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Abs trac t 

This paper presents and develops a generalized concept of Non-Strict Independent 

And Parallelism (NSIAP). NSIAP extends the applicability of Independent And-

Parallelism (IAP) by enlarging the class of goals which are eligible for parallel 

execution. At the same time it maintains IAP's ability to run non-deterministic 

goals in parallel and to preserve the computational complexity expected in the ex­

ecution of the program by the programmer. First, a parallel execution framework 

is defined and some fundamental correctness results, in the sense of equivalence of 

solutions with the sequential model, are discussed for this framework. The issue 

of efficiency is then considered. Two new definitions of NSI are given for the cases 

of puré and impure goals respectively and efficiency results are provided for pro-

grams parallelized under these definitions which include t reatment of the case of 

goal failure: not only is reduction of execution time guaranteed (modulo run-time 

overheads) in the absence of failure but it is also shown that in the worst case of 

failure no speed-down will occur. In addition to applying to NSI, these results carry 

over and complete previous results shown in the context of IAP which did not deal 

with the case of goal failure. Finally, some practical examples of the application 

of the NSIAP concept to the parallelization of a set of programs are presented and 

performance results, showing the advantage of using NSI, are given. 
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1 Introduction 
A number of proposed parallel execution models for logic programs include 
exploitation of "independent and-parallelism" (IAP) (e.g. see [7], [14], [6], 
[3], [5], [12], [15], [19], [20] and their references). One reason for this is tha t , 
as shown in [10], IAP-based models have the highly desirable properties of 
allowing parallel execution of non-deterministic goals and offering perfor­
mance improvements through the use of parallelism while at the same time 
preserving the conventional "don't know" semantics of logic programs.3 In 
addition, other properties were shown in [10] regarding the computational 
complexity of IAP execution when compared with that of sequential execu­
tion, i.e. with the complexity which is expected by the programmer when 
writing the program. However, only results for the case when no goal fail-
ure occurs were presented. Also in [10], the conventional notion of goal 
independence (Strict Independence -SI) is extended by defining a notion of 
Non-Strict Independence (NSI) which allowed the execution of more goals 
in parallel than SI. However the notion of NSI given is somewhat restricted. 
Furthermore, no practical examples of the benefits attainable through NSI 
were given. 

This paper pursues further the subjects of extending the applicability of 
IAP and studying its properties. New, sepárate definitions of NSI are pro­
posed for the cases where the goals involved are puré or non-pure. Both of 
these definitions represent relaxations of the one presented in [10]. In addi­
tion, the t reatment of the efficiency of the parallel execution of SI and NSI 
goals is completed by providing results for the different cases when goal fail-
ure occurs. Without loss of generality, and for reasons of conciseness, only 
the case of NSI is treated in this paper: the results are directly applicable 
to SI, since NSI subsumes SI. Finally, some practical examples of the appli-
cation of the NSIAP concept to the parallelization of a set of programs are 
presented and performance results from the execution of the NSI-annotated 
programs on an actual parallel system are given which illustrate the ad-
vantages of using NSI. A particular case of NSI was hinted at by DeGroot 
[7] and Chang [5] in the "qsort" example. The MA3 system, presented in 
[18], incorporated an earlier concept of NSI. Some of the problems that our 
definition of NSI tries to characterize and avoid have also been informally 
discussed by Winsborough and Waern in [20]. 

