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former approa
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ause it uses a truth value representation based on a union of sub-intervals on [0,1℄ and it is

de�ned using general operators that 
an model di�erent logi
s. This extension to Prolog is realized by interpreting

fuzzy reasoning as a set of 
onstraints whi
h are propagated through the rules by means of aggregation operators.

It is given the de
larative and pro
edural semanti
s for Fuzzy Logi
 programs and it is proven their equivalen
e.

In addition, we present the implementation of an interpreter for this 
on
eived language using Constraint Logi


Programming over Real numbers (CLP(R)).
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1. Introdu
tion

The result of introdu
ing Fuzzy Logi
 into

Logi
 Programming has been the development of

several \Fuzzy Prolog" systems. These systems

repla
e the inferen
e me
hanism of Prolog with a

fuzzy variant whi
h is able to handle partial truth.

Most of these systems implement the fuzzy res-

olution introdu
ed by Lee in [2℄, examples being

the Prolog-Elf system [3℄, Fril Prolog system [4℄

and the F-Prolog language [5℄. However, there

was no 
ommon method for fuzzifying Prolog as

it has been noted in [6℄. Some of these Fuzzy Pro-

log systems only 
onsider the fuzziness of predi-


ates whereas other systems 
onsider fuzzy fa
ts

or fuzzy rules. There is no agreement about whi
h

fuzzy logi
 must be used. Most of them use min-

max logi
 (for modeling the 
onjun
tion and dis-

jun
tion operations) but other systems just use

Lukasiewi
z logi
 [7℄.

Corresponding authors: email�adress ,email�adress

A preliminary version of this paper appeared as [1℄ This

resear
h was supported in part by . . .

On the other hand in [8℄ logi
 programming is


onsidered a useful tool for implementing meth-

ods for reasoning with un
ertainty.

There is also an extension of 
onstraint logi


programming [9℄, whi
h 
an model logi
s based on

semiring stru
tures. This framework 
an models

the min-max fuzzy logi
 that is the only one with

semiring stru
ture.

Re
ently, it has been appeared a theoreti
al

model for fuzzy logi
 programming without nega-

tion [10℄, whi
h deals with many values impli
a-

tions.

During last years it has been published several

papers ([11{13℄) about multi-adjoint program-

ming, where it is des
ribed a theoreti
al model

for it but where there is not presented a way to

implemented it.

In this paper, we propose another approa
h

that is more general in some aspe
ts:

1. A truth value will be a �nite union of sub-

intervals on [0; 1℄. An interval is a parti
ular


ase of union of one element, and a unique
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truth value is a parti
ular 
ase of having an

interval but with only one element.

2. A truth value will be propagated through

the rules by means of an aggregation op-

erator. The de�nition of aggregation op-

erator is general. It subsumes 
onjun
-

tive operators (triangular norms [14℄ as min,

prod, et
), disjun
tive operators [15℄(trian-

gular 
o-norms as max, sum, et
), average

operators (averages as arithmeti
 average,

quasi-linear average, et
) and hybrid oper-

ators (
ombinations of previous operators

[16℄).

3. Crisp and fuzzy reasoning are 
ombined

into a Prolog 
ompiler 
onsistently.

4. It is given the de
larative and pro
edural

semanti
s for Fuzzy Logi
 programs and it

is proven their equivalen
e.

5. It is presented a implementation of the pro-

posed language.

We add fuzzyness to a Prolog 
ompiler using

CLP(R) instead of implementing a new fuzzy res-

olution as other fuzzy Prologs do. In this way, we

use the built-in inferen
e me
hanism of Prolog,

the 
onstraints and their operations provided by

CLP(R) to handle the 
on
ept of partial truth.

We represent intervals as 
onstraints over real

numbers and aggregation operators as operations

with these 
onstraints.

We have found, e.g. in [17℄, an interpretation of

truth values as intervals, but we are proposing for

the �rst time to generalize this 
on
ept to union of

intervals. We will talk about their utility below.

The goal of this paper is to show how intro-

du
ing fuzzy reasoning in a Prolog system 
an

produ
e a powerful tool to solve 
omplex fuzzy

and un
ertainty problems and to present an im-

plementation of a Fuzzy Prolog as a natural ap-

pli
ation of CLP(R).

The rest of the paper is organized as follows.

Se
tion 2 des
ribes the language and the seman-

ti
s of our fuzzy system. Se
tion 3 gives details

about the implementation using CLP(R). Se
-

tion 4 dis
uss about Close Word Assumption.

Se
tion 5 explain how 
an be 
ombined 
risp and

fuzzy logi
 in a 
onsistent way. Se
tion 6 show

two examples using this language and their re-

sults. Finally, we 
on
lude and dis
uss some fu-

ture work (Se
tion 7).

2. Language and Semanti
s

In this se
tion we present both the language

and its semanti
s for our Fuzzy Prolog system.

