequality: We will not impose this property, but its weaker version in
lattices, the weak triangle inequality, to be introduced later. The reason for this
is that we find the original triangle inequality to be too restrictive for unrelated
elements of a lattice, as will become apparent in later sections. As an example, the
distance defined in example 4 does not fulfill it.

• Order-preserving: We will imposed this property, although not the strict version,
since is not necessarily inherited by the abstraction of a distance.

• Diamond inequalities: We will not include any of these conditions either, since they
are not inherited by the abstraction of a distance.

• Normalized: We will not include this condition either, since is nature is practical
and not theoretical. However, we will expect our distances to fulfill it, and it can be
noted that any distance can be normalized dividing it by d(�,⊺).

24

Therefore, an abstract distance is defined as follows:

Definition 16 (Abstract Distance). Let us consider an abstract domain Dα, that abstracts
the concrete domainD, with abstraction function α ∶D →Dα and concretization function
γ ∶Dα →D. An abstract distance in Dα is an application dα ∶Dα ×Dα → R fulfilling the
following properties:

• Non-negativity: ∀a, b ∈Dα, dα(a, b) ≥ 0.

• Weak identity of indiscernibles: ∀a ∈Dα, dα(a, a) = 0.

• Symmetry: ∀a, b ∈Dα, dα(a, b) = dα(b, a).

• Order-preserving: a, b, c ∈ Dα, a ⊑ b ⊑ c Ô⇒ dα(a, b) ≤ dα(a, c) , dα(b, c) ≤
dα(a, c).

• Weak Triangle inequality: ∀a, b, c ∈ Dα, a ⊑ b ⊑ c Ô⇒ dα(a, c) ≤ dα(a, b) +
dα(b, c).

Observation 2. It is straightforward to see that if d1, d2 are abstract distances and λ ∈ R+,
then d1 + d2 and λd1 are abstract distances too.

However, as we have seen there is a rich set of properties that an abstract distance can
fulfill, and we have just chosen that definition to be the most general possible. In most
situations, we will just talk about an abstract distance fulfilling a given subset of those
properties, and in general we will expect well-behaved abstract distances to be full met-
rics and strictly order-preserving, and to fulfill the diamond inequality.

Let us now compile some existing theory and ideas that might help us define distances
fulfilling those properties.

3.2 Distances between sets
As we have explained, a distance in an abstract domain between two abstract substi-

tutions corresponds to a distance in the concrete domain between their respective con-
cretizations, which are sets of concrete logic substitutions in our case. Therefore, if we
had a distance d ∶ ℘(Θ) × ℘(Θ) → R between such sets, we could immediately derive an
abstract distance Dα in the abstract domain from it. The problem is, of course, that the
concrete substitutions space is infinite, non-metric (a priori) and not structured (a priori),
so defining distance between sets there would be much harder than defining distances in
the abstract domains, which are in some cases the opposite, and which arise to solve that
very same problem (at least the infinity). Furthermore, it could be challenging to operate
with the concretizations of elements of abstract domains, since they could be infinite and
lead to too costly or non-terminating computations. However, it still makes sense to in-
vestigate existing distances between sets in the literature and see how they could connect
to our problem. Besides, some abstract domains in Ciao are set-based, and some of the
distances listed here might be applicable as abstract distances for them.

25

Symmetric difference distance

The first distance that comes to our mind is the symmetric difference distance [22],
which is defined as follows:

Definition 17 (Symmetric difference distance). The symmetric difference distance be-
tween two finite sets A,B is d(A,B) = ∣A ∪B ∖A ∩B∣ = ∣A ∪B∣ − ∣A ∩B∣.

This distance cannot be directly translated to a distance in an abstract domain, since
the concretization of an abstract substitution will most likely be not finite. However, we
can get still some useful insights from this distance.

Working with the concrete domain as a lattice (D,⊆), that distance fulfills that d(A,B) =
d(A∪B,A∩B) = d(lub(A,B), glb(A,B)). That would translate to a distance in the ab-
stract domain defined as dα(a, b) = dα(a⊔b, a⊓b), and then we would only have to define
the abstract distance between elements related by ⊑, which seems easier and would take
advantage of the lub and glb operations already implemented for the domain.

Observation 3. Let d⊆ be a partial distance in Dα defined in {(a, b)∣a, b ∈ Dα, a ⊑ b}
and dα a distance in Dα defined as dα(a, b) = d⊑(a ⊓ b, a ⊔ b). If d⊑ is non-negative,
symmetric, order preserving, and fulfills the weak identity of indiscernibles and weak
triangle inequality, then dα is an abstract distance, which trivially fulfills the diamond
inequalities.

We can take the translation further and assign a finite size ∣ ∣ to each element of the
abstract domain, which somehow abstracts the size in the concrete domain. Then we could
define the distance as dα(a, b) = ∣a ⊔ b∣ − ∣a ⊓ b∣.

Proposition 3. Let us consider an abstract domain Dα and a positive and monotonic
application size ∶ Dα → R. Let us define dα ∶ Dα ×Dα → R as dα(a, b) = size(a ⊔ b) −
size(a⊓b). Then dα is an abstract distance which trivially fulfills the diamond inequality.

Proof.

• Non-negativity: Trivial, since a ⊓ b ⊑ a ⊔ b and size is monotonic.
• Symmetry: Trivial, since a ⊔ b = b ⊔ a, a ⊓ b = b ⊓ a
• Weak identity of indiscernibles: Trivial, since a = a ⊓ a = a ⊔ a
• Order preserving: Trivial, since size is monotonic. In fact, if size is strictly mono-

tonic dα will be strictly order-preserving
• Weak triangle inequality: Trivial. In fact we have the equality: a ⊑ b ⊑ c Ô⇒
dα(a, c) = size(c) − size(b) + size(b) − size(a) = d(a, b) + d(b, c).

Observation 4. In the proposition above, if size(�) = 0 and size(⊺) = 1, then dα is
normalized. If size is strictly monotonic, then dα is strictly order-preserving and fulfills
the identity of indiscernibles.

26

Example 6. In the intervals domain, we could assign a size size((l, u)) = l−u, size(�) =
0, and define a distance d as d(I1, I2) = size(I1 ⊔ I2) − size(I1 ⊓ I2).

Finally, even ifA orB are infinite, if we redefine d as d(A,B) = (∣A∪B∣−∣A∩B∣)/∣D∣
instead, we could approximate that distance probabilistically, sampling the concrete sub-
stitutions space. For a sample of N concrete substitutions, if M of them are contained in
γ(a)∪γ(b)∖γ(a)∩γ(B), the d(a, b) would be M/N . The problem with this kind of dis-
tances is that they are non-deterministic, which in the context of static analysis is always
something to avoid, and that they are not guaranteed to fulfill most properties expected of
an abstract distance. However they can still be useful, even if only to test a distance like
the one proposed above (where N → ∞, both distances should be similar). We will talk
about probabilistic distances in another section.

Jaccard distance

Another known distance between finite sets is the Jaccard [22] distance, defined as
follows:

Definition 18. The Jaccard index of two finite sets A,B is J(A,B) = ∣A ∩B∣/∣A ∪B∣ ∈
[0,1].

The Jaccard distance between two finite sets A,B is dJ(A,B) = 1 − J(A,B).

As we did with the symmetric difference distance, if we define a size ∣ ∣ in the abstract
domain, we can define an abstract distance as dα(a, b) = 1 − (size(a ⊓ b)/size(a ⊔ b).

Proposition 4. Let us consider an abstract domain Dα and a positive monotonic appli-
cation size ∶Dα → R. Let us define dα ∶Dα ×Dα → R as dα(a, b) = 1− size(a⊓b)

size(a⊓b) . Then dα
is an abstract distance which trivially fulfills the diamond equality.

Proof.

• Non-negativity: sizemonotonic Ô⇒ size(a⊔b) ≥ size(a⊓b) Ô⇒ dα(a, b) >= 0

• Weak identity of indiscernibles: Trivial. If size is strictly monotonic, then the full
identity also holds: dα(a, b) = 0 ⇐⇒ size(a ⊓ b) = size(a ⊔ b) ⇐⇒ a ⊓ b =
a ⊔ b ⇐⇒ a = b

• Symmetry: Trivial
• Order-preserving: a ⊑ b ⊑ c Ô⇒ dα(a, b) = 1 − size(a)

size(b) ≤ 1 − size(a)
size(c) = dα(a, c), and

analogous for dα(b, c)
• Weak triangle inequality: We need to prove that if a ⊏ b ⊏ c, then 1 − size(a)

size(b) + 1 −
size(b)
size(c) ≥ 1− size(a)size(c) . That is true if size(a)size(b)+size(b)size(c) ≥ size(a)size(c)+
size(b)size(b), but that is straightforward to check knowing that size(a) ≤ size(b) ≤
size(c) and expressing size(b), size(c) as size(a)+n, size(a)+n+m, with n,m ≥
0.

27

Example 7. In the interval domains, we could define a distance as d(I1, I2) = 1 −
size(I1⊓I2)
size(I1⊔I2) , where size((l, u)) = u − l, size(�) = 0, size(⊺) =∞.

We can also adopt a probabilistic approach equivalent to the one proposed with the
symmetric difference distance, both to define a new non-deterministic distance and to test
the distance above.

Hausdorff distance

Another very known distance between sets, this time not necessarily finite but in a
metric space, is the Hausdorff [22] distance. It is defined as follows:

Definition 19. Let A,B be two sets in a metric space S with metric d. The Hausdorff
distance between A and B is defined as the maximum between supa∈A infb∈B d(a, b) and
supb∈B infa∈A d(a, b).

Although this distance is defined for infinite sets, it might still not be computable if
the sets are not finite, so we can not get directly an abstract distance from it. It also would
need the set of concrete substitutions to be metric, so we would need to define a distance
in it. Finally, it is undefined for the empty set, and therefore it would be undefined in the
abstract domain for �.

For all these reasons it is harder to derive abstract distances from the Hausdorff dis-
tance in the concrete domain. A probabilistic approach would also have much worse be-
haviour than in the previous cases. However, as we said, some of our domains are set
based, and for them we could apply the Hausdorff distance directly.

Example 8. The intervals domain is partially set-based (it is not completely because the
least upper bound is not the union of intervals), so we could use there the Hausdorff
distance. It is easy to check that it would be an abstract distance if it was extended to be
defined on � (although it could not be extended in a way that the triangle inequality held).

3.3 Distances in complete lattices
We can take advantage of the structure of the abstract domains as completed lattices

to help defining distances in them. Let us see a few examples.

Distance between related elements of the lattice

It is seems arguably easier to define a distance d⊑ between two elements a, b in a
complete lattice D when a ⊑ b. That distance could later be extended to a general distance
d ∶ D × D → R between arbitrary elements as a function of d⊑(a, a ⊔ b), d⊑(b, a ⊔ b),
d⊑(a ⊓ b, a), d⊑(a ⊓ b, b), and d⊑(a ⊓ b, a ⊔ b). We have seen an example in previous
sections: the distance defined as d(a, b) = d⊑(a ⊓ b, a ⊔ b). This is also worth from an
implementation point of view since there are already efficient algorithms for computing
the glb and lub in CiaoPP domains.