This paper is written in the spirit of an extended abstract, with the 
objective of providing more intuition into the proposed concepts. Formal 
descriptions and complete proofs are given in [11]. The rest of the paper pro-
ceeds as follows: Section 2 illustrates the correctness and complexity issues 
involved in running independently in parallel goals which share variables. 
Based on these considerations, Section 3 gives the definition of non-strict 
independence for puré goals, while Section 4 gives the equivalent definition 

3This property also holds trivially in OR-parallel models - see [17] and its references-, 
and in the Andorra model [4]. In the Andorra model described in [4], though, only deter-
ministic goals are allowed to execute in (dependent) and-parallel. The concepts presented 
in this paper are of direct applicability to the inclusión of generalized forms of IAP into 
an Andorra-like framework (such as in "Kernel Andorra Prolog"). 



for any combination of puré and impure goals. Section 5 then compares 
the parallel and sequential proof length for the class of goals we consider. 
Finally, Section 6 presents some results from a practical application of non-
strict independence to the parallelization of a logic versión of a subset of 
the B-M theorem prover showing actual performance data on the &-Prolog 
parallel system, and Section 7 summarizes the contributions of the paper. 

2 Independent Parallel Execution of Goals 

We now introduce a new execution framework, which is similar to the usual 
sequential one in logic programming (i.e. tha t one of SLD-resolution), but 
where some of the goals can be independently run in parallel. Although such 
a framework is not the most general one for describing and-parallel execution 
of goals, since only independent executions are handled, it is sufficient for our 
purposes: in in this paper we are mostly interested in describing properties 
of models which run goals in parallel independently.4 Throughout the paper, 
the notation used follows that of Lloyd [16] and Apt [2, 1]. 

The presentation in this section will be rather informal: its purpose is to 
provide intuition for the reading of the following, more formal, sections. In 
this spirit, we describe the intuitive idea in the model considered as follows: 
partition the given resolvent so as to obtain some new parallel resolvents 
and a remaining ("continuation") part , execute the parallel resolvents, and 
then embed the information gathered from such execution into the remaining 
part . There are two main changes with respect to the sequential framework: 

• the usual sequential SLD-resolution proof procedure at each step se-
lects only one goal in the current resolvent. Obviously, if we want to 
run some of the goals in this resolvent in parallel we have to allow the 
selection of more than one goal. 

• while in the sequential framework the result of the execution of one 
of the goals is made visible to the other goals by the usual notion 
of composition of substitutions, such a notion is not sufficient to ex-
press the combination of the results of the parallel execution of two or 
more goals. Thus we need to treat the case of parallel composition of 
substitution specially. 

Let us explain more precisely the two frameworks. Assume G = 
(<7i,... ,gn)9 is the current resolvent. The sequential SLD-resolution proof 
procedure with left-to-right selection rule would 

• execute g\9 obtaining the answer substitution 9\, 

• execute giQQ\, obtaining 02, 

4Other execution frameworks, which allow parallel executions to affect each other and 
more flexible synchronization of goals, can be considered as well, and their combination 
with the one described here leads to a most general framework. However, this subject is 
beyond the scope of this paper. 



• execute g^99\92, obtaining #3, 

and so on until the execution of all the goals in G. 
In this framework the composition of substitutions is formally defined 

as follows (see [1]): consider two substitutions 9 = { z i / í i , . . . ,xn/tn} and 
*7 = {yi/ s i> • • • ,ym/sm}- Their composition 9r¡ is obtained by 

1. constructing the set {xi/tir),..., xn/tnr¡,y1/s1,..., ym/sm}, 

2. deleting the pairs x¿/í¿ such that x¿ = í¿, and 

3. deleting the pairs yi/si such that y¿ £ {x\,... ,xn}. 

If, on the contrary, we want to run some of the goals in parallel, say 
<7¿ and g¡ (the extensión to more than two goals is straightforward), one 
possible execution scheme for G could be the following: 

• partition G into the resolvents 

- Gi = {9i)0, 

~G2 = (gj)9, 

- Gz = (fifi, •• • ,0,-_i ,0,-+ i , . . . ,gj-!,gj+1,... ,gn)0, 

• execute G\ and G2 in parallel obtaining the answer substitutions 9\ 
and 92, 

• apply the "composition" of 9\ and 92 to G3, 

• execute G3. 

