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1. Introduction

The result of introducing Fuzzy Logic into
Logic Programming has been the development of
several “Fuzzy Prolog” systems. These systems
replace the inference mechanism of Prolog with a
fuzzy variant which is able to handle partial truth.
Most of these systems implement the fuzzy res-
olution introduced by Lee in [2], examples being
the Prolog-Elf system [3], Fril Prolog system [4]
and the F-Prolog language [5]. However, there
was no common method for fuzzifying Prolog as
it has been noted in [6]. Some of these Fuzzy Pro-
log systems only consider the fuzziness of predi-
cates whereas other systems consider fuzzy facts
or fuzzy rules. There is no agreement about which
fuzzy logic must be used. Most of them use min-
max logic (for modeling the conjunction and dis-
junction operations) but other systems just use
Lukasiewicz logic [7].
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On the other hand in [8] logic programming is
considered a useful tool for implementing meth-
ods for reasoning with uncertainty.

There is also an extension of constraint logic
programming [9], which can model logics based on
semiring structures. This framework can models
the min-max fuzzy logic that is the only one with
semiring structure.

Recently, it has been appeared a theoretical
model for fuzzy logic programming without nega-
tion [10], which deals with many values implica-
tions.

During last years it has been published several
papers ([11-13]) about multi-adjoint program-
ming, where it is described a theoretical model
for it but where there is not presented a way to
implemented it.

In this paper, we propose another approach
that is more general in some aspects:

1. A truth value will be a finite union of sub-
intervals on [0, 1]. An interval is a particular
case of union of one element, and a unique



truth value is a particular case of having an
interval but with only one element.

2. A truth value will be propagated through
the rules by means of an aggregation op-
erator. The definition of aggregation op-
erator is general. It subsumes conjunc-
tive operators (triangular norms [14] as min,
prod, etc), disjunctive operators [15](trian-
gular co-norms as max, sum, etc), average
operators (averages as arithmetic average,
quasi-linear average, etc) and hybrid oper-
ators (combinations of previous operators

[16]).

3. Crisp and fuzzy reasoning are combined
into a Prolog compiler consistently.

4. Tt is given the declarative and procedural
semantics for Fuzzy Logic programs and it
is proven their equivalence.

5. It is presented a implementation of the pro-
posed language.

We add fuzzyness to a Prolog compiler using
CLP(R) instead of implementing a new fuzzy res-
olution as other fuzzy Prologs do. In this way, we
use the built-in inference mechanism of Prolog,
the constraints and their operations provided by
CLP(R) to handle the concept of partial truth.
We represent intervals as constraints over real
numbers and aggregation operators as operations
with these constraints.

We have found, e.g. in [17], an interpretation of
truth values as intervals, but we are proposing for
the first time to generalize this concept to union of
intervals. We will talk about their utility below.

The goal of this paper is to show how intro-
ducing fuzzy reasoning in a Prolog system can
produce a powerful tool to solve complex fuzzy
and uncertainty problems and to present an im-
plementation of a Fuzzy Prolog as a natural ap-
plication of CLP(R).

The rest of the paper is organized as follows.
Section 2 describes the language and the seman-
tics of our fuzzy system. Section 3 gives details
about the implementation using CLP(R). Sec-
tion 4 discuss about Close Word Assumption.
Section 5 explain how can be combined crisp and

fuzzy logic in a consistent way. Section 6 show
two examples using this language and their re-
sults. Finally, we conclude and discuss some fu-
ture work (Section 7).

2. Language and Semantics

In this section we present both the language
and its semantics for our Fuzzy Prolog system.
Firstly we generalize the concept of truth value
of a logic predicate taking into account partial
truth. Secondly we define aggregation operators
to propagate truth value. Later we present the
syntax and the different semantics of our fuzzy
language, illustrating it with an example, and it
is proved the equivalence between them.

2.1. Truth value

Given a relevant universal set X, any arbitrary
fuzzy set A is defined by a function 4 : X — [0, 1]
unlike the crisp set that would be defined by a
function A : X — {0,1}. This definition of fuzzy
set is by far the most common in the literature
as well as in the various successful applications of
the fuzzy set theory. However, several more gen-
eral definitions of fuzzy sets have also been pro-
posed in the literature. The primary reason for
generalizing ordinary fuzzy sets is that their mem-
bership functions are often overly precise. They
require the assignment of a particular real num-
ber to each element of the universal set. How-
ever, for some concepts and contexts, we may
only be able to identify approximately appropri-
ate membership functions. An option is consid-
ering a membership function which does not as-
sign to each element of the universal set one real
number, but an interval of real numbers. Fuzzy
sets defined by membership functions of this type
are called interval-valued fuzzy sets [18,17]. These
sets are defined formally by functions of the form
A X — £([0,1]), where £(]0,1]) denotes the
family of all closed intervals of real numbers in
[0, 1].

In this paper we propose to generalize this def-
inition to have membership functions which as-
sign to each element of the universal set one ele-
ment of the Borel Algebra over the interval [0, 1].
These sets are defined by functions of the form



A : X — B([0,1]), where an element in B(]0,1])
is a countable union of sub-intervals of [0, 1].
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Figure 1. Definition level of a fuzzy predicate

These definitions of fuzzy sets entail different
degrees of fuzzyness. In Figure 1 we show the
concept of youth with four different interpreta-
tions.