28

Observation 5. Let D be a complete lattice and d⊆ ∶ {(a, b)∣a, b ∈ D, a ⊑ b} → R,
an application which is (with a little definition abuse) non-negative, symmetric, order-
preserving and fulfills the weak identity of indiscernibles and triangle inequality. Let us
define d ∶D×D → R as d(a, b) = λ1(d⊑(a, a⊔b)+d⊑(b, a⊔b))+λ2(d⊑d(a⊓b, a)+d⊑(a⊓
b, b)) + λ3d(a ⊓ b, a ⊔ b). Then, if λ1, λ2, λ3 ≥ 0, d is an abstract distance.

Example 9. A few examples of distances defined this way would be:

• distance-to-lub: d(a, b) = d⊑(a,a⊔b)+d⊑(b,a⊔b)
2 .

• distance-to-glb: d(a, b) = d⊑(a⊓b,a)+d⊑(a⊓b,b)
2 .

Discrete distances

If a complete lattice D has finite height, or finite ascending or descending chains, we
could assign a positive weight to each edge of the lattice’s Hasse diagram, and define the
distance between two related elements a, b ∈ D, with a ⊑ b, as the sum of the weights of
the edges of the chain a = d0 ⊑ d1 ⊑ ... ⊑ dn = b. We could later extend that distance to
arbitrary elements as we saw in the previous section.

Example 10. A simple example would be when all the weights are 1, and then the distance
would be the number of “steps” from on element to the other. In the case of the intervals
domain, that distance would be again d⊑((l1, u1), (l2, u2)) = ∣l1 − l2∣ + ∣u2 − u1∣, which
we have already shown to be an abstract distance.

Since there are usually more than one of those chains from on element to another,
the sum of the weights in all of them should be unique. This might seem like a strong
requirement , but actually it is not. Consider for example the interval domains, where
the endpoints of the intervals are integers, and where we assign a weight of 1 to each
“edge” of the Hasse diagram. Let us consider now two intervals (l1, u1) ⊂ (l2, u2), and
n = (l1 − l2) + (u2 − u1). Then it is straightforward to check that there will be n! chains
between them, but all of them have sum of weights n. The same could be said for discrete
set-based lattices where the join and meet are the union and intersection respectively.

Observation 6. If the sums of weights of a chain from a ∈ D to b ∈ D is unique, the sum
of the weights from � to each element of D would define a monotonic size in D, and the
distance between two elements a, b ∈ D proposed would just be the difference between
their sizes. Therefore it is an abstract distance, as seen in section 3.2

Valuations

Definition 20. If D is a lattice, a function v ∶ D → R is called a valuation [2] if ∀a, b ∈
D, v(a) + v(b) = v(a ⊔ b) + v(a ⊓ b)

If it is monotonous, then it is said that the valuation is isotone, and if it is strictly
monotonous it is said that the valuation is positive.

Some definitions of valuation also impose that v(�) = 0.

29

Example 11. In Rn, with the order (x1, . . . , xn) ⊑ (y1, . . . , yn) ⇐⇒ ∀i, xi ≤ yi, any
linear function c(x) = c1x1 + . . . + cnxn is a valuation, isotone if all ci are non-negative,
and positive if they are all positive.

Proposition 5. If D is a lattice and v ∶ D → R a isotone valuation in it, the function
d ∶D ×D → R, d(a, b) = v(a⊔ b)− v(a⊓ b), defines a pseudometric in D. If v is positive,
then it defines a metric. Furthermore, in both cases the function is order preserving, and
therefore it is an abstract distance.

Proof.

• Non-negativity, symmetry, identity of indiscernibles, order-preserving: trivial, and
analogous to proof 3.2

• Triangle inequality: We first prove that d(a⊔x, a⊔y)+d(a⊓x, a⊓y) <= d(x, y) (1).
By definition, the left hand of the expression is v(a⊔x⊔ y)− v((a⊔ y)⊓ (a⊔ y))+
v((a ⊓ x) ⊔ (a ⊓ y)) − v(a ⊓ x ⊓ y), and this is at most v(a ⊔ x ⊔ y) − v(a ⊔ (x ⊓
y)) + v(a ⊓ (x ⊔ y)) − v(a ⊓ x ⊓ y), since (a ⊔ (x ⊓ y)) ⊑ (a ⊔ x) ⊓ (a ⊔ y) and
(a ⊓ x) ⊔ (a ⊓ y) ⊑ (a ⊓ (x ⊔ y)) (distributive inequalities). But that is equal to
v(a⊔x⊔y)+v(a⊓(x⊔y))−v(a⊔(x⊓y))−v(a⊓x⊓y) = v(a)+v(x⊔y)−v(a)−
v(x ⊓ y) = d(x, y). Now we can prove the triangle inequality: d(x, y) + d(y, z) =
d(x ⊔ y, x ⊓ y) + d(y ⊔ z, y ⊓ z) = d(x ⊔ y, y) + d(y, x ⊓ y) + d(y ⊔ z, y) + d(y, y ⊓
z) ≥ d(x ⊔ y ⊔ z, y ⊔ z) + d(y ⊔ z, y) + d(y, x ⊓ y) + d(x ⊓ y, x ⊓ y ⊓ z) = d(x ⊔ y ⊔
z, y) + d(y, x ⊓ y ⊓ z) = d(x ⊔ y ⊔ z, x ⊓ y ⊓ z) ≥ d(x ⊔ y, x ⊓ y) = d(x, y), where he
have used that d(x⊔ y ⊔ z, y ⊔ z) ≤ d(x⊔ y, y) and d(x⊓ y, x⊓ y ⊓ z) ≤ d(y, y ⊓ z),
which is deduced from (1).

This is not something new, we already proposed an instance of this kind of distances
when we tried to extend the symmetric difference distance in the concrete domain to the
abstract domain. The only difference is the new condition v(a, b) = v(a⊓ b)+ v(a⊔ b). In
fact, valuations become specially relevant as distances in abstract domains when they are
considered from that perspective, that means, when the valuation somehow abstracts in
the concrete domain a notion of something like size, amount of information or precision.
Considering it that way also gives new significance to the definition of valuation, which
might originally seem a little arbitrary. In the concrete domain, which is set based, v(a)+
v(b) = v(a⊓b)+v(a⊔b) can be interpreted as the well know formula ∣A∪B∣ = ∣A∣+ ∣B∣−
∣A ∩B∣.

Therefore, in order to define an abstract distance in an abstract domain, it would be
enough to define a valuation that abstracts size in the concrete domain. However, it should
be noted that this might not be trivial, since the loss of precision if the join operation will
make the equation v(a) + v(b) = v(a ⊓ b) + v(a ⊔ b) more difficult to be fulfilled than in
the set-based lattices.

Example 12. In the interval domains, the length of the intervals could be a good candi-
date to be a valuation, but it is not. The reason is that the join operation loses precision.

30

Consider I1 = (0,1), I2 = (2,3). Then I1 ⊔ I2 = (0,3), I1 ⊓ I2 = �, and v(I1) + v(I2) =
2 ≠ 3 = v(I1 ⊔ I2) + v(I1 ⊓ I2).

However, in a set-based domain like share, the cardinal of the set is a valuation.

It can be shown that a candidate to a valuation is in fact one if v(a ⊔ b) = v(a) + v(b)
whenever a ⊓ b = �. It can also be proved that if we define the Jaccard distance for a
valuation, it would fulfill the triangle inequality.

Cartesian product of lattices

Definition 21. We define the cartesian product of complete lattices (D1,⊑1), . . . , (Dn,⊑n)
as (D,⊑), where D =D1 × . . . ×Dn, and ⊑ is defined as follows:

(a1, ..., an) ⊑ (b1, ...bn) ⇐⇒ def∀i = 1...n, ai ⊑i bi

With that order, it is straightforward to check that (D,⊑) is a complete lattice and the
meet, join, top and bottom result as follows:

• (a1, ..., an) ⊔ (b1, ...bn) =def (a1 ⊔1 b2, ..., an ⊔n bn)

• ⊺ = (⊺1, . . . ,⊺n).

• (a1, ..., an) ⊓ (b1, ...bn) =def (a1 ⊓1 b2, ..., an ⊓n bn)

• � = (�1, . . . ,�n).

Many abstract domains are of this nature. The most common cases is when they are
a combination of two separate domains or when the properties they express about the
variables are independent for each variable and not relational. An example of the former
could be shfr and an example for the later could be eterms.

However, in the case of the cartesian product of abstract domains D1, . . . ,Dn, not all
elements inD1×. . .×Dn will belong to the new abstract domain. In particular, all elements
of the lattice (a1, . . . , an) for which ∃i t.q ai = � are identified as the bottom element of
the cartesian product lattice, since their concretization is ∅. And the same would happen
to other sets of elements which share concretization. This is needed if there is to be a
Galois insertion between the concrete and new abstract domains. Therefore, in the new
domain the greatest lower bound would be defined as follows:

(a1, ..., an) ⊓ (b1, ...bn) = { (a1 ⊓1 b1, ..., an ⊓n bn) if ∀i = 1...n, ai ⊓i bi ≠ �Di
� otherwise

Let us study how could we extend distances in lattices to distances in the cartesian
product of lattices, taking into account this last consideration. A first approach could be to
treat the lattice as a vectorial space, and adapt well-known distances for vectorial spaces.

Example 13. We could adapt the euclidean distance and define d as d((a1, ..., an), (b1, ..., bn)) =√
d1(a1, b1)2 + ... + dn(an, bn)2.

We could also use any other Minkowski distance and define d as d((a1, ..., an), (b1, ..., bn)) =
p
√
d1(a1, b1)p + ... + dn(an, bn)p

31

Proposition 6. Let D1, . . . ,Dn be complete lattices with an abstract distances d1, . . . , dn,
and let dL ∶ L×L→ R, where L =D1 × . . .×Dn, be the Minkowski extension of those dis-
tances as defined above. Then dL is also an abstract distance. Furthermore, if d1, . . . , dn
fulfill the identity of indiscernibles or the triangle equality, so does dL.

Proof.

• Non-negativity, symmetry, identity of indiscernibles: trivial
• order-preserving: (a1, . . . , an) ⊑ (b1, . . . , bn) ⊑ (c1, . . . , cn) Ô⇒ ∀i, ai ⊑ bi ⊑ ci,

and therefore, since ∀i, di is an abstract distance, then ∀i, di(ai, bi) ≤ di(ai, ci), and
d(a1, . . . , an), (b1, . . . , bn) = p

√
d1(a1, b1)p + ... + dn(an, bn)p ≤ p

√
d1(a1, c1)p + ... + dn(an, cn)p =

d(a1, . . . , an), (c1, . . . , cn). d(bn, cn) ≤ d(an, cn) is analogous
• Weak triangle inequality: We only need to check that if ∀i, di(ai, ci) ≤ di(ai, bi) +
di(bi, ci), then p

√
d1(a1, b1)p + ... + dn(an, bn)p ≤ p

√
d1(a1, c1)p + ... + dn(an, cn)p +

p
√
d1(a1, c1)p + ... + dn(an, cn)p, but that is straightforward to check if we square

both sides to p. The triangle inequality is analogous.

