
Teaching How to Derive Correct Concurrent Programs
from State-Based Specifications and Code Patterns�

Manuel Carro, Julio Mariño, Ángel Herranz, and Juan José Moreno-Navarro

Facultad de Informática
Universidad Politécnica de Madrid

28660 Boadilla del Monte, Madrid, SPAIN
{mcarro,jmarino,aherranz,jjmoreno}@fi.upm.es

Abstract. The fun of teaching and learning concurrent programming is some-
times darkened by the difficulty in getting concurrent programs to work right. In
line with other programming subjects in our department, we advocate the use of
formal specifications to state clearly how a concurrent program must behave, to
reason about this behavior, and to be able to produce code from specifications
in a semi-automatic fashion. We argue that a mild form of specification not
only makes it possible to get programs running easier, but it also introduces
students to a quite systematic way of approaching programming: reading and
understanding specifications is seen as an unavoidable step in the programming
process, as they are really the only place where the expected conduct of the
system is described. By using formal techniques in these cases, where they are
undoubtedly appropriate, we introduce formality without the need to resort to
justifications with artificial or overly complicated examples.

Keywords: Concurrent Programming, Formal Specification, Code Generation,
Safety, Liveness, Ada.

1 Introduction

At the Universidad Politécnica de Madrid (UPM), the intents of introducing rigorous
development methods into mainstream Computer Science takes place in two fronts. In
the research front, several groups work in the application of logic to the development of
safe software through the design and implementation of multiparadigm programming
languages such as Ciao [9] or Curry [6], or environments for the development of in-
dustrial software around formal specifications, such as SLAM [10]. But we have also a
strong commitment on the academic front. In 1996, with the introduction of the current
curriculum, programming courses were completely redesigned and formal specifications
made an early appearance at the first year — understanding the problem at hand and
devising a solution was given the same importance as the sheer fact of coding it.

� This research was partly supported by the Spanish MCYT project TIC2002-0055 and by EU
projects FET IST-2001-33123 and FET IST-2001-38059.

C.N. Dean and R.T. Boute (Eds.): TFM 2004, LNCS 3294, pp. 85–106, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

86 M. Carro et al.

Teaching Programming and the Use of Formal Methods. Classic approaches to
programming courses in computing curricula tend to be language centered: learning is
to some extent driven by the features available in some (often imperative) programming
language (Ada, C, C++, Java. . .), and programming techniques follow from them. The
typical argument is that students get a better motivation by having a hands-on experience
as soon as possible. While this is true to some extent, there are also some problems. As
the number of imperative constructions in many programming languages is large, they
are usually presented in an informal manner and the corresponding classroom examples
are just designed to practice the last piece of syntax. In most cases, students do not need
to know all the idioms provided by a given programming language, and their use tends
to obscure, rather than to illuminate, the principles behind algorithms, data, and program
structures.

In this model, formal methods appear just as an a posteriori evaluation tool. Stu-
dents have problems trying to interleave the program development process with these
techniques, which are perceived as complicate, boring and useless. For instance, formal
verification is introduced when the student is able to develop complex problems (e.g.
a phone agenda), but it is used for almost toy examples (e.g. at most a QuickSort is
verified). This is clearly disappointing.

We advocate an approach to the teaching of programming where a rigorous process
is used from the very beginning as a design and development tool. But students will
perceive these techniques as useful, and not as a necessary evil, only if a systematic
way of developing programs is provided. The starting point is problem specification. A
formal specification language is introduced in the first year. This language uses pre/post-
condition pairs for describing the relationship between the input and output of every op-
eration, using a language heavily based on first-order logic. We distinguish between raw
specifications (with a distant connection to implementation) and solved specifications,
refined in such a way that some generic method can be used to obtain a prototypical
code from them. Most of the specification in the concurrent programming course can be
considered in solved form, as an algorithm can be easily read in them.

Types are also introduced from the very beginning, as we consider modeling an
essential activity of software development.1 A basic toolkit and the ability to introduce
new types suited to specific problems are also built into the specification language. In the
second year the specification notation is extended to abstract data types and classes in
order to cover the programming-in-the-large phase. Finally, in the third year the notation
is further extended with annotations for concurrency.

We have been using a functional language (Haskell) as first target language, which
allows our students to get familiar with programming and rigorous development more
rapidly — and having more fun. Nevertheless, the use of a functional language is not
compulsory, as the way to obtain imperative code from solutions is almost as easy as in
the declarative case. In fact, at the end of the first semester imperative programming is
introduced and Ada 95 [19] is used in most of the following courses.

All these ideas have been applied at our department over the last seven years, with
satisfying results:

1 By the way, something usually ignored even in textbooks where formal methods are used.

Teaching How to Derive Correct Concurrent Programs 87

– Students attack problems from a systematic point of view, leaving eureka steps as a
last resort.

– Students understand and acknowledge the role of a rigorous, careful methodology
in the programming process.

– The average of marks is better, which (modulo interferences inherent to the teaching
and examination process) makes it reasonable to think that more students are able
to develop computer programs with a satisfactory degree of correctness.

– The knowledge of students seems to be more solid, as per the opinion of our col-
leagues from other subjects (Software Engineering, Databases, Artificial Intelli-
gence, etc.).

Organization of the Paper. Next section discusses issues specific to teaching concur-
rency in the CS curriculum and how formal methods can be an improvement. Section 3
introduces the notation used to specify shared resources in an architecture-independent
way. Section 4 (resp. 5) deals with the derivation of correct concurrent programs for the
shared-memory (resp. message-passing) setting, starting from a shared resource specifi-
cation. Section 6 discusses some related work in this area, and finally Sect. 7 summarizes
successful aspects of our experience and points out shortcomings and possible improve-
ments of this approach.

