
AN ABSTRACT MACfflNE BASED EXECUTION
MODEL FOR COMPUTER ARCHITECTURE

DESIGN AND EFFICIENT IMPLEMENTATION
OF LOGIC PROGRAMS IN PARALLEL

Manuel V. Hermenegildo

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-86-20 August 1986

Copyright © 1986 Manuel V. Hermenegildo

A N A B S T R A C T MACHINE BASED E X E C U T I O N MODEL FOR

COMPUTER ARCHITECTURE DESIGN A N D EFFICIENT

IMPLEMENTATION OF LOGIC P R O G R A M S

IN PARALLEL

by

MANUEL V. HERMENEGILDO, E.E. , M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

D O C T O R OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August, 1986

Copyright

by

Manuel V. Hermenegildo

1986

A C K N O W L E D G E M E N T

I would first like to thank my advisor, Professor G. J. Lipovski, for his
continuous support and guidance. He brought the subject to my attention and has
always made himself available for discussion and advice. I would also like to thank the
members of the Committee, Professors J. C. Browne, J. K. Aggarwal, C. K. Leung,
and R. M. Jenevein, for their helpful observations, interest and encouragement, and
for the time devoted to the reading of this document.

I am also indebted to Richard Warren and Roger Nasr for many hours of
interesting discussion and for their friendship. Richard Warren's implementation of
the model described in this document was very useful in proving its viability and in
providing performance data. I am grateful to all the other members of the MCC
Parallel Processing and Artificial Intelligence groups for their encouragement and to
Steve Lundstrom (MCC) and the Fulbright Foundation for their support.

Special thanks to Professor David H. D. Warren for many interesting
discussions, for his perceptive comments and suggestions, and for his hospitality. He
has been a continuous source of encouragement and inspiration for me.

Finally I would like to thank the many friends who have helped me and
encouraged me during these years at The University of Texas. I am very specially
indebted to Ian Walker, Pat Cericola, and Evan Tick for their patience in wading
through so many earlier drafts of this document and, most importantly, for their
invaluable friendship.

Manuel V. Hermenegildo

The University of Texas at Austin
August, 1986

PREFACE

"Sorry to interrupt the festivities ",
said HAL, "but we have a problem. "

Arthur C. Clarke; 2001, A Space Odyssey

A Word for t h e Non-In i t ia ted

Scientific reports have an unmistakable tendency to be of a very detailed

nature and limited scope. This is largely a consequence of the fact that as our

knowledge is broadened we only seem to further unveil reality's inherent complexity.

It is in order to confront this complexity that scientific research has moved more and

more towards super specialization. However, even though superspecialization seems to

be here to stay, the activities of the researcher are hard to justify unless they are

motivated (secretly or openly) by some higher-level goal. Of course, such higher level

goals often appear obvious to most researchers in their respective fields (in the case in

hand, those of Computer Engineering and Computer Science). Computer Scientists

and Engineers are therefore urged at this point to skip the rest of this preface and

jump with the author into the first chapter. This preface is not intended for them.

Instead, it will attempt to offer the "uninitiated" reader in the mysteries of

computers, declarative languages and parallelism, both a simple introduction to the

subjects treated in the rest of this document and, hopefully, some justification as to

why it may make sense to explore these subjects at all.

C o m p u t e r s Need to be Fa s t e r and Easier to Use

It is perhaps the fact that computers offer promise to one day mimic at least

some of the simpler functions of the human mind (itself undoubtedly one of the most

VI

intriguing "mechanisms" with which we are co^. .^ed) that has always drawn our

attention towards them. However, computer research is, as so many areas of science

and engineering, still far from its most idealistic goals, and, in particular, from that of

achieving any kind of "intelligent" behavior from an automaton. Research in

"Artificial Intelligence" is faced today with a number of limitations. Firstly, we still

lack a clear understanding of how such behavior could be obtained from a machine.

Secondly, we do not know how to build computers that are fast enough that they

could provide responses according to that behavior in a reasonable amount of time,

and which are at the same time easy enough to use that the associated programming

tasks would represent feasible endeavors.

The first of the problems mentioned above is one of the many subjects of

artificial intelligence research. Instead, and as the subject of this dissertation, we

will be interested in addressing the second of those limitations, i.e. providing

computers that are at the same time more powerful, and friendlier to the user.

Fortunately enough, we do not need to resort to any futuristic quest for intelligence to

understand the usefulness of such an endeavor: we already need faster, easier to use

machines today, not only for the advancement of artificial intelligence, but also in

most other current computer application areas.

1.- Making Computers Easier to Use

Let us consider the issue of making machines easier to use first . At our

(relatively modest) current state of development in human interaction with computers,

our main means for instructing them what to do is by writing a program, i.e. a list of

instructions which are to be executed by it. These instructions are expressed in a

particular language that the computer can understand: a programming language.

Conventional programming languages generally express these instructions as

a series of precise "actions" that are to be performed by the computer one after the

We will treat the issue of computational power in the next section.

vn

other" . This is known as an imperative style, a program being a sequence of

commands or s ta tements . Programs today come in this format largely as a

consequence of the fact tha t the first computers were no more than the equivalent of

one of today 's hand-held calculators and that early programs were just sequences of

the basic instructions that a particular machine could directly execute .

Programming languages then emerged as a tool for making it it easier for a human

being to express the actions required from the computer. However, it is a fact that

computers already existed in a particular form before these languages were designed,

and this undoubtedly invited a "machine-oriented" style in these designs which still

lingers in today 's programming languages. These languages are often so apar t from

the natural way in which humans think and express themselves tha t programming a

computer is frequently a difficult and error-prone task for any sizeable problem.

The question of course is, can we design a computer language which is free

For example, suppose that we want to program the computer to simply generate the
squares of all positive integers. One way of doing this is by specifying the actions that may
be involved in obtaining such a list:

1. Start with the number 0,
2. find the square of the number by multiplying it by itself,
3. print the square,
4- compute the next number by adding 1 to the previous number,
5. go to step 2.

This would be expressed in less verbose terms (in a conventional programming language) more
or less as follows:

Number = 0;
loop: Square = Number * Number;

print(Number);
Number = Number + 1;
goto loop:

3
For example, for an actual hand-held calculator a "program" for adding "4" and " 3 "

would be:

press 3
press +
press 4
press =

Vlll

from the imperative style? If we avoid any machine oriented considerations, the first

language to come to mind is, of course, the human natural language: the user's mother

tongue. Such a language though presents a number of serious drawbacks. These

drawbacks include its verboseness, only made worse by its vagueness and ambiguity if

not provided with a suitable context or a great deal of (normally assumed) knowledge.

This fact was already realized by mathematicians long before computers came to being

and they devised "Logic" as a means of clarifying and/or formalizing the human

thought process. Logic lets us express facts and rules about the world in a precise and

concise way and draw conclusions from them which can be formally proven to be

correct. Thus, Logic would tells us, for example, that the assumptions

Aristotle makes cookies, and

Plato is a friend of anyone who makes cookies.

imply the conclusion

Plato is a friend of Aristotle.

Symbolic logic is simply a shorthand for expressing conventional Logic: if we

agree that makes(X, cookies) means "X makes cookies", V X means "for all X", X

—• Y means "if X then Y", and friend(X,Y) means "X is a friend of Y", then the

example above can be expressed in symbolic logic as

makes(Aristotle, cookies)

V X, makes(X, cookies) —• friend(Plato, X)

and the conclusion as

friend(Plato, Aristotle)

Clearly, one can mechanically translate from Symbolic Logic to natural language by

using a "conversion table" for the symbols like the one provided above.

It is this ability of symbolic logic to express knowledge in a way that is very

precise and compact, while at the same time close to the natural way in which humans

express themselves that led to the concept of using Logic as a means for

IX

programming computers. This idea was first proposed in a formal manner by

Kowalski [39] not many years ago and has since received wide acceptance as one of the

most promising programming paradigms for future computers . Logic provides more

concreteness than a natural language, but it is also far less machine oriented than

conventional computer languages. The main difference with them is its

"declarat ive" nature: in logic, s ta tements express facts, knowledge about the

problem to be solved, rather than precise instructions to be followed step by step .

For example, Logic Programing is the language of choice in the Japanese Fifth Generation
Computer Project.

A "declarative" description of the problem proposed previously would be the following.
First, let us define the positive integers:

• 0 is a positive integer.
• X is (also) a positive integer if it is the result of adding 1 to another

positive integer Y.

Now let us define "square":

• Yis the square of X if it is the same as the result of multiplying X by itself.

Note that these statements provide our knowledge about the problem, rather than a sequence
of instructions to be followed step by step. This is much closer to the way things are explained
to humans. Just for reference, here is the listing of the same program written in Prolog
[58] (a practical, though still far from perfect, "logic programming" language):

pos_integer(0).
pos_lnteger(X) IF pos_integer(Y) ANDX=Y+1.

square(Y. X) IF Y=X*X.

Now we can ask the Prolog system for the squares of all positive integers:

pos_lnteger(X) AND square(Y, X)?
and Prolog will try to find them. One of the interesting things that we also can do now is ask
other types of questions. For example, the answer to

square(Y, 4)?
is "Y=16". Surprisingly enough, the answer to

pos_lnteger(X) AND square(4, X)?
is "X=2": the same program can be used (even though only in limited cases) to find square
roots!

x

Logic is (with functional languages) part of the reduced class of declarative
languages. It is hoped that the advantages that these languages offer over

conventional ones will make computer programming an easier and less prone to error

job. It was mentioned how this was one of our objectives. In this dissertation Logic

(and, to some extent, functional languages) is chosen as a convenient programming

paradigm for new, easier to use computers.

2.- Making Computers Faster

From the early days of computing, the quest for faster machines has been one

of the driving forces of computer engineering research. The availability of the

computer made it possible to create applications that were unimaginable before its

birth. These applications in turn suggested others which were more and more

demanding on computer power, thus producing a snowball effect which today seems to

put no end on the demands for computer speed and power.

There are many ways in which a particular machine can be enhanced, but

there are always physical limits to-the speed at which a given machine can operate:

the speed of light and the size of the computer dictate the ultimate limitation, the

time involved in moving information from one part of the machine to the other. But

even before the limits of a given technology are reached, there is also the question of

cost-effectiveness: a point is eventually arrived at in which a moderate increase in

performance demands an enormous increase in cost. A concept which can offer a cost-

effective increase in performance which can go beyond the limits of sequential systems

is parallelism: the subdivision of a problem into subtasks which can be executed

simultaneously by different agents.

Parallelism is not a concept particular to computers: it is a constant in

nature and in the organization of human societies. For example, if a company having

only one engineer needs to have a project finished by a given date but the engineer

estimates that it will be impossible to complete the project in the given time, the

obvious solution (short of firing the engineer, of course) is to hire more engineers to

work on the project simultaneously and cooperatively so that it can be finished in

XI

time . Such a basic everyday idea can also be applied to computers: if one computer

cannot perform a given task in a certain amount of time, a number of computers

can be set to work on the task simultaneously.

Current parallel computers consist of a number of processors (each of

them more or less a complete computer in itself) linked by some kind of

interconnection network which makes it possible for information to be interchanged

between them (much in the same way as telephone lines -or simply the human speech-

are used by the engineers of the example above). Another typical organization is to

provide all processors with common access to the information they are all working on

(a Shared Memory). This is equivalent to having all the engineers (again in the

example above) work on the same set of diagrams simultaneously.

If the task in hand can be separated into relatively independent parts,

parallelism can be a simple matter. If the parts of the task are more interrelated,

efficiently coordinating the actions of the different processors involved will be a more

complicated issue, since there will have to be substantial communication between

them in order to inform each other of their current results. This is similar to the

periodic meetings that engineers working on a project need to have in order to keep

the project well coordinated. The overhead involved in this communication is an

important factor to take into account: it is clear that two engineers will probably not

solve the problem in half the time because of the time lost interchanging results (or, if

they are working on the same set of diagrams, waiting for the other to finish working

with the particular sheet needed). These considerations will be of the utmost

importance in the design of parallel computers.

Despite the problems involved, parallelism offers an enormous potential in

high-performance, cost-effective computer design and is already a reality in the form

of many commercial products. Parallelism will also be one of the central subjects of

this document.

The human brain is another notable example of parallelism: it is built out of a multitude
of relatively slow elements, but the whole system has an unequaled information storage and
processing power.

xn

Executing Logic Programs in Parallel

In consequence with the considerations presented in the previous sections,

this dissertation deals with both the ideas of parallelism and logic programming.
It will try to provide guidelines in the design of computers that can execute

programs which are easier to create (because they are written declaratively, using

"Logic"), and which are fast enough (because they use parallelism extensively) to

cope with truly demanding applications. Although we still are far from our ultimate

goals, these new computers could represent an important step in our quest for

intelligence. In the meantime, they will provide a friendly and powerful tool to help us

cope with our current applications and everyday duties. Let me leave you with this

idea for now. I need to go and chat with HAL [1], and thank him for so much

inspiration.

xn i

A B S T R A C T

The term "Logic Programming" refers to a variety of computer languages
and execution models which are based on the tradit ional concept of Symbolic Logic.
The expressive power of these languages offers promise to be of great assistance in
facing the programming challenges of present and future symbolic processing
applications in Artificial Intelligence, Knowledge-based systems, and many other areas
of computing. The sequential execution speed of logic programs has been greatly
improved since the advent of the first interpreters. However, higher inference speeds
are still required in order to meet the demands of applications such as those
contemplated for next generation computer systems. The execution of logic programs
in parallel is currently considered a promising strategy for a t ta ining such inference
speeds. Logic Programming in turn appears as a suitable programming paradigm for
parallel architectures because of the many opportunit ies for parallel execution present
in the implementation of logic programs.

This dissertation presents an efficient parallel execution model for logic
programs. The model is described from the source language level down to an
"Abstract Machine" level suitable for direct implementation on existing parallel
systems or for the design of special purpose parallel architectures. Few assumptions
are made at the source language level and therefore the techniques developed and the
general Abstract Machine design are applicable to a variety of logic (and also
functional) languages. These techniques offer efficient solutions to several areas of
parallel Logic Programming implementation previously considered problematic or a
source of considerable overhead, such as the detection and handling of variable
binding conflicts in AND-Parallelism, the specification of control and management of
the execution tree, the t rea tment of distributed backtracking, and goal scheduling and
memory management issues, etc.

A parallel Abstract Machine design is offered, specifying da t a areas,
operation, and a suitable instruction set. This design is based on extending to a
parallel environment the techniques introduced by the Warren Abstract Machine,
which have already made very fast and space efficient sequential systems a reality.
Therefore, the model herein presented is capable of retaining sequential execution
speed similar to tha t of high performance sequential systems, while extracting
additional gains in speed by efficiently implementing parallel execution. These claims
are supported by simulations of the Abstract Machine on sample programs.

xiv

TABLE OF CONTENTS

Acknowledgements v

Preface vi

Abstract xiv

Table of Contents xv

Chapter 1. Introduction 1

1.1. Computers Today and Tomorrow 1
1.1.1. The Top-Down Approach to Computer Architecture 2
1.1.2. Improving Programming Environments 5

1.1.2.1. Procedural vs. Declarative Languages 5
1.1.2.2. Logic Programming 7
1.1.2.3. Logic and Control 9

1.1.3. Improving Computer Power vs. Cost 10
1.1.4. Parallelism, Logic Programming, and Synergy 12

1.2. The Dissertation 14
1.2.1. Research Approach 15
1.2.2. Purpose of the Dissertation 19
1.2.3. Contributions 20
1.2.4. Dissertation Outline 21

Chapter 2. Logic Programming 23

2.1. Logic 23
2.1.1. Clausal Form 24
2.1.2. Resolution 27
2.1.3. Horn Clauses 32

2.2. Logic as a Programming Language 32
2.2.1. Syntax of Horn Clause Programs 33
2.2.2. Declarative Semantics 34
2.2.3. Procedural Semantics 35
2.2.4. Non-Determinism and the Control Strategy 36

xv

2.2.5. The AND/OR Tre^ - -presentation of the Search Space 38
2.2.6. The Logical Variable 39
2.2.7. Transparent Control 40
2.2.8. Prolog 41

2.3. Chapter Summary 48

Chapter 3. Parallelism and Logic Programs 49

3.1. Parallelism in Logic Programs 49
3.1.1. Sources of Parallelism 50
3.1.2. An Example Showing Different Types of Parallelism 51

3.2. Logic Programs and Parallelism in Practice 55
3.3. Pure OR-Parallelism 57
3.4. AND-Parallelism 58

3.4.1. All Solutions AND-Parallelism 58
3.4.2. Variable Binding Conflicts in AND-Parallelism 60

3.4.2.1. Dealing with Variable Binding Conflicts 62
3.4.2.2. Detecting Variable Binding Conflicts 63

3.4.3. Proposed Systems Supporting AND-Parallelism 65
3.4.3.1. Committed Choice Systems 65
3.4.3.2. Conery's AND/OR process model 66
3.4.3.3. Static Data Dependency Analysis 67
3.4.3.4. Restricted AND-Parallelism 68

3.5. Chapter Summary: A Proposed Approach to Parallel
Logic Programming Implementation 71

Chapter 4. A High-Level Execution Model for
AND-Parallelism:
Procedural Semantics 74

4.1. A General Model for AND-Parallelism: Goal Independence 75
4.1.1. Conditional Graph Expressions 77
4.1.2. Forward Execution 78
4.1.3. Backward Execution 81

4.1.3.1. Backtracking Cases 82
4.1.3.2. Determinate Execution 85
4.1.3.3. A General Algorithm 88
4.1.3.4. Point Backtracking vs. Streak Backtracking 90

4.1.4. Correctness of Conditional Graph Expressions 91
4.2. Programmer 's View of the RAP System 94

xvi

4.3. Chapter Summary 97

Chapter 5. A High-Level Execution Model for
AND-Parallelism:
Memory Management and Goal Scheduling 98

5.1. A Simplified Model of Logic Programming Implementation 99
5.2. Towards Parallelism 101

5.2.1. A Simple, Distributed Stack Model 102
5.2.2. A Simple Goal Scheduling Strategy 105
5.2.3. A More Efficient Goal Scheduling Strategy 108
5.2.4. A Simple Processor State Diagram 111

5.3. Memory Management and Scheduling 114
5.3.1. Memory Management Problems Associated with

Distributed Backtracking 117
5.3.2. The Idle Processor Solution 120
5.3.3. The Idle Processor Solution - Some Improvement 123
5.3.4. Multi Stack Memory 125
5.3.5. Goal Restriction 128
5.3.6. A Combined Approach 131

5.4. Chapter Summary 133

Chapter 6. Implementing Distributed Backtracking at the
Abstract Machine Level 135

6.1. Implementing Sequential Logic at the Abstract Machine
Level: The WAM 136

6.1.1. Data Areas and General Operation of the WAM 136
6.1.2. Backtracking in the WAM Revisited 140

6.2. Implementing Distributed Backtracking in AND-
Parallel Systems 143

6.3. Local Execution of Parallel Goals 148
6.3.1. "Local Goals First" (LGF) Backtracking 149
6.3.2. "Right Goals First" (RGF) Backtracking 153

6.4. Chapter Summary 158

xvn

Chapter 7. An Abstract Machine for Resti-i^ed
AND-Parallelism 159

7.1. Extending the WAM for Parallel Execution 159
7.1.1. The Goal Stack 161
7.1.2. Parcall Frames 164
7.1.3. Wait Markers 165
7.1.4. Input Goal Markers 166
7.1.5. Local Goal Markers 167
7.1.6. The Message Buffer 167

7.2. General Operation of the Parallel Abstract Machine 168
7.3. The Extended Abstract Machine Instruction Set 172

7.3.1. WAM Instructions 172
7.3.2. Check Instructions 174
7.3.3. Goal Scheduling Instructions 175
7.3.4. Control Instructions 177
7.3.5. Modified Instructions 181
7.3.6. Other Non-Instruction Related Actions 182

7.4. An Example 186
7.5. Determinate Execution 188

7.5.1. Goal Scheduling Instructions 189
7.5.2. Control Instructions 189

7.6. Performance Evaluation 190
7.7. Chapter Summary 191

Chapter 8. Conclusion 193

8.1. Areas of Future Research 195

Appendix A. Other Examples of Compiled Code 197

A. l . Checking More Complex Conditions 198
A.2. All Goals in Parallel: last call optimization issues 202
A.3. A Nested Parallel Call (using dummy calls) 205
A.4. Other Types of Graph Expressions 208

xvin

Appendix B. Benchmarks and Simulation Results 211

B.l . Information Obtained: a Sample Run 211
B.2. Efficiency Tests: Synthetic Benchmarks 225
B.3. A More Realistic Problem: Symbolic Derivation 229
B.4. Megalips Now? 233
B.5. Conclusions and Suggestions for Further Work 234

Bibliography 235

xix

LIST OF FIGURES

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:

Figure 2-6:
Figure 2-7:

Figure 3-1:

Figure 4-1:
Figure 4-2:

Figure 4-3:

Figure 4-4:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:
Figure 5-10:
Figure 5-11:

Figure 5-12:
Figure 5-13:
Figure 5-14:
Figure 6-1:
Figure 6-2:

The Elements of Logic 25
A Family Relationship 28
Proving that John is the grandfather of David 31
A Family Relationship Logic Program 34
Results of Top-down Resolution for the Program in 37
Figure 2-4
AND/OR Tree Representation of a Search Space 39
Prolog Execution of the Family Relationship 43
Program
Fictional Aviation Administration's (FAA) 52
Database
Backtracking cases for a CGE 83
Backtracking cases for a CGE: Determinate 86
Execution-(a)
Backtracking cases for a CGE: Determinate 87
Execution-(b)
Programmer 's View of the RAP System. 94
A Single Stack Model 99
Backtracking in the Single Stack Model 100
System Architecture 102
Distributed Stack Execution 103
System Architecture 108
Simple Process State Diagram 111
Background Process State Diagram 112
Goal Stack Based Goal Scheduling 115
The "garbage slot" and "trapped goal" Problems 119

State Diagram for the Idle Processor Approach 121
State Diagram for the Idle Processor Approach - 124
Improved
State Diagram for a Multi Stack Memory 126
State Diagram for the Goal Restriction Approach 129
State Diagram for the Combined Approach 132

Data areas and registers for the WAM 137
Choice Point Based Backtracking in Sequential 141
Systems

xx

Figure 6-3: CP/Parcal l Frame Based Backtracking iu .ND- 146
Parallel Systems

Figure 6-4: "Local Goals First" (LGF) Backtracking 150
Figure 6-5: "Right Goals First" (RGF) Backtracking 155
Figure 7-1: Data areas and registers: 1 processor, Parallel 162

Abstract Machine
Figure B-1: Speedup vs. # of processors for partimingsl6.pl 228
Figure B-2: Wait , Work, and Idle times for partimingsl6.pl 229
Figure B-3: Speedup vs. # of processors for parderivloc.pl 231
Figure B-4: Wait, Work, and Idle times for parderivloc.pl 232
Figure B-5: Wait, Work, and Idle times for parderivloc.pl (%) 233

xxi

http://partimingsl6.pl
http://partimingsl6.pl
http://parderivloc.pl
http://parderivloc.pl
http://parderivloc.pl

Chapter 1

Introduction

1.1 C o m p u t e r s T o d a y and T o m o r r o w

One of the most exciting and active facets of Computer Science and

Computer Engineering research today seems to be the quest for the "Next" generation

machine. The fast pace which characterizes advancement in the area may make it

difficult to keep track of the rise and decline of computer generations, but the driving

force behind this quest still seems to be the same as in the early days of computing:

the need for machines that are more powerful, more cost effective, and easier to use.

The circumstances have today, of course, changed in many ways [79, 80]:

technologically, various areas, including VLSI Technology, Computer Architecture,

Software Engineering, and Artificial Intelligence, seem to be continuously on the

threshold of new, major advances. A substantial increase in computational power

availability and a greater understanding of how to make more effective use of this

power is expected from the contributions in these areas. From the applications point

of view, the greater appearance in the applications spectrum of non-numerical tasks

calls for a move from scientific and raw data processing to symbolic computation:

expert systems, knowledge bases, and advanced computer aided design (CAD), etc.

seem to be the candidate applications of future systems. These trends are also being

supported by social factors: interaction with the computer is evolving towards a

more "human-oriented" environment. This environment can be expected to

1

2

eventually comprise a complex combination of natural language understanding and

perception (speech and vision) components, these components themselves requiring a

great deal of the computer's resources. Perception can be expected to be present in

applications ranging from office systems (for human-machine interaction) to computer

integrated manufacture (CIM).

1.1.1 The Top-Down Approach to Computer Architecture

Clearly, there is no reason to suppose that the above mentioned increase in

the demand (and, hopefully, the availability) for system functions and performance

will come to an end in the near (or far) future. The question is, of course, how these

demands can be met. An imaginary "plan of attack" for Computer Science and

Computer Engineering research, would probably address at least the following issues:

• Which applications, and computing environments (connection to databases,
real time systems, communications, etc.) will the computer have to handle.

• Which algorithms and heuristics will be able to solve these tasks efficiently
on the available (i.e., sequential or parallel) computer organizations.

• Which programming languages and computational models will make the
task of expressing the algorithms above a tractable problem for humans.

• Finally, which architectures will be able to efficiently implement the
computational models and run those applications at the required speed and
cost.

Development of the first computers seemed to consider many of these issues:

the application was more or less determined (numerical problems) and the algorithms

had a well known structure (sequences of numerical computations). The first computer

architectures were consequently efficient "number crunchers" and the first computer

languages very effective mathematical FORmulae TRANslators. It is an irony that

because the most successful such design of all time, the Von-Neumann Computer, has

also turned out to be rather efficient at many other types of tasks, its principles have

3

been maintained virtually untouched in the face of differing requirements. Therefore,

the original "global design" approach has often since been substituted for an a priori

acceptance of the existence of the computer in a particular form. The actual

unsuitability of traditional architectures for many tasks has sometimes been obscured

by their striking ability to emulate other machines, while the performance

requirements have (thus far) been met to some extent by providing this "emulation"

with sufficient raw speed.

There is currently a noticeable change in this trend. There is an awareness

that the issues listed at the beginning of this section are very closely related, and a

number of machine organizations are presently being proposed which are more

specifically tuned to particular languages, algorithms, and/or applications. The

explicit consideration of those issues, and in the order listed therein, is often

referred to as the "top down" (or "language first") approach to computer

architecture design.

As evidence of this changing trend, some recent commercially successful

products already seem to be the result of this top down approach. In these systems,

the enormous "gap" often encountered between the semantics of the languages being

considered and the underlying architectures on which they are executed, believed to be

responsible for their sometimes limited performance, is gradually being reduced by

reconsidering the architectural design in the light of language requirements. Such is

the case of the current LISP machines (such as the Symbolics3600 [73]) and Logic

machines (such as Japan's Personal Inference Machine [53]). RISC

[67] [65] architectures are also an example of a design at least partly driven by

language considerations. Even though these designs are influenced by the top down

approach, some of them are still fairly conventional designs. However, the top down

4

approach also results in many other cases in a n . .c radical departure from the Von-

Neumann model [21]. Some of these systems (for example, Array Processors) already

offer impressive performance, although they are very often limited in their

applications.

Of course, however attractive the top down idea may be, bottom up

considerations cannot be completely overlooked in any practical design. For example,

as a bottom up consideration, both the capabilities and limitations of current

technologies have to be taken into account. The influence of this consideration is

present in many of the above mentioned designs: the RISC concept is not only

justified by the particular implementation needs of current high level languages, but

also by the current state of the art in VLSI design and compiler technology.

Fortunately, the combination of the two (top down and bottom up) approaches can

result in a synergetic effect: as seen above, language semantics can inspire new

computational models which can result in novel architectures. Conversely, new

architectural ideas can suggest new language concepts, or give new life to old ones

which may have been previously discarded as difficult to implement efficiently.

To be consistent with the top down criteria, we herein make a conscious

assumption regarding the first two issues listed therein, namely applications and

algorithms. This assumption is that future computing applications will be

predominantly symbolic in nature. This assumption is based on the considerations

presented in the previous section. With this in mind, in the following sections we will

introduce some criteria currently supported by many researchers for addressing the

other two issues of the top down approach, programming environments and

architecture design. As mentioned previously, despite changing circumstances, the

objective in these areas still seems to be the same as in the early days of computing:

the design of machines that are more powerful, more cost effective, and easier to use.

5

1.1.2 Improving Programming Environments

Computer Languages are our present means of instructing computers to do

what we want them to do. The importance of the characteristics of these languages

which determine the ease and precision with which humans can accomplish this job

clearly cannot be underestimated. However, other characteristics of these languages

often determine the efficiency with which the problem can be solved on a particular

machine. In the top down approach, a high priority is given to the first consideration

and computer architecture design is deemed responsible for the solution of the

efficiency issue.

1.1.2.1. Procedural vs. Declarative Languages

Most languages presently in use -FORTRAN, PASCAL, C, BASIC ...- are

procedural in nature, that is:

• Computations are performed in a predetermined order which is explicitly
expressed in the program.

• Each statement is only one step in the algorithm.

• The correctness of each statement (except for perhaps its syntax) cannot be
determined without reference to the run-time state of a machine.

These characteristics, often also referred to as the imperative style, are largely a

consequence of the fact that today's languages are simply an evolved version of the

programming style of the early days of computing, when programs were only

sequences of the elementary instructions that a machine could directly execute. This

"step by step" character still pervades Computer Science even today.

The advent of functional programming (based on the Lambda Calculus [10])

and its first implementation in the LISP language [46] brought the new concept of

Declarative or Non-procedural languages to the computing arena. Declarative

languages aim at describing the structure of a problem. In these formalisms we aim

6

at expressing our "knowledge" about the problem rather . providing step by step

instructions for the computer to follow. This is done by specifying our knowledge in

the form of functions (in Functional Languages) or as sentences of first order

predicate logic (in Logic Languages). Some of the benefits of these languages were

eloquently defended by Backus in his 1978 Turing Award Lecture [3]. In their ideal

form they offer many attractive characteristics which contrast with those of their

procedural counterparts:

• They can be read as a formal description of a problem. In this way, a
program can be its own specification.

• They are comprised of statements whose order is in general not relevant.

• Programs can be developed in a piecemeal fashion: the "divide and
conquer" idea of structured programming is taken one step further, to the
statement level.

• Furthermore, the statements of the program can be proved to be valid
without considering their relation to other statements in the program.

• They are also less prone to errors, because they do not rely on features
which only make sense in machine-level terms (such as side-effects). "

Although Logic Programming and Functional Programming have in reality

much in common, they each have their defendants and detractors. Some arguments

frequently used in favor of functional programming are its support for infinite data

structures and streams (i.e. the incremental transference of function arguments), and

the concept of "higher order functions" (functions which can be passed around as

arguments of other functions). Arguments in favor of Logic Programming are its

inherent non-determinism, the support of relations, and the power of the "Logical

Variable". These concepts will be explained in later chapters. Today, a growing

acceptance of the validity of both formalisms is starting to arise: their

characteristics appear to address different kinds of problems and, therefore, their

7

coexistence seems to be justified. Moreover, the quest for a truly general symbolic

programming language, being pursued simultaneously from both sides of the

controversy, now appears to converge towards the common goal of a

Logical/Functional Language which would combine the advantages of both approaches

[66, 23, 35]. For the rest of this monograph we will be mainly concerned with Logic

Programming, though many of our conclusions will be equally relevant in the domain

of Functional Languages and, of course, clearly applicable to the "Logical side" of an

eventual "marriage" between Logic and Functions.

1.1.2.2. Logic Programming

As briefly mentioned before, under the name of "Logic Programming" we

refer to the family of declarative languages whose statements are sentences of first

order predicate logic. It is fairly straightforward to understand how predicate logic

can be used to describe knowledge about a particular problem and to infer conclusions

from it, since that was its original design goal: to be a formalism for clarifying and/or

formalizing the human thought process. This knowledge is expressed in the form of

facts and rules which are true for a particular problem. Valid conclusions can be then

inferred from this knowledge. Thus, the intuitive idea behind logic programming is to

provide enough information about the problem in the program that the computer will

be able to solve it without the programmer having to worry about the details of how

it actually comes to its conclusions. Let us illustrate this with an example, written in

Prolog (read ":-" as "if):

father(John,peter).
father(john.mary).
father(peter,mike).

mother(mary,david).

grandfather(X,Y):- father(X.Z), father(Z,Y).
grandfather(X,Y):- father(X.Z), mother(Z,Y).

8

In this example, some facts (that John is the father of Pete. at Mary is

the mother of David, ...), and two rules (defining that X is the grandfather of Y if

there is a Z whose father is X and which is the father -or mother- of Y), are given to

the system. This, in turn, is able to answer the question "Is John the grandfather of

Mike?" by inferring the correct answer from the facts given and the rule:

grandfather(John,mike)?

YES.

Each of the lines in the example above is called a (Horn) Clause . A Logic

Program is a set of such clauses. Clauses are generally composed of a Head (the part

before the ":-") and a Body (the part after the " : -") . The body in turn is composed of

Goals. A clause with an empty body is called a Fact, otherwise it is called a Rule. A

set of clauses with the same "name" (for example the two "grandfather" clauses

above) is called a Procedure.

The closeness of Logic to the structure of the human natural language,

coupled with its conciseness and declarative nature, seem to make it an ideal choice as

a computer language from the human point of view. In order to make this a reality,

however, a simple mechanism had to be devised which would make it possible for a

computer to automatically come to a conclusion such as that above. The decisive step

towards achieving this goal in practice was provided by Robinson [68] with the

discovery of the resolution principle. This principle provides an inference rule which,

when applied repeatedly, makes it possible to automatically prove that a given

conclusion is a valid deduction from a set of given facts and rules. Kowalski's

pioneering work [39], gave a procedural interpretation (based on the resolution

More formal definitions of these concepts will be given in the following chapters.

9

principi, a subset of first order logic: Horn Clauses. The idea of Logic

Programming was born, and it was made a reality by Colmenauer et al. in 1972 [69] in

the first implementation of the most popular logic programming language today:

Prolog (PROgramming in LOGic). The performance of Warren's Prolog

interpreter/compiler for the DECsystem-10 [58] finally proved the usefulness of logic

as a practical programming tool.

1.1.2.3. Logic and Control

It should be obvious from the above description that there are two distinct

elements in the execution of a Logic Program (and, in fact, in that of any other

declarative language):

1. The program, i.e. the set of rules and facts, provided by the user.

2. An evaluator of the program, which is able to derive conclusions which are
consistent with the program.

This distinction was succinctly expressed by Kowalski in the following

equation [40]:

Algorithm = Logic + Control

It should be made clear at this point that the evaluator of the program has

in principle an enormous degree of freedom ("non-determinism") in selecting which

deduction paths to follow while solving a problem. For instance, in the family

relationship example above, the evaluator is free to choose either of the "grandfather"

clauses in its attempt to solve the query. Independently of which clause is chosen, if

the choice does not lead to a solution, then the other clause will eventually be tried

also. This type of non-determinism is referred to as "don't know"

non-determinism, as opposed to "don't care" non-determinism, in which, once a

choice is made, the system is committed to that choice and the other paths will not be

tried.

10

The policy that the program evaluator uses in chosing one or another ^4

these paths is called the control strategy. The existence of a control strategy

component in a declarative programming language is what makes it different from a

declarative formalism (like Horn Clause Logic or Lambda Calculus) [30] . Ideally, the

program evaluator can be imagined as an autonomous unit, able to solve the problem

with no additional help from the user. This separation permits database users or

novice programmers, for example, to state only the logic part, leaving the control

component to the computer, as we did in the example in the previous section. In

practice, however, trying to implement this behavior in more complicated cases often

results in very inefficient execution. Thus, most Logic Programming Languages offer

the programmer some means of guiding the control strategy. This is done in some

languages explicitly through the use of language constructs ([14], [13], [72], etc.). In

others it is done implicitly. For example, in Prolog, much of the control information is

encoded in the order in which predicates are written.

1.1.3 Improving Computer Power vs . Cost

Having considered the subject of making computer programming an easier

task, let us now shift our attention to the issue of performance. Independently of the

programming formalism in use, many different types of architectural organizations are

being considered today in the design of more powerful computers. Some of them are:

• A single fast processor with memory hierarchy (frequently with extensive
pipelining) (e.g. [22]).

• Multiple processors sharing a common memory (e.g. [71]).

• Multiple processors with private memories and communicating via
messages through a network (e.g. [78]).

• Data driven computers, where computations are distributed at the basic
function level and control is provided by the flow of data through the
system (e.g. [2]).

11

• Graph reduction architectures, where the elementary operations are
reductions on a graph representation of the program and data (e.g. [54]).

• Massively parallel machines, which promise to perform computations with
the statistical behavior of a large network of highly interconnected nodes
(e.g. [21]).

• Reconfigurable architectures, which can theoretically be reorganized
dynamically to behave as some of the above, depending on the granularity
level (e.g. [44], [70]).

Most of the above mentioned architectural approaches have at least one

thing in common: the presence of parallelism. This is often based on the conviction

that some of the objectives of today's systems and those of the future, such as

performance and fault-tolerance, can only be achieved in a parallel environment, and

also on the fact that today's technology is finally ready to tackle the design of

cost-effective parallel computers. The main problem with the single processor Von-

Neumann computer, despite the relative advantage of its conceptual compatibility

with existing systems, is that any effort to increase its performance is bound to hit the

speed ceiling of current technology and eventually that of light. But even before the

limits of current technology are reached, there is also the question of cost-

effectiveness: a point is eventually reached in which a moderate increase in

performance demands an enormous increase in cost.

Parallelism is a concept which can offer a cost-effective increase in

performance without pushing the limits of technology. Initially confined to the

internals of otherwise relatively conventional systems (in the form of pipelining), it is

already being widely used in a much larger scale in special purpose systems (such as

Vector/Array processors) which, although limited in application, offer very impressive

cost/performance ratios. General purpose multiprocessor products are now starting to

12

be commercially available (in shared- [71] or distributed memory [78] designs) which

also offer very interesting cost/performance for a much wider application spectrum.

Today, the best long term prospect in computer architecture research seems to be the

development of highly parallel scalable architectures which could theoretically be

configured to provide any required level of performance by simply adding a sufficient

number of elements (or "building blocks") from a fixed set.

1.1.4 Parallelism, Logic Programming, and Synergy

The potential for cost effective performance improvement present in parallel

architectures, and the realization of the complexity involved in programming such

architectures has spurred new interest in declarative languages and their

computational models. A key issue which is responsible for this interest is the

potential separation of logic and control which these languages offer. As mentioned

before, this separation between what has to be done and how and in what order it is

to be done makes it theoretically possible to write programs in such a way that they

can afterwards be executed using different control strategies. The fact that the

"freedom" which the program evaluator thus has in choosing execution paths often

includes the possibility of executing several of these paths in parallel makes

declarative languages particularly attractive for parallel implementation.

In Functional Programs the program evaluator can basically exploit two

kinds of parallelism [36, 30]: the concurrent evaluation of the arguments of a

functional expression (restricted parallelism), and the concurrent evaluation of a

functional expression and one of its arguments (stream parallelism). Logic

Programs seem to offer even more sources of parallelism as a result of their non-

determinacy and declarative semantics [19]. The two basic sources now are

AND-Parallel ism (the parallel execution of goals in the body of a clause) and

13

OR-Parallelism (the parallel execution of several clauses in a procedure) . Other

lower-level types of parallelism have also been identified, such as Search Parallelism

(the program is divided into disjoint sets of clauses so that the search for a given

clause can proceed in parallel over the different sets), and Unification Parallelism

etc. AND- and OR-Parallelism in turn can be combined in several ways giving rise to

a number of different forms of parallelism [30]:

• Pure OR-Parallelism: the parallel evaluation of several clauses of a
procedure.

• All Solutions AND-Parallelism: the parallel evaluation of goals, each of
them working on a different potential solution.

• Stream AND-Parallelism: the parallel evaluation of two goals which share
a variable, with the value of the variable being incrementally
communicated between them.

• Restricted (Goal Independence) AND-Parallelism: the parallel evaluation
of several goals in the body of a clause, which are at some point
determined to be independent.

It is hoped that the independence of the control component will make it

possible for the program evaluator to take advantage of this potential for parallelism

while at the same time automatically keeping track of the communication,

synchronization and concurrency issues associated with parallel execution. The

programmer will thus be relieved from what will likely be an impossible task when a

large number of processors are used cooperatively in solving the same problem. It is

also hoped that it will thus be possible to improve performance simply by "adding"

processors or "gracefully" degrade it by removing some of those processors (for

example because they are needed in a higher priority task or simply because of

hardware faults) in a user-transparent way.

These concepts will be further explained in the next chapters.

14

Therefore, there is a dual relationship between logic programming and

parallelism, which represents an example of synergy between the bottom up and top

down approaches to computer architecture. Following bottom up considerations,

parallel execution seems to be the current technological solution to the bottlenecks of

conventional architectures, but it presents a programming challenge. Declarative

languages and, in particular, Logic languages appear as a possible answer to this

challenge. Also, from top down considerations, Logic Programming seems to have the

potential for meeting the programming challenges associated with new applications

and algorithms, but it has traditionally suffered from limited performance. Parallel

execution appears as the most promising solution in order to provide the required

computational speed at a reasonable cost.

1.2 T h e D i s s e r t a t i o n

This document is largely in the spirit of the top down approach, but a clear

effort is also made to give due consideration to technological and other bottom up

limitations. Following top down criteria, we assume the essentially symbolic nature of

future computing and the suitability of declarative languages (and, in particular, of

Logic Programming) as a symbolic programming paradigm. The subject of this

dissertation is to address the remaining issues of the top down approach: execution

models and architectures. It will offer an efficient parallel execution model for Logic

Programs, specified down to the abstract machine level. The research approach

chosen in order to achieve this goal will be described in the following section.

15

1.2.1 Research Approach

Two basic decisions have determined the research approach taken:

• The choice of the type of parallelism being implemented.

• The choice of the type of abstract machine underlying the implementation.

Concerning the first point above, we have seen in previous sections how

Logic Programs offer many different sources of parallelism. Ideally, all these sources

should be exploited simultaneously in a given system. Nevertheless, the management

and control of this parallelism is non-trivial and the overhead involved in exercising

these management functions could very well completely overshadow any performance

gains obtained through parallel execution. If efficiency is an important issue in the

design, due consideration has to be given to the run-time cost associated with the

implementation of the different types of parallelism which are chosen to be supported.

Implementation of OR-Parallelism is, at least in principle, relatively

straightforward since the parallel processes involved are independent. Thus, there are

several proposals which include this type of parallelism [11] [55]. However, a copy of

the complete state of the computation up to the branching point has to be given to

each of the alternative paths being evaluated, and independent binding environments

kept for each one of them from then on. This scheme can clearly require excessive

amounts of storage and/or copying time although this overhead can be limited with

the use of specialized hardware. In a more efficient implementation scheme only parts

of the environment which are to be written by alternate clauses need to be copied

while other parts can be shared . The main problem in OR-Parallelism, however, is

An implementation of OR-Parallelism supporting this scheme and based on the Abstract
Machine proposed by Warren [88] has been realized by R. Overbeek et al. [55] at Argonne
Labs. Warren has also proposed a model based on "hash windows'' as reported in [7].

16

the combinatorial explosion in the size of the process tree generated. This is

aggravated by the fact that sometimes, if only one solution is needed, much of the

computation cannot be considered "useful work". Solutions proposed for this problem

include the use of annotations in order to restrict the generation of OR-parallel

alternatives [55] and the use of heuristics in order to prune as many of the paths not

leading to a solution as possible early in the computation (41, 45]. OR-Parallelism is

useful in programs which are heavily non-deterministic as, for example, in search

based applications.

AND-Parallel ism, on the other hand, offers potential for performance

improvement even in highly deterministic programs. Unfortunately, AND-parallelism

presents a series of problems which have for some time limited its application to only

trivial cases. Most of these problems arise from the fact that goals in the body of a

clause which are candidates for AND-parallel execution often share variables between

them and are therefore not independent. A variable binding conflict appears if various

goals attempt to bind a shared variable to different values.

One solution to this problem is to determine one goal as the producer of the

variable, and the others as consumers. In stream AND-Parallelism these goals all run

in parallel and the value of the variable is incrementally passed ("pipelined") from

the producer to the consumers. This is useful in that it allows the description of

systems of communicating processes. However, the low level of granularity involved in

stream parallelism seems to make it difficult to implement in an efficient way. The

main drawback in stream AND-Parallelism, however, is that it is very difficult to

implement in the presence of non-determinism. Therefore, recently proposed systems

which exploit this type of parallelism give up true non-deterministic search by

implementing "committed-choice" (i.e. "don't care") non-determinism. Such is the

17

case in PARLOG [30], Concurrent Prolog [72], and G u i d e d Horn Clauses (GHC) [81].