The level of fuzzyness is increasing from the
crisp function or the simple fuzzy function, where
every age has only one real number representing
its youth, to one where an interval represents, for
example, the concept of youth of a group of peo-
ple with slightly different definitions of the bor-
ders of the function. However, if we ask two dif-
ferent groups of people, for example people from

two different continents, we might obtain a rep-
resentation like the last one. The truth value of
youth for 45 years has evolved from the value 0
in the crisp model, to the value 0.5 in the simple
fuzzy definition, later to the interval [0.2,0.5] and
finally to the union of intervals [0.2,0.5] [ J[0.8, 1].
There are many usual situations that can only
be represented by this general representation of
truth value. Here we have two simple examples
with their representation in our fuzzy language:

e Example 1: My father is 45 years old. If
someone ask me about his degree of young
I would assign V' € [0.2,0.5], but if some-
one ask him about his degree of young he
would assign himself V' € [0.8,1]. And
we can say that he is young with V €
([0.2,0.5] U[0.8,1]).

e Example 2: My sons are 16 and 18 years
old. My neighbour’s daughter, Jane, has
the same age as one of my sons but I do
not remember which one. If I consider the
simple fuzzy definition of truth, then I can
say that Jane is young with a truth value
V e ([0.1,0.7] | [0.5,0.9]) # [0.3,0.8].

age(jane,16).
age(jane,18).
youth(16) :- [0.1,0.7].
youth(17) :- [0.3,0.8].
youth(18) :- [0.4,0.9].

young(jane) :- age(jane,A), youth(A).

e Example 3: New Laptop is a branch of com-
puters with a laptop models. This model
is very slow when works with graphic ap-
plications but it is very fast when works
with office applications. If a client buys a
New Laptop computer, the truth value of
its speed will be V' € ([0.02, 0.08] | [0.75,
0.90]), but depending of its use, its speed
could the lowest the highest or even an av-
erage.

fast (newLaptop) :-
[0.02, 0.08] v [0.75, 0.90].



Where each truth value is a union of intervals
and can be used for this three different examples.

2.2. Fuzzyness versus Uncertainty

Thanks to this powerful notation we can model
many real problems but it is interesting to no-
tice that with this truth value representation we
can handle both uncertainty and fuzzyness at the
same time.

We are going to come back to the example 2 of
the above subsection. We will represent the truth
value of the concept of youth with an interval
as in the fourth representation in the Figure 1,
instead of using real numbers. We can say that,
in that case, Jane is young with a truth value V' €
([0.1,0.7] U [0.4,0,9]). It is a union of intervals
which is representing uncertainty because we do
not know which of the two intervals represents
the youth of Jane (we do not know which one of
the two is her age).

In the example 1 presented before shows the
truth value of youth of 45 years old that is
[0.1,0.4] | J[0.8,1]. It is a union of intervals which,
in this case, is representing fuzzyness because the
concept of youth is represented with the maxi-
mum level of fuzzyness. We know that the age is
45 and the truth value that represents its youth
is fuzzy.

Although both representations are semantically
different, they are tackled using the same syntax
in a sound way as we will describe below.

2.3. Aggregation Operators

The truth value of a goal will depend on the
truth value of the subgoals which are in the body
of the clauses of its definition. We use aggrega-
tion operators [19] in order to propagate the truth
value by means of the fuzzy rules. Fuzzy sets ag-
gregation is done using the application of a nu-
meric operator of the form f : [0,1]* — [0,1].
If it verifies f(0,...,0) =0 and f(1,...,1) =1,
and in addition it is monotonic and continuous,
then it is called aggregation operator. Dubois and
Prade, in [20], propose a classification of these
operators with respect to their behavior in three
groups:

1. Congunctive Operators (less or equal to
min), for example T-norms.

2. Disjunctive Operators, (greater or equal to
maz), for example T-conorms.

3. Awerage Operators (between min and maz).

If we deal with the second definition of fuzzy
sets it is necessary to generalize from aggrega-
tion operators of numbers to aggregation opera-
tors of intervals. Following the theorem proven
by Nguyen and Walker in [17] to extend T-norms
and T-conorms to intervals, we propose the next
definitions.

Definition 2.1 (interval-aggregation) Given
an aggregation f : [0,1]" — [0,1], an interval-
aggregation F : £([0,1])™ — £([0,1]) is defined as
follows:

F([wllvw%]: ) [wiszZ]) = [f(mlla :mln)af(mllta ,iﬂﬁ

Actually, we work with union of intervals and
propose the definition:

Definition 2.2 (union-aggregation) Given
an interval-aggregation F : £([0,1])" — £([0,1])
defined over intervals, a union-aggregation
F : B([0,1])™ — B([0,1]) is defined over union of
intervals as follows:

F(Bi,...,Bn) = U{F(E1,...6) | & € Bi}.

In the presentation of the theory of possibility
[21], Zadeh considers that fuzzy sets act as an
elastic constraint on the values of a variable and
fuzzy inference as constraint propagation.

In our approach, truth values and the result of
aggregations will be represented by constraints.
A constraint is a X-formula where ¥ is a signa-
ture that contains the real numbers, the binary
function symbols + and x, and the binary pred-
icate symbols =, < and <. If the constraint ¢
has solution in the domain of real numbers in the
interval [0, 1] then we say c is consistent, and we
denote it as solvable(c).

When we talk about constraints, we refer, for
example, to expressions as: (v > 0.5 A v <
0.7) Vv (v >0.8 A v <0.9) that represent the
truth value [0.5,0.7] |J [0.8,0.9].



2.4. Fuzzy Language

The alphabet of our language consists of the
following kinds of symbols: wvariables, constants,
function symbols and predicate symbols. A term
is defined inductively as follows:

1. A wvariable is a term.
2. A constant is a term.

3.if f is an n-ary function symbol and

t1,...,t, are terms, then f(t1,...,t,) is a
term.
If p is an n-ary predicate symbol, and tq,...,t,

are terms, then p(t1,...,t,) is an atomic formula
or, more simply an atom.