2 Teaching Concurrent Programming

Concurrent programming is not a prevalent topic in undergraduate curricula [7]. When
it appears in a curriculum, it is usually approached from the perspective of teaching con-
currency concepts and mechanisms, and seldom from the problem-solving perspective.
Very often, known solutions for known problems are described, but not how solutions
for new problems can be devised, which is left to the intuition of the students. This is
aggravated by the inclusion of concurrency as part of subjects whose core belongs to
operating systems and/or architecture,2 and then concurrent programming has to serve
the aims of the main subject. Sadly, this neglects the role of concurrency as a key aspect
for the overall quality of almost every serious piece of software today – not just systems
software – addressing issues such as usability, efficiency, dependability, etc.

For our students, concurrent programming is both an opportunity of having more
fun – programs are suddenly interactive, and a new dimension appears: time – but
also a challenging activity, as reasoning on the correctness (both partial and total) of
a concurrent program may be rather involved. Discovering that previous ideas on how
to debug a program are of little help when your application deadlocks or shows an
unpredictable (and irreproducible) or unexpected behavior comes as a shock.

These difficulties make this subject an ideal vehicle for convincing students of the
benefits of using methods which emphasize rigor in the development of high integrity
software. In fact, years before 1996, concurrent programming was already the more logic-
biased of our courses, and some kind of logic tables were used to aid the development of

2 Even the Computing Curricula 2001 for Computer Science [16] includes concurrency into the
operating systems area.

88 M. Carro et al.

code for monitors. It took several years, however, to evolve these tables into a language
for the specification of shared resources, separate the static and dynamic components of
concurrent systems, and devise a development methodology.

There is a wealth of teaching material on concurrent languages and concepts that
many authors have developed for years, and improving it is not an easy task. Therefore we
do use introductory documentation on basic concepts [2,1] and on systems and language
extensions. We try to make students aware of this material by devoting a sizable amount
of time (the concurrent programming course spans over a semester) to going over it and
classifying different language proposals in a taxonomy, while giving hints on how to
adapt the development method we teach to languages other than Ada 95.3 When dealing
with, e.g., semaphores, this gives also precious insights about how compilers generate
code for high-level concurrency proposals, but without the burden of having to deal with
the whole compilation process.

After the introduction of these standard contents – properties and risks of concurrent
programs (mutual exclusion, absence of deadlock, fairness, etc.); classic synchronization
and communication mechanisms (from semaphores to monitors and CSP) – our students
learn a development methodology that can be summarized in the following six stages:

1. Process identification.
2. Identification of inter-process interactions.
3. Defining the control flow of processes.
4. Process interaction definition.
5. Implementation/refinement of process interaction.
6. Analysis of the solution’s properties (correctness, security and liveness).

Obviously, this is an iterative process. The main idea is that steps 1 to 5 should
produce a partially correct solution, i.e. code that meets the safety requirements of the
problem. Moreover, this code is generated in a semi-automatic way from the definition
of interactions (stage no. 4.) Further iterations of stages 5 and 6 should only be used to
enforce liveness and priority properties, or to improve the system’s performance.

The other key idea is that the process is highly independent of the language and archi-
tecture used. This is clearly true of stages 1–4 and, for stage 5, specific code generation
schemes (in our case for Ada 95) are provided, giving support to both shared-memory
mechanisms (protected objects [19, Sect. 9.4]) and message-passing ones (rendez-vous
[19, Sect. 9.7]). Some reasons for using Ada 95 as the development environment are:
most programming courses in our University run with Ada so students do not need to
learn a new language,Ada is not a toy language so serious programs can be implemented,
Ada has mature built-in concurrency constructs (Ada Tasking Model) well suited to the
code synthesis schemes, Ada is a very well designed programming language with high
level abstraction mechanisms, and there are free tools available for several platforms.

Stage 1 (process identification) is done via an informal (but systematic) analysis of
the interactions of the application, and abstract state machines are used in stage 6. We
have left these issues out of the scope of this paper.

3 Or CC-Modula [15], a variant of Modula developed in-house which featured semaphores,
monitors, message passing, and conditional regions, and which was used for several years
before Ada 95 was adopted.

Teaching How to Derive Correct Concurrent Programs 89

CADT Resource Name
OPERATIONS
ACTION Op1: Resource Type[io] × Type1[i] × . . . × Typen[o]
ACTION Op2: Resource Type[io] × Type1[i] × . . . × Typen[o]

...
SEMANTICS

DOMAIN:
TYPE: Resource Type = . . .
INVARIANT:∀r ∈ Resource Type • I(r)

INITIAL(r): A formula on r specifying initial values for the resource

PRE: P (a1, . . . , an)
CPRE: This is an explanation of what the concurrency precondition means
CPRE: C(r, a1, . . . , an)

Op1(r, a1, . . . , an)
POST: This is an explanation of what the postcondition means
POST: Q(r, a1, . . . , an)

...

Fig. 1. Resource specification: a minimal template

One definite advantage of our approach is that it offers a general framework for
analyzing problems where concurrency is mandatory, and a method to detect processes
and resources (i.e., to wrap up the architecture of the system) and to specify and im-
plement the system. Teaching design patterns in a language-independent fashion is also
easier, since there is a language with which these can be expressed. To the best of our
knowledge, the path we follow is novel in an undergraduate curriculum.