Firstly we generalize the 
on
ept of truth value

of a logi
 predi
ate taking into a

ount partial

truth. Se
ondly we de�ne aggregation operators

to propagate truth value. Later we present the

syntax and the di�erent semanti
s of our fuzzy

language, illustrating it with an example, and it

is proved the equivalen
e between them.

2.1. Truth value

Given a relevant universal set X , any arbitrary

fuzzy set A is de�ned by a fun
tion A : X ! [0; 1℄

unlike the 
risp set that would be de�ned by a

fun
tion A : X ! f0; 1g. This de�nition of fuzzy

set is by far the most 
ommon in the literature

as well as in the various su

essful appli
ations of

the fuzzy set theory. However, several more gen-

eral de�nitions of fuzzy sets have also been pro-

posed in the literature. The primary reason for

generalizing ordinary fuzzy sets is that their mem-

bership fun
tions are often overly pre
ise. They

require the assignment of a parti
ular real num-

ber to ea
h element of the universal set. How-

ever, for some 
on
epts and 
ontexts, we may

only be able to identify approximately appropri-

ate membership fun
tions. An option is 
onsid-

ering a membership fun
tion whi
h does not as-

sign to ea
h element of the universal set one real

number, but an interval of real numbers. Fuzzy

sets de�ned by membership fun
tions of this type

are 
alled interval-valued fuzzy sets [18,17℄. These

sets are de�ned formally by fun
tions of the form

A : X ! E([0; 1℄), where E([0; 1℄) denotes the

family of all 
losed intervals of real numbers in

[0; 1℄.

In this paper we propose to generalize this def-

inition to have membership fun
tions whi
h as-

sign to ea
h element of the universal set one ele-

ment of the Borel Algebra over the interval [0; 1℄.

These sets are de�ned by fun
tions of the form
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A : X ! B([0; 1℄), where an element in B([0; 1℄)

is a 
ountable union of sub-intervals of [0; 1℄.
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Figure 1. De�nition level of a fuzzy predi
ate

These de�nitions of fuzzy sets entail di�erent

degrees of fuzzyness. In Figure 1 we show the


on
ept of youth with four di�erent interpreta-

tions.

The level of fuzzyness is in
reasing from the


risp fun
tion or the simple fuzzy fun
tion, where

every age has only one real number representing

its youth, to one where an interval represents, for

example, the 
on
ept of youth of a group of peo-

ple with slightly di�erent de�nitions of the bor-

ders of the fun
tion. However, if we ask two dif-

ferent groups of people, for example people from

two di�erent 
ontinents, we might obtain a rep-

resentation like the last one. The truth value of

youth for 45 years has evolved from the value 0

in the 
risp model, to the value 0:5 in the simple

fuzzy de�nition, later to the interval [0:2; 0:5℄ and

�nally to the union of intervals [0:2; 0:5℄

S

[0:8; 1℄.

There are many usual situations that 
an only

be represented by this general representation of

truth value. Here we have two simple examples

with their representation in our fuzzy language:

� Example 1: My father is 45 years old. If

someone ask me about his degree of young

I would assign V 2 [0:2; 0:5℄, but if some-

one ask him about his degree of young he

would assign himself V 2 [0:8; 1℄. And

we 
an say that he is young with V 2

([0:2; 0:5℄

S

[0:8; 1℄).

� Example 2: My sons are 16 and 18 years

old. My neighbour's daughter, Jane, has

the same age as one of my sons but I do

not remember whi
h one. If I 
onsider the

simple fuzzy de�nition of truth, then I 
an

say that Jane is young with a truth value

V 2 ([0.1,0.7℄

S

[0.5,0.9℄) 6= [0.3,0.8℄.

age(jane,16).

age(jane,18).

youth(16) :- [0.1,0.7℄.

youth(17) :- [0.3,0.8℄.

youth(18):- [0.4,0.9℄.

young(jane) :- age(jane,A), youth(A).

� Example 3: New Laptop is a bran
h of 
om-

puters with a laptop models. This model

is very slow when works with graphi
 ap-

pli
ations but it is very fast when works

with oÆ
e appli
ations. If a 
lient buys a

New Laptop 
omputer, the truth value of

its speed will be V 2 ([0.02, 0.08℄

S

[0.75,

0.90℄), but depending of its use, its speed


ould the lowest the highest or even an av-

erage.

fast(newLaptop) :-

[0.02, 0.08℄ v [0.75, 0.90℄.
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Where ea
h truth value is a union of intervals

and 
an be used for this three di�erent examples.

2.2. Fuzzyness versus Un
ertainty

Thanks to this powerful notation we 
an model

many real problems but it is interesting to no-

ti
e that with this truth value representation we


an handle both un
ertainty and fuzzyness at the

same time.

We are going to 
ome ba
k to the example 2 of

the above subse
tion. We will represent the truth

value of the 
on
ept of youth with an interval

as in the fourth representation in the Figure 1,

instead of using real numbers. We 
an say that,

in that 
ase, Jane is young with a truth value V 2

([0.1,0.7℄

S

[0.4,0,9℄). It is a union of intervals

whi
h is representing un
ertainty be
ause we do

not know whi
h of the two intervals represents

the youth of Jane (we do not know whi
h one of

the two is her age).