A fuzzy program is a finite set of fuzzy facts, and
fuzzy clauses and we obtain information from the
program through fuzzy queries. They are defined
below:

Definition 2.3 (fuzzy fact) If A is an atom,
A+w

is a fuzzy fact, where v, a truth value, is an ele-
ment in B([0, 1]) expressed as constraints over the
domain [0, 1].

Definition 2.4 (fuzzy clause) Let A, By,...,B,
be atoms,

A(—FBl,...,Bn

is a fuzzy clause where F is an interval-
aggregation operator, which induces a union-
aggregation, as by definition 2.2, F of truth val-
ues in B([0, 1]) represented as constraints over the
domain [0,1].

Definition 2.5 (fuzzy query) A fuzzy query
s a tuple

v+ A7

where A is an atom, and v is a variable (possi-
bly instantiated) that represents a truth value in

B([0,1]).

2.5. Least Model Semantics

The Herbrand Universe U is the set of all
ground terms, which can be made up with the
constants and function symbols of a program, and
the Herbrand Base B is the set of all ground
atoms which can be formed by using the predi-
cate symbols of the program with ground terms
(of the Herbrand Universe) as arguments.

Definition 2.6 (interpretation) An interpre-
tation I consists of the following:

1. a subset By of the Herbrand Base,

2. a mapping Vi, to assign a truth value, in
B([0,1]), to each element of Br.

The Borel Algebra B([0,1]) is a complete lat-
tice under Cpy, that denotes Borel inclusion, and
the Herbrand Base is a complete lattice under C,
that denotes set inclusion, therefore a set of all in-
terpretations forms a complete lattice under the
relation C defined as follows.

Definition 2.7 (interval inclusion Cjj)
Given two intervals I = [a,b], I = [e,d] in
E([0,1]), I Crr I if and only if ¢ < a and b < d.

Definition 2.8 (Borel inclusion Cpr) Given
two wunions of intervals U = I, U ... U Iy,
U =ILuU...uly in B(0,1]), U Cgr U if
and only if VI; € U EII]’. eU' . I; Cir I]'~ where
i€1.N,j€1.M.

Definition 2.9 (interpretation inclusion C)
I T I if and only if By C By and for all
B € By, VI(B) ChBr V]/(B), where I = <B[,V]>,
I' = (Bp, Vi) are interpretations.

Definition 2.10 (valuation) A valuation o of
an atom A is an assignment of elements of U to
variables of A. So 0(A) € B is a ground atom.

Definition 2.11 (model) Given an interpreta-
tion I = (B[,V[>

e [ is a model for a fuzzy fact A < wv, if
for all valuation o, 0(A) € By and v Cpy
Vi(o(4)).



e [is a model for a clause A < By,...,B,
when the following holds: for all valuation
o, if o(B;)) € Br, 1 <i <mn, and v =
FVi(o(B),-.,Vi(o(Ba)) then o(4) e
Br and v Cpr Vi(o(A)), where F is the
union aggregation obtained from F.

e [ is a model of a fuzzy program, if it is a
model for the facts and clauses of the pro-
gram.

Every program has a least model which is usu-
ally regarded as the intended interpretation of the
program since it is the most conservative model.
Let N be the meet operator on the lattice of inter-
pretations (I, C), then we can prove the following
result.

Theorema 2.1 (model intersection property)
Let I, = (Br,,V1,),Is = (B, V,) be models of a
fuzzy program P. Then Iy N I is a model of P.

Proof. Let M = (By, V) = I NIy, Since I
and I> are models of P, they are models for each
fact and clause of P. Then for all valuation o we
have

e for all fact A < v in P,

— o(A) C By, and o(A) € By, then
U(A) S B[l r‘I.B[2 = By,

- v gB[ V[l(O'(A)) and v QB[
Vi,(0(A)), then v Cpr Vi, (0(4)) N
Vi, (0(A)) = V(o (A))

therefore M is a model for A «+ v

e and for all clause A < By,...,B, in P

— if O'(Bl) € By, U(B,) € le and
o(B;) € Br,. Then o(A) € By, and
o(A) € Br,. Hence o(4) € B, N
By, = B

—ifv=FVm(o(B1)),...,Vum(c(By))),
since F' is monotonic, v Cgr Vi, (c(A4))
and v Cpr Vi, (0(A)), then v Cpr
Vi, (0(A) NV1,(0(A4)) = Vi (o(A))

therefore M is a model for A <«+p
By,...,B,

and M is model of P.

Remark 2.1 (Least model semantic) If we
let M be the set of all models of a program P,
the intersection of all of this models, (M, is a
model and it is the least model of P. We denote
the least model of a program P by lm(P).

Example 2.1 Let’s see an example. Suppose we
have the following program P:

tall(peter) < [0.6,0.7] vV 0.8

tall(john) < 0.7

swift(john) < [0.6,0.8]

good_player(X) < jukq tall(X), swift(X)

Here, we have two facts, tall(john) and
swift(john) whose truth values are the uni-
tary interval [0.7,0.7] and the interval [0.6,0.8],
respectively, and a clause for the good_player
predicate whose aggregation operator is the
Lukasiewicz T-norm.

The following interpretation I = (B,V) is a
model for P, where

B = {tall(john), tall(peter), swift(john),
good_player(john), good_player(peter)} and

V(tall(john)) = [0.7,1]
V(swift(john)) = [0.5,0.8]
V(tall(peter)) = 1[0.6,0.7]V [0.8,0.8]
V(good_player(john)) = 1[0.2,0.9]
V (good_player(peter)) = [0.5,0.9]

note that for instance if V(good_player(john)) =
[0.2,0.5] I = (B,V) cannot be a model of P, the
reason is that v = luka([0.7,1],[0.5,0.8]) = [0.7+
05—1,1+0.8 — 1] = [0.2,0.8] Z77 [0.2,0.5].

