
J. Symbolic Computation (1996) 22, 715–734

A Methodology for Granularity Based Control of
Parallelism in Logic Programs†

P. LOPEZ‡, M. HERMENEGILDO‡ AND S. DEBRAY\

‡Computer Science Faculty, Technical University of Madrid (UPM)

28660-Boadilla del Monte, Madrid-Spain

pedro@dia.fi.upm.es, herme@fi.upm.es

\ Department of Computer Science, University of Arizona

Tucson, AZ 85721, U.S.A.

debray@cs.arizona.edu

(Received 31 May 1995)

Several types of parallelism can be exploited in logic programs while preserving cor-

rectness and efficiency, i.e. ensuring that the parallel execution obtains the same results
as the sequential one and the amount of work performed is not greater. However, such

results do not take into account a number of overheads which appear in practice, such
as process creation and scheduling, which can induce a slow-down, or, at least, limit
speedup, if they are not controlled in some way. This paper describes a methodology
whereby the granularity of parallel tasks, i.e. the work available under them, is efficiently

estimated and used to limit parallelism so that the effect of such overheads is controlled.
The run-time overhead associated with the approach is usually quite small, since as much
work is done at compile time as possible. Also, a number of run-time optimizations are

proposed. Moreover, a static analysis of the overhead associated with the granularity
control process is performed in order to decide its convenience. The performance im-

provements resulting from the incorporation of grain size control are shown to be quite
good, specially for systems with medium to large parallel execution overheads.

Keywords: Granularity Analysis and Control, Parallelism, Cost Estimation.

1. Introduction

It has been shown — e.g. by Chassin and Codognet (1994), Hermenegildo and Rossi
(1995) — that several types of parallelism can be exploited in logic programs while pre-
serving correctness (i.e. the parallel execution obtains the same results as the sequential)
and efficiency (i.e. the amount of work performed is not greater or, at least, there is no

† The work of S. K. Debray was supported in part by the National Science Foundation under grant
CCR-9123520. The work of M. Hermenegildo and P. López is supported in part by ESPRIT project 6707
“PARFORCE” and CICYT project number TIC93-0976-CE.

0747–7171/90/000000 + 00 $03.00/0 c© 2002 Academic Press Limited

2 P. López, M. Hermenegildo and S. Debray

slow-down). However such results assume an idealized execution environment in which a
number of practical overheads are ignored, such as those associated with task creation,
possible migration of tasks to remote processors, the associated communication over-
heads, etc. Due to these overheads, and if the granularity of parallel tasks, i.e. the “work
available” underneath them, is too small, it may happen that the costs are larger than the
benefits in their parallel execution. This makes it desirable to devise a method whereby
the granularity of parallel goals and their number can be controlled. Granularity con-
trol has been studied in the context of traditional programming (Kruatrachue and Lewis
1988, McGreary and Gill 1989), functional programming (Huelsbergen 1993, Huelsbergen
et al. 1994), and also logic programming (Kaplan 1988, Debray et al. 1990, Zhong et al.

1992, Debray and Lin 1993).
The benefits from controlling parallel task size will obviously be greater for systems

with greater parallel execution overheads. In fact, in many architectures (e.g. distributed
memory multiprocessors, workstation “farms”, etc.) such overheads can be very signifi-
cant and, in them, automatic parallelization cannot in general be done realistically with-
out granularity control. In some other architectures where the overheads for spawning
goals in parallel are small (e.g. in small shared memory multiprocessors) granularity
control is not essential but it can also achieve important improvements in speedup.

The aim of granularity control is to change parallel execution to sequential execution
or vice-versa based on some conditions related to grain size and overheads. However,
granularity control itself can induce new overheads, which should obviously be minimized.
Since granularity control cannot in general be done completely at compile-time, one
way to minimize its impact is to do as much work at compile-time as possible and
relegate some tests and final decisions to run-time. One way to do this is by generating
at compile-time cost functions which estimate grain size as a function of input data
size, which are then evaluated at run-time when such size is known. This was proposed
by Debray et al. (1990) in the context of logic programs and by Rabhi and Manson
(1990) in the context of functional programs. An alternative is to determine only the
relative cost of goals (Zhong et al. 1992), which can be specially useful for optimizing an
on-demand run-time scheduler, but may not be as effective in reducing task creation cost.
These approaches are in contrast with others, such as that of Sarkar (1989) who bases
his algorithm on information obtained via runtime profiling rather than compile-time
analysis. Goldberg and Hudak (1985) considers “serial combinators” with reasonable
grain sizes, but does not discuss the compile time analysis necessary to estimate the
amount of work that may be done by a call.

We address the problem by using the overall approach originally sketched by Debray et

al. (1990) of computing complexity functions and performing program transformations
at compile-time based on such functions, so that the transformed program automatically
controls granularity. However, the central topic of such approach was really the problem
of estimating upper bounds to task execution times, leaving as future work the deter-
mination of how that information was to be used. The method described in this paper
attempts to fill this gap by illustrating and offering solutions for the many problems
involved, for both the cases when upper and lower bound information regarding task
granularity is available, and for a generic execution model. Such problems include on
one hand estimating the cost of goals, of the overheads associated with their parallel
execution, and of the granularity control technique itself. On the other hand there is
also the problem of devising, given that information, efficient compile-time and run-time
granularity control techniques.

A Methodology for Granularity Based Control of Parallelism in LP 3

We know of no other work which describes a complete granularity control system for
logic programs, discusses the many problems that arise (some of them more subtle than
they appear at first sight) and provides solutions to them in the generality that we present
our work.

We do not discuss in detail the different types of overheads which may appear in a
parallel execution when comparing it to a sequential execution, which may include not
only execution time-related overheads but also, for example, memory consumption over-
heads, for conciseness, and because we are more concerned with speedups, we concentrate
mainly on time-related overheads. However, we conjecture that a similar treatment to
that which we propose can be applied to the analysis and control of memory-related
overheads.

2. A General Model

We start by discussing the basic issues to be addressed in our general approach to
granularity control, in terms of a generic execution model. In the following sections we
will particularize to the case of logic programs.

2.1. Deriving Sufficient Conditions

We first discuss how conditions for deciding between parallel and sequential execution
can be devised. We consider a generic execution model: let g = g1, . . . , gn be a task
such that subtasks g1, . . . , gn are candidates for parallel execution, Ts represents the
cost (execution time) of the sequential execution of g, and Ti represents the cost of the
execution of subtask gi.

There can be many different ways to execute g in parallel, involving different choices
of scheduling, load balancing, etc., each having its own cost (execution time). To simplify
the discussion, we will assume that Tp represents in some way all of the possible costs.
More concretely, Tp ≤ Ts should be understood as “Ts is greater or equal than any
possible value for Tp”.

In a first approximation, we assume that the points of parallelization of g are fixed.
We also assume, for simplicity, and without loss of generality, that no tests — such as,
perhaps, “independence” tests (Chassin and Codognet 1994, Hermenegildo and Rossi
1995) — other than those related to granularity control are necessary.