3 Notation and Logic Toolkit

We will now introduce shortly the formalism we use. This is necessary as it has been
devised for the subjects taught at (and teaching style of) our institution.Although the core
ideas are basically a simplification of well-known formal methods, such as VDM [14],
some special constructions (regarding, e.g., concurrency) have been added. Following
the classification in [20], our resource specifications are state-based, and this state is
accessed only through a set of public operations. A template of a resource specification
is shown in Fig. 1.

The development methodology we advocate relies strongly on the assumption that the
system to design and implement can be expressed as a collection of processes which in-
teract through shared resources (see Fig. 2) called CADT (for Concurrent Abstract Data
Type) in our notation. Introducing concurrency as an evolution of data types presents
it as a generalization of data abstractions where emphasis is put on the interaction with
the environment instead of on their internal organization and algorithms. As we will see

90 M. Carro et al.

Fig. 2. Typical architecture of a concurrent program

later, it does not matter whether the final implementation is based on shared or distributed
memory, as we have developed code generation schemes for both paradigms.

Unlike other approaches, our specification language does not aim at capturing the
behavior of the processes, which are instead coded directly in the final programming
language (or can even be derived using the methodology for sequential algorithms taught
in other courses, which is out of the scope for this paper). In what follows we will give a
brief account of the main characteristics of the specification language, leaving out some
parts not needed for our purposes in this paper.

We will use as running example the specification and implementation of a multibuffer,
in which processes can store and retrieve items from an encapsulated queue in series
of k elements, instead of just one by one. This example is simple to state, but at the
same time it makes it possible to review quite a few different points: synchronization
which depends on the input parameters, liveness properties which depend both on the
interleaving of calls and on their runtime arguments, and different schedules based on
priority requirements. The lack of need of a partial exclusion protocol, like the one in
the readers/writers problems, is the only relevant missing characteristic.

We want to point out that the method we teach can easily go beyond this example to
small prototypes of train barriers, video broadcast systems, robot interaction in industries,
computer-controlled auctions, and a wide range of other non trivial cases, which we use
as homework assignment and exam problems. See pointers to them at the end of Sect. 7.
We consider that the average difficulty of these problems is high for an undergraduate
course, and they certainly surpass that of the typical (but not less relevant) producers
and consumers.

The specification language is strongly based on first-order logic, which is taught
to most CS students at some point. Using it avoids introducing additional formalisms,
reinforces the use of logic(s), often subject to misconceptions or poorly taught, and
supports their role within computer science and related fields at several levels, from
hardware design to program analysis and development [3].

Teaching How to Derive Correct Concurrent Programs 91

3.1 Public Interface: Actions and Their Signatures

The OPERATIONS section defines the names and signatures of the public operations.
Additionally, the input/output qualification of every argument can be optionally stated
by marking them as i (input, immutable), o (output), or io; see the example below. We
will show in Sect. 3.3 how changes to the arguments are expressed.

Unlike other approaches to specifying resources (e.g., [8]), the state is not directly
available to the body of the specification, but it must be a formal parameter of every
operation. We adopt the convention that this parameter is the leftmost one, and it has
always input/output mode.4

Example: Operation names and signatures in the multibuffer

CADT MultiBuffer

OPERATIONS
ACTION Put: Multi Buffer[io] × Item Seq[i]
ACTION Get: Multi Buffer[io] × Item Seq[o] × N[i]

Note that Put does not receive the number of items to be stored — we assume that we
want to deposit the whole sequence held in the second parameter. Get, on the other hand,
receives the number of items to retrieve, but it could as well have received a sequence
of the appropriate length.

3.2 Domain: Types and Invariants

We chose to have a relatively rich set of initial types which help in modeling different
situations. This makes it possible to have short and understandable specifications, to
factor out well-known issues related to data structures, and to focus on concurrency
matters. We will now describe very briefly the available types and how invariants are
written.

Basic, Algebraic and Complex Types. Basic types include booleans (B), naturals (N),
integers (Z), and real numbers (R).We include also algebraic types to define enumeration,
subranges, products, unions, and constructors. There is also syntax for sequences, sets,
finite mappings, and to assign names to fields of algebraic constructors and components
of product types. The availability of complex types helps to have specifications which
are more readable and closer to what many programmers are used to. Note that many
computer languages do not have builtin types for all of the above. Implementing them
is a matter of another subject which escapes the present piece of work.5

We will here describe sequences very briefly, as they will be used in the rest of
the paper. Sequences are a superset of lists and one-dimensional arrays. They represent

4 We want to remark that this is not a key requirement. Adapting the specification to allow
operations to refer to resource-wide variables does not affect greatly its syntax and semantics.
We prefer, however, to keep it in a non object-oriented state for coherence with other subjects
taught before at our school.

5 But libraries are, of course, acceptable.

92 M. Carro et al.

finite (but with no fixed length) indexed collections of elements. Assuming s1 and s2
are sequences and i, j are integers, operations on sequences include finding their length
(Length(s1)), accessing the i-th element (s1(i)), accessing a subsequence (s1(i..j))
and concatenating two sequences (s1+s2). Sequences are written with their elements
between angle brackets, the empty sequence being 〈〉. A sequence of elements of type
T is declared as Sequence(T).

Invariants. The invariant is a formula which constrains the range of a type, aiming both
at having only meaningful values and at specifying which states the resource must not
evolve into: since the invariant does not have a notion of history, it can be used to state at
most safety properties. The resource specification, and the processes accessing it, must
ensure that banned states cannot be reached. For example, a type definition of a strictly
increasing sequence follows:

TYPE: Increasing = Sequence(N)
INVARIANT:∀s ∈ Increasing •

(l = Length(s)∧(l < 2 ∨ ∀k, 1 ≤ k ≤ l − 1 • s(k) < s(k + 1)))

In the multibuffer example, a possible type definition is the following:

Example: Type definition for the multibuffer

TYPE: Multi Buffer = Sequence(Data)
Item Seq = Multi Buffer

INVARIANT:∀b ∈ Multi Buffer • Length(b) ≤ MAX

Note that the aim of the invariant here is just to set an upper limit to the size of the
multibuffer. We have used the same data structure both for the multibuffer itself and for
the parameters which store the data to be read and written. Since Item Seq is of type
Multi Buffer, it is subject to the same constraints.