The least model of P is the intersection of all
models of P which is M = (B, Var) where
Bar = {tall(john), tall(peter), swift(john),

good_player(john)} and
Vi (tall(john)) = [0.7,0.7]
Vi (swift(john)) = [0.6,0.8]
Vi (tall(peter)) = 10.6,0.7]Vv [0.8,0.8]
Vi (good_player(john)) = [0.3,0.5]

2.6. Fixed-Point Semantics
The fixed-point semantics we present is based
on a one-step consequence operator Tp. The least



fixed-point Ifp(Tp) = I (i.e. Tp(I) = I) is the
declarative meaning of the program P, so is equal
to Im(P).

Let P be a fuzzy program and Bp the Herbrand
base of P; then the mapping Tp over interpreta-
tions is defined as follows:

Let I = (By, Vi) be a fuzzy interpretation, then
Tp(I)=1I',I' = (B, Vi)

Bp ={A € Bp | Cond}
Vi (4) = J{v € B([0,1]) | Cond}

where
Cond = (A <+ v is a ground instance
of a fact in P and solvable(v))
or
(A«p Ay,..., A, is a ground

instance of a clause in P,
{4,,...,A,} C By

and solvable(v),
v=FVi(41),...,Vi(4A,))).

The set of interpretations forms a complete lat-
tice so that, Tp it is continuous.

Recall the definition of the ordinal powers of a
function G over a complete lattice X:

U{Gta | d <a}
if « is a limit ordinal,
GG 1 (a—1))

if « is a successor ordinal,

GTa=

and dually,
MG la'|d <a}

if « is a limit ordinal,
GGl (a—1))

if « is a successor ordinal,

Gla=

Since the first limit ordinal is 0, it follows that
in particular, G 1 0 = Lx (the bottom element of
the lattice X) and G | 0 = T x (the top element).
From Kleene’s fixed point theorem we know that
the least fixed-point of any continuous operator
is reached at the first infinite ordinal w. Hence

Lfp(Tp) =Tp T w.

Example 2.2 Consider the same program P of
the example 2.1, the ordinal powers of Tp are

Tp10={}
Tp 11 = {tall(john), swift(john),
tall(peter)} and

V(tall(john)) = [0.7,0.7]
V(swift(john)) = [0.6,0.8]
V(tall(peter)) = [0.6,0.7] vV [0.8,0.8]

Tp 1 2 = {tall(john), swift(john), tall(peter),
good_player(john)} and

V(tall(john)) = [0.7,0.7]
V(swift(john)) = [0.6,0.8]
V (tall(peter)) = [0.6,0.7] vV [0.8,0.8]
V(good_player(john)) = 1[0.3,0.5]

Tp13=Tp12.

Lemma 2.1 Let P a fuzzy program, M is a
model of P if and only if M is a prefizpoint of
Tp, that is Tp(M) C M.

Proof. Let M = (Bm,Vm) and Tp(M) =
<BTP ) VTP)'

We first prove the “if” direction. Let A be
an element of Br,, then by definition of Tp
there exists a ground instance of a fact of P,
A « v, or a ground instance of a clause of P,
A —F Al,...,An where {Al,...,An} - By
and v = F(Vy(41),...,Vim(Ay)). Since M is
a model of P, A € By, and each v Cgr Var(4),
then Vr, (4) Cpr Vam(A) and then Tp(M) C M.
[

Analogously, for the “only if” direction, for
each ground instance where {Ay,..., A,} C By,
v = F(Vm(41),...,Vm(An)), A € Brp. and
v gB[ VTP(A), but as TP(M) Q M, BTp Q BM
and Vr,(4) Cpr Vam(A4). Then A € Bjs and
v Cpr Var(A) therefore M is a model of P. O

Given this relationship, it is straightforward to
prove that the least model of a program P is also
the least fixed-point of Tp.

Theorema 2.2 Let P be a fuzzy program,
Im(P) = Lfp(Tp).



Proof.

Im(P) = ({M | M is a model of P}
= (M | M is a pre-fixpoint of P}
from lemma 2.1
= Ifp(Tp) by the Knaster-Tarski
Fixpoint Theorem [22]OC

2.7. Operational Semantics

The procedural semantics is interpreted as a
sequence of transitions between different states
of a system. We represent the state of a transi-
tion system in a computation as a tuple (A4, g, S)
where A is the goal, o is a substitution represent-
ing the instantiation of variables needed to get
to this state from the initial one and S is a con-
straint that represents the truth value of the goal
at this state.

When computation starts, A is the initial goal,
o =0 and S is true (if there are neither previous
instantiations nor initial constraints). When we
get to a state where the first argument is empty
then we have finished the computation and the
other two arguments represent the answer.

A transition in the transition system is defined
as:

1. (AUa,0,S) = (40,0 -0,S A g = v)

if h < v is a fact of the program P, 6 is the
mgu of a and h, p, is the truth value for a
and solvable(S A pq, = v).

2. (AUa,0,5) - (AUB)#,0-6,S Ac)

if h «F B is a rule of the program P, 6 is
the mgu of a and h, ¢ is the constraint that
represents the truth value obtained apply-
ing the union-aggregation F to the truth
values of B, and solvable(S A ¢).