Thus, the purpose of granularity control will be to determine, based on some conditions,
whether the gi’s are to be executed in parallel or sequentially. In doing this, the objective
is to improve the ratio between the parallel and sequential execution times. An interesting
goal is to ensure that Tp ≤ Ts. In general, this condition cannot be determined before
executing g, while granularity control should intuitively be carried out ahead of time.
Thus, we are forced to use approximations. At this point one clear alternative is to give
up on strictly ensuring that Tp ≤ Ts and use some heuristics that have good average case
behavior. On the other hand, it is not easy to find such heuristics and, also, it is of obvious
practical importance to be able to ensure that parallel execution will not take more
time than the sequential one. This suggests an alternative solution: evaluating a simpler
condition which nevertheless can be proved to ensure that Tp ≤ Ts. Such a condition can
be based on computing an upper bound for Tp and a lower bound for Ts. Ensuring Tp ≤ Ts

corresponds to the case where the action taken when the condition does not hold is to
run sequentially, i.e. to a philosophy were tasks are executed sequentially unless parallel

4 P. López, M. Hermenegildo and S. Debray

execution can be shown to be faster. This is useful when “parallelizing a sequential
program.” This approach is discussed in the following section. The converse case of
“sequentializing a parallel program”, in which detecting when the opposite condition
Ts ≤ Tp holds is the objective, is considered in Section 2.1.2.

2.1.1. Parallelizing a Sequential Program

In order to derive a sufficient condition for the inequality Tp ≤ Ts, we derive upper
bounds for its left-hand-side and lower bounds for its right-hand-side, i.e. a sufficient
condition for Tp ≤ Ts is Tu

p ≤ T l
s, where T

u
p denotes an upper bound of Tp and T l

s a lower
bound of Ts. We will use the superscripts l and u to denote lower and upper bounds
respectively throughout the discussion.

Assume that there are p free processors in the system at the instant in which task g
is about to be executed. Assume also that p ≥ 2 (if there is only one processor, then
execution is performed sequentially) and let m be the lowest integer which is greater or
equal than n/p, i.e. the ceiling of n

p
, denoted m = dn

p
e. We have that T u

p = Spawu +Cu,
where Spawu is an upper bound on the cost of creating the n parallel subtasks, and Cu

an upper bound on the execution of g itself. Spawu will be dependent on the particular
system in which task g is going to be executed. It can be a constant, or a function of
several parameters, such as input data size, number of input arguments, number of tasks,
etc. and can be experimentally determined. We now consider how Cu can be computed.
Let Cu

i be an upper bound on the cost of subtask gi, and assume that Cu
1 , . . . , C

u
n

are ordered in descending order of cost. Two possible ways of computing Cu are the
following: Cu =

∑m
i=1 C

u
i ; or C

u = m Cu
1 . Each Cu

i can be considered as the sum of
two components: Cu

i = Schedu
i + Tu

i , Sched
u
i denotes the time taken from the point

in which the parallel subtask gi is created until its execution is started by a processor
(possibly the same processor that created the subtask), i.e. the cost of task preparation,

scheduling, communication overheads, etc.† Tu
i denotes the time taken by the execution

of gi disregarding all the overheads mentioned before. We assume that the tasks g1, . . . , gn

are guaranteed to not fail. We also assume that T l
s can be computed as follows: T l

s =
T l

s1
+ · · · + T l

sn
, where T l

si
is a lower bound of the cost of the (sequential) execution of

subtask gi.
The following two lemmas summarize the previous discussion:

Lemma 2.1. If Spawu +
∑m

i=1 C
u
i < T l

s1
+ · · ·+ T l

sn
, then Tp ≤ Ts.

Proof. Trivial. 2

Lemma 2.2. If Spawu +m Cu
1 < T l

s1
+ · · ·+ T l

sn
then Tp ≤ Ts

Proof. Trivial. 2

As mentioned in the introduction, bounds on execution costs often need to be evaluated
totally or partially at run-time, and thus also the condition above. It would be desirable

† Note that in some parallel systems, such as &-Prolog (Hermenegildo and Greene 1991), Schedu
i can

in some cases be zero, since there is no overhead associated with the preparation of a parallel task if it
is executed by the same processor as the one which created the task.

A Methodology for Granularity Based Control of Parallelism in LP 5

to make this evaluation be as efficient as possible. There is clearly a tradeoff between the
evaluation cost of such a sufficient condition and its accuracy. A sufficient condition with
a simpler evaluation than those in lemmas 2.1 and 2.2 is given below, based on a series
of reasonable further assumptions.

Assume that it is ensured that the tasks g1, . . . , gn will not take longer than they would
in a sequential execution, ignoring the time to spawn them and all the associated parallel

execution overheads† and that Schedu
1 , . . . , Sched

u
n are ordered in descending order of

cost. Let Thresu be a threshold computed using either one of the following expressions:
Thresu = Spawu +m Schedu

1 ; or Thres
u = Spawu +

∑m
i=1 Sched

u
i .

Theorem 2.3. If there exist at least m + 1 tasks t1, . . . , tm+1 among g1, . . . , gn, such

that for all i, 1 ≤ i ≤ (m+ 1), Thresu ≤ Tsl
ti
, where Tsl

ti
denotes a lower bound of the

cost of the sequential execution of task ti, then Tp ≤ Ts.

Proof. Assume that Ts1
, . . . , Tsn

are ordered in descending order of cost, where Tsi

denotes the cost of the sequential execution of task gi. Consider the following condition:

Tu
p ≤ Ts1

+ · · ·+ Tsm
+ Tsm+1

+ · · ·+ Tsn
(2.1)

where T u
p = Thresu +Ts1

+ · · ·+Tsm
. We have that if this condition holds then Tp ≤ Ts,

since its left hand side is an upper bound of Tp. Simplifying condition 2.1 we obtain:

Thresu ≤ Tsm+1
+ · · ·+ Tsn

(2.2)

If there are at least m + 1 tasks t1, . . . , tm+1 among g1, . . . , gn, such that for all i, 1 ≤
i ≤ (m + 1), Thresu ≤ Tsl

ti
, then Thresu ≤ Tsti

(where Tsti
denotes the cost of the

sequential execution of task ti), and there is some ti, 1 ≤ i ≤ m + 1 which is equal to
some gj , m+ 1 ≤ j ≤ n and condition 2.2 holds because Thresu ≤ Tsj

. 2

We treat now a slightly more complex case in which we also consider other costs,
including the cost of granularity control itself: assume now that the execution of gi

takes Ti time steps, such that Ti = Tsi
+Wi, where Wi is some “extra” work due to

either parallel execution itself (for example the cost of accessing remote references) or
granularity control or both of them. Let l (0 ≤ l ≤ n) be the tasks for which we know
thatWi 6= 0 (equivalently, Ti > Tsi

). Assume thatW u
1 , . . . ,W

u
l are ordered in descending

order of cost, and let r = min(l,m). Then, we can compute a new threshold, Thresu
w,

by adding W (Thresu
w = Thresu +W) to the previous threshold (Thresu). W can be

computed in two possible ways: W =
∑r

i=1W
u
i ; or W = r W u

1 .

Theorem 2.4. If there exist at least m + 1 tasks t1, . . . , tm+1 among g1, . . . , gn, such

that for all i, 1 ≤ i ≤ (m+ 1), Thresu
w ≤ Tsl

ti
, where Tsl

ti
denotes a lower bound of the

cost of the sequential execution of task ti, then Tp ≤ Ts.

Proof. The proof is similar to that of theorem 2.3. Since Thresu +W +Ts1
+ · · ·+Tsm

,
is also an upper bound of Tp, we can follow the same argument in this proof replacing
condition 2.1 by Thresu +W + Ts1

+ · · ·+ Tsm
≤ Ts1

+ · · ·+ Tsm
+ Tsm+1

+ · · ·+ Tsn
2

† This can be ensured for certain execution platforms, for example if the tasks are “independent”.
However in some cases, if the tasks are “dependent”, they may take longer than they would in a sequential
execution.