Once a path in the execution tree is chosen, no other paths will be explored. These

systems are somewhat closer to functional languages in the sense that clauses behave

as functions, providing only one solution path to a given query.

While committed choice non-determinism has solved a number of practical

implementation problems, "don't know" nondeterminism is generally regarded as one

of the most interesting features of Logic Programming. Most "committed choice"

systems recognize this fact and some (e.g. PARLOG) include the possibility of

invoking a "don't know" non-deterministic subsystem within the language, though

this will in general default to sequential execution. Alternative approaches for

overcoming the lack of "don't know" non-determinism using program transformations

generated through partial evaluation have been proposed by Codish [18] and Ueda

[82]. However, there is an alternative way of dealing with variable binding conflicts

which naturally supports both AND-Parallelism and "don't know" non determinism:

restricting AND-parallel execution to sets of goals which are determined to be

independent at run-time.

Although detecting and dealing with variable binding conflicts has previously

needed extensive user-annotation and/or excessive run-time overhead [20], we will

show in this dissertation that AND-parallelism supporting full non-determinism can in

fact be implemented very efficiently. Thus, we will be mainly concerned with the

implementation of AND-Parallelism in the presence of "don't know" non-determinism.

The high overhead previously associated with the determination of goal independence

will be greatly reduced in this model by combining a generalized version of Restricted

AND-Parallelism [25], Goal Independence Parallelism [32], with some of the

implementation techniques of current high performance sequential systems.

18

This brings us to the second decision regarding the research approach taken:

the choice of the type of abstract machine underlying the implementation. Regarding

this point, an evolutionary approach is chosen: the execution speed of sequential logic

programming systems has been constantly improving since the appearance of the

Marseille implementation. Warren's Prolog interpreter/compiler for the

DECsystem-10 [58] proved that logic programming could offer performance levels

comparable to those of functional languages on conventional architectures. Today

Prolog runs on a desktop personal workstation at speeds comparable to those of the

DECsystem-10 implementation [64] [76], and pipelined architectures [77] and

microprogrammed Prolog machines [26] offer promise to approach the lMlips (Logic

Inferences per Second) line. Most of these implementations are based on the Abstract

Machine proposed by Warren [88] (the "WAM") which has made very fast and space

efficient systems possible.

In spite of the great advances achieved by sequential systems, further

improvements are necessary in order to meet the requirements of present and future

applications. As we have seen in the previous sections, the source for this performance

improvement is parallel execution. However, logic programs, in addition to offering

considerable opportunities for parallelism, often also present code segments requiring

sequential execution. A system which can support parallelism while still making use of

the optimizations offered by current systems (at least during sequential execution) is

thus highly desirable. This is the approach taken in our design: to provide the

mechanisms for supporting forward and backward parallel execution of logic

programs as extensions to the ones used in a high performance Prolog

implementation.

The main advantages of this approach then are: first, sequential execution is

19

still as fast and space efficient as in the high performance PTL- J implementation

(modulo some minimal run-time checks); second, because the model is offered in the

form of extensions, which are fairly independent, in spirit, from the peculiarities of

that implementation, the techniques which will be developed will be applicable to a

variety of compilation/stack based models. For example, they could be applied to the

"don't know" non-determinate subsystem of a committed choice model. Finally, the

conceptual similarity with traditional code makes it possible to make use of existing

compiler technology.

1.2.2 Purpose of the Dissertation

In brief, the purpose of the dissertation is to design an efficient parallel

execution model for Logic Programming implementation and computer architecture

design. The criteria to be met by this execution model include the following:

• It should support AND-parallel execution and "don't know" non-
determinism simultaneously.

• Variable conflicts should be detected and treated with a minimum of run
time overhead.

• It should support all the optimizations offered by high performance
sequential implementations for sequential code segments, and as many of
them as possible during parallel execution.

• The techniques involved should be applicable to other similar models.

• Control should be completely distributed. Treatment of issues such as
scheduling and memory management should be taken into account.

• Also, control issues should be transparent to the user, so that the same
program can be executed on any number of processors with the only
noticeable difference being a variation in performance.

• The model should be precisely specified, at least to the abstract machine
level, so that it can be implemented or realistically evaluated through
simulation.

20

• It should prove efficient in processor and memory resources.

1.2.3 Contributions

The result of the research is the execution model proposed in the previous

section. This execution model is described from the source language level down to the

abstract machine level. An evaluation of its performance, and implementation and

architectural design considerations are also presented. The main original contributions

are:

• To prove that Goal Independence AND-Parallelism can be efficiently-
implemented in the presence of "don't know" non-determinism.

• To present a formal description of a new set of Conditional Graph
Expressions (CGE's) which control this type of parallelism and a suitable
embedded syntax for them.

• To provide precise forward and backward procedural semantics for Logic
Programs annotated with CGE ' s which can be implemented efficiently.
This includes a distributed, "semi-intelligent" form of backtracking.

• To develop a distributed stack execution model based on the above
semantics, show the goal scheduling and memory management issues
associated with such a model, and offer solutions to them.

• To provide an abstract machine level implementation of the model which
offers similar optimizations to those of high performance sequential
systems. The abstract machine is presented in the form of extensions to
one of the highest performance current sequential implementations, the
Warren Abstract Machine (WAM). New mechanisms (the parcall frame
and the concept of markers) are introduced for controlling AND-parallel
execution and distributed backtracking, and for the division of stack
sections.

• To present a complete instruction set at the abstract machine level and
indications showing how to compile Logic Programs into this instruction
set.

• To show the efficiency of the Abstract Machine through simulations.

21

l.ii.-i Disser ta t ion Outline

This dissertation can be viewed as comprising two parts:

Part 1 (chapters 2 through 5) is an introduction to parallelism in Logic

Programming and a general description of the parallel execution model in which the

abstract machine design is based:

• Chapter 2 is a brief introduction to basic notions of Computational Logic
leading to the idea of programming in Logic. Prolog is presented as an
example of a Logic Programming Language.

• Chapter 3 deals with the relationship between Logic Programming and
parallelism. The sources of parallelism present in Logic Programs, the
problems associated with their implementation, and some previously
proposed solutions for these problems are introduced. Finally, Goal
Independence is chosen as the primary source of parallelism in this
implementation.

• Chapter 4 starts the actual description of the execution model. Forward
and backward procedural semantics are offered for a very general model of
goal independence: Horn Clauses annotated with Conditional Graph
Expressions. Strategies for checking and generating these expressions and
a programmer's view of the system are also presented.

• Chapter 5 first presents a simple, distributed stack memory management
model, a goal scheduling strategy, and a processor state diagram, and
studies the interactions between these elements. Possible implementation
problems are then studied and alternative algorithms are proposed for
different cases of granularity and processing element number and
complexity.

Part 2 (chapters 6 and 7) is of a more detailed nature and it deals with the

actual implementation of the execution model at the abstract machine level:

• Chapter 6 introduces some of the basic techniques used to support the
algorithms described in chapters 4 and 5 at the abstract machine level.
These techniques are shown to be compatible with those of current high
performance implementations. Two basic models of backtracking after
local execution of of sibling goals, the "LGF" and "Marker" models, are
introduced.

9 0

• Chapter 7 describes the data areas and instruction set of an Abstract
Machine as extensions to the W A M . This abstract machine is shown to
support parallel execution of Logic Programs based on the algorithms
presented in previous chapters. The "Marker" model described in Chapter
6 is used in this design.

Chapter 8 finally offers conclusions and suggestions for future work. Related

material to the rest of the chapters is presented in the appendices:

• Appendix A offers a set of examples of compiled code for the Abstract
Machine of Chapter 7, explaining how to deal with several cases such as
complicated conditions in the C G E ' s and nested CGE's .

• Appendix B lists some of the results obtained from the simulations which
were used to evaluate the performance of the Abstract Machine. It also
provides details about the simulator itself and the test programs used.

Chapter 2

Logic Programming

This chapter is a brief review of basic notions of Computational Logic

leading to the idea of programming in Logic. The intention of this chapter is simply

to place the subjects which will be described in the rest of the dissertation in

perspective with respect to well established concepts in Logic Programming, but it can

also be considered a short tutorial in these subjects. For a more extensive

introduction to general aspects of Computational Logic, the reader is referred to

Kowalski's classic, Logic for Problem Solving [40]. The book by Hogger [34] offers an

excellent introduction to many aspects of Logic Programming from theoretical issues

to implementation techniques. The books by Clocksin and Mellish [16] and Clark and

McCabe [15] are recommended as tutorials on Prolog programming.

2.1 Logic

Logic provides a formal way of representing assumptions and conclusions

about any domain, and of dealing with the relationship of implication between them.

Symbolic logic is essentially a shorthand representation for traditional logic. Its basic

elements are constants, variables, functors, and predicate symbols. Constants

represent fixed objects (such as "table", "John", " 3 " ...) while variables stand for

arbitrary objects (i.e. "X"). A term is recursively defined as a constant, or a variable,

or an expression of the form

Throughout this chapter the term Logic refers to "First order predicate logic".

23

24

f (t , t)
1 ra

where f is a functor, t . t are terms, and m, the "arity" of the functor, is >

1. In this way functors are used to create compound terms (also called structured

terms). An atomic predicate is an expression of the form

P^I V

where p is a predicate symbol, t . , . . . , t are terms, and K, the "arity" of the

predicate symbol, is > 1. Atomic predicates represent relationships between terms.

Constants, variables, functors, and predicate symbols can be any mutually disjoint

sets. In order to distinguish a constant from a variable, we will give variables names

starting with a capital letter Other elements can be identified from their relative

positions.

Atomic predicates, in turn, can be combined by using logical connectives

(A ("and"), V ("or"), —• ("implication"), -> ("negation") ...). In addition, the scope

of the variables in these predicates can be delimited through quantifiers (V

("universal"), 3 ("existential")). The resulting compound predicates are the basic

sentences of Symbolic Logic. Figure 2-1 shows some examples which should illustrate

these definitions.

2.1.1 Clausal Form

The complete set of elements described above (all logical connectives 4- all

quantifiers) is redundant: some of them can be expressed as combinations of the

others. Using this property compound predicates can be conveniently expressed in the

simplest possible forms. One of the most interesting is Clausal Form where each

compound predicate is expressed as a set of simple clauses, each of which has the

form:

In order to preserve compatibility with conventional Prolog syntax.

25

Terms:

mary [constant]
X [variable]

Functors:
employee

Compound Terms:
employee(plato, salary(1500, go ld_co ins) , position(philosopher))
(The ari ty of "employee" is 3)

Predicate Symbols:
f a t h e r _ o f

Atomic Predicates:

fa ther_of (pe te r , mary) ("Peter is the father of M a r y ")

Logical Connectives:
-<
A
V

- •

=

[negation]
[and]
[or]
[implication]
[equivalence]

Quantifiers:

V [universal]
3 [existential]

Compound Predicates:

V X, 3 Y program(X) A procedural(X) — hasbug(X,Y)
("All procedural programs have a t least one bug")

Figure 2-1: The Elements of Logic

cone. cone *— cond,, cond.

where cone. , . . . , cone , cond. , cond„ are atomic predicates, and n, m
l m l n r ' '

are > 0. The atomic predicates cone . , cone are called the conclusions — r l n

of the clause, and each comma separating them represents an "V" ("or") connective.

The atomic predicates cond.. , cond are called the conditions of the clause,

26

and each comma separating them represents an "A" ("and") connective. All the

variables in all the predicates are implicitly quantified by "V" ("for all"). Thus, if the

clause contains the variables X., ..., X, clausal form is really simply a shorthand for

V X,, . . . , V X„ cone. V . . . V cone <— cond. A . . . A cond
1 JC l in l n

and it can be read as

for all Xv ..., Xk,

cone. or ... or cone 1 m
if cond f and ... and cond 1 n

If n=0 then it can be read as

for all AT,, ..., Xk,

cone, or ... or cone are always true.

and if m=0 then read

for all Xv ..., Xk,

cond} and ... and cond are always false.

Also, if m=n=0 then the clause represents the predicate that is always false, and it is

written as J_.

Clausal form has the advantage over the standard form of Logic of being

simpler and more concise, while still allowing the representation of all predicates

which can be expressed in standard form. The process of converting from standard

form to clausal form is straightforward and well known. A (Prolog) program which
1 9

performs this task automatically is shown in [16]

"For example, if we apply such an algorithm to the following example,

V X, 3 Y, program(X) A procedural(X) —• hasbug(X,Y)
we would obtain:

hasbugCX, bug(X)) «— program(X), procedural(X)

27

2.1.2 Resolution

Logic also provides mechanisms for deriving valid conclusions from a set of

axioms in a step by step manner. Each of these steps is called an inference step, the

ordered list of all those steps is called a proof, and the mechanisms used for deriving

each step are called inference rules. Although Logic provides a variety of inference

rules, there is one rule which, when applied repeatedly, and without the need to make

use of any other rule, can prove that a given conclusion follows from a set of

assumptions, provided both the conclusion and the assumptions are all written in

clausal form. This rule is resolution [68].

One of the basic mechanisms used by resolution is unification. Two atomic

predicates p (ta. . , t a) and p. (tb. . , t b) are said to be unifiable,
df J. m u x xi

if they have identical predicate symbols (i.e. p = p.), they have the same arity (i.e.

n=m), and all their terms are pairwise (i.e. ta.. vs. t b . , t a„ vs. t b „ etc.) unifiable.

Two terms, t a and t b are unifiable if the following recursive algorithm succeeds for

them:
13

1. if t a is a variable which appears in t b FAIL ; else

2. if t a is a variable, and t b is not, then SUCCEED, and substitute t b for
all occurrences of t a ; else

3. if both t a and t b are variables, then SUCCEED, keeping them as
variables, but giving them the same name. These variables are said to
share: if a substitution is done for one of them it will also be done for
the other; else

4- if t a is a constant then, if t b is a constant and both constants are
identical, SUCCEED, else FAIL; else

This "check" (referred to as the occurs check) is sometimes omitted in practical
implementations because of the overhead involved in performing it.

28

5. then t a is a structure (compound term); then, if t b is also a structure,
they have identical functors and arity, and all their respective terms are
unifiable (using this algorithm recursively), SUCCEED; else FAIL.

f a t h e r (J o h n , p e t e r) <—
father(John,mary) *—
f a the r (pe te r ,mike) <—

mother(mary.david) <—

grandfather(L,M) *- father(L,N), father(N.M)
grandfather(X,Y) <— father(X.Z), mother(Z,Y)

Figure 2-2: A Family Relationship

Let us illustrate this with an example. Recall the "set of axioms" (expressed

in clause form) regarding family relationships presented in Chapter 1 (and reproduced

in figure 2-2). In this example, in the clauses

father(John,mary) <—

grandfather(X,Y) <— fa the r (X.Z) , mother(Z,Y)

the atomic predicates f a ther (John .mary) and f a t h e r (X , Z) are unifiable: they

have the same predicate symbol (father) and arity (2), and their terms are unifiable,

using the second rule of the unification algorithm, with the substitutions (read " / "

as "is substituted by") X/john and Z/mary.

If we have two clauses, such that one of the predicate symbols to the right of

the " *— " in one of the clauses is the same (and with the same arity) as one of the

predicate symbols to the left of the " <— " in the other clause, we define these two

predicates as complementary predicates. If these two predicates are also unifiable (as

f a t h e r (j o h n . m a r y) and f a t h e r (X , Z) in the example above) we call them

unifiable complementary predicates.

29

We now have all the tools needed fo, iution. What resolution basically

tells us is that, given two clauses if we build a new clause by listing to the left of

the " *— "all the predicates to the left of the "«— "in both of the original clauses,

and doing correspondingly with those to the right, the clause that we obtain logically

follows from the two original clauses. Thus, from

f a t h e r (] o h n , p e t e r) •—
mother(mary,david) <—

we can infer

f a t h e r (J o h n , p e t e r) , mother(mary,david) «—

However, if the two clauses have unifiable complementary predicates, the resulting

clause is built the same as before, but leaving out the complementary predicates in

both sides and propagating the substitutions made by unification to the rest of the

resulting clause. Thus, from

father(John,mary) <—

grandfather(X,Y) +- fa ther (X.Z) , mother(Z.Y)

we can infer

grandfather(John,Y) «— mother(mary,Y)

which logically follows from the original two clauses.

Each such application of resolution is a resolution step. Resolution is a

correct inference rule: repeated application of resolution will always give us valid

clauses, but, if we are interested in arriving at a particular conclusion (i.e. we are

interested in proving that a particular clause follows from our set of axioms), there is

no guarantee that we will come to the one we want to prove. Fortunately, resolution

The variables in the two clauses all have to be different. This is always true with clauses
since the variables in different clauses are by definition distinct. However, the fact that they
may have the same "name" can be confusing! We have provided different names for the
variables in the example in order to avoid this problem.

30

is also refutation complete. In other words, if resolution is given a set of inconsistent

rules (i.e. at least one of them does not follow from the others) the one and only

conclusion it will arrive at is the empty clause, " J _ " (i.e. "failure"). Fur thermore , it is

guaranteed to arrive at tha t conclusion in a finite number of steps . This is an

extremely useful property because now we can use resolution to prove tha t a predicate

p follows from a set of axioms by using refutation: given a set of clauses which are

consistent, p is a consequence of them, if we can prove that a new set, formed by

including ->p in the original set, is inconsistent. This means tha t , to prove tha t p

follows from our set of clauses, we just have to include " •«—p" in it, and apply

resolution repeatedly. If p really does follow from our set of premises the result will

eventually be the empty clause "_|_". Figure 2-3 shows one way in which resolution

would prove tha t in the example of figure 2-2 John is the grandfather of David.

The problem with resolution, though, is that very often there are many pairs

of unifiable complementary terms to choose from at each step, and there is no

indication as to which which one(s) should be selected. A sequence of such choices and

the associated resolution steps is called a pa th . The set of all the possible pa ths

which can be explored in the search for a solution is called the s earch space .

Practical resolution systems often use heur i s t i c s ("rules of t h u m b ") which help make

choices which will lead to a solution faster. These heuristics can be based on

parameters such as the number of variables in each goal being considered or the

known number of solutions for each goal [20]. In any case, if all possible paths are

eventually tried (i.e. if the whole search space is explored), and the predicate being

proved is actually a valid conclusion from the set of axioms, then a solution will

eventually be found, although it can take a vast amount of time to do so. On the

Provided a fair method is used to select clauses. We will return to this point later, in the
discussion of Prolog.

31

• Prove that " g r a n d f a t h e r (J o h n , d a v i d) <— " follows from the set of axioms in
figure 2-2. Resolution proof:

I. Add < — g r a n d f a t h e r (J o h n , d a v i d) (i.e. the same predicate, but negated^
to the set of rules:

clause 1
clause 2
clause 3
clause 4
clause 5
clause 6
clause 7

<— grandfather(John,david)
fatherCjohn,peter) <—

father(John,mary) <—
father(peter,ml)ce) <—

mother(mary,davld) <—

grandfather(L.M) •— father(L.N), father(N.M)
grandfather(X.Y) <— father(X.Z), mother(Z,Y)

2. Resolution step (clause 1 and 7): substitutions X/john, Y/david; resulting
clause:

clause 8: <— father(John,2'), mother(Z',david)

3. Resolution step (clause 3 and 8): substitution Z'/mary; resulting clause:

clause 9: <— mother(mary,davld)

4. Resolution step (clause 5 and 9): substitutions none; resulting clause:

clause 10: J_

• So " g r a n d f a t h e r (J o h n , d a v i d) «— " is proved.

F i g u r e 2 -3: Proving that John is the grandfather of David

other hand, if the predicate being proved actually does not follow from the axioms, an

additional problem arises: since resolution is o n l y c o m p l e t e for re fu ta t ions , then

the search is not guaranteed to finish at all! However, despite these limitations,

resolution is in practice an extremely useful tool for automated deduction and, as we

will see in the next sections, the basis for the concept of programming in Logic.

32

2.1.3 Horn Clauses

In many applications of logic, it is sufficient to restrict the set of possible

representations of clauses to those with at most one conclusion. Clauses in this form

are called Horn Clauses and they are just a special case of clausal form: a Horn

clause is a clause which has only 0 or 1 atomic predicates to the left of the

implication {*—)• It has been proved that any problem which can be expressed in

logic can be expressed using the Horn clause formalism [40]. As an example, all the

clauses in figure 2-3 are Horn clauses.

2.2 Logic as a Programming Language

In the previous sections we have presented symbolic logic predicates as an

elegant and concise way of expressing knowledge, and clausal form as a simple way of

writing these predicates. We have also shown how a simple inference rule, resolution,

can be used to infer conclusions from this knowledge which are logically sound.

Resolution appears to be a very attractive idea, not only for finding

conclusions in logic systems, but also for solving a more general class of

computational problems. The simplicity and iterative nature of resolution make it

possible to take advantage of the expressive power of logic, while keeping simple

procedural semantics which are suitable for computer implementation. Thus, the idea

arises of using Logic as a Computer Programming Language. The advantages of such

a choice were discussed in Chapter 1. Logic programs are usually written using Horn

clauses, because resolution with Horn clauses is relatively simple. Unless otherwise

noted, from now on the term "Logic Program" will refer to a Horn clause program.

33

2.2.1 S y n t a x of H o r n C l a u s e P r o g r a m s

A logic p r o g r a m is a set of Horn clauses. A horn clause is an expression of

the form

head : - g o a l ^ g o a l n .

where the only conclusion ("head") is called the h e a d of the clause and the

conditions " g o a l . , g o a l ", (n > 0) are called the b o d y of the clause. All

h e a d , g o a l . , . . . , g ° a l n
 a r e atomic predicates, as defined previously. The

predicates in the body are also called goa l s or p r o c e d u r e calls . If n=0 (i.e. the body

is empty) the clause is called a fact , and the ":-" symbol is omit ted. Otherwise the

clause is said to be a rule . A headless clause is called a query . A set of clauses

whose heads all have the same predicate symbol and arity is called a p r o c e d u r e or a

re lat ion . The terms in an atomic predicate are also called its a r g u m e n t s .

An example will make these definitions more clear: figure 2-4 shows the

family relationship example of figure 2-2 writ ten in this syntax.

" g r a n d f a t h e r (L , M) " is the head of one of the clauses of the " g r a n d f a t h e r "

procedure. I ts arguments are the variables " L " and "M". Goals " f a t h e r (L ,N) ,

f a t h e r (N , M) " form its body. The " g r a n d f a t h e r " procedure itself comprises the

two " g r a n d f a t h e r " clauses.

1 f\

Note that this notation is identical to the one given for the general form of clauses, but
using simpler symbols for those which are awkward to represent in a computer (for example
«— is replaced by " : -") . Also, some new terminology such as head, body, and goals etc. is
introduced in order to more easily refer to the different parts of the clause.

34

f a t h e r (J o h n , p e t e r) .
f a the r (john ,mary) .
f a the r (pe t e r , mllce) .

mother(mary,david) .

grandfather(L,M) : - f a ther (L .N) , father(N,M).
grandfather(X,Y) : - f a the r (X.Z) , mother(Z,Y).

Figure 2-4: A Family Relationship Logic Program

2.2.2 Declarative Semantics

The declarative reading of the clauses in a logic program derives directly

from the one given for the general clause form. Recalling the assumptions made

therein, if the Horn clause

head : - goal1 # . . . , goa l n .

contains the variables X., ..., X, , then the expression above is a shorthand for

VXj V X̂ head «- goal t A . . . A goaln

therefore, a rule (n > 0) can be read as

for all Xv ..., Xk,

head
if goal. and ... and goal

and a fact (n=0) can be read as

for all Xv ..., Xk,

head is always true.

A query (the headless clause) can be read as

For which Xv ..., Xk

Model-theoretic and fixpoint declarative semantics have been also studied, see [83].

35

are body. and ... and body always true?

Also, if m=n=0 then the clause represents the predicate that is always false, and it can

be read as "fail".

2.2.3 P r o c e d u r a l Semant ics

The execution of most logic programming systems is based on top-down (or

18 "goal oriented") resolution , which will be introduced shortly. Consistent with the

refutation method used in any resolution proof, if the question to be answered is

whether the fact

queryA queryn .

is true, the actual query posed to the system would be the same fact, but negated:

? : - query t , queryn .

(the " ? " mark is included in front of the query to emphasize that it is actually a

question). Execution of a program is invoked by this query, and it amounts to a series

of top-down resolution steps, also called top-down derivations or computations.

Each such step comprises the following actions :

1. Select one of the procedure calls in the query.

• If there are none, exit, and report "YES. " /success/ / / variables in
the query have been bound (substituted), report the substitutions.

2. Find the clauses whose head will unify with the selected call.

• / / none are found, exit, and report "NO . " /failure/

3. Select one of those clauses for the next step.

4- Apply resolution to the selected clause and procedure call. A new

18 Bottom up systems have also been proposed, but are to date less efficient than top-down
systems, specially in the presence of recursion [4j.

19 Note that this is the basic resolution algorithm, but with some "built-in" heuristics: for
example, always using the most current clause generated (starting with the query) as one of
the two clauses being resolved. This algorithm is, however, still "refutation complete".

36

(headless) clause is ^...ained which is basically the query, but with the
body of the selected clause in place of the unified procedure call, and the
variable substitutions resulting from unification extended to the whole
clause.

5. This new clause is considered the new query, and execution continues at
1 above.

As seen above, the process continues until the query is reduced to the empty

clause (and "success" is reported), or until no head can be found that matches any of

the calls in the query (and the reported result is "failure"). The example in figure 2-3

happens to follow top-down resolution, and is therefore one of the possible executions

of a logic program whose sentences are those in figure 2-4 in response to the query

" ? : - g r a n d f a t h e r (J o h n , d a v i d) . ". Other possible queries to that same

program, and the responses obtained by applying the above algorithm are offered in

figure 2-5. As in the general resolution algorithm, each possible set of steps leading

from a query to a solution is called an execution path, and all possible paths which

can be explored while looking for an answer to a given query form the search space

for that query and for that particular program.

2.2.4 Non-Determinism and the Control Strategy

It should be fairly clear from the description above that there are two

distinct components during the execution of a Logic Program:

1. The program, i.e. the set of rules and facts, provided by the user
(including the query).

2. An evaluator of the program, which is in charge of answering the query
using the top-down resolution algorithm given above.

It should also be clear from that description that there are two occasions

(steps 1 and 3 in the top-down resolution algorithm) in which the next step to be

Query/System Response: Translation:

? : - f a the r (John, pe t e r) . "Is John the father of Peter?"
YES.

? : - father(X,mike) . "Who is the father of Mike?"
X=peter.

? : - grandf a ther(John,mike) . "Is John the grandfather of Mike?"
YES.

? : - mother(mary,peter) . "Is Mary the mother of Peter?"
NO.

? : - grandfather(]ohn,W) . "Who is John the grandfather of?"
W=mike .; also W=david.

Figure 2-5: Results of Top-down Resolution for the Program in Figure 2-4

taken by the program evaluator is not uniquely determined. This is the origin of

two basic types of non-determinism present in Logic programs [40]:

• non-determinism.: if several clause heads unify with the selected goal,

step 3 does not determine, which of them is to be selected. The policy

used by the program evaluator for performing this selection is called the
search rule. The search rule also determines whether the remaining
choices will also be eventually tried or not. This results in two subtypes of
nondeterminism.:

o "Don't care" non-determinism,: once a choice is made the

system commits to that choice.

o "Don't know" non-determinism • more than one of the possible

choices may eventually be tried in the search for a solution.

• non-determinism0: if the current query contains several goals (procedure

calls) step 1 does not determine^ which one of them will be selected for

execution next. The policy used by the program evaluator for performing
this selection is called the computation rule.

38

The search rule and the computation rule together define the control

strategy used by the evaluator. It is important to note that modifying the search

rule affects the order and number of solutions which can be obtained from the

system: although top-down resolution does not impose a particular order in the choices

made by the search rule, completeness (i.e. the guarantee of finding all possible

solutions) is only preserved if a fair rule is chosen, i.e. one which will assure that all

possible paths in the search space will eventually be explored. Systems which use

only "don't care' non-determinism, are therefore incomplete. Furthermore, they can

only provide at most one solution path for a given query. Systems which use "don't

know" non-determinism, can provide more than one solution to a given query. Their

degree of completeness depends on the type of search rule being used. Since most

computation rules are exhaustive (i.e. they will eventually invoke all goals in the

body of a clause) the choice of one or another will only affect the behavior of the

system, but not the number of solutions found.

2.2.5 The A N D / O R Tree Representation of the Search Space

The different execution paths which are possible for a given query and

program (i.e. the search space) are often represented pictorially in the form of an

(inverted) AND/OR tree. The root of the tree is the query and each branch is a top-

down derivation. Each node represents an application of either the search rule

("OR-nodes") or the computation rule ("AND-nodes"). Consistent with the

exhaustive computation rules used in Logic Programs, all possible paths under an

AND-node have to be explored. This is represented by linking the branches with an

arc. On the other hand, the paths which are explored under an OR-node and the order

in which it is done depend on the search rule being used. Figure 2-6 is an AND/OR

tree representation of the search space for the query and program of figure 2-3.

39

:- grandfatherQ'ohn, david).

L/john
M/david

X/john
Y/david

grandfather(john,david) <-... grandfatherO'ohn, david) <-...

father(N, david)

N/peter \N/mary

father(john, peter). \ (j^*)
fathertjohn, mary).

fatherQ'ohn, Z)

Z/p

fatherO'ohn, peter).

Z/mary

fatherQ'ohn, mary)

mother(mary, david).

(SUCCESS) rtT)

Figure 2-6: AND/OR Tree Representation of a Search Space

2.2.6 The Logical Variable

One of the most characteristic features of Logic Programming is the behavior

of the Logical variable. For example, it exhibits bidirectionality, based on the

bidirectionality of unification: the same variable in the same clause can serve as either

an input or an output parameter depending on what it is being unified against. For

example, when the query " ? : - g r a n d f a t h e r (J o h n , david) . " in figure 2-5 is

unified with the head of the clause

40

grandfather U,M) : - f a ther (L ,N) , father(N,M).

M acts as an input variable, which conveys information from the query to the clause.

On the other hand, when answering the query " ? : - g r a n d f a t h e r (John, W) . " , M

acts as an output variable, conveying information (the answer W=mlke .) from the

clause to the query. Thus, the same procedure can be executed with different patterns

of input and output parameters. This also means that (pure) Logic Programs, if

correctly stated, can be run "backwards" producing their inputs from their outputs: a

procedure to perform square roots can be used to square numbers, and procedures

which compute derivatives can be used to compute integrals [6].

Another peculiar characteristic of the logical variable is that a procedure can

construct structures containing variables which can be "filled in" later by other

procedures. These structures are said to be partially instantiated. This technique has
on

proved very useful and is widely used in logic programming practice .

2.2.7 Transparent Control

Theoretically, in a logic programming system the programmer does not need

to be concerned with the control strategy used by the program evaluator. Provided a

control strategy which preserves completeness is used, the questions which are posed

to the system are guaranteed to be correctly answered by the program evaluator. We

refer to such a system as a transparent control system: trie programmer only needs to

provide a list of axioms (knowledge) about a particular problem containing enough

information to solve it, and the program evaluator will "do the work". This view of

logic programming is clearly very appealing, and it can actually be implemented in

relatively simple applications, such as in database query.

For example, Warren has used it for compiler writing in Prolog [86] and Gregory [30] and
Shapiro [72] in the "incomplete message" communication technique often used in their parallel
languages.

41

i or most applications, though, it would be necessary to devise a far more

sophisticated control strategy than any of those known today to be able to solve any

substantial problem from only its declarative description in a reasonable amount of

time. Therefore, practical systems offer the programmer means to affect the control

strategy used by the program evaluator in various ways. For example, the search rule

can be forced to explore some candidate clauses before (or instead of) others, perhaps

because it is known that they are more likely to find a solution. This control

information can be provided explicitly through annotations. Annotations can appear

embedded within the original clauses or in a separate list. The set of possible

annotations is called the control language. Alternatively, control information can

be expressed implicitly, in the ordering of the clauses within the program, and in the

ordering of the goals within the body of a clause.

2.2.8 Prolog

Prolog*" (PROgramming in LOGic) was the first practical logic

programming language and it still is the most widely used and efficiently implemented

today. It was devised by the group led by A. Colmenauer at the U. of Marseille. They

chose for Prolog an extremely simple implicit control strategy, based on the ordering

of clauses within the program, and on the ordering of the goals in the bodies of the

clauses. The following two rules determine Prolog's control strategy:

• Search rule: given a goal, the first clause whose head unifies with the goal,
scanning from top to bottom of the program, is selected. Then the goals in
the body of the clause are executed in the order determined by the
computation rule below. If the choice does not lead to a solution (i.e. it
leads to "failure"), all resolution steps and variable substitutions (i.e. all
"bindings") done since the last such choice are undone, the next clause
whose head matches with the goal is selected, and execution continues
from there. This technique is called backtracking.

21
We only have space for outlining the basic elements of the language here. A more detailed

description can be found in [16], or in the DEC-10 Prolog [58] or Quintus Prolog [64] user's
manuals, which are some of the fastest, and most widely used current implementations.

42

• Computation rule: once a clause is selected (using the search rule above),
the goals in the body of the clause are executed one by one in left-to-right
order.

This control strategy is called depth-first search with backtracking and its main

advantages are its simplicity and its potential for very efficient implementation.

Prolog supports "don't know" non-determinism through backtracking. It also

provides a mechanism (the "cut", to be explained later) for achieving "don't care"

non-determinism when needed. Figure 2-7 shows a trace of the execution of Prolog

while evaluating the query " ? : - g r a n d f a t h e r (John, X) . " in the family relation

program of figure 2-4.

As a further example, the following Prolog program will check whether a

number is a positive integer or not:

i s _ p o s _ i n t e g e r (0) .

i s_pos_ in teger (X) : - i s_pos_ in teger (Y) , X I s Y+l.

The predicates " i s " and " + " are built into the language. This program has a nice

declarative interpretation: it defines an integer recursively as either zero, or another

integer incremented by one. This happens to be an almost formal definition of integer

numbers! Interestingly, the program can also be used to generate positive integers:

the response to the query

? i s_pos_ ln teger (X) .

is 0, and then 1,2,3,4... : the list of all positive integer numbers.

Prolog offers several built-in predicates (such as " i s " and " + ") which make

the task of programming problems other than simple database queries (i.e. those

illustrated thus far) somewhat easier. Some of these predicates can be expressed in

terms of the basic language and are there only for convenience. For example, lists can

always be written as compound terms (structures): the list whose elements are

43

Program:

father(john,peter) .
father(john.mary) .
father(peter,mike).
mother(mary,david).
grandfather^,M) :- father(L.N), father(N.M) .
grandfather(X,Y) :- father(X.Z), mother(Z.Y).

Query:

?:- grandfather(G,david).

Execution Steps [current state:) Next step; variable bindings

Step 1: ?:- grandfather^,david) select 1st. 'grandfather" clause which
unifies: grandfather(L,M)...; L/G. M/david

Step 2: father(G,N), father(N,david) select leftmost goal, select 1st."father"
clause which unifies; G/john, N/peter

Step 3: father(peter,david) no clause unifies with this one, FAIL:
return to the last choice point (step 2);
undo G/john, N/peter

Step 4: father(G,N), father(N,david) select leftmost goal, select next "father"
clause which unifies; G/john, N/mary

Step 5: father(mary,david) no clause unifies with this one, FAIL:
return to the last choice point (step 2);
undo G/john, N/mary

Step 6: father(G.N), father(N,david) select leftmost goal, select next "father"
clause which unifies; G/peter N/mlke

Step 7: father(mike,david) no clause unifies with this one, FAIL:
return to the last choice point (step 2);
undo G/peter, N/mike

Step 8: father(G.N), father(N,david) there are no more "father* clauses, FAIL:
return to last choice point (step 1), undo
L/G, M/david

Step 9: ?:- grandfather(G,david) select next "grandfather" clause which

unifies: grandfather(X.Y)...; X/G, Y/david
Step 10: father(G,Z), mother(Z,david) select leftmost goal, select 1st."father"

clause which unifies; G/john, Z/peter
Step 11: mother(peter,david) no clause unifies with this one, FAIL:

return to the last choice point (step 10);
undo G/john, Z/peter

Step 12: father(G.Z), mother(Z,david) select leftmost goal, select next "father"

clause which unifies; G/john, Z/mary
Step 13: mother(peter,david) this fact is unified, no bindings made.
Step 14: J_ SUCCESS: report query bindings: "G=john"

Answer:

G = "john"

F i g u r e 2 -7 : Prolog Execution of the Family Relationship Program

a , b , c , d can be represented as the s t ructure . (a , . (b , . (c , . (d . [])))) , where the

constant " [] " represents the empty list. Prolog, however, provides a more compact

notation: the list above can be represented in Prolog as [a , b , c , d] . Also, in Prolog,

the notation [X| Y] represents the list whose head (or "first e lement") is X and whose

44

tail (or "rest of the elements") is Y. 1 . if we unify [a , b , c , d] with [X|Y] the

resulting substitutions will be X/a and Y / [b , c , d] . Several other built-in predicates

(their syntax often a function of the particular implementation) support more

conventional computer language features such as integer arithmetic, input/output, file

access, success and failure, term classification, and data structures. Often there are

also debugging facilities.

Some of the built-in predicates of Prolog and the general programming style

will be introduced in the following examples. As a first example, we will take the

problem of appending two lists, i.e. a program which will answer the query

? : - a p p e n d ([a , b] , [1 , 2 , 3] . R e s u l t) .

with

R e s u l t = [a . b , l , 2 , 3]

The following is an "append" program written in Prolog:

append ([] , L i s t , L i s t) .
append([Head I T a l l] , L i s t 2 , [H e a d I T a l l a n d l l s t 2]) : -

append(Tal l , L l s t 2 , T a l l a n d l l s t 2) .

nn

The declarative reading is clear :

• Clause 1: The result of appending the empty list to a list is the same list.

• Clause 2: The result of appending Listl (i.e. "[Head|Tail]") and List2 is a
list whose head (first element) is the same as the head of Listl, and whose
tail is the result of appending the tail of Listl to List2.

""A more "intelligible" way of writing this program (though less efficient) is:

append([] .List,List) .
append(Listl. Llst2, Result):-

[Head I Tall] = Listl,

append(Tail. List2, Tallandllst2),
Result = [HeadlTailandlist2].

45

Procedurally, execu. .. of the query above would start by unifying this query

with the head of the first clause (Head /a , T a l l / [b] , L l s t 2 / [1 , 2 , 3] ,

R e s u l t / [a | T a l l a n d l l s t 2]) . Note that the result is starting to be constructed as

the list " [a I T a l l a n d l l s t 2] ", with T a i l a n d l i s t 2 still a (free) variable. The

next step (body of the first append clause) is to call "append" (recursively) with the

appropriate substitutions:

: - append([b] , [1 , 2 , 3] , T a l l a n d l i s t 2) .

This new query unifies again with the first "append" clause. The substitutions are

now H e a d ' / b , T a i l ' / C] , L l s t 2 ' / [1 , 2 . 3] and T a l l a n d l l s t 2 will be

constructed as " [b I T a l l a n d l l s t 2 '] " where T a l l a n d l l s t 2 ' is a new (free)

variable. The next step calls "append" again with the appropriate substitutions:

: - append([] , [1 , 2 , 3] , T a i l a n d l i s t 2 ') .

which unifies with the second clause ([] does not unify with [X|Y] because it is a

constant, being unified with a list -i.e. a compound term) with the substitution

T a l l a n d l l s t 2 * / [1 , 2 , 3] and we finally succeed. Since we have gathered the

substitutions

Resul t=[a I T a l l a n d l l s t 2]
Ta i l and l l s t 2= [b I T a i l a n d l i s t 2 ']
T a l l a n d l i s t 2 ' = [1 , 2 , 3]

we can report the result

R e s u l t = [a , b , 1 , 2 , 3]

The following program works in a very similar way to append:

s p l i t ([A | X] , P i v o t , Y , [A | Z]) : - A =< P ivo t , s p l l t (X , P i v o t , Y , Z) .
sp l i t ([AlX] .P ivo t , [AlY] ,Z) : - A > P ivo t , s p l i t (X , P i v o t , Y , Z) .
s p l i t ([] , _ , [] , []) .

it splits a list into two lists, one containing all elements which are < than the

constant in P i v o t , and the other containing the rest of the elements. Thus, the

answer to

46

? : - s p l i t ([1 . 5 , 7 , 6 , 3 , 2 , 9] , 5, B i g l i s t , b m i l l l i s t) .

would be

B i g l i s t = [7 , 6 , 9]
S m a l l l i s t = [l , 3 , 2]

The first clause is tried first. If A =< P i v o t succeeds, then A is made part of

S m a l l l l s t . If the test fails, then the other clause is tried and the result is made part

of B i g l i s t .

With the aid of the two procedures defined above, we can write a simple

"quicksort" [33] algorithm:

qsortCH , []) .
qsort([Pivot I Rest].Orderedlist) :- spllt(Rest,Pivot,Big,Small),

qsort(Blg, Sortedbig),
qsort(Small, Sortedsmall),
append(Sortedbig, [PivotISortedsmall], Orderedlist).

split([A|X].Pivot,Y,[A|Z]) :- A =< Pivot, split(X,Pivot,Y,Z).
split([A|X].Pivot,[AlY],Z) :- A > Pivot, split(X,Pivot,Y,Z).
split([]._. [].[]).

append([Head I T a i l] , L i s t 2 , [H e a d | T a i l a n d l i s t 2]) : -
append(Tail , L i s t 2 , T a i l a n d l i s t 2) .

a p p e n d ([] . L i s t , L i s t) .

which will provide answers such as

?:- qsort([3,6,7,2.1], Orderedlist).

Orderedlist=[1,2,3,6,7]

The "quicksort" algorithm constructs an ordered copy of a given list by

taking the first element of the list (the Pivot) and splitting the rest of the list into

two, one with elements which are "bigger" and another one with elements which are

"smaller". If the same algorithm is repeated for the new lists obtained until only

empty lists remain the result is an ordered version of the original list.

!
i

i

47

As mentioned before, Prolog also offers a way of controlling backtracking,

which is basically an implementation of "don't care" non-determinism: the "cut"

(!). "Cut" basically commits the system to all the choices made since the clause in

which the cut is encountered was called. Cut is often used by programmers for

example to eliminate alternate execution paths when it can be determined that the

solution obtained thus far is valid and there is no need for another one. It is also used

to limit memory use in certain implementations because it frees resources and to avoid

possible loops due to the depth-first search procedure. Another interesting feature is

the use of assert and retract. Using them, clauses can be included or taken out of

the program dynamically. Finally, a number of meta-level predicates are included

which can construct clauses, or read parts of the program as data. These facilities

make it possible to write meta-level interpreters [17] in Prolog.

Side-effects such as cut, assert and retract can be very useful in practice, but

they are fairly controversial because of their harm to the declarative semantics of the

language: programs which contain these side effects can only be understood by

referring to procedural semantics. Unfortunately, there are often cases where even a

correctly written declarative description of a problem using no side effects will not

give the expected results when executed by a Prolog system. This is due to the fact

that the depth-first search control strategy used in Prolog does not achieve

completeness: it is not fair, because the top clauses in the program are always tried

first. If the search space is infinite (which is often the case if there are recursive rules

in the program) some clauses may never be reached. This can lead to loops, so that

attention to procedural semantics, and careful ordering of the clauses (and, sometimes,

even the use of cut) are often needed to make a program run correctly. Correctness,

however, is still achieved: i.e. all solutions obtained from a (side effect free) Prolog

program correspond to its declarative semantics, although not all of the possible

solutions may be reached.

48

respite its incompleteness, Prolog is in practice an extremely useful and

efficiently implemented programming language [76]. It was already pointed out how

most practical Logic Programming systems trade completeness for efficiency. In this

sense it is interesting to note that while many proposals for new Logic Programming

languages attempt to achieve "more completeness" than Prolog, many others are

purposedly "less complete" (in the sense that they would obtain a smaller set of

answers than Prolog), their incompleteness again being defended with implementation

efficiency arguments. This is the case, for example, of systems which only support

"don't care" non-determinism. In sequential systems Prolog then seems to offer still

today a compromise position which has made it useful in applications such as

relational databases, mathematical logic, abstract problem solving, natural language

understanding [61] , architectural design, symbolic equation solving, plane geometry,

learning, planning, robotics, compiler design, and in many other areas not limited to

Artificial Intelligence.

2.3 Chapter Summary

This chapter has dealt with well established concepts in Logic Programming.

The clausal form for Symbolic Logic was introduced and Resolution presented as a

simple inference rule capable of proving theorems by refutation. It was also shown

how this same mechanism could be used to answer questions by inferring the correct

answers from a set of axioms. This led to the idea of Programming in Logic. The

declarative and procedural semantics of Horn clause Logic Programs were then

presented pointing out the separation of the program from the control strategy. The

Language Prolog was then introduced as an example of a practical Logic Programming

Language with a particular control strategy. Other control strategies leading to the

idea of executing Logic Programs in parallel will be presented in the next chapter.