3. (AUa,o0,S) = fail
if none of the above are applicable.
The success set, SS(P) collects the answers to
simple goals p(Z). It is defined as follows:
S5(P) = (B,V)

where B = {p(#)|(p(), 0, true) —* (0,, 5)}
is the set of elements of the Herbrand Base

that are instantiated and that have suc-
ceeded; and V(p(z)) = U{v|(p(Z),0,true) —*
(#,0,S),and v is the solution of S} is the set of
truth values of the elements of B that is the union
(got by backtracking) of truth values that are ob-
tained from the set of constraints provided by the
program P while query p(Z) is computed.

Example 2.3 Let P be the program of example
2.1. Consider the fuzzy goal

u < good_player(X) ?
the first transition in the computation is

({(good_player(X)}, e, true) —
({tall(X), swift(X)},e,
n= mam(oautall + Wswift — 1)>

unifying the goal with the clause and adding the
constraint corresponding to Lukasiewicz T-norm.
The next transition leads to the state:

<{S1U’Lft(X)}, {X = jOhn}au = maiﬂ(O,Mtalz +
Pswift — 1) A prgan = 0.7)

after unifying tall(X) with tall(john) and adding
the constraint regarding the truth value of the
fact. The computation ends with:

<{}7{X = jOhn},ll = maﬂf(oaﬂmu + Wswift —
1) A prtanr = 0.7 A 0.6 < frgwipt A Pswipt < 0.8)

As pp = maz(0, pan + pswife — 1) A pizarr = 0.7A
0.6 < pswift N prswife < 0.8 entails p € [0.3,0.5],
the answer to the query good_player(X) is X =
john with truth value the interval [0.3,0.5].

In order to prove the equivalence between op-
erational semantic and fixed-point semantic, it is
useful to introduce a type of canonical top-down
evaluation strategy. In this strategy all literals
are reduced at each step in a derivation. For ob-
vious reasons, such a derivation is called breadth-

first.

Definition 2.12 (Breadth-first transition)



Given the following set of valid transitions:

({{A1,...,An},0,5) —
({{42,...,Ax}UB1,0-61,S Ney)

<{{A1,...,An},0,s>—>
({{Al,Ag...,An}UBQ,U'92,5A02>

<{{A1,...,An},0,s> -
({{Al,...,An,l}UBn,a-Gn,S/\cm

a breadth-first transition is defined as

<{A17 . 'aAn}aaa S> —BF

<31U...UBn,U'01 '...'0n,S/\Cl/\.../\Cn>
in which all literals are reduced at one step.

For example a breadth-first derivation of the
above example is:

({(good_player(X)}, e, true) = pr
({tall(X), swift(X)}, e,
o =maz(0, o + Pswift — 1)) = BF

({}, {X = john},

m = maw(oa,utall + Wswift — 1)/\
Htall = 0.7A0.6 S Hswift A Hswift S 08>

Theorema 2.3 Given a ordinal number n and
Tp t n = (Bry, ,Vrp, ). there is a successful
breadth-first derivation of lengh less or equal to
n+1 for a program P, ({Ay,..., Ax},0,51) =2%F
(0,0,8:) iff Aif € Br,, and solvable(S A pa; =
v;) and v; Cpr Vrp, (Aif).

Proof. The proof is by induction on n. For the
base case, all the literals are reduced using the
first type of transitions, that is, for each literal
A;, it exits a fact h; < v; such that 6; is the mgu
of A; and h;, and p4, is the truth variable for
A;, and solvable(S; A pa, = v;). By definition of
Tp, each A;0; € BTP1 and each v; Cpgr VvTP1 (Al0)
where (BTP1 s VTp1> = Tp T 1.

For the general case, consider the successful
derivation,
({A1,...,Ax},01,51) =BF (B,02,5) =BF ...
... —BF (07 On, Sn)
consider the transition

<{A17 s 7Ak}701751> —BF <B502752>

When a literal A; is reduced using a fact the
result is the same as in the base case, other-
wise there is a clause h; < Bi,,...,Bp, in P
such that 6; is the mgu of A; and h; € Bos and
Bj,0; € Bos, by the induction hypothesis Boy C
By, _, and solvable(S2App;, =vj,) andvj, Cpr
VTPn71 (B]'i 0'2) then B]ﬁl g BTPTL71 and by defi-
nition of T'p, A;6; € Br,, and solvable(SiApa; =
Ui) and V; :gB[ VTP" (Aiol). O

Theorema 2.4 For a program P there is a suc-
cessful derivation

(p(2),0,true) =* (0,0, S)

iff p(Z)o € B and v is the solution of S and
v Cpr V(p(z)o) where lfp(Tp) = (B,V)

Proof. Tt follows from the fact that Ifp(Tp) =
Tp 1 w and from the Theorem 2.3. O

Theorema 2.5 For a fuzzy program P the three
semantics are equivalent, i.e.

SS(P) = Lfp(TP) = Im(P)

Proof. the first equivalence follows from Theo-
rem 2.4 and the second from Theorem 2.2. [

3. Implementation and Syntax

3.1. CLP(R)

Constraint Logic Programming [23] began as
a natural merging of two declarative paradigms:
constraint solving and logic programming. This
combination helps make CLP programs both ex-
pressive and flexible, and in some cases, more effi-
cient than other kinds of logic programs. CLP(R)
[24] has linear arithmetic constraints and com-
putes over the real numbers.

We decided to implement this interpreter as
a syntactic extension of a CLP(R) system.
CLP(R) was incorporated as a library in the Ciao
Prolog system'.

Ciao Prolog is a next-generation logic program-
ming system which, among other features, has

IThe Ciao system including our Fuzzy Pro-
log  implementation can be downloaded from
http://www.clip.dia.fi.upm.es/Software/Ciao.
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been designed with modular incremental compi-
lation in mind. Its module system [25] will permit
having classical modules and fuzzy modules in the
same program and it incorporates CLP(R).