There are many other distances in the literature that extend a vector of distances to
a scalar distance, for example in the field of machine learning, which handles large data
sets for which the euclidean distance is not a good metric. However, our lattices will have
small dimensions (it is rare to have more than a few variables in an abstract substitution,
and in fact many abstract domains are too exponential to work with that), so we will only
consider the extensions proposed.

3.4 Distances through other domains
Let us suppose that we have two abstract domains,Dα1 andDα2 , that are similar, in the

sense that they abstract similar properties of the concrete domain D. Let us suppose too
that we already have an abstract distance dα2 ∶Dα2 ×Dα2 → R, and that we want to define
another in Dα1 . Since both domains are similar, we could try to ’translate’ the abstract
substitutions from Dα1 to Dα2 , and use the distance there. We would get a distance dα1 ∶
Dα1 × Dα1 → R defined as dα1(a, b) = dα2(f(a), f(b)), where f ∶ Dα1 → Dα2 is that
’translation’ function. If γ1 is the concretization function of Dα1 and α2 the abstraction
function of Dα2 , then we can define that translation function as f(a) = α2(γ1(a)).

Proposition 7. Let D1,D2 be abstract domains, with Galois connections to a concrete
domain (D,Dα1 , α1, γ1) and (D,Dα2 , α2, γ2), and let dα2 ∶ Dα2 ×Dα2 → R an abstract
distance in D2.

Let us define dα1 ∶ Dα1 ×Dα1 → R as dα1(a, b) = dα2(α2(γ1(a)), α2(γ1(b))). Then
dα1 is also an abstract distance. Furthermore, if dα2 fulfills the triangle inequality so does
dα1 .

Proof.

32

• Non-negativity, simmetry, weak identity of indiscernibles, triangle inequality (if dα2

too): Straightforward, analogous to 3.1

• Order-preserving, weak triangle inequality: Straightforward, considering that α2○γ1
is monotonic, since both α2 and γ1 are and the composition of monotonic applica-
tions is monotonic. Analogous to 3.1

Observation 7. There are some desirable properties of our distances that are not in-
herited with this construction, like the right implication of the identity of indiscernibles
or being strictly order-preserving, and we can ask ourselves under which conditions
they would. As we have seen in other sections, the answer is when α2 ○ γ1 in injective.
Informally, we could say that this happens when the translation does not lose preci-
sion, or in other words when Dα1 is strictly more abstract w.r.t D than Dα2 . We could
model this behaviour saying that there is a Galois insertion (Dα1 , α

′,Dα2 , γ
′) such that

α2 = α1 ○ α′, γ2 = γ1 ○ γ′.
This technique allows to reuse already defined distances for an abstract domain in

another similar abstract domain. If the original domain is strictly more expressive than
the other, then no precision will be lost. For example, if we have an abstract distance
in shfr, it makes sense to define an abstract distance in share as dshare(Sh1, Sh2) =
dshfr((Sh1,⊺), d(Sh2,⊺)), where ⊺ refers to the top element of the freeness component
({X1/nf, ...,Xn/nf}). It can also be done the other way around, translating a substitution
in an abstract domain to another in a strictly more expressive abstract domain. That makes
sense when only some of the information that an abstract domain captures is important.
For example, if we have an abstract distance in the share domain, and want to compare two
abstract substitutions in shfr, and for our application the freeness information is not im-
portant, then we can use the distance dshfr((Sh1,), (Sh2,)) = dshare(Sh1, Sh2), where

here denotes any possible freeness component. Finally, we can also do this when both
abstract domains are not comparable in terms of being more or less abstract or expres-
sive. Some precision will be lost, but if the domains are similar it can make sense from a
semantic point of view. An example could be distances in the domain share through the
domain def or viceversa.

But this is not only useful to define an abstract distance in an abstract domain, but
also to define a distance dα1,2 ∶ Dα1 ×Dα2 → R between different, but similar, abstract
domains. We will not formalize the notion of distance between elements of different ab-
strat domains, but it is an idea with many applications and that will appear again in later
chapters. For a situation like that, in which we want to compare two abstract substitu-
tions in different abstract domains, we just have to translate the abstract substitutions to
a reference domain, which could be either of the original ones, or other, and compute
the distance there. Again, we could compare them with respect to some property they
both express in a reference domain more abstract than both; we could compare them in
a domain more expressive than both, and in that case it would be like comparing their
concretizations; or we could just compare them in a domain not related in that sense to
them, and lose precision. We will see examples of this in section 3.5.5.

33

3.5 Distances in Ciao Domains
In this section we apply some of the ideas of the previous sections to define distances

in some common Ciao domains: gr, share, shfr and eterms.

3.5.1 Distance in the groundness domain
Let us start with one of the simplest domains in Ciao: gr, which is defined in sec-

tion 2.2.3. Let us try to apply the ideas explored in previous sections to define abstract
distances in it.

First of all, gr is a cartesian product domain in the sense of section 3.3. If we define
a distance in the core domain (i.e gr for just one variable), then we can follow the ideas
defined in that section to extend it to an abstract distance for the domain gr with arbitrary
number of variables.

The domain for just one variable is the simplest domain possible: apart from � and ⊺
(any), it has only two unrelated elements: g and ng. Let us call that domain Dgr. We will
define the following distance for it:

Definition 22 (dgr). The distance dgr ∶Dgr×Dgr → R is defined as dgr(�, g) = dgr(�, ng) =
dgr(g,⊺) = dgr(ng,⊺) = 1

2 , dgr(�,⊺) = 1

It is easy to check that this distance can be interpreted, among others, as a discrete
distance, and as a valuation, and therefore it is an abstract distance.

We propose the following extension from dgr to a distance dngr ∶Dn
gr×Dn

gr → R, where
Dn
gr =Dgr × ...n ×Dgr.

Definition 23 (dngr). dngr(λ1, λ2) = d⊆(λ1 ⊓ λ2, λ1 ⊔ λ2), where
d⊑({X1/gr1,1, ...,Xn/grn,1}, {X1/gr1,2, ...,Xn/grn,2} =

2
√
dgr(gr1,1, gr1,2)2 + ... + dgr(grn,1, grn,2)2

This distance is the euclidean extension of dgr as defined in section 3.3, and therefore
it is is an abstract distance, since dgr was. On the following we will consider it the standard
distance for gr, that is just Dn

gr when the abstract substitutions operate on n variables, and
we will call it the groundness distance.

3.5.2 Distances in the sharing domain
Let us try to propose a few distance for the domain share, defined in section 2.2.3,

applying the insights of previous sections.

Normalized symmetric difference distance

The domain share is a finite set-based domain, that is, its elements are finite sets and
the join and meet operations are the intersection and union of sets respectively. Therefore
a first idea could be to use the symmetric difference distance. As we say in previous

34

sections, that distance can be interpreted as the distance induced by a valuation, where
v(λ) = ∣λ∣, and as a discrete distance based on number of steps, so it is an abstract distance.
Let us define it, but normalizing it so its range is [0,1]:

Definition 24 (Normalized symmetric difference distance for sharing). The normalized
symmetric difference distance dsharensdd ∶Dn

share ×Dn
share → R is defined as

dsharensdd(Sh1, Sh2) = (∣Sh1 ∪ Sh2∣ − ∣Sh1 ∩ Sh2∣)/2n, where
n denotes the number of variables in the domain of the substitutions, and ∣⊺∣ = 2n

Observation 8. As we saw in section 3.3, since ∣ ∣ is strictly monotonic in shfr, dsharensdd is
strictly order-preserving and a full metric. It also fulfills trivially the diamond inequalities.

Jaccard distance

We could also follow the ideas in section 3.2 and use the Jaccard distance.

Definition 25 (Jaccard Distance in sharing). The Jaccard distance dsharejac ∶ Dn
share ×

Dn
share → R is defined as
dsharejac(Sh1, Sh2) = 1 − ∣Sh1∩Sh2∣∣Sh1∩Sh2∣

As it is shown in section 3.2, since ∣ ∣ is strictly monotonic then dsharejac is an abstract
distance, which fulfills the diamond inequalities and it strictly order-preserving.

Sum of minimum distances

The previous distance does not take into account the elements of the sets in a share
substitution. Those sets are also sets, of the variables involved in the susbtitution, and it
could be argued that they are not all the same. For example, dsharensdd({{X,Y,Z}},{{X,Y }}) =
dsharensdd({{X,Y,Z}},{{U,V }}), when the first should probably be lower.

We could fix that introducing a metric in ℘(PV ar), and using distances for sets in
metric spaces, like Hausdorff. As metric in ℘(PV ar), we propose again the symmetric
difference distance: dPV ar(S1, S2) = (∣S1 ∪ S2∣ − ∣S1 ∩ S2∣).

Hausdorff does not seem like a good distance for this, since it does not take into
account the number of points in which two set differs. We propose using instead the sum
of minimum distances:

Definition 26 (Normalized sum of minimum distances for sharing). The normalized sum
of minimum distances dsharensmd ∶Dn

share ×Dn
share → R is defined as

dsharensmd(Sh1, Sh2) =
∑S1∈Sh1 d

′(S1,Sh2)+∑S2∈Sh2 d
′(S2,Sh1)

∑ni=0 (
n
i
)(n−i) , where

d′(S,SS) = minS′∈SS dPV ar(S,S′) and n denotes the number of variables in the do-
main of the substitutions, and ∣⊺∣ = 2n

The denominator is just a factor to normalized the distance so its range is [0,1]

The main problem of this distance is that is undefined for � as it is. Several extensions
to � could be discuss, but we will just say that dsharensms(�,) = dsharensms(,�) = 1.
The proof that this is in fact an abstract distance is not as trivial as others, but it is again
straightforward, and not worth to include here.

35

3.5.3 Distances in the Sharing-Freeness Domain
Let us define now a few distances in the domain shfr, defined in section 2.2.3.
The first component of shfr is just share, so we will recycle the distances there and

combine them with some distance in the freeness component. That component is in turn
very similar to gr, so we could define a distance similar to dgr. Let us do so:

Definition 27 (Freeness distance). Let Dfr be the freeness component of the domain shfr,
that is, the lattice ({�,G,F,NF},⊑), where G ⊑ NF,F ⊑ NF .