3.3 Specifying the Effect of Operations

Preconditions and postconditions are used to describe the changes operations make to
the resource state, and when these operations can proceed. Both are first-order formulas
which involve the resource and the arguments of the operations. For clarity reasons, we
accept also natural language descriptions to back up (but not to replace) the logical ones.

Synchronization. We assume that resource operations proceed in mutual exclusion, but
ensuring this is left to the final implementation, and is fairly easy to do in most languages
(and automatic in Ada 95).

Condition synchronization is taken care of by means of concurrency preconditions
(CPRE), which are evaluated against the state the resource has at the time of performing
the (re)evaluation. A call whose CPRE is evaluated to false will block until a change in
the resource makes it true, i.e., when some other process modifies the resource in the

Teaching How to Derive Correct Concurrent Programs 93

adequate direction. Since our design method assumes that the resource is the only means
of inter-process communication, call parameters cannot be shared among processes (they
should go into the resource in that case). This implies that their value can be changed
only by the process owning them, and they cannot be updated while the call is suspended.
A CPRE must therefore involve always the resource. From all calls to operations whose
CPREs evaluate to true, only one is allowed to proceed. We do not assume any fixed
selection procedure — not even fairness.

CPREs are intended to express safety conditions. Liveness properties might be dealt
with at this level by adding state variables to the resource and enriching the precondi-
tions. However, in most cases this makes specifications harder to read and hides safety
properties. Besides, programming languages often have their own idioms to deal with
liveness. Therefore, and as part of the methodology we teach, studying liveness proper-
ties is delayed until code with provable safety properties has been generated. This study
is made more intuitive (but not less formal) with the help of a graph representing the
states of the resource. From an educational point of view this is in line with a top-down
development which aims at achieving correctness first.

Sequential preconditions (PRE) can be added to the operations. These are not aimed
at producing code; rather, they are required to hold for the operation to be called safely,
and ensuring this is responsibility of the caller. Naturally, PREs should not reference
the state of the resource, or races in its evaluation can appear. Having this distinction
at the level of the specification language makes it clear which conditions stem from
synchronization considerations, and which are necessary for data structure coherence.

Example: Condition synchronization in the multibuffer example

PRE: quant ≤ Length(seq)

CPRE: Length(mbuffer) ≥ quant

Get(mbuffer, seq, quant)

POST: . . .

CPRE: Length(mbuffer + seq) ≤ MAX

Put(mbuffer, seq)

POST: . . .

In this example, the synchronization uses the size of the multibuffer and the amount
of data to be transferred. The Get operation uses the parameter quant to know how
many items are to be withdrawn, and the Put operation uses the length of the sequence
holding the data. Synchronization boils down to making sure that there are enough
empty places/items in the multibuffer — calls to Put/Get would suspend otherwise.
Additionally, the sequence passed to Get as parameter must be large enough to hold the
required number of items; this is expressed by the PRE condition. Failure to meet that
property can certainly cause malfunction.

Updating Resources and Arguments. Changes in the resource and in the actual call
arguments are specified using per-operation postconditions (POST) which relate the
state of the resource (and of the output variables) before and after the call. When POSTs
are executed, the PRE and CPRE of the operation and the invariant are assumed to hold.

94 M. Carro et al.

Values before and after the operation are decorated with the superscripts “in” and “out”,
respectively.6

Example: State update in the multibuffer

We add the lacking postconditions to the previous piece of code:

CPRE: . . .

Get(mbuffer, seq, quant)

POST: mbuffer in =
seqout(1..quant)+mbufferout

CPRE: . . .

Put(mbuffer, seq)

POST: mbufferout =
mbuffer in+seqin

Since we had required that the length of the retrieved sequence be large enough to hold
the number of items required, we just fill in a prefix of that sequence.

3.4 Process Code

The skeletons of two minimal processes (a consumer and a producer) which access
the multibuffer using the shared variable M are shown below. The Data variables are
assumed to be local to each process. When teaching we adopt directly the Ada 95 object
style for task and protected object invocation. This slight syntax change does not surprise
students at all.

Example: Skeletons of processes accessing the multibuffer

3.5 Other Goodies

The initial value of a resource can be expressed using a first-order formula. Specifying
desirable concurrency or a necessary sequentiality among calls to resource operations is
also possible. This is useful to perform a stepwise refinement towards a resource which
does not require partial exclusion, or whose preconditions and postconditions can be
fine tuned so that they do not perform unnecessary checks/suspensions.

4 Deriving Ada 95 Protected Objects

Concurrent programming based on shared memory is done via the protected objects
mechanism of Ada 95. A protected object in Ada 95 is a kind of module (package, in
Ada lingo) that guarantees mutual exclusion of public operations (entries, left column of
Fig. 3). Protected objects can have also private entries which can be invoked only from
inside the code of the same object. We will term them delayed operations because we
will use them to split a public operation into several stages in order to suspend the caller

Teaching How to Derive Correct Concurrent Programs 95

Fig. 3. Scheme of an Ada 95 protected object

task under some synchronization circumstances. They are shown in the right column of
the code in Fig. 3.