Many Prolog systems have included the possi-
bility of changing or expanding the syntax of the
source code. One way is using the op/3 builtin
and another is defining ezpansions of the source
code by allowing the user to define a predicate
typically called term expansion/2. Ciao has re-
designed these features so that it is possible to
define source translations and operators that are
local to the module or user file defining them.
Another advantage of the module system of Ciao
is that it allows separating code that will be used
at compilation time from code which will be used
at run-time.

We have written a library (or package in the
Ciao Prolog terminology) called fuzzy which im-
plements the interpreter of our fuzzy Prolog lan-
guage described in section 2.

3.2. Syntax
Each fuzzy Prolog clause has an additional ar-
gument in the head which represents its truth
value in terms of the truth values of the subgoals
of the body of the clause. A fact A + v is rep-
resented by a Fuzzy Prolog fact that describes
the range of values of v with a union of intervals
(that can be only an interval or even a real num-
ber in particular cases). The following examples
illustrate the concrete syntax of programs:
youth(45) + youth(45) : ~
[0.2,0.5] |J [0.8,1]

tall(john) < 0.7 tall(john):~ 0.7.

swift(john) swift(john):~
[0.6,0.8] [0.6,0.8].
good_player(X) ¢ min good_player(X):~min
tall(X), tall(X),

swift(X) swift (X).

These clauses are expanded at compilation
time to constrained clauses that are managed by
CLP(R) at run-time. Predicates . =./2,.< ./2,
. <= ./2, . > ./2 and . >= ./2 are the Ciao
CLP(R) operators for representing constraint in-
equalities. For example the first fuzzy fact is ex-
panded to these Prolog clauses with constraints

youth(45,V):- V .>=. 0.2,

[0.2,0.5]v[0.8,1].

V .<=. 0.5.
youth(45,V):- V .>=. 0.8,
Vv .<. 1

And the fuzzy clause

good_player(X) :~ min
tall(X), swift(X).

is expanded to

good_player (X,Vp) :- tall(X,Vq),swift(X,Vr),

minim([Vq,Vr],Vp),
Vp .>=. 0, Vp =<. 1.

The predicate minim/2 is included as run-time
code by the library. Its function is adding con-
straints to the truth value variables in order to
implement the T-norm min.

minim([],_ ).

minim([X],X).

minim([X,Y|Rest],Min) :-
min(X,Y,M),
minim([M|Rest] ,Min).

min(X,Y,Z):- X .=<. Y , Z .=. X.

min(X,Y,Z):- X .>. Y, Z .=. Y .

We have implemented several aggregation op-
erators as prod, max, luka, etc. and in a similar
way any other operator can be added to the sys-
tem without any effort. The system is extensible
by the user simply adding the code for new ag-
gregation operators to the library.

3.3. Fuzzy Negation

We also provide the possibility of defining a
predicate that is the fuzzy negation of a given
fuzzy predicate. For example, not_young/2 can
be defined from young/2 (see figure 2) with the
following line:

not_young :# fnot young/2.
that is expanded at compilation time as:
not_young (X,V) :-

young (X,Vp),
V.=. 1 - Vp.



3.4. Syntactic Sugar

Fuzzy predicates with piecewise linear continu-
ous membership functions like young/2 in Figure
2 can be written in a compact way:

young :# fuzzy_predicate([(0,1),(35,1),
(45,0),(120,001).

This friendly syntax is translated to arithmetic
constraints. We can even define the predicate di-
rectly if we so prefer. The code expansion is the
following;:

A
11
0 10 30 50
young(X,1):- X .>=. 0,
X .<. 35.
young (X, V) : - X .>=. 35,
X .<. 45,
10%V .=. 45-X.
young(X,0) :- X .>=. 45,
X .=<. 120.

Figure 2. Fuzzy predicate young/2

4. Closed World Assumption

We have to set a semantics to interpret our
fuzzy predicates. We have thought about two
main possibilities. E.g., if we have the definition
of age_about_21/2 as

age_about_21(john,1):~

where the goal age_about_21(X, V) success with
X = john and V =1 or with X = susan and
V = 0.7. If we want to work with the Closed
World Assumption (CWA) [26] then we will ob-
tain V' = 0 for any other value of X different from
john and susan. The meaning is that the predi-
cate is defined for all values and the membership

. age_about_21(susan,0.

7):"

11

value will be 0 if the predicate is not explicitly de-
fined with other value. In this example we know
that the age of john and susan is about 21 and
with CWA we are saying too that the rest of the
people are not about 21. This is the equivalent
semantics to the one in crisp definitions but we
think that we usually prefer to mean something
different, i.e. in this case we can mean that we
know that john and susan are about 21 and that
we have no information about the age of the rest
of people. Therefore we do not know if the age
of peter is about 21 or not; and if we know that
nick’s age is not about 21 we can explicitly de-
clare

age_about_21(nick,0):~ .

We are going to work with this semantics for
fuzzy predicates because we think it is the most
alike to human reasoning. So a fuzzy goal can
be true (value 1), false (value 0) or having other
membership value. We have added the concept
of unknown to represent no explicit knowledge in
fuzzy definitions. The way of represent this new
state is very simple, using the common failure
of Prolog. We give it the meaning of unknown
considering that the meaning that it has in crisp
logic is not necessary here because in fuzzy logic
is represented with truth value 0. E.g. with our
definition of age_about_21/2 we will get

?- age_about_21(john,V).

v=17;

?- age_about_21(nick,V).
V=07;

?- age_about_21(peter,V).
no

This means john’s age is about 21, nick’s age
is not about 21 and we have no data about peter’s
age.