We define the freeness distance dfr ∶ Dfr ×Dfr → R as dfr(�,NF) = dfr(G,F) =
1, dfr(�,G) = dfr(�, F) = dfr(G,NF) = dfr(F,NF) = 1/2

We extend that distance to a distance dnfr ∶Dn
fr×Dn

fr → R, whereDn
fr =Dfr×...n×Dfr,

as:
dnfr(λ1, λ2) = d⊆(λ1 ⊓ λ2, λ1 ⊔ λ2), where

d⊑({X1/fr1,1, ...,Xn/frn,1}, {X1/fr1,2, ...,Xn/frn,2} =
√
dfr(fr1,1,fr1,2)2+...+dfr(frn,1,frn,2)2√

n

We will combine the distances in both components using the euclidean distance, and
obtain:

Definition 28. The distances dshfrnsdd , dshfrjac , dshfrnsmd ∶Dn
shfr ×Dn

shfr → R are defined
as:

dshfrnsdd((Sh1, F r1), (Sh2, F r2)) =
√
dsharensdd(Sh1,Sh2)

2+dfr(Fr1,F r2)2
√
2

dshfrjac((Sh1, F r1), (Sh2, F r2)) =
√
dsharejac(Sh1,Sh2)2+dfr(Fr1,F r2)2√

2

dshfrnsmd((Sh1, F r1), (Sh2, F r2)) =
√
dsharensmd(Sh1,Sh2)

2+dfr(Fr1,F r2)2
√
2

Since all the original distances are normalized abstract distances, the resulting dis-
tances are too, as shown in section 3.3.

3.5.4 Distances in the Regular Types Domain
Let us try to define an abstract distance for the the domain eterms, defined in section

2.2.3. This domain is just the cartesian product of G by itself n times, where n is the
number of variables in the clause, so we can concentrate on defining a distance dG between
two types T1, T2 ∈ G, and that distance can later be extended to an abstract distance determs
in Determs, using the notions seen in section 3.3. Likewise, to that end we can define a
distance d⊑ between T1 and T2 when T1 ⊑ T2, and dG can later be defined as dG(T,T ′) =
d⊑(T ⊓ T ′, T ⊔ T ′), as proposed in sections 3.2 and 3.3. Therefore, we will focus on
defining just d⊑, trying to apply some of the ideas explored in previous sections.

One of them was to define distances based on the Hasse diagram or the number of
steps from an element to another, but it can not be applied in this case since G has not
finite height or ascending chains. Another was to define a monotonic size or a valuation
for types in G. If we work with the normal form G = (S,T ,F ,R) of a type T , which is
unique for regular types, we could try to define a size for T from it. However this is not

36

an easy task. We could try to define the size as a function of the number of terminals,
non-terminals and productions, but that would really be measuring the complexity of a
grammar, not its size. For example, both the smallest and biggest grammars are quite
simple: the grammar for � has no productions and the grammar for ⊺ has just one. It
would also be difficult to enforce monotony with this approach, while keeping distances
bounded. We propose some ideas:

• We could define size(T) = ∣Rf ∣ + ∣R∞∣∣F ∣, where we have partitioned the set of
productionsR into the set of finite productionsRf and the set of not finite or recur-
sive productions R∞. This size is not monotonic, so it will not give us a distance.
However, it could be applied to the difference between two types, which CiaoPP is
able to compute, and that would result in a semimetric.

• We could extend the definition of abstract distance to a function d ∶ D × D →
R ∪ {∞}, and follow the same approach, defining a monotonic size size ∶ D →
R∪∞, with size(any) =∞. For example, the size of a type could be the number of
productions from the initial symbol of the grammar, or∞ is the production S → any
belong to R.

• We could try to bound the growth of the size will keeping it monotonic with a trans-
formation like size→ 1− 1

size , with size ≥ 1, although this particular transformation
grows close to 1 too fast.

Another approach, proposed in section 3.2, could be to define a metric in the substi-
tutions space Θ, extend it to a Hausdorff distance dH in the concrete domain, and derive
from it an abstract distance dα(a, b) = dH(γ(a), γ(b)) in the abstract domain, as seen in
section 3.1. We will do something similar, defining a metric dterm in the space of ground
and non-cyclic (i.e finite) terms and extending it to a distance between two types T1, T2 ∈ G
as a Hausdorff distance. We define dterm recursively as follows:

dterm(f(x1, . . . , xn), g(y1, . . . , ym)) = { if f/n ≠ g/m then 1
else p∑n

i=1
1
ndterm(xi, yi)

where p ∈ (0,1) is a parameter of the distance. The resulting distance between two
types G1 = (S1,T1,F1,R1) and G2 = (S2,T2,F2,R2) would be d′(S1, S2), which is
defined recursively, and with a little abuse of notation, as follows:

d′(S1, S2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

if ∃ (S1 → f(T1, . . . , Tn)) ∈R1 ∧ ∄(S2 → f(T ′
1, . . . , T

′
n)) ∈R2 then 1

if ∃ (S2 → f(T1, . . . , Tn)) ∈R2 ∧ ∄(S1 → f(T ′
1, . . . , T

′
n)) ∈R1 then 1

else max{p∑n
i=1

1
nd(Ti, T ′

i) ∣ (S1 → f(T1, . . . , Tn)) ∈R1∧
(S2 → f(T ′

1, . . . , T
′
n)) ∈R2}

Observation 9. As it is, the distance is not well-defined. On the one hand, it is undefined
for the type �. However it can be easily extended as d(�,) = d(,�) = 1. On the other,
its computation may be non-terminating, since the recursion is not necessarily limited
(although it can be proved that the resulting infinite sums would always converge). But
this problem can be easily overcome pruning the recursion at some point, for example at

37

some depth or when the weight (the accumulated p
n factor) goes below some threshold, or

not so easily computing the convergent sums.
It is straightforward to check that dterms is a metric, and therefore the induced Haus-

dorff distance dH between set of terms is too. We conclude that dG ∶ G×G → R, dG(T1, T2) =
dH(γ(T1), γ(T2)) is an abstract distance, as shown in section 3.1, and noting that dH is
of course order-preserving. However, we will not prove that the proposed distance d′ is in
fact dG

Finally, we propose one more idea, which we will not develop. We could work with a
graph representation of types, with terminals and non terminals as nodes and productions
as edges, and use existing distances between graphs in the literature. This approach could
also be used to define distances less semantic and more topological, that is, distances that
work with the shape of a type modulo renamed functors.

3.5.5 Distance between elements of different aliasing-mode domains
To conclude this section, we revisit the ideas introduced in section 3.4 and propose in-

formally a few new abstract domains and distances in them to use as reference to compare
abstract substitutions in different aliasing-mode abstract domains, like shfr, share or def.
Before that, we should remark that any of the native aliasing-mode domains and distances
proposed for them so far would accomplish that task. For example, we can compare ab-
stract substitutions in different domains with respect to the groundness information they
capture, using gr as reference domain and implementing the translation function from
those domains to gr. An of course, the domains could be the same and then the result
would be a proper abstract distance. The domains proposed are the following:

• All possible aliasing-mode information

We have explained in previous sections that a good way to compare two abstract
substitutions is to compare their corresponding sets of logic substitutions in the
concrete domain, but that a problem is that those sets will not be finite. However,
the mode and sharing possibilities between the variables of those substitutions are
finite. We can abstract away the things that make that set infinite (e.g terms shape)
and consider only whether variables are free, ground or partially instantiated, and
how variables depend on each other. We would get an new abstract domain, set
based but finite, and strictly more expressive than any other native aliasing/mode
domain. Therefore, we could define simple set-based distances in it and use it as a
reference domain for computing distance in those aliasing/mode domains.

• Pair-sharing

A reference domain useful for abstract domains that express sharing between vari-
ables (share, shfr, def) is pair-sharing, which indicates which pairs of variables
possibly share. It is similar to share, but with pair of variables instead of sets. It
is neither more nor less abstract than the other aliasing-mode domains (although,
e.g., share/shfr capture independence and grounding dependencies [8]), but it is

38

still useful, since we can define set-based distances in it and it is easy to implement
transformations from other domains to it.

• Graphs
Another very expressive aliasing/mode abstract domain could be the following. We
keep in one component the information about a variable being ground, partially in-
stantiated, or free. And in another we express the sharing and dependencies between
variables with a graph. If the graph has labels in the edges indicating which vari-
able introduces the sharing, then this domain is strictly more expressive than any
other Ciao aliasing/mode abstract domain, and if not it is still quite expressive. The
advantage of this representation is that it allows us to use existing and established
distances between graphs from the literature.

39

Chapter 4

Distances between analyses

Now that we have distances in the abstract domains, we can start to work quantitatively
with abstract interpretations. For some applications, like semantic search [14] –looking for
code that complies with a given set of assertions– those abstract distances suffice, but for
some others we need more. For example, in some situations we might want to compute the
distance between two complete analyses of a program. That is precisely what we pursue in
this chapter: to extend our abstract distances to distances between analyses, i.e., distances
between whole abstract interpretations of a program.

We will consider only the case of two analyses of the same program with the same
entries. The case of two analyses over different programs, even if one is just a slight
modification of another, is much more complex and out of the scope of this work. In
the last section of this chapter we will devote a few lines to it, exposing the challenges
involved and some possible initial approaches, as well as some speculative applications.

Before trying to define distances between analyses, let us recall first what is the object
we will be working with. As we saw in the preliminary chapter (2), an analysis, or rather
its result, for a given entry, is the abstract resolution tree of the program for that entry.
That is like the concrete resolution tree for a concrete query, but with abstract call and
success substitutions over the underlying abstract domain instead of concrete ones. As in
the concrete case, the tree might be infinite, but only because it repeats call patterns (e.g
a descendant of a node expresses a call to the same predicate and with the same abstract
substitution than its ascendant), and then the tree can be represented in a finite way as a
cyclic tree or a graph.

Example 14. Let us consider as an example the simple program in Figure 4.1, which uses
an entry assertion to specify the initial abstract query of the analysis [34]. If we analyze it
with the groundness domain, the result can be represented with a graph as seen in Figure
4.2.

That graph is a finite representation of an infinite abstract and-or tree. The nodes in
the graph correspond to and-nodes ⟨L,λc, λs⟩ in the analysis tree, where the literals L,
abstract call substitutions λc and abstract success substitutions λs are specified below the
graph. The labels in the edge indicate to which program point each node corresponds: if
one node is connected to its predecessor by an arrow with label i/j, then that node corre-
sponds to the j-th literal of the i-th clause of the predicate indicated by the predecessor.

40

:- module(quicksort ,[quicksort /2],[assertions]).

:- use_module(partition ,[partition /4]).

:- entry quicksort(Xs,Ys) : (ground(Xs), var(Ys)).

quicksort(Xs,Ys) :-

qsort(Xs,Ys,[]).

qsort([X|Xs],Ys ,TailYs) :-

partition(Xs,X,L,R),

qsort(R,R2,TailYs),

qsort(L,Ys,[X|R2]).

qsort([],Ys ,Ys).

Figure 4.1: Quicksort, using difference lists.