6 P. López, M. Hermenegildo and S. Debray

Suppose now that we cannot ensure that for all i, 1 ≤ i ≤ n, gi is not going to
fail. Assume that gk is the leftmost task for which non-failure is not ensured, for some
1 ≤ k ≤ n. We can modify the previous lemmas (2.1 and 2.2) and theorems (2.3 and 2.4)
slightly as follows.

Lemmas 2.1 and 2.2 can be reformulated as:

Lemma 2.5. If Spawu +
∑m

i=1 C
u
i < T l

s1
+ · · ·+ T l

sk
, then Tp ≤ Ts.

Proof. Trivial. 2

Lemma 2.6. If Spawu +m Cu
1 < T l

s1
+ · · ·+ T l

sk
then Tp ≤ Ts

Proof. Trivial. 2

The only difference is that we consider T l
s1

+ · · · + T l
sk

on the right hand side of the

respective inequation instead of T l
s1

+ · · ·+ T l
sn
.

Theorems 2.3 and 2.4 can be reformulated by assuming as hypothesis that the tasks
which have the m greatest costs are among g1, . . . , gk. The proofs are similar.

Theorem 2.7. If there exist at least m+1 tasks t1, . . . , tm+1 among g1, . . . , gk, such that

for all i, 1 ≤ i ≤ (m+ 1), Thresu ≤ Tsl
ti
, where Tsl

ti
denotes a lower bound of the cost

of the sequential execution of task ti, and the tasks with the m greatest costs are among

g1, . . . , gk, then Tp ≤ Ts.

Theorem 2.8. If there exist at least m+1 tasks t1, . . . , tm+1 among g1, . . . , gk, such that

for all i, 1 ≤ i ≤ (m+ 1), Thresu
w ≤ Tsl

ti
, where Tsl

ti
denotes a lower bound of the cost

of the sequential execution of task ti, and the tasks with the m greatest costs are among

g1, . . . , gk, then Tp ≤ Ts.

2.1.2. Sequentializing a Parallel Program

Assume now that we want to detect when Ts ≤ Tp holds, because we have a parallel
program and want to profit from performing some sequentializations. In this case we can
compute T u

s and T l
p. Let T

l
i be a lower bound on the execution time of gi. T

l
p can be

determined in several ways:

1 If n ≤ p then: T l
p = Spawl + max(T l

1, . . . , T
l
n
) else: T l

p = Spawl +

dn
p
emin(T l

1, . . . , T
l
n
).

2 T l
p = Spawl +

∑k
i=1 T

l
i , where k = dn

p
e and T l

1, . . . , T
l
n
are ordered in ascending

order.

3 T l
p = Spawl +

T l
s1

+···+T l
sn

p

The determination of T l
i will depend, of course, on the way gi is going to be exe-

cuted. If the execution is going to be performed in parallel with no granularity control,
with granularity control, or sequentially, we compute T l

pi
, T l

gi
, or T l

si
respectively. The

determination of T l
pi

and T l
gi

is discussed in Section 8.

A Methodology for Granularity Based Control of Parallelism in LP 7

We can choose the maximum of the different possibilities for computing T l
p. In general,

if there are n different choices x1, . . . , xn for computing T l
p (Tu

p , respectively) we will

choose T l
p = max(x1, . . . , xn) (T

u
p = min(x1, . . . , xn), respectively).

2.2. Compile-time vs. Run-time Control

The evaluation of the sufficient conditions proposed in the previous sections can in
principle be performed totally at run-time, compile-time or partially at each of them. For
example, it might be possible to determine at compile time if the condition expressed in
Theorem 2.3 will always be true when evaluated at run-time. Let C l be a lower bound of
the cost of each gi, 1 ≤ i ≤ n, then if Thresu ≤ (n−m)Cl the condition of the theorem
holds, since (n −m)C l is a lower bound on Tsm+1

+ · · · + Tsn
. Clearly, in this case it is

not necessary to perform any granularity control and tasks can always be executed in
parallel. The converse case is also possible where tasks can be statically determined to be
better executed sequentially. Thus, from the granularity control point of view program
parts can be classified as parallel (all the performed parallelizations are unconditional),
sequential (there are no parallel tasks), and performing granularity control (tests based
on granularity information are performed at run-time in order to decide between parallel
or sequential execution). Whether it is done at compile-time or at run-time, in order
to perform granularity control two basic issues have to be addressed: how the bounds
on the costs and overheads which are the parameters of the sufficient conditions are
computed (cost and overhead analysis) and how the sufficient conditions are used to
control parallelism (granularity control). They are the subjects of the following sections.
Both of these issues imply in general both compile-time and run-time techniques in our
approach.

2.2.1. Task Cost Analysis

Since task cost is not in general computable at compile-time, we are forced to resort to
approximations and, possibly, to performing some work at run-time. In fact, as pointed
out by Debray et al. (1990), since the work done by a call to a recursive procedure
often depends on the size of its input, such work cannot in general be estimated in any
reasonable way at compile time and for such calls some run-time work is necessary. The
basic approach used is as follows: given a call p, an expression Φp(n) is computed that a)
it is relatively easy to evaluate, and b) it approximates Costp(n), where Costp(n) denotes
the cost of computing p for an input of size n. The idea is that Φp(n) is determined at
compile time. It is then evaluated at run-time, when the size of the input is known,
yielding an estimate of the cost of the call. We point out that the evaluation of Φp(n)
will be simplified as much as possible by the compiler. In many cases it will be possible
to simplify the cost function (or, more precisely, the test to be performed) to the point of
being able to statically derive a threshold size for one of the input size arguments. In that
case, at runtime, such input size is simply compared against the (precomputed) threshold,
and thus the function does not need to be evaluated. This simplification is discussed in
Section 6.1. If after simplification, the resulting expression is costly to evaluate, the
compiler may decide to compute a safe approximation with a smaller evaluation cost.
We would also like to point out that the cost of evaluating tests, and, in general, of
performing granularity control, is also taken into account, as described in Section 7.

8 P. López, M. Hermenegildo and S. Debray

In the following we will refer to the compile-time computed expressions Φp(n) as cost

functions.
As mentioned in Section 2 the approximation of the condition used to decide between

parallelization and sequentialization can be based either on some heuristics or on a safe

approximation (i.e. an upper or lower bound). For the latter approach we were able to
show sufficient conditions for parallel execution while preserving efficiency. Because of
these results, we will in general require Φp(n) to be not just an approximation, but also
a bound on the actual execution cost. Fortunately, as mentioned before, much work has
been presented on (time) complexity analysis of programs (Le Métayer 1988, Wadler
1988, Rosendhal 1989, Bjerner and Holmstrom 1989, Sarkar 1989, Zimmermann and
Zimmermann 1989, Flajolet et al. 1991). The most directly applicable are the methods
presented by Debray and Lin (1993) and Debray et al. (1994) for statically estimating cost
functions for predicates in a logic program. The two approaches have much in common
but they differ in the way the approximation is done. In the first one upper bounds of
task costs are computed, that is (∀n)Costp(n) ≤ Φp(n), while in the second one, to be
discussed later, the converse approximation is done: (∀n)Costp(n) ≥ Φp(n).