Chapter 3

Parallelism and Logic Programs

This chapter deals with the relationship between Logic Programming and

parallelism. Based on the definition of top-down resolution, and the syntax and

semantics of Logic Programs offered in Chapter 1, the different sources of parallelism

offered by the procedural interpretation of Logic are introduced. The problems

associated with the implementation of some of these sources in practice are then

discussed. Finally, a general approach is proposed for the implementation of Logic

Programs in parallel which will attempt to solve such problems in an efficient way.

This approach will guide the design of the execution model of the following chapters.

3.1 Para l l e l i sm in Logic P r o g r a m s

It was already mentioned in Chapter 1 how the renewed interest in massively

parallel architectures and the realization of the complexity involved in programming

such architectures has spurred increasing attention to Logic Programming languages

(and other declarative formalisms) and their computational models. The relationship

between Logic Programming and parallelism is based on the "freedom" (non-

determinism) which the program evaluator has in choosing execution paths: a

possibility which remains open in the formulation of resolution is executing several of

those paths in parallel. There are two basic lines of reasoning which make it an

attractive idea to exploit this potential parallelism.

From the language research point of view an area of interest is to approach

49

50

the initial goal of preserving the declarative nature of Logic in logic programming

languages. In order to achieve this goal, "features" which can only be explained

through procedural considerations have to be avoided. A resolution complete search

strategy, more sophisticated than Prolog's simple depth-first search with

backtracking, is required to achieve such behavior. One of the reasons why

parallelism comes into play in this area is that many resolution complete search

strategies often lend themselves naturally to parallel execution.

From the applications point of view, one of the most compelling issues is, of

course, performance. In order to meet the requirements of many present and future

applications, higher inference speeds will be needed than those which can be

reasonably expected from a sequential von-Neumann machine using today's

technology or that of the near future. The opportunity for parallel execution offered

by Logic Programs can be used to exploit the performance potential of new, parallel

architectures.

3.1.1 Sources of Parallelism

As mentioned above, the two basic types of non-determinism present in the

procedural interpretation of a Logic Program as a top-down resolution proof are also

the origins of the two main sources of parallelism present in Logic Programs [19]:

• OR-Parallelism: a process can be assigned to solve the body of every
clause that' is active, i.e. every clause whose head unifies with a given
goal (hon-determinism J .

• AND-Para l l e l i sm: a process can be assigned to solve each of the goals
in the body of an active clause ^non-determinism^.

In the above definitions a process can basically be viewed as an independent

Logic Program evaluator. Note how AND- and OR-Parallelism refer to the parallel

exploration of the paths under the AND and OR nodes of the AND-OR tree

representation of the search space mentioned in the previous chapter.

51

In addition to the two basic types of parallelism presented a- , other

lower-level types of parallelism which are not based on non-determinism are also

possible:

• Stream Parallelism: several processes can evaluate complex data
structures incrementally, in parallel with the process which is producing
them.

• Search Parallelism: the program can be divided into disjoint sets of
clauses so that several processes can search for clauses whose heads
unify with a given goal in parallel, each working on a different set.

Yet another possible source of parallelism is

• Unification Parallelism: when unifying a goal with the head of a
clause, several pairs of corresponding terms (arguments) can be unified
in parallel.

3.1.2 An Example Showing Different Types of Parallelism

In order to better understand the definitions of the previous section, we will

follow the execution of a simple example showing the points where parallel execution

is possible. For the rest of this section we will refer to the Logic Program in figure 3-1

which represents a simple database. Suppose the following query is posed to the

system:

? : - crew(Memberl, l u l s , boing77) .

i.e. we are trying to set up a a suitable crew for a "boing77" aircraft, and we are

asking the system to find somebody which can be the first member of the crew, and to

check whether l u i s can be the other member. The only candidate clause for

unification with this query is the "crew" clause. Note that the actions of unifying

Memberl with X, l u i s with Y, and bo ing77 with bo ing77 are all independent and

can be done in parallel (unification parallelism). Since this unification succeeds, the

query is reduced to

: - qualified(Memberl , p i l o t) , q u a l i f i e d (l u i s , radlo_operator) .

52

These two problems (finding, . qualified pilot, and checking whether l u i s is a

qualified radio operator) are also independent. Therefore, a different process can be in

charge of each of these tasks ((goal independence) AND-Parallelism).

crev(X, Y. boing77):- qualifled(X, p i l o t) , qualifled(Y, radio_operator).

quallfied(X, p i l o t) : - has_llcense(X, t y p e (c i v i l)) ,
hasjnedical(X, c l a s s I I I) .

quallfied(X, p i l o t) : - has_license(X, type(mil i tary)) , has_rating(X, c i v i l) ,
has medical(X, c l a s s I I I) .

has_license(ian.
has_llcense(pat,
has_license(sablna,
has_l icense(lo la ,
has license(manual,

type(c iv i l))
type(c iv i l))
type(c iv i l))
type(c iv l l))
type(c iv i l))

has_llcense(Javier, type(military))
has_license(Jaime, type(military))
has_l icense(lu is , type(military))
has_license(yayo, type(military))
has_l icense(fe l ipe . type(military))

hasjrating(Javier, c i v i l) .
hasjrating(Jairae, c i v i l) .
has_ratlng(yayo, c i v i l) .

hasjnedical(sablna,classIII)
hasjnedical(pat, c l a s s l l) .
hasjnedical (manual . c lassIII)
hasjnedical (lo la , c la s s l) .
hasjnedical (ian, c l a s s I I I) .

hasjnedlcaKjavier ,c lass l l) .
hasjnedical (Jaime, c l a s s I I I) .
hasjnedical (l u i s , c l a s s l) .
hasjnedical (yayo, c l a s s I I I) .
has jnedica l (fe l ipe .c lass l) .

qualified (Z, radlojsperator) miscjqual(Z,Qual_list),
isjLn_llst(radioj3perator, Qual_llst) ,

miscjqual (ian, [radiojjperator, mechanic, navigator, scubajiiver])
mlscjqual (l u l s , [mechanic, navigator, instructor, radiojsperatorj) .
mlsc_qual (/e l ipe , [Instructor, mecnanicj) .

i s j ln_list(Element,
i s in list(Element,

[Flrstjslement I Rest]):-
[First element I Rest]):-

Element = First jslement.
i s in list(Element, Rest)

Figure 3-1: Fictional Aviation Administration's (FAA) Database

Let us first follow the execution of the process in charge of solving the

leftmost goal:

: - qualifled(Memberl , p i l o t) .

This goal matches two clauses in the program,

53

quallfied(X, pilot):- has_license(X, type(civil)),
has_medical(X, classIII).

qualified(X, pilot):- has_license(X. type(military)),
has_rating(X, civil),
has_medical(X, classIII).

describing two ways the qualifications required for flying civil aircraft can be met.

Clearly, two independent processes can be used again: one looking for civilian pilots

(executing the first clause) and the other one looking for military pilots which have

obtained a civil rating (second clause). This is an example of OR-Parallelism.

The first one of the above mentioned processes would be in charge of solving

: - has_llcense(Memberl, t y p e (c l v i l)) , has_medical(Memberl, c l a s s I I I) .

Note that now the two goals in the body of the cause are not independent. We

cannot simply go ahead and evaluate " h a s _ l i c e n s e (Memberl, type (c i v i l)) "

and " h a s _ m e d i c a l (Memberl , c l a s s I I I) " in parallel, because they will

independently generate a value for "Memberl" but both values might not be the

same, and this is required by the semantics of the clause. For example,

" h a s _ l i c e n s e (Memberl. type (c i v i l)) " could find Memberl/Ian and

"has_medlcal(Memberl, c l a s s I I I) " could find Memberl/Sabina. This is

called a variable binding conflict, one of the problems posed by AND-Parallelism

in practice. The simplest way of dealing with this variable binding conflict is to

execute the goals sequentially, one after the other: first a solution is found for

: - has_license(Memberl, t y p e (c i v i l)) , . . .

using the first " h a s _ l l c e n s e " clause. The substitution obtained (Memberl/lan) is

then propagated, so that the next goal is now simply

:- has_medical(ian, type(civil)).

Now it is easy to find the clause which unifies with this goal (the fifth clause

of the "has_medlcal" procedure). However, in order to show the usefulness of

54

search parallelism, suppose that the nun. of clauses in this procedure were large:

then, it might take a long time to explore all the possible clauses looking for the

appropriate one. An alternative would be to divide the procedure into several sets of

clauses, and use a different process to scan each set independently for the the sought

for clause. This is an example of search parallelism.

Let us now return to the AND-Parallel process which was left in charge of

finding whether l u i s is a qualified r a d i o _ o p e r a t o r at the first clause in the

program. This process would be in charge of the execution of

: - q u a l i f i e d C l u i s , r ad lo_ope ra to r) .

which is reduced to

: - m i s c _ q u a l (l u l s , Q u a l _ l i s t) , i s _ i n _ l i s t (r a d i o _ o p e r a t o r , Q u a l _ l l s t) .

A variable binding conflict can also appear in this clause, since the variable

Q u a l _ l i s t is common to both goals. The same technique used before (sequential

execution) could be applied here. However, this time a different technique (stream

communication) will be used. Note that the purpose • of calling

" m i s c _ q u a l (l u i s , Q u a l _ l i s t) " is to produce a list of qualifications for l u i s ,

and this is done during the unification of the call with

misc_qua l (lu i s , [mechanic, navigator, instructor , radio_operator]) .

The purpose of " i s _ i n _ l i s t (r a d i o _ o p e r a t o r , Q u a l _ l l s t) ", in turn, is to

look at the elements of the list one by one and check if r a d i o _ o p e r a t o r is in it. In

the sequential execution approach this would be done in two sequential steps: first

" m i s c _ q u a l " would produce the entire list, and then, once complete,

" i s _ i n _ l i s t " would check it. The alternative is to start both goals in parallel, so

that as "misc_qual" produces each element of the list of qualifications it is

immediately passed on to " i s _ i n _ l i s t " which checks it. In this mode of operation

there is a stream of elements passing from one goal to the other (stream

55

J\ND-Parallelism). In general, there can be several consumers of such a shared

variable, but only one producer. Note that if the variable being shared is not a

compound term (list or structure) then execution is actually sequential. Stream AND-

Parallelism is similar to pipelining.

An alternative to stream AND-Parallelism is to also start both goals in

parallel, but make the consumer wait until the shared variable is fully instantiated:

i.e. in the previous example " m l s c _ q u a l " and " i s _ i n _ l i s t " would be started in

parallel, but " l s _ l n _ l l s t " would wait until the list of qualifications is completely

constructed. This technique of goal suspension is, however, in this simple example,

roughly equivalent to sequential execution.

3.2 Logic P r o g r a m s and Para l l e l i sm in P r a c t i c e

It should be clear-from the previous sections that logic programs offer many

sources of parallelism. One problem which arises in practice is that of detecting this

potential for parallelism in a given program. There are at least two ways of

performing this detection: potential parallelism can (at least theoretically) be

uncovered and managed automatically by the program evaluator, aided perhaps by

some compile-time analysis. This has the advantage of relieving the programmer from

keeping track of communication, synchronization and concurrency issues, and makes it

possible to improve performance by adding resources in a user-transparent way.

Alternatively, the responsibility of uncovering this parallelism can be put in the hands

of the programmer, by extending the control language (i.e. that in charge of specifying

the control component in a logic programming language using explicit control

specification) to include constructs or annotations which explicitly invoke and handle

parallel execution.

56

Another issue which has to be addressed is . :ypes of parallelism which are

to be exploited in a given system. Ideally, all possible sources should be taken

advantage of. However, the management and control of this parallelism is non-trivial

and the overhead involved in exercising these management functions could completely

overshadow any performance gains obtained through parallel execution. If, as is often

the case, efficiency is an important issue in the design, due consideration has to be

given to the run-time cost associated with the implementation of the different types of

parallelism which are chosen to be supported. Also, certain types of parallelism

present serious implementation problems in practice such as the variable binding

conflicts which we already encountered in AND-Parallelism.

In the following sections we will address some of the problems associated

with parallel Logic Programming implementation, review some of the techniques

which have been proposed in order -to deal with these problems, and consider the cost

associated with the implementation of such techniques in practice. Attention will be

given primarily to AND- and OR-Parallelism. Although they are also interesting

sources of parallelism, we will not address search- and unification-parallelism in this

chapter, because their implementation is generally done at a lower level in the design

and because this implementation is usually fairly independent from that of AND- and

OR-Parallelism . AND- and OR-Parallelism can be combined in practice in several

ways giving rise to a number of different forms of parallelism [30] which will also be

addressed in the following paragraphs.

Search parallelism is a very promising source of performance improvement, but even at
the lowest level it will be outside the scope of this dissertation: we will model search
parallelism as concealed within the context of the clause indexing mechanism of the abstract
machine which will be introduced in Chapter 7.

57

3.3 P u r e O R - P a r a l l e l i s m

It was already pointed out in Chapter 1 how the implementation of

OR-Parallelism is, at least in principle, relatively straightforward, since the parallel

processes involved are fully independent. OR-Parallel systems usually rely on either

passing independent copies of the complete state of the computation up to the

branching point to each of the alternative paths to be evaluated in parallel, or on

keeping local copies of only the parts of the environment which are to be written by

alternate clauses, while other parts are shared.

OR-Parallel execution generally implies a search rule which is fair, since all

possible paths are eventually tried. This search rule can be combined with a

sequential computation rule (such as that of Prolog) or with any of the AND-Parallel

schemes which will be described in the next sections. Because of the fairness of a

parallel search rule, OR-Parallelism is generally "more complete" than sequential

depth-first systems (such as Prolog). However, full application of OR-Parallelism at

each possible branching point in the computation suffers from the general inefficiency

of any complete system: it can result in a combinatorial explosion in the size of the

search space to be explored, and in the number of processes generated. This is

aggravated by the fact that sometimes, if only one solution is needed, much of the

computation cannot be considered "useful work". Solutions proposed for this problem

include the use of annotations in order to restrict the generation of OR-Parallel

alternatives [55] and the use of heuristics in order to prune as many of the paths not

leading to a solution as early as possible in the computation [41, 45]. OR-Parallelism

is useful in programs which are heavily non-deterministic as, for example, in search

based applications.

Since at least the naive implementation of OR-Parallelism is relatively

58

straightforward and well understood, the rest of this chapter will concentrate on

analyzing the particular problems associated with the implementation of AND-

Parallelism. As mentioned before, the independence of the search rule from the

computation rule in a Logic Programming system makes it possible to apply the

techniques developed for OR-Parallelism implementation in conjunction with those

which will be introduced in the next sections (and in the next chapters) for AND-

Parallelism.

3.4 AND-Parallelism

AND-Parallel ism, in contrast with OR-Parallelism, promises results even

for highly deterministic programs. All work done by a collection of AND-Parallel

processes is "useful" for finding a particular solution to a query: because computation

rules are generally exhaustive, it is always necessary to explore all paths under an

AND node of the search tree. However, AND-Parallelism presents a series of problems

which have for some time limited its application to only trivial cases. Most of these

problems arise from the fact that goals in the body of a clause which are candidates

for AND-Parallel execution often share variables between them and are therefore not

independent. A variable binding conflict appears if various goals attempt to bind such

a shared variable to different values.

3.4.1 All Solutions AND-Parallel ism

There is one way of exploiting AND-Parallelism which is based on completely

avoiding variable binding conflicts. This can be accomplished by having the goals

involved work on different solut ions simultaneously. Evaluation methods which

make use of this technique have been grouped under the name of all solutions

AND-Parallelism. We will illustrate some of these methods using the "crew"

example of previous sections. Suppose we have arrived at the point where the goals to

solve are

59

: - p i l o t (L o n e r) , r ad lo_opera to r (Loner) .

One possible parallel solution is to apply a join algorithm: two processes are started in

parallel, one computing all the solutions for p i l o t (Loner) and another one

computing all the solutions for r a d l o _ o p e r a t o r (Loner) . After these two sets are

computed, their join (i.e. the intersection of both sets of solutions) is determined, and

it represents the set of solutions for the clause. This mode of operation is called the

join method or "set at a time" computation [52] and can be useful when computing

all the solutions for a given query. The main drawbacks of this method are the

computational expense of the join operation in practice (unless very specialized

hardware is employed), the added complexity introduced in this operation by the

presence of several variable binding conflicts, and the potentially very large space

which may be needed for the storage of intermediate solutions. Conery offers further

arguments against this method [20].

A more practical alternative to the join method is the nested loops method

used by Prolog: for example, returning to the "crew" clause, each solution found for

p i l o t (Loner) is then checked by r a d i o _ o p e r a t o r (Loner) . The advantage in

this method is that the amount of computation can be minimized by correct ordering

of goals [85]. There are at least two ways in which all solutions AND-Parallelism can

be taken advantage of in the nested loops method:

• As soon as a solution for p i l o t is found it is passed on to
r a d i o _ o p e r a t o r which starts checking it, but at the same time p i l o t
continues to look for other solutions. This form of AND-Parallelism is
called pipelining parallelism by Tamura and Kaneda [74]. In their scheme
the "presearch" for solutions done by p i l o t would only proceed up to a
number of them called the buffer size. A buffer size of 0 results in
sequential Prolog execution.

• An alternative to the scheme above is to start a new "checking" process
evaluating r a d l o _ o p e r a t o r for each new solution computed by the
process evaluating p i l o t . This approach clearly generates more
parallelism than the one above.

60

These approaches suffer from some of the same drawbacks as OR-

Parallelism: although the search space can be bound in them (for example by using

the limited buffer size solution of Tamura and Kaneda), they still rely on the presence

of non-determinism (i.e. multiple solutions) in the problem in order to attain

parallelism.

3.4.2 Variable Binding Conflicts in AND-Parallel ism

In contrast with the approaches described in the previous section, there are

methods which can take advantage of AND-Parallelism even for highly determinate

programs. This can be accomplished by having parallel processes work on the same

solution. However, we have already shown how "brute force" [20] exploitation of this

type of AND-Parallelism (i.e. the automatic scheduling of a process for every goal in

the body of a clause) can potentially lead to binding conflicts if the goals involved

have variables in common. The appearance of Variable Binding Conflicts during

AND-Parallel execution was already apparent in the example in section 3.1.2. The

intuitive idea there was that these conflicts appeared only in clauses whose goals

shared variables in the program. However, in practice these conflicts can occur even in

cases where the goals appear not to share variables at all. Consider the following

simplified version of the "crew" example

crew(X.Y):- p i l o t (X) . radio_operator(Y) .

and the query

? : - crew(ian, s a b i n a) .

It is obvious then that checking if " p i l o t (i a n) " and if

"rad io_operator (sab ina) " can be done in parallel (AND-Parallelism). Suppose,

however, that the question is whether there is anybody who can fly a plane without

need for other crew members, i.e. if there is somebody who is a pilot and can also

operate a radio. This question would be stated as

61

? : - crew(Loner,Loner) .

During the unification of this query with the head of the "crew" clause, the

substitutions would be Loner/X and Loner/Y and the apparently independent

variables X and Y in the clause above would be coerced to be the same (and bound to

Loner) . Therefore, after unification, the resulting new query would be

: - p i l o t (L o n e r) , r ad io_opera to r (Loner) .

In this case, it is not possible to go ahead and evaluate these two goals in parallel

because of the potential for conflicting instantiations of Loner. These goals have been

determined to be dependent, but note that this determination was only possible at

run time, i.e. once it is known that the variables X and Y share as a result of

unification with this particular form of the query.

Fortunately, the inverse case o/ the one shown above is also often true: in

some instances, even though variables may appear to be shared by some goals in the

body of a clause, execution can actually proceed in parallel. Consider the following

clause

ch i ld (X ,Y,Z) : - fa ther(Y,X), mother(Z,X).

where f a t h e r and mother clearly share the variable X. For and the query "who is a

child of Peter and Mary?":

? : - child(C, peter, mary).

the resulting goals

: - f a the r (pe ter ,C) , mother(mary,C).

offer potential for a variable binding conflict for C. However, consider the problem of

finding the parents of Peter:

? : - ch i ld (pe ter , F, M).

which results in the goals

:- father(F,peter), mother(M,peter).

62

Finding the answer for these two goals can now be done in parallel, because the

variable shared between the goals is "ground" during execution, i.e. it has been

instantiated to a term containing no free variables before the goals are called.

As a result of the considerations presented in the previous paragraphs there

appear to be two main issues involved in handling AND-Parallel execution of goals

working on the same solution:

• Detecting Variable Binding Conflicts: identifying the cases where these
conflicts actually occur. This detection can be difficult in practice and a
potential source of overhead, since, as shown in the previous paragraphs,
at least some of the detection has to be done at run-time.

• Dealing with Variable Binding Conflicts: once a conflict is detected,
deciding the course of action to be taken in order to proceed with
execution either sequentially or, if at all possible, in parallel.

There are many possible approaches which have been proposed for detecting

and dealing with variable binding conflicts. In the following sections we will review

some of the techniques currently used pointing out their relative advantages.

3.4.2.1. Dealing with Variable Binding Conflicts

The three basic methods of dealing with variable binding conflicts were

pointed out in the example in section 3.1.2:

• Goal Suspension: All goals are started in parallel, but goals which are
consumers of variables which have not been fully instantiated yet wait
(suspend) until the instantiation is complete. The main problem in this
approach is the complicated run-time system involved, which continuously
has to keep track of the instantiation state of variables.

• Stream AND-Parallel ism: for each shared variable, one goal is
determined as the producer of the variable, and the others as consumers.
All goals in the body are run in parallel and the value of the variable is
incrementally passed from the producer to the consumers. Stream AND-
Parallelism can take advantage of most of the potential AND-Parallelism

63

present in the clause. The main drawbacks are the low level of granularity
(which may make it difficult to implement in an efficient way) and the fact
that it is very difficult to support in the presence of non-determinism.

• Goal Independence: goals which are determined to be independent (i.e.
there are no possible variable binding conflicts) are run in parallel,
otherwise, they are run sequentially. The problem with this approach is the
overhead involved in the determination of this independence. Simple
techniques which do not need run-time support often fail to detect
potential parallelism. Run-time based approaches often incur in excessive
overhead.

3.4.2.2. Detecting Variable Binding Conflicts

User Annotation: The simplest approach for detecting conflicts is, of

course, to have the programmer determine goals which are guaranteed to be

independent. There are two basic techniques for expressing this information:

• Goal Annotation: programming languages which support this method
provide the programmer with an extended control language which makes it
possible to annotate sets of goals as candidates for AND-Parallel execution
(IC-Prolog [14], Delta Prolog [57]). For example, in Delta Prolog parallel
composition of goals is annotated by linking those goals with the
connective ' / ' , while ' , ' is still used for expressing sequentially.

• Variable Annotation: A refinement of the approach described above which
directly points out the conflicts is to mark the potentially shared variables
in the clause so that goals involving these variables will wait until they are
fully instantiated (this is the type of annotation usually associated with
goal suspension [63]). In systems which can support simultaneous
execution even in the presence of variable conflicts (stream AND-Parallel
models) the same mechanism is used not only for marking potential
conflicts, but also for defining the direction of stream communication, i.e.
which goal is the producer and which goals are the consumers for a given
variable (Concurrent Prolog [72]). A similar approach which can be used
in these systems is to declare modes for the variables in the heads of the
clauses: by defining arguments in the head of a clause as input-only or
output-only the direction of the streams can be determined. This method is
used in PARLOG [13].

Automatic Detection: Solutions such as the above put the burden of

64

detecting variable binding conflicts in the hands of the programmer. This can be an

acceptable solution in many applications, but it clearly defeats the objective of hiding

as much as possible control-related issues from the user. Therefore, other solutions

have been proposed which attempt to detect binding conflicts without variable

annotations and with minimal (or no) information from the user. These approaches

differ mainly in the ratio of the amount of work done at compile-time to that done at

run-time:

• Run-time Detection: Of course variable conflicts can be easily detected at
run-time. However, the amount of overhead incurred in doing so often
makes the approach impracticable [20].

• Compile-time Analysis: Several techniques have been proposed which try
to perform a compile-time analysis of the data dependencies in the
program in order to determine variable independence. This analysis is
specially complex in Logic Programs because of the bidirectionality of the
Logic Variable. However, input and output modes can in some cases be
determined by such an analysis using the known modes of built-in
predicates and/or some user "hints" (such as, for example, the types of
queries which can be expected [24] [51] [48] [49]). A similar analysis can be
used to determine goals which are guaranteed to be independent (i.e. no
variable binding conflicts will be encountered) so that no checks are'needed
at run-time [9]. The main problem with such a system is that only one
possible mode of operation (one input-output pattern) is allowed for
parallel operation.

• Combined Approach: An approach combining compile-time and run-time
techniques can analyze several possible input-output patterns and define
different sets of goals as independent as a function of the actual input-
output pattern which occurs at run-time. The run-time detection of the
pattern represents a small overhead compared with performing a complete
data dependency analysis for each invocation of a clause (as in run-time
detection systems [20]). One such method, based on analyzing the state of
instantiation of a set of variables is used in DeGroot's restricted
AND-Parallelism [25].

65

3.4.3 Proposed Systems Supporting AND-Parallel ism

In the previous section we presented some of the techniques which can be

applied while detecting and dealing with variable binding conflicts in AND-

Parallelism. In this section we will review some proposed systems which make use of

one or more of those techniques. Although most of these systems were already

mentioned in previous sections, a more detailed description will now be given, pointing

out their relative advantages.

3.4.3.1. Committed Choice Systems

As described previously, one solution to the problem of dealing with variable

binding conflicts is stream AND-Parallelism: one goal is determined as the producer

of each shared variable, and the others as consumers. These goals then all run in

parallel and the value of the variable is incrementally passed from the producer to the

consumers. This mode of communication between goals is very useful in that it allows

the description of systems of communicating processes. One disadvantage, though, is

that the low level of granularity involved in stream parallelism seems to make it

difficult to implement in an efficient way. This problem could of course be solved in a

specialized architecture. The main drawback in stream AND-Parallelism, however, is

that it is very difficult to implement in the presence of non-determinism. Therefore,

recently proposed systems which exploit this type of parallelism give up true non-

deterministic search by implementing "committed-choice" (i.e. "don't care") non-

determinism: once a path in the execution tree is chosen, no other paths will be

explored. These systems are somewhat closer to functional languages in the sense that

clauses behave as functions, providing only one solution to a given query. PARLOG

[30] [13], Concurrent Prolog [72], and GHC [81] are examples of "committed choice"

languages.

However, "don't-know" nondeterminism is regarded as one of the most

66

interesting features of Logic Programming. As we have seen before, there are methods

of dealing with variable binding conflicts other than stream AND-Parallelism which

naturally support both AND-Parallelism and "don't know" non determinism. Some

previously proposed approaches which make use of such methods will be presented in

the next sections.

3.4.3.2. Conery's A N D / O R process model

Conery describes an "AND/OR process" execution model which is a

distributed, message-based scheme capable of handling full "don't-know" non-

deterministic parallel execution of Logic Programs. The main types of parallelism

supported are OR- and AND-Parallelism. Conery shows how OR-Parallelism can be

supported in a straightforward manner and also how in general AND-Parallelism is

much more difficult to support because of the problems introduced by the sharing of

variables in literals within a clause body. Conery's AND process model offers a

solution for this problem which can extract most of the parallelism available for a

given collection of AND-Parallel goals. He introduces a series of run-time algorithms

which can determine goal ordering, producer selection and the correct points for

parallel backtracking. This information is represented in the form of data dependency

graphs. The algorithms effectively extract the available degree of parallelism present

in each particular clause invocation and offer a complete and powerful solution to the

management of the AND sections of the execution tree.

The main drawback in Conery's scheme is the enormous amount of run-time

support necessary to implement its operation: all his algorithms produce results which

depend on the particular instantiations of the variables involved, so the dependency

graphs have to be recomputed for each clause invocation and upon backtracking. This

results in an unacceptable amount of overhead that probably renders an otherwise

very attractive theoretical model rather impractical.

67

One of the merits oi this work has been to provide the first complete solution

to the problem of correctly handling AND-Parallelism, performing an interesting

analysis of the problems involved. Other related models have since been proposed

[43] [62] [42] and Conery's model has thus proven very useful in setting the grounds

for other schemes. Many of these schemes are based on the same ideas but try to

overcome the drawbacks of Conery's model by extracting as much as possible of the

information required for correct execution of AND-Parallel clauses during compilation.

Since these approaches then require little or no run-time support, faster execution can

be truly achieved. Two of these schemes are presented in the following paragraphs.

3.4.3.3. Static Data Dependency Analysis

The idea behind Chang's Static Data Dependency Analysis (SDDA) [9] is to

derive data dependency graphs at compile time from a small amount of additional

information supplied by the programmer: the "activation mode" of the query. This

means that the programmer has to supply the SDDA analyzer with information on

which particular queries are going to be presented to the program (i.e. which

procedures are going to be called) and which of the arguments in the call are going to

be ground, independent or dependent. The output of the analysis is a graph which

determines which goals in the clause bodies are independent and can be thus run in

parallel, in which order the non-independent goals have to be run, and a compatible

scheme for semi-intelligent backtracking.

The main advantage of this approach is that no run-time support is needed

for variable binding conflict detection, and the fact that working algorithms are

available in order to generate the above mentioned graphs. One drawback is that,

since only one type of query is allowed for each procedure, other queries which do not

adhere to the declared activation mode will not be executed in parallel or make use of

the semi-intelligent backtracking at all. Furthermore, since the approach is

68

necessarily based on a worst-case analysis (since so little about the bindings of

variables is known at compile time) it has the danger of often missing some of the

parallelism available even for the particular type of query analyzed. Finally, the semi-

intelligent backtracking scheme is rather complicated, requiring a fair amount of run

time support.

3.4.3.4. Restricted AND-Parallel ism

The approach taken by DeGroot in his Restricted And-Parallelism (RAP)

scheme [25] is to choose a compromise solution between complete run-time (Conery)

and complete compile-time (Chang) determination of data dependencies between goals

in the body of a clause. Instead of determining only one worst case data dependency

graph at compile time, several graphs are generated for each clause, each one of them

valid for a particular activation mode of the clause. These graphs are then combined

into a single Conditional Graph Expression (CGE). The run-time system, while

executing the CGE, will choose one of the different graphs for each activation of the

clause depending on the results of a set of simple run-time checks (included at

compile-time in the CGE) which determine which variables in the clause are

independent. The graph selected will be one that starts execution in parallel of the

goals involving only those variables.

The set of possible expressions is defined as:

(1) G An arbitrary goal.

(2) (SEQ E l ... EN)
Expressions E l to E N are to be run sequentially.

(3) (PAR E l ... EN)
Expressions E l to E N are to be run in parallel.

(4) (IPAR (XI ... XN) E l ... EN)

69

Expressions E l to t iN are to be run in parallel if (X l ... X N) are
independent, otherwise they are to be run sequentially.

(5) (GPAR (XI ... X N) E l ... EN)
Expressions E l to E N are to be run in parallel if (XI ... X N) are
ground, otherwise they are to be run sequentially.

(6) (IF E l E2 E3)
Chooses between evaluation of E2 or E 3 depending on the result of
evaluating the boolean expression E l .

An example will clarify the use of these expressions further. Recall the

"child" example:

ch i ld (X ,Y ,Z) : - fa ther(Y,X) , mother(Z,X).

In Restricted AND-Parallelism the compiler would analyze this clause and come to

similar conclusions to those pointed out when the example was introduced in previous

sections: for example, it can decide that " fa ther(Y.X) " and "mother(Z ,X) "

cannot in general run in parallel, but that it is possible to execute them in parallel if

the clause happens to be called with all arguments (X, Y, and Z) being ground: This

information can be encoded in a Conditional Graph Expression:

(GPAR(X Y Z) father(Y,X) mother(Z,X))

The meaning of the expression above is
If X, Y, and Z are ground, father(Y.X) and mother(Z,X) can run in parallel, else,

they are to be run sequentially.

Thus, the expression above can generate (depending on the results of the

conditions) two execution graphs at run-time: a sequential and a parallel one. Nesting

of C G E s and conditions can generate more complicated execution graphs.

DeGroot's expressions have however some limitations. For example, the

70

compiler could also have observed that " f a t h e r (Y.X) " and " m o t h e r (Z , X) " can

also run in parallel if the clause is called with the first argument (X) being "ground"

(i.e. fully instantiated -it contains no variables) and the other two (Y and Z) being

"independent" (i.e. X and Y do not "share"). This information is difficult to encode

with the above expressions. DeGroot also points out other such limitations [25].

Clearly, the generation of the CGE in the "child" clause (i.e. determining

that there are basically two interesting cases which can appear at run-time for this

clause) can be done at compile-time, but the actual checking in order to find out in

which particular case the clause is being executed can only be done at run-time.

Conery's approach would perform all these operations at run-time, while Chang's

would do a similar analysis at compile-time but it would have to select the worst of all

possible cases for lack of run-time checks.

DeGroot's Restricted AND-Parallelism scheme offers advantages over both of

the approaches described before: the run-time system is obviously much simpler than

that needed in Conery's AND-process and it is simpler and offers potential for

exploiting parallelism in more cases than Chang's worst case analysis. The main

disadvantages present in this description of Restricted AND-Parallelism are the

intrinsic limitations of the expressions proposed and the fact that the backward

execution behavior of these expressions (i.e. how to handle failure during parallel

execution) is not specified. Also, there is no indication as to what algorithm or

heuristics should be used to generate such expressions.

71

3.5 C h a p t e r S u m m a r y : A P r o p o s e d A p p r o a c h t o Para l l e l Logic

P r o g r a m m i n g I m p l e m e n t a t i o n

In the previous sections the different sources of parallelism present in Logic

Programs were introduced and some of the problems which arise in the exploitation of

these sources were reviewed. OR-Parallelism was shown to present a series of

drawbacks in practice, such as only being able to extract useful parallelism in non-

deterministic problems. Also, it was pointed out how it can require excessive amounts

of storage and/or copying time and present a combinatorial explosion in the size of

the search space to be explored, and in the number of processes generated.

Furthermore, much of the work done by a collection of OR-Processes is often not

considered "useful work" for arriving at a particular solution.

AND-Para l le l i sm, on the other hand, was shown to be especially

interesting because it can provide performance improvements even in the absence of

non-determinism in the problem and because, in general, all work done by a collection

of AND-Parallel processes is "useful" for finding a particular solution to a query.

However, AND-Parallelism was also shown to present some problems, such as

detecting and dealing with variable binding conflicts and its incompatibility with non-

determinism in some approaches. Nevertheless, if these conflicts can be dealt with

without excessive overhead, AND-Parallelism appears to offer more useful parallelism

and with a more efficient utilization of the available resources.

Following the above considerations it is concluded that a higher emphasis in

parallel logic program implementation should be put on supporting

AND-Parallelism, although the problems associated with its implementation need to

be addressed. Of course, an ideal system should be able to support both OR- and

AND-Parallelism (and perhaps the other types of parallelism as well). Since the issues

72

involved in the implementation of OR-Parallelism are generally better understood that

those associated with AND-Parallelism, the following chapters will be devoted to the

study of AND-Parallelism in the conviction that the techniques developed will also be

useful in a system incorporating both of the basic sources of parallelism.

Regarding the way in which the inherent problems in AND-Parallelism

implementation are to be treated, stream AND-Parallelism was shown to offer an

interesting potential for deterministic execution but it appeared as very difficult to

implement in the presence of non-determinism. "Committed-choice" systems were

shown to support stream AND-Parallelism by giving up true non-deterministic search

and implementing "don't care" non-determinism. However, it was also mentioned how

"don't-know" nondeterminism is regarded as one of the most interesting features of

Logic Programming and how there is another way of dealing with variable binding

conflicts which naturally supports both AND-Parallelism and "don't know" non

determinism: restricting AND-parallel execution to sets of goals which are determined

to be independent at run-time.

In the next chapters we will address the design of an efficient execution

model for the parallel implementation of Logic Programs, capable of supporting AND-

Parallelism in the presence of "don't-know" non-determinism. The emphasis will not

be on a particular language, but rather on developing techniques which can be applied

to a variety of languages which support this type of non-determinism, and also to the

"don't know" subsystem of committed choice languages. Although previous similar

approaches have resulted in excessive run-time overhead or limited parallelism we will

show in the next chapters how AND-Parallelism supporting full non-determinism can

in fact be implemented very efficiently by combining a generalized version of

Restricted AND-Parallelism, Goal Independence Parallelism, with some of the

73

implementation techniques of current high performance sequential systems. Also,

limitations of, and areas missing in, previous descriptions of these models will be

addressed, such as providing a simpler and more powerful set of Conditional Graph

Expressions and offering complete (forward and backward) procedural semantics for

logic clauses annotated with these expressions.

Chapter 4

A High-Level Execution Model for
AND-Parallelism:

Procedural Semantics

In this and the next chapters the design of an efficient execution model for

the parallel implementation of Logic Programs capable of supporting

AND-Parallelism in the presence of "don't-know" non-determinism will be

addressed. The organization of the chapter is as follows: first, "goal independence"

models of AND-Parallelism will be reviewed and a generalized version of Restricted

AND-Parallelism (RAP) presented as a typical representative of this class. Areas

missing in previous descriptions of these models will be completed, such as providing

complete (forward and backward) procedural semantics for Horn clauses which have

Conditional Graph Expressions embedded within them, and a more powerful

definition and syntax will be given for these expressions. Some consideration will also

be given to the necessary conditions which have to be met by goal independence

annotations such as CGEs . Finally, a programmer's view of such a system will be

presented.

74

75

4.1 A Genera l M o o „ . for A N D - P a r a l l e l i s m : Goal I n d e p e n d e n c e

It was mentioned in the previous chapter how "brute force" exploitation of

AND-Parallelism (i.e. the automatic scheduling of a process for every goal in the body

of a clause) leads to binding conflicts if the goals involved have variables in common.

However, if these goals can be determined to be independent at run-time, execution

can still continue in parallel. This can be termed Goal Independence

AND-Parallel ism, i.e. AND-Parallel execution in which source level annotations

and/or run-time mechanisms are geared towards determining a set of goals as being

independent at some point in the execution of a particular clause.

It was also shown how in some logic programming languages goal

independence is annotated by the programmer explicitly in the source program. This

is the case, for example, in Delta-Prolog [57], a partial implementation of distributed

logic [50]. In this model, parallel composition of goals is annotated by linking those

goals with the connective ' / ' , while ',' is still used for expressing sequentiality. Thus,

the following clause

f(X, Y. Z) : - (a (f o o l , X) / b(foo2, Y)) . c(X, Y, Z) .

basically expresses that goals a and b are mutually independent, i.e. that in the

resolution of f, a can be executed independently of b (i.e. in parallel, and in any

order), but c has to wait for both of them to succeed. Thus, the annotation really

expresses an execution graph. Note, however, that an implicit assumption was made

in the clause above that a query of the form " ? : - f (W, W, Z) . " is not possible,

that is, that "X" and "Y" will never share. Thus the execution graph implied by the

annotation in the clause above is really only valid for a particular type of query.

Other similar types of annotations are present in many other languages which provide

some form of goal independence AND-Parallelism (IC-Prolog [14], PRISM [37]). It

was also mentioned how in some other languages the determination of goal

76

independence is done by the compiler, often guided by some information provided by

the user on the type of queries that are most likely to be presented to the system [9].

For example, in Chang's approach, if the user declares that the most likely query is of

the form

? : - f (ground_term, ground_term, f r e e _ v a r i a b l e) .

an execution graph equivalent to the Delta-Prolog annotated clause above could be

generated automatically by the compiler.

Because we are more interested in developing an execution model for AND-

Parallelism than in the study of any particular Logic Programming language

(hopefully the execution model will be applicable to a variety of languages) we will not

be concerned at this point with the origin of the annotations which determine goal

independence, although a starting point for the automatic generation of such

annotations will be given at the end of the chapter. Instead, we will concentrate on

determining which types of annotations (user- or compiler-generated) offer maximum

potential for parallelism with minimum run-time cost and on dealing with how

execution proceeds once a set of goals has been determined as being (variable-wise)

independent (i.e. after determining that they can be run in parallel with no conflicts),

in particular on how "don't know" non-determinism can still be efficiently supported

in such an environment.

Consequently, rather than analyzing the language at the source-level, we will

focus on an intermediate code level useful for a variety of programming languages,

and we will pursue development of an efficient execution model for it. This level,

which will be discussed in the next section, can be best described as horn clauses

augmented with predicate-level conditional control expressions. Such control

expressions can, for example, be generated when a static analysis uncovers parallel

77

execution potential. Alternatively, i *=• source language could provide the user with

the syntactic tools to explicitly trigger their generation.

Concerning the character of these expressions, it has already been pointed

out how in logic programs, the same clause can be used in various ways, depending on

the run-time polarity (instantiation state) of interceding variables. Ideally, these

expressions should be capable of dealing with the different cases involved, with a

minimum of run-time overhead. As already mentioned in the previous chapter,

Restricted AND-Parallelism (RAP) [25] is a technique which provides this capability

by making it possible to choose at run-time between parallel and sequential execution

(i.e. to generate one of several possible execution graphs) based on variable dependency

checks. Such run-time determinations are embodied in what has been referred to as

Conditional Graph Expressions (CGE's). In the next section we will present a

generalized version of such a computation model which subsumes DeGroot's original

definition of RAP and CGE's . It will be the forward and backward execution

behavior of this generalized model that we will study in the subsequent sections.

4.1.1 Conditional Graph Expressions

As explained above, CGE's can be used for reducing run-time data

dependency analysis overhead for AND-Parallel logic programming systems to a

number of simple checks. Herein, a CGE is (informally) defined as a series of

conditions followed by a conjunction of goals, i.e.:

(<CONDITIONS> I goa l l ft goal2 4 . . . 4 goalN)

where " < CONDITIONS > " represents any number of conjunctions or disjunctions

of checks on a < v a r i a b l e _ l i s t > . A < v a r i a b l e _ l i s t > is a collection of variable

names which have their first occurrence before (i.e. "to the left of", in Prolog) the

78

OA

<CONDITIONS> field of the current graph expression" . In this definition CGE ' s

can appear in the body of a clause in any place a conventional goal may be placed.

Therefore they can also appear in a goal position inside a CGE (nested CGE's) .

Types of checks which can appear inside <CONDITIONS> are:

• ground(< v a r i a b l e _ l i s t >): evaluates to true, if and only if all
variables in <var iable__ l i s t> are ground, i.e. they are instantiated to a
term with no uninstantiated variables.

• indep(< v a r i a b l e _ l i s t >): We associate with each variable its "set of
contained variables" (SCV), defined as follows: If the variable is
instantiated to a fully ground term, the SCV is empty. If the variable is
uninstantiated, the SCV is the singleton containing the variable itself. If
the variable is instantiated to a term, and some of its arguments are
variables, the SCV is recursively defined as the union of the SCV's for
each of those variables. The indep(< var iable_ l i s t >) check succeeds
if and only if the intersection of all the SCV's associated with each
variable in < var iable_l i s t > is empty"

• The logical values true and false.

4.1.2 Forward Execution

Since each of the checks inside < CONDITIONS > will evaluate to true

or false, < CONDITIONS > , being constructed as conjunctions and/or disjunctions

of these checks, will also eventually evaluate to true or false. The forward semantics

of CGE ' s dictates that:

if <CONDTTIONS> evaluates to true, then all expressions inside the
CGE can execute in parallel. Otherwise, they must be executed sequentially
and in the order in which they appear within the expression.

04.
i.e. only those variables in the head or in goals to the left of the current CGE (including

those in a CGE the current expression may be nested in) can be checked.

" iVluch more economical independence algorithms (such as DeGroot's [25]) can be used in
practice, as long as they are conservative, i.e. they never declare a set of dependent variables
as independent (although they may "give up" and declare some variables as dependent rather
than traversing very complex terms).

79

A CGE whose < CONDITIONS > have evaluated to true is called a

Parallel Call. An example will clarify this further. Suppose we have the following

clause:

f(X,Y) : - g(X,Y), h(X). k(Y).

In general, the three goals in the body of f (g, h and k) cannot run in parallel because

they have variables in common. Nevertheless, if both X and Y are ground when f is

called, all goals can then run in parallel. This fact can be expressed by using the

following CGE:

f(X,Y) : - (ground(X,Y) | g(X,Y) ft h(X) ft k(Y))

According to the forward execution semantics above, this means that X and Y should

be checked and, if they are both ground, then g, h, and k can be executed in parallel

and execution will proceed to the right of the expression only after all goals inside

succeed. Note that this also means that if X and Y are ground but for some reason (for

example, lack of free processors) g, h, and k are executed sequentially, this can be

done in any order. Otherwise, if X and Y are not both ground, g, h, and k will run

sequentially and in the order in which they appear inside the CGE. Selection between

one mode of execution and the other is done by a simple run-time check. Of course,

the expression above only takes care of a rather trivial case.