(1) quicksort/2

(2) qsort/3

1/1

(5) qsort/3

1/3

(4) qsort/3

1/2

(3) partition/4

1/1

1/3

1/2

1/1

1/3

1/2

1/1

(1) ⟨quicksort(Xs,Y s), {Xs/g, Y s/ng}, {Xs/g, Y s/g}⟩
(2) ⟨qsort(Xs,Y s, []), {Xs/g, Y s/ng}, {Xs/g, Y s/g}⟩
(3) ⟨partition(Xs,X,L,R), {Xs/g,X/g,L/ng,R/ng}, {Xs/g,X/g,L/g,R/g}⟩
(4) ⟨qsort(Xs,Y s,Zs), {Xs/g, Y s/ng,Zs/g}, {Xs/g, Y s/g,Zs/g}⟩
(5) ⟨qsort(Xs,Y s, [Z ∣Zs]), {Xs/g, Y s/ng,Z/g,Zs/g}, {Xs/g, Y s/g,Z/g,Zs/g}⟩

Figure 4.2: Analysis of quicksort/2.

The or-nodes are left implicit.
◻

41

We would like to compare two analyses like the one above. We propose in the fol-
lowing a few methods to do so, that vary in their complexity and applications. We will
explain them and give some examples, but as opposed to the previous chapter we will not
do it in a formal and theoretic way, i.e., we will not define formally the notion of distance
between analyses and abstract interpretations or develop theory for it, nor will we define
formally each distance. Since this part of the work is more speculative, and still at the idea
stage, such formalization is left as future work. Note, however, that if we did, we would
define these distances as non-negative, symmetric, and fulfilling the left implication of the
identity of indiscernibles.

4.1 First approach: top results of the analysis

As explained in the preliminary sections, the input to the static analysis is a set of
entries or abstract queries (abstract call substitutions for some predicates). The analysis
computes the abstract execution tree for those abstract queries.

Let us consider that we only have one of those entries. The call substitution for the top
node of the abstract execution tree will be the one indicated by that entry, and the success
substitution for that node will be the “abstract answer.” The rest of the tree will indicate
how that answer is obtained.

If we want to compare two analyses of the same program with the same entry, we could
use only that abstract answer or top result to compare them and leave aside the rest of the
tree. We would be throwing away part of the analysis, but it is fine for a naive attempt
to compare them. In fact, in some situations we might consider that abstract answer to
be the true result of the analysis and the rest of the tree just the resolution of that result,
the same way as when one only cares about the answers/solutions of a predicate in the
concrete case, and not their computation, i.e., the input-output semantics of the program.
Therefore, for those situations this naive distance could be even more suitable than other
more complete ones. An example could be if we are trying to compute the difference
between the characteristics of the interface of a program that two different analyses infer.

If the analyses have instead more entries, but still the same ones, we could compute
the same way a vector of distances, and obtain a scalar distance for it. This could be done
with a simple average or the euclidean distance, as we did in section 3.3, or adapting any
other well-known vectorial distance in the literature. Additionally, if the user specifies a
weight for each entry, the final distance could just be the weighted average of the distances
for those entries.

Observation 10. If in a distance defined that way, the sum of the weights is 1, and the
abstract distance we are using for the underlying domain is normalized, then the distance
between the analyses will still fulfill the convenient property of being in the interval [0,1].

A distance defined this way is a pseudo-metric, if the underlying abstract distance is
too. However, it will never be a full metric, since it is easy to find two different analyses
with the same top success substitution.

42

4.2 Second approach: program points
We wonder now how could we define a distance that takes the whole analysis into

account. If the result of the two analyses has the same shape, and only differs in the
abstract substitutions, which would all refer to the same graph points in both analyses,
then we could compute again the distances point to point (i.e., abstract substitution to
abstract substitution) using our abstract distance in the underlying abstract domain. We
would get a set of distances with some structure, and compute a scalar distance from it.
For example, if we consider both abstract trees computed by the analyses for a given entry
and they had the same shape, we would get a tree of distances (the same tree, but with
distances instead of abstract substitutions), and try to get a distance from it.

The problem is that even if the program is the same, the shape of that resulting tree of
the analysis is not. It is not only its representation as a finite cyclic tree what is different
(one analysis could repeat call patterns for the same predicate and therefore cycle before
the other, etc), but also the abstract execution tree itself might differ. Therefore we need
to find a common representation for both analyses. In the previous section we did already
that: since the program is the same, the predicates are the same, and we considered only
the top result (i.e., the root of the tree) for them, throwing away most of the analyses
information. In this section we propose another approach: considering the information
inferred by the analyses for each program point.

Even if the analyses are different, the program points are the same since both of them
are analyses of the same program. We could compile all the information inferred by each
analysis for each program point, and forget about its context in the abstract tree. In fact,
that is the purpose of the analysis in many situations, for example when it is done to
optimize code but without specialization (creating procedure versions): in that case all
that matters is the substitutions with which a program point can be called or succeeds,
and not which traces lead to those calls. Later we could compute distances program point
to program point, and think how to get a scalar distance from that.

To compile all the analysis information for a program point, all we need to do is collect
all pairs of abstract call and success substitutions that appear for that program point in the
analysis tree, and get from it a new pair: the new call and success substitutions will be
the join of those call and success substitutions respectively, so it over-approximates all
possible call and success substitutions for the program point.

Example 15. The analysis shown in Figure 4.2 has only one triple ⟨L,λc, λs⟩ for each
program point. Let us consider a different analysis for the same program (Example 4.1),
in which there is no information about the imported predicate partition/4, and there-
fore the analysis needs to assume the most general abstract substitution on success for
calls to that predicate. Figure 4.3 shows the result of the analysis in the same manner as
Figure 4.2 does. We observe that this time there are program points which have more that
one triple in the analysis. Let us denote each program point as P/A/N/M, where that repre-
sents the M-th literal of the N-th clause of the predicate P/A. The correspondence between
program points and analysis nodes is the following:

43

(1) quicksort/2

(2) qsort/3

1/1

(8) qsort/3

1/3

(4) qsort/3

1/2

(3) partition/4

1/1

(7) qsort/3

1/3

(6) qsort/3

1/2

(5) partition/4

1/1

1/3

1/2

1/1

1/3

1/2

1/1

1/3

1/2

1/1

(1) ⟨quicksort(Xs,Y s), {Xs/g, Y s/ng}, {Xs/g, Y s/any}⟩
(2) ⟨qsort(Xs,Y s, []), {Xs/g, Y s/ng}, {Xs/g, Y s/any}⟩
(3) ⟨partition(Xs,X,L,R), {Xs/g,X/g,L/ng,R/ng}), {Xs/g,X/g,L/any,R/any})⟩
(4) ⟨qsort(Xs,Y s,Zs), {Xs/any, Y s/ng,Zs/g}), {Xs/any, Y s/any,Zs/g})⟩
(5) ⟨partition(Xs,X,L,R), {Xs/any,X/any,L/ng,R/ng}), {Xs/any,X/any,L/any,R/any})⟩
(6) ⟨qsort(Xs,Y s,Zs), {Xs/any, Y s/ng,Zs/any}, {Xs/any, Y s/any,Zs/any}⟩
(7) ⟨qsort(Xs,Y s, [Z ∣Zs]), {Xs/any, Y s/ng,Z/any,Zs/any}), {Xs/any, Y s/any,Z/any,Zs/any})⟩
(8) ⟨qsort(Xs,Y s, [Z ∣Zs]), {Xs/any, Y s/ng,Z/g,Zs/any}, {Xs/any, Y s/any,Z/g,Zs/any}⟩

Figure 4.3: Analysis of quicksort/2.

quicksort/2/0 (entry) quicksort/2/1/1 qsort/3/1/1 qsort/3/1/2 qsort/3/1/3

(1) (2) (3), (5) (4), (6) (7), (8)

The resulting single triples ⟨L,λc, λs⟩ for each program point will be the following:

quicksort/2/0 (entry) (1) ⟨quicksort(Xs,Y s), {Xs/g, Y s/ng}, {Xs/g, Y s/any}⟩

quicksort/2/1/1 (2) ⟨qsort(Xs,Y s, []), {Xs/g, Y s/ng}, {Xs/g, Y s/any}⟩

qsort/3/1/1 (3) ’⊔’ (5) ⟨partition(Xs,X,L,R), {Xs/any,X/any,L/ng,R/ng}), {Xs/any,X/any,L/any,R/any})⟩

qsort/3/1/2 (4) ’⊔’ (6) ⟨qsort(Xs,Y s,Zs), {Xs/any, Y s/ng,Zs/any}, {Xs/any, Y s/any,Zs/any}⟩

qsort/3/1/3 (7) ’⊔’ (8) ⟨qsort(Xs,Y s, [Z ∣Zs]), {Xs/any, Y s/ng,Z/any,Zs/any}, {Xs/any, Y s/any,Z/g,Zs/any}⟩

◻

After doing that, two challenges remain: defining a distance between each program
point, and defining a scalar distance from the distances between program points.

The first one is not as simple as in the previous section, since the two call substitutions

44

might differ, so we cannot just use the distance between the success substitutions. How-
ever we could just compute the distance between the two call substitutions and the two
success substitutions independently and combine them. A simple average or the euclidean
distance would suffice.

The scalar distance could be obtained from a weighted average of the distances be-
tween the program points, as we did in the previous section. The weights could be again
specified by the user, constant, or even inferred from the program structure or the (analo-
gous) structure of the analysis graph.

Example 16. Let us compare the two analyses shown in Figures 4.2 and 4.3 for the
program introduced in Example 4.1. We already have their representation as one triple
⟨L,λc, λs⟩ for each program point. The distances for each program point, computed as
the average of the distance between its abstract call substitution and the distance between
its abstract success substitution, is the following:

quicksort/2/0 (entry) quicksort/2/1/1 qsort/3/1/1 qsort/3/1/2 qsort/3/1/3

0.354 0.354 0.427 0.454 0.467

The final distance between the analysis could be the average of all of them, 0.411.
Alternatively, we could assign different weights to each program point taking into account
the structure of the program, and use a weighted average as final distance. For example,
we could assign the weights of the table below, which would yield the final distance 0.378.

quicksort/2/0 (entry) quicksort/2/1/1 qsort/3/1/1 qsort/3/1/2 qsort/3/1/3
1
2

1
4

1
12

1
12

1
12

◻

Observation 11. A distance defined this way will be at most a pseudo metric. It cannot
be a full metric since we lose information when we consider only the program points.

There are many lines of investigation and experimentation for this approach of con-
sidering only the program points for the distances. We have just considered and sketched
the most basic. In particular, another interesting variant could be working with the whole
set of pairs of abstract call-success substitutions, instead of computing their least upper
bound. The problem of defining distances between those sets would be closely related to
the problem of defining distances between multivariant analyses, which is out of the scope
of this work. It could be also interesting to explore more complex ways of combining the
distance for the program points considering the structure of the program.