Example 2.1. Consider the procedure q/2 defined as follows:

q([],[]).

q([H|T],[X|Y]):- X is H + 1, q(T,Y).

where the first argument is an input argument. Assume that the cost unit is the number
of resolution steps. In a first approximation, and for simplicity, we suppose that the cost
of a resolution step (i.e., procedure call) is the same as that of the is/2 builtin. With
these assumptions, the cost function of q/2 is Costq(n) = 2 n + 1, where n is the size
(length) of the input list (first argument). 2

2.2.2. Parallelization Overhead Analysis

Regarding the determination of the overheads that appear together with the costs in
the sufficient conditions of Section 2.1.1, as mentioned there, this is a more or less trivial
task in systems where such costs can be considered constant. However, it is often the case
that such costs have, in addition to a constant component, other components which can
be a function of several parameters, such as input data size, number of input arguments,
number of tasks, number of active processors in the system, type of processor, etc., in
which case some run-time evaluation will be needed. For example, in a distributed system,
task spawning cost is often proportional to data size, since in many models a complete
closure (a call plus its arguments) is sent to the remote processor. Thus, the evaluation
of the overheads also implies in general the generation at compile-time of a cost function,
to be evaluated at run-time when parameters (such as data size in our previous example)
are known.

2.2.3. Performing Granularity Control

Let us assume that techniques, such as those described in general terms above, for
determining task costs and overheads are given. Then, the remainder of the granularity
control task is to devise a way to actually compute such costs and then control task
creation using such information.

A Methodology for Granularity Based Control of Parallelism in LP 9

We take again the approach of doing as much of the work as possible at compile-time.
We propose performing a transformation of the program in such a way that the cost
computations and spawning decisions are encoded in the program itself, and in the most
efficient way possible. The idea is to postpone the actual computations and decisions until
run-time when the parameters missing at compile-time, such as data sizes or processor
load, are available. In particular, the transformed programs will perform the following
tasks: compute input data sizes; use those sizes to evaluate the cost functions; estimate
the spawning and scheduling overheads; decide whether to schedule tasks in parallel or
sequentially; decide whether granularity control should be continued or not, etc.

3. Cost Analysis in Logic Programming

We now further discuss the cost analysis problem in the context of logic programs. We
distinguish between the cases of and-parallelism and or-parallelism.

3.1. Cost Analysis for And-parallelism

In (goal level) and-parallelism the units being parallelized are goals. We have developed
a lower bound goal cost analysis (which also includes a non-failure analysis) which we
briefly sketch — see the work of Debray et al. (1994) for details. The problem when
estimating lower bounds is that in general it is necessary to account for the possibility
of failure of head unification, leading a naive analysis to always derive a trivial lower
bound of 0. Given (an upper approximation of) mode and type information, the analysis
can detect procedures and goals which can be guaranteed not to fail. The technique is
based on an intuitively very simple notion, that of a (set of) tests “covering” the type
of a variable. Conceptually, we can think of a clause as consisting of a set of primitive
tests on the actual parameters of the call, followed by body goals. The tests at the
beginning determine whether the clause should be executed or not, and in general may
involve pattern matching, arithmetic tests, type tests, etc. A type refers to a set of terms.
For any given clause, we refer to the conjunction of the primitive tests that determine
whether it will be executed as “the tests of the clause”. The disjunction of all the tests
of the clauses that define a particular predicate will be referred to as “the test of that
predicate.” Informally, the test of a predicate covers the type of a variable if binding this
variable to any value in the type, the test of the predicate succeeds (the extension of this
notion to tuples of variables is straightforward).

An upper-bound cost analysis of goals has been described by Debray and Lin (1993).
It is very similar and simpler than that of lower bounds, since the fact that an upper
bound on the actual run-time cost is being computed allows assuming that each literal
in the body of the clause succeeds and also that all clauses are executed (independently
of whether all solutions are required or not).

3.2. Cost analysis for Or-parallelism

The case of or-parallelism is similar to that of and-parallelism except that the units
being parallelized are branches of the computation rather than goals. However, the cost
analyses of the previous sections can be adapted by simply taking into account the
“continuation” of the choice points being considered. As an example, consider a clause
h :− . . . , L, L1, . . . , Ln.. Assume that the predicate of literal L is p, and the definition

10 P. López, M. Hermenegildo and S. Debray

of predicate p contains “c” “eligible” clauses {Cl1, . . . , Clc}, where Cli = hi :− bi.
In the or-parallel execution of literal L, the “c” choices (each one corresponding to a
clause of predicate p) and their continuations (the rest of the Li, 1 ≤ i ≤ n, and the
other goals Ln+1 to Lk that may appear after them in the resolvent at the time L is
leftmost) are executed in parallel. Let Costcli(x) and CostLi

(x) denote the cost of clause
Cli and literal Li respectively, then the cost of the choice corresponding to clause Cli,
denoted by Costchi

can be computed as follows: if we are computing lower bounds we

have that Costlchi
(x) = Costlcli

(x) +
m∑

j=1

CostlLj
(x), if non-failure is ensured for clause

Cli and m is the leftmost literal for which non-failure is not ensured; or, alternatively,
Costlchi

(x) = Costlcli
(x), if non-failure is not ensured for clause Cli. On the other hand,

when computing upper bounds we have that Costuchi
(x) = Costucli

(x) +
k∑

j=1

CostuLj
(x).

The determination of Ln+1 to Lk, the continuations of the clause under consideration,
cannot be obtained directly from the call graph in the presence of last call optimization.
The problem is that while non-tail-calls in the body of a procedure return to the caller,
because of last call optimization, a tail call does not return to its caller, but rather to the
nearest ancestor procedure that made a non-tail call. Thus, while for non-tail calls the
transfer of control from the caller to the callee and back is evident from the program’s
call graph, this is not the case for tail calls. To address this problem, given a program
we construct a context-free grammar as follows: for each program clause

p(t̄) :− Guard | q1(t̄1), . . . , qn(t̄n)

the grammar contains a production

p −→ q1 L1 q2 L2 . . . Ln−1 qn

, where the Li, which are labels corresponding to procedure continuations, are the terminal
symbols of the grammar. We then compute FOLLOW sets for this grammar (Aho et al.

1986): for any predicate p, FOLLOW(p) gives the set of possible continuations for p.

4. Granularity Control in Logic Programming: the And-Parallelism Case

We use an example to explain the basic program transformation intuitively since a

formal presentation would unnecessarily make it more complex.†

Example 4.1. Consider the predicate q/2 defined in Example 2.1, the predicate r/2
defined as follows:

r([],[]).

r([X|RX],[X2|RX1]) :- X1 is X * 2, X2 is X1 + 7, r(RX,RX1).

and the parallel goal: ..., q(X,Y) & r(X), ..., in which literals q(X,Y) and
r(Z) are executed in parallel, as described by the & (parallel conjunction) connec-
tive (Hermenegildo and Greene 1991).

The cost functions of q/2 and r/2 are Costq(n) = 2 n + 1 and Costr(n) = 3 n + 1

† Although presenting the technique proposed in terms of a source-to-source transformation is conve-
nient for clarity and also a viable implementation technique, the transformation can also obviously be
implemented at a lower level in order to reduce the run-time overheads involved even further.