Our goal is, within the execution model presented, to run in parallel as 
many goals as possible while maintaining correctness and efficiency. In other 
words, we assume that the semantics described by using a sequential execu­
tion (with a left-to-right selection rule) corresponds to the intended model 
of the program. Thus we would like to preserve such semantics. This means 
that given a goal G, of which we know the result of its sequential execu­
tion, and the time complexity to obtain it, we would like to execute some of 
the goals in G in parallel obtaining the same answer as before possibly in a 
shorter time. Note, however, tha t using the described standard composition 
of substitutions in the last step above can lead to incorrect results, as shown 
by the following example. Consider the resolvent 
: -p(x),q(x). 

and the following definition of p and q: 
p(a). 
q(b). 

In this case, the sequential execution framework first executes p(x), re­
turning {x/a} and the new resolvent : — q(x){x/a}, i.e. : — q(a), whose 
execution fails, thus making the whole given resolvent fail. On the other 
hand, the parallel execution framework executes in parallel p(x) and q(x), 
returning {x/a} and {x/b} respectively. Note now that the composition of 



{x/a} and {x/b} is, according to the above definition, the substitution {x/a} 
(the pair x/b being deleted by means of step 3). Thus we obtain a different 
answer. 

In this simple example it is easy to realize that the problem is due to 
the sharing of the variable x which both the p and q goals try to instantiate. 
However, incorrect answers can be obtained even when there is no conñicting 
binding for the shared variables. Let us consider the following example, 
where we have the resolvent 

: -p{x,y),q{y) 
and the following definitions of p and q: 
p{z,z). 
q(a). 
If we run p(x, y) and q(y) sequentially, we first execute p(x, y) returning 
9p = {x/z,y/z}, and then we execute q(y)9p, i.e q(z), returning 9' = {z/a}. 
Thus, in the end, we obtain the substitution 9 = 9p9' = {x/a,y/a,z/a}. If 
we now execute p(x, y) and q(y) in parallel, we obtain 9P from the execution 
of p(x,y), and 9q = {y/a) from the execution of q(y), thus ending with their 
composition 9p9q = {x/z,y/z} or 9q9p = {y/a,x/z} as final substitution, 
that is obviously different from the 9 obtained from the sequential execution, 
and thus again an incorrect result. 

One possible way to avoid the possibility of the parallel execution re­
turning different answers from the sequential one might be to change the 
definition of composition of substitutions to be used when composing the 
results of parallel execution. More precisely, the new definition could be 
recursively defined as follows: 

1. construct the set {xi/tir),..., xn/tnr), y1/s1,... ,ym/sm}, 

2. delete the pairs x¿/í¿ such that x¿ = í¿, and 

3. delete the pairs yj/sj such that yj = x¿ and compose with the mgu of 
ti and Sj. 

In the first of the above examples, this new definition would fail in com-
puting the composition of {x/a} and {x/b}, because there is no mgu for a 
and b. Thus the results of the sequential and the parallel execution would 
be the same. 

In the second example, the composition of {x/z, y/z} and {y/a} would 
be computed, according to the new definition, to be ({x/z, y/z, y /a} — {y/a}) 
composed with the mgu of z and a, which is {z/a}, thus obtaining {x/z, y/z} 
composed with {z/a}, which is {x/a, y/a, z/a}. Thus again the answer sub­
stitutions of the sequential and the parallel execution coincide. 

It is interesting to note that this new definition of composition reduces 
to the usual one when the goals in the resolvent to be run in parallel do not 
share any variables. In fact, in this case step 3 of the definition (which is 
the only different one) will never be applied. 

The new definition of composition of substitutions described appears to 
be useful and appropriate in the context of the parallel execution of goals. 
However, the adoption of a new definition of composition in principie requires 



a revisión of well known results in logic programming, which rely on the 
standard definition. This is beyond the scope of this paper, and we will 
instead adopt a different approach herein: we will transform any set of goals 
to be executed in parallel into one where no variables are shared, in such 
a way that correctness (w.r.t. the given resolvent) is preserved, generality 
is not sacrified, and the usual definition of composition, with all the well-
known results which follow from it, can be used. The transformation has the 
added advantage that it allows other simplifications at the implementation 
level since the standard variable representation mechanism can be used. 