4.3 Third approach: whole abstract execution tree
In the previous section we said that the abstract tree computed by two analyses for

the same program and the same entry would not necessarily have the same shape, and
therefore the abstract resolution tree was unfit for the approach proposed there. However,
after a few transformations that do not change at all the meaning of the analyses, the two

45

abstract trees can be made to have the same shape. Let us see it (note that we are talking
about the actual tree, not its finite representation as a graph or cyclic tree).

Given the abstract execution tree of two analyses for the same program and entry, if we
traverse the shape of the trees following the abstract execution flow, it is easy to see that
the shape can only differ for one reason: a node in one tree is unreachable in the other.
For example, an abstract call substitution might be compatible (i.e., unifies abstractly)
with a clause, but the corresponding abstract call in the other tree does not, and therefore
the or-node for that clause does not appear. Or the abstract success substitution for one
literal in a clause is bottom in one analysis (i.e., that goal will always fail with those call
substitutions) and the next literal in the clause is not explored, but that does not happen
in the other analysis, where the and-node for that literal is explored and does appear in
the tree. In both cases we can just add the missing nodes with bottom abstract call and
success substitutions, recursively if needed, and the shape of the tree would be the same
again for both analyses. That does not change the meaning of the analyses, and in fact it
could be argued that those nodes belong to the real abstract tree and the way to represent
them is just omitting them.

We can therefore assume that both trees have the same shape, and adopt an analogous
approach to that of the previous section. That is, compute distances point to point (abstract
substitution to abstract substitution) in the tree, and define a scalar distance from the
resulting tree of distances. We propose the following: first, define a distance between
each node of the tree, and then, define the final distance as a weighted average of those
node distances.

For the first we could just compute the distance between the call substitutions and
between the success substitutions, and combine them with the euclidean distance or just
the average. For the later we propose the following algorithm: (1) We start with a weight
of 1 for all the nodes, a factor p ∈ (0,1], and the root node. (2) We have a weight w and a
node. We assign a weight of p⋅w to that node, split a weight of (1−p)w among its children,
and go to (2) for each children with its corresponding part of that splitted weight. If an
or-node has no children, we just assign the whole weight w to it.

The idea of this assignment of weights is that, depending on the value p, we consider
more relevant the distance between the upper nodes than the distance between the deeper
ones. We care more about the more external behavior of the program, so to speak, but
we do not want to miss any of the information of the analysis. In fact, indeed we do not
miss any information, and it is easy to foresee that if this distance was formally defined,
it would be the first of the ones proposed to fulfill the identity of indiscernibles 1, that is,
that two analyses have distance 0 only if they are actually the same.

Example 17. Let us apply this algorithm to compute the distance between the two anal-
yses shown in Figures 4.2 and 4.3. The first levels of the analysis and-or tree are shown
in Figure 4.4. The or-nodes are omitted (both in the tree and in the weight assignment).
Each and-node is a quintuple (P, Id1, Id2,D,W): P is the predicate corresponding to
that program point, I1 is the identifier of the node in analysis 4.2 corresponding to that
and-node, I2 is the analogous in analysis 4.3, D is the distance between the two nodes,

1If the underlying distance does too, of course.

46

(quicksort/2,1,1,0.177,0.2)

(qsort/3,2,2,0.177,0.16)

(partition/4,3,3,0.177,0.043) (qsort/3,4,4,0.348,0.043)

1

(qsort/3,5,8,0.393,0.043)

(partition/4,3,5,0.427,0.011) (qsort/3,4,4,0.348,0.011)

2

... (qsort/3,5,7,0.467,0.011)

(partition/4,3,5,0.427,0.003) ...

3

(qsort/3,5,7,0.467,0.003) ... (qsort/3,4,6,0.454,0.003) (qsort/3,5,7,0.467,0.003)

...

Figure 4.4: 3rd approach: whole abstract execution tree

and W is the corresponding weight to that node. We use a factor p = 1
5 , and the average of

the distance between the call substitutions and the distance between the success substitu-
tions as distance between nodes, using the groundness distance (seen in Section 3.5.1) as
underlying abstract distance for the domain.

◻

Clearly, and as seen in Figure 4.4, that weight assignment is non terminating when the
tree is not finite, as it will most likely be. We propose the following solutions:

• At some depth of the tree, just assign all the weight to the current node, and do not
visit its children.

• When the weight to be assigned is below some threshold, assign all of it to the
current node and stop deepening into the tree.

• Compute the “fixpoint”. It is clear that the non-finiteness of the process comes from
visiting the same pairs of nodes again and again with ever decreasing weights, and
the sum of those weights is convergent. An algorithm similar to the fixpoint algo-
rithm used during the analysis and with slight adaptations could be applied to find
the limit of that sum.

Example 18. Let us consider the previous example and Figure 4.4. If we follow
the tree through the edges labelled 1,2,3..., we observe that we are visiting the same
node over and over with decreasing weights 0.043,0.011,0.003 . . . = w 1

5 +w 4
5
1
3
1
5 +

w 4
5
1
3
4
5
1
3
1
5 + . . ., where w = 14

5
1
1
4
5
1
3 . The sum of those weights converges and can be

easily calculated (it is 1
5w∑

∞
i=0 (4

5
1
3)i = 1

5w
15
11).

◻

47

Observation 12. If the underlying abstract distance is a metric, the distance proposed
between analyses will be a metric too. If the underlying abstract distance is normalized,
the distance proposed will have range [0,1] too.

All the above has been defined for analyses with just one entry. When dealing with
several entries but still the same for both analyses, the considerations from previous sec-
tions are enough.

4.4 Distance between analyses of different programs
Comparing analyses of two different programs is much more complicated, due to the

absence of that common structure of the analysis that we have exploited in the previous
sections. In some situations we could adopt an approach like in Section 4.1 and care only
about the top result, but again, depending on the application this may or may not be too
naive (for example, again it could be useful for semantic code search or interface compar-
ison). We can also adopt an approach like in Section 4.3 and compute node distances as
long as the two analyses have the same structure, and return the maximum node distance
when they differ. This would be a decent measure of program similarity, but of course it
also has limitations, and the same could be said about a naive adaptation of the approach
of Section 4.2.

In this scenario, abstract distances tolerant to syntactic noise, like permutations or
different number of variables in the domain of the substitutions, or renamed functors or
predicates, become more relevant too. But that poses an additional challenge, since it is
difficult to combine distances that behave well both semantically and syntactically.

Clearly, as we consider more general classes of programs to compare, the problem
becomes broader and more difficult to treat in a general way. However, there are some
interesting applications for it that we should mention, and to which it might be possible to
find more ad-hoc solutions that might still rely on our abstract distances in the domains.
Some of those applications could be comparing the semantics of two programs, detecting
or measuring the effectiveness of an obfuscation, measuring the loss of precision in the
analysis after optimizations or obfuscations, detecting plagiarism, etc. We return to this
topic of applications in Chapter 6.

48

Chapter 5

Evaluation and Experiments

In order to evaluate the potential of the distances that we have defined in real applica-
tions, we need to evaluate their quality. In this chapter we do precisely that, first testing
individually that their behavior is the expected and their implementation correct, and later
applying them in some small experiments.

5.1 Evaluation of proposed distances

Checking the expected behavior of the proposed distances is challenging, first of all
because that expected behavior is not really defined. We have imposed certain proper-
ties on our abstract distances, which he have made sure they hold by construction for
each distance defined, and otherwise their expected behavior can vary depending on their
application.

Therefore, in order to evaluate our abstract distances, we will just compute, for each
domain, all proposed and implemented distances for a predefined set of pairs of abstract
substitutions, and check manually that the implementation is correct, their complexity
is acceptable, and the results fall within the expected margins. We show the results for
the domain shfr. The tested distances are dshfrnsdd (section 3.5.2), dshfrnsmd (3.5.2) and
dshfrjacc (3.5.2). The computed distances can be seen in table 5.1.

The behavior of the analysis distances is more complicated to evaluate manually, since
it implies understanding the whole semantics and analyses of the programs in which they
are applied, which is not as simple and visual as in the case of the abstract domains.
And we would need to that for several programs to get reliable conclusions. Doing it
automatically is also too complicated, since we don’t have a programmable notion of
a distance being accurate. Therefore we evaluate the behavior of the distances between
analyses directly with the experiments.

49

λ1 λ2 dshfrnsdd dshfrnsmd dshfrjac
(1) � ⊺ 1 1 1
(2) λa2 λb2 0.392 0.373 0.637
(3) λa3 λb3 0.713 0.791 0.713
(4) λa4 λb4 0.94 1 0.94
(5) λa5 λb5 0.222 0.212 0.408
(6) λa6 λb6 0.418 0.412 0.54
(7) λa7 λb7 0.408 0.312 0.408
(8) λa8 λb8 0.177 0.118 0.177

λa2 = ({{X},{X,Y },{Y }}, λa6 = ({{X}},{X/f, Y /g,Z/g})
{X/nf,Y /nf,Z/g}) λb6 = ({},{X/g, Y /g,Z/g})

λb2 = ({},{X/g, Y /g,Z/g}) λa7 = (⊺,{X/nf,Y /nf,Z/nf})
λa3 = (⊺,{X/nf,Y /nf,Z/nf}) λb7 = ({{X},{X,Y },{Y }},
λb3 = ({},{X/g, Y /g,Z/g}) {X/nf,Y /nf/Z/g})
λa4 = (⊺,{X/f, Y /f,Z/f}) λa8 = ⊺
λb4 = ({},{X/g, Y /g,Z/g}) λb8 = ({{X},{X,Y },{X,Y,Z},
λa5 = ({{X}},{X/nf,Y /g,Z/g}) {X,Z},{Y }},⊺)
λb5 = ({},{X/g, Y /g,Z/g})

Table 5.1: Test of distances in shfr.

5.2 Experiments

Another way to test our distances is to propose experiments and check that their re-
sults match the expected intuitions. We have done so for a few experiments regarding
measuring and comparing the precision of the analyses. There is a wide variety of anal-
ysis algorithms in CiaoPP (i.e., different fixpoints, widenings, domains, etc), that vary
in precision and cost, and their qualitative relative precisions are well known. However,
even if it is known that an analysis is by construction more precise than other, there are
no tools in CiaoPP to quantify and measure that difference, which would be necessary
for example to establish which analysis has the best trade-off between cost and precision.
The experiments we have proposed deal with this particular problem, and our results both
let us evaluate the quality of our distances and mark a first step towards solid techniques
for measuring analysis precision.