A Methodology for Granularity Based Control of Parallelism in LP 11

respectively. Assume a number of processors p ≥ 2. According to Theorem 2.3, the
previous goal can safely be transformed into the following one:

..., length(X, LX), Cost_q is LX*2+1, Cost_r is LX*3+1,

(Cost_q > 15, Cost_r > 15 -> q(X,Y) & r(X); q(X,Y), r(X)), ...

where a value for the threshold (Thresu) of 15 units of computation is assumed, the
variables Cost q and Cost r denote the cost of the (sequential) execution of goal q(X,Y)
and r(Z) respectively, and LX denotes the length of the list X. 2

5. Granularity Control in Logic Programming: the Or-Parallelism Case

Consider the clause body . . . , L, L1, . . . , Ln. in the example in Section 3.2. This body
can be transformed in order to perform granularity control as follows: . . . , (cond -> L′

; L), L1, . . . , Ln. Where L′ is the parallel version of L, and is created by replacing the
predicate name of L (p) by another one, say p′, such that p′ is the parallel version of p,
and is obtained from p by replacing predicate name p with p′ in all clauses of p. p′ is
then declared as “parallel” by means of the appropriate directive. If cond holds, then the
literal L′ (parallel version of L) is executed otherwise L is executed.

A problem with the use of a predicate level parallelism directive is that either all or
none of its clauses are executed in parallel. Since there can be differences of costs between
clauses, this can lead to worse load-balancing, so a better choice can be the use of some
declaration which allows us to specify clusters of clauses such that within each cluster
clauses are executed sequentially, and the different clusters are executed in parallel. That
way, we can have several parallel versions of a predicate, each of them executed if a
particular condition holds. This is illustrated in the following example, where a call to p

in ...,p, q, r. and predicate p are transformed as follows:

..., (cond_1 -> p1 ; cond_2 -> p2; p), q, r.

p:- q1, q2, q3. p1:- q1, q2, q3 // p2:- q1, q2, q3 //

p:- r1, r2. p1:- r1, r2 // p2:- r1, r2.

p:- s1, s2. p1:- s1, s2. p2:- s1, s2.

p. p1. p2.

Here, the directive // declares three clusters for the predicate p1: the first and second
ones composed of the first and second clauses respectively, and the third cluster composed
of the third and fourth clauses (these two clauses are executed or explored sequentially).
Also, for the predicate p2 we have two clusters: the first one composed of the first clause
and the second one composed of the second, third and fourth clauses.

6. Reducing Granularity Control Overhead

The transformations proposed inevitably introduce some new overheads in the execu-
tion. It would be desirable to reduce this run-time overhead as much as possible. We
propose optimizations which include test simplification, improved term size computa-
tion, and stopping granularity control, where if it can be determined that a goal will not
produce tasks which are candidates for parallel execution, then a version which does not
perform granularity control is executed.

In order to discuss the optimizations we need to introduce some terms. We first recall
the notion of “size” of a term. Various measures can be used to determine the “size”

12 P. López, M. Hermenegildo and S. Debray

of an input, e.g., term-size, term-depth, list-length, integer-value, etc. (Debray and Lin
1993). The measure(s) appropriate in a given situation can generally be determined
by examining the operations performed in the program. Let | · |m : H → N⊥ be a
function that maps ground terms to their sizes under a specific measure m, where H is
the Herbrand universe, i.e. the set of ground terms of the language, and N⊥ the set of
natural numbers augmented with a special symbol ⊥, denoting “undefined”. Examples
of such functions are “list length”, which maps ground lists to their lengths and all
other ground terms to ⊥; “term size”, which maps every ground term to the number
of constants and function symbols appearing in it; “term depth”, which maps every
ground term to the depth of its tree representation; and so on. Thus, |[a, b]|list length = 2,
but |f(a)|list length = ⊥. We extend the definition of | · |m to tuples of terms in the
obvious way, by defining the function Sizm : Hn 7→ N⊥

n, such that Sizm((t1, . . . , tn)) =
(|t1|m, . . . , |tn|m). Let I and I ′ denote two tuples of terms, Φ a set of substitutions and
θ a substitution. We also define the set of states corresponding to a certain clause point
as those states whose leftmost goal corresponds to the literal after that program point.
We define the set of substitutions at a clause point in a similar way.

Definition 6.1. [Comp function] Given a state s1 corresponding to a clause point p1,
the current substitution θ corresponding to that state, and another clause point p2, we
define comp(θ, p2) as the set of substitutions at point p2 which correspond to states that
are in the same derivation as s1.

Definition 6.2. [Directly computable sizes] Consider a set Φ of substitutions at a clause
point p1 and another clause point p2. Sizm(I ′) is directly computable at p2 from Sizm(I)
with respect to Φ if exists a (computable) function ψ such that for all θ, θ′, θ ∈ Φ, and
θ′ ∈ comp(θ, p2), Sizm(Iθ) is defined and Sizm(I ′θ′) = ψ(Sizm(Iθ)).

Definition 6.3. [Equivalence of expressions] Two expressions E and E ′ are equivalent
with respect to the set of substitutions Φ if for all θ ∈ Φ Eθ yields the same value as E ′θ

when evaluated.

6.1. Test Simplification

Informally, we can view test simplification as follows: the starting point is an expression
which is a function of the size of a set of terms. We try to find an expression which is
equivalent to it but which is a function of a smaller set of terms. Also, we apply standard
arithmetic simplifications to this expression. Since this new expression will have less
variables, simplification will be easier and the corresponding simplified expression will be
less costly to compute.

Let us now formally describe the notion of simplification of expressions. Consider the
set of substitutions Φ′ at clause point p2, just before execution of goal g. Assume that we
have an expression E(Sizm(I ′)) to evaluate at p2. The objective is to find a program point
p1 and a tuple of terms I such that Sizm(I ′) is directly computable at p2 from Sizm(I)
with respect to Φ with the function ψ, where Φ is the set of substitutions at clause point
p1 and either p1 = p2 or p1 precedes p2 and E(Sizm(I ′)) appear after p1. We have that
E(ψ(Sizm(I)) is equivalent to E(Sizm(I ′)) with respect to Φ′. Then we can compute an
expression E′ which is equivalent to E(ψ(Sizm(I)) (by means of simplifications) with

A Methodology for Granularity Based Control of Parallelism in LP 13

respect to Φ′ and its evaluation cost is less than that of E(ψ(Sizm(I)). The following
example illustrates this kind of optimization.

Example 6.1. Consider the goal ..., q(X,Y) & r(X), ... in Example 4.1. In this
example I = I ′ = (X); Siz(I ′) is directly computable from Siz(I) with respect to Φ
with ψ, where ψ is the identity function. Siz(Iθ) is defined for all θ in Φ, since X is
bound to a ground list. Thus, we have that for all θ ∈ Φ and for all θ′ ∈ comp(θ, p2),
Siz(I ′θ′) = ψ(Siz(Iθ)). E(Siz(I)) ≡ max(2 Siz(X)+1, 3 Siz(X)+1)+15 ≤ 2 Siz(X)+
1 + 3 Siz(X) + 1. Let us now compute E ′. We have that for all θ ∈ Φ, max(2 Siz(X) +
1, 3 Siz(X)+1) ≡ 3 Siz(X)+1, so we have 3 Siz(X)+1+15 ≤ 2 Siz(X)+1+3 Siz(X)+1
which is simplified to 15 ≤ 2 Siz(X) + 1 and then to 7 ≤ Siz(X) which is E ′. Using this
expression we get a more efficient transformed program than in Example 4.1:

..., length(X, LX), (LX > 7 -> q(X, Y) & r(X) ; q(X, Y), r(X)), ...

2

In some cases test simplification avoids evaluating cost functions, so that term sizes
are compared directly with some threshold. Assume that we have a test of the form
Costp(n) > G where G is a number and Costp(n) is a monotone cost function on one
variable for some predicate p. In this case, a value k can be found such that Costp(k) ≤ G

and Costp(k + 1) > G, so that the expression Costp(n) > G can be simplified to n > k.