A more interesting execution behavior can be extracted from the following

expression:

f(X,Y) : - (ground(X,Y) I g(X,Y) ft (indep(X.Y) I h(X) ft lc(Y))) .

Now, if X and Y are not ground upon entry to the graph expression, g will be

executed first. As soon as g succeeds, indep(X.Y) is checked in the hope that X and

Y will be independent (either because one of them was ground by g or because they

are still uninstantiated and do not "share" --as they would if g had matched against

80

" :-g(W,W) . "). If they are still independent then h and k can run in parallel. Note

that if X and Y are ground upon entry of f then all goals will run in parallel as in the

previous expression.

Sometimes it is necessary to express the fact that a number of goals can run

in parallel, independently of any other consideration (perhaps because the programmer

knows how a procedure is going to be used). This can be easily accomplished by

writing true in place of < conditions > or eliminating the < conditions > field

altogether. Thus, in the following expressions, g, h, and k can always run in parallel:

f(X,Y) : - (t r ue I g(X) ft h(Y) ft lc(Z)) .

f(X.Y) : - (g(X) ft h(Y) ft k(Z)) .

This also illustrates how CGE ' s are a superset of other control annotation schemes

(for example, the parallel connective of Delta-Prolog " / ") [57].

Note how in this definition Conditional Graph Expressions do not need to be

considered as independent constructs from the original clauses (as implied by DeGroot

[25]). In the examples above they can be viewed as "compiler generated" annotations

to the (unannotated) source program or alternatively as user directives embedded in it.

We will come back to the issue of considering C G E s as annotations embedded within

logic clauses in the discussion of the programmer's view of the Restricted AND-

Parallel (RAP) system at the end of the chapter.

81

4.1.3 Backward Execution

We refer to backward execution as the series of actions that follow failure.

Failure occurs during unification of a given goal with the head of a clause, if this

unification does not succeed. Is was shown in Chapter 2 how, for example, in a system

supporting depth first search with backtracking (such as Prolog), these actions simply

comprise returning to the most recent point at which alternatives were still unexplored

(i.e. the last time a clause was entered which had other alternative clauses which could

also have unified with the current goal) and continuing execution with the next

alternative. If full ("pure") OR-Parallelism is supported (perhaps in addition to AND-

Parallelism) backtracking is not needed; a set of "solutions" is maintained instead for

each goal invocation. Failure implies simply abandoning the path being followed,

because the alternatives are already being explored by other processes.

While the relative simplicity of such an approach and the additional source

of parallelism make it attractive in principle, keeping multiple solutions around

simultaneously obviously tends to complicate data storage management and use up

excessive amounts of this storage. Moreover, as pointed out in the previous chapter,

the additional parallelism often leads to a combinatorial explosion of the search space.

Therefore, even systems which rely only on OR-Parallelism limit its occurrence to only

certain branching points previously annotated by the user or as a result of detailed

compiler analysis. Therefore, backtracking still has to be supported even in OR-

Parallel systems in order to deal with non-parallel OR-nodes. This is even more so if

both AND- and OR-Parallelism are supported: since AND-Parallelism is generally

given a higher priority than OR-Parallelism, as soon as spare resources start being

scarce in the system, backtracking will have to be used in lieu of OR-Parallelism in

order to reserve those resources for AND-Parallel execution. Also, if the system is

limited in memory, backtracking offers a solution which is more memory efficient than

82

OR-Parallelism. For the reasons above, and since the t rea tment of failure in pure OR-

Parallelism simply comprises the set of simple actions needed in order to cease

execution of a search path, this section will study backward execution algorithms for

Horn clauses annotated with C G E ' s in parallel systems for cases in which failure

implies backtracking.

The siirrple t rea tment of backward execution in sequential systems (i.e.

simply returning to the last choice point and restart ing execution with the next

alternative) is not directly applicable any more if some of the goals in the body of a

clause have been executed in parallel: since execution of these goals was concurrent,

there is no chronological notion of "most recent" to apply to the different choice

points available. Although several sophisticated approaches have been proposed in

order to solve this problem [20] [9] [56] [7] they are either not applicable to the

semantics of C G E ' s (and other Goal Independence models) or they involve too much

bookkeeping overhead at run-time. In this section we will analyze the different cases

involved in the backtracking of C G E ' s and we will propose a general backtracking

algorithm that will handle these cases efficiently, while taking advantage in some

cases of goal independence in order to achieve a limited for of intelligent backtracking

[59] [60]. This will be referred to as "restr icted" intelligent backtracking.

4 . 1 . 3 . 1 . B a c k t r a c k i n g C a s e s

Throughout this analysis we will consider the following annotated clause :

t (...):- a(. .) , b(. .) , (< conditions > | c(..) & d(..) & e(..)), g(. .) . h (. .) .

Although the discussions in this chapter will not directly address nested CGE ' s , the
algorithms shown are also applicable in such cases when applied recursively. Alternatively, a
clause with nested CGEs can be trivially reduced to a set of clauses with non-nested C G E s
by substituting each nested C G E in the original clause by a call to a "dummy" goal whose
corresponding clause simply embodies the nested CGE.

83

c & d & e),

Figure 4-1: Backtracking cases for a CGE

In the trivial case when < conditions > is evaluated to false, execution

defaults to sequential, and normal (Prolog) backtracking semantics can obviously be

applied. We will therefore shift our attention to the cases where < c o n d i t i o n s >

evaluates to true. We illustrate in figure 4-1 the different backtracking situations

through back arrows annotated by case numbers, where the cases are the subject of

the following text.

Conventional Backtracking:

• Case 1- This is the trivial case in which backtracking still remains the
same as for sequential execution. For example, if b fails and a still has
alternatives, or if h fails and g still has alternatives.

• Case 2- This is also a trivial case: if a fails, the next alternative of f will
be executed next. If there are no more alternatives for f, then f will fail in
its parent and we recursively deal with the failure at that level.

Conjunctive failure; "inside" backtracking:

• Case 3- This is the case if c, d, or e fail while the body of the CGE is
being executed the first time through (i.e. we are still "inside" the CGE).

Suppose d fails. Since we are running in parallel, we know that
< c o n d i t i o n s > evaluated to true. This means that c, d, and e do not
share any uninstantiated variables. Thus, the variable binding that caused

84

the failure of d could not have been generated by c or e. Therefore it
would be useless to ask c and/or e for alternatives and it is safe to kill the
processes running c, d, and e, and to backtrack to the most recent choice
point before the C G E (for example, b here). In this way, limited
(restricted) intelligent backtracking takes place inside the C G E with only
the overhead of remembering that we are "inside" the C G E when failure
occurs.

"Outside" backtracking: ("Point method")

• Case 4- This is the most interesting case: we have already finished
executing all goals inside the C G E -we are "outside" the CGE- and we
fail, having to backtrack into the expression. This is the case if g fails.

First, since this information will prove very useful, we will assume that
processes not only report eventual goal resolution success, but also whether
unexplored alternatives still remain for this goal. It will be shown how
such information can be used in our context to simply extend the
conventional backtracking algorithm to one that deals with CGE's :

o If g fails and none of the C G E goals has unexplored alternatives, we
will backtrack to b just as we would in the sequential execution
model.

o If g fails and one or more C G E goals still has unexplored
alternatives, our object will be to establish a methodology whereby
all the combinations of those alternatives will have a chance to be
explored, if needed, before we give up on the whole CGE and
backtrack to alternatives prior to it. The methodology chosen is one
that will generate those alternatives in the same order as that
produced by naive sequential backtracking. The idea is then to
reinvoke the process which corresponds to the first goal with
alternatives found when scanning the C G E in reverse order (i.e.
reinvoking the "rightmost" goal with alternatives). All processes
corresponding to goals "to the right" of this one will be
"unwound" (i.e. the bindings they created undone)" . The
reinvoked process will then, in turn, report either success (with or
without pending alternatives) or failure.

27
Note that these processes are not actually running but it is advantageous to deallocate the

storage used for computing their last alternative at this point. These issues are discussed in
more detail in the following chapter.

85

• If failure is reported, we simply perform the next invocation in
the order described above. Of course when a failure is
reported by the leftmost goal with alternatives in the CGE, we
give up on the whole expression and backtrack as in Case 1
above.

• If success is reported (i.e. a point of success is found in the
CGE) then we shift into forward AND-Parallel execution mode
and trigger the parallel evaluation of all the goals, if any
exist, to the right of the succeeding one in the CGE.

Note how the approach described above extends the "most recent choice

point" backtracking model to a parallel execution model, preserving the generation of

all elements of the cross product (i.e. all "tuples") and offering parallel forward

execution after backtracking. Also, goal ordering information provided by the user or

by the compiler is preserved, and used in tuple generation.

4.1.3.2. Determinate Execution

Alternatively, sometimes we might not be interested in generating all

possible tuples for a conjunction of independent goals. Instead we might be interested

in generating only one and "committing" to it. This can be easily annotated by

28 including a "cut" after the CGE. In the following clause

f (. .) :- a(. .) , b{..), (< conditions > | c(..) & d(..) & e(..)). !. g(. .) , h(. .) .

the cut operator forces the system to commit to the first solution obtained from the

invocation of the CGE (and since the call which invoked f). This case is very

interesting because of the potential for efficiency at the implementation level. In the

following paragraphs a variation of the backward semantics previously proposed is

presented which can be used to take advantage of this potential for efficiency in

determinate execution.

08

Note that if only backtracking and AND-Parallelism are supported in the system (i.e.
(pure) OR-Parallelism is not used) the semantics of the "cut" operator can remain the same as
in sequential systems. If (pure) OR-Parallelism is supported then a "commit" operator has to
be used in place of the "cut".

86

Figure 4-2: Backtracking cases for a CGE: Determinate Execution-(a)

Again, in the trivial case when < conditions > is evaluated to false,

execution defaults to sequential, and normal (Prolog) backtracking semantics can

obviously be applied. We will therefore shift our attention once more to the cases

where < c o n d i t i o n s > evaluates to true. The different backtracking situations are

now illustrated in figure 4-2, and the corresponding actions are:

Conventional Backtracking:

• Case 1 and Case 2 - Similar to the non-determinate case.

Conjunctive failure; "inside " backtracking:

• Case 3- This is the case if c, d, or e fail while the body of the CGE is
being executed the first (and only!) time through (i.e. we are still "inside"
the CGE). Again it would be useless to ask any of the other goals for
alternatives and it is safe to kill the processes running c, d, and e, and to
backtrack to the most recent choice point before the CGE (for example, b
here): (restricted) intelligent backtracking.

"Outside " backtracking:

• Case 4a- Execution differs now substantially from the non-determinate
case: all goals inside the CGE have finished executing (past the cut) -we
are "outside" the CGE- and. we fail. Suppose again that g fails. Now,
execution has to return to a point before the invocation of f and no

87

back ..jking needs to be done inside the C G E . The only action required is
to undo the bindings done by the goals in the C G E .

Note tha t much of the information which needed recording in the non-

determinate case (for example, whether processes had pending al ternat ives or not) is

not needed for determinate execution. This will lead to great economy in the

implementat ion. Also note that all backtracking as a result of the failure of a goal

inside the C G E is now "intel l igent" , since there is really no "outs ide" backtracking.

F i g u r e 4-3: Backtracking cases for a CGE: Determinate Execution-(b)

A slightly different form of annota t ion is also sometimes useful:

f (. .) :- a(. .) . b(. .) . (< c o n d i t i o n s > ! c(..) & d(..) & e(..)). g C) . h(. •) •

Here the "!" inside the C G E makes only the C G E determinate . This annotat ion is

used to take advantage of the efficiency of a determinate parallel call if it is known

tha t c, d, and e will provide at most one solution pa th" (or if we are only interested

in the first one they might provide). All cases of backtracking remain the same except

case 4: since now the choices before the C G E are not "cu t " , case 4b is now (figure

4-3)

" An analysis of determinacy in the program can prove very advantageous in cases such as
this: if the compiler can determine that c, d, and e are determinate (i.e. they will generate
only one solution path) advantage can be taken of the efficiency of a determinate parallel call
without the need for user annotations such as the one above. Such an analysis has already
proved useful in limiting the generation of "choice points" in sequential systems [24].

88

"Outside " backtracking:

• Case 4b- If g fails, execution returns to the first choice point before the
CGE. Again, no backtracking ever needs to be done inside the CGE. The
only action required is to undo the bindings done by the goals in the
CGE.

If the "cut" appears inside the CGE, as, for example, in

f(. .) : - a(. .) , b(. .) . (<cond i t ions> | c(..) & d(..) & ! & e(..)), g(. .) . h(. .) .

all goals are executed in parallel as usual but, upon exit from the CGE, goals in the

CGE which returned "with alternatives" and appear "to the left of" the cut in the

30
C G E are marked as having "no alternatives" . Of course the cut is also extended as

usual up to the goal which called f. In this way goals which are "to the right of" the

cut will still be backtracked using the "outside" backtracking algorithm, but, if they

run out of alternatives, the backtracking point will correctly be before the calling of f.

Finally, if the "cut" appears outside the C G E , but there is another goal

between the "cut" and the CGE, as in

f(. .) : - a(. .) , b(. .) , (<condit ions> | c(..) & d(„) & e(..)). g(. .) , !, h(..) .

then the CGE is executed normally (with no determinate optimizations, since the

failure of g could cause "outside" backtracking) and the choices (goals with

alternatives) in the CGE kept until the "cut" is encountered.

4.1.3.3. A General Algorithm

In the above, we presented a backtracking algorithm for clauses with

embedded CGE ' s through the use of examples. The general algorithm for non-

determinate execution can be described as follows:

In practice a determinate call is issued to these goals, which saves communication and
computation overhead and makes scheduling and memory management more efficient. These
subjects will be addressed in the next chapters.

89

• Forward ^ tcution: During forward execution leave a choice point
marker (CVbA.) at each clause which still has alternative clauses
which can be tried, and a parallel call marker (PCTs/L) at each C G E
which evaluates to true (i.e. each C G E which can actually be
executed in parallel). Mark each P C M as "inside" when it is
created, trigger the parallel resolution of the C G E goals, and
change the P C M mode to "outside" when all those goals report
success. Also, at this point, if the P C M contains only determinate
calls, delete the P C M .

• Backward Execution: When failure occurs, find the most recently

created marker (P C M or C P M j . Then:

o If the marker is a C P M , backtrack normally (i.e. as in
sequential execution) to that point.

o If the marker is a P C M and its value is "inside", cancel
/'"kill") all goals inside the C G E , fail (i.e. recursively
perform the Backward execution).

o If it is a P C M and its value is "outside", find the first goal,
going right to left in the C G E , with pending alternatives
which succeeds after a "redo ", and then "restart" all goals in
the C G E "to its right" in parallel. If no C G E goal is found
to succeed in this manner, fail (i.e. recursively perform the
Backward execution).

This algorithm also turns out to be straightforward to implement at the

abstract machine level. This will be clear when we present the implementat ion

scheme in the following chapters. Other special cases will be covered then. In

particular we will see how backtracking in the case where some of the goals which

could have been executed in parallel are executed locally in a sequential way (e.g. due

to a lack of resources) also fits within the same scheme.

90

4.1.3.4. Po in t Back t rack ing vs. S t reak Back t r ack ing

We call the algorithm for "outside" backtracking described in the previous

sections "point backtracking": at any point during "outside backtracking" the

algorithm looks for a point of success (i.e. a goal which responds with success after it

is reinvoked) and only after such a point is found are the goals "to the right" of it

restarted in parallel.

An alternative to "point backtracking" is "streak backtracking". In "streak

backtracking", as the CGE is scanned right to left looking for the point of success,

all goals which are encountered before a goal with alternatives is found for

reinvocation are restarted in parallel with this last goal. The "outside" backtracking

algorithm for Streak Backtracking is then (still referring to figure 4-1):

"Outside" backtracking: ("Streak method")

• Case 4- We have already finished executing all goals inside the CGE -we
are "outside" the CGE- and we fail, having to backtrack into the
expression. This is the case if g fails. Again processes not only report
eventual goal resolution success, but also whether unexplored alternatives
still remain for this goal.

o If g fails and none of the CGE goals has unexplored alternatives, we
will backtrack to b just as we would in the sequential execution
model.

o If g fails and one or more C G E goals still has unexplored
alternatives, again our object will be to establish a methodology
whereby all the combinations of those alternatives will have a chance
to be explored, if needed, before we give up on the whole CGE and
backtrack to alternatives prior to it. In streak backtracking the
methodology used is to restart the parallel evaluation of all goals
without alternatives up to the first one with alternatives (again
scanning the CGE in reverse order, i.e. right to left), in parallel
with the reinvocation of this last goal. This reinvoked process will
then, in turn, report either success (with or without pending
alternatives) or failure.

91

• If failure is reported, we continue as above: this goal and the
following ones are restarted in parallel, up to the next goal
with alternatives. Of course when a failure is reported by the
leftmost goal with alternatives in the CGE, we give up on the
whole expression and backtrack as in Case 1 in previous
sections (normal backtracking). Note that now the streak of
restarted processes left during the execution of the algorithm
has to be "killed" (the bindings created by the processes
involved undone) before backtracking to the point beyond the
limits of the CGE.

• If success is reported (i.e. a point of success is found in the
CGE) no further action is needed: since the evaluation of goals
to the right of the succeeding one was already started during
backward execution, execution simply continues with the next
goal to the right of the CGE as soon as this evaluation is
completed.

Clearly, streak backtracking provides more parallelism, since the evaluation

of the "backtracking point" (rightmost goal with alternatives) is done in parallel with

the goals to its right. However, if all the goals with alternatives inside the CGE fail

after being reinvoked, then all the work done by the streak of processes is not useful

and has to be undone. Therefore, streak backtracking only appears to be of advantage

if there are spare resources in the system. Except where otherwise noted, the following

chapters will always refer to Point Backtracking.

4.1.4 Correctness of Conditional Graph Expressions

In a system based on goal independence, for a given clause or program, and

procedural semantics

• A set of annotations, is defined to be correct if it only allows parallel
execution of goals which are independent at run-time (i.e. if it guarantees
that any parallel execution generated as a result of its evaluation does not
result in variable binding conflicts) for any possible query.

• Also, a set of annotations is defined to be complete if it is capable of
exploiting at run-time all possible AND-Parallelism which is correct (i.e.
which does not generate variable binding conflicts) for any given query.

92

The definitions above can be relaxed in various ways. For example,

correctness and/or completeness can be determined for a given set of queries, rather

than for all possible queries. As an example, in the Delta-Prolog clause of the previous

section, the set of annotations

f(X, Y, Z) : - (a (foo l , X) / b(foo2, Y)) , c(X, Y, Z) .

is correct for all queries of the form

? : - f(X, Y, Z).

where

a) X and Y are ground terms (i.e. they contain no variables) or
b) they are independent terms (i.e. they have no variables in common).

i.e. there are no variable binding conflicts possible in the parallel execution of

a (f o o l , X) and b (f o o 2 , Y) for the defined set of queries. However, these

annotations are not complete for the same set of queries: the following query

? : - f (constant! . , cons tan t2 , cons tan ts) .

belongs to the set (the first and second arguments are ground), but the annotations

would not generate all the possible parallelism, since all goals in the clause above

could now run in parallel.

The conditions which guarantee correctness for a given CGE for any

possible query are simple and follow directly form the definition of C G E ' s and goal

independence. Given a CGE of the form

(<CONDITIONS> | goa l lCSV^ ft goal2(SV 2) ft . . . ft goalN(SVn))

where SV. (1 < i < n) represents the set of variables in g o a l i (or, if g o a l l is

itself a CGE, all the variables in all goals contained in it), we define two new sets of

variables, SV and S V . where

SV_ = { all variables which are in at least two of SV, ... SV } n l I n >

93

and

S V . = { all variables which belong to only one of SV, ... SV }

The sufficient condition for the CGE above to be correct is that its

< CONDITIONS > field be composed of the conjunction of the following two

conditions

• ground(SV)

• indep(S V .)

Intuitively, in order to prevent variable binding conflicts, all variables which

are shared by at least two goals (SV) need to be ground at run-time, and all non

shared variables (S V .) need to be independent. As an example, consider again the

clause:

f(X, Y, Z) : - a (f o o l , X), b(foo2, Y) , c(X. Y, Z) .

The correct CGE annotation for parallel execution of a and b for any possible query

is (SV n = {0}, S V A = {X, Y}):

f (X . Y. Z) : - (l n d e p (X , Y) I a C f o o l , X) * b (f o o 2 , Y)) . c (X . Y, Z) .

Similarly, the correct CGE annotation for parallel execution of all goals in the body

of the clause for any possible query is (SV_ = {X, Y, Z}, S V . = {0}):

f (X . Y. Z) : - CgroundCX, Y. Z) I a C f o o l , X) * bCfoo2. Y) ft c (X . Y , Z)) .

Note that using the correctness conditions introduced in this section, once a

set of goals is selected from a clause as candidates for parallel execution, the correct

CGE can be determined automatically. Thus, these conditions, coupled for example

with some heuristics for the selection of goals (perhaps guided by some user

It is difficult in general to express correct Graphs using DeGroot's syntax because
conjunctions of conditions are not explicitly allowed.

94

annotations), can be usea as a starting point in the design of an automatic C G E

generator.

4.2 Programmer ' s View of the RAP System

Logic

ABSTRACT MACHINE INSTRUCTION SET

Figure 4-4: Programmer's View of the RAP System.

As stated before, the main objective of the following chapters will be to

address the design of an efficient execution model for the parallel implementation of

Logic Programs, capable of supporting AND-Parallelism in the presence of "don't-

know" non-determinism. It was also mentioned how the emphasis would be, rather

than on a particular language, on developing techniques which can be applied to a

95

variety of languages that include this type of non-detc.uunism. However, it is also

interesting to at least consider the implications which a model such as the one

described in this chapter has at the user's level.

In this sense, an interesting objective to be fulfilled by goal independence

models which was already pointed out in previous chapters, is to provide an

implementation scheme which preserves execution efficiency (so that run-time

overhead does not overshadow the expected performance improvement) while keeping

as much as possible the issues related to parallelism transparent to the programmer.

Figure 4-4 represents a system based on Restricted AND-Parallelism from the

programmer's (user's) point of view. Two alternative implementations are suggested:

in alternative A, an intelligent compiler ("compiler A") would perform the necessary

analysis of the source program (written perhaps in Prolog) translating it into

instructions for an abstract machine capable of supporting Restricted AND-

Parallelism, that is, a machine supporting independence checks and control of parallel

processes as well as sequential execution. The generation of C G E s would then be one

of the early steps of the compiler, and the C G E format just an internal compiler

representation.

Clearly, the arrangement described above does succeed in hiding control

issues from the programmer at the source code level. Nevertheless, there has always

been controversy in the logic programming community (and many others) with respect

to whether or not the user should actually also be provided with mechanisms for

expressing information about parallelism and data dependencies in the form of

annotations at the source program level. As stated in previous chapters, it is felt that

annotations hurt the otherwise clean declarative semantics of logic programs and that

the user should be shielded from the issues that annotations address (i.e. parallelism,

96

control, etc.). On the other hand somt^mes the user has vital information concerning

these issues readily available that would be very painful for the compiler to extract

from only the set of clauses in the source program. This is the case, for example,

when the user knows exactly the type of queries which will be presented to the system

and is more interested in performance than in flexibility of the program ("input

mode" or "invocation mode" annotations).

In many cases this controversy can be easily settled by providing support for

both types of code (annotated and non-annotated) at the same time. This is specially

easy in the case of C G E ' s since the declarative semantics of the annotated code is

equivalent to that of the original clause (if the C G E is correct). Such an approach is

presented as alternative B, referring again to figure 4-4. This alternative is based on

observing that the process of generating CGE ' s for a program, which can always be

considered an independent phase of the compiler, can in fact be completely detached

from the compiler itself. This step can then be viewed as a preprocessor that turns a

standard program into an annotated one. A less sophisticated compiler ("compiler

B") takes care then of the translation from the annotated program to the abstract

machine level instruction set. This is the exact situation shown in figure 4-4. The

programmer can then write non-annotated programs, annotated ones or a combination

of both. This approach has the additional advantage that the results of the

preprocessing are incorporated to the source program in terms that are understandable

to the programmer. In this way, the programmer can view or modify the results of the

preprocessing if it is necessary for optimization purposes. Programming with

annotations can be envisioned as "expert level", while non-annotated programs would

represent a more "naive user level".

97

4.3 C h a p t e r S u m m a r y

This chapter has presented and defined forward and backward execution

algorithms for Horn clauses with embedded Conditional Graph Expressions (CGE's) .

First, these expressions were introduced and their correctness and completeness

defined. Sufficient conditions for proving the correctness of a given CGE were also

provided. It was shown how conventional backward execution is not applicable to

CGE's and several backward execution algorithms were provided for dealing with

determinate and "don't know" non-determinate execution. Therefore, the model

presented can support "don't know" non-determinism in the presence of AND-

Parallelism. Finally, a view of such a model from the programmer's perspective was

discussed.

Chapter 5

A High-Level Execution Model for
AND-Parallelism:

Memory Management and Goal Scheduling

In the previous chapter the procedural semantics for an AND-parallel

execution model for Logic Programs were presented. However, there are several other

issues which have to be addressed in order to complete such a model, and which very

dramatically affect its efficiency in a practical implementation. Two such issues are

goal scheduling and memory management. In this chapter, the relationship and

interactions between these two issues will be studied. Basic scheduling and memory

management strategies will be presented, and the implications of their implementation

on the overall performance of a system will be analyzed, where the desirable

characteristics to strive for are: minimization of idle processor time, memory usage

optimization, garbage collection minimization, and load balancing, among others.

Although, reference will also be made to other cases such as deterministic models (as

in functional languages) and "don't care" non-deterministic models (committed choice

systems) the study will concentrate on the particular issues involved in the

implementation of the "don't know" non-deterministic model presented in the

previous chapter. It will be shown how the techniques used in sequential systems for

avoiding garbage collection through the recovery of space during backtracking can be

extended to a parallel, distributed stack system.

98

99

5.1 A S impl i f i ed M o d e l of Log ic P r o g r a m m i n g I m p l e m e n t s . .on

Figure 5-1 shows a very simplified memory management model for a typical

stack-based implementation of Logic Programs. Although a realistic model, such as

the Warren Abstract Machine (WAM) [88], includes several stacks (for

"environments", "choice points", local and global data structures, "trailed" variables,

etc.), in our discussion we will reduce this model to a single stack which simply

contains activation records (AR's), one for each invocation of a goal. We will

introduce a more complete model in the next chapter when we deal with abstract

machine level issues.

f:- a, b, c.

b:- d, e.

a. c. d. e.

d
b"

Figure 5-1: A Single Stack Model

We will also suppose in this first model no optimizations (such as "last call"

optimization [87] and others, to be introduced in the next chapters) so that these

activation records will in general stay on the stack even after successful return from a

procedure. As will be shown in the following chapters, this is not an unrealistic

approximation since, even if such optimizations are implemented, the single stack still

has to contain all data structures as well as the conventional "local stack" entries.

Thus, the remaining activation records in the single stack model represent the pending

data entries which would still remain in the "global stack" and "trail" of a

100

conventional system after last call deallocation. With these premises, depth-first

execution of the set of rules in figure 5-1 would leave a "trace" of activation records

in this single stack as shown in the same figure.

f:- a. b, c.

b l : - i e .
b2:-g.h.
b3.

a. c. d. g. h.

e:- ... (fail) ...

g

"b2~

CP

© ©
Figu re 5-2: Backtracking in the Single Stack Model

Deterministic execution (i.e. execution of a program section where there is

only one possible matching clause for each goal invocation step, as in figure 5-1), is

fairly straightforward in this model: the stack simply grows with each invocation (call)

until a final failure or success occurs, or until memory space is exhausted. In this last

case, garbage collection is necessary in order to continue.

A more interesting behavior occurs in non-deterministic cases, for systems

which implement backtracking. Consider the example shown in figure 5-2. In this

case there are three alternatives for b: b.,, b„, and b , . Supposing depth-first

execution, the call to b in the body of f matches first with b... d and e (figure 5-2-A)

are executed subsequently. Suppose now e fails: the next alternative, b„, will have to

be considered, and all results (bindings, new data structures, environments etc.)

related to the failed invocation of b . should be discarded. This is done in all practical

implementations by trimming the now invalid top portions of all stacks (bindings are

normally undone while "trimming" the top of a special stack - the Trail). This

101

process is represented in our simplified model by discarding the top of the single stack,

as shown in figure 5-2-B. Execution can now proceed with b„ just as with b ^ before,

resulting in the stack pattern represented in figure 5-2-C. Clearly, the main

advantage of this mechanism is the complete retrieval of all used space during

backtracking. In fact, backtracking is extensively used by programmers in practical

systems for the purpose of avoiding garbage collection.

The single stack model presented above really only reflects the relative

precedence of AR's in the stack, as a function of the order of execution of the goals.

However, much of the efficiency of current implementations depends on this relative

ordering to be able to perform the space retrieval operations on backtracking

described above. As we will show in the following sections, when the single stack

shown in figure 5-1 is unfolded into a set of stacks during parallel execution, this

relative ordering will not only depend on the procedural semantics of the language,

but on many other implementation-dependent parameters. A simple extension of the

simplified model presented above will help us keep track of the ordering of data inside

the multiple stacks as a function of those parameters, with limited regard for the

details involved in a more realistic implementation.

5.2 Towards Parallelism

The scheme presented in the previous section is only suitable for modelling

the behavior of sequential execution schemes for logic programs. However, it can be

easily extended to model most stack-based parallel execution models, i.e. those which

are based on extending the techniques used in sequential systems by implementing a

distributed stack system. Some distributed stack logic programming systems are

described in [55], [31], [89], [7], and [12]. One of the main reasons supporting a stack-

based approach is the fact that, although logic programs can present considerable

102

opportunities for parallelism, there are always (determinate) code s e c ^ u s requiring

sequential execution [77]. A system which can support parallelism while still

incorporating the performance optimizations and storage efficiency of current

sequential systems is thus highly desirable. Stack-based systems still seem to be at

present the fastest and most efficient models for logic program implementation.

5.2.1 A Simple, Distributed Stack Model

Let us suppose a "generic" parallel system architecture, as shown in figure

5-3. In general, we will assume the existence of a number of processors and a number

of memories and that all processors have access to all memories through some kind of

interconnection network. This access could actually be direct (as in the case of a

global shared memory), switched, or through messages. For simplicity, direct access

with some kind of global addressing scheme (so that system-wide references are

possible) will be supposed from now on. In addition to processor to memory access,

the interconnection network also provides communication via message passing from

each processor to each of the other processors. Again this can also be emulated trough

common memory, but for simplicity a message passing capability will be assumed.

INTERCONNECTION / COMMUNICATION NETWORK

(Ml J (M2J (M3 J (Mmj

Figure 5-3: System Architecture

103

In order to model the distributed-stack, parallel implementation of a logic

program on such an architecture, we will suppose that the program itself comprises

sequential sections which eventually arrive at a point where several execution paths

can be taken simultaneously (a "fork"), and that the control of this "forking"

behavior is determined by annotations, in particular by Conditional Graph

Expressions and their related algorithms as presented in the previous chapter. As an

example, consider the following clause:

f(X.Y.Z) : - a(X.Y), (ground(X.Y) I b(X) A c (Y , Z)) , d(X,Y,Z).

where, as described in the previous chapter, the presence of the Conditional Graph

Expression (CGE) (g round (X,Y) I t> (X) & c (Z)) determines that during the

execution of f, a has to be executed first, and then b and c can be executed in parallel

if X and Y are determined to be ground at run-time, d will have to wait for all of

them to finish in order to start its execution.

The execution of a parallel AND-"branch" (such as that described above) in

our simplified distributed stack model is represented in figure 5-4-A.

PI

d

a

f ? b

P2 P3 PI

^

P2

(Busy)

P3

0
Figure 5-4: Distributed Stack Execution

104

In this case, execution of f starts in Pi's stacks (the part of common memory assigned

to Pi), but as a succeeds, goals b and c are executed remotely and in parallel in P2

and PS. All new data and control structures created by the execution of goals b and c

are located in their respective stacks. Note that since the goals are determined to be

independent by the checks, no variable binding conflicts will occur: P2 and PS may

read any values from Pi's stacks (e.g. the values of X and Y) but at most one of them

will write into these stacks for each particular variable (e.g. in this example only c will

write the value of Z). In most implementations, such as the one which will be

described in the next chapters, the value of Z would be constructed in PS's stacks, and

32

only a pointer to this value would be written into Pi ' s stacks . Furthermore, in a

shared memory system, communication traffic is minimized by not transmitting these

newly created structures back to the "parent" (Pi), since they can be readily accessed

in their current locations. When b and c finally succeed, execution of d can continue

in Pi, as shown in figure 5-4-A. What was a single stack in the sequential model is

now unfolded into a "distributed" stack, scattered across the memory areas
33

corresponding to different processors . An alternative execution of the clauses in the

example above is shown in figure 5-4-B. In this case, after the success of a, execution

of b starts as before in P2 but now, since Pi is idle (execution of d has to wait for b

and c to succeed), it starts executing c itself, thus leaving PS free to perform some

other task. When both b and c have succeeded, execution of d continues in Pi.

Again, this greatly simplified distributed stack model only reflects the

However, if Z is instantiated to a constant, the value of the constant itself would be
written into Pi's stacks.

33
Borgwardt has also proposed a distributed stack model [7] although stream

AND-Parallelism guided by input-mode annotations (rather than restricted
AND-Parallelism) is supported.

105

relative precedence of AR's in the stack. Many other details have been left out

purposely in order to concentrate on the main issue of this chapter: the relationship

between goal scheduling and memory management in a distributed AND-Parallel

system. The lower-level details of the model will be given in the following chapters,

where abstract machine level implementation issues will be presented. Also, the model

does not show the additional complications introduced by pure OR-Parallelism: in an

OR-Parallel system the distributed stack is really a tree of stacks [12] [7] [55] .

However, the model will show in a simple way the factors which affect the relative

ordering of AR's: this ordering will not only be a function of the ordering of goals in

the source program, but will also depend on the goal scheduling strategy. In the next

sections we will first review some distributed goal scheduling strategies useful for the

assignment of goals to processors in a parallel logic programming system. We will

then propose process(or) state diagrams and stack management schemes, using the

model above to determine goal precedence and distribution across processors. This

information will be useful in the assessment of the viability and efficiency of the

schemes proposed. Although most of the considerations in the following sections also

apply to processes in a system supporting multiprocessing, for simplicity we will

generally refer to "processors" from now on.

5.2.2 A Simple Goal Scheduling Strategy

When following the solution of f in the previous example, given that f is

being executed in a particular processor (Pi in figure 5-4) and it arrives at a point

where several goals are available for parallel execution (b and c in the same figure),

the question arises as to how which policy is to be used in order to distribute these

goals to the free processors in the system. This distribution is herein referred to as

"goal scheduling" and the policy used the "goal scheduling strategy".

A possible goal scheduling scheme is to have the processor which encounters

106

goals which can be executed in parallel look for idle processors, assign one of these

goals to each of the idle processors, and continue executing one of the remaining ones

itself. The problem with this scheme is tha t in it all the "scheduling dut ies" (looking

for idle processors, sending goals, etc.) are performed by a processor which already

has work to do, and thus the time involved in performing them adds up as overhead.

It is in general a better idea to put this burden in the hands of otherwise idle

processors. The following is a very simple and completely distributed scheduling

strategy, in which idle processors "s teal" goals from busy processors:

• Each processor has a private "goal s t ack" , which is initially empty.

• All processors are initially idle. The user query is placed in the goal stack
belonging to one of the processors. Execution s ta r t s in this processor and
with this goal.

• On arriving at a point where several goals are available for parallel
execution, those goals are also pushed on to this goal stack.

• Goals can be picked up from such goal stacks for execution both by the
owner of the stack (the processor which loads goals on to it) and /o r by any
remote processor. A remote processor picks up goals in the following way:

o An idle processor looks into other processor's goal stacks, until it
finds one tha t is not empty. Then, it "s tea ls" a goal from tha t stack
and s ta r t s working on it. When the execution of tha t goal is
finished, the result (success or failure) is reported to the processor the
goal was taken from.

The first processor thus s ta r t s working on the first goal, and as it pushes

goals into its private goal stack they are picked up by other processors. They will in

turn generate other goals to be picked up by other processors and work spreads itself

in this way naturally over the network as it becomes available. Note tha t this

algorithm is valid even if there is only one processor present (or not faulty) in the

system: since any processor can also pick up goals from its own goal stack, all goals

scheduled for execution in parallel may also be executed in this only processor.

107

An obvious optimization can always be applied to this scheduling scheme: in

the algorithm above a processor always pushes all the available goals on to its goal

stack, probably only to immediately pop one of them locally to continue working on

it. Instead, it can routinely push all but one, for example the last one, and execute this

last goal right away without needing to go through a push-pop sequence in the goal

stack. Thus the time involved in the push-pop sequence is always saved for at least

one goal.

As pointed out above, in this system scheduling duties are performed by

otherwise idle processors, rather than by busy ones where these duties would add up

as overhead. Also note how scheduling is completely distributed and thus the system

is scalable (if the interconnection/communication network scales well too).

Other related distributed- load balancing schemes have been proposed. For

example, Keller et al. [38] propose a load balancing scheduling strategy in the

Rediflow architecture. Their scheme is intended for distributing load ("pressure", in

their model) as uniformly as possible using a mesh topology as an example. Processors

have queues which represent a reservoir of "runnable" processes (Chares). A processor

evaluates its internal "pressure" (measured as the number of entries in the queue, but

affected by some other factors) and compares it with that of its neighbors. When the

local pressure is comparatively high some "Chares" are issued forth into the

interconnection network, where they are distributed to less loaded processors. Similar

schemes have also been proposed by Burton and Sleep [8].

The main problem with the schemes above is that when the number of

processors is large, "polling" from one goal stack to another in order to find available

work can be very inefficient. Some global scheduling mechanism, capable of pointing

108

idle processors to available work would be desirable, but care must be taken to

prevent this mechanism from becoming a serial bottleneck in the system. Such a

mechanism is presented below.

5.2.3 A More Efficient Goal Scheduling Strategy

Consider the addition of a new element to our basic system architecture

(figure 5-3) in the form of a "scheduling network" (figure 5-5).

INTERCONNECTION / COMMUNICATION NETWORK

(M2J (M 3 j f Mm)

Figure 5-5: System Architecture

This element is connected to all processors, and it acts as a global scheduling

mechanism. Its operation can be summarized as follows:

• Each processor continuously feeds a value into the network which can
represent either its load (for example the number of processes running if
multiprocessing is supported) or the amount of work available in it for
other processors (for example the number of goals in its goal stack).

• At any point in time any processor can ask the network for the Id. of the
processor feeding in the highest value, and this Id. will be provided by the
network with very little delay.

109

Once again, in a shared memory system this function can be emulated by a

globally accessible (and constantly updated) value in common memory, but we will

suppose the existence of the network for clarity. Such a scheduling network can be

implemented by anything from a wire-or bus (which would provide one maximum

value) to a tree structure (such as a sorting network [5], which would provide the N

maximum values), with different delays and cost depending on its complexity. In

particular, the delay and cost can be kept sublinear (logarithmic) whith respect to the

number of nodes (processors) involved. The following algorithm is an extension of

that in the previous section but making use of a scheduling network such as that

described above:

• Each processor has a private "goal stack", which is initially empty.

• All processors are initially idle. The user query is placed in the goal stack
belonging to one of the processors. Execution starts in this processor and
with this goal.

• On arriving at a point where several goals are available for parallel
execution, those goals are also pushed on to this goal stack.

• Goals can be picked up from such goal stacks for execution both by the
owner of the stack (the processor which loads goals on to it) and/or by any
remote processor. Goals are picked up by remote processors in the
following way:

o The number of goals in the private stack is continuously fed by each

processor to the scheduling network

o An idle processor receives from the scheduling network the Pid. of
the processor with the highest number of goals in its private goal
stack. It then "steals" a goal from that stack and starts working on
it. When the execution of that goal is finished, the result (success or

As pointed out before, if multiprocessing is implemented, then the number of processes
being run should also be used. These two numbers (available goals and processes currently
being run on the processor) can be combined to provide a total load number which is fed to
the network. The scheduling scheme would then ensure that idle processors" always picked up
work from the most heavily loaded processors.

110

failure) is reported to the processor the goal was taken from (parent
processor).

The time spent by processors polling other processors is now eliminated, and

the delay between a processor being available and it finding a goal when there is

available work in the system is minimized and dependent only on the scheduling

network delay. Thus the the only scheduling bottleneck is the (sorting) network itself,

but its action is limited to a very simple operation whose delay can be kept sublinear.

This system also achieves "load balancing" which is useful if interprocessor distance

(measured as communication delay) is constant. If this is not the case, then other

strategies that make use of locality can be implemented: for example, the scheduling

network can compute a value that is not simply the maximum of the numbers being

fed in (as above), but a function of the number fed in by each processor and the

distance from this processor to the one issuing the request for a goal. The Pid.

obtained then is not only that of a processor which has many goals available, but also

that of that of one which is "close" to the requesting one. The particular function

used would obviously depend on the topology of the network.

Since more than one processor could attempt to pick up a given goal

simultaneously, goal stacks obviously have to be locked during this operation. In

order to prevent many processors from fighting for access to the goal stack with the

maximum number of goals, a simple optimization can be introduced: while the goal

stack of a processor is locked, the value fed to the scheduling network will be zero.

Thus this processor will not receive requests from others until it is free again.

i n

5.2.-* 3imple Processor State Diagram

Figure 5-6 shows the states which a process or processor, running in a system

implementing the scheduling strategies described above, has to go through, from

initialization to success or failure of a given query. Consistent with normal state

transition diagram conventions, states are represented by circles and transitions by

arrows. Transitions are caused by the reception of messages. These messages and the

outputs generated by the transitions are given associated to the arrows. Messages

enclosed in quotes ('...') are inputs from the scheduling network, those preceded by /

are outputs to the communication network and the rest are inputs from the

communication network.

Initialize

'...' input from SN

... input from CN

/... output to CN

/success

Figure 5-6: Simple Process State Diagram

The diagram describes the actions performed by a processor until a goal is

received and work starts on it: after initialization, the processor goes into an idle

/failure

'no goal

Exit Status

Failure <

112

state where it continually asks the scheduling network for the Id. of a processor which

has goals available in its goal stack (or it continually polls other processors in the

simpler scheme). When a goal is received, the system goes into a complex state

("Working" in figure 5-6). In a non-shared memory system, two local processes would

be started. The "foreground" process would be the one actually working on the goal,

i.e. the process that is executing the user program. Its states would be determined by

the different instructions being executed 35

Wait for interrupt

(i.e. input from CN)

WORKING

• Background process

started.

(O Failure

- Report exception
to foreground process

- Return control

(C) - (from child process)
(P) - (from parent process)

Figure 5-7: Background Process State Diagram

The "background" process would be in charge of sending goals from the local

goal stack to remote processors upon receipt of a request, of updating local

information regarding success of "children" (e.g. whether they still have alternatives

These actions and instructions will be described in the next chapters.

113

or not), and of reporting exceptions to the foreground process (e.g. the reception of a

"kill" message from the parent). A state diagram for the background process is

shown in figure 5-7. Normally the background process would be terminated by the

foreground process upon finishing work on the current goal (with either success or

failure). In this scheme the background process is independent from the foreground

process except for the fact that it can interrupt the latter to report two kinds of

exceptions, as described below. After either of these exceptions the background process

terminates itself.

The first exception occurs when a kill message is received from the parent

process. The foreground process stops working on the current goal and it returns to

the corresponding idle state (figure 5-6). The second kind of exception appears when

failure is reported by some child of the current process. In this case execution

continues normally but the foreground process handles the failure according to the

procedural semantics presented in the previous chapter.

In practice, the most efficient way of implementing this dual process

(background/foreground) behavior is through an interrupt mechanism. Note that the

normal state of the background process is waiting for an interrupt, in the form of a

message from the network (Goal_ request, Success, Failure or Kill). This makes it a

good candidate for an interrupt based implementation: if one of these messages

arrives to the processor mailbox while executing a program instruction, an interrupt

flag is set. At the end of the instruction the flag is sensed and the (microcode) routine

corresponding to the particular type of interrupt (message id -one of the four above) is

executed. "Goal_request" and "success_report" will return control after being

serviced to the next instruction in the program. "Failure" will start the failure

management (microcode) routine, and restart execution of the program at the

114

appropriate place (this will become clear when failure behavior is explained for the

abstract machine in the next chapters). The "kill" management routine executes the

kill semantics (i.e. kill all dependents) and branches to the idle loop.