We are going to use crisp Prolog predicates too
and Prolog works with the CWA. This means that
all information that is not explicitly true then is
false. E.g., if we have the predicate definition of
student/1 as

student (john) . student(peter).

then we have that the goal student(X) suc-
cesses with X = john or with X = peter but
fails with any other value different from these.
IL.e, here we can have
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?- student (john).
yes

7- student(nick).
no

that means that john is a student and nick is
not. This is the semantics of Prolog and it is the
one we are going to adopt for crisp logic because
we want our system to be compatible with con-
ventional Prolog reasoning. Notice the different
interpretation of the Prolog failure for crisp or
fuzzy goals.

5. Combining Crisp and Fuzzy Logic

Sometimes we use definitions of fuzzy predi-
cates that include crisp predicate calls (see work
[27] for more details). The definition usually uses
crisp predicate calls as requirements that data
have to satisfy to verify the definition in a level
superior to 0. E. g. if we can say that a mature
student is a student whose age is about 21 then we
can define the fuzzy predicate mature_student/2
as

mature_student (X) :~
student (X),
age_about_21(X) .

The way of interpret this definition is salty
complicated if we realize there are subgoals in the
body of the clause with two semantics because
crisp and fuzzy predicates has different seman-
tics as we have seen in 4. In this example what
we want is that the goal mature_student(X,V)
gives us V = 0 if X were not a student for a
value of X, and that V had the corresponding
value if X is an student and we know if his age is
about 21, and that if X were a student but we do
not know anything about his age then the result
will be unknown. E.g. we can interpret

?- mature_student (john,V).

.=.(v,1.0) 7

?7- mature_student (susan,V).
.=.(V,0.0) ?

?7- mature_student (peter,V).
no

as john is a mature student (he is a student and
his age is about 21), susan is not a mature stu-
dent (since she is not a student) and we do not
know the value of maturity of peter as student

because although he is a student, we do not know
if his age is about 21.

5.1. Solution: Fuzzify crisp predicates

It is important to centre the problem to resolve.
We realize that the good way to focus the problem
of combining crisp and fuzzy logic is transforming
crisp in fuzzy predicates before the combination
and forthcoming we can deal with the more lo-
cated problem of how to fuzzify a crisp predicate.

For the below example of crisp predi-
cate student/1, we will produce the predicate
f-student/2 that will be an equivalent fuzzy pred-
icate to the crisp one.

f_student :# fuzzy student/1.

So there would be a new definition of
mature_student/2 that will be

mature_student (X,M):~
f_student (X,M1),
age_about_21(X,M2).

For this reason the internal running of our fuzzy
is very homogeneous because we only consider
fuzzy subgoals in the body of the clause. Now
the only and not simple problem is how to fuzzify
crisp predicates.

5.2. Fuzzified Predicates

If we make a crisp predicate turns into fuzzy,
then we have to keep the same semantics interpre-
tation. For our example we could think in a first

glance that the corresponding fuzzified definition
will be

f_student(john, 1):” . f_student(peter, 1):~ .

Nevertheless it is not semantically equivalent
to student/1. With the crisp one we show that
john and peter are students and that any other
value of X in student(X) would make the goal to
fail. E.g. the goals

?- student (peter) .
yes

?7- student (susan).
no

means that peter is a student and susan not.
However, the definition of f_student below means
that john and peter are students and that we do
not know which values of owing will be V' for the



rest values of X in the goal f_student(X,V). Le.,
the same goals

?7- f_student (peter,V).
.=.(V,1.0) ?

?- f_student(susan,V).
no

means that peter is a student and that we do
not know if susan is a student or not when what
we would like to say is that we know that she is
not a student. So, the answer that is semantically
equivalent to the first ones will be

7?- f_student (peter,V).
.=.(V,1.0) ?

?- f_student(susan,V).
.=.(V,0.0) ?

This is the way of work of our fuzzified pred-
icates, it is the only sound transformation that
keep the same meaning than in the crisp predi-
cates. We have tried to get an automatic method
to obtain the equivalent fuzzy predicate to a crisp
one keeping this semantics.

The first simple approach is to use the cut of
Prolog to implement the corresponding fuzzified
predicate. So, for a predicate student(X) will be:

f_student (X,V):-
student (X),!,
vV .=. 1.

f_student (V,0).

The result is that V' = 1 if the goal pred(X)
success and V = 0 otherwise. @~ With our
example we obtain the expected results for
f-student(peter, V') and f_student(susan, V) but
we find the problem in goals as:

?- f_student(X,1).
X = john 7 ;
no

where the cut avoids the backtracking and it is
impossible to get all the solution. This problem
is simply resolve with the alternative transforma-
tion:

f_student (X,V):-
if (student (X) ,V=1,V=0).

It resolves the problem of the backtracking be-
cause of the implementation of the i f/3 predicate
and returns us
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?- f_student(X,1). ?-f_student (susan,V).

X = john 7 ; .=.(V,0.0)
X = peter 7 ;
no

This is not only useful to give constructive an-
swers to goals of fuzzified predicates but it is the
way of getting constructive solutions in fuzzy con-
sults of a fuzzy predicate that is defined combin-
ing crisp and fuzzy logic.