6.2. Stopping Granularity Control

An important optimization aimed at reducing the cost of granularity control is based
on detecting when an invariant holds recursively on the condition to perform paralleliza-
tion/sequentialization and executing in those cases a version of the predicate which does
not perform granularity control and executes in the appropriate way which corresponds
to the invariant.

Example 6.2. Consider the predicate qsort/2 defined as follows:

qsort([], []).

qsort([First|L1], L2) :- partition(First, L1, Ls, Lg),

(qsort(Ls, Ls2) & qsort(Lg, Lg2)),

append(Ls2, [First|Lg2], L2).

The following transformation will perform granularity control based on the condition
given in Theorem 2.3 and the detection of an invariant (tests have already been simplified
—we omit details— so that the input data sizes are directly compared with a threshold):

g_qsort([], []).

g_qsort([First|L1], L2) :-

partition(First, L1, Ls, Lg),

length(Ls, SLs), length(Lg, SLg),

(SLs > 20 -> (SLg > 20 -> g_qsort(Ls, Ls2) & g_qsort(Lg, Lg2);

g_qsort(Ls, Ls2) , s_qsort(Lg, Lg2))

; (SLg > 20 -> s_qsort(Ls, Ls2) , g_qsort(Lg, Lg2);

s_qsort(Ls, Ls2) , s_qsort(Lg, Lg2))),

14 P. López, M. Hermenegildo and S. Debray

append(Ls2, [First|Lg2], L2).

s_qsort([], []).

s_qsort([First|L1], L2) :-

partition(First, L1, Ls, Lg),

s_qsort(Ls, Ls2), s_qsort(Lg, Lg2),

append(Ls2, [First|Lg2], L2).

Note that if the input size is less than the threshold (20 units of computation in this

case†) then a (sequential) version which does not perform granularity control is executed.
This is based on the detection of a recursive invariant: in subsequent recursions this goal
will not produce tasks with input sizes greater or equal than the threshold, and thus,
for all of them, execution should be performed sequentially and obviously no granularity
control is needed. Giannotti and Hermenegildo (1991) presented techniques for detecting
such invariants. 2

6.3. Reducing Term Size Computation Overhead

With regard to term size computation, the standard approach is to explicitly traverse
terms, using builtins such as length/2. However such computation can also be carried
out in other ways which can potentially reduce run-time overhead:

1 In the case where input data sizes to the subgoals in the body that are candidates
for parallel execution are directly computable from those in the clause head (an
example of this is the classical “Fibonacci” benchmark – see Example 8.1) such
sizes can be computed by evaluating an arithmetic operation. Clause heads can
supply their input data size through additional arguments.

2 Otherwise term size computation can be simplified by transforming certain proce-
dures in such a way that they compute term sizes “on the fly” (Hermenegildo and
López 1995).

3 In the cases where term sizes are compared directly with a threshold it is not
necessary to traverse all the terms involved, but rather only to the point at which
the threshold is reached.

7. Taking Into Account the Cost of Granularity Control

As a result of the simplifications proposed in the previous sections three different
types of specialized versions of a predicate can be generated: sequential, parallel with
no granularity control, and parallel with granularity control. In this section we address
the issue of how to select among these versions. We can view this as a reconsideration of
the original problem of deciding between parallel and sequential execution, addressed in
Section 2, but where we add the new issue of deciding whether to perform granularity
control or not. Let Ts, Tp, and Tg denote the execution time of the sequential, parallel, and
granularity control versions for the predicate corresponding to a given call. The original
problem tackled in Section 2 can be viewed as determining min(Ts, Tp, Tg). Again, this

† This threshold is determined experimentally, by taking the average value resulting from several runs.

A Methodology for Granularity Based Control of Parallelism in LP 15

is not computable ahead of the execution of the goals and we are once more forced to
compute an approximation based on heuristics or sufficient conditions. We again take
the latter approach, i.e. using sufficient conditions, which we would in principle try to
compute for each of the six possible cases involved: Tg ≤ Ts, Tp ≤ Ts, Tp ≤ Tg, Ts ≤ Tg,
Ts ≤ Tp and Tg ≤ Tp. Since we can only approximate these conditions an important issue
is the decision taken when none of such conditions can be proved to hold. One solution
is to have a pre-determined order relation which is used unless another relation can be
proven to be true. This corresponds to the two cases of “sequentializing by default” or
“parallelizing by default” studied in Section 2, where only one condition was considered.
For example, a default ordering might be: Tg ≤ Ts ≤ Tp, which essentially expresses
a default assumption that the optimal execution time is achieved when execution is
performed in parallel with granularity control unless the contrary is proven. Goals are
also executed sequentially unless parallel execution is proven to take less time. If the “no-
slowdown” condition is to be enforced, i.e. it is required that the sequential execution
time not be exceeded, then, in all pre-determined order relations we must have that
Ts ≤ Tg and Ts ≤ Tp.

Note that these pre-determined order relations can be partial. In that case at some
point a heuristic has to be applied. The order between two costs T1 and T2 can then be
determined as follows: If T1 and T2 are related in the pre-determined order relation, then
compute a sufficient condition to prove the opposite order; otherwise, if some sufficient
condition to prove either of the relations T1 ≤ T2 or T2 ≤ T1 holds then we choose the
corresponding one; otherwise the order can be determined by means of some heuristics.
A good heuristic can be to use the average of the lower and upper bound which are
already computed or take the average of the computed costs of the different clauses of a
predicate.

8. Determining Tp and Tg of a call

The determination of a bound for Ts has already been addressed in the previous sec-
tions. There, Tp was simply assumed to be the same as Ts, taking as its approximation
the opposite bound to that used for Ts. We now address the issue of determining Tp more
precisely and also determining Tg. For conciseness, we present the techniques by means
of an example.

Example 8.1. Let us consider a transformed version gfib/2 of the fib/2 predicate
which performs run-time granularity control:

gfib(0, 0).

gfib(1, 1).

gfib(N, F):- N1 is N - 1, N2 is N - 2,

(N > 15 -> gfib(N1, F1) & gfib(N2, F2)

; sfib(N1,F1), sfib(N2,F2)),

F is F1 + F2.

sfib(0, 0).

sfib(1, 1).

sfib(N, F):- N > 1, N1 is N - 1, N2 is N - 2,

sfib(N1, F1), sfib(N2, F2),

F is F1+F2.

16 P. López, M. Hermenegildo and S. Debray

2

8.1. Cost of parallel execution without granularity control: Tp

8.1.1. Upper bounds

In general it is difficult to give a non-trivial upper bound on the cost of the parallel
execution of a given set of tasks, since it is difficult to predict the number of free processors
that will be available to them at execution time. Note that a trivial upper bound can be
computed in some cases by assuming that all the potentially parallel goals are created
as separate tasks but they are all executed by one processor.

Consider the predicate fib/2 defined in Example 8.1. Let Is denote the size of the input
(first argument) and Tp(Is) the cost of the parallel execution without granularity control
of a call to predicate fib/2 for an input of size Is. The following difference equation can
be set up for the recursive clause of fib/2: T u

p (Is) = Cu
b (Is)+Spaw

u(Is)+Schedu(Is)+
Tu

p (Is−1)+T u
p (Is−2)+Cu

a (Is) for Is > 1, where Cb(Is) and Ca(Is) represent the costs
of the sequential execution of the literals before and after the parallel call respectively,
that is, Cb(Is) represents the cost of N1 is N-1,N2 is N-2 and Ca(Is) the cost of F is

F1+F2. The solution to this difference equation gives the cost of a call to fib/2 for an
input of size Is. The following boundary conditions for the equation are obtained from
the base cases: T u

p (0) = 1 and T u
p (1) = 1.