Boolean conditions associated to every entry are called guards and are used to im-
plement conditional synchronization. They are said to be open when they evaluate to
true, and closed otherwise. Once a protected type has been defined and implemented,
protected objects (instances of the protected type) can be declared, and operations on
objects are invoked using an object oriented syntax:

PO 1, PO 2 : Protected Type;
PO 1.Public Op i (actual parameters);

4.1 Dynamic Behavior of Protected Objects

This is a partial description of the behavior of a protected object when it has been
invoked. The reader is referred to any of the several good books on Ada (e.g., [4,5]) for
more precise details on protected objects and Ada 95 tasks.

When an operation is invoked on a protected object, the caller task must acquire
exclusive read/write access first, suspending until any task with a lock on the object
relinquishes it. Execution can proceed if the corresponding guard is open; the caller task
is otherwise added to an entry queue and suspended until it is selected (or cancelled).
Mutual exclusion (as it was required by the CADTs) is ensured by the protected object
itself. This relieves the student from repeating once and again the same code pattern to
achieve mutual exclusion, and leaves more time to focus on more complex concurrency
matters.

Although conditional synchronization can often be directly left to the guards of each
(public) entry, Ada 95 states (based on efficiency considerations) that guards can not
refer to formal parameters of the operations, which is a clear handicap when CPREs
depend on them, as in the case of the multibuffer.

6 Although this requirement is sometimes overlooked when the mode declaration in the signature
is enough to disambiguate expressions.

96 M. Carro et al.

Fig. 4. Independence of the input data

Several approaches to overcome this limitation are found in the Ada literature [4],
ranging from having multiple protected objects (when possible) to performing polling
on the variables shared by the CPRE and the entry head. We, however, opt for a less
“clever trick” type of approach which is applicable to any case.7 This, in our opinion,
furnishes the student with a (perhaps not very shiny) armor to fend off problems with,
and which makes the implementation in itself not challenging at all. This leaves more
time to focus on, e.g., design matters, which we have found to be one of the weaker
points of our students.

4.2 Code Schemes for Condition Synchronization

In a first, general approach (see Sect. 4.4 for more interesting cases), each public opera-
tion in the resource is mapped onto a public entry of a protected object and, possibly, on
one or more private entries. Distinguishing those cases is key to achieve a correct code;
however, a syntactic analysis of the resource specification provides a safe approximation.

Synchronization Independent of Input Data. When the CPRE does not depend on the
formal parameters of the operation (in a simplistic approach: when it does not involve
them), the translation is straightforward, as shown in Fig. 4. Note that this is a very
common case, found in many classical concurrency problems.

Note that in Fig. 4 runtime checking is added to the code. Although students are
expected to be able to understand a specification well enough so as to generate correct
code for postconditions and preconditions, we strongly advice to include these extra
checks. They are usually easy to write — easier than crafting an entry body which
implements constructively the postcondition — and they provide an additional support
that the code is indeed correct. In a production stage (e.g., when the homework is handed
in) these checks may be removed.

Remember also that CADTs do not allow to specify side-effects, i.e. change of
state outside the resource or the actual parameters. According to our methodology, these
should be placed in the processes’ code.

Synchronization Dependent on Input Data: Input Driven Approach. When the
CPRE uses formal parameters of the operation, the method we apply to overcome the

7 The witty apprentice can always find in the design process a source of mind challenges.

Teaching How to Derive Correct Concurrent Programs 97

limitations of Ada 95 resorts to using a more involved implementation which saves the
state of the input parameters onto an enlarged object state, or which maps this state onto
a larger program code. Both techniques use delayed entries.

In the latter case, new delayed entries (one for each of the instances of the CPRE
obtained by instantiating the shared variables with all the values in their domain) are
introduced. Let Φ be the formula corresponding to some CPRE, and let us suppose that
Φ depends on the entry parameter a1 : D where D = {x11, . . . , x1n1}. The versions of
Φ induced by the values of a1 are:

Φ[a1 := x11] . . . Φ[a1 := x1n1]

where Φ[a1 := x1i] denotes Φ after substituting a1 for x1i. The process can be repeated
if Φ depends on other parameters a2, . . . , ak (but we will assume that k = 1 and we will
not use subscripts to name the variables). The resulting scheme is shown in Fig. 5. An
advantage of this approach is that parameters do not need to be copied, and that the type
D does not matter — it can therefore be applied, in principle, to any program (when
D is finite). On the other hand, if |D| is large, the number of delayed entries becomes
impractical to be written manually.

Fig. 5. General scheme for parameter-dependent preconditions

Ada 95 has a code replication mechanism, termed entry families [19, Sec. 9.5.2 and
9.5.3] which makes it possible to write code parametric on scalar types (see the example
in Sect. 4.3). While this solution works around replication problems in many cases, it
has also some drawbacks: it cannot be applied to the case of complex or non-scalar
types (e.g., floats), and using it when |D| is very large may lead to low performance.
We therefore recommend using it with care. Possible solutions to this problem are to
abstract large domains, when possible, into a coarser data type (which needs some art
and craft), or resort to solutions based on the Task Driven Approach, explained next.

Synchronization Depends on Input Data: Task Driven Approach. A solution to
avoid a large number of replicated delayed entries is to move the indexing method from
the types of the variables to the domain of tasks accessing the resource. In general, the
number of tasks that may access the resource is smaller than the number of versions

98 M. Carro et al.

Fig. 6. Scheme for the Task Driven approach (using entry families)

Fig. 7. Scheme for the One-at-a-time approach

generated by the input driven approach, and in practice it is usually bound by some
reasonable figure — and the resource can also simply put an upper limit on the number
of requests that can be stored, pending to be reevaluated.