The idea, as we said, is to apply this to different native CiaoPP analysis algorithms
for the same program. However, in CiaoPP those analyses will mostly differ in things that
might be unnecessarily complex to consider for an experiment, like different fixpoints
approximations or widenings. Working with them would force us to deal with the internal
CiaoPP implementation, and would make understanding the results harder. Therefore,

50

Module/Predicate Ver. 1 Ver. 2 Ver. 3 Ver. 4 Ver. 5
quicksort trusts 2 1 1 0 -
qsort/2 precision 0.0 0.422 0.817 0.817 -
aiakl trusts 2 1 1 0 -

goal/2 precision 0 0 0.212 0.212 -
rdtok trusts 3 1 1 1 -

read tokens/2 precision 0.001 0.001 0.003 0.003 -
progeom trusts 4 3 2 1 0

pds/2 precision 0.0 0.252 0.297 0.297 0.297

Table 5.2: (Loss of) precision of the analysis over different variants of the same benchmark with
different trust assertions.
In the table, there are two rows for each benchmark, the first indicates how many trust assertions
each version has and the second shows the measured (loss of) precision.

for our experiments we have chosen to artificially create different analyses with different
precision for our programs, whose differences are more visual and simpler to understand.

In section 5.2.1, we propose inducing a gain or loss of precision in the same anal-
ysis for the same program, having different versions of the program that just differ in
that they have different trust assertions [16] to indicate to the analysis the true semantics
of the program at some points. In section 5.2.2 we translate whole analyses performed
over different aliasing-mode domains, to analyses over the domain gr, and compare their
precision there.

5.2.1 Analysis Precision and Trust Assertions
As we mentioned in the preliminary section, Ciao assertions with status trust indicate

to the analyzer that it can consider the information of the assertions as truthful during the
analysis. As a result, the analysis yields more precise results where it could otherwise lose
precision, maybe because there are side-effects in the program, because no information is
available for imported code, or just because it is unable of inferring the actual semantics
of a predicate.

For this experiment, we focus on the second point: the analysis in CiaoPP is modular,
but in the current default settings it does not analyze other modules to infer the semantics
of imported predicates. However, if that semantics is specified with trust assertions, either
in the module that uses the predicate or the module that exports it, the analysis will work
with it as if it was information inferred by the analyzer itself.

Our experiment consists of the following steps. First, we get a program written across
different modules, without cyclic dependencies between them. Then we analyze each
module separately, and annotate the semantics computed by the analysis with trust as-
sertions (CiaoPP can do this automatically). If we now analyzed again the main module,
the analysis would gain precision due to those trust assertions. We will do exactly this,
but performing the analysis several times, using different combinations of trust assertions

51

:- module(_, [qsort /2], [assertions , nativeprops]).

:- use_module(partition , [partition /4]).

:- use_module(mylists , [my_append /3]).

:- entry qsort(As,Bs) : (ground(As), var(Bs)).

qsort([],[]).

qsort([X|L],SortL) :-

partition(L,X,L1,L2),

qsort(L1,SortL1),

qsort(L2,SortL2),

my_append(SortL1 ,[X|SortL2],SortL).

:- trust pred qsort(As,Bs)

: (mshare([[Bs]]), var(Bs), ground([As]))

=> ground([As ,Bs]).

:- trust pred partition(_A,_1,Left ,Right)

: (mshare([[Left],[Right]]), var(Left), var(Right),

ground([_A ,_1]))

=> ground([_A ,_1 ,Left ,Right]).

:- trust pred my_append(_A,L,_B)

: (mshare([[_B]]), var(_B), ground([_A,L]))

=> ground([_A ,L,_B]).

Figure 5.1: qsort program with trust assertions.

(commenting and uncommenting them). We thus produce a set of analyses with different
(losses of) precision, which we will measure as the distance to the most precise analy-
sis (the one with all trust assertions). If our distances are correct, the measured precision
will be increasing as the subsets of commented trust assertions grow, and hopefully those
distances will be related somehow to the number of trust assertions used.

The benchmarks used can be found in the code repository, at the path src/exper-

iments/trusts/benchs. The analyses have been done over the domain shfr, using the
abstract distance dshfrndss and the third distance between analyses proposed (same as ex-
ample 17). The results are shown in Table 5.2. Here we explain one of them: the analysis
of the program qsort.pl with different trust assertions.

Example 19. The program is really simple and is shown in Figure 5.1.
The true semantics of the program can be read in the trust assertions. The loss of preci-

sion of the analysis with different combinations of those trust assertions is the following:

• None: 0.861
• partition/4 assertion: 0.389
• my append/3 assertion: 0.861
• Both assertions: 0.0

52

http://cliplab.org/~ignacio.decasso/tfg_code/

Note how a significant amount of precision is lost when none of the assertions is used
(recall that with the distances we are working with, the maximum is 1). This is because
basically all that the actual semantics and the analysis have in common is some call pat-
terns (first argument of qsort/2 is ground, third and forth arguments of partition/4 are free
variables, and third argument of my append/3 is a free variable too). On the success pat-
terns, they always differ almost as much as they could: on the actual semantics everything
is ground, and on the analysis everything is almost the ⊺ substitution of the domain shfr,
since the analysis cannot infer anything. Adding the trust assertions my append/3 changes
nothing, since when the analysis reaches the point where that predicate is used in the pro-
gram, precision has already been lost in partition/4 and the analysis is already working
with ⊺ abstract substitutions.

◻

We conclude that the loss of precision when using strictly modular analyses is too
big, as we suspected, and is not worth the gain in analysis run time. However, Ciao offers
solutions for this. To begin with, all Ciao libraries are annotated with trust assertions,
so the programmer does not need to worry when using native code. Also, multi-modular
analysis [32, 6, 37] and incremental analysis [15, 21, 36] are available in Ciao. But in
general, this experiment proves the great utility of trust assertions in Ciao as a way to
improve analysis precision, specially considering that there are sources of precision loss,
like side-effects or foreign code, that cannot be avoided without explicit use of those
assertions.

5.2.2 Analysis Precision vs. Analysis Cost
As we mentioned in section 3.4, different abstract domains can be compared with re-

spect to some of the information they express. For this experiment, we propose to analyze
the same program over the domains shfr, share, and def, and measure the precision of the
analyses with respect to the groundness information they infer.

In order to do that, we translate the analyses from the original domain to gr. That
translation is done replacing all the abstract substitutions λD in the original domain in the
analysis AND-OR tree, with abstract substitutions λgr in gr. The translation is defined as
λgr = αgr(γD(λD)), where αgr is the abstraction function of the domain gr and γD is the
concretization function of the domain D. That means that the new abstract substitution in
gr is an over-approximation of the abstract substitution in D, and the result is an AND
tree that still over-approximates the semantics of the program.

Then, we compute the actual semantics of the program. This can be done specifying
it with trust assertions if it is known, or approximating it as the intersection of all the
translated analysis, which implies a loss of precision but allows in exchange to automate
the process for arbitrary benchmarks with unknown semantics.

Finally, we can measure the (loss of) precision of an analysis as the difference between
the actual semantics in gr and the semantics in gr computed by the analysis. In our case,
we also measure the analysis run-time cost for data completion.

Table 5.3 shows the results, for a few benchmarks, some of them developed ad-hoc
and others classical benchmarks for static analysis in logic programming. The bench-

53

Module Predicate shfr share def
prec. cost prec. cost prec. cost

simple.pl p/1 0.0 8.20 0.000 7.40 0.000 7.44
qsort.pl quicksort/2 0.0 7.56 0.140 5.72 0.140 5.76

qsort v2.pl quicksort/2 0.0 5.88 0.087 5.64 0.087 6.00
append.pl append/3 0.0 5.84 0.395 5.62 0.395 5.76

bid.pl bid/4 0.0 7.24 0.126 7.04 0.126 7.20
boyer.pl tautology/1 0.0 12.32 0.022 10.44 0.023 10.24
deriv.pl d/3 0.0 7.36 0.121 5.84 0.121 5.96
fib.pl fib/2 0.0 6.80 0.047 5.12 0.057 5.00

grammar.pl parse/2 0.0 5.76 0.062 5.36 0.062 5.64
hanoiapp.pl shanoi/5 0.0 5.56 0.137 5.48 0.137 5.48
mmatrix.pl mmultiply/3 0.0 7.12 0.144 5.72 0.299 5.72

occur.pl occurall/3 0.0 7.52 0.144 5.96 0.144 5.84
peephole.pl peephole opt/2 0.0 12.88 0.123 11.48 0.135 10.60
progeom.pl pds/2 0.0 7.36 0.072 5.60 0.086 5.96
qsortapp.pl qsort/2 0.0 7.28 0.155 5.36 0.155 5.64

query.pl query/1 0.0 7.68 0.069 6.20 0.069 6.12
tak.pl tak/4 0.0 7.92 0.150 6.28 0.218 5.64

zebra.pl zebra/7 0.0 7.04 0.287 7.00 0.287 6.56

Table 5.3: Loss of precision of the analysis over the domains shfr, share and def analyses with
respect to groundness semantics, and runtime cost in milliseconds of those analysis.

marks and code for the experiment can be found in the code repository, in directories
src/experiments/precision-vs-cost/benchmarks/ and src/experiments/precision-
vs-cost/ respectively. The results align with our a-priori knowledge: that shfr is strictly
more expressive than both other domains, and that share is more precise than def, al-
though their precision inferring groundness is usually the same. Therefore, when the
best-approximation semantics is computed as the intersection of all three analyses, it is
just going to be the semantics computed by shfr, and that is why the loss of precision
for that domain is always 0. However, we still compute that distance as a sanity check.
The difference in precision between shfr and the two others comes from the fact that shfr
can sometimes detect non-groundness (when a variable is free), but it does not detect
groundness better than share.

54

http://cliplab.org/~ignacio.decasso/tfg_code/

Chapter 6

Conclusions

Abstract interpretation is a powerful static analysis technique, but part of its full po-
tential is not reached because of the lack of techniques to work with it in a quantitative
way, a shortcoming that has not been properly addressed yet. We have tried to approach
this problem, exploiting the structure of the abstract domains and logic programs to de-
fine metrics among abstract interpretations that respect their semantic nature and allow
us to work quantitatively with them. We have developed a basic theory of metrics in ab-
stract domains, and proposed algorithms to extend them to distances between the abstract
semantics of programs. We have implemented some of the proposed distances and exper-
imented with them in the context of the Ciao preprocessor. As a result we have been able
to measure the precision of different analysis of some programs in CiaoPP.

We believe that our results are encouraging and that, with some further work and
refinement, the distances defined can be integrated into CiaoPP and enhance some com-
ponents of the Ciao environment. Furthermore, since CiaoPP is capable of transforming
foreign languages to Horn clauses, all those applications of our distances can be extended
to other programming languages and paradigms. At the same time, clearly the proposed
approaches cannot cover all the fields and problems that would in theory benefit from
quantitative techniques for abstract interpretation. We feel that the range of applications
in which those quantitative techniques could be applied is too wide and varied to be cov-
ered by a single approach, and that some very useful applications of distances between
abstract interpretations are in need of further investigation. In particular, more work is
needed in comparing abstract interpretations for two non-identical programs, a problem
with promising potential applications. However, we believe that our idea of metrics in
abstract domains could be key in all that future work.