Of course, in a shared memory environment there is really no need for a

background process at all: when an idle processor asks the scheduling network for the

Pid. of a processor having available goals, the value received can be the actual address

of the top of the goal stack for that Pid. The goal can be picked up from there

directly by the requesting processor and it can also update the memory areas of the

parent processor to report success, provided proper memory arbitration is

implemented. The messages arriving at the mailbox can be detected between

instructions (i.e. as interrupts) and handled as described above. Again, work on the

received goal in this only ("foreground/background") process will eventually finish in

success or failure (see figure 5-6) and the processor will return to the idle loop, ready

to start work on another available goal.

5.3 M e m o r y M a n a g e m e n t a n d S c h e d u l i n g

The simple, distributed stack memory management scheme introduced in

section 5.2 can be combined with the above described scheduling algorithms and the

processor state diagram in figure 5-6. The contents of the stacks during a sample

execution of the clauses listed below in such a system are shown in figure 5-8; both the

simple stack of section 5.2 and the goal stack introduced above are being represented.

f : - a. (b ft c) , d.
d : - (g ft h) .

Note how in figure 5-8, goals which are available for execution in parallel

(such as b and c in figure 5-8-B) are pushed on to the goal stack of the processor

115

0

©

©

©

©

(0)

PI: working GS-1

a

f
1

b

c

(2)

PI: working GS-1

PI: working GS-1
(wait_on_siblings)

d \ y

a

f
1 (0)

PI: working GS-1

d
I I (2
- - - - . *m w

t- _i_r
h ^

PI: wor

d

a

f

king GS-1

|
1 (0)

PI: working GS-1
(wait_on_siblings)

(0)

P2: idle
(no goal)

GS-2

P2: working
•" success

P2: idle
(no goal)

P2: picking
up goal

P2: working

GS-2

(01

GS-2

GS-2

(0)

GS-2

P3: idle
(no goal)

P3: idle
(no goal)

P3: picking
up goal

P3: working

(0)

GS-3

(0)

P2: picking GS-2 P3: picking GS-3
up goal up goal

(0)

a

f
1 1

fO) b (0)
c

P3: working GS-3
" success

(0)

GS-3

GS-3

(0)

GS-3

Figure 5-8: Goal Stack Based Goal Scheduling

which encounters them. From there they are picked up by free processors (figure 5-8-

C) which work on them until they completely succeed. If these processors in turn

generated new goals for execution in parallel, they would be pushed on to their goal

116

stacks and picked up from there by other free processors or, eventually, by themselves.

In principle, after execution of a given goal is completed, a new one can be picked up

and execution can proceed stacking all new da ta s t ructures above the old ones

(figure 5-8-D,E,F). An "Input Goal Marker" (represented by double horizontal line in

figure 5-8) is used for separat ing different stack sections, each one of them containing

all s t ructures related to the execution of a given goal, which was taken from another

37 processor

The scheme used in figure 5-8 can be used directly in "commit ted choice"

systems. These include all stack-based implementat ions of functional languages and of

logic languages which make use of "don ' t care" non-determinism, such as Concurrent

Prolog [72], Parlog [30], and GHC [81]. Execution in these models could proceed as in

figure 5-8, allocating all s t ructures corresponding to the execution of new goals on top

of those corresponding to previous ones. In the event of memory exhaustion, a

(distributed) garbage collection algorithm will have to be used in order to retrieve

unused space.

We have argued in previous chapters how "don ' t know" non-determinism as

implemented in full OR-Parallel systems (such as [55]) and in backtracking systems

(such as Prolog [58]) is of special interest in Logic Programming. We have also argued

that even though OR-Parallelism can be interesting in the presence of spare resources,

backtracking also has to be supported in such systems in order to prevent a

combinatorial explosion of the search space and the number of processes generated.

The procedural semantics of a system capable of support ing AND-Parallelism and

See section 5.3.1 for a more detailed discussion on this subject regarding backtracking
systems.

37
Creation of these markers is only strictly necessary if backtracking is to be supported.

117

"don ' t know" non-determinism through .otributed backtracking was presented in the

previous chapter. In the next sections we will analyze memory management issues

that particularly apply to don' t know non-deterministic systems which make use of

distributed backtracking, and the interaction between memory management and the

goal scheduling strategy being used.

5.3.1 M e m o r y M a n a g e m e n t P r o b l e m s A s s o c i a t e d w i t h D i s t r i b u t e d

B a c k t r a c k i n g

The basic condition necessary for efficient memory management in sequential

backtracking systems is tha t at every point in the computat ion, newer s t ructures

always be stacked on top of older s t ructures. If this rule is observed, then all used

space can always be retrieved on backtracking and this retrieval is always done from

the top of the "s tack" (as in figure 5-2).

Note th in practice, "newer" and "older" have to be defined in terms of

the particular control s trategy being used, i.e., for Prolog "older" means "closer to

the root" and " to the left of" in the depth first, left to right execution tree. In

general, for backtracking systems, we will define a goal invocation a as being "older"

than another goal invocation b , represented as a < b , if, for a given control s trategy,

all alternative solutions of b are to be tried before a new solution of a is

attempted

In parallel systems, equivalent conditions to those above are to be applied to

the distributed stacks involved in execution. In particular, if the following two

38
Note that although this relationship is always defined for any two goals in a sequential

deterministic system such as Prolog (given any two goal invocations a and b , a < b if a is
executed before b) this is not always the case in some parallel systems and there may be cases
where neither a < b nor b < a is true. However, this relationship does hold in all cases for
the backtracking strategy defined in the previous chapter.

118

conditions are met, the efficiency present in sequential systems can be preserved in

distributed backtracking systems:

1. The same precedence as in the sequential model is maintained within each
stack section during the execution of each particular goal.

2. If stack sections corresponding to different goals are allocated on the same
physical stack (as in figure 5-8-F, for goals b and g) then only structures
which correspond to an newer (descendant) goal of the one currently on
top of the stack are allocated above it.

These two conditions, added to backtracking algorithms such as those

proposed in the previous chapter, ensure that, in the event of failure, backtracking in

parallel systems will also be able to retrieve all stack space used in the computation of

the failed alternative from the top of all stacks, and that execution of the new

alternative will start from the new tops, so that there is free space above for execution

to continue.

It should clear that, once a goal has started execution at any given processor,

the first condition above, i.e. that newer structures always be stacked on top of older

structures during the execution of that goal within a stack section, can be met simply

by using the same techniques currently applied in conventional sequential models.

This will be the approach taken in the Abstract Machine which will be described in

the next chapters.

Let us therefore concentrate on the second condition above and start by

analyzing the problems associated with not meeting it. Returning to figure 5-6,

consider the situation in which a processor, having succeeded in the execution of a

given goal, goes back to the idle loop to look for another goal to work on. This is the

case, for example, of processor 2 in figure 5-8-D,E,F: after the success of b , a new goal

119

g is picked up. In order to illustrate a situation . .ich problems can arise, suppose

that instead of g, a different goal k (from the execution of another parallel call

somewhere else in the system) had been "picked up" and that k > b does not hold

(i.e. k is not a descendant of b). In this case, when dealing with a failure at some

point during the subsequent execution of the program it is possible that b may have

to be backtracked before k. If, as a result of such backtracking, b needs to be "killed"

(i.e. deallocated) this represents only a minor problem: deallocation of b is possible,

leaving an empty slot of "garbage" in the stack, and execution can continue (figure

5-9-A: the "garbage slot" problem). Although this space may be retrieved later

through backtracking (i.e. if k is deallocated before anything else is stacked above it)

this cannot be guaranteed in general. Therefore, complete retrieval of used space

during backtracking is not preserved.

loll

P2: working

(0)

GS-2 P2: working GS-2

redo

bl

P2: idle
(receive redo)

P2: working

free space

Figure 5-9: The "garbage slot" and "trapped goal" Problems

A more T?rious problem appears also during backtracking if, for the same

situation depicted above, an alternative solution is needed from b (i.e. a redo message

120

is sent to P2 referring to b) and again k has not yet been deallocated. In this case

part of the stack space occupied by b will be deallocated (down to the next "choice

point" - figure 5-9-B) and a new alternative will be evaluated, its structures being

stacked above this point. But note how, since there is no a priori limit to the number

of structures that will be needed in the evaluation of this new alternative, the space

available in the stack below k could be insufficient for the complete evaluation of this

new alternative (figure 5-9-B, the "trapped goal" problem). Using space above k

would additionally complicate complying with condition 1 above. If, on the other

hand, k were a descendant of b (as is the case of g in figure 5-8-F), all alternatives of

k would have been tried, and k itself deallocated before b is backtracked. This would

be the case if Prolog style semantics are applied to the example in figure 5-8.

Although in some models conditions 1 and 2 above can be met by forcing a

precise ordering of events, we will be interested in this chapter in exploring more

general solutions, those that can be applied to different models with some

independence of the actual ordering of events in the distributed system. Therefore, in

the next sections we will present a number of modifications to the basic scheduling

and memory management model presented so far, in order to extend its application to

general "don't know" non-determinate systems using backtracking while avoiding the

problems illustrated in this section.

5.3.2 The Idle Processor Solution

One way to prevent stacking a non-descendant goal over an existing one is to

avoid stacking goals at all. Of course, this is a rather trivial solution, but it will used

as a base case upon which the other solutions proposed in the next sections will be

built. Figure 5-10 shows a processor state diagram (similar to the one shown in figure

5-6) for such a system. After initialization, a single goal is selected, and the processor

works on it until it finally succeeds or fails. There are then three basic exit states:

'...' input from SN
... input from CN

/... output to CN

Figure 5-10: State Diagram for the Idle Processor Approach

• In case of failure this fact is reported to the parent (i.e. to the processor
from whose goal stack the failing goal was "stolen") via a /failure!
message. Also, kill messages are sent to all dependents (i.e. all processors
which stole goals pushed on to the local goal stack while in the
WORKING phase) in order to also discard their parts of the failed
computation. Finally the local stack is flushed. Since the local stack is
now empty, we are in the same situation as after initialization and we can
return to the idle loop to pick up another goal.

If during the computation a kill message is received from the parent
(because of failure in an ancestor, as described above) the result is similar
to a local failure: all dependents are sent kill messages, the local stack is
flushed, and a new goal can be picked up.

• In case of success, this fact is reported to the parent via a /success
message. Since there will then be structures pending in the local stack, the

122

processor, instead of picking up a new go„i to stack above these structures,
simply waits until one of the following messages is received:

o A kill message: sent by the parent if an ancestor fails and the part of
the computat ion in this processor has to be discarded. Again
descendants are "killed", the local stack flushed, and a new goal can
be picked up.

o A redo message: sent by the parent if a different solution
(alternative) is needed for the same goal. In this case local
backtracking is invoked and the processor continues with the new
alternative in W O R K I N G mode. If another al ternative solution is
found, exit will be in success mode. Otherwise it will be in failure
mode. Also, a kill message may be received during the computat ion
of the alternative.

This scheme avoids stacking problems but it has an obvious and serious

drawback: processors are left locked in waiting mode as soon as they produce an

answer for the first goal and until backtracking occurs. In such a system, processor

utilization would be very low for determinate programs with small granules of

computation. Thus , the scheme is obviously only valid for systems with a high

number of processors (i.e. those in which the number of processes -available

parallelism- is not much higher than the number of processors), and /o r which rely on

frequent backtracking

39
Of course, if multiprocessing is available, processors can be kept busy by creating new

processes, but then the burden of memory management for the multitude of stacks
corresponding to different processes is placed upon the multiprocessing system software and
some of the inherent memory efficiency of backtracking systems may be lost. See section
5.3.4.

123

5.3.3 The Idle Processor Solution - Some Improvement

The Idle Processor Approach can be improved in a simple way by

distinguishing between two types of success: success with alternatives, and success

without alternatives (figure 5-11). Note that if a received goal succeeds and at that

time it can be determined that there are no alternative solutions available (i.e. that

the computation was determinate) then the only message that can be received from

the parent regarding this goal is a kill message. This means that structures for any

other goal can be stacked above it: if a kill message is then received, the section

corresponding to that goal is simply deallocated, and we would at most run into the

(minor) "garbage slot" problem.

Determinate goals can therefore be stacked until a goal succeeds with

alternatives. In this case , since a redo message could arrive, no new goals are

stacked on top, thus leaving the top of the stack free for evaluation of another

alternative. Of course, if a kill message arrives for the goal with alternatives, it is

deallocated and execution continues as above.

This scheme would provide much better performance, especially for

deterministic cases, for which it is essentially equivalent to the basic model of figure

5-6. Note that this determinate case is more frequent than it may seem because in

many systems a "commit" or "cut" construct is provided and it can often be used

after the invocation of several goals in parallel, thus eliminating the alternatives in the

A simple way of determining this in systems which follow a more or less conventional
implementation is by checking whether there is a choice point (or "parcall frame", see next
chapter) available.

In a WAM [88j type implementation, there will be at least one choice point in the stack
and perhaps some entries in the local trail and heap.

124

...' input from SN

... input from CN
/... output to CN

F i g u r e 5 - 1 1 : S ta te Diagram for the Idle Processor Approach - Improved

.42 scheduled goals ". Nevertheless, in this scheme, processors can still idle unnecessarily

.43 after evaluating goals with alternatives and complete retrieval of used space on

backtracking cannot be guaranteed in all cases.

42 Refer to the determinate execution algorithms presented in the previous chapter.

43TT Unless multiprocessing is implemented- see section 5.3.4.

125

5.3.4 Mul t i Stack M e m o r y

In conventional systems, processors are a scarce resource when compared to

memory. The main problem in the scheme above (i.e. the locking of a processor

because of the existence of a goal with alternatives on top of the local stack) is that

the presence of such a goal can temporarily preclude the stack from growing. The

processor, however, is only waiting, and could continue working on another goal on a

different stack. A system where there are more stacks than processors could take

advantage of this fact thus greatly improving processor utilization. A processor state

diagram for such a system is presented in figure 5-12.

After initialization, a first stack is allocated as usual, and the processor tries

to pick up a goal. If one is found, work will start on that goal. In the event of failure

or the receipt of a kill message, dependents are killed, the stack flushed and a new

goal can be picked up using the same stack, as in the approaches previously discussed.

But in the event of success, after reporting it to the parent, a new stack is allocated so

that a new goal can be immediately picked up and worked upon using the new stack.

Thus the locking problem is solved. Note that the optimization introduced for the

Idle Processor Approach can also be used here: if a goal succeeds without alternatives,

there is no need to generate a new stack; the new goal can be stacked above the older

determinate goal. The expense of creating new stacks is thus saved for determinate

cases.

In this scheme, kill and redo messages can easily be serviced by identifying

the corresponding stack and performing the appropriate operations on them. Note

that in a real implementation, outside of our single-stack model, the "creation of a

stack" could imply creating a complete new set containing one of each of the areas

used in a conventional implementation (i.e. for a WAM type system, a new Stack,

126

Initialize

...' input from SN
... input from CS

I... output to CN

/success

'no goal

F i g u r e 5-12: State Diagram for a Multi Stack Memory

Heap, Trail, register set etc.). The machine state corresponding to the old stack has

to be saved (i.e. the values of all the registers). Really the operation that we have

referred to as "creating a new stack" corresponds in more conventional terms to the

creation of a new process. Thus there will in general be several processes present in a

given processor, one for each "stack" in use, some of them "WORKING", some of

127

44
•them waiting for a kill or a redo Processors can then actually be viewed as

"workers" which move from one to another of a number of s tacks in (shared) memory.

Such a multi-stack approach can be straightforward to implement in a system with a

large (virtual) addressing space, and virtual memory support . The multiprocessing

capability is probably also necessary anyway in any general purpose system where

more than one user is to be supported simultaneously. Multiprocessing can also be

extremely useful in preventing processors from idling in other cases, which are not

directly related to scheduling. One such case is a processor which is waiting for

responses from children processors and has no additional local work to do {join

operation): it can create a new process and new stacks and pick up work from any

other point in the system .

As shown above, the multi-stack model offers very good processor utilization,

making it possible to fully support the load balancing characteristics intrinsic to the

scheduling algorithm. The obvious additional expense is the need for a more

sophisticated memory management system, external to the model, and thus some of

the inherent memory efficiency present in backtracking systems may be lost.

In an implementation such as the one which will be described in the next chapters, there
may also be processes waiting for siblings to report: see figure 5-8-C and -F.

Note that if the goal picked up in these circumstances is a descendant goal, again
execution can continue using the same stack and the overhead of creating a new stack can be
saved. See the next section.

128

5.3.5 Goal Restriction

A completely different approach towards ensuring that only descendant goals

are stacked above other goals is to restrict the choice of goals which can be picked up

by a given processor. This is in contrast with the schemes presented before, where no

limitations were posed on which goals the processor could pick up once it entered the

idle loop. The price paid was limited processor utilization and/or poor memory

efficiency, or the expense of a more sophisticated memory management system,

capable of handling multiple stacks. The advantage was load balancing and an

extremely economical scheduling algorithm. In this section we will reconsider the

scheduling algorithm instead.

Figure 5-13 shows the processor state diagram for a parallel backtracking

system with distributed goal scheduling restriction. After initialization a processor

can always pick up any goal in the system (its stacks are empty, so there is no need to

take into account any underlying structures). In general, work on any goal will finish

in one of the previously discussed circumstances (exit status). The most interesting

difference occurs when this status is success with alternatives. As before, this means

that the goal has been executed successfully, and there are still more possible solutions

(i.e. at least one "choice point") for it, the stacks thus containing pending structures.

In such circumstances, the goal restriction approach dictates entering an alternate

idle loop, where, rather than picking up any available goal in the system, only an

appropriate goal (defined as one which is a descendant of the last goal received) will

be looked for. Only when such a goal is found, work will continue on it, and in

confidence that its data structures can safely be grown on top of the old ones, since

the descendence relationship ensures that the newer structures will always be

deallocated before an underlying goal needs to be backtracked.

1?9

Initialize

'no goal'

'...' input from SN
... input from CN
/... output to CN

'no (appropriate) goal'

redo

WORKING

kill received

exit status

failure ' success/NoAlt sucess/Alt

Figure 5-13: State Diagram for the Goal Restriction Approach

If the goal exits in any of the other possible states (failure, kill received, or

success with no alternatives) then, after the corresponding actions are performed

(reporting to parent, killing dependents etc.), the local stack is checked to see if there

are any pending structures in it. If the stack is empty, then a loop looking for any

available goal is entered. If it is not empty, then the loop looking for an appropriate

goal is used.

130

One important advantage ot this method is that , since thanks to the

selection of goals the ordering of goals in the stack corresponds to its backtracking

order, any kill or r edo message received from the parent necessarily refers to the

last goal received. This obviously means tha t all allocation and deallocation of

structures on all stacks is done always to and from their tops. It also means that kill

and redo messages do not have to identify the goal they refer to: it is always the last

goal executed in the processor.

Of course, some method has to be devised for determining descendance

relationships between goals. One solution which can be used has been proposed in

[55] (applied to determining variable "age" in an OR-Parallel system): a simple

"block number" determines the relative age of different "chunks" of memory. Ait-

Kaci, Boyer, and Nasr have proposed an encoding method (applied to the

determination of the Greatest Lower Bound in a novel unification algorithm for

supporting "inheri tance" [35]) which makes it possible to determine these

relationships by performing a low overhead boolean check. It is conceivable tha t this

function could be supported in hardware through a "Descendant" network, similar to

the scheduling network in figure 5-5. A similar scheduling algorithm to tha t shown in

section 5.2.3 could then be used, in which a processor would feed in the level of the

goal on top of its local stack to the "Descendant" network, and the network in turn

would return a Pid. for the processor having the highest level goal which is a

descendant of the requested level in its goal stack, i.e. ready for execution. However,

since this encoding technique is presented in [35] as a compilation (i.e. static)

technique, and it is currently valid for partial orderings only, its applicability (or

modification) for this purpose remains an area open for research.

Other solutions can also be applied. For example, the processor can take

131

goals from any random processor (as given by the scheduling network) when the stack

is empty, and only from the goal stack of a parent processor (i.e. the one from which

the top goal in the stack was taken) when there are structures pending. This policy

also guarantees correct goal ordering without labeling goal levels.

5.3.6 A Combined Approach

The solutions proposed in the last two sections have complementary

characteristics: the multi-stack solution effectively solves the problem of having

inactive processors for all cases, but runs into the additional overhead involved in the

creation and deletion of multiple stacks. The goal restriction approach makes much

more efficient use of its stack, but it can sometimes leave processors idle, even though

there is work available in the system, just because the available goals are not

"appropriate".

A combined approach, such as that shown in figure 5-14, can offer the

advantages of both models. Here, an idle processor will first look for appropriate goals

in the system. As long as appropriate goals can be found, they are executed on the

existing stack taking advantage of the inherent memory management efficiency of the

single stack approach. If at any point no appropriate goals can be found, but there is

work available in the system (i.e. non-appropriate goals) then a new stack is created

and work continued on it. Note how this eliminates the occurrence of idle processors

if there is work available in the system while at the same time taking advantage of

the inherent efficiency of the single stack model whenever possible. Also note how as

the number of stacks grows, the scope of "appropriateness" of goals expands too: now

all descendants of all the goals on top of all stacks are appropriate. Thus, as the

occurrence of non-appropriateness decays, the number of stacks generated should be

bound.

132

Initialize

'no appropriate goal'

Identify

Stack

...' input from SN

... input from CN
/... output to CN

Look for
appropriate

goal

Look for

'no goal'

kill
any

goal redo

WORKING

exit status

failure ' success/NoAlt

(empty) (not empty)

Figu re 5-14: State Diagram for the Combined Approach

133

5 .4 C h a p t e r S u m m a r y

In the previous sections we have discussed the interactions between two

important issues in stack-based parallel logic program implementation: scheduling and

memory management. Single and multi-stack memory organizations, and restricted

and unrestricted distributed goal scheduling strategies were proposed and analyzed.

Special emphasis was placed on their application in backtracking systems, studying

their special features and problems. A combined multi-stack/goal restriction model

showed the best performance potential and is indicated for larger granularity systems

where virtual memory and scheduling hardware support is available. This is the case

in most current multiprocessor systems, where a limited number of relatively large

processors are interconnected and limitation of processor idle time is essential. Such a

combined approach eliminates idle processors if there is work available in the system

while taking advantage of the memory efficiency of the sequential model whenever

possible. This is obtained at the expense of a more sophisticated memory

management system, capable of handling multiple stacks. At the other end of the

spectrum, in systems containing a very large number of small processors, simpler

solutions which entail lower overhead and, therefore, potential for better performance,

can be applied at the expense of lower processor utilization. If some appropriate

scheduling hardware is available, then the goal restriction approach can offer good

processor utilization and excellent memory efficiency in a medium size granularity

system.

In the next chapters an implementation model for Parallel execution of Logic

Programs will be presented which is based on the goal scheduling and memory

management schemes discussed in this chapter, and which implements the procedural

semantics developed for Horn Clauses annotated with Conditional Graph Expressions

in the previous chapter. This scheme will be described down to the abstract machine

134

level in order to establish the feasibility of the implementation and make realistic

simulations possible. The following chapter will describe a series of techniques which

can be used at the Abstract Machine level for support ing the algorithms of chapters 4

and 5. Chapter 7 will then present the da t a areas and instruction set of an Abstract

Machine design which makes use of such techniques.

136

.uecks); second, the model is offered in the form of extensions, which are fairly

independent, in spirit, of the peculiarities of that implementation. Therefore, the

approach described here is applicable to a variety of compilation/stack based

sequential models.

6.1 Implementing Sequential Logic at the Abstract Machine

Level: The WAM

The basic storage retrieval mechanisms used during backtracking in current

sequential systems were already described in the previous chapter. However, the highly

simplified model offered therein left out many issues which are relevant in practice.

Before the strategies for implementing C G E based AND-Parallelism with the

associated backward execution mechanism are presented, a more accurate description

of sequential backtracking implementation techniques- will be given in this section.

This description will be based on one of the highest performance Prolog

implementations to date: the Warren Abstract Machine (WAM) [88]. The W A M

will not only constitute the starting point for the description of the distributed

backtracking techniques in this chapter, but also the basis for the parallel abstract

machine level design of the next chapter.

6.1.1 Data Areas and General Operation of the W A M

The W A M [88] is an efficient execution model coupled with a host of

compilation techniques leading to one of the fastest and most efficient

implementations of Prolog today. The ideas it incorporates are believed to be a major

breakthrough in the design of computational logic systems [55]. Lack of space

prevents us from fully describing the W A M here, but we will point out those basic

concepts which are necessary for understanding the discussion in this and the next

chapters. For a complete description of the W A M the reader is referred to Warren's

original SRI report [88] or to the tutorial on the W A M available from Argonne Labs

136

.necks); second, the model is offered in the form of extensions, which are fairly

independent, in spirit, of the peculiarities of that implementation. Therefore, the

approach described here is applicable to a variety of compilation/stack based

sequential models.

6.1 Implementing Sequential Logic at the Abstract Machine

Level: The WAM

The basic storage retrieval mechanisms used during backtracking in current

sequential systems were already described in the previous chapter. However, the highly

simplified model offered therein left out many issues which are relevant in practice.

Before the strategies for implementing C G E based AND-Parallelism with the

associated backward execution mechanism are presented, a more accurate description

of sequential backtracking implementation techniques will be given in this section.

This description will be based on one of the highest performance Prolog

implementations to date: the Warren Abstract Machine (WAM) [88]. The W A M

will not only constitute the starting point for the description of the distributed

backtracking techniques in this chapter, but also the basis for the parallel abstract

machine level design of the next chapter.

6.1.1 Data Areas and General Operation of the W A M

The W A M [88] is an efficient execution model coupled with a host of

compilation techniques leading to one of the fastest and most efficient

implementations of Prolog today. The ideas it incorporates are believed to be a major

breakthrough in the design of computational logic systems [55]. Lack of space

prevents us from fully describing the W A M here, but we will point out those basic

concepts which are necessary for understanding the discussion in this and the next

chapters. For a complete description of the W A M the reader is referred to Warren's

original SRI report [88] or to the tutorial on the W A M available from Argonne Labs

[29].

137

CP-

P—

CODE

TR-

\

Temp. Variables

Machine Regs.

A(X) Regs. 1

PDL
i

}

Invoking Goal
Arguments

Arity
Backtrack
Continuation

— Previous CP
— Next Alternative

Backtrack trail
and Heap pointers

-Choice Point (CP)-

Cont. Environment
Cont. Code

Continuation
Pointers

Slots for n
J) permanent

variables
(Y registers)

-Environmment-

F i g u r e 6-1: Data areas and registers for the W A M

Figure 6-1 shows a general view of the data areas of the W A M . They

include:

• The Code area: which contains the program in compiled form. The next
instruction to be executed is pointed to by register P .

• The Heap: where data structures and long-lived global variables are

138

cre^ _, updated, and discarded (upon backtracking). Structure copying
[47] (rather than structure sharing) is used in the Heap: new structures

are pushed on to the Heap explicitly, as modified copies of old ones.
Register H points to the top of the Heap.

• The Stack: which contains two types of objects: environments and choice
points.

o An environment contains a number of value cells which are used to
store (permanent) variables which can be accessed by the goals
within the body of the clause or by children clauses called by these
goals. It also contains some continuation information which is
equivalent to the return address in a subroutine call: it points to the
instruction in the body of the calling clause where execution will
continue after the called clause finally succeeds. Register E points to
the current environment. An environment is pushed on to the Stack
every time a clause with "permanent variables" is entered.
Environments which are no longer needed (for example before the
last call in a clause) can be discarded ("last call optimization" [87]).

o A choice point is pushed on to the Stack when the first clause of a
set of alternative clauses is entered. It contains all necessary
information to restore the state of the machine and a pointer to the
next alternative clause. Upon failure, backtracking is accomplished
by finding the last choice point in the Stack (pointed to by register
B), reloading all machine registers from its contents, and restarting
execution at the alternative clause. This will be explained in more
detail in the next sections. Resetting the registers takes care of
discarding the top of the Heap and Stack (i.e. discarding variables
and structures created since the choice point). However, some
variable instantiations may have been made deeper in the data areas
which need to be undone upon backtracking. This is taken care of by

• The Trail: where variable instantiations which need to be undone are
recorded (one entry for each variable). These entries are used on
backtracking to restore the corresponding variables to "uninstantiated".
This operation is called "detrailing" or "unwinding" the Trail. Register
T R points to the top of the Trail.

In addition to the data areas (Code/Stack/Heap/Trail) there are other

elements in the design of the W A M : a number of argument registers (called A or X

139

registers) are used for passing arguments when a procedure (i.e. a collection of clauses

with the same head functor and number of arguments) is called. There is also a small

"Push-Down List" (PDL) which is used by the recursive general purpose unification

routine as a call stack.

Prolog programs are compiled into a series of abstract machine level

instructions which perform different operations on the above mentioned areas. In

order to broadly describe the function of some of these instructions, a normal

procedure call ("goal invocation") sequence will be followed: the first step involves

loading the argument registers (Al through An, where n is the number of arguments

in the call -the Arity of the procedure) with the appropriate values; "put" instructions

are used for this purpose. The procedure is then called ("call/execute ' instructions).

Upon entry into a procedure, a choice point is created if it has more than one

alternative ("try" instructions) and then each of the terms in the head of the clause is

unified {"get/unify" instructions) with the corresponding argument loaded in (or

pointed to by) the argument register. If unification does not succeed, failure occurs

and backtracking to the last choice point will occur. "Get" instructions are used to

encode at compile-time cases where unification defaults to a simple assignment or a

set of very simple determinate steps. Because the main activity of a Prolog program

is centered around unification of goals with candidate clauses, the simplification of

this step results in important performance improvements.

The W A M offers many other features designed towards improving speed and

space economy, such as retrieval of all used space upon backtracking, last call

optimization, and environment trimming. Instructions are also provided for

supporting the technique of indexing the clauses based on the first argument. This

reduces the number of alternatives to be tried and has an important role in improving

execution speed and detecting determinate cases.

140

6.1.2 Back t r ack ing t h e W A M Revisi ted

Backtracking is one of the basic operations that the W A M is designed to

support efficiently. Since the W A M backtracking mechanisms constitute the starting

point in the following description of distributed backtracking, they are worth looking

at in more detail. This is best done through an example.

Figure 6-2 corresponds to the execution of the following group of clauses

(labels have been given to the different clauses involved in order to name the different

alternatives within each procedure):

procedure a:
al: a :- b,
a2: a :- b.
a3: a :- b.

procedure c:
c: c :- . . .

procedure d:
d: d :- ...

c.
c.
c.

»

d.
d.
d.

• • »

• • t

e.
e.
e.

procedure b:
bl: b :- .
b2: b :- .
b3: b :- .

procedure e:
el: e :- .
e2: e :- .
e3: e :- .

For simplicity, only the Stack, the Heap, and the Trail are represented in

figure 6-2. Observe in this figure how, upon entering procedure a:, since a has

alternatives, the corresponding choice point is created in the Stack. Execution of a

then starts with the first alternative al:. This situation is depicted in figure 6-2-A.

Only the following information included in the choice point is shown (other

information will be skipped for the sake of brevity):

• A pointer to the next unexplored alternative clause a2:.

• The value of the Heap pointer in register H at the time this choice point

was created 46

A further optimization is actually implemented in the W A M : the previous value of H
(saved in register HB) is actually stored. This simplifies the decision of when to trail variables.

141

© ©

H
"il"''-' r

B

' J ^ ~ \ . al'v'

H

TR

• * *
bi -

al
n •J b

b2

T J a2 L

B

bl*'

al

Heap Stack

©
Trail Heap Stack

©

H

A TR

Trail

H

b2 ' v '

al

f Hb3U

rr«*
B

b2V

al

TO H_

b3 "

al a2

B V

b3

al

TR

Heap

f'dXj
c

b3

al

Stack

©

a2

B

Trail

[dV
c

M
al

TR

H

Heap

' a2 'x~

Stack

©

a3

B

Trail

a2 v '
TR

Heap

F igure 6-2:

Stack Trail Heap Stack Trail

Choice Point Based Backtracking in Sequential Systems

• The value of the Trail pointer in register T R at the time this choice point
was created.

When the head of al: unifies successfully with the invoking goal, procedure b:

is entered. Again a choice point is created, since b also has alternatives (figure 6-2-B).

Suppose now that some goal fails in the body of bl:, and that no more choice points

have been created. The following sequence of actions takes place resulting in

backward execution (this is illustrated in figure 6-2-C):

• The most recent choice point is fetched through register B's content.

• The top of the Heap pointer (register H) is reset to the value saved in the
fetched choice point. This will discard all the data just made obsolete by
the failure that caused the backtracking. As mentioned before, Prolog
relies heavily on this retrieval of space during backtracking in order to
avoid garbage collection.

142

• The variables remembered t rough entries located between the current top
of the Trail stack and the Trail pointer saved in the fetched choice point
are reset to uninstantiated. This is done because the instantiations being
reset were made obsolete by the failure that caused the backtracking. Of
course the top of the Trail pointer (register TR) is also reset
appropriately.

• Finally, the next alternative b2: indicated in the choice point is picked up
and execution proceeds from there. The fact that the next alternative
clause is bS: is recorded by updating the choice point appropriately.

If b should fail again, the above sequence of actions would be repeated, and

execution of b3: started. However, this time there would be no more alternatives for

procedure b:. This means that the choice point associated with procedure b: should be

discarded and register B should be reset to the most recent one prior to the one being

discarded. This is only possible if the choice points are chained together (This is one

of the information items that are not shown in the choice point frames illustrated in

figure 6-2).

In figure 6-2-E the situation is depicted after bS: and c: have succeeded, and

d: is being executed. Note that since neither c: nor d: have alternatives, no more

choice points have been created on the Stack. Therefore, if d: should fail at this point,

the general backward execution model using the current most recent choice point

(fetched through register B) would correctly lead to alternative clause a2:. This is

shown in figure 6-2-F. Some interesting points to be noted are:

• This implementation achieves efficient garbage collection of Heap space
upon backtracking: all data created there during forward execution are
discarded automatically by appropriately resetting register H.

• Identifying the most recent choice point is immediate, since it is always
pointed to by register B.

• Choice points are only created when they are needed (i.e., when the clauses

143

have alternatives) and they are discarded efficiently when they are not
needed any more.

6.2 Implementing Distributed Backtracking in AND-Parallel

Systems

As stated before, the objective in this chapter is to develop techniques in

order to support forward and backward execution of Horn Clause programs annotated

with CGE's as an extension of those described in the previous section for the WAM.

The basic forward and backward execution algorithms were already introduced in

Chapter 4. The idea in this section is to support those algorithms while still preserving

the efficiency present in sequential implementations. As mentioned in that chapter,

"Point Backtracking" will be assumed for the rest of this discussion.

The conceptual starting point is that described in the previous chapter:

execution starts at a given processor, and it continues sequentially until a CGE is

encountered whose conditions evaluate to true. Since at this point all the goals inside

the CGE (a collection of "AND siblings") can be executed in parallel, the processor

which is running the CGE (the "parent" processor) pushes these goals on to its goal

stack and they are picked up from there by other processors which will be in charge of

executing each of these goals. As seen in the previous chapter, each of these

processors will have its own execution environment (Stack, Heap, Trail, as well as a

machine state). Of course, one of the natural extensions to such a general model is to

let the parent processor execute one or more of the goals inside the CGE instead of

just idling while waiting for other children processors' responses: this will be discussed

in more detail in section 6.3 on local execution of parallel goals, showing how the

existing data areas (Stack, Heap, and Trail, etc.) can be shared for this purpose.

In this model, then, the parent will be in charge of the "fork" and "join"

144

operations needed by the forward semantic;. - the CGE (i.e. making the goals inside

the CGE available for parallel execution and waiting for their completion before

continuing beyond the CGE). It is also in charge of supervising the generation of

alternatives as dictated by the backward execution algorithm. The control structure

that the parent uses for its supervisory task will be referred to as a "parallel call"

frame (Parcall frame in short) and will be located in the parent's Stack (therefore

three types of frames can now be found there: environments, choice points, and now,

Parcall Frames). The most recent Parcall Frame is pointed to by register P F .

Parcall Frames are created when a C G E evaluates to true, hence clearing the way

for the parallel execution of the CGE ' s sibling predicates. The Parcall Frame, among

other information, contains the following items important for this discussion :

• One slot for each of the AND-Parallel procedure calls inside the CGE,
consisting of the following fields:

o the Id of the child process corresponding to this procedure call

o completion status of the process (i.e. processing, succeeded with
pending alternatives, succeeded with no alternatives, or failed).

• A flag indicating whether the CGE has just been entered or whether it is
being backtracked into after the initial entry and at least one successful
exit. This is a materialization of the "inside"/"outside" indication
discussed in the backtracking algorithm of Chapter 4.

• The current values of the pointers (registers) into the data areas (this part
is also referred to as the "Wait Marker").

In the next paragraphs it will be shown how the introduction of Parcall

Frames, their relationship to choice points, and the manipulation of both types of

frames will materialize the algorithms introduced in Chapter 4 and make it possible to

Other information is also needed in practice which is not relevant to this discussion.
These details will be completed in the next chapter.

145

manage both forward and backward execution as a natural extension to the WAM

model. First, two types of failure are defined:

• Local Failure: the local processor fails while executing a goal, and

• Remote Failure: a "Failure" message is received from a child process.

Now the extended backward execution mechanism is based on recognizing,

when either type of failure occurs, whether a choice point or a Parcall Frame is more

recent (comparing registers B and PF) . The algorithm then follows:

• If Local Failure, then:

o If B > P F then perform the normal choice point
backtracking.

o If P F > B then find the first Parcall Frame child process
slot with pending alternatives to respond successfully to a
"redo" message ("unwind" messages are sent to all previous
slots). When such a process is found, invoke the parallel
execution of all the goals which correspond to the following
slots, thus returning to (parallel) forward execution. If none
succeeds, fail by recursively performing this backward
execution algorithm in a "local failure" mode.

• If Remote Failure, then, knowing definitely that P F > B and that
it is the "inside backtracking" case (that is until the "local goals"
optimization of the next section is introduced):

o "Kill" all goals in the Parcall .Frame, fail by recursively
performing this backward execution algorithm in a "local
failure" mode ("restricted" intelligent backtracking).

The following example will illustrate the above algorithm. Suppose the

clauses for "a" in the example in the previous section were annotated in the following

way (with embedded CGE's):

4s
Slots should always be scanned in the same order, e.g. from the higher addressed ones

(hopefully corresponding to rightmost ones in the CGE) to the lower addressed ones.

p r o c e d u r e a:

a l : a : - (cond l I b ft c 4 d) , e .

a 2 : a : - (cond2 I b ft c ft d) . e .

a 3 : a : - (cond3 I b ft c ft d) , e .

146

H
al

Heap

H

al

Heap

H

el

a2

Heap

©

a2 I a b
TR

Stack

©
Trail Heap

r B 3 ' l d l t !
.B i iCl - I - . t fA . J
. D l l t ? ! . : , - A .
3 (outside) d B H

Z2

PF

a2

©
Stack Heap

e2
B

Trtp
. B Z l d l . j - . y A .
. B 3 M . I - . I N A .
. B 2 X b i . ; . . A . .
3 (outside)

a3
L

H

e3

a2

Stack Heap

Stack

®

a3

Stack

©

T *
B

.BZldl.: -NA. .

. B l i C l . L . N A . .

. B 2 M - U . A - .
3 (outside) c B

a3

PF

Stack

F i g u r e 6 -3 : CP/Parcal l Frame Based Backtracking in AND-Paral lel Systems

Figure 6-3 il lustrates the execution of this example in parallel. Execution of

a in the "paren t" process s t a r t s exactly as in the sequential case (figure 6-2-A vs.

figure 6-3-A). If c o n d l failed, execution would proceed just as in figure 6-2. On the

http://BZldl.j-.yA
http://b3m.I-.iNa

147

other hand, if c o n d l succeeds, a Parcall Frame, initialized to "inside" is created,

with slots for b , c, and d. This is illustrated in figure 6-3-B where these goals have

been "picked up" by p i , p 7 , and p 5 respectively (the Trail is omit ted in both the

diagrams and the discussions for the sake of clarity). At this point the parent process

simply waits for all goals to return (flagged by the updat ing of their slot 's completion

status field). With the Parcall Frame still flagged as " inside", if one of the goals

returns failure (Remote Failure) execution can backtrack "intelligently" to the last

choice point before the Parcall Frame. In figure 6-3-C, p 5 returned failure for d (p i

and p 7 returned with success, with p i ' s success qualified as with pending alternatives,

i.e. there is a choice point in p i ' s Stack). Since the corresponding Parcall Frame is

still flagged as "inside", an "unwind" message is sent to p 7 and p i (thus

disregarding the alternatives in b) , and execution is continued with the next

alternative of a (figure 6-3-D).

The next two parts of figure 6-3 illustrate "outs ide" backtracking. Figure

6-3-E depicts a si tuation similar to tha t in figure 6-3-B. Processors p 2 , p 3 , and p 7

"picked u p " the goals but this time they all returned successfully (b still having

alternatives). At this point the whole C G E succeeds by changing the s ta tus of the

Parcall Frame to "outs ide" , and execution moves on to goal e, pushing a choice point

(since e has alternatives), and finally entering clause el:. If el: fails, the available

choice point will be used to try e2: (Local Failure; B > P F) . Figure 6-3-F illustrates

the situation if e2: also fails: the choice point has been deallocated and e8: is now

being executed.

49
"Unwind" messages instruct the processor which receives them to free all storage

corresponding to a particular goal and to unwind the corresponding portion of the Trail. Note
that if the techniques presented in the previous Chapter are used, this retrieval will always be
complete and from the top of the corresponding stacks. "Kill" messages serve the same
purpose, but they are used when the corresponding process is still running. Therefore they
imply aborting execution before the storage retrieval is performed.

148

Note that in the event of a local failure now, the last Fa. u.il Frame is more

recent than the last choice point (PF > B) and, since its status is "outside", the

corresponding backtracking algorithm will be run on it: select the first goal with

alternatives (b), send a "redo" to it (to p2, which will execute it by making use of the

choice point on top of its local Stack, just as if a local failure had occurred) and

"unwind" messages to the ones to its right (i.e. the previous slots, p3/c and P5/d in

this case) so that their Heaps will be deallocated and their Trails unwound. If p2

now returns failure, since there are no more slots with alternatives in the Parcall

Frame, it will be deallocated and the next entry on the Stack (a's choice point) will be

used to backtrack to aS:. If, on the other hand, p2 had returned success, the parallel

execution of all the goals corresponding to the following slots will be reinvoked (c and

d), hence "shifting gears" to "Forward Execution". Note that it can be safely

assumed that the C G E will be successfully exited at this point since those goals are

being redone from scratch and it is known that they have succeeded in the past!

6.3 Local Execution of Parallel Goals

One obvious optimization to the scheme above is to let the local processor

pick up some of the goals in the Parcall Frame and work on them itself, instead of

just idling while waiting for children processes' responses. This is very important in

that it allows the generalization of the architecture to any number of processors

(including a single one). Such scalable systems could then run parallel code with

"graceful" performance improvement or degradation depending on the available

resources. Also, a single processor would run the parallel code at comparable speed to

equivalent sequential code, while still taking advantage of the opportunity for

"intelligent backtracking" present in "inside" backtracking.

149

6.3.1 "Local Goals F i r s t " (LGF) Backtracking

In a multiprocessing system, local execution of parallel goals can be

accomplished by creating a new process locally which will pick up one of the goals in

the local goal stack. However, in the last chapter it was pointed out how when a goal

is known to be a descendant of the last goal executed by a processor, it can be safely

picked up and executed in the knowledge that it will be backtracked and/or

deallocated before any of the underlying structures. A "local goal" is by definition a

descendant of any other goals in a processor's stacks. Based on this observation, figure

6-4 shows a more efficient way of handling the execution of parallel goals locally, by

stacking them on the local data areas much in the same way as they would be in a

sequential implementation. In figure 6-4-A, bl: has been immediately "picked up" by

the local processor (and the corresponding slot has been marked accordingly --

" = * = ") while c and d have been "picked up" by p7 and p5, as in figure 6-3-B.

Execution of the goal taken locally proceeds as normal (figure 6-4-B), but note that

the Par call Frame is still marked as "inside". In this figure p5 has returned (with no

alternatives) and p7 is still working on its goal. In the event of either a local or a

remote failure now, "inside" (i.e. "intelligent") backtracking would occur (as in figure

. 6-3-D). For example, this would be triggered locally if b runs out of alternatives. A

first failure in bl: in figure 6-4-B, however, would simply use the choice point and

continue with b2:, just as if it were being executed remotely.