8.1.2. Lower bounds

A trivial lower bound — taking non-failure into account, as discussed by Debray et al.

(1994) — can be computed as follows: T l
p(Is) =

W l
p(Is)

p
, where W l

p represents the work
performed by the parallel execution with no granularity control of a call to predicate
fib/2 for an input of size Is, and can be computed by solving the following difference
equation: W l

p(Is) = Cl
b(Is)+Spaw

l(Is)+Schedl(Is)+W l
p(Is−1)+W l

p(Is−2)+C l
a(Is)

for Is > 1, with the boundary conditions: W l
p(0) = 1 and W l

p(1) = 1.

As an alternative, another value for T l
p(Is) can be obtained by solving the following

difference equation: T l
p(Is) = Cl

b(Is) + Spawl(Is) + Schedl(Is) + T l
p(Is − 1) + C l

a(Is)

for Is > 1, with the boundary conditions: T l
p(0) = 1 and T l

p(1) = 1. In this case, an
infinite number of processors is considered. Since in each “fork” there are two branches,
the longest of them (T u

p (Is− 1)) is chosen.

8.2. Cost of the execution with granularity control: Tg

8.2.1. Upper bounds

The following difference equation can be set up for the recursive clause of fib/2:
Tu

g (Is) = Cu
b (Is)+Test

u(Is)+Spawu(Is)+Schedu(Is)+T u
g (Is−1)+T u

g (Is−2)+Cu
a (Is)

for Is > 15. We assume that all the potentially parallel goals are created as separate tasks
but they are all executed by one processor, as is done in Section 8.1.1.

For a call with Is = 15 there is no overhead associated with parallel execution since
it is performed sequentially, so that the following boundary conditions are obtained:
Tu

g (15) = Testu(15) + T u
s (15); and T

u
g (Is) = T u

s (15) for Is ≤ 15, where T u
s (15) denotes

A Methodology for Granularity Based Control of Parallelism in LP 17

an upper bound on the sequential execution time of a call to fib/2 with an input of size
15.

8.2.2. Lower bounds

A trivial lower bound (taken non-failure into account) can be computed as follows:

T l
g(Is) =

W l
g(Is)

g
, where W l

g represents the work performed by the execution with gran-

ularity control of a call to fib/2 for an input of size Is, which can be computed by
solving the following difference equation: W l

g(Is) = Cl
b(Is) + Testl(Is) + Spawl(Is) +

Schedl(Is)+W l
g(Is−1)+W l

g(Is−2)+C l
a(Is) for Is > 15, with the boundary conditions:

W l
g(15) = Testl(15) + T l

s(15), and W
l
g(Is) = T l

s(15) for Is ≤ 15, where T l
s(15) denotes a

lower bound on the sequential execution time of a call to fib/2 with an input of size 15.
Another value for T l

g(Is) can be obtained by solving the following difference equation:

T l
g(Is) = Cl

b(Is)+Test
l(Is)+Spawl(Is)+Schedl(Is)+T l

g(Is−1)+C l
a(Is) for Is > 15,

with the boundary conditions: T l
g(15) = Testl(15) + T l

s(15), and T l
g(Is) = T l

s(15) for
Is ≤ 15.

Table 1. Experimental results for benchmarks on &-Prolog.

programs seq ngc gc gct gcts gctss

fib(19) 1.839 0.729 1.169 0.819 0.819 0.549
(O=m) 1 -60% -12% -12% +24%

fib(19) 1.839 0.970 1.389 1.009 1.009 0.639
(O=5) 1 -43% -4.0% -4.0% +34%

hanoi(13) 6.309 2.509 2.829 2.419 2.399 2.399
(O=m) 1 -12.8% +3.6% +4.4% +4.4%

hanoi(13) 6.309 2.690 2.839 2.439 2.419 2.419
(O=5) 1 -5.5% +9.3% +10.1% +10.1%

unb matrix 2.099 1.009 1.339 1.259 0.870 0.870
(O=m) 1 -32.71% -24.78% +13.78% +13.78%

unb matrix 2.099 1.039 1.349 1.269 0.870 0.870
(O=5) 1 -29.84% -22.14% +16.27% +16.27%

qsort(1000) 3.670 1.399 1.790 1.759 1.659 1.409
(O=m) 1 -28% -20% -19% -0.0%

qsort(1000) 3.670 1.819 2.009 1.939 1.649 1.429
(O=5) 1 -11% -6.6% +9.3% +21%

18 P. López, M. Hermenegildo and S. Debray

Table 2. Experimental results for benchmarks on Muse.

programs seq ngc gctss opt e1 e2

queens(8) 17.019 2.090 1.759 1.702 +15.84 % +86.83 %

domino(12) 37.049 4.459 4.139 3.705 +7.18 % +42.43 %

series 22.429 7.360 4.860 2.243 +33.97 % +48.86 %

farmer 17.929 2.170 2.149 1.793 +0.97 % +5.57 %

9. Experimental Results

We have developed a partial prototype of a granularity control system based on the
ideas presented. The current prototype has some shortcomings: it only covers the case of
(independent, goal level) and-parallelism and the builtin type analyzer is comparatively
simple. Despite this, it can achieve effective fully automatic granularity control on three
out of the four and-parallel benchmarks (fib, hanoi, and qsort). The results are given in
Table 1. For the other benchmarks (unb matrix) and for or-parallelism we have hand-
annotated the programs following the algorithms presented and assuming state of the
art type inference technology. The results are given in Tables 1 and 2. We believe that
by completing the prototype implementation, and incorporating existing analysis tech-
nology, the development of a fully automatic granularity control system is possible, and
that our results show that such a system can result in substantial benefit in execution
time.

We have first tested the granularity control system with &-Prolog (Hermenegildo and
Greene 1991), a parallel Prolog system, on a Sequent Symmetry multiprocessor using
4 processors. Table 1 presents results of granularity control (showing execution times
in seconds) for four representative benchmarks and for two levels of task creation and
spawning overhead (O): minimal (m), representing the default overhead found in the &-
Prolog shared memory implementation (which is very small – a few microseconds), and
an overhead (the &-Prolog system allows adding arbitrary overheads to task creation via
a run-time switch) of 5 milliseconds (5), which should be representative of a hierarchical
shared memory system or of an efficient implementation on a multicomputer with a very
fast interconnect. The program unb matrix performs the multiplication of 4 × 2 and
2×1000 matrices. Results are given for several degrees of optimization of the granularity
control process: naive granularity control (gc), adding test simplification (gct), adding
stopping granularity control (gcts), and adding “on-the-fly” computation of data size
(gctss). Results are also given for the sequential execution (seq) and the parallel execu-
tion without granularity control (ngc) for comparison. The obtained speedups have been
computed with respect to ngc. The importance of the optimizations proposed is under-
lined by the fact that they result in steadily increasing performance as they are added.
Also, except in the case of qsort on a very low overhead system, the fully optimized
versions show substantial improvements w.r.t. performing no granularity control. Note
that the situations studied are on a small shared memory machine and actually imply

A Methodology for Granularity Based Control of Parallelism in LP 19

very little parallel task overhead, i.e. the conditions under which granularity control of-
fers the least advantages. Thus the results can be seen as lower bounds on the potential
improvement. Obviously, on systems with higher overheads, such as distributed systems,
the benefits can be much larger.