6. Examples

6.1. Example 1

A simple example could be trying to measure
the possibility that a couple of values, obtained
throwing two loaded dice, sum 5. Let us suppose
we only know that one die is loaded to obtain
a small value and the other is loaded to obtain
a large value. We deal with the fuzzy concepts
small and large (Figure 3):

small(1) :~ [0.9,1]. small(2) :~ [0.9,1].
small(3) :~ [0.6,0.7]. small(4) :~ [0.3,0.4].
small(5) :~ [0,0.1]. small(6) :~ [0,0.1].
large :# fnot small/2.

small

large

Figure 3. Fuzzy predicates small/2 and large/2
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In fuzzy Prolog, this problem can be repre-
sented using for example, min-max logic or other
T-norm and T-conorm as prod and dprod. With
our fuzzy Prolog we can use any of them as, in

the following two programs:

diel(X):~
small (X).

die2(X):~
large (X) .

two_dice(X,Y):” min
diel(X),die2(Y).

sum(5) : ¥ max

diel(X):~
small (X).

die2(X):~
large (X) .

two_dice(X,Y):~ prod
diel(X),die2(Y).

sum(5) : © dprod
two_dice(4,1),
two_dice(1,4),
two_dice(3,2),
two_dice(2,3).

two_dice(4,1),
two_dice(1,4),
two_dice(3,2),
two_dice(2,3).

?7- sum(5,V). ?7- sum(5,V).
Vv .=. [0.6,0.7] ? vV .=. [0.66,0.83] ?
yes yes

two_dice(X,Y) represents the possibility that the
first die gives X and at the same time the second
die gives Y. The predicate sum(5) aggregates the
possibilities of the four cases in which the two dice
can sum 5. To consult the truth value of a goal
we are going to use an additional argument, i.e.
sum(5,V). Other syntax is to use another predi-
cate truth(Goal,V) to obtain the truth value V
of a goal Goal. In this case, it is equivalent to
truth(sum(5),V). In the consults of our exam-
ple we can observe the different provided answers
for each aggregation operator.

6.2. Example 2

A more real example could be the problem of
compatibility of a couple of turns in a work place.
For example teachers that work in different class
timetables, telephone operators, etc. Imagine a
company where the work is divided in turns of 4
hours per week. Many workers have to combine a
couple of turns in the same week and a predicate
compatible/2 is necessary to check if two turns are
compatible or to obtain which couples of turns are
compatible. Two turns are compatible when both
are correct (working days from Monday to Friday,

hours between 8 a.m. and 18 p.m. and there are
no repetitions of the same hour in a turn) and in
addition when the turns are disjoint.

compatible(T1,T2):-
correct_turn(T1),
correct_turn(T2),
disjoint (T1,T2).

But there are so many compatible combina-
tions of turns that it would be useful to define
the concept of compatibility in a fuzzy way in-
stead of in the crisp way it is defined above. It
would express that two turns could be incompat-
ible if one of them is not correct or if they are
not disjoint but when they are compatible, they
can be more or less compatible. They can have
a level of compatibility. Two turns will be more
compatible if the working hours are concentrated
(the employee has to go to work few days during
the week). Also, two turns will be more compat-
ible if there are few free hours between the busy
hours of the working days of the timetable.

few_days

01 2 3 4 5 days
without_gaps
1

0 1 2 3 4 5 6 7 8 hours

Figure 4. Fuzzy predicates few_days/2 and with-
out_gaps/2

Therefore, we are handing crisp concepts



(correct_turn/1, disjoint/2) and besides fuzzy
concepts (without_gaps/2, few_days/2). Their
definitions, represented in figure 4, are expressed
in our language in this simple way:

few_days :#
fuzzy_predicate([(0,1),(1,0.8),
(2,0.6),(3,0.4),
(4,0.2),(5,001).

without_gaps :#
fuzzy_predicate([(0,1),(1,0.8),
(5,0.3),(7,0.1),
(8,001).
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Figure 5. Timetable 1, 2, 3 and 4

A simple implementation combining both types
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of predicates could be:

compatible(T1,T2):~ min
correct_turn(T1),
correct_turn(T2),
disjoint(T1,T2),
append(T1,T2,T),
number_of_days(T,D),
few_days (D),
number_of_free_hours(T,H),
without_gaps (H) .

Where append/3 gives the total weekly
timetable of 8 hours from joining two turns,
number_of_days/3 obtains the total number
of working days of a weekly timetable and
number_of_free_hours/2 returns the number of
free one hour gaps that the weekly timetable has
during the working days.

Observe the timetables in figure 5. We can
obtain the compatibility between the couple of
turns, T1 and T2, represented in each timetable
with the consult compatible(T1,T2,V). The re-
sult is V' = 0.2 for the timetable 1, V' = 0.6 for
the timetable 2. And V' = 0 for the timetable
3 because the turns are incompatible, and also
V = 0 for the timetable 4 because turn T2 is not
correct.

7. Conclusions and Future work

The novelty of the Fuzzy Prolog presented here
is that it is implemented over Prolog instead of
implementing a new resolution system. This gives
it a good potential for efficiency, more simplicity
and flexibility. For example aggregation operators
can be added with almost no effort. This exten-
sion to Prolog is realized by interpreting fuzzy
reasoning as a set of constraints [21], and after
that, translating fuzzy predicates into CLP(R)
clauses. The rest of the computation is resolved
by the compiler.

Most of the other Fuzzy Prolog considers
only one operator to get the truth value of the
fuzzy clauses. We have generalized all opera-
tors through the concept of aggregation and this
makes our Fuzzy Prolog subsume all the means
of resolution of the others, but it is also given a
way to implement it. Another advantage of our
approach is that it can be implemented with little
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effort over any other CLP(R) system.

We have managed to combine crisp and fuzzy
logic in the same compiler. This is a great ad-
vantage because it lets us model many problems
using fuzzy programs. So we have extended the
expressivity of the language and the possibility of
applying it to solve real problems.

Presently we are working in several related is-
sues:

¢ Obtaining constructive answers to negative
goals.

e Implementing operators to defuzzying truth
values.

e Constructing the syntax to work with dis-
crete fuzzy sets.

e Introducing domains of fuzzy sets using
types.

e Implementing the expansion over other
CLP(R) systems.
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