The method consists of introducing a delayed entry per possible process and adding
a new parameter to identify that process. With this approach, at most one process will
be queued in each delayed entry, and the parameters involved in the CPRE can be saved
to the (augmented) resource state, indexed by the task identifier, and checked internally.
If we let PID be the type of task identifiers, the scheme we are proposing appears in
Fig. 6.

Synchronization Depends on Input Data: One-at-a-time. Other techniques can be
applied in order to reduce entry replication: for example, selecting a per-call identifier
from a finite set in the code fragment between the public and the delayed entries, and
assigning it to the call. The guard of the external entry will be closed iff all identifiers
are in use. When this set is reduced to a single element, the resulting code is simple:
arrays are not needed to save input parameters, and entry families are not necessary
either (Fig. 7). Yet, it is able to cope with a wide variety of situations. As entries would
not serve calls until the current suspended one has been finished, we have termed this
scheme the “One-at-a-time” approach. While it restricts concurrency in the resource, the
policy it implements is enough to ensure liveness in many a case.

Teaching How to Derive Correct Concurrent Programs 99

4.3 Code for the Multibuffer Example

We will show here a direct derivation of the resource into protected objects using family
entries indexed by the buffer size, as suggested previously. The specification of the
resource is simple enough as to be mapped straightforwardly ontoAda 95 data structures.
We want to note that this is often the case during the course, and algorithms and data
structures have never been an issue in our experience. Also, in order to appreciate clearly
concurrency issues, data have not been completely represented — we show only the
length of the sequences of data.

Example: Multibuffer as a protected type

4.4 Complex Behavior and Fine Synchronization

In some situations it is impossible to implement a resource by using a straightforward
translation, because mutual exclusion is inappropriate for some problems, or because a
more fine grained control is necessary in order to implement ad-hoc scheduling patterns
aimed at ensuring liveness properties.

Partial Exclusion. A simple design pattern is enough to cope with partial exclusion: the
resource to be programmed has to include operations to signal when execution enters and
exits the partial exclusion zone, similarly to the classical Readers and Writers problem.
The resulting resource features full mutual exclusion, and can be treated as we have seen
so far. The tasks must follow a protocol similar to:

100 M. Carro et al.

Resource Manager : Protected Object;
...
Resource Manager.Init Op X (actual parameters);
<Actual operation on the resource>
Resource Manager.Finish Op X (actual parameters);

The scheme is identical to that used to implement mutual exclusion with semaphores,
and it is subject to the same weaknesses — protocol violation would cause havoc.
Therefore we do require that these operations are wrapped inside procedures (maybe
into a package of their own) which ensures that the protocol is abode by.

Finer Control on Suspensions and Resumptions. Sometimes a fine-grain control is
needed to decide exactly when suspended calls are to be resumed (because of, e.g.,
liveness conditions or performance considerations). Without entering in implementation
details, in our experience, students used to end up mixing safety and liveness conditions
before specifications were used extensively. Now, we expect for them to produce always
safe code first, which as we have seen is easy to derive from the specification, and then
to proceed to refine it in order to meet with efficiency/liveness conditions. In general,
the code is transformed from guards such as

to guards like

which will not violate safety, but in which the set of open guards is reduced. If only
one guard is active at a time, the effect is precisely that of an explicit wakeup, which
mimics the behavior of signals in semaphores or condition variables in the monitors —
and which needs the same implementation techniques.

5 Deriving Message Passing Systems with Rendez-Vous

Rendez-Vous was the mechanism originally proposed for process communication and
synchronization in Ada. It can be seen as a mixture of ideas from CSP and RPC. Ex-
pressiveness and semantics are those of an alt construct in CSP – synchronous com-
munication; alternative, non-deterministic reception – but the syntax is more concise,
resembling that of a remote procedure call.

These procedures are called entries (like in protected objects) and every input param-
eter hides a send from the client to the server, and every output parameter is a message
back from the server to the client. This notation allows to express client-server solutions
in a very elegant manner but, unfortunately, is not expressive enough to capture certain
requirements, which motivated the introduction of protected objects and the requeue
mechanism in Ada 95. Our approach here is to complement the rendez-vous mechanism
with a sporadic use of a home-made implementation of channels and explicit message
passing in order to overcome these limitations, thus obtaining a coherent method for
distributed-memory concurrent applications in Ada.

Teaching How to Derive Correct Concurrent Programs 101

Fig. 8. Declaration of public services of
a task

Fig. 9. Select loop in the body of a task Fig. 10. Main loop for a server

Due to space limitations, and also to emphasize the pedagogical issues rather than
the technical ones, our treatment of this part will be more schematic.8

Using the rendez-vous mechanism, the shared resource will be the property of a server
process which will declare a number of public services to the client processes (Fig. 8).
According to our method, these services will correspond, ideally, to the operations in
the interface of a CADT. Client processes may invoke these operations using a syntax
similar to that of protected objects. The code inside the server task is often a loop in
which the alternative reception of requests takes place via the select construct (Fig. 9).

The semantics of the select is similar to that of the alt construct in CSP/Occam.
Entries whose guards are evaluated to false are discarded. The remaining accept clauses
are the services available, at this moment, to the clients. As in the original CSP proposal
and similarly to protected objects, guards can only refer to the inner state of the server,
never to formal parameters of the accept clause.

Code Generation Schemes. As in the protected object case, the simplest situation is a
CADT where none of the CPREs depend on input parameters. In this case the resource
server will have an entry for each CADT operation and a main loop where services
satisfying the CPRE will be made available to clients (Fig. 10).