If all goals succeed, execution will continue with e, data structures and

choice points being again simply pushed on top of their respective areas {Heap and

Stack, figure 6-4-C). "Outside" backtracking will work in a similar way as before,

but with the difference that goals executed locally will always be backtracked first:

in figure 6-4-C, if e runs out of alternatives, all the alternatives of b will be tried

before using the Parcall Frame. This is perfectly valid, as long as it is used

150

Heap

Heap

©

Stack

©
e2
52

PF

H

al

. B S M . ; j

.plicl.I
3 (inside)

a2

"c
L

R
•"

H
bl

al

H

.pSWl. . .NA.
V.lCl-I . -^ 'A.

_ * _ i

3 " (outside)" *" 1

a2

PF

Heap

e3

b3

al

Stack Heap

b2
B

BliCl.I

3 "(inside)""" C

a2
X

Stack

®

BT1CI.I..NA.]

3 " (outside)" " d

PF

a2

Stack

Figure 6-4: "Local Goals First" (LGF) Backtracking

consistently, since the order of execution is immaterial inside a parallel call. The Stack

status of figure 6-4-C is therefore equivalent to the one which corresponds to the

execution of the following clause using the scheme described in the previous section:

a : - (c & d) , b . e .

This method of supporting execution of local goals is therefore termed "Local

Goals First" (LGF) backtracking.

Figure 6-4-D depicts "outside" backtracking after all goals executed locally

have run out of alternatives. e3: is being executed after completion of 6-5: (both choice

points have been discarded). If failure occurs at this point in e3:, the Parcall Frame

will be found above any choice points, and the "outside" algorithm will be executed

on it. In this case, since no goals in the Parcall Frame have alternatives, the Parcall

Frame itself will be discarded (sending "unwind" messages to p5 and p7) and the

next alternative of a (a2:) will be tried next as in figure 6-3-D.

151

An interesting situation occurs if external failure arrives while the local

processor is executing a goal from the parallel call, and this goal in turn has generated

other Parcall Frames. Suppose that in figure 6-4-B execution of bl: has pushed other

choice points and Parcall Frames on the Stack. If p7 (c) returns at this point with

failure, all those entries, and their corresponding data structures (in the Heap) have to

be deallocated. This turns out to be simple if p7 provides the value of the PF pointer

for the Parcall Frame containing the goal failing (it can be "picked up" with the

goal). This frame is referred to as the "failing Parcall Frame". Then the backtracking

information contained in that Frame is used to recover all space (i.e. just above al: for

the Heap in figure 6-4-B). Of course, all processes started by the execution of b need

to be cancelled. This is accomplished by following the chain of Parcall Frames, from

the one on top to the one given by p7, sending "kill", "unwind" etc. messages to all

slots that are not marked local (" = * = ") . This is very similar to what a processor

has to do when it receives a "kill" message.

In summary, an algorithm along the same lines as the one presented in the

previous section can be used when C G E goals are executed locally, provided it is

adapted to handle the extra special cases involved:

• If Local Failure, then:

o If B > P F then perform the normal choice point
backtracking.

o If P F > B and the status of the Parcall Frame is "inside",
"kill" all goals in the Parcall Frame (by sending
"kill"/"unwind" messages to all non-local slots in this Frame;
local goals will be deallocated automatically by the local
trimming of the stacks) and fail by recursively executing this
algorithm in a Local Failure mode.

o If P F > B and the status of the Parcall Frame is "outside",

152

then find the first Parcall Frame child process slot with
pending alternatives to respond successfully to a "redo"
message (sending "unwind" messages to previous slots). When
such a process is found, invoke the parallel execution of all the
procedure goals that correspond to the following slots, and of
all those calls which were executed locally . If none succeeds,
fail by recursively executing this algorithm in a Local Failure
mode.

o If there are no choice points or Parcall Frames available,
report failure to parent.

If remote failure, then:

o If the P F value received is the same as the current one: this
case is equivalent to the second situation above.

o If the P F value received is lower than the current one: follow
chain of Parcall Frames "killing" dependent processes up to
and including referred Frame; fail by recursively executing this
algorithm in a Local Failure mode.

Note that although the description is lengthy because of the different cases

involved, the abstract machine can select the appropriate case using simple arithmetic

checks (B > P F or B < P F ; S ta tus= 1 or 0) and the actions are in any case very

simple and determinate. Backward execution can be performed in parallel (i.e.

unwinding of Trails, killing of descendants, etc.) with very little overhead. Then

forward execution is resumed also in parallel.

The correct scanning order now is opposite to that in which the goals were picked up by
remote processors. A simple way of following this order is by making use of an extra field in
the child process slot which stores the "outgoing order" of local goals.

Note that all local goals have been completely backtracked before this point is arrived at.

153

6.3.2 "Right Goals F i r s t " (R G F) Back t r ack ing

In the L G F model described above the order of execution during

backtracking differs from that of a sequential implementation: local goals are

backtracked first. Since there is no a priory knowledge of which goals will be executed

locally, the order in which solutions are produced depends on run-time factors, even

though all solutions will still be produced. Such an approach, although offering the

advantage of a very efficient implementation, has several drawbacks. The most

important of these drawbacks is that neither the programmer nor the compiler have

control any more of the order in which alternatives are tried. This can be a problem in

practice since in that case it is difficult to take advantage of the efficiencies of the

"inner loops" method used for generating alternatives in backtracking systems: in

practical systems the user (or the compiler) can minimize backtracking by correctly

ordering the literals as a function of parameters such as the number of potential

alternatives for each procedure call (the number of clauses in the procedure), the

number of arguments and free variables in each call, and user knowledge about the

problem's search space characteristics.

Another drawback related with a run-time dependent backtracking scheme

from a practical point of view is the difficulty in obtaining performance figures for the

model: since the amount of computation in order to obtain a solution depends on the

order in which the search space is explored, in such a non-deterministic environment

different execution times will be obtained for each run of the problem. Also, the

amount of computation is different from that of a sequential system so that speedup

figures are hard to obtain unless averages from many runs are computed. In this

section an extension to the local goals execution model of the previous section is

presented which avoids such problems at the expense of a small overhead. In

particular, this model will be capable of preserving the same order as a sequential

implementation in the generation of alternatives.

154

The reason for the change in the backtracking order in the LGF method is

that there is no way of differentiating a normal choice point from those generated by

"local goals". This can be seen in figure 6-4-C: suppose that d still has alternatives. If

e now runs out of alternatives, the choice point corresponding to b will be tried next

(instead of sending a "redo" message to d/p5) because there is no way to detect that

this choice point corresponds to a "local goal" and that the Parcall Frame should be

checked before trying the next alternative of b (if the conventional right to left

backtracking order is to be preserved).

The above mentioned problem can be solved through the use of a series of

"markers", which are stored in the Stack in very much the same way as conventional

choice points. In fact, in this model (the "marker model" for RGF backtracking)

choice points are just one more type of "marker" in the Stack. In R G F backtracking

two types of markers (in addition to choice points) are used:

• Wait Markers: in the RGF model the Parcall Frame described for the
L G F model is split into two parts, the Parcall Frame itself (containing
the "slots", inside/outside flag, ...) and the wait marker (containing the
pointers into the data areas and a pointer into the Parcall Frame). The
Parcall Frame is still pushed on to the Stack as soon as the parallel call is
entered, but the wait marker is only pushed on to the Stack upon exit
from the parallel call (i.e. when execution of all goals within the call is
completed). Thus, during backward execution, this marker will be found
on the Stack above all local goals, and it will point to the Parcall Frame
which can now be analyzed before any local goals are backtracked.

• Local Goal Markers: a local goal marker is pushed on to the Stack
every time a "local goal" is picked up. It contains the values of the
pointers into the data areas, a pointer to the Parcall Frame, and the slot
id. for this goal. These markers are essentially equivalent to the "input
goal markers" which were introduced in Chapter 5 for separating stack
sections corresponding to the execution of different "remote goals", but
applied to the execution of "local goals". They ensure that if a local goal
fails, the Parcall Frame will be consulted (for example, to detect "inside"
backtracking) before any other local goals in the Stack are backtracked.

155

The execution in an R G F system of the same example used in ,.«;evious

sections is illustrated in figure 6-5. In part A of this figure the contents of the Stack

and Heap are shown after having executed al: and entered the parallel call (pushing a

} j.rcall Frame on to the Stack), d has been picked up by P5 (and returned with no

alternatives) and b has been executed locally. The local processor has just picked up c

(and pushed the corresponding local goal marker on to the Stack) and is currently

executing this goal. The Parcall Frame is still marked as "inside".

H

bl

al

0

LGM(c)
b2

3 LGM(b) i-

..Q...A

(inside)
a2 X

B H

PF

e2

S LGM(c)
b2

L_

WM C

T
2 LGM(b) L

P5tfj I NA
:.C.__:I::$A.
.> ._ . . : . .Ai t .

foutsidel
a2

PF

Figure 8-5: "Right Goals First" (RGF) Backtracking

In figure 6-5-B execution has proceeded after the success of c by pushing the

wait marker on to the Stack and continuing with the first alternative of e. Note how

now, if e runs out of alternatives, the first element on the Stack will be the wait

marker (rather than the choice point for b) which will refer the backward execution

algorithm to the Parcall Frame. Now, while scanning the Parcall Frame, a "redo"

message could be sent to p5 in case d had alternatives before backtracking b, thus

preserving the right to left backtracking order.

If it is supposed that all "markers" (including choice points) are linked

156

together so tu. . . che last marker is always pointed to by B , the general algorithm for

R G F backtracking is then ":

• If Local Failure, then:

o If B > P F then

• If B points to a choice point, perform the normal choice
point backtracking.

• If B points to a Wait Marker or a Local Goal Marker,
perform Parcall Frame Backtracking on the Parcall
Frame pointed to by the marker (this is the "failing
Parcall Frame").

• If B points to an Input Goal Marker (no choice points or
Parcall Frames are left in this stack section), report
failure to the parent .

o If P F > B , perform Parcall Frame Backtracking on the
Parcall Frame pointed to by P F ("failing Parcall Frame").

• If Remote Failure, then:

o perform Parcall Frame Backtracking on the Parcall Frame
referred to by the remote failure message ("failing Parcall
Frame").

In the above described algorithm "Parcall Frame Backtracking" refers to the

following series of actions:

• If the "failing Parcall Frame" is the same as the current one (i.e. the
one pointed to by P F) , then:

o If the s t a tus of the Parcall Frame is " inside", "ki l l" all goals
in the Parcall Frame and fail by recursively executing this
algorithm in a Local Failure mode.

"Note that an additional entry is necessary then in each marker which contains its type.
An alternative solution is to have different registers pointing at the last of each type of
marker. The topmost marker and its type can then be identified by finding the register with
the maximum value. This will be illustrated in the Parallel Abstract Machine design of the
next chapter.

157

o If the status of the Parcall Frame is "outside", then:

• Find the first slot (now scanning the slots in order,
equivalent to right-to-left order in the clause) with
pending alternatives whose corresponding process
responds successfully to a "redo" message (when slots
correspond to local goals with alternatives they are also
tried ("redone"), but locally; previous slots are sent
"unwind" messages).

• If and when such a process is found, invoke the parallel
execution of all the goals that correspond to the following
slots.

• If none succeeds, fail by recursively executing this
algorithm in a Local Failure mode.

• If the "failing Parcall Frame" is different than the current one, then
(note that this always corresponds to "inside" backtracking if the
"point method" is used):

o follow the chain of Parcall Frames up to and including the
"failing" one (sending "unwind" messages to all remote
processors in those slots),

o fail by recursively executing this algorithm in Local Failure
mode.

Note again that, although the description is lengthy because of the different

cases involved, the abstract machine can select the appropriate case using arithmetic

checks (B > P F or B < P F ; S ta tus= 1 or 0; marker type = Local or Input or

Wait) and the actions are in any case simple and determinate. Backward execution

also proceeds in parallel (killing, unwinding of trails, etc.).

158

6.4 Chapter Summary

In the previous sections an efficient implementation scheme for distributed

backtracking in Goal Independence models of AND-Parallelism has been presented

which is a materialization of the algorithms offered in Chapter 4 in the framework of

the memory management and goal scheduling model of Chapter 5. The concept of the

Parcall Frame, methods for local execution of parallel goals, and some examples to

illustrate their operation have been introduced. It is argued that this solution cleanly

integrates distributed backtracking in one form of AND-Parallelism with the

implementation technologies of high performance Prolog systems. A form of restricted

intelligent backtracking is provided with virtually no additional overhead. "Soft"

degradation of performance with resource exhaustion is attained: even a single

processor will run any parallel program while still supporting restricted intelligent

backtracking when goals are independent. In the next chapter these techniques will be

materialized in the design of an Abstract Machine capable of AND-Parallel execution

of Logic Programs. Regarding the choice of an execution methodology for "local

goals", despite the additional overhead, the advantages of the "marker model" and

R G F backtracking will make them the preferred choices in this design.

Chapter 7

An Abstract Machine for Restricted
AND-Parallelism

This chapter describes an Abstract Machine and Instruction Set for parallel

execution of Prolog programs annotated with Conditional Graph Expressions.

Support is provided for both forward and backward execution of Goal Independent

(Restricted) AND-Parallel calls as described in the previous chapters. The Abstract

Machine basically represents an extension of the W A M to a parallel environment. In

the next sections new data areas and abstract instructions will be defined which will

be a materialization of the techniques and algorithms presented in the previous

chapters. In much the same way as the WAM, the design is "Abstract" in that

certain details of the encoding and implementation are left open so that a practical

realization can be made in a number of different forms.

7.1 Extending the WAM for Parallel Execution

Most of the issues associated with the implementation of Goal Independence

AND-Parallelism have been already dealt with in the previous chapters. The problem

of extending the W A M to support this type of parallelism then basically entails

providing additional mechanisms at the Abstract Machine level which will implement

the various algorithms introduced there. Of course, this has to be done in an as

efficient and unobtrusive as possible way, so that all the performance advantages of

the WAM are retained. However, in the previous chapters several different

alternative solutions were proposed for many of these issues. Some choices regarding

these alternatives are outlined below.

159

160

Regarding the processor „ .c diagrams introduced in Chapte r 5, for

simplicity, and unless otherwise noted, it will be assumed that there is only one (dual)

process per processor comprising both the "foreground" and the "background"

processes as described in that chapter. The interrupt mechanism sketched there, for

53

example, can be used to implement this in a practical system . A "Goal Restr ict ion"

model will be assumed regarding the scheduling strategy being used, so tha t a single

set of stacks needs to be maintained per processor. This will assure simple and

efficient memory management (all space being recovered during backtracking and

always from the top of the stacks involved) as shown in Chapte r 5. Regarding the

execution of local goals in the implementation of distr ibuted backtracking, the

"marker" model of R G F backtracking, as described in Chapter 6, will be supported

in the Abstract Machine Also, "point backtracking" (rather than "streak

backtracking") as introduced in Chapter 4 will be assumed.

In view of the above mentioned assumptions, the part icular issues which

remain to be addressed in order to extend the sequential W A M for AND-Parallel

execution can now be s tated more concretely. Support has to be provided for the

forward execution semantics described in Chapter 4: goal independence has to be

detected (the conditions of the C G E checked), and, upon arrival at a parallel call (i.e.

a C G E whose conditions evaluate to true), a scheduling mechanism such as tha t

described in Chapter 5 has to assign available work (i.e. the parallel goals) to the

In addition, conventional multiprocessing techniques can be used in order to support more
than one of these (dual) processes in each processor: process swapping would then be used in
place of wait states. Nevertheless, the "one process per processor" assumption will be used
throughout the rest of the description since it is easier to explain and understand the model in
these terms.

An Abstract Machine which supports LGF backtracking has also been designed and
simulated. This design is discussed in [31].

161

available processors. Thus, instructions have to be provided for pushing goals on to a

Goal Stack, and the representation of these "goals" defined. Also, some data

structure has to be provided to keep track of the state of execution of parallel siblings.

The Parcall Frame/Wait Marker combination, as introduced in the previous chapter,

will be used for this purpose. Input Goal Markers will be used to separate stack

sections corresponding to different remote goals (i.e. goals received from another

processor). Local Goal Markers will be used to mark the beginning of the execution of

a local goal. Support also has to be provided for the (RGF) backward execution

algorithm. This will be done with the aid of the Parcall Frame and the different

markers as described in the previous chapter. The necessary "kill" and "unwind"

messages will be handled by means of a small Message Buffer.

Figure 7-1 shows the data areas and registers for one processing element

of the Parallel Abstract Machine. Each "processor" is essentially equivalent to a

standard W A M except for the addition of a "Goal Stack" and the inclusion of

"Parcall Frames" and "markers" in the Stack, together with" environments and

choice points. Also, the above mentioned Message Buffer is present. New registers

are also provided to point to these new data structures. The details of these additions

will be the subject of the next sections.

7.1.1 The Goal Stack

When the scheduling strategy was introduced in previous chapters, it was

mentioned how each processor had a private Goal Stack where goals which were ready

to be executed in parallel could be pushed on to. As seen in figure 7-1, each processor

has a private Goal Stack. Each entry in the Goal Stack is called a Goal Frame. A

Goal Frame contains all necessary information for remote execution of a goal. In

particular, each Goal Frame contains the following items:

• Procedure_name: points to the first instruction of the procedure to be
executed.

162

CP

A — •

>

CODE

1

s

HB

H

— »

HE AP

TR-

MB

Input Goal Markers

Local Goal Markers

Environments

Choice Points

Parcail Frames

Wait Markers

Temp. Variables

Machine Regs.

A Registers

PDL

Procedure name
P(Arity) Reg.

P(2) Reg.
*Pq"Reg:

of parameters. (Arity)
Slot # (offset into PF)
PF
Goal frame

F i g u r e 7 -1 : Data areas and registers: 1 processor, Parallel Abstract Machine

• P(l) , . . . ,P(n) registers: Parameter Registers. They are a copy of the n
argument registers for the procedure.

• # o f parameters: this cell contains "n", the Arity of the procedure.

• Parcail Frame Pointer (PF): identifies which Parcail Frame this goal
corresponds to.

163

• Slot # : identifies which slot in the Parcall Frame this goal corresponds
to.

An extra machine register (GS) is also introduced. GS always points to the

top of the Goal Stack. When a parallel call (a CGE whose "checks" succeed) is

arrived at, all goals can be pushed on to the Goal Stack. In a shared memory

environment these goals can then be directly "stolen" by "remote" processors from

this "local" Goal Stack, provided a suitable memory arbitration technique is used (i.e.

at least part of the Goal Stack has to be "locked" during this process). The "remote"

processor, will then simply copy the parameter registers into its argument registers,

load P with the address of "Procedure_name", and start execution from there.

A goal can also be picked up from its own Goal Stack by the local processor

(the one which just pushed it there), using the same technique (while executing a

" p o p _ p e n d i n g _ g o a l " instruction, to be described in the next sections). In this case

the n parameter registers in the Goal Frame are simply copied into the local argument

registers and execution continues as usual. The description of the

"pop_pending_goal" instruction gives a complete account of the simple actions

involved.

There is one more possible use for the GS register which was suggested in

Chapter 5, in the implementation of the scheduling strategy: GS can be the value

that is continuously being fed to the scheduling network. Its value effectively gives an

estimation of the amount of parallel work available in the processor. If this scheme is

used, then an idle processor will always receive from the sorting network the Pid. of

the processor with the highest GS value. Goals will then always be picked up from the

Goal Stack that has more entries at any given point in time (load balancing).

164

7.1.2 Pa rca l l F r a m e s

Entries in the Goal Stack completely disappear after they are "picked up"

by remote processors. As mentioned in the previous chapter, an additional data

structure is thus needed in the local processor in order to:

1. keep track during forward execution of the parallel activities of the
children processors which "picked up" the goals inside a parallel call,

2. select the appropriate actions during backtracking.

The "Parcall Frame" introduced in the previous chapter will be used for

these purposes. One Parcall Frame is created for each parallel call. For each goal

available for execution in parallel (i.e. for each goal pushed on to the Goal Stack)

within this parallel call, there is one slot in the Parcall Frame. Each one of these slots

has the following fields:

• Process Id.: this field contains the id. of the processor which picked up
the corresponding goal. If it was the local processor, this field is marked
accordingly ("*")-

• Completion Status: this is a one bit field, set by the corresponding
processor when it returns, marking whether it still has alternatives or not.

• R e a d y / N o t R e a d y : this is also a one bit field, used (by the
"check_ready" instruction) to select the goals that are actually going to
be pushed on to the Goal Stack. It is used when only some of the goals
inside a parallel call need to be scheduled, as is the case during forward
execution after backtracking. When a Parcall Frame is created, all Ready
bits in all slots are initialized to ready.

In addition to a variable number of "slots", some fixed entries are needed in

the Parcall Frame:

• # of goals still to schedule: this cell is initialized to the number of
goals to be executed in parallel. Each time the local or remote processors
take a goal from the Goal Stack this number is decremented.

165

• # of goals t o wa i t on: this cell is incremented by a remote processor
when it "steals" a goal from the local Goal Stack. It is decremented every
time a processor returns with success.

• Total # of slots in the Parcall Frame: determines the size of the
Parcall Frame.

• Put instructions pointer (PIP): this cell contains the address of the
first instruction of the first goal in the parallel call and is used to start
pushing goals again on to the Goal Stack after backtracking. This time
though, only those goals whose Ready field is set will be pushed, since all
others are skipped by the "check_reacly" instruction in front of them.
The backtracking algorithm determines which Ready bits are to be set (i.e.
which goals will be restarted) and reinitializes the values of the " # of
goals still to schedule" cell above to the appropriate value.

• Status: this cell marks whether execution of the parallel call corresponding
to this Parcall Frame has already been completed once ("outside" status)
or the first pass is still going on ("inside" status). This is used to select
the type of backtracking.

• GS ' : the top of the Goal Stack upon entry to the parallel call is saved in
this cell so that it can be restored during (inside) backtracking.

• CPF: continuation PF. The value of P F before this Parcall Frame is
created is saved here. It is used to reset PF after exiting the parallel call.

Parcall Frames are just one more type of object which resides in the local

Stack, together with environments and choice points. P F is an extra machine register

which always points to the current Parcall Frame.

7.1.3 Wait Markers

A Wait Marker is pushed on to the stack upon successful exit from a parallel

call. A dedicated register (WM) always points to the last Wait Marker in the Stack.

The solution suggested in the previous Chapter of pointing at all markers with register

B can, of course, also be used. However, having different pointers for each type of

marker simplifies certain operations such as responding to a "kill" message and

166

detecting "success with no alternatives". Since the backward execution algorithm for

the solution using the B pointer was already explained in the last chapter, the

multiple register approach will be illustrated as an alternative in this design. In a

practical implementation, the choice between one or the other scheme will, of course,

ultimately be determined by the number of physical registers available for a real

implementation. Entries contained in a Wait Marker are:

• W M ' : The previous value of the W M pointer. This is used to reset the
W M register to point to the previous Wait Marker during backtracking.

• BPF: The value of the P F register. The appropriate Parcall Frame is
recovered during backtracking by resetting this register.

• Pointers Into the Data Areas: Other registers which point into the
data areas are also saved to be reset during backtracking: H', TR', BCP,
and BCE.

7.1.4 Input Goal Markers

An Input Marker is pushed on to the stack when a processor "steals" a goal

form another processor's Goal Stack. Therefore, Input Markers mark the separation

between different stack sections corresponding to the execution of different goals

"stolen" from other processors. Input Markers are pointed to by the IGM register

and chained together. Entries contained in an Input Marker are:

• IGM': The previous value of the IGM register. This is used to reset the
IGM register to point to the previous Input Marker upon complete failure
of a given goal (or after responding to a "kill" or "unwind" message).

• PF/S lot : The value of the P F register and the slot # in the Parcall
Frame in the parent which this goal corresponds to. This is received in the
Goal Frame and is used to report success or failure to the parent (by
updating the parent's Parcall Frame or sending a "goal failure" message).

• Pointers Into the Data Areas: Other registers which point into the
data areas are also saved to be reset during backtracking: H' , T R ' , BCP,
and BCE.

167

7.1.o ..weal Goal Markers

A Local Goal Marker is pushed on to the stack when a processor picks up a

goal form its own Goal Stack (through a "pop_pending_goal" instruction). They

are similar to Input Markers but applied to local goals. Local Goal Markers are

pointed to by the LGM register and chained together. Entries contained in an Local

Goal Marker are:

• LGM': The previous value of the LGM register. This is used to reset the
LGM register to point to the previous Local Goal Marker upon complete
failure of a given local goal (or after doing a local "kill" of goals as a
result of "inside" backtracking).

• PF/Slot : The value of the PF register of the local Parcall Frame and the
slot in this frame which this goal corresponds to. This is taken from the
Goal Frame and is used to report success or failure (by updating the
Parcall Frame or starting the "local failure" routine).

• Pointers Into the Data Areas: Other registers which point into the
data areas are also saved to be reset during backtracking: H', TR', BCP,
and BCE.

7.1.6 The Message Buffer

In the Parallel Abstract Machine most interaction between the different

processing elements is done implicitly through the Parcall Frames and the Goal

Sfacfc/Scheduling Network (reporting of success, synchronization, scheduling of goals,

etc.). However, there are certain actions which require an immediate response from a

given processor and which therefore need an independent communication channel.

Such is the case for example, when the execution in a given processor needs to be

interrupted and discarded as a result of intelligent backtracking ("kill" messages). A

message buffer is provided in each processor for this purpose. Any other processor can

write a message into this buffer. The top of the message buffer is pointed to by

register MB. As soon as MB > 0, the processor is interrupted and the message or

messages pending in the message buffer attended. The types of messages used are

168

listed below (the actions associated with the receipt of these messages are described m

the next sections).

• "kill": This message is received from the parent processor. Execution of
the current goal is to be interrupted and all computations associated with
this goal need to be discarded.

• "unwind": Also received from the parent. All computations associated
with the last goal need to be discarded (the processor is not currently
executing this goal).

• "failure": This message is sent from a child process to the parent
indicating that no solution could be found for the goal received. The P F
pointer for the Parcall Frame associated with this goal and its Slot
number within the frame are included with the message.

• "redo": This message is received from the parent when the last goal
executed still has alternatives and a new alternative is needed.

7.2 Genera l O p e r a t i o n of the Paral le l A b s t r a c t M a c h i n e

As stated before, each "processor" (figure 7-1) (or each "process" in a

multiprocessing environment) is equivalent to a standard W A M with a complete set

of registers and stacks, but including the new "Goal Stack", the Message Buffer, and

the addition of "Parcall Frames" and "markers" to environments and choice points

in the local Stack. In addition to the new registers pointed out in the previous

sections, there is an additional register into the Code area (CFA —"Check fail

address") which points to the code which should be executed if the conditions in the

C G E fail, i.e. the code corresponding to sequential execution. Note how each of these

sets of registers and stacks is particular to a processor, although all other processors

have shared access to at least the Stack and Heap. Obviously the code area could be

shared by all processing elements but it will be supposed that each one of them has its

own copy of the code.

169

As soon -o a processor "steals" a goal (a Goal Frame) from another

processor's Goal Stack, it creates an Input Goal Marker on its local Stack (thus

separating the data structures corresponding to the execution of this goal from those

of the previous one) and starts working on the "stolen" goal by loading its argument

registers from the parameter registers in the Goal Frame and fetching instructions

starting at the location (procedure address) received. The local stacks will then grow

(and shrink) as indicated by the semantics of the standard W A M instructions it is

executing. It will be the "local" processor for this instruction stream and its data

areas will be the "local Stack", "local Heap", and "local Trail", etc. Note though,

that the environments in its local Stack and the data structures in its local Heap will

contain references to the data areas of ancestor processors. The character of these

references will vary depending on the memory organization used in the underlying

architecture (i.e. from absolute addresses for uniform addressing space, shared memory

architectures to, for example, Pid./remote-address pairs for non-shared memories).

Variable precedence relationships within each processor are kept using conventional

methods (i.e. address comparison). Some mechanism has to be provided for

determination of these relationships across processors, depending on the scheduling

and memory management strategy chosen. For example, if the "goal restriction"

scheduling strategy is used (Chapter 5) the relative precedence of the stack sections

that the variables being bound belong to determines the relative seniority of these

variables.

Also note that, although there might be reading conflicts (two or more

processors trying to read the same memory location), there can be no data related

writing conflicts if the CGE ' s have been generated correctly. The ill-effects of

reading conflicts on performance are much easier to avoid than those of writing

conflicts, for example by using multiported memories and/or data caching. Also all

170

synchronization is guaranteed by the wait instructions marking parallel call

boundaries. This will become more clear after the instruction set has been introduced

and an example commented on, but it shows how all program or data dependent

control and synchronization issues are concealed within the semantics of the CGE' s .

When a parallel call is reached, a Parcall Frame is created in the local Stack

and its goals are pushed on to the Goal Stack, ready to be picked up by the local

processor or other remote processors. These remote processors will in turn work on

their assigned goals operating on their own stacks and again possibly including

references to ancestor stacks. Parallel goals can also be executed locally, creating the

corresponding Local Goal Marker. As soon as all goals in the parallel call succeed, a

Wait Marker is pushed on the Stack and execution can continue normally beyond the

parallel call. Eventually, if all execution related to the "stolen" goal terminates

successfully, this success will be reported to the parent by updating the corresponding

slot in the Parcall Frame. Of course, there may be some entries (for example choice

points, if the goal still has alternatives) left in the local Stack, some data structures in

the local Heap that ancestors may need to access (the "output" of the procedure), and

also some- entries in the Trail. This is left this way (rather than doing any copying to

the parents' data areas), and when the next goal is received its data structures can be

grown above these. This space can still be retrieved if a kill message is received from

the parent processor (because of a failure there or in some other related processor),

much in the same way as in the sequential W A M . If, on the other hand, execution of

the "stolen" goal ends in failure, this fact is reported to the parent and all storage

used by this processor and all dependent processors is deallocated (up to and including

the Input Goal Marker). Complete retrieval of storage on backtracking is thus

achieved, also much in the same way as in a sequential implementation.

171

Note that, as poinu ., out in Chapter 5, if the relative precedence of stack

sections is preserved, then "kill" and "unwind" messages necessarily always refer to

the last goal executed (i.e. to the last set of structures on the Stack and Heap) and

space is always retrieved from the top of the Stack or Heap as in the sequential model.

Of course local unwinding of the Trail will now also undo any bindings done outside

the local data areas. Both the recovery of storage and this unwinding of the

distributed Trail is done completely in parallel by all the AND-siblings which receive

"kill" messages. This is a source of parallelism during backward execution for this

model. Also, note that with the above mentioned ordering of events, a "redo"

message, when received, also always refers to the last choice point (or Parcall

Frame/Wait Marker in the local Stack and it can be executed just as if a local failure

had occurred!

One last observation: as mentioned in previous chapters, there is in general

no point in pushing all goals in the parallel call on to the Goal Stack. If all goals are

picked up immediately the local processor is left in wait mode with nothing to do, or a

relatively high overhead process swapping immediately occurs if multiprocessing is

implemented. If some goal remains in the Goal Stack it will be picked up by the local

process but unnecessary work will be done in copying the argument registers and all

other information to the goal stack and back to the local registers immediately after.

A much better alternative is to always leave one of the goals in the parallel call (for

example the last one) for local execution.

172

7.3 T h e E x t e n d e d A b s t r a c t M a c h i n e Ins truc t ion Se t

This section will describe the instruction set for the Parallel Abstract

Machine. All W A M instructions are supported in addition to the new instructions

implementing AND-Parallelism. The W A M instructions are listed first, then the new

instructions with their related actions in the abstract machine, and finally the

semantics of certain situations, such as failure, which are not directly coded as

instructions are defined. Note how, although "check_. . . " instructions are

somewhat particular to the implementation of RAP, all other instructions are

appropriate for any Goal Independence AND-Parallel system.

The description of the instructions will be somewhat brief in order to

facilitate later reference. Fully commented examples of their use can be found at the

end of the chapter and in the appendices. Again note that the design is abstract in

that some details have been left to be determined at implementation time. Thus,

alternate implementations may extend or change the precise meaning of some of the

instructions from that offered here.

7.3.1 W A M Instructions

As stated before, all W A M instructions are supported. Their operation will

not be described in this section, because, except for the "proceed" instruction, it is

the same as in their conventional interpretation as described by Warren [88]. The new

semantics of the proceed instruction will be given in the next sections. Here is a list

of the basic W A M instruction set for reference (built-ins and special instructions not

directly listed in Warren's report such as those dealing with arithmetic, "cut", cdr-

coding etc. are omitted):

173

Summary of W A M Instructions

HEAD

procedural

(proceed)

allocate

get /put

get_variable Xn,Ai
get_variable Yn,Ai
get_value Xn,Ai
get_value Yn,Ai
get_constant C,Ai
get _ nil Ai
get_structure F,Ai
get _ list Ai

unify
unify _void N
unify _ variable Xn
unify _ variable Yn
unify _ local_ value Xn
unify_ local_value Yn
unify_value Xn
unify value Yn
unify _constant C
unify _ nil

indexing
try _ me _ else L try L
retry _ me _ else L try L
trust _ me _ else fail trust L

swi tch_on_term Lv, Lc, LI, Ls
switch_on_constant N,table
switch_on_structure N,table

BODY

execute P
call P,N
deallocate

put_variable Xn,Ai
put_variable Yn,Ai
put_value Xn,Ai
put_value Yn,Ai
put_unsafe_value Yn,Ai
put_constant C,Ai
pu t_n i l Ai
put_structure F,Ai
put _ list Ai

174

7.3.2 Check Ins t ruc t ions

"Check" instructions are used to encode the "conditions" in a CGE. Two

types of checks ("ground" and "independent") and a branch instruction are provided.

Note that by combining these, any kind of disjunctions or conjunctions of checks on

any number of variables can be expressed (this is shown in the appendices):

c h e c k _ m e _ e l s e Label

• load check failure address with Label (CFA=Label) .

check _ ground V n

• dereference register Vn and check to see if its contents are ground. If so,
continue with next instruction; otherwise P = C F A (i.e. branch to Check
Failure Address).

check _ independent Vn,Vm

• dereference Vn and Vm. If they are independent, next instruction;
otherwise P = C F A .

As stated when C G E s were introduced in Chapter 5, the particular

algorithm used to check for independence is left as an implementation issue. Again,

one algorithm which can be used is DeGroot's [25] where two variables are

independent if at least one of them is ground or if they are both uninstantiated

variables which do not dereference to the same location (i.e. they do not "share").

Other algorithms can also be used as long as they evaluate independence in a

conservative way: it must be ensured that the algorithm never renders two dependent

variables as dependent (since this would lead to variable binding conflicts at run-time)

although, on the other hand, it may well prove advantageous to implement a fast

algorithm (such as DeGroot's) which sometimes gives up on checking complex terms or

long dereferencing chains (by considering them immediately as dependent), even

though it may thus miss some opportunity for parallelism.

A possible optimization to this scheme which can avoid the checking

175

overhead when the system is loaded is to check whci.ji- the Goal Stack is already full

or above a certain threshold and in that case prevent the creation of parallel processes

regardless of whether the conditions evaluate to true or not (i.e. if goals are not being

picked up by other processes because everybody is busy there is not much point in

generating work). This can be easily implemented by changing the semantics of the

"checlc_me_else" instruction to the following:

• if GS is above threshold, jump to Label;

• otherwise load check failure address (CFA) with Label.

Now execution always jumps to Label if the value of GS is above a certain

threshold. Note, though, that in this case semi-intelligent backtracking will also be

prevented from working in all these cases, while if goals in a parallel call are always

pushed on to the Goal Stack then semi-intelligent backtracking is still supported even

if they are all executed locally. Therefore, implementation of this feature is only

recommended for the case when the Goal Stack is actually full.

7.3.3 Goal Scheduling Instructions

These are the instructions used for pushing goals with their arguments on to

the Goal Stack and for picking up these goals in the local processor:

push _ call P r o c e d u r e _ n a m e / A r i t y , S l o t #

• request exclusive access to Goal Stack;

• push on to the Goal Stack: "Procedure_name", registers A . . , A . • .,

...A,, "Arity" ("n"), Slot# (i.e. offset from P F for the slot corresponding

to this goal), and current P F pointer;

• release access to Goal Stack.

The arguments should be first loaded into the argument (A) registers using

normal " p u t _ . . . " instructions (as for a conventional "calj"). Then, they will be

176

transferred in one section to the Goal Stack with the push c a l l instruction. Of

course the arguments could be directly "put" in the Goal Stack by special "put_. . .

. . . ,Pri" instructions, but note that then the Goal Stack has to be locked until the

p u t / p u s h _ c a l l sequence is completed (since there is always an incomplete goal on

top of the stack). This leaves little opportunity for any picking of goals before all

goals are pushed on to the stack. In the approach chosen the goal stack can be

accessed freely by other processors during the "put" sequence, and it is only locked

during the p u s h _ c a l l . It also has the advantage of avoiding a new set of put

instructions.

pop _ pending _ goal

• if no goals are pending to be scheduled (" # of goals to schedule" in
Parcall Frame = 0), continue with next instruction;

• else pop a goal from the local Goal Stack (described below).

This instruction is used by the local processor to pop a goal from its own

Goal Stack for local execution. A Local Goal Marker is created on the local Stack

(and LGM updated), the corresponding slot in the Parcall Frame (as indicated by

"Slot # " in the Goal Frame) is marked as "local", the " # of goals still to schedule"

is decremented, and the arguments are popped back from the Goal Stack into the

local argument registers. Then P is loaded with the address of "Procedure_name"

and execution continues from there. The continuation pointer (CP) is set to point to

the Input Goal Marker. When this goal finally succeeds, the "proceed" instruction

will detect that success of a local goal has just occurred (the C P pointer being out of

the program area) and will update the slot in the Parcall Frame (a pointer to it is

stored in the Local Goal Marker). Execution will then continue at PIP (i.e. the

beginning of the "put, push__call" sequence, stored in the Parcall Frame). This

sequence, except in the case of success after "redoing" the local goal (when other goals

will then need to be pushed on to the Goal Stack for continuing forward execution),

177

will be skipped and the "pop p e n d i n g g o a l " executed age. ... Thus, any other

pending goals will also be popped from the Goal Stack. This process continues until

there are no more goals left (# of goals to schedule — 0). The next instruction is then

executed.

An optimization can be implemented which can help avoid the additional

overhead involved in creating "markers" (this optimization is also applicable to Wait

and Input Markers). Since most of the information contained in a "marker" is also

contained in a choice point, if a choice point is created immediately after a marker

they can be combined into an "extended choice point". This is the case, for example,

if a local goal is popped and the corresponding Local Goal Marker created, and the

first instruction which accesses the data areas in the execution of the goal is a

" t r y _ m e _ e l s e " instruction. The marker can be then extended (by including the

argument registers, B ' , and BP) and serve both purposes.

7.3.4 Control Instructions

These instructions take care of the control issues involved in a parallel call:

creating and deleting Parcall Frames and Wait Markers, selecting the goals to

schedule, and waiting for children to report results.

allocate _pca l l # _ o f _ s l o t s , M

This instruction creates a properly initialized Parcall Frame in the local

Stack with the correct number of slots. M, the number of "permanent variables" still

needed in the environment, is used to extend the concept of environment trimming.

P F now points to the top of the stack. The actions involved in creating this Frame

are:

• C P F = P F (save continuation Parcall Frame pointer)

• push on to the stack in order:

178

o " # _ o f _ s l o t a " initialized cells (Pid=nil, CompStatus=nil,
Ready7 NotR=Ready) one for each goal in the Parcall Frame.

o " # _ o f _ s l o t s " (number of goals still pending to be scheduled for
this frame).

o " # _ o f _ s l o t s " (number of goals to wait on before exiting the pcall).

push P (which points to the first instruction of the
c h e c k / p u t / p u s h _ c a l l sequence since it is always the next instruction
to the a l l o c a t e _ p c a l l) . This value is called "PIP" ("put"
instructions pointer).

push Status, initialized to "inside".

push GS (to be restored upon backtracking).

M is used to extend the concept of environment trimming: if the last object

on the stack is an environment with N > M permanent variables, and only M are

needed from now on, the Parcall Frame can be pushed in the stack immediately after

the first M valuecells in the environment, thus discarding the N-M unneeded cells.

check _ ready S l o t _ # , L a b e l

• Check that slot in the current Parcall Frame (pointed to by P F) .

• If the slot status is "not ready", jump to Label;

• else, set the slot status to "not ready" and continue with the next
instruction.

check_ready instructions are used to skip those goals whose slots are

marked as "NotReady" in the Parcall Frame so that they are not pushed on to the

Goal Stack. This is useful during backtracking, as only some of the goals inside a

parallel call may need to be restarted after failure.

179

wait _ on _ siblings

• wait until "# of goals to wait on" in current Parcall Frame is 0;

• then, push a Wait Marker on to the Stack (saving current P F in BPF),

• restore PF from the Parcall Frame (P F = C P F) ,

• change status to "outside" (if it is "inside"),

• go on to next instruction.

Note that this "wait" only implies an idle processor if no multiprocessing is

actually implemented. If multiprocessing is available then a ready process can be

paged in at this point, or if all processes are in wait mode then a new process can be

created which will start as idle, asking other processors for work through the sorting

network, as described in Chapter 5. Nevertheless, in an implementation where there is

a fairly large number of simple processors it may prove advantageous to simply let the

processor wait. This is due to the fact that there is a hierarchical relationship

between processes. If a waiting processor starts a new process in it to avoid a wait

state it will most likely pick up a goal from one of its descendants. If immediate

action is needed then on the original waiting process (for example handling a failure

report from a child) the extra time necessary to swap processes again in order to

service it will add to the execution time of the "main line of processing" while the

work done since the wait is useless because all children have to be killed anyway. If

the processor had been simply waiting response could have been immediate. The

average ratio of successes vs. failures in representative programs will determine the

180

extent of this effect

An extension of last call optimization (and of the creation of choice points

only when needed) can be implemented in the w a i t _ o n _ s i b l i n g s instruction by

discarding the current Parcall Frame (P F = C P F) and not creating a Wait Marker if

all slots in the frame are marked as having "no a l ternat ives" . In order to understand

this, note tha t after the w a i t _ o n _ s i b l i n g s instruction the Parcall Frame and Wait

Marker would only be needed in the event of having to backtrack any of the goals

inside the parallel call. If none of the goals have any alternatives then none of them

need to be backtracked, and, if the Parcall Frame and Wait Marker have been

discarded, then if failure occurs, execution would simply return to the first Choice

Point (or Parcall Frame/Markers before this Parcall Frame which would be the

correct backtracking point at this time.

Care should be taken though, when implementing this feature in some special

cases. Note tha t even in the case when there are some processors with no alternatives,

these processors may still have portions of their trail which would have to be

"unwound" during backtracking. One way of solving this problem is by including a

new field in each goal slot in the Parcall Frame, where processors with no alternatives

In fact, it is also possible to completely avoid wait states without introducing
multiprocessing by letting any processor in the Parcall Frame which happens to be the last
one to complete execution of the last goal in the parallel call (instead of only the local (parent)
process) to pick up the continuation (i.e. the execution of the rest of the body of the clause
past that parallel call). Thus the parent processor can be free to look for a remote goal if
there are no more local goals left to execute (rather that wait for completion of all siblings to
pick up the continuation). However, the implications of this strategy in other areas of the
design (such as the memory management) have not been studied and are therefore left as a
subject of future research.

CO

... and the Local Goal Markers of all local goals with no alternatives.

181

mark if they have a pending segment of the trail to be unwound upon backtracking or

not. Then the Parcall Frame is only discarded if all slots are marked both as "no-

alternatives" and "no-trail".

A better solution yet is to go ahead and discard the Parcall Frame even if

some remote processors have pending trail segments, but push a special entry in the

local trail with the Processor id. of each such processor. Then as the local trail is

unwound these entries are identified and "unwind" messages are sent to the

corresponding Processors. This approach has the additional advantage that the

"unwind" messages will also take care of discarding the space still being used in the

heap so that total space recovery after backtracking is maintained in addition to last

call optimization. Other solutions such as independent local copies of the remote trail

can be considered as alternative implementation schemes, but they will probably result

in undesirably high communication traffic.

7.3.5 Modified Instructions

The proceed instruction of the W A M instruction set needs to be modified

in order to detect goal success and to perform the corresponding reporting to the

parent:

proceed

• If CP "not special" (i.e. C P points into the Program Area), P = C P .

• If C P points to the Input Goal Marker (C P = IGM), then execution of a
remote goal has succeeded:

o get P F and "Slot # " from the Input Goal Marker,

o update this slot with Success with or without alternatives,

o decrement " # of goals to wait on",

o return to idle loop.

182

• If C P points tc -ocal Goal Marker, then execution of a local goal has
succeeded:

o get P F and "Slot # " from the Input Goal Marker,

o update this slot with Success with or without alternatives,

o get PEP from the Parcall Frame,

o P = PEP (execution continues at the p u t / p u s h _ c a l l /
pop_pendlng_goal sequence).