The transformation that we consider involves eliminating any shared 
variables in goals which are to be executed in parallel by renaming all their 
occurrences so that no two occurrences in different goals have the same ñame, 
and adding some unification goals to reestablish the lost links. Since the 
sharing of variables is eliminated, now the standard definition of composition 
of substitutions can be used. As an example, given the resolvent 
: -p(x),q(x). 
we would obtain the new resolvent 
: -p(x),q(x'),x = x'. 
The idea is that we want different occurrences of x in different goals to have 
different ñames. These goals of the form x' = x are called "back-binding" 
goals, and are related to the back-unification goals defined in [14], and the 
closed environment concept of [6]. Now p and q do not share any variables 
in the new resolvent. Thus we can compose their answer substitution by 
using the usual notion of composition. Also, note that the new resolvent is 
trivially equivalent (in terms of possible answers) to the given one since the 
unification goals simply explicitate some bindings. 

Let us consider again the two examples above. In the first one, after the 
transformation we would have 
: -p(x),q(x'),x = x'. 
p(a). 
q(b). 

Thus the parallel execution of p and q produces {x/a} and {x'/b}, whose 
composition is (usual definition) {x/a,x'/&}. After tha t , we are left with 
the resolvent : — [x = x'){x/a, x'/b}, i.e. : —a = b, which fails, as in the 
sequential execution. 

For the other example, we have: 

: -p{x,y),q{y'),y = y' 
p{z,z). 
q(a). 

Here the the parallel execution of p and q produces {x/z, y/z} and {y'/a}, 
whose composition is (usual definition) {x/z,y/z, y'/a}. After that , we ex-
ecute the resolvent : —(y = y'){x/z,y/z,y'/a), i.e. : —[z = a), which 
returns {z/a}. Thus the final answer substitution is the composition of 
{x/z,y/z, y'/a} and {z/a}, i.e. {x/a, y/a,y'/a,z/a}, which coincides with 
the answer substitution obtained by the sequential execution (if projected 
on the same variables). 

Thus, for the rest of this paper, we will use the above described renam-



ing technique whenever we want to execute in parallel goals which share 
variables. The parallel execution framework proposed at the beginning of 
this section is now transformed as follows: assume G = (gi,... ,gn), suppose 
that we want to execute in parallel <7¿ and gj, that the renamed versión of 
these two goals is g\ and g'- respectively, and that the new collection of goals 
generated by the renaming is R. Thus: 

• consider the resolvents 

" <?i = {9i)0, 

-G2 = (gl¡)9, 

— Gs = RO, 

— G4 = (gi,.. .,gi-i,gi+i,.. .,gj-i,gj+í,.. .,gn)0, 

• and the steps: 

— execute G\ and G2 in parallel obtaining the answer substitutions 
9\ and 92, 

— execute G^9\92 obtaining #3, 

— execute G±9z-

Such new parallel scheme is obviously correct, for puré goals, w.r.t. the 
sequential one, due to the equivalence of the resolvent after the renaming, 
and to the use of standard composition of substitutions. However, programs 
in practice often contain extra-logical predicates and this causes additional 
problems. Two extra-logical predicates of interest are var/1 and ! (cut). 
Consider the following example: 
: -p(x),q(x). 
p(a). 
q(y) : -var(y),\,y = b. 
q(a). 
The proposed renaming of the resolvent would result in 
: -p(x),q(x'),x = x'. 
and the parallel execution would fail while the sequential execution would 
succeed with {x/a}. This is a consequence of the fact that the switching 
lemma ([16]) doesn't hold for goals which are impure. The implication of this 
in our context is that if there are impure goals in the program not all goals 
can be parallelized while maintaining correctness in terms of equivalence of 
solutions with sequential execution. Thus, in this case some conditions on 
the classes of goals which can be parallelized need to be enforced. Sufficient 
conditions are presented in section 4. 