If some CPRE depends on input parameters a two-stage blocking scheme – rather
similar to that used with protected objects – will be used: there will be an accept clause
in the select with the guard set to true which will be used to send the data needed to
evaluate the CPRE, followed by a suspension of the client task until the CPRE holds
so that the request is ready to be served. The evaluation of the pending CPREs can take
place outside the select loop (Fig. 11).

8 At http://babel.ls.fi.upm.es/publications/publications.html?keyword=concurrent, the interested
reader can find a full explanation including the rendez-vous code for the multibuffer example
and the realization of channels.

102 M. Carro et al.

Fig. 11. Server loop for CPREs dependent on input parameters

This two-stage blocking can be implemented via explicit message passing using a
generic package Channel that provides a type for simple synchronous channels with
Send and Receive operations. It is, thus, an explicit channel naming scheme, not present
natively in Ada, but implemented using, in our case, protected objects. The client can be
blocked by making it wait for a message from the server. The client task will therefore
perform a call to the entry followed by an unconditional reception:

The answer from the server may be used to transmit output parameters of the CADT
operation – when they exist – or just a mere acknowledgment. Observe that sending a
reference to the reply channel allows the server to uniquely identify the client.9 This is
a clear counterpart of the process identifier strategy mentioned in Sect. 4.2.

Of course, mixed schemes, where some operations are synchronized on the guard
and others use the two-stage blocking, are allowed.

Explicit Signalling Using Channels. The scheme presented above provides also a more
straightforward and elegant mechanism for programming explicit wakeups than the one
used with protected objects. Depending on

a) the data structures used to store pending requests, and
b) the selection criteria used to traverse them
9 Which is rather usual in the client/server philosophy, e.g. by sending an IP:port address of

the client to a web server.

Teaching How to Derive Correct Concurrent Programs 103

different versions of a (partially correct) solution can be obtained fulfilling different
liveness criteria.

Wakeups implemented via explicit sends from the server resemble more faithfully
the ideas originally present in the Signal of old-time semaphores or the Continue in
classic monitors. Remember that explicit wakeups could only be simulated when using
protected objects by forcing all guards but one to be false. Explicit wakeups bring the
following advantages:

A more elegant code. One problem with the protected objects code was that enforcing
liveness/priority properties would often force to strengthen the entry guards, which,
on one hand, led to losing the straight connection with the CPREs and, on the other,
would increase the risk of lacking concurrency or even deadlock. With the scheme
introduced above, the liveness/priority logic is moved outside the select and the
guards remain intact.

Lower risk of starvation. Another problem with explicit wakeups in protected objects
(and also in monitors) is that waking up a set of waiting processes had to be done
via a cascade of wake-ups, where each task finishing execution of an entry must
establish the necessary conditions to wake up the following task, and so on. The logic
implied by this mechanism is very error-prone, easily leading tasks to starvation if
the cascade breaks.
With the server scheme, the loop following the select must ensure that the server
will not enter the select while there are pending requests that could be served. This
avoids the risk of new requests getting in the middle of the old ones, thus greatly
reducing the risk of starvation.

6 Related Work

To the best of our knowledge, there is not much work published on teaching concurrent
programming as a self-contained subject — let alone teaching concurrent programming
with the support of formal methods.

A pilot test reported in [7] supports the hypothesis that teaching concurrency to lower-
level undergraduates increases significantly the ability to solve concurrency problems,
and that concurrency concepts can be effectively learned at this level. Our own experience
makes us agree with this view. Besides, we think that the use of a formal notation and
the application of a rigorous development process helps in clarifying concepts with
independence from the final implementation language and it really paves the way to
having correct programs, even at undergraduate levels.

Undergraduate concurrency courses in the context of programming are also advo-
cated in [13]. However, the approach of that paper is more biased toward parallelism
than ours. We see parallelism as somewhat orthogonal to concurrency, and we tend to
focus on interaction and expressiveness rather than on independence and performance.

Other pieces of work try to teach concurrency with the help of tools and environments
which can simulate a variety of situations (see [17] and its references). This is indeed
helpful to highlight peculiarities of concurrent programs, but from our point of view it
does not help to directly improve problem-solving skills. That is what we aim at with a
more formal approach.

104 M. Carro et al.

Fig. 12. Input / output of a Readers / Writers execution

In line with [21], we think that concurrent programming is of utmost importance.
That piece of work also mentions the relationship concurrency / ADTs, but from a point
of view different from ours: while our CADTs are concurrency-aware right from the
beginning, that work seems to aim more at hiding concurrency than at exposing it.

Concurrency has also been animated with educational purposes, as in [11], which
depicts dependencies among processes and semaphores. While we have not developed
animations for Ada multitasking, we have built an Ada library which provides a subset
of Ada.Text IO, and which generates dynamically and user-transparently per-task in-
put/output areas (Fig. 12). This is similar in spirit and motivations to [18], but with less
system-oriented information, more user-transparent, and completely interactive (it runs
in real time, in step with the main application).

7 Conclusion

Our students are taught concurrent programming according to the methodology herein
presented. The subject is at undergraduate level, and delivered in the third year, after
students have gone through several programming subjects in which a certain deal of
specifications has been used. This makes the idea of reading and understanding a formal
language not too strange for them.

We think that this is a success story: albeit the design of the concurrent system is by
far the hardest task, when this is done students are able to develop almost mechanically
Ada code for projects of fair complexity and with a high confidence on their reliability.
Safety properties are guaranteed to hold, while liveness properties, when needed, have
certainly to be developed with some care and on a case by case basis. We believe that
being aware of the importance of keeping these properties is certainly a better investment
than becoming an expert in, say, POSIX threads. These kind of abilities can be acquired
later with comparatively little effort.