Note that the detection of whether a goal has alternatives or not can be

simplified to a comparison of registers B, PF, and IGM: a goal has no alternatives

when P F < IGM and B < IGM.

7.3.6 Other Non-Instruction Related Actions

In addition to the operations associated with particular instructions, each

processor has to support other actions resulting from exceptions such as messages

arriving from other processors or failure. These actions obviously differ somewhat

from the corresponding ones in a sequential implementation. We will sketch some of

them in this section.

failure

The actions required during failure for the "marker" model of R G F

backtracking were already given in the previous chapter. The following algorithm is

essentially equivalent to that of Chapter 6 but taking advantage of the multiple

register approach taken in this design (B, PF, IGM, LGM, W M) and taking into

account some of the optimizations suggested in this chapter. Again, a distinction is

made between Local and Remote Failure:

• Local Failure: failure originates within the local processor (i.e. during a
unification being performed in the local processor).

• Remote Failure: a "failure" message is received from a child process.

183

The algorithm, then, follows:

• If Local Failure, find the maximum (S>IXX.) of B, P F ; IGM, LGM,
W M (i.e. find "marker" on top of the stack), then,

o If MAX = B, then perform the normal choice point
backtracking (reset registers, "unwind" Trail, continue with
next alternative).

o If MAX = LGM (i.e. a Local Goal Marker is the last marker
on the Stack), reset pointers into data areas, "unwind" Trail
and perform Parcall Frame Backtracking on the Parcall
Frame pointed to by the marker (this is the "failing Parcall
Frame").

o If MAX = W M (i.e. a Wait Marker is the last marker on the
Stack), reset pointers into data areas, "unwind" Trail, reset
PF from BPF and perform Parcall Frame Backtracking on
the Parcall Frame pointed to by the marker (this is the
"failing Parcall Frame").

o If MAX = PF, perform Parcall Frame Backtracking on the
Parcall Frame pointed to by P F ("failing Parcall Frame").

o If MAX = IGM (i.e. an Input Goal Marker is the last marker
on the Stack; no choice points or Parcall Frames are left in
this stack section)), goal failure: reset pointers into data areas,
"unwind" Trail, send a "failure" message to the parent
(including the PF/Slot # from the Input Goal Marker) which
will execute the "remote failure" routine, return to i d l e loop.

• If Remote Failure, then:

o perform Parcall Frame Backtracking on the Parcall Frame
referred to by the remote failure message ("failing Parcall
Frame").

In the above described algorithm "Parcall Frame Backtracking" refers to the

following series of actions:

• If the "failing Parcall Frame" is the same as the current one (i.e. the
one pointed to by PF) , then:

184

o If the status oi ,„e Parcall Frame is "inside", send "kill"
("unwind" if execution has completed) messages to all
processors corresponding to remote goals in the Parcall Frame
and fail by recursively executing this algorithm in a Local
Failure mode.

o If the status of the Parcall Frame is "outside", then:

• Find the first slot (scanning the slots in order, equivalent
to right-to-left order in the clause) with pending
alternatives whose corresponding process responds
successfully to a "redo" message (when slots correspond
to local goals with alternatives they are also tried
("redone"), but locally).

• If and when such a process is found, invoke the parallel
execution of all the procedure goals that correspond to
the following slots by setting the status in these slots to
"ready" and branching to P I P (thus those goals will be
pushed on to the Goal Stack and executed in parallel).

• else, if none succeeds, fail by recursively executing this
algorithm in a Local Failure mode.

• If the "failing Parcall Frame" is different than the current one, then
(note that this always corresponds to "inside" backtracking if the
"point method" is used):

o follow the chain of Parcall Frames up to and including the
"failing" one (by following the chain of Wait Markers) sending
"kill"/"unwind" messages to all slots corresponding to remote
processors,

o fail by recursively executing this algorithm in Local Failure
mode.

Note that, because of the deallocation of Parcall Frames, special entries can

be found in the Trail which refer to processors with pending portions of the Trail and

the corresponding "unwind" messages have to be sent to them. Also note that all

"markers" are discarded after the pointers into the data areas are reset from them

and the Trail unwound to the point saved in the "marker".

185

kill

"kill" is a message which can arrive from the parent processor indicating

that the goal being solved in the local processor is not useful any more and should be

discarded. The chain of Parcall Frames/Wait Markers is followed sending "unwind"

messages (or "kill" messages if they are still running) to all children processors and

"unwinding" the Trail until no Parcall Frames are left above the current Input Goal

Marker, the pointers into the data areas are then restored from this marker, and the

processor returns to idle (i.e. looking for work).

unwind

this message is sent by the parent when backtracking, and is equivalent to a

"kill" message (except that the processor is not executing the referred goal at the

time). Again all storage and children processes are discarded up to and including the

current Input Goal Marker.

redo

redo is also received from the parent processor after reporting a solution

which had a choice point available (i.e. after reporting "success with alternatives"). It

is executed just as if local failure had occurred: go to the first choice

point/PF/"marker" on the Stack, etc.

idle

This pseudo-instruction represents the idle loop in which a processor consults

the scheduling network (or other processors' Goal Stacks if the scheduling network

approach is not implemented) in order to find the id. of a processor which has

available goals in its Goal Stack. As soon as such a processor is found a

p o p _ f o r e l g n _ g o a l pseudo instruction is executed.

186

p o p _ foreign _ goal P i d . / G J S

This is equivalent to the p o p _ p e n d i n g _ g o a l instruction, but applied to a

remote goal:

• pop a goal from Pid. 's Goal Stack.

This pseudo-instruction is used by a previously idle processor to pop a goal

from a remote Goal Stack for execution. An Input Goal Marker is created on the

local Stack (and I G M updated), the corresponding slot in the Parcall Frame (as

indicated by "Slot # " in the Goal Frame) is updated with this processor's Pid., the

" # of goals still to schedule" is decremented, the " # of goals to wait on"

incremented, and the arguments are popped back from the Goal Stack into the local

argument registers. Then P is loaded with the address of " P r o c e d u r e _ n a m e " and

execution continues from there. The continuation pointer (C P) is set to point to the

Input Goal Marker. When this goal finally succeeds, the " p r o c e e d " instruction

detects this "special" value in the continuation pointer, reports success to the parent

by updating the Parcall Frame, and returns to the idle loop (looking for another goal

to work on).

7.4 An Example

This example illustrates the code generated by the compiler for a simple

57 clause . The comments provided explain the operation of the instructions involved.
C O

Given the following "Prolog" clause

f (X , Y , Z) : - a (X , Y) . b (X . Y) , c (X . Y) , d (X , Y , Z) , e (X . Y . Z) .

the Graph Expression generated by the compiler after its analysis might be:

57
Other examples can be found in Appendix 1.

58
This clause is purposedly chosen so that the code generated is as simple as possible (no

"unsafe variables", no special unification instructions) in attention to the reader with no
previous exposure to WAM code. Also some of the instructions are obviously unnecessary but
leaving them there makes it easier to visualize the structure of the code.

187

f (X . Y . Z) : - a(X,Y) . (ground(X.Y) I b(X.Y) ftc(X.Y) * d (X , Y . Z)) . eCX.Y.^

Clearly, in this clause it is expected that a will ground X and Y. In this case,

" ground (X, Y) " will succeed and then b, c, and d will be able to run in parallel.

Otherwise they will run sequentially and the annotated clause will execute the same

instructions as the original one would have in a conventional system. The code that

the compiler would generate for the clause above follows. In order to understand the

first instructions in the example, recall that at the point of entering this code the

calling procedure has already loaded registers Aj, A2, and A„ with the arguments for

f:

f/3:

allocate

get_varlable "X'.Al
get~variable "Y",A2
get_variable "Z",A3

put_value "X'.Al
put_value "Y",A2
call a/2.3

check_me_else SEQ_C0DE

check_ground "X"
check_ground "Y'

allocate_pcall 3,3

P I P :
check_ready 3,POP

put_value 'X'.Al
put_value "Y*,A2
put_value "Z",A3
push_call d/3.3

check_ready 2,POP
putjralue "X'.Al
put_value "Y",A2

(Entry point for procedure f)
Push an environment on to the stack. It will
have space for "X"(Y3). 'Y"(Y2) and "Z"(Y1)

HEAD INSTRUCTIONS: f(X.Y.Z):- ...
X <- (Al) Unify (Just 'get* in this case) the
Y <- (A2) arguments (X.Y.Z) from the parameter
Z <- (A3) registers into the environment.

BODY INSTRUCTIONS: ... :-a(X,Y), ...
(X) -> Al Load argument registers from the
(Y) -> A2 environment for a.

Call a.

... (ground(X.Y) I ...
Set the address to branch to in
case the conditions fall (CFA).
X ground? If not go to SEQ_CODE
Y ground? if not go to SEQ_CODE

The checks succeeded: parallel execution.
First, create a Parcall Frame in the stack with
3 slots (slot 1 for b, 2 for c, 3 for d)
(3 is # of perm. vars. -used for env. trimming)

... * d(X.Y.Z)) ...
See if slot 3 In Parcall Frame (i.e. "d") is
ready (always true except when backtracking);
else, jump to POP (skip rest of goals)
(X) -> Al Load argument registers from the
(Y) -> A2 environment for d.
(Z) -> A3
Push call to "i' with its arguments on to Goal
Stack (It can now be "stolen" by another proc.)
(Calls are pushed in reverse order If a Goal
STACK Is used)
... * c(X.Y) t ...
(same as d above)

push_call c /2,2 I

188

POP:

SEQ_

CALL

check_ready l.POP
put_value "X'.Al
put_value "Y".A2
push_call b/2,i

pop_pending_goal

wait on_slbllngs

execute CALL_E

CODE:
put_value "X",A1
put_value "Y",A2
call b/2,3

put_value "X",A1
put_value "Y",A2
call c/2,3

put_value "X",A1
putjralue "Y",A2
put_value "Z*.A3
call d/3.3

_E:
put_value Y3.A1
put_value Y2.A2
put_value Y1.A3
deallocate
execute e/3

... 1 b(X.Y) * ...
(same as c above)

If no goals pending, next Instruction; else
execute remaining goals locally (create LGM)
Wait until all "remote" goals in the
Parcall Frame have returned/create WM
Go on to execute "e" (CALL_E).

Checks failed: sequential execution.
(X) -> Al Normal WAM code for executing b.
(Y) -> A2 c, and d sequentially.
call "b".

(X) -> Al
(Y) -> A2
call "c".

(X) -> Al
(Y) -> A2
(Z) -> A3
call "d".

•Normal" WAM call to "e".
(X) -> Al
(Y) -> A2
(Z) -> A3
Discard environment: last call optimization.
Execute "e".

7.5 Determinate Execution

A set of alternative instructions is provided which supports the determinate

execution algorithms introduced in Chapter 4. Some examples of the use of these

instructions are given in the appendices. The operations involved in the execution of

these instructions are similar to those of their previously introduced counterparts, but

advantage is taken of the knowledge of the fact that only one solution is needed from

the associated goals. Also, details of the operation of previous instructions are

modified by the existence of determinate goals. Some of these new instructions and

changes are sketched below.

189

7.5.1 Goal Scheduling Instructions

push _ det _ call Procedure_ name/Arity ,S lot#

• request exclusive access to Goal Stack;

• push on to the Goal Stack: "Procedure_name", registers A . •. , A,

...A., "Arity" ("n"), Slot# (i.e. offset from PF for the slot corresponding

to this goal), and current PF pointer;

• mark the goal as "determinate ";

• release access to Goal Stack.

The inclusion of the fact that the goal is determinate is very useful for the

processor "stealing" the goal: it is known that this goal will never need to be redone.

Among other issues, and as pointed out in Chapter 5, this knowledge widens the

choice of goals (during the i d l e / p o p _ f o r e i g n _ g o a l pseudo-instructions) which can

be stacked above this goal (since in the worst case only the "garbage slot problem"

can appear).

pop _ pending_ goal

If the goal picked up locally is determinate, no Local Goal Marker needs to

be created and no updating of the Parcall Frame is necessary (except decrementing

the " # of goals to schedule" field). The continuation can be set directly to this same

instruction (i.e. to the current P), and no special action has to be taken in the proceed

instruction.

7.5.2 Control Instructions

allocate _ det _pcal l # _ o f _ s ! o t s , M

In a determinate Parcall Frame the slots only need to contain the Pids. of

the remote processors which have executed goals within the call. Other than the slots,

only the CPF, " # of goals to schedule", and " # of goals to wait on" fields are

needed.

190

check _ ready S lo t_# ,Labe l

chedc_ready instructions are not needed in determinate execution, since no

backtracking takes place.

cut _ merge

This instruction replaces the w a i t _ o n _ s i b l i n g s instruction for

determinate execution:

• wait until " # of goals to wait on" in current Parcall Frame is 0;

• then, "trail" the Pid. contained in each slot corresponding to a goal
executed remotely,

• restore PF from the Parcall Frame (P F = C P F) (i.e. discard the Parcall
Frame)

• (discard all local Choice Points until before the Parcall Frame) .

• go on to next instruction.

Note that "last call optimization" is always implemented for determinate

execution.

7 .6 P e r f o r m a n c e E v a l u a t i o n

An implementation of the abstract machine described in this chapter on a

shared memory multiprocessor has been studied through simulations. These

simulations have proved the functionality of the model and provided detailed

information about its performance which have in turn affected several areas of the

design. The main conclusion from the performance study in the efficiency of the

Abstract Machine: if the problem being studied has intrinsic goal independence

parallelism, the model will take advantage of it with very little overhead, typically

If a real "cut" is needed, then all choice points and markers up to the calling goal should
be discarded.

191

less than 10%. Speedup and "idle" times have been shown to be very favorable and

determined again by the amount of intrinsic parallelism in the problem rather than by

inefficiencies in the Abstract Machine design. In a system where processor utilization

is of key importance it may prove advantageous to implement some way of dealing

with "wait" times, such as multiprocessing or the "continuation" method suggested in

this chapter. Details about the simulator and the simulations performed and

definitions for the terms referred to above are given in Appendix B.

7.7 Chapter Summary

In the previous sections an AND-Parallel Abstract Machine design has been

presented which is based on combining the techniques used in the W A M with the

models of Goal Independence AND-Parallelism introduced in previous chapters. The

same abstract machine and basic instruction set could also support with minor

modifications other related AND-Parallel models and serve as a target for compilation

of a variety of logic programming languages. The functionality and favorable

performance of the design have been determined through simulations. It argued that

this Abstract Machine is an attractive vehicle for the implementation of AND-

Parallelism in the presence of "don't know" non-determinism: the compatibility with

conventional W A M code makes sequential speed almost identical to that of the

W A M and permits the use of current W A M compiler technology while also

supporting the parallel execution algorithms described in the previous chapters.

Simultaneously, most W A M optimizations are still supported, even during parallel

execution, resulting in an efficient model. In particular, the scheduling and memory

management techniques used ensure that the memory requirements of the parallel

system are essentially equivalent to those of a sequential system (total storage) and

that this space is still recovered during backtracking, thus effectively delaying the

occurrence of garbage collection. A limited form of "intelligent backtracking" is

192

provided at very low overhead. The de^ t _o offers user-transparent distributed

control and "soft" degradation of performance with resource exhaustion.

191

c. Speedup and "idle" times have been shown to be very favorable and

^ain by the amount of intrinsic parallelism in the problem rather than by

in the Abstract Machine design. In a system where processor utilization

portance it may prove advantageous to implement some way of dealing

times, such as multiprocessing or the "continuation" method suggested in

Details about the simulator and the simulations performed and

r the terms referred to above are given in Appendix B.

ter Summary

he previous sections an AND-Parallel Abstract Machine design has been

iiich is based on combining the techniques used in the W A M with the

oal Independence AND-Parallelism introduced in previous chapters. The

ct machine and basic instruction set could also support with minor

- other related AND-Parallel models and serve as a target for compilation

v of logic programming languages. The functionality and favorable

of the design have been determined through simulations. It argued that

•t Machine is an attractive vehicle for the implementation of AND-

n the presence of "don't know" non-determinism: the compatibility with

; W A M code makes sequential speed almost identical to that of the

permits the use of current W A M compiler technology while also

he parallel execution algorithms described in the previous chapters.

ly, most W A M optimizations are still supported, even during parallel

suiting in an efficient model. In particular, the scheduling and memory

techniques used ensure that the memory requirements of the parallel

ssentially equivalent to those of a sequential system (total storage) and

ace is still recovered during backtracking, thus effectively delaying the

f garbage collection. A limited form of "intelligent backtracking" is

192

provided at very low overhead. The design also offers user-transparent distributed

control and "soft" degradation of performance with resource exhaustion.

Chapter 8

Conclusion

In the previous chapters an efficient and reasonably complete parallel

execution model for goal independence models of Parallelism for Logic programs has

been proposed, using CGEs as a general control construct. Complete forward and

backward procedural semantics for such expressions, which preserve the concept of

"don't know" non-determinism, were introduced. Also, memory management and goal

scheduling issues and their interaction were considered, and a series of mechanisms

which can be used to support the algorithms involved at the abstract machine level

were described. Finally, a parallel Abstract Machine design was proposed and its

performance evaluated. This design is considered to be useful both for the

implementation of the execution model on an existing multiprocessor, or as a starting

point in the design of a special purpose parallel inference architecture.

It is argued that the following characteristics of the execution model and

Abstract Machine meet the criteria initially proposed as the objectives of this research

and make the model an attractive vehicle for the implementation of goal independence

parallelism:

• Efficient support of AND-Parallelism and "don't know" non-
determinism. The backward execution semantics ensure support for full
"don't know" non-determinism during parallel execution. Variable binding
conflicts are detected and dealt with efficiently through the forward
execution semantics of the CGEs.

• Extended support for W A M optimizations. The parallel machine still

193

supports last call optimization, environment -urnming, unification
customization, clause indexing, space retrieval on backtracking and all the
other storage and performance optimizations of the W A M . In particular,
the total amount of storage needed by the parallel system is essentially
equivalent to that of a sequential W A M implementation. Storage is still
always retrieved from the top of all stacks during backtracking thus
simplifying memory management and minimizing the occurrence of
garbage collection.

• User-transparency of control issues. Scheduling of processes is done
completely at run-time. All communication and synchronization issues are
concealed within the semantics of the CGEs and can be thus hidden from
the user.

• Distributed control. The only centralized operation in the system is that
of the scheduling network, whose delay can be kept sublinear.

• Restricted intelligent backtracking. The backtracking scheme efficiently
implements a limited form of intelligent backtracking.

• "Soft" degradation of performance with resource exhaustion. Code
generated from conditional graph expressions will automatically run
sequentially if there are no free processors available (and even then
advantage is still taken from the semantics of the CGEs for supporting
restricted intelligent backtracking with low overhead).

• Compatibility with conventional W A M code. Sequential execution is
supported through conventional W A M instructions and therefore existing
compiler technology can be taken advantage of. This independence of the
sequential from the parallel instructions make it possible to extend other
similar languages or models to a parallel environment using the same
techniques.

• Sequential speed equivalent to the W A M . Sequential parts of the code or
conventional programs which have not been annotated run on one
processor at essentially the same speed as in a W A M implementation.

• Efficiency. A conscious effort has been made throughout the design
towards optimizing performance while reducing overhead and minimizing
communication, synchronization and storage requirements. This efficiency
has been confirmed by the simulations.

195

It is argued that other solutions previously proposed either burden the user

with taking care of control issues which it is considered should be hidden as much as

possible, give up concepts which are generally regarded as important in Logic

Programing (such as "don't know" non-determinism), or lack the potential for storage

efficiency and performance improvement that the WAM has brought to the sequential

logic programming arena. The fact that the definition of this model has been carried

out to a relatively low level has made detailed simulations possible so that a more

realistic performance evaluation than that of previously proposed models could be

performed. This level of detail also makes the model more amenable to a complete

implementation, although some freedom has been left at this level in the definition of

the parallel Abstract Machine.

8.1 Areas of F u t u r e Research

It is hoped that the research presented herein will only be a beginning:

although the model presented is relatively self contained it also leaves many related

areas open for future study. Some of these areas are:

• Automatic generation o / C G E ' s : the "correctness" conditions proposed in
Chapter 4 and a data dependency analysis of the source program (perhaps
aided by some user annotations) constitute a starting point for the
automatic generation of CGE's . Recent work relevant to the detection of
determinacy in logic programs [24] can be also applied in order to take
advantage of the intrinsic efficiency of determinate parallel calls.

• Study of the intrinsic Goal Independence parallelism present in typical
programs: such a study would of course be greatly simplified by the
existence of the above mentioned tool.

• Support for OR-parallelism: The Argonne Labs, model [55] can be used
as a starting point for a WAM-based implementation of user annotated
OR-parallelism. Bound guided OR-parallelism [41] [45] could be very
effective in nondeterministic, intensive search applications. The problem
of efficiently combining OR- and AND-Parallelism in a practical system is
proposed as a subject open for future research.

196

• A study of the memory referencing behavior of the „m: this
information will be important in the selection of a memory architecture in
an eventual implementation of the model.

• Implementation of the model: If a hardware implementation is being
considered, basic W A M designs can be used as a starting point for the
processing elements (such as [77] or [28]), but the additional registers and
data areas, interrupt and communication capabilities as well as a common
access memory system and/or interconnection network have to be added.
Alternatively, the model can be implemented on an existing conventional
multiprocessor. Several aspects of the Abstract Machine design need to be
further refined for a practical implementation.

• Inclusion of a database interface mechanism: This interface should be
able to support semantic paging, sets, extended indexing, etc. as well as
"search parallelism".

• Support for other languages: finally, specific additions or modifications
can be introduced in the model in order to support other logic and/or
functional languages or features not currently supported such as streams
or goal suspension.

Appendix A.

Other Examples of Compiled Code

In this appendix several examples of clauses and their corresponding object

code are offered in order to illustrate the function of the different instructions of the

Abstract Machine presented in Chapter 7 and to provide guidelines for compiling logic

programs annotated with CGEs into that instruction set. The emphasis in this

appendix is on showing how the instruction set can be used to encode and execute

CGEs. Thus, little attention is paid to how the expressions were generated from the

original clause or whether the expression used is optimal or not. Nevertheless, the

expressions are believed to be at least "correct", i.e. they do not generate incorrect

parallelism by spawning two goals which are dependent in parallel. Also, in order to

pose the emphasis on the "new" instructions, examples which make use of WAM

instructions whose operation is more or less complicated have been purposedly avoided

where possible, specially if the details of their implementation are completely

independent of the workings of the parallel model. This includes some unification

instructions, the treatment of "unsafe" variables etc. Also for clarity, the order in

which parallel goals are pushed in the object code has been left the same as in the

textual ordering of goals inside the CGE, although, if the same order as the

sequential model is to be preserved in the generation of alternatives, and a Goal

Stack is being used, then goals should be pushed in reverse order (as illustrated in

Chapter 7).

197

198

A . l Checking More C o m p l e x Condi t ions

This example shows how to arrange check instructions in order to test for

more complex conditions than the simple "ground(X,Y)" used in the example in

Chapter 7. A similar clause is used:

Original Clause:

f (X . Y . Z) : - a(X.Y.N).
b(X,Y). c (Z ,X) , d(X,N),
e(X,Y,Z,N) .

Suppose that the following CGE was generated for the clause:

Embedded Conditional Graph Expression Form:

t (X.Y.Z) :- a(X,Y,N).
((ground(X,Y,Z.N)

(ground(X). IndepCY.Z.N))
)

I b(X,Y) * c(X.Z) * d(X.N)
) .
e(X,Y.Z,N) .

The CGE is interpreted as "b, c, and d can run in parallel if X, Y, Z and N

are ground. They can also run in parallel if X is ground and Y, Z, and N are

independent. Otherwise they have to run sequentially". Here is the corresponding

Abstract Machine code:

Parallel Abstract Machine Code (Compiler Output):

procedure 1/3

_277:

allocate I Push an environment for f on to the local
I stack with space for X. Y. Z. and N.

I f(X.Y.Z)
getjrarlable Y4.A1 I X <- (Al)

351:

352:

gso_. IB Y3.A2
get variable Y2.A3

put_varlable Y1.A3

call a/3,4

checlc me else _351

check_ground Y4
check_ground Y3
checkjrround Y2
checkjrround Yl
execute 352

check_me_else _350

check_ground Y4

check_lndependent Y3.Y2
check_lndependent Y3.Y1
check_lndependent Y2.Y1

allocate_pcall 3,4
checlc ready 1, 351

Y <- (A2)
Z <- (A3)

... :- a(X.Y.Z), ...
Optimization: X and Y are still in Al
and A2, so they do not need to be
loaded.
(N) -> A3
A new uninstantlated variable is
created la Yl (I.e. "N"), and its
address is passed in Argument register
A3.
call a, 4 permanent variables still needed

CHECKS:

We first try the first alternative of
the disjunction:
... (ground(X,Y,Z,N) ; ...

This is the address of the other
alternative in the disjunction.

ground X ? (else 351)
ground Y ? (else _361)
ground Z ? (else _351)
ground N ? (else _351)
... all checks succeeded: go to
parallel 'code .

The first alternative did not succeed.
Try the other one:

If ve fall nov, ve go to the sequential code

... (ground(X), ...

.... (lndep(Y,Z,N)) ...
(all combinations have to be checked:)
lndep(Y.Z) ?
lndep(Y.N) ?
indep(Z.N) ?

PARALLEL CODE:

... b(X.Y) * c(Z.X) * d(X.N) ...
put_value Y4.A1
put_value Y3.A2
push_call b/2,1
check_ready 2,_351
put_value Y2.A1
put_value Y4.A2
push_call c/2,2
check_ready 3,_351
put_value Y4.A1
put_value Y1.A2
push_call d/3,3

>00

pop_pendlng_goal
v a l t _ o n _ s l M l n g s
execute 355 I . . . continue with "e".

350: I SEQUENTIAL CODE:
put_ralue Y4.A1
put jra lue Y3.A2 I . . . MX,Y) , c (Z , X) , d(X,N)
c a l l b / 2 , 4
put_value Y2.A1
put_value Y4.A2
c a l l c / 2 . 4
put_value Y4.A1
put_value Y1.A2
c a l l d / 2 . 4

355: I . . . , e (X,Y,Z,N) .
put value Y4.A1
put_value Y3.A2
put_7alue Y2.A3
put_value Y1.A4
d e a l l o c a t e
execute e /4

end

The above example shows one way of implementing the original graph

expression. Still, a smart compiler could catch the double check for ground(X) present

in that expression and generate code which does this check only once:

Parallel Abstract Machine Code (Compiler Output):

ch«ck_m»_else _350
check_ground Y4

ch«clcjD«_«lse _351
check_grottnd Y3
check_ground Y2
check_ground Yl
execute 352

351:
check_me_else _350

ch8ck_lndependent Y3,Y2 I lndep(Y.Z) ?
check_lndependent Y3.Y1 I lndep(Y.N) ?
check_lndependent Y2.Y1 I lndep(Z.N) ?

352:
... parallel code

I ground X ?

I ground Y ?
I ground Z ?
I ground N ?

350:
... sequential code

201

This is equiv .it to the immediate interpretation of the following

conditions:

Embedded Conditional Graph Expression Form:

. . . ground(X), (ground(Y,Z.N);(lndep(Y.Z.N)) . . .

Another possible implementation is:

Embedded Conditional Graph Expression Form:

. . . ground(X). lndep(Y.Z.N) . . .

This would be compiled as:

Parallel Abstract Machine Code (Compiler Output):
check me_else 360
check_ground Y4
check_lndependent Y3.Y2
check_lndependent Y3.Y1
check_lndependent Y2.Y1
... parallel code

_360:
. .. sequential code

This last possibility is more compact but it could be less efficient than the

previous one if Yl,Y2 and Y3 (N,Z,Y) are often ground since the check for

independence obviously involves more overhead.

202

A.2 All Goals in Parallel: last call optimization issues

Given the following clause and associated CGE:

Original Clause:

f (X,Y,Z) :- a(X) , b(Y) . c(Z) .

Embedded Conditional Graph Expression Form:

f (X . Y , Z) : - (lndep(X,Y.Z) I a(X) ft b(Y) ft c(Z)) .

they can be implemented by the following code:

Parallel Abstract Machine Code (Compiler Output):
procedure 1/3
_229: I f(X.Y.Z) : - . . . '

allocate
get_varlable Y2.A2
get_variable Y1.A3

check_me_else _350 I ... UndepCX, Y. Z) I ...
cneck_independent A1.Y2
check_independent A1.Y1
check_independent Y1.Y2

I ... a(X) * b(Y) * c(Z).
allocate_pcall 3,2
check_ready 1,_351
push_call a/2,1 I "a" can now ran
check_ready 2,_361
put_ralue Y2.A1
push_call b/1,2 I "b" can now run
check_ready 3,_351
put_value Y1.A1
push_call c/1,3 I "c* can now run

351:

350:

pop_pending_goal
walt_on_slblings
deallocate I has to be after •wait_on_siblings'!
proceed I return to parent.

call a/1,2
put_value Y2.A1
call b/1,1

203

put value Yl,A1
deallocate
execute c/1

end

Note the difference with previous examples: the last call in the body of the

clause is now inside the parallel expression. If execution is sequential (_350:) the

environment can be thrown away as usual before the last call (" d e a l l o c a t e ,

execu te c / 1 " : last call optimization). This can be done because in this case we

know that all other goals which need access to the permanent variables in the

environment (i.e. "a" needing X and "b" needing Y) have already finished their

execution. The values needed by "c" are already loaded in the argument registers, so
fin

there is no need for the environment any more The situation is different if

execution proceeds in parallel: at the time of executing "c", "a" and "b" might still

be unifying their heads using the variables in the local environment, so it cannot be

thrown away yet. Instead, after executing all local goals the processor has to wait for

completion of the remote ones (i.e. exit from the wal t_on_s l b l i n g s instruction)

before the environment can be discarded ("dea l locate") . Note that this does not

mean that space is not retrieved any more, just that this retrieval is delayed until

completion of the last call. The special case when this can be very costly is when the

last goal is a recursive call to the same procedure (tail recursion) or when its

descendents in turn contain a call to this procedure (mutual recursion).

In cases where memory space is a problem it might be interesting to give up

some parallelism in order to recover last call optimization. This can be easily

annotated by imposing sequential ordering for the last goal:

fin
This explanation is necessarily oversimplified since concepts such as "unsafe" variables

have not been introduced. It is assumed that the reader who understands the naiveness of this
explanation doesn't need it anyway!

204

Embedded Conditional Graph Expression Form:

f (X . Y . Z) : - (lndep(X,Y) I a(X) ft b (Y)) , c (Z) .

which would generate the following code:

Parallel Abstract Machine Code (Compiler Output):

procedure f/3

_229:
allocate
get_rarlable Y2.A2 I CHECKS
get_varlable Y1.A3
check_me_else _350
check_lndependent A2,A3

I PARALLEL CODE
allocate_pcall 2.2
checlc_ready 1,_3B1
push_call a/2.1
check_ready 2,_361
put_value Y2.A1
push_call b/1.2

351:

pop_pending_goal
walt_on_slbllngs
execute 3S2

350: I SEQUENTIAL CODE
call a/1.2
put_ralue Y2.A1
call b/1,1

_352: I LAST CALL
put_yalue Y1.A1
deallocate
execute c/1

end

Note that now last call optimization is fully supported: The environment is

thrown away before the last call. If "a" and "b" are determinate (i.e. there is only one

alternative clause) the Parcall Frame will have all its entries marked as having "no

alternatives" and the Parcall Frame itself will be discarded upon exit from the "wait

on s i b l i n g s " instruction. Of course this "trick" of forcing sequential execution of

205

the last goal is of no use if the graph expression , .utains only two goals: there would

be only one goal left and thus no parallelism.

A.3 A Nested Parallel Call (using dummy calls)

Only code for non-nested CGEs has been generated up to now. The

following examples show how nested expressions can be implemented with the same

instruction set. Suppose the (nested) CGE generated for the following clause

Original Clause:

f (X , Y) : - g (X . Y) . b (X) . p(Y) .

IS

Embedded Conditional Graph Expression Form:

f (X . Y) : - (ground(X,Y) I
g(X.Y) *
(lndep(X.Y) I h(X) * k(Y))

).

One obvious way of generating code for a nested expression is by substituting

expressions inside other expressions by dummy calls to new clauses in which all

variables needed are transferred as arguments of the dummy call. In the above case,

the compiler would generate an intermediate version of this expression which would

include a dummy call (this would be done in one of the early passes, i.e. at "unravel"

for Van Roy's [84] compiler):

Embedded Conditional Graph Expression Form:

i(X,Y) :- (ground(X.Y) I
g « , Y) *
dummy l(X.Y)

) .

dummyl(X,Y):- (indep(X.Y) I h (X) 4 k (Y)) .

Here is the corresponding output code:

Parallel Abstract Machine Code (Compiler Output):

procedure 1/1

_308:
allocate
get_variable Y2.A1
getjrariable Y1.A2
checlc_me_else _350
check_ground Al
check_ground A2
allocate_pcall 2,2
cneck_ready 1,_3S1
(put_value Y2.A1)
(put~value Yl,A2)
push_call g/2,1
checlc_ready 2,_3S1
(putjralue Y2.A1)
(put_value Y1.A2)
push_call dummy/2,2

_3S1:
pop_pending_goal
vait_on_siblings
deallocate
proceed

350: | Sequential code.
put_ralue Y2.A1
put_Talue Y1.A2
call g/2,2
put_ralue Y2.A1
putjralue Y1.A2
deallocate
execute dummy/2

procedure dummy/2

_337:
allocate
getjrariable Y1,A2
check_me_else _360
check_lndependent A1.A2
allocate_pcall 2,1
check_ready 1,_361
push_call h/1,1
checlc_ready 2,_361
put_value Y1.A1

I (X) <- Al
I (Y) <- A2

I ground X ?
I ground Y ?

I
I Not needed: X still in Al
I Not needed: Y still in A2

I X still in Al
I Y still in A2

207

call lc/1,2
361 :

pop_pendlng_goal
valt_on_siblings
deallocate
proceed

360: I Sequential code
call h/1,1
put_value Y1.A1
deallocate
execute lc/1

end

Note again how many of the instructions are not really needed and an

optimizing pass of the compiler can easily detect them. The main advantage of this

approach is clearly its simplicity. This means that little modification (other than the

addition of a simple source level transformation module) is needed in modifying a

conventional compiler in order to support nested CGEs. The main disadvantage with

this approach is the overhead in going through an extra procedure call for each level of

nesting in the CGEs. In reality this is not as bad as it looks because none of these

calls involve any unification, since they are only used for parameter transfer. Thus all

of the extra instructions involved are of the "put_value" / " g e t _ v a r i a b l e " types

which imply minimal overhead. In addition, most of them will be superfluous (as in

the previous example). The other disadvantage is that a simple compiler may

generate a new environment for the dummy call that is not really needed: since the

new clause is really using the same variables as the calling one the environment can be

shared by both (they were really only one clause originally).

In fact, there is no need for a dummy call at all: nested graph expressions can

be coded completely in-line. In-line nested parcall coding is obviously more efficient in

execution time since it avoids the overhead of going through a goal invocation step for

each graph expression. The main disadvantage for in-line code is that due to the lack

208

of a "subroutine call" in the WAM instruction set, parts of the program have to be

duplicated.

Nevertheless, there are many advantages to the "dummy call" approach,

specially for a first implementation: it is very easy to implement using a conventional

compiler by performing a source-level transformation on the input code. Also note

that control over parallel calls is actually distributed in the case of a dummy call,

because the dummy call itself is transferred as a goal and a remote process can pick it

up and take control of the new graph expression. In the in-line approach all control is

kept local within the process executing the clause with the graph expression. The

"dummy call" approach thus means more parallelism in practice and less memory

contention since Parcall Frames and copies of the environment are then distributed

across processors.

A.4 Other Types of Graph Expressions

This example shows how a smart compiler can take advantage of the

instruction set to optimize the code beyond the literal meaning of the CGE's . The

same clause as in the previous example will be used:

Original Clause:

f (X . Y) : - g(X.Y) . h(X). k(Y) .

Embedded Conditional Graph Expression Form:

f (X , Y) : - (ground(X.Y) I
g(X,Y) *
(lndep(X.Y) I n(X) * k(Y))

) .

In this CGE it is obvious that if X and Y are ground then all goals can run

209

in parallel and there is no need for the check for independence before ^ uuling "h"

and "k". The actual meaning extracted from the expression could be something like

Annotated Code (free syntax):

f (X . Y) : - ((ground (X,Y) -> g(X.Y) * h (X) * k(Y))

(g(X.Y), ((indep(X.Y) -> h(X) ft k(Y))

(h(X). k(Y))
)

)
).

This can be read as "if X and Y are ground then run "g", "h", and "k" in

parallel. Otherwise, run "g" first and then check and see if X and Y are independent.

If they are, run them in parallel, otherwise, run them in sequence". This

interpretation obviously goes beyond the meaning of the original graph expression and

it shows how the instruction set can be used to implement other types of expressions

which might overcome some of the shortcomings of CGE's . The above (free syntax)

expression could be implemented as follows:

Parallel Abstract Machine Code (Compiler Output):

procedure f/2

308:
allocate
getjrariable Y2.A1
get_Tariable Y1.A2

check me else 350 I see If ground X,Y
check_ground Al
cneckjjround A2

allocate_pcall 3.2 I if X,Y are ground, run g, h, and k In parallel
check_ready 1,_351
(put_ralue Y2.A1)
(put_value Y1.A2)
push_call g/2,1 | g can now run
clieclc_ready 2,_361

!10

351:

liut_Talue Y2.A1)
push_call h/1,2
check_roady 3,_3S1
put_value Y1.A1
push_call k/1,3

pop pending_goal
wait_on_sibllngs
deallocate
proceed

I h can now run

I k can now run

I i.e. remaining goals from 'ground'

I exit

350:

381:

put_value Y2.A1
put_value Y1,A2
call g/2,2

I X and Y are not ground:
I run g first, then check the others

I run g

check_me_else 380 I see if X,Y independent
check_independent A1.A2

allocate_pcall 2,2
ch«ck_read]r 1,_381
(put_value Y2TA1)

push_call h/1.1
check_ready 2,_381
put_ralue Y1.A1
push_call k/1.2

pop_pendlng_goal
valt_on_slbllngs
deallocate
proceed

I X, Y are independent: run h and k in parallel

! h can now run

I k can now run

exit

380:
put_value Y2.A1
call h/1.1
put_value Y1.A1
deallocate
execute k/1

I X, Y are dependent:
Iran h and k sequentially

end

Appendix B.

Benchmarks and Simulation Results

Details about the simulator and the simulations performed are given in this

appendix. The "pwam" simulator is a direct implementation of the "marker" model

described in Chapter 7, including the extensions for dealing with determinate

execution. It is based on the Berkeley PLM sequential simulator [27] which is a direct

emulation of the W A M as described by Warren [88]. The additional instructions and

data areas described in Chapter 7, support for the simulation of multiple processors,

and some "hooks" for computing total execution time (i.e. speedup, based on

simulations at the microcode level) and for computing "work", "wait", and "idle"

times and other types of events were added to this simulator by Richard Warren and

the author.

B.l Information Obtained: a Sample Run

In order to illustrate the type of information which was obtained from the

simulations, the complete simulator output for a simple two processor run will be

shown. The example is the popular symbolic derivation benchmark "deriv.pl". The

source (Prolog) code for this benchmark follows:

211

http://deriv.pl

212

m a i n : - e:. s i o n (X) , d(X, x, Y), w r i t e (Y)

d(U+V,X,DU+DV)
d(U-V,X.DU-DV)
d(U*V,X. DU*V+U*DV)
d(U/V,X,(DU*V-U*DV)/V~2)
d(U~N,X, DU*N*U~N1)
d(-U,X,-DU)
d(exp(U),X,exp(U)*DU)
d(log(U),X,DU/U)
d (X , X , l) : - ! .
d (C , X , 0) .

e x p r e s s i o n (3 * x) .

d(U,X,DU), d(V,X,DV).
d(U,X,DU), d(V,X,DV).
d(U,X,DU),
d(U,X,DU),
i n t e g e r (N)
d(U,X,DU).
d(U,X,DU).
d(U,X,DU).

d(V,X,DV).
d(V,X,DV).

Nl i s N - l , d(U,X,DU)

The d rules are clearly the simple definitions of symbolic derivation. The

main program binds X to an expression (simply 3*x in this case), finds the derivative

with respect to x, and prints it. This program offers some opportunity for parallelism

in the body of the first four clauses (for example, the two derivatives which have to be

found in order to generate the derivative of a sum can be done in parallel) if (as is

usually the case) d is called with a ground first and second argument, and a free

variable as the third argument. For simplicity and efficiency we will compile for this

case. The C G E ' s generated would be:

m a i n : - e x p r e s s i o n (X) , d(X. x . Y) , w r i t e (Y) .

d(U+V,X.DU+DV)
d(U-V,X,DU-DV)
d(U*V,X, DU*V+U*DV)
d(U/V,X,(DU*V-U*DV)/V~2)
dOTN.X, DU*N*U-N1)
d(-U,X.-DU)
d (exp (U) , X, exp (U) *DU)
d(log(U),X,DU/U)
d (X , X , l) : - ! .
d (C ,X.O) .

- (t r u e ! d(U.X.DU) * d(V.X.DV)).
- (true ! d(U,X,DU) * d (V , X , D V)) .
- (true ! d(U,X,DU) A d (V . X , D V)) .
- (true ! d(U.X,DU) * d(V,X.DV)) .
- i n t e g e r (N) , Nl i s N - l . d(U.X.DU).
- d(U,X,DU).
- d(U,X,DU).
- d(U,X,DU).

The object code for the above (annotated) program follows (clauses not

relevant to this example, such as the rules for "log", "exp", etc. have been taken out

for the sake of brevity):

procedure main/0

1359:
allocate
put_variable Y2.X1
call expression/1,2
putjinsafe_ralue Y2.X1
put_constant x,X2
putjrariable Y1.X3
call d/3,1
put_unsafe_value Yl.Xl
escape write/1
deallocate
proceed

procedure d/3

svitch_on_term _1444,_1444,_1445

try_me_else _1447 % d(U+V
1446:

1448:

1447:

1450:

1449:

1452:

allocate
get_variable Y2.X2
get_structure +/2.X1
unlfy_variable XI
unlfy_varlable Y3
unlfy_nil
get_structure +/2.X3
unlfy_variable~ X3
unify_variable Yl
unify_nll
allocate det_pcall 3.2
put_7alue Y2.X2
pusn_det_call d/3
put_value Y3.X1
put_value Y2.X2
putjralue Y1.X3
push_det_call d/3
pop_pending_goal
cutjnerge
deallocate
proceed

retry_me_else _1449 % d(U-V

allocate
getjrariable Y2.X2
get_structure -/2.X1
unify_Tariable XI
unlfy_variable Y3

proceed

retry_me_else _1451 % d(U*V

214

allocate
get_varlable Y2.X2
get_structure */2,Xl
unlfy_varlable XI
unlfy_variable Y3
unlfy_nll
get_structure +/2.X3
unify_varlable X4
unify_variable X5
unlfy_nil
get_structure */2,X4
unify_varlable X3
unlfy_unsafe_value Y3
unlfy_nll
get_structure */2,X5
unify_unsafe value XI
unlfy_varlable Yl
unlfy_nll
allocate_det_pcall 3,2
put_value Y2.X2
push_det_call d/3
put_value Y3.X1
put~value Y2.X2
putjralue Y1.X3
push_det_call d/3
pop_pendlng_goal
cutjnerge
deallocate
proceed

1451:
retry_me_else _14S3 % d(U/V ...

1454:
allocate
g«t_variable Y2.X2
get_structure //2,X1
unlfy_varlable XI

1461:
retry_me_else _1483 % d(X,X. . . .

1464:
getjralue XI, X2
get_constant *1,X3
allocate
cut
deallocate
proceed

1463:
trust_me_else fall % d(C,X, ...