Having dealt with the issue of correctness of results a remaining issue is 
the convenience of parallel execution in terms of efficiency. In fact, the par­
allel execution (according to our model) of any set of goals could (although 
being correct) result in an increase of the execution time, thus defeating the 
very aim of parallel computation. 



Consider the following example: 
: -p(x),q(x). 
p(a). 
q{b) : —proc. 
where proc is very costly to execute. 
The renamed resolvent is: 
: — p(x),q(x'),x = x'. Both the sequential and the parallel execution fail. 
However, the sequential execution executes p(x) returning {x/a}, and then 
fails in trying to match q(x){x/a}, i.e. q(a), to any rule head, thus never 
going into the execution of proc. On the contrary, the parallel execution 
executes in parallel p(x) and q(x') returning {x/a} and {x'/b} (but only 
after executing proc too), and then fails in the execution of the goal x = 
x'{x/a}{x'/£>}, i.e a = b. Thus the sequential execution is obviously much 
more efficient. 

The cause of such a problem in this example, and also in general, is tha t 
the execution of p affects the execution of q in the sequential framework, thus 
restricting the search space of q. As mentioned before, our parallel frame­
work does not allow parallel executions to affect each other, so the search 
space of q is bigger. A solution to this efficiency problem is to parallelize 
only goals which do not restrict each other's search space in the sequential 
execution. 

In this example, the restriction of the search space of q is due to the 
instantiation of a shared variable (x) by p. However, this is not the only 
way to restrict a search space. In fact, aliasing of shared variables that are 
going to be instantiated by more than one goal can achieve the same effect. 
Consider the following example: 

: -p{x,y),q{x),r{y)-
p{z,z). 
q(a). 
r(b) : —proc. 
where again proc is very costly to execute. Similarly, the sequential execution 
first executes p(x, y) returning {x/z,y/z}, then q(z) returning {z/a} and 
then fails in trying to match r(a). The parallel execution on the contrary 
first executes in parallel p(x,y), q(x') and r(y ') . Thus r(y') can match with 
r(b) and this leads to the execution of proc. This means that , if we want to 
be at least as efficient as the sequential execution, we have to eliminate this 
last situation as well. 

Thus a general solution to solve both the above described problems (con-
cerning the restriction of the search space) is to run in our parallel framework 
only those sets of goals where 

• either there are no shared variables, or 

• no shared variable is instantiated by more than one goal. 

In [10], the first situation is named "strict independence", while the 
second one is a special case of the concept of "non-strict independence" 
(restricted to puré goals). 



In the following section, we will formalize the considerations of this sec-
tion into the concept of "non-strict independence" both for puré and impure 
goals, proving the sufficiency of such concepts for the correctness and effi-
ciency of the parallel execution of non-strictly independent goals. 

3 Non-Strict Goal Independence for Puré Goals 

As mentioned before our goal is, within the execution model under con­
sideraron, to run in parallel as many goals as possible while maintaining 
correctness and efficiency. However, given a general goal, the sequential and 
parallel execution frameworks described in the previous section do not nec-
essarily return the same answer, ñor are they proved to have the same time 
complexity. Thus our aim is to define a restricted class of goals for which 
such properties (correctness and efficiency) can be proved to be preserved 
in the case of parallel execution. This is the purpose of the following defini-
tions, which describe a class of puré goals whose parallel execution is always 
correct and efficient. 