Due to space limitations, we have not detailed the last stages of the methodology
which involve reasoning about the dynamic behaviour of resources and processes. This
is done with the help of labelled transition systems. CADTs are still useful in this
stage, as transitions are identified with invocations of CADT operations and states with
(abstractions of) the state of the shared resources in the system. In other words, liveness
issues can also be dealt with in an architecture-independent way.

Teaching How to Derive Correct Concurrent Programs 105

Besides the translation schemes provided here, we have also developed, in previous
stages of the curricula, similar translations for languages based on monitors [12] and on
CSP. We have a similar translation scheme for Java, although probably not as clean as
the ones we have presented here.

Courseware Pointers. Although the bulk of the information is in Spanish, we invite
the reader to have a look at the web pages of our Concurrent Programming course
at Universidad Politécnica de Madrid: http://lml.ls.fi.upm.es/pc/. Lecture notes,
examples, homework assignments and test problems can be found at the subdirectories
apuntes, ejemplos, Anteriores/Examenes, and Anteriores/Practicas.

References

1. G.R. Andrews and F.B. Schneider. Concepts and notations for concurrent programming. In
N. Gehani and A.D. McGettrick, editors, Concurrent Programming. Addison-Wesley, 1989.

2. Greg Andrews. Concurrent Programming: Principles and Practice. Benjamin/Cummings,
1991.

3. Maurice Bruynooghe and Kung-Kiu Lau, editors. Program Development in Computational
Logic: A Decade of Research Advances in Logic-Based Program Development, volume 3049
of Lecture Notes in Computer Science. Springer, 2004.

4. Alan Burns and Andy Wellings. Concurrency in Ada. Cambridge University Press, 1998.
5. Norman H. Cohen. Ada as a Second Language. McGraw-Hill, 1995.
6. M. Hanus (ed.), H. Kuchen, and J.J. Moreno-Navarro et al. Curry: An integrated functional

logic language. Technical report, RWTH Aachen, 2000.
7. Michael B. Feldman and Bruce D. Bachus. Concurrent programming can be introduced

into the lower-level undergraduate curriculum. In Proceedings of the 2nd conference on
Integrating technology into computer science education, pages 77–79. ACM Press, 1997.

8. Narain H. Gehani. Capsules: a shared memory access mechanism for Concurrent C/C++.
IEEE Transactions on Parallel and Distributed Systems, 4(7):795–811, 1993.

9. M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garcı́a de la Banda, P. López Garcı́a, and
G. Puebla. The Ciao Multi-Dialect Compiler and System: An Experimentation Workbench
for Future (C)LP Systems. In Parallelism and Implementation of Logic and Constraint Logic
Programming, pages 65–85. Nova Science, Commack, NY, USA, April 1999.

10. A. Herranz and J. J. Moreno. On the design of an object-oriented formal notation. In Fourth
Workshop on Rigorous Object Oriented Methods, ROOM 4. King’s College, London, March
2002.

11. C. William Higginbotham and Ralph Morelli. A system for teaching concurrent programming.
In Proceedings of the twenty-second SIGCSE technical symposium on Computer science
education, pages 309–316. ACM Press, 1991.

12. C.A.R. Hoare. Monitors, an operating system structuring concept. Communications of the
ACM, 17(10):549–557, October 1974.

13. David Jackson. A Mini-Course on Concurrency. In Twenty-second SIGCSE Technical Sym-
posium on Computer Science Education, pages 92–96. ACM Press, 1991.

14. Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall, Upper Saddle
River, NJ 07458, USA, 1995.

15. R. Morales-Fernandez and J.J. Moreno-Navarro. CC-Modula: A Modula-2 Tool to Teach
Concurrent Programming. In ACM SIGCSE Bulletin, volume 21, pages 19–25. ACM Press,
September 1989.

106 M. Carro et al.

16. The Joint Task Force on Computing Curricula IEEE-CS/ACM. Computing Curricula 2001.
http://www.computer.org/education/cc2001/.

17. Yakov Persky and Mordechai Ben-Ari. Re-engineering a concurrency simulator. In Proceed-
ings of the 6th annual conference on the teaching of computing and the 3rd annual conference
on Integrating technology into computer science education, pages 185–188.ACM Press, 1998.

18. Steven Robbins. Using remote logging for teaching concurrency. In Procs. of the 34th SIGCSE
Technical Symposium on Comp. Sci. Education, pages 177–181. ACM Press, 2003.

19. T.S. Taft, R.A. Duff, R.L. Brukardt, and E.Ploedereder, editors. Consolidated Ada Reference
Manual. Language and Standard Libraries International Standard ISO/IEC 8652/1995(E)
with Technical Corrigendum 1. Springer Verlag, 2001.

20. Axel van Lamsweerde. Formal Specification: a Roadmap. In A. Finkelstein, editor, The
Future of Software Engineering, pages 147–159. ACM Press, 2000.

21. Dorian P.Yeager. Teaching concurrency in the programming languages course. In Proceedings
of the twenty-second SIGCSE technical symposium on Computer science education, pages
155–161. ACM Press, 1991.

	Introduction
	Teaching Concurrent Programming
	Notation and Logic Toolkit
	Public Interface: Actions and Their Signatures
	Domain: Types and Invariants
	Specifying the Effect of Operations
	Process Code
	Other Goodies

	Deriving Ada 95 Protected Objects
	Dynamic Behavior of Protected Objects
	Code Schemes for Condition Synchronization
	Code for the Multibuffer Example
	Complex Behavior and Fine Synchronization

	Deriving Message Passing Systems with Rendez-Vous
	Related Work
	Conclusion