1465:
get_constant 40,X3
proceed

1444:
try _1464
trust _1465

1446:
try_me_else _1466

215

switch
log/1 "
exp/1
-/l
~/2
//2
*/2
-/2
+/2

retry
trust

on_structure
" _1462
_1460
_1458 ,
~1456
^1454
~14S2
_1450
~1448

1464
1465

8.fudge % Hash table

1466:

procedure expression/1

_235:
get_stmcture */2,Xl % 3 * x
unlfy_constant 43
unlfy_constant x
unify_nll
proceed

end

The output from the simulator follows. The number of processors selected is

two. The simulator then prints the sizes of the different data areas in each processor,

loads the machine code file ("miniparderiv.w"), and assembles it:

Parallel Logic Abstract Machine Simulator

(Version 1.2 30 May 86)
["Marker" Model]

Please enter # of processors: 2
Size of Heaps = 73728
Size of Stacks = 49152
Size of Trails = 32768
Size of Goal Stacks = 2500

Loaded file miniparderiv.w

A symbolic listing of the Code Space and the procedure and symbol tables

can also be obtained. The execution of the program can be traced in a step by step

mode, printing all the registers in each step (as in the first instruction below), in

216

"trace" mode, where only the instruct xecuted by each processor are printed (as

the rest of the instructions below), or in "normal" mode (no output) . In any case,

total timings are provided at the end of the simulation:

debug-> step

•Execution Trace, # of processors

ProcO: P=00000> allocate
CP = 00000000
H = 00002000
CFA= 00000000
H2 = 00000010

P = 00000001
TR = 00020000
GS = 00000000
N = 00000000
AX1 to AX4
AXS to AX8
Stopped.

debug-> trace

•Execution Trace, # of processors = 2

00000000
00000000

00000000
00000000

E = 0001400S
HB = 00002000
B = 00014000
PDL= 00028000

00000000
00000000

PF = 00014000
S = 00002000
Type = Choice Point
mode = write

00000000
00000000

Procl:
ProcO:
Procl:
ProcO:
Proc1:
ProcO:
Procl:
ProcO:
Procl:
ProcO:
Procl:
ProcO:
Procl:
ProcO:
Procl:
ProcO:
Procl:
ProcO:
Procl:
ProcO:
Procl:
ProcO:
Procl:
ProcO:
Procl:
ProcO:
Procl:
ProcO:
Procl:
ProcO:
Procl:
ProcO:
Procl:
ProcO:

P=-0002>
P=00001>
P=-0002>
P=00002>
P=-0002>
P=00209>
P=-0002>
P=00210>
P=-0002>
P=00211>
p=-0002>
P=00212>
P=-0002>
P=00213>
P=-0002>
P=00003>
P=-0002>
P=00004>
P=-0002>
P=00005>
P=-0002>
P=00006>
P=-0002>
P=000U>
P=-0002>
P=00197>
P=-0002>
P=00198>
P=-0002>
P=000S7>
P=-0002>
P=000B8>
P=-0002>
P=000S9>

»**idle_free
put_variable Y2,X1
***ldle_free
call expression/1,2
***ldle_free
get structure _ */2.Xl
***idle_free
unlfy_constant 43
***idle_free
unify constant x
***idle_free
unify_nll
***idle_free
proceed
***idle_free
put unsafe value
***idl«_free
put constant x.X2
***ldl«_fr«e
put_Tariable Y1.X3
***idle_free
call d/3,l
***ldle_free
svitcn_on_tenn
«**idle_free
try_me_else _1468
***idle_free
switch_on_strocture
***ldle_free
allocate
***idle_free
get_7ariable Y2.X2
***ldle_free
get_structure */2,Xl

Y2.X1

1444, 1444, 1445

8,fudge

1 1 1 >f -I *1 1 1 1 1 '
-0 TJ

• l l ' - l l l l ' i l l ' - i l ' - l - l i i i i i i ' i i i ' i ' i i ' i ' l ' l l l ' i l l l l l l ' i - l l M i i i i i i ^ l l l l l l l - l i l
o
o n o
0 H * o ^ 0 t - t 0 H * 0 H k 0 t - k 0 t * O H * 0 H » O H k 0 * * 0 t - t O » - » 0 * ~ 0 t * 0 H » 0 » - k 0 H * 0 H » o t - * 0 t - * O H - o t - » o t - » O t - * O H » o » - » 0 » - » o » - '

TJ TI
II II

O I
o o

" O T T I T I ' t T l ' l l T I ' l l T I T I ' t T l T l l l T I T I T I I I I J T l l l t T I T l T I I J I l T I - O T j T l l l T j I l T l l l ' U
iT II II II jT II ii II ii I I ii iT I I H II II ii ii ii ii I I I I ii I I I I ii ii n I I ii n I I ii ii I I a I I n

T J ' B T I T J T J T J T I T J ' T)

o o o o o o o o o o o o o
o o o o o o o o o o o o o o o
O t — (- O H - O t - O H - O t - O O O O

_ o < o < O H » < o o o < o a > a > O D < o - > 4 > - » ' * 4 o
a > t o ~ 4 t o c » i o o i i U h ' C o t o a » » - » G » o o i < o t ~ a > t o
v

o o
»- o •-» o
Q> O 0D O 00

o o o o o o o o o

II II II
o

II II II II II
TJ T) "0 T)
II II II II

o o o o o o o o o o o o o o o o o
o O ^ 0 ^) 0 - » J O ^ J O ^ I O M O * J O O > 0 0 > 0 < » 0 0 1 0 0 > 0 0 » 0 0 > 0 < J > 0 0)

M a M Ol M
V V V V V

* K J (J r O U I O H t O O W «) I O O) l O ~) M 0 1 1 0 0 1 | O i W U U U I O ^
v

O * p • oq * Oq

(= » ! - • « ct *
O H - | • »
n a n a
P I— O H
ct 0 a 0
a I t i l

M» ct * *
•1 p 1
0 p 0
a ct 0

u

ct
• * 1
ct * >«l

I H-
«l a
P !-•
M 0
CI I

" • I
1 H*

01

•a u oq - o < t - d M D ct T J e> T J
* 1 < 0 O - i e 0 c : - l e i « : e
O f O T I C I I C t c t S t l l ' f l
O d l I a Br | | I ct I
0 n n • « ct I «» •« « j n « i
a c r o a a . p p p a ' p
a i a a • • - • (- • »—• i »—

~ " ~ ' ' ' - O '

I

o) a c»

s$i8

* T3
• d
« ct
t-*-1
a <

H- a a i !-• a
« 0 0 w

M- O
a n

p

i I • B
• * I 5'« " • I

1 c.

* c
* a
» H -
H - «*
a M
• - • I
0 B

I H-l

« c * c * o q * c * c # c : * w » e * c
a
H- # H-

• M I H- M»
. w i a x
• I H - I

•^ 0 CS
P I a

. i " . to
H - 1 p
p « t-fc
O* 0 0
H - I

* 0 * c
H-l
a u
•-• ct
0 * i

I B
«• n
i ct
0 c:
0 * i

* 0 « a * a #
* Ct « H- » >- *

M* H- Mi H* M» H- | >-*• H H- I-* H"

a --q a
H I

I H - |

X
•O

*. -
* . X
* . CO

r

a x ~< -<\ •< a
0) - * A - co

x x x *• x
H U K> * . I -

I

K)

X
to

M a ^ a
I H - I »-• m
0 0 O* 0

X

u

a v<
ct H - I
1 a a
c l H -
n «» *-»
ct i

a >-$
M | H*
0 < 0

I P I
M I >i « .

IV

<= * OR # e
a * o * a
H - * ct # H-
M» H- | H- w» •̂ a u a ^

1 0 B
£ I

I l -

Si

x

1 • » n • *
H - i ct i
p 0 c: 0

0 a* 0 o* 0 1 0

X «

« c # c:
* a * a

a *-q a *-«; a
M l »-• I w
0 «4 0 ^ 0

I P I P I
M, «i M. >i M,
1 M- *1 H- »1
0 P 0 P 0
0 O* 0 O* 0

-< X
01 •->

en

H-'

218

Procl : P=-0002> ***ldle_free
ProcO: P=00190> deallocate
Procl: P=-0002> ***idle_free
ProcO: P=00191> proceed
Procl: P=-0002> *»*ldle_free
ProcO: P=00082> pop_pendlng_goal
Procl: P=-0002> ***idle_free
ProcO: P=00083> cutjnerge
Procl: P=-0002> ***ldle_free
ProcO: P=00084> deallocate
Procl: P=-0002> ***idle_free
ProcO: P=00085> proceed
Procl: P=-0002> ***ldle_free
ProcO: P=00007> put_unsafe_value Y1.X1
Procl: P=-0002> ***ldle_free
+/2 */2 (O x) */2 (3 1) ProcO: P=00008> escape vrlte/1 <escape>

Procl
ProcO
Procl

P=-0002> ***ldle_free
P=00009> deallocate
P=-0002> ***ldle free

quit-> ProcO: P=00010> proceed

Stopped.
cpu time i s 4.740000 sec

Total execution time : 628
number of processors : 2

TOTAL TIMINGS

TYPE OF ACTIVITY
time query to solution

total tf of cycles
total work
total valt
total idle

CYCLES
629
1258
730
37
290

58.03
2.94
23.05

Percentage

Writing f i l e mlniparderlv.data

Note in the above how, for such a small example (little intrinsic parallelism),

processor 0 (P0) does most of the work. P i idles looking for work in the system most

of the time (l d l e _ f r e e pseudo-instruction). As soon as work is available (finding

the derivative of 3*x is split into finding that of "x", done as a "local goal" in P0,

and that of " 3 " , done in Pi) it is soon completed and Pi returns to idle again. This

accounts for the high percentage of idle time (23.5% - all the numbers above

219

represent totals for all processors). The small amount of wait time (2.94%)

represents the time that PO has to wait for P i to return after executing its goal

(including the scheduling overhead). The total work represents the total number of

cycles spent doing actual work (i.e. executing instructions) and should be equal to the

total number of cycles minus wait and idle time. There is often a slight difference if

the results given by the simulator are added up since all these numbers are computed

from independent sources. The fact that this difference is always less than 1%

provides some additional confidence in the soundness of the simulations.

In addition to the data above, and as an option, full instrumentation results

for each processor can be obtained:

Run-time statistics for miniparderiv.data running on 2 processors.

TRACE RESULTS FOR PROCESSOR 0

INSTRUCTION
allocate

allocate_det_pcall
allocate_pcall

call
check_ground

checlc_lndependent
check_ae_else
check_r«ady

cut
cutd

cutjnerge
deallocate

escape
execute

fall
get_list

get_structure
get_varlable
get_constant

getjralue
get_nil

mark
pop_pending_goal

push_call
push_det_call

put_iralue

Count
3
1
0
2
0
0
0
0
1
0
1
3
1
0
0
0
5
1
1
1
0
0
2
0
2
4

Percei
5.26
1.75
0.00
3.51
0.00
0.00
0.00
0.00
1.75
0.00
1.75
5.26
1.7S
0.00
0.00
0.00
8.77
1.75
1.75
1.75
0.00
0.00
3.61
0.00
3.SI
7.02

itage

failed
failed
failed
failed
failed
failed

0
0
0
0
0
0

220

put constant
proceed

put variable
put unsafe_value

put_llst
put structure

put_nll
pause
quit

retry me_else
retry

switch on_term
switch on structure
switch on constant

try me_else
trust_me_else

" try
trust

unify variable
unlfy_cdr

unify_value
unlfy_nll

unlfy_constant
unlfy_void

unlfyjinsafe_value
wait_on_sibllngs

l
4
2
2
0
0
0
0
0
0
0
2
1
0
1
0
1
0
6
0
0
5
2
0
2
0

1 .75

7.02

3.51

3.51

0.00

0.00

0.00

0.00

0.00

0.00

0.00

3.51

1 .75

0.00

1.75

0.00

1.75

0.00

10.53

0.00

0.00

8.77

3.51

0,00

3.51

0.00

failed
failed
failed
failed
failed
failed
failed

0
0
0
0
0
0
0

TOTAL 57

OTHER ACTIONS (parallel) Count
parcall falls 0
input fails 0

kill pf 0
special failures 0
context switches 0

of tries to pick goal 0
Noops 0

OTHER ACTIONS (sequential) Count
failures 0

unifications 3
unify routine 3

bindings 1
escapes 1

memory reads 64
memory writes 105
dereferences 5

binding trails 2
maximum trail 2
maximum stack 60
maximum heap 16
maximum PDL 0

oi «:
«: H -
H- Ct
d O
o cr to
C I *

1 O H-
O O c*
B 1 O

1 m a
O ct 1
O 1 o
a d a
oi n I
d ct ct
p e a
B i g
ct a a

1
a
ct
-1

W

a a
1 1
a
r t
1

*-4

a . o
(-• a
01 H-
a ct

TJ
c
d

01
ct
1
ct
o
ct
c
1
a

e
ct

1
C!
a
01 p

•o •»
c a
d 1

1 <
.-• p
M- »-•
01 c
d a

T3

ct
1
«s
p
1
H*-
p
cr
h-1

a

•o
1
o
o
a
a
a

O
• a

TJ 1
•CJ 13 t)
c oi a
ct cr B

1 - a | - O f t
O C ft C M-
o ct a oi B
» l c> o - (»
01 < | I I
r t p o o oq
p «-• p p o
B a i - i - p
Ct • M H H

oq
a
ct

a i
p
i
x

B
H-
t->

oq
W W a
a a ct
ct ct 1

oq 1 1 01
a O < ct oq
ct O p 1 a

I a i d e *
< n P n i
t> Ct P Ct !-•
t-» p o" B !-*•
(i 8 H t «
a ct a a d

*H
P
t -
t-»

a
K
a
o
c
ct
a

a
01
O
P

• a
a

ft
a o
P e
•-• ct
(-•I
o a
o a
p i
ct oq
a a

O O t * O O O O O O O O O t * O O O O O O O i - » f O O O O O O O O O O

a
f l

o w
c r | o

o a t-*- cr
B* n B a
a pc o. n
O I a *r
W 9 T3 1

1 a a oq
1 1 a H
a a ft O
p K* a d
a . 01 B B

S • # ft

o o o o

o
p
1—

»-*
o

p
•-*

!-• () o
p
r t
a

1

O
P
y~*
h-«

O

o
o
p
d
a

1
o.
a
ct

' T .
n
P

>-• t-1

O

P
J-*
h-1

o
(1
p
r t
a

o

n
51
CO
H
W
C

n •H
M
(1
z

o o

O O C A O O O O O O O O O O l O O O O O O O O l O l O O O O O O O O O O O O O O O O O O a
1

o o o > o o o o o o o o o o » o o o o o o o o » o > o o o o o o o o o o o o o o o o o o o
O O ^ J O O O O O O O O O ~ J O O O O O O O - J - J O O O O O O O O O O O O O O O O O O a >

3

p p p p p p p
H* M- H- H- h* M- (JC)
»-• h-» M »-• I - " l-« o

ft ft ft ft ft ft

O i- o o o o

•H

> o
PI

o
PI
to

•o
1
0
o
a
01
01
O
1

a
K
a
o

x) c
1 d
0 i-*

< o o
p a B
t * 01

M- Ct 01 Ct
ft H»- t * M-
(-• a a a
a oq oq a

o u i n o i
S U M

C» <D

<o
o en to

o oo • -
o 03 en

3
T>
PI

a
•*i

> 3
M

< M

3

9
o
r-

z CI
CO

•*! a
73

TJ
PO
O

n PI
CO
CO
a
73

o

p
oq

t o
10

try me else
trust me else

try
trust

unify_varlable
unify_cdr

unify value
unify_nil

unify constant
unify void

unify unsafe value
wait on siblings

0
0
1
1
0
0
0
0
0
0
0
0

0.00
0.00
16.67
16.67
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

failed
failed
failed
failed
failed
failed
failed

0
0
0
0
0
0
435

TOTAL

OTHER ACTIONS (parallel) Count
parcall falls 0

Input fails 0
kill pf 0

special failures 0
context switches 0

of tries to pick goal 50
Noops 0

OTHER ACTIONS (sequential) Count
failures 1

unifications 2
unify routine 2

bindings 1
escapes 0

memory reads 30
memory writes 37
dereferences 1

binding trails 1
maximum trail 1
maximum stack 37
maximum heap o
maximum PDL 0

TIMINGS FOR PROCESSOR

TYPE OF ACTIVITY
processor execution time

processing
waiting

idle

CYCLES
629
144 22.89
0 0.00
435 69.16

Percentage

TflA-_ . J L T S FOR ALL PROCESSORS

INSTRUCTION

allocate

allocate det pcall

allocate_pcall

call

checlc ground

check Independent

checlc me else

checlc ready

cut
cutd

cut_merge

deallocate

escape

execute

fall

get_llst

get structure

get_variable

get constant

get_value

get_nil

mark

pop pending_goal

pusn_call

push det call

put__value

put constant

proceed

put variable

put_unsafe_ralue

put_list

put_structure

put_nil

pause

quit

retry me_else

retry

swltch_on_term

svltch_on_structure

svitch_on_constant

try_me_else

trust me else

" try

trust

unlfy_varlable

unlfy_cdr

unlfy_7alue

unlfy_nll

unlfy_constant

unlfy_roid

unify_unsafe_value

¥alt_on_sibllngs

Count

3
1
0
2
0
0
0
0
1
0
1
3
1
0
0
0
5
1
2
2
0
0
2
0
2
4
1
5
2
2
0
0
0
0
0
0
0
3
1
0
1
0
2
1
6
0
0
5
2
0
2
0

Percentage

4.76

1.59

0.00

3.17

0.00

0.00

0.00

0.00

1 .59

0.00

1.59

4.76

1.59

0.00

0.00

0.00

7.94

1.59

3.17

3.17

0.00

0.00

3.17

0.00

3.17

6.35

1.59

7.94

3.17

3.17

0.00

0.00

0.00

0.00

0.00

0.00

0.00

4.76

1.59

0.00

1.59

0.00

3.17

1.59

9.52

0.00

0.00

7.94

3.17

0.00

3.17

0.00

failed

failed

failed

failed

failed

failed

failed

failed

failed

failed

failed

failed

failed

0
0
0
0
1
0

0
0
0
0
0
0
290

224

TOTAL 63

OTHER ACTIONS (parallel) Count
parcall falls

Input falls
kill pf

special failures
context switches

of tries to pick goal
Noops

OTHER ACTIONS (sequential)
failures

unifications
unify routine

bindings
escapes

memory reads
memory writes
dereferences

binding trails

0
0
0
0
0
50
0

Count
1
5
5
2
1
94
142
8
3

TOTAL TIMINGS

TYPE OF ACTIVITY
time query to solution

total # of cycles
total work
total wait
total idle

CYCLES
629
1258
730
37
290

58.03
2.94
23.05

Percentage

These numbers can be used to show how the overhead in the system due to

the control of parallelism is low (for example, in the example above, the number of

"new" instructions executed only represents ~ 7% of the total instruction count, and

even less in number of cycles). It is also clear how P i accounts for all the idle time,

while P0 is responsible for all the wait time in the system. Although much of this is

rather obvious it is pointed out as an added "confidence factor" for the simulations.

225

B.2 Efficiency Ttots: Synthetic Benchmarks

One of the problems in determining the efficiency of the model is obtaining

good benchmarks where the amount of available parallelism is known "a priori", so

that intrinsic overheads can be discerned from lack of parallelism in the benchmark.

The following skeleton will be used for generating a series of programs which represent

problems which are symmetric and have fixed intrinsic parallelism (such as, for

example, matrix multiplication) from the point of view of a "goal independence"

model (t i m i n g s .p i) :

check:- times(X), p(X), p(X), p(X), p(X), p(X), p(X), p(X).

p(0).
p(X):- Y is (X-l), p(Y).

times(...).

Procedure p is simply a loop which is executed as many times as indicated by

the value of a constant which is placed in the fact t imes (. . .) . It represents an

independent segment of the program which can be executed in parallel with the other

calls to p in the body of check. A series of programs with names

" p a r t i m i n g s n . p l " , where n is the number of calls to p in the body of times, were

constructed. Note that n represents the amount of intrinsic parallelism in the

program. The first element of the series is t i m i n g s . p i :

check::- times(X), p(X) .

p (0) .
p(X):- Y i s (X-l) , p(Y).

t imes(128) .

And this would be the source code for p a r t i m i n g s 4 . p l :

http://partimingsn.pl
http://partimings4.pl

226

check:- times(X), (true I p(X) ft p(X) ft p(X) 4 p(X)).

p(0).
p(X):- Y is (X-l), p(Y).

times(32).

Note that although the amount of intrinsic parallelism in this program is 4,

the amount of work is essentially the same as in par t imings . p i , since each p does a

quarter of the work. In fact, all members of the series represent the same amount of

work.

The above programs are compiled as in the previous examples. The basic

sequential problem t i m i n g s . p l compiles to:

procedure check/0

_507:
allocate
putjrariable Y1.X1
call times/1,1
put_value Y1.X1
call p/1,1
put_value Y1,X1
call p/1,1
put_value Y1.X1
call p/1,1
put_value Y1.X1
call p/1,1
put_value Y1.X1
call p/1,1

putjralue Y1.X1
call p/1,1
put_value Y1.X1
call p/1,1
put_unsafe_value Yl.Xl
deallocate
execute p/1

procedure p/1

switch on term 546, 547, 547
_546:

try_me_else 548

http://timings.pl

227

_549:
get_constant 40,XI
proceed

_548:
trust_me else fall

_547:
put_structure -/2,X2
unlfy_unsafe_value XI
unify constant ftl
unlfy_nil
allocate
put_\rariable Y1.X1
escape l s / 2
put unsafe value Y1.X1
deallocate
execute p/1

procedure times/1

_578:
get_constant ft...,X1
proceed

end

The parallel versions differ only in the check clause. For example, here is

the machine code for this clause in p a r t i m i n g s 4 . w:

procedure check/0

_507:
allocate
putjrariable Y1.X1
call times/1,1
allocate_det_pcall 1,3
putjralui Y1.X1
push_det_call p/1
push_det_call p/1
push_det_call p/1
call" p/1,1
pop_pendlng_goal
cut_merge
deallocate
proceed

Figures B-1 and B-2 show some of the data collected during the simulations

228

P a r t l m l n g s ! 6.pi

Q.

T3
03
CD
Q.

CO

35

30

25

20

15

10

O Speedup • Speedup (Ideal, linear)
i i

15 20
of processors

25 35

Figure B-1: Speedup vs. # of processors for p a r t l m l n g s l 6 . p i

for p a r t l m l n g s l 6 . p l . Figure B-1 plots the speedup in the execution time of

p a r t l m l n g s l 6 . p l as a function of the number of processors. The speedup is linear

and close to ideal until the problem runs out of parallelism (for example, for

p a r t l m l n g s l 6 . p l , if more than 16 processors are used). Figure B-2 shows the total

amount of work and the total time spent waiting and idling for the same problem (in

number of memory cycles), also as a function of the number of processors involved.

The total amount of work involved in running the same program sequentially is also

plotted in order to estimate the overhead in the model. Note how wait and idle times

are very low because of the intrinsic parallelism and symmetry in the problem, and

that the efficiency of the model is very high (the amount of parallel work is always

less than 10% larger that the sequential work even when 32 processors are working on

the problem). Of course, when the system "runs out" of intrinsic parallelism in the

problem (such as running p a r t l m l n g s l 6 . p l on 64 processors) the idle times increase

considerably.

http://partlmlngsl6.pl
http://partlmlngsl6.pl
http://partlmlngsl6.pl
http://partlmlngsl6.pl

229

o

OWork

OWait

P a r t l m l n g s l 6.pi
DWork (uniprocessor) A Idle

15 20
of processors

35

Figure B-2: Wait, Work, and Idle times for p a r t i m i n g s l 6 . p l

B.3 A More Realistic Problem: Symbolic Derivation

As an example of some more realistic benchmarks which have been run we

.will return to the symbolic derivation problem, but this time with a much more

substantial expression. The basic program is the same as before, but the expression is

now:

http://partimingsl6.pl

230

exp 4- exp — exp exp / exp exp / exp

where

3
3x + 4e r

exp =
3x + 4ex logx2 - 2

-3x +
4

ex 4-2

Or, in Prolog:

expression(Exp
+ Exp
- Exp
* Exp
/ Exp
* Exp
/ Exp
) : - value(Exp).

value(((3*x + (4*exp(x~3)*log(x~2)) -2) /
(-(3*x) + 5/(exp(x"4)+2))))

The expression is constructed in several "parts" in order to generate a

complicated expression while saving compilation time and keeping the machine code

short. Some of the results of the simulations on this example are shown in figures B-3

and B-4. Figure B-5 represents the percentile proportions between the magnitudes

shown in figure B-4.

Some comments on these results. Clearly, on a more realistic problem like

this one, the wait and idle times are very useful in analyzing the characteristics of the

problem. For example, the idle time remains low until there are more than eight

processors in the system (idle time less than 10%), and from then on it starts being

231

Parder lv loc .p l

Q.

"O

a.
CO

10

9

8

7

6

5

4

3

2

1

20 30 40
of processors

—r—
50 60 70

Figure B-3: Speedup vs. # of processors for p a r d e r i v l o c . p i

considerable higher. This is indicative of the amount of parallelism in the problem

which can be exploited efficiently. However, performance improves steadily until more

than 32 processors are used. This provides a measure of the amount of total intrinsic

parallelism available. If performance is the key factor, this is the maximum response

speed obtainable, at the cost of low processor utilization. This maximum speedup is in

the order of 10 for this small and not "particularly parallel" problem.

Note that this derivation example represents an extreme case of "fine grain"

parallelism for a Goal Independence model: whereas in the p a r t i m i n g s example

(which basically models a "matrix multiplication" problem) there was considerable

sequential work involved for each goal spawned, in the derivation example almost

every goal invocation involves process spawning, and the work done for each spawn is

limited to a few unification instructions. This fine grain accounts for the higher

http://Parderlvloc.pl

232

o
5

70

60

50

40

30

20

10

•10
-10

OWork

OWait

P a r d e r l v l o c . p l
• Work (uniprocessor) A Idle

20 30 40
of processors

50 60 70

Figure B-4: Wait, Work, and Idle times for p a r d e r i v l o c . p l

overhead incurred into (typically 14%, difference between sequential and parallel

work) when compared to the previous example. However, this overhead is still low

when compared to other models, specially considering that it represents an extreme

case, and that effective speedup can still be obtained as pointed out above.

Wait times have their origin not in the lack of intrinsic parallelism in the

problem, but in the asymmetry of the tasks executed by the different processors: if the

parent processor finishes with its local goals, then it may have to wait for a sibling

which may have picked up a more complicated goal to return (the "join"). Of course,

these wait times can be eliminated by introducing multiprocessing if there is available

parallel work in the system: if a processor has to wait, it can start a new process

which will pick up some of that work. However, if performance is the key factor, then

this work should be taken care of by adding more processors: since these processors

http://Parderlvloc.pl
http://parderivloc.pl

233

work

1 2 4 8 16 32 64
of processors

Figure B-5: Wait, Work, and Idle times for p a r d e r l v l o c . p l {%)

would not have to switch contexts, the \nal performance would be higher. Also, if the

children of a processor all return while it is executing another process, it will have to

time-slice two (or eventually more) processes, with a net loss in performance.

Therefore, a new process in a waiting processor should only be started if there are no

idle processors in the system. An alternate way of eliminating "wait" times (the

"continuation" method) was sketched in Chapter 7.

B.4 Megalips Now?

Simply as a matter of exercise, since so many other factors, such as the

number of processors in the system and the size and amount of intrinsic parallelism in

the problem can dramatically affect performance figures, an estimate will be

attempted of the potential for performance of the model for simple cases such as the

derivation example shown above. It has been already pointed out how a net speedup

http://parderlvloc.pl

234

factor of an . . of magnitude can be obtained for a relatively small problem with

medium intrinsic parallelism. An estimate of the sequential speed of a hardware

implementation of the WAM architecture (such as the design proposed by Tick and

Warren [77]) could be placed around the 500Klip region (logical inferences per second).

Thus, the performance potential of an eventual implementation of the model, for a

case such as the derivation example above, can be rated at around 5 Mlips. Of course,

this figure can be much higher for problems which exhibit more parallelism and whose

grains of computation are larger, such as those modelled by the " p a r t i m i n g s "

examples of previous sections.

B.5 Conclusions and Suggestions for Fur ther Work

The simulations performed were not intended to be an exhaustive study of

the model. This task is left as a subject for future research. Their objective was to

prove the model's general functionality and viability. The main conclusion from the

data offered in the preceding sections is that in addition to functionality, the model

exhibits very good efficiency: if the problem has intrinsic goal independence

parallelism, the model will take advantage of it with very little overhead. Further

simulations on larger and more realistic problems, which are outside the capabilities of

the simulator in its present form, should be performed in order to evaluate the amount

of intrinsic goal independence parallelism present in such problems. Also, the

simulator does not take into account memory reference behavior [75] and contention

or interconnection network delay (other than a fixed value), since a precise memory

architecture is not specified in the model, but these factors should clearly be

considered for an implementation. This is also suggested as a topic for future research

(see Chapter 8).

Bibliography

Arthur C. Clarke.
2001, A Space Odyssey

Arvind, and Robert A. Ianucci.
A Critique of Multiprocessing von Neumann Style.
In Proceedings of the 1983 ACM Conference on Computer Architecture, pages

426-437. ACM Press, 1983.

J. Backus.
Can Programming be Liberated from the von Neumann Style?
Communications of the ACM 2l(8):613-641, 1978.

F. Bacilhon and R. Ramakrishnan.
An Amateur's Introduction to Recursive Query Processing Strategies.
MCC Technical Report DB-091-86, Microelectronics and Computer Technology

Corp., 1986.

K. E. Batcher.
Sorting Networks and Their Application.
AFIPS Conf. Proc. 32:307-314, 1968.

M. Bergmann and H. Kanoui.
Application of Mechanical Theorem Proving to Symbolic Calculus.
Third International Symposium on Advanced Computer Methods in

Theoretical Physics , June, 1973.
Marseilles C.N.R.S.

P. Borgwardt.
Parallel Prolog Using Stack Segments on Shared Memory Multiprocessors .
In 1984 International Symposium on Logic Programming, Atlantic City,

pages 2-12. IEEE Computer Society Press, Silver Spring, MD. February,
1984.

235

236

F. W. Burton and . . Sleep.
Executing Functional Programs on a Virtual Tree of Processors.
In Functional Programming Languages and Computer Architecture, pages

187-195. October, 1981.

J.-H. Chang, A. M. Despain, and D. DeGroot.
AND-parallelism of Logic Programs Based on Static Da ta Dependency Analysis.
In Digest of Papers of COMPCON Spring '85, pages 218-225. 1985.

A. Church.
The Calculi of Lambda Conversion.
In Annals of Mathematics Studies. Princeton University Press, 1941.

A. Ciepilewski and S. Haridi.
Control of Activities in the Or-Parallel Token Machine.
In 1984 International Symposium on Logic Programming, Atlantic City,

pages 49-58. IEEE Computer Society Press, Silver Spring, MD, February,
1984.

A. Ciepielewski.
Towards a Computer Architecture for OR-Parallel Execution of Logic

Programs.
PhD thesis, Dept. of Computer Systems, Royal Insti tute of Technology, 1984.
May 17, 1984.

K. Clark and S. Gregory.
PARLOG: A Parallel Logic Programming Language.
Research Report DOC 83/5 , Dept. of Computing, Imperial College of Science

and Technology, May, 1983.
University of London.

Clark, K.L. and G. McCabe.
The Control Facilities of IC-Prolog.
Expert Systems in the Micro Electronic Age.
Edinburgh University Press, 1979.

K. L. Clarke, and F. G. McCabe.
micro-Prolog: Programming in Logic.
Prentice-Hall, Englewood Cliffs, N.J., 1984.

W.F. Clocksin and C.S. Mellish.
Programming in Prolog.
Springer-Verlag, Berlin, New York, 1981.

:!3*

[17] H. Coelho, J. C. Cotta, and L. M. Pereira.
How to Solve it with Prolog.
Ministerio da Habitacao e Obras Publicas, Laboratorio de Engenharia Civil,

Lisbon, 1980.

[18] Michael Codish and Ehud Shapiro.
Compiling OR-Parallelism into AND-Parallelism.
In Proceedings of the Third International Conference on Logic Programming,

pages 283-298. Springer-Verlag, 1986.

[19] J.S. Conery and D.F. Kibler.
Parallel Query Processing in Logic Databases.
Proc. 8th. IJCAI, 1983.

[20] J.S. Conery.
The AND/OR Process Model for Parallel Interpretation of Logic Programs.
PhD thesis, The tlniversity of California at Irvine, 1983.
Technical Report 204.

[21] W. D. Hillis.
The Connection Machine.
The MIT Press, Cambridge, Massachusetts, 1986.

[22] CRAY-1 Computer System Hardware Reference Manual
Cray Research Inc., Bloomington, Minn., 1977.
Pub. # 2240004.

[23] J. Darlington, A. J. Field, and H. Pull.
The Unification of Functional and Logic Languages.
In D. DeGroot and G. Lindstrom (editors), Logic Programming: Relations,

Functions, and Equations. Prentice-Hall, Englewood Cliffs, N. J., 1985.

[24] Saumya K. Debray and D. S. Warren.
Automatic Mode Inference for Prolog Programs.
In 1986 Symposium on Logic Programming. IEEE Computer Society, 1986.

[25] Doug DeGroot.
Restricted And-Parallelism.
Int 'I Conf. on Fifth Generation Computer Systems , November, 1984.

[26] T. P. Dobry, A. M. Despain, and Y. N. Pa t t .
Performance Studies of a Prolog Machine Architecture.
In Proceedings of the 12 Int'I. Symp. on Computer Architecture, pages

180-191. IEEE Computer Society Press, 1985.

238

T. P. Dobry.
PLM Simulator Reference Manual
Computer Science Division, University of California, Berkeley, 1984.

T. P. Dobry, Y. N. Patt, and A. M. Despain.
Design Decision Influencing the Microarchitecture for a Prolog Machine.
In MICRO 17 Proceedings. 1984.

John Gabriel, Tim Lindholm, E. L. Lusk, and R. A. Overbeek.
A Tutorial on the Warren Abstract Machine.
Technical Report, Argonne National Laboratory, Argonne, 111. 60439, 1985.

Steven Gregory.
Design, Application and Implementation of a Parallel Logic Programming

Language.
PhD thesis, Imperial College of Science and Technology, 1985.

Manuel V. Hermenegildo.
An Abstract Machine for Restricted AND-parallel Execution of Logic

Programs.
In Proceedings of the Third International Conference on Logic Programming,

pages 25-40. Springer-Verlag, 1986.

Manuel V. Hermenegildo and Roger I. Nasr.
Efficient Implementation of Backtracking in AND-parallelism.
In Proceedings of the Third International Conference on Logic Programming,

pages 40-55. Springer-Verlag, 1986.

C. A. R. Hoare.
Algorithm64.
Communications of the CM 4:321, 1961.

C. J. Hogger.
Introduction to Logic Programming.
Academic Press, London, 1984.

Hassan Ait-Kaci, Robert Boyer, Roger Nasr.
An Encoding Technique for the Efficient Implementation of Type

Inheritance.
Technical Report AI-109-85, Microelectronics and Computer Technology

Corporation, 9430 Research Boulevard, Austin, TX 78759, 1985.

G. Kahn and D. B. MacQueen.
Coroutines and Networks of Parallel Processes.
In B. Gilchrist (editor), Information Processing 77; Proceedings of the IFIP

Congress 77, pages 993-998. Elsevier North-Holland, Amsterdam, 1977.

239

[37] S. Kasif, M. Kohli, and J. Minker.
PRISM: A parallel inference system for problem solving.
In Proceedings of the 8th International Joint Conference on Artificial

Intelligence, pages 544-546. August, 1983.

[38] Robert M. Keller, Frank C. H. Lin, and Jiro Tanaka .
Rediflow Multiprocessing.
In Digest of Papers, Spring COMPCON '84, pages 410-417. IEE Computer

Society, 1984.

[39] Kowalski, R.A.
Predicate Logic as a Programming Language.
Proc. IFIPS 74 , 1974.

[40] Robert A. Kowalski.
Logic for Problem Solving.
Elsevier North-Holland Inc., 1979.

[41] G. J. Lipovski and Manuel V. Hermenegildo.
B-LOG: A Branch and Bound Methodology for the Parallel Execution of Logic

Programs.
In Proceedings of the 1985 International Conference on Parallel Processing.

IEEE Computer Society, 1985.

[42] Yow-Jian Lin, Vipin Kumar, and Clemment Leung.
An Intelligent Backtracking Algorithm for Parallel Execution of Logic

Programs.
In Proceedings of the Third International Conference on Logic Programming,

pages 55-69. Springer-Verlag, 1986.

[43] G. Lindstrom and P. Panangden.
Stream-Based Execution of Logic Programming.
In 1984 International Symposium on Logic Programming, Atlantic City,

pages 168-177. IEEE Computer Society Press, Silver Spring, MD, February,
1984.

[44] G. J. Lipovski and A. Tripathi .
A Reconfigurable Varistructured Array Processor.
In Int. Conf. on Parallel Processing, pages 165-174. August, 1977.

[45] B. W. Wah, G. J. Li, and C. F. Yu.
The Sta tus of Manip: A Multicomputer Architecture for Solving Combinatorial

Extremum-Search Problems.
In Proc. of the 11th. Annual Int'l Symp. on Computer Architecture, pages

56-64. IEEE Computer Society, 1984.

240

46] J. McCarthy, P. W. Abrahams, D. J. ba . . . T. P. Hart, and M.I. Levin.
LISP 1.5 Programmer's Manual.
MIT Press, Cambridge, MA, 1965.

47] C. S. Mellish.
An alternative to structure sharing in the implementation of a Prolog

interpreter.
Research Paper 150, Department of AI, University of Edinburgh, August, 1980.

48] C. S. Mellish.
The Automatic Generation of Mode Declarations for Prolog Programs.
DAI Research Paper 163, Department of Artificial Intelligence, Univ. of

Edinburgh, 1981.

49] C.S. Mellish.
Abstract Iterpretation of Prolog Programs.
In Proceedings of the Third International Conference on Logic Programming,

pages 463-475. Springer-Verlag, 1986.

50] L. Monteiro.
A Proposal for Distributed Programming in Logic.
Implementations of Prolog.
Ellis Horwood, 1984.

51] L. Naish.
Automatic Generation of Control for Logic Programs.
Technical Report 83/6, Department of Computer Science, University of

Melbourne, 1983.

52] L. Naish.
All Solutions Predicates in Prolog.
In 1985 Symposium on Logic Programming, pages 73-78. IEEE Computer

Society, 1985.

53] H. Nishikawa, A. Yamamoto, K. Taki, and S. Uchida.
The Personal Inference Machine (PSI): Its design philosophy and Machine

Architecture.
In Universidade Nova de Lisboa (editor), Logic Programming Workshop '83,

pages 53-73. June, 1983.

54] The Architecture of Norma
Austin Research Center, Burroughs Corp., Austin, TX, 1985.

55] R. A. Overbeek, J. Gabriel, T. Lindholm, and E. L. Lusk.
Prolog on Multiprocessors.
Technical Report, Argonne National Laboratory, Argonne, 111. 60439, 1985.

241

•561 Luis Moniz Pereira, Luis Monteiro, Jose Cunha & Joaquim N. Aparicio.
Delta Prolog: a distributed backtracking extension with events.
In Proceedings of the Third International Conference on Logic Programming,

pages 69-84. Springer-Verlag, 1986.

[57] Luis M. Pereira and Roger I. Nasr.
Delta-Prolog: A Distributed Logic Programming Language.
In Proceedings of the Intl. Conf. on 5th. Gen. Computer Systems. 1984.
Japan.

[58] Pereira, L.M., F. C. N. Pereira, and D. H. D. Warren.
User's Guide to DEC system-10 Prolog
Dept. of Artificial Intelligence, Univ. of Edinburgh, 1978.

[59] Pereira, L.P., and A. Porto.
Intelligent Backtracking and Sidetracking in Horn Clause Programs - the

Tlieory.
Report 2/79, Departamento de Informatica, Universidade Nova de Lisboa,

October, 1979.

[60] L. M. Pereira and A. Porto.
Selective Backtracking.
Logic Programming.
Academic Press, 1982, pages 107-114.

[61] A. Porto and M. Filgueiras.
Natural Language Semantics-: A Logic Programming Approach.
In 1984 International Symposium on Logic Programming, Atlantic City,

pages 228-233. IEEE Computer Society Press, Silver Spring, MD, February,
1984.

[62] G. H. Pollard.
Parallel Execution of Horn Clause Programs.
PhD thesis, Imperial College, 1981.
Dept. of Computing.

[63] A. Colmenauer et al.
Prolog II: Reference Manual and Theoretical Model
Groupe d'Intelligence Artificielle, Faculte des Sciences de Luminy, Marseilles,

1982.

[64] Quintus Prolog Reference Manual
4 edition, Quintus Computer Systems, 2345 Yale St., Palo Alto, CA 94306,

1984.

242

[651 G. Radin.
The 801 Minicomputer.
IBM Journal of Research and Development 27(3):237-246, 1983.

[66] U.S. Reddy.
Transformation of Logic Programs into Functional Programs.
In 1984 International Symposium on Logic Programming, Atlantic City,

pages 187-198. IEEE Computer Society Press, Silver Spring, MD, February,
1984.

[67] D. A. Patterson and C. H. Sequin.
RISC I: A Reduced Instruction Set VLSI Computer.
In Proceedings of the 8th. Int'l Symp. on Computer Architecture. IEEE

Computer Society, 1981.

[68] J. A. Robinson.
A machine oriented logic based on the resolution principle.
Journal of the ACM 12(23):23-41, January, 1965.

[69] Roussel, P.
Prolog: Manuel de Reference et dlltilisation.
Technical Report, Univ. d'Aix-Marseille, Groupe de IA, 1975.

/
[70] M. C. Sejnowski, E. T. Upchurch, R. Kapur, D. P. S. Charlu and

G. J. Lipovski.
An Overview of the Texas Reconfigurable Array Processor.
In Don Medley (editor), AFIPS Conference Proceedings, National Computer

Conference 1980, pages 631-643. AFIPS Press, Arlington, Va, May 19-22,
1980.

[71] BALANCE 8000 Guide to Parallel Programming
2.0 edition, Sequent Computer Systems, Inc., 1985.

[72] E. Y. Shapiro.
A subset of Concurrent Prolog and its interpreter.
Technical Report TR-003, ICOT, January, 1983.
Tokyo.

[73] Symbolics 3600 Technical Summary
Symbolics Inc., Cambridge, Massachusetts, 1983.

[74] N. Tamura and Y. Kaneda.
Implementing Parallel Prolog on a Multiprocessor Machine.
In 1984 International Symposium on Logic Programming, Atlantic City,

pages 42-49. IEEE Computer Society Press, Silver Spring, MD, February,
1984.

243

Evan Tick.
Prolog Memory-Referencing Behavior.
Technical Report 85-281, Computer Systems Laboratory, 1985.
Stanford University.

Evan Tick.
Lisp and Prolog Memory Performance.
Technical Report 86-291, Computer Systems Laboratory, 1986.
Stanford University.

E. Tick and D.H.D. Warren.
Towards a Pipelined Prolog Processor.
In 1984 International Symposium on Logic Programming, Atlantic City,

pages 29-42. IEEE Computer Society Press, Silver Spring, MD, February,
1984.

C. Whitby Strevens.
The Transputer .
In Proceedings of the 12th. Int'l Symp. on Computer Architecture, pages

292-302. IEEE Computer Society, 1985.
Boston, Massachussetts.

Philip C. Treleaven.
The New Generation of Computer Architecture.
Proceedings of the 1983 ACM Conference on Computer Architecture :402-409,

1983.

Sunichi Uchida.
Towards a New Generation Computer Architecture: Research and

Development Plan for Computer Architecture in the Fifth Generation
Computer Project.

Technical Report TR-001, ICOT-Insti tute for New Generation Computer
Technology, July, 1982.

Ueda, K.
Guarded Horn Clauses.
Technical Report TR-103, ICOT, 1985.
Tokyo.

Kazunori Ueda.
Making Exhaustive Search Programs Deterministic.
In Proceedings of the Third International Conference on Logic Programming,

pages 270-283. Springer-Verlag, 1986.

244

[83] M. H. VanEmden, and R. A. Kowalski.
The Semantics of Predicate Logic as a Programming Language.
Journal of the ACM 23:733-742, 1976.

[84] P. Van Roy.
A Prolog Compiler for the PLM.
Master's thesis, University of California at Berkeley, 1984.

[85] David H. D. Warren.
Implementing Prolog - Compiling Predicate Logic Programs.
Technical Report 39 & 40, Department of Artificial Intelligence, University of

Edinburgh, 1977.

[86] David H. D. Warren.
Logic for Compiler Writing.
Software Practice and Experience.

1980, pages 97-125.

[87] David H. D. Warren.
An improved Prolog implementation which optimises tail recursion.
DAI Research Report 141, University of Edinburgh, 1980.

[88] David H. D. Warren.
An Abstract Prolog Instruction Set.
Technical Note 309, SRI International, AI Center, Computer Science and

Technology Division, 1983.

[89] D.S. Warren.
Efficient Prolog Memory Management for Flexible Control Strategies.
In 1984 International Symposium on Logic Programming, Atlantic City,

pages 198-203. IEEE Computer Society Press, Silver Spring, MD, February,
1984.