Defini t ion 1 (v- a n d nv-binding) : A hinding x/t is called a v-hinding 
if t is a variable, otherwise it is called an nv-binding.^ 

Defini t ion 2 (non-strict independence for puré goals) : Consider a 
collection of puré goals g\,... ,gn and a given substitution 9. Consider also 
the set of shared variables SH = {v | 3i,j, 1 < i,j < n,i ^ j,v £ (uar(<7¿0) n 
var(gj0))} and the set of goals containing each shared variable G{y) = {gi | 
v £ var(gi0),v £ SH}. Let OÍ be the answer substitution for giO. The given 
collection of puré goals is non-strictly independent for 9 if the following two 
conditions are satisfied: 

• for all v £ SH, at most one g £ G{y) nv-binds v; 

• Vi = l,...,n, if var(gi0) contains more than one shared variable, say 
xi,... ,Xk, then x\9i,... ,XkOi are strictly independent.^ 

The first condition of the above definition requires that at most one goal 
further instantiates a shared variable, while the second one takes care of the 
aliasing problem discussed in the previous section. 

Note that the situation where the given set of goals does not contain 
any shared variable (called "strict independence" in [10]) is a special case of 
the above definition for puré goals. Note also that the above definition of 
non-strict independence for puré goals is needed only for efficiency purposes. 
In fact, the parallel execution of any set of puré goals in our framework is 
always correct, as mentioned in the previous section. 

In our framework, the resolvent is not renamed if the puré goals do not 
share any variable. Otherwise (if the puré goals share variables but they are 
non-strictly independent), the renaming technique described in the previous 
section is applied. In both cases, we end up with the parallel execution of a 
set of puré goals without shared variables, followed by the execution of all 



the goals added by the renaming, which always succeed. In fact, they are 
goals of the form x = x' where only one of x and x' can be instantiated, due 
to the given definition. 

We will later discuss the complexity of the parallel execution of a set of 
puré goals without shared variables w.r.t. to their sequential one. But first 
we need to consider the situations where puré as well as impure goals can 
occur. 

4 Non-Strict Goal Independence for General 
Goals 

Defini t ion 3 (non-strict independence) : Consider any collection of 
puré and/or impure goals gi,...,gn

 and a given substitution 9. Consider 
also the set of shared variables SH = {v \ 3i,j,l < i,j < n,i ^ j,v G 
(var(gi0) n var(gj0))} and the set of goals containing each shared variable 
G{y) = {gi | v £ var(gi0), v £ S H}. Let OÍ be the answer substitution for giO. 
The given collection of goals is non-strictly independent for 9 if the following 
two conditions are satisfied: 

• for all v £ SH, at most the rightmost impure g £ G{y), say gi, or only 
one puré g £ G{y) to the right of g¿ nv-binds v; 

• Vi = l,...,n, if var(gi0) contains more than one shared variable, say 
xi,... ,Xk, then x\9i,... ,XkOi are strictly independent.^ 

The difference between this definition of non-strict independence and 
that one for only puré goals is that here not only is only one goal allowed 
to instantiate a shared variable, but this goal must be the rightmost impure 
goal, or a goal to the right of that . The choice of the rightmost impure goal is 
not arbitrary, but it is necessary to be able to obtain the same semantics as 
the sequential execution framework, i.e. of SLD-resolution with left-to-right 
selection rule. In particular, such selection rule is the one that plays the 
most important role in this choice. In fact, the execution of an impure goal 
could obtain different answers if the goal is executed with less instantiated 
arguments. Thus, if there is any goal to the left of an impure goal which 
affects its execution in the sequential framework (by instantiating a variable), 
we should reflect this behaviour in the parallel execution as well. But because 
our parallel framework does not allow communication between different goals 
executed in parallel, we have to avoid this case by sequentializing such goals. 
The proof of the correctness of executing in parallel goals satisfying the above 
definition can be found in [10]. 