6.1 Applications and Future Work
In this work we have focused on only one of the applications of abstract distances:

measuring precision in analysis, computing the distance between the actual and the in-
ferred semantics. However, there are many applications and open lines of investigation
that have not been discussed, and where the ideas developed in this document could prove
to be useful.

55

First of all, measuring analyses has many applications in itself, apart from mak-
ing it possible to establish the quality of different analysis approaches (i.e different do-
mains, fixpoints, widenings...). For example, it allows checking how different program-
ming methodologies or optimizations affect the analysis precision. We have already shown
it for the use of trust assertions, but it could be worth investigating it too for things like the
use of cuts, higher order programming, catch-all clauses, folding or unfolding predicates
of goals, transformations to better exploit indexing, use of runtime checks, etc). In the
same line, this technique could also be used to measure the effectiveness of an obfusca-
tion, by checking how much precision loss it induces.

Another application could be found in semantic code browsing [14]. Ciao implements
a tool that allows to search code in a library specifying its (external) semantics in some
abstract domain, instead of using other traditional techniques like signature matching.
That tool could be enhanced with the use of abstract distances, showing similar results
when an exact match is not found. However, to fully exploit our distances in this scenario,
we would need to find a way to deal with permutations or different number of variables
in a clause. The same ideas applied here could also be applied to the field of program
synthesis, and we could adopt a static analysis approach to the problem of checking how
close a generated program is to a specified behaviour.

Other applications could be found in the field of software metrics. Some of our dis-
tances, like the ones based on valuations (section 3.3), are based on a notion of size or
norm for an abstract substitution. Those norms can have applications on their own. For
example, if they are extended to whole abstract interpretations, a small share norm could
indicate that a program is more parallelizable, and a small eterms norm can indicate that
a program is better-typed and therefore safer.

Finally, our abstract distances could be used in a different approach to measuring
precision of the analysis: an approach that measures it from construction. We could in-
vestigate how to measure an analysis precision by measuring the imprecision introduced
at each step of the analysis by an abstract operation, like the greatest lower bound of the
result for all the clauses at some point of the AND-OR tree.

56

Bibliography

[1] Krzysztof R. Apt. From Logic Programming to Prolog. Computer Science. Prentice
Hall, 1997.

[2] Garrett Birkhoff. Lattice Theory 3rd ed. American Mathematical Society, 1967.

[3] M. Bruynooghe. A Framework for the Abstract Interpretation of Logic Programs.
Technical Report CW62, Department of Computer Science, Katholieke Universiteit
Leuven, October 1987.

[4] F. Bueno, D. Cabeza, M. Carro, M. V. Hermenegildo, P. López-Garcı́a, and
G. Puebla-(Eds.). The Ciao System. Ref. Manual (v1.13). Technical report, School
of Computer Science, T.U. of Madrid (UPM), 2009. Available at http://ciao-
lang.org.

[5] F. Bueno, D. Cabeza, M. V. Hermenegildo, and G. Puebla. Global Analysis of Stan-
dard Prolog Programs. In European Symposium on Programming, number 1058 in
LNCS, pages 108–124, Sweden, April 1996. Springer-Verlag.

[6] F. Bueno, M. Garcı́a de la Banda, M. V. Hermenegildo, K. Marriott, G. Puebla, and
P. Stuckey. A Model for Inter-module Analysis and Optimizing Compilation. In
Logic-based Program Synthesis and Transformation, number 2042 in LNCS, pages
86–102. Springer-Verlag, March 2001.

[7] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. V. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int’l Workshop on
Automated Debugging–AADEBUG’97, pages 155–170, Linköping, Sweden, May
1997. U. of Linköping Press.

[8] F. Bueno and M. Garcı́a de la Banda. Set-Sharing is not always redundant for Pair-
Sharing. In 7th International Symposium on Functional and Logic Programming
(FLOPS 2004), number 2998 in LNCS, Heidelberg, Germany, April 2004. Springer-
Verlag.

[9] F. Bueno, M. Garcı́a de la Banda, and M. V. Hermenegildo. Effectiveness of Abstract
Interpretation in Automatic Parallelization: A Case Study in Logic Programming.
ACM Transactions on Programming Languages and Systems, 21(2):189–238, March
1999.

57

[10] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In ACM
Symposium on Principles of Programming Languages (POPL’77), pages 238–252.
ACM Press, 1977.

[11] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. The astreé analyzer. In 14th European Sympo-
sium on Programming, ESOP 2005, pages 21–30, April 2005.

[12] P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In Types in
Logic Programming, pages 157–187. MIT Press, 1992.

[13] M. Garcı́a de la Banda and M. V. Hermenegildo. A Practical Approach to the Global
Analysis of Constraint Logic Programs. In 1993 International Logic Programming
Symposium, pages 437–455. MIT Press, October 1993.

[14] I. Garcia-Contreras, J. F. Morales, and M. V. Hermenegildo. Semantic Code Brows-
ing. Theory and Practice of Logic Programming, 32nd Int’l. Conference on Logic
Programming (ICLP’16) Special Issue, 16(5-6):721–737, October 2016.

[15] I. Garcia-Contreras, J. F. Morales, and M. V. Hermenegildo. Towards Incremental
and Modular Context-sensitive Analysis. In Technical Communications of the 34th
International Conference on Logic Programming (ICLP 2018), OpenAccess Series
in Informatics (OASIcs). Dagstuhl Press, July 2018. (Extended Abstract).

[16] I. Garcia-Contreras, J.F. Morales, , and M. V. Hermenegildo. Multivariant Assertion-
based Guidance in Abstract Interpretation. In Pre-proceedings of the 28th Interna-
tional Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’18), September 2018.

[17] M. V. Hermenegildo. A Documentation Generator for (C)LP Systems. In Inter-
national Conference CL 2000, volume 1861 of LNAI, pages 1345–1361. Springer-
Verlag, July 2000.

[18] M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. The-
ory and Practice of Logic Programming, 12(1–2):219–252, January 2012.
http://arxiv.org/abs/1102.5497.

[19] M. V. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Speci-
fications, and an Extensible Assertion Language for Program Validation and Debug-
ging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The Logic
Programming Paradigm: a 25–Year Perspective, pages 161–192. Springer-Verlag,
July 1999.

[20] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The

58

Ciao System Preprocessor). Science of Computer Programming, 58(1–2):115–140,
October 2005.

[21] M. V. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis
of Constraint Logic Programs. ACM Transactions on Programming Languages and
Systems, 22(2):187–223, March 2000.

[22] Michael Levandowsky and David Winter. Distance between sets. Nature, 234:34–
25.

[23] J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edition,
1987.

[24] K. Marriott and H. Søndergaard. Semantics-based dataflow analysis of logic pro-
grams. Information Processing, pages 601–606, April 1989.

[25] K. Marriott and H. Søndergaard. Precise and efficient groundness analysis for logic
programs. Technical report 93/7, Univ. of Melbourne, 1993.

[26] E. Mera, P. López-Garcı́a, and M. V. Hermenegildo. Integrating Software Testing
and Run-Time Checking in an Assertion Verification Framework. In 25th Int’l.
Conference on Logic Programming (ICLP’09), volume 5649 of LNCS, pages 281–
295. Springer-Verlag, July 2009.

[27] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence In-
formation at Compile-Time Through Abstract Interpretation. In 1989 North Ameri-
can Conference on Logic Programming, pages 166–189. MIT Press, October 1989.

[28] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Algo-
rithm for Top-down Abstract Interpretation of Logic Programs. Technical Report
ACT-DC-153-90, Microelectronics and Computer Technology Corporation (MCC),
Austin, TX 78759, April 1990.

[29] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables through Abstract Interpretation. pages 49–63. MIT
Press, 1991.

[30] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. Journal of Logic Programming, 13(2/3):315–
347, July 1992.

[31] P. Pietrzak, J. Correas, G. Puebla, and M. V. Hermenegildo. Context-Sensitive Mul-
tivariant Assertion Checking in Modular Programs. In LPAR’06, number 4246 in
LNCS, pages 392–406. Springer-Verlag, November 2006.

[32] P. Pietrzak, J. Correas, G. Puebla, and M. V. Hermenegildo. A Practical Type Anal-
ysis for Verification of Modular Prolog Programs. In PEPM’08, pages 61–70. ACM
Press, January 2008.

59

[33] G. Puebla, F. Bueno, and M. V. Hermenegildo. An Assertion Language for Con-
straint Logic Programs. In Analysis and Visualization Tools for Constraint Pro-
gramming, number 1870 in LNCS, pages 23–61. Springer-Verlag, 2000.

[34] G. Puebla, F. Bueno, and M. V. Hermenegildo. An Assertion Language for Con-
straint Logic Programs. In P. Deransart, M. V. Hermenegildo, and J. Maluszynski,
editors, Analysis and Visualization Tools for Constraint Programming, number 1870
in LNCS, pages 23–61. Springer-Verlag, September 2000.

[35] G. Puebla, F. Bueno, and M. V. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Logic-based Pro-
gram Synthesis and Transformation (LOPSTR’99), number 1817 in LNCS, pages
273–292. Springer-Verlag, March 2000.

[36] G. Puebla and M. V. Hermenegildo. Optimized Algorithms for the Incremen-
tal Analysis of Logic Programs. In International Static Analysis Symposium
(SAS 1996), number 1145 in Lecture Notes in Computer Science, pages 270–284.
Springer-Verlag, September 1996.

[37] G. Puebla and M. V. Hermenegildo. Some Issues in Analysis and Specialization of
Modular Ciao-Prolog Programs. In Special Issue on Optimization and Implemen-
tation of Declarative Programming Languages, volume 30 of Electronic Notes in
Theoretical Computer Science. Elsevier - North Holland, March 2000.

[38] C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for Logic
Programs. In 9th International Static Analysis Symposium (SAS’02), volume 2477
of Lecture Notes in Computer Science, pages 102–116. Springer-Verlag, September
2002.

60

	Introduction
	Preliminaries
	Abstract Interpretation of Logic Programs
	Basic Lattice Theory Definitions
	Abstract Interpretation
	Abstract Interpretation of Logic Progams

	Ciao
	Ciao Assertions
	The Ciao verification framework and the Ciao preprocessor
	CiaoPP abstract domains

	Distances in Abstract Domains
	Abstract Distances
	Distances between sets
	Distances in complete lattices
	Distances through other domains
	Distances in Ciao Domains
	Distance in the groundness domain
	Distances in the sharing domain
	Distances in the Sharing-Freeness Domain
	Distances in the Regular Types Domain
	Distance between elements of different aliasing-mode domains

	Distances between analyses
	First approach: top results of the analysis
	Second approach: program points
	Third approach: whole abstract execution tree
	Distance between analyses of different programs

	Evaluation and Experiments
	Evaluation of proposed distances
	Experiments
	Analysis Precision and Trust Assertions
	Analysis Precision vs. Analysis Cost

	Conclusions
	Applications and Future Work

	Bibliography