Regarding or-parallelism, Table 2 presents results of granularity control (showing ex-
ecution times in seconds) for some benchmarks on the Muse (Ali and Karlsson 1990)
system using 10 workers, and running on a Sequent Symmetry multiprocessor with 10
processors. queens(8) computes all the solutions to the 8 queens problem. domino(12)
computes all the legal sequences of 12 dominoes. series computes a series whose expres-
sion is a disjunction of series. farmer is the “farmer, wolf, goat/goose, cabbage/grain”
puzzle from ECRC. Results are given for the fully optimized versions which perform gran-
ularity control (gctss), the sequential execution (seq) and the parallel execution without
granularity control (ngc) for comparison. opt is a lower bound on the optimal time, i.e.
opt = seq

10 . e1 = ngc−gctss

ngc
× 100, and e2 = ngc−gctss

ngc−opt
× 100 indicate the percentage of

the saved time, with respect to the parallel execution time without granularity control
and the ideal parallel execution time respectively, when granularity control is performed.
Note that some programs do not exhibit the necessary inherent parallelism to achieve
this ideal execution time even if there were no overheads associated with their parallel
executions. The reason for introducing these two metrics is that the Muse system showed
very good performance in the execution of the selected benchmarks. This is because the
Muse scheduler performs an implicit control of parallelism depending on the load of the
system. Thus, the potential benefits from applying our granularity control techniques to
these benchmarks were more limited. This metric allows us to conclude that our results
are in fact quite good, since in general they achieve a significant portion of the potential
benefits. Note also that the situations studied are on a small shared memory machine,
and, thus, the results, as in the and-parallelism case, can be seen as lower bounds on the
potential improvement.

10. Conclusions

We have presented a complete granularity control system for logic programs, discussed
the many problems that arise (for both the cases when upper and lower bound infor-
mation regarding task granularity is available, and for a generic execution model) and
provided solutions to them. We believe that the results are general enough to be of
interest to researchers working on other parallel languages. We have also assessed the
developed granularity control techniques for and-parallelism and or-parallelism on the
&-Prolog and Muse systems respectively, and have obtained what we believe are quite
encouraging results.

It appears from the sensitivity of the results that we have observed in our experiments
that it is not essential to be absolutely precise in inferring the best grain size for a
problem: there is a reasonable amount of leeway in how precise this information has to
be. This suggests that granularity control can usefully be performed automatically by a
compiler.

We can conclude that granularity analysis/control is a particularly promising technique
because it has the potential of making feasible to automatically exploit low-cost parallel
architectures, such as workstations on a (possibly high speed) local area network.

20 P. López, M. Hermenegildo and S. Debray

References

Aho, A.V., Sethi, R., Ullman, J. D. (1986). Compilers – Principles, Techniques and Tools. Addison-
Wesley.

Ali, K.A.M., Karlsson, R. (1990). The Muse Or-Parallel Prolog Model and its Performance. 1990
North American Conference on Logic Programming, 757–776, MIT Press.

Bjerner, B., Holmstrom, S. (1989). A Compositional Approach to Time Analysis of First Order
Lazy Functional Programs. In Proc. ACM Functional Programming Languages and Computer
Architecture, ACM Press, 157–165.

Chassin, J., Codognet, P. (1994) Parallel Logic Programming Systems. Computing Surveys, ACM,
26(3):295–336.

Debray, S. (1994). Inference of Procedure Return Points in the Presence of Last Call Optimization.
Manuscript.

Debray, S., López, P., Hermenegildo, M., Lin, N. (1994). Lower Bound Cost Estimation for Logic
Programs. Technical Report TR Number CLIP4/94.0, T.U. of Madrid (UPM), Facultad Informática
UPM, 28660-Boadilla del Monte, Madrid-Spain, March.

Debray, S., Lin, N., Hermenegildo. M. (1990). Task Granularity Analysis in Logic Programs. In Proc.
of the 1990 ACM Conf. on Programming Language Design and Implementation, 174–188. ACM
Press, June.

Debray, S., Lin, N. (1993). Cost analysis of logic programs. ACM Transactions on Programming
Languages and Systems, 15(5):826–875.

Flajolet, P., Salvy, B., Zimmermann, P. (1991). Automatic Average-Case Analysis of Algorithms.
Theor. Comp. Sci., (79):37–109.

Giannotti, F., Hermenegildo, M. (1991). A Technique for Recursive Invariance Detection and Selective
Program Specialization. In Proc. 3rd. Int’l Symposium on Programming Language Implementation
and Logic Programming, 323–335. Springer-Verlag.

Goldberg, B., Hudak, P. (1985). Serial Combinators: Optimal Grains of Parallelism. In Proc. Functional
Programming Languages and Computer Architecture, Nancy, France, 201, 382–399. Springer-Verlag
LNCS, Aug.

Hermenegildo, M., López, P. (1995). Efficient Term Size Computation for Granularity Control. In
Proc. of the Twelfth International Conference on Logic Programming. The MIT Press.

Hermenegildo, M., Greene, K. (1991). The &-prolog System: Exploiting Independent And-Parallelism.
New Generation Computing, 9(3,4):233–257.

Hermenegildo, M., Rossi, F. (1995). Strict and Non-Strict Independent And-Parallelism in Logic
Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal of Logic Programming,
22(1):1–45.

Huelsbergen, L. (1993). Dynamic Language Parallelization. Technical Report 1178, Computer Science
Dept. Univ. of Wisconsin, September.

Huelsbergen, L., Larus, J. R., Aiken, A. (1994). Using Run-Time List Sizes to Guide Parallel Thread
Creation. In Proc. ACM Conf. on Lisp and Functional Programming, June.

Kaplan, S. (1988). Algorithmic Complexity of Logic Programs. In Logic Programming, Proc. Fifth
International Conference and Symposium, (Seattle, Washington), pages 780–793.

Kruatrachue, B., Lewis, T. (1988). Grain Size Determination for Parallel Processing. IEEE Software,
January.

McGreary, C., Gill, H. (1989). Automatic Determination of Grain Size for Efficient Parallel Processing.
Communications of the ACM, 32.

Le Métayer, D. (1988). ACE: An Automatic Complexity Evaluator. ACM Transactions on Programming
Languages and Systems, 10(2), April.

Rabhi, F. A., Manson, G. A. (1990). Using Complexity Functions to Control Parallelism in Functional
Programs. Res. Rep. CS-90-1, Dept. of Computer Science, Univ. of Sheffield, England, Jan.

Rosendhal, M. (1989). Automatic Complexity Analysis. In Proc. ACM Conference on Functional
Programming Languages and Computer Architecture, pages 144–156. ACM, New York.

Sarkar, V. (1989). Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press,
Cambridge, Massachusetts.

Wadler, P. (1988). Strictness analysis aids time analysis. In Proc. Fifteenth ACM Symposium on
Principles of Programming Languages, pages 119–132. ACM Press.

Zhong, X., Tick, E., Duvvuru, S., Hansen, L., Sastry, A.V.S. Sundararajan, R. (1992). Towards
an Efficient Compile-Time Granularity Analysis Algorithm. In Proc. of the 1992 International
Conference on Fifth Generation Computer Systems, pages 809–816. Institute for New Generation
Computer Technology (ICOT), June.

Zimmermann, P., Zimmermann, W. (1989). The Automatic Complexity Analysis of Divide-and-Conquer
Programs. Res. Rep. 1149, INRIA, France, December.