Again, given a set of (puré and possibly impure) goals, either they do 
not share variables, or they do but we rename them so that we obtain a 
new set of goals without shared variables (to be executed in parallel), plus 
a set of new goals describing the renaming. For the same reason as before, 
such goals always succeed and collectively involve only one resolution step, 
so we can consider them irrelevant to the study of the complexity of the 



parallel execution w.r.t. the sequential one. It is important to point out 
that , although the renaming has been described as done at run-time on the 
resolvent, it is possible in many cases to do this renaming and part of the 
detection of NSI at compile-time. Some techniques for doing this can be 
foundin [10]. 

5 Complexity results: parallel vs. sequential ex­
ecution 

As noted above, we only need to study the execution of a set of goals with-
out shared variables. We will here consider only two goals, g\ and g2, the 
generalization to any number of goals being straightforward. 

Let us cali Ws (resp. Wp) the work involved in the sequential (resp. 
parallel) execution, and Ts (resp. Tp) the time of such execution. In the fol-
lowing we will express them always as a function of the number of execution 
steps in the goals, i.e. k\ and k2. 

First we consider the case where no goal fails. For the sequential execu­
tion, we have: 

• Ws = k\ + k2
 a n d 

• Ts = kx + k2. 

For the parallel execution we have: 

• Wp = k\ + k2,
 a n d 

• Tp = max{ki,k2). 

Thus Wp = Ws and Tp < Ts, i.e. the amount of work to be done is the same, 
but the execution time is always less. 

Let us consider now the situation where one of the two goals fails. Here 
there are two different cases, the first one being the failure of the rightmost 
goal (i.e. 32) a n ( i the other one being the failure of the leftmost one (i.e. gi). 

In the first case, the sequential execution with the left-to-right selection 
rule entirely (and unnecessarily) executes g\ and then g2 until its failure. On 
the contrary, assuming the possibility of communication of failure between 
processors ([13]), the parallel execution executes g\ and g2 contemporarely 
until the failure of g2. More precisely, we have: 

• Ws = ki + k2, 

• Ts = kl + k2, 

• Wp = k\ + k2 iff k\ < k2, and Wp = 2k2 iff k2 < ki, and 

• Tp = k2. 



Note that in this case 2&2 < &i + &2; thus Wp < Ws and Tp < Ts, which is 
an even better situation w.r.t. the non-failure case, because not only is the 
time shorter, but the work can be less as well. 

The final case concerns the failure of the leftmost goal. Here the sequen­
tial execution, because of the left-to-right selection rule, is able to stop with 
the failure of g\ without executing g2, while the parallel one executes both 
goals until the failure of g\, thus doing part (or all) of the useless execution 
of <72- More precisely, we have: 

• Wa = ku 

• Ts = h, 

• Wp = ki + &2 iff &2 < ki, and Wp = 2&i iff k\ < fo), and 

• Tp = k1. 

Thus Wp > Ws and Tp = Ts, i.e. the work can be more but the execution 
time is always the same. 

In a practical implementation this is only true, of course, if the par-
allelism overhead is sufficiently low. However, low overhead appears to be 
attainable in most cases as demonstrated by systems such as &-Prolog/RAP-
WAM [12, 8] and APEX [15]. It is also important to note that the results 
presented assume a "left biased" scheduling strategy. i.e. one which guar-
antees that the goals to the left in syntactic order are selected for execution 
first (this is the case, for example, in the RAP-WAM). 

In summary, in absence of failure, or failure of the rightmost goal, the 
parallel execution shows great advantage. Even in the worst case of failure of 
the leftmost goal, the execution execution time can never be longer, although 
some more work could be done. Thus, depending on resource availability, 
it may be preferable to run in parallel goals that do not fall in the latter 
situation. This can often be determined at compile time if global analysis of 
the program is allowed. 

It is important to note that the above results hold for finite failures only. 
In case of infinite failure of the sequential execution, it is possible for the 
parallel execution to finitely fail. Thus the finite failure set of the parallel 
execution model could be larger than the one for the sequential model. As 
an example, let us consider the goal : — p(x),q(y). 
and the program 
p(x) : -p{x). 
In this case, the sequential execution would infinitely fail in the execution of 
p(x), while the parallel execution would finitely fail due to the finite failure 
ofq(y). 

However, it is even more important to note that finite failures of the 
sequential execution can never be transformed into infinite failures in the 
parallel framework. Thus the infinite failure set is never enlarged by execut­
ing in parallel some of the goals. 
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Figure 1: Speedup for boye r (2 ) - strict vs. non-strict independence 

Nproc 
1 
2 
4 
8 
10 

seq 
6338 (6179 + 159) 
6339 (6179 + 160) 
6339 (6179 + 160) 
6339 (6179 + 160) 
6339 (6179 + 160) 

si 
6338 (6179 + 159) 
6269 (6179 + 90) 
6238 (6169 + 69) 
6228 (6169 + 59) 
6228 (6169 + 59) 

nsi 
8479 (8320 + 159) 
4479 (4389 + 90) 
2488 (2419 + 69) 
2029 (1970 + 59) 
1838 (1779 + 59) 

Table 1: Execution Time, b o y e r . p l ( r e w r i t e + prove) on Sequent Balance: 
1-10 Processors, sequential vs. strict indep. vs. non-strict indep. 

6 Using Non-Strict Independence in Practice 

In this section we present actual run-times from the result of parallelizing 
a relatively large benchmark (boyer, a reduced versión of the B-M theorem 
prover written by Evan Tick) using both strict- and non-strict indepen­
dence. This benchmark proves theorems in basically two steps: a rewriting 
step ("rewrite," which comprises most of the computation) and a tautology 
checking step ("prove"). Table 1 gives execution times for the benchmark 
running on the unoptimized versión of the &-Prolog system [9], using 1-10 
Sequent Balance processors, for the original, sequential program and for the 
cases in which the program has been parallelized using either strict- or non-
strict independence. The results for the whole benchmark are represented 
in speedup form in figure 1. It can be observed that while no useful speedup 
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Figure 2: Speedup for 
strict independence 

'rewrite" and "prove" of b o y e r ( 2 ) - strict vs. non-

can be obtained by using strict independence, reasonable speedups5 can be 
obtained using the non-strict independence notion. It is interesting to ob­
serve, as shown in figure 2, tha t strict-independence is relatively successful 
at parallelizing the "prove" part of the algorithm. On the other hand it 
is unsuccessful at parallelizing the "rewrite" part , while non-strict indepen­
dence parallelizes both. The fact tha t , as can be seen in table 1, "rewrite" 
represents the bulk of the computation, explains why, despite parallelizing 
the "prove" part correctly, no significant speedup is observed for non-strict 
independence in the whole benchmark. 

7 Conclusions 
Having presented a framework for the independent and-parallel execution 
of goals, we discussed the problems concerning the correctness and the ef-
ficiency of running goals using such framework. In particular, we showed 
that the traditional composition of substitutions cannot be used in such a 
framework, and proposed two solutions: using a new definition of compo­
sition, which we obtained as an extensión of the oíd one, or performing a 
renaming of the goals and using the traditional composition. Based on such 
discussion, we proposed two restrictions to the classes of goals that can be 
executed in parallel while preserving correctness and the efficiency of the 
sequential execution for the cases of only puré goals or a mixture of puré 
and impure goals. 

5This speedup can be made arbitrarily large by using appropriate data. In this case a 
theorem requiring a relatively small proof was used. 
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Also, efficiency results were provided for the parallel execution of goals 
in the proposed classes, which included treatment of the case of goal failure. 
We showed that not only is reduction of execution time guaranteed (modulo 
run-time overheads) in the absence of failure but also that in the worst case 
of failure no speed-down occurs. Finally, we showed actual performance 
results from the parallel execution of the non-strictly independent goals in 
a logic program versión of the Boyer-Moore theorem prover. These results 
show that significant additional speedup can be obtained through the use of 
non-strict independence. 
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