In the example 1 presented before shows the

truth value of youth of 45 years old that is

[0:1; 0:4℄

S

[0:8; 1℄. It is a union of intervals whi
h,

in this 
ase, is representing fuzzyness be
ause the


on
ept of youth is represented with the maxi-

mum level of fuzzyness. We know that the age is

45 and the truth value that represents its youth

is fuzzy.

Although both representations are semanti
ally

di�erent, they are ta
kled using the same syntax

in a sound way as we will des
ribe below.

2.3. Aggregation Operators

The truth value of a goal will depend on the

truth value of the subgoals whi
h are in the body

of the 
lauses of its de�nition. We use aggrega-

tion operators [19℄ in order to propagate the truth

value by means of the fuzzy rules. Fuzzy sets ag-

gregation is done using the appli
ation of a nu-

meri
 operator of the form f : [0; 1℄

n

! [0; 1℄.

If it veri�es f(0; : : : ; 0) = 0 and f(1; : : : ; 1) = 1,

and in addition it is monotoni
 and 
ontinuous,

then it is 
alled aggregation operator. Dubois and

Prade, in [20℄, propose a 
lassi�
ation of these

operators with respe
t to their behavior in three

groups:

1. Conjun
tive Operators (less or equal to

min), for example T-norms.

2. Disjun
tive Operators, (greater or equal to

max ), for example T-
onorms.

3. Average Operators (between min and max ).

If we deal with the se
ond de�nition of fuzzy

sets it is ne
essary to generalize from aggrega-

tion operators of numbers to aggregation opera-

tors of intervals. Following the theorem proven

by Nguyen and Walker in [17℄ to extend T-norms

and T-
onorms to intervals, we propose the next

de�nitions.

De�nition 2.1 (interval-aggregation) Given

an aggregation f : [0; 1℄

n

! [0; 1℄, an interval-

aggregation F : E([0; 1℄)

n

! E([0; 1℄) is de�ned as

follows:

F ([x

l

1

; x

u

1

℄; :::; [x

l

n

; x

u

n

℄) = [f(x

l

1

; :::; x

l

n

); f(x

u

1

; :::; x

u

n

)℄:

A
tually, we work with union of intervals and

propose the de�nition:

De�nition 2.2 (union-aggregation) Given

an interval-aggregation F : E([0; 1℄)

n

! E([0; 1℄)

de�ned over intervals, a union-aggregation

F : B([0; 1℄)

n

! B([0; 1℄) is de�ned over union of

intervals as follows:

F(B

1

; : : : ; B

n

) = [fF (E

1

; :::; E

n

) j E

i

2 B

i

g:

In the presentation of the theory of possibility

[21℄, Zadeh 
onsiders that fuzzy sets a
t as an

elasti
 
onstraint on the values of a variable and

fuzzy inferen
e as 
onstraint propagation.

In our approa
h, truth values and the result of

aggregations will be represented by 
onstraints.

A 
onstraint is a �-formula where � is a signa-

ture that 
ontains the real numbers, the binary

fun
tion symbols + and �, and the binary pred-

i
ate symbols =, < and �. If the 
onstraint 


has solution in the domain of real numbers in the

interval [0; 1℄ then we say 
 is 
onsistent, and we

denote it as solvable(
).

When we talk about 
onstraints, we refer, for

example, to expressions as: (v � 0:5 ^ v �

0:7) _ (v � 0:8 ^ v � 0:9) that represent the

truth value [0:5; 0:7℄

S

[0:8; 0:9℄.
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2.4. Fuzzy Language

The alphabet of our language 
onsists of the

following kinds of symbols: variables, 
onstants,

fun
tion symbols and predi
ate symbols. A term

is de�ned indu
tively as follows:

1. A variable is a term.

2. A 
onstant is a term.

3. if f is an n-ary fun
tion symbol and

t

1

; : : : ; t

n

are terms, then f(t

1

; : : : ; t

n

) is a

term.

If p is an n-ary predi
ate symbol, and t

1

; : : : ; t

n

are terms, then p(t

1

; : : : ; t

n

) is an atomi
 formula

or, more simply an atom.

A fuzzy program is a �nite set of fuzzy fa
ts, and

fuzzy 
lauses and we obtain information from the

program through fuzzy queries. They are de�ned

below:

De�nition 2.3 (fuzzy fa
t) If A is an atom,

A v

is a fuzzy fa
t, where v, a truth value, is an ele-

ment in B([0; 1℄) expressed as 
onstraints over the

domain [0; 1℄.

De�nition 2.4 (fuzzy 
lause) Let A;B

1

; : : : ; B

n

be atoms,

A 

F

B

1

; : : : ; B

n

is a fuzzy 
lause where F is an interval-

aggregation operator, whi
h indu
es a union-

aggregation, as by de�nition 2.2, F of truth val-

ues in B([0; 1℄) represented as 
onstraints over the

domain [0; 1℄.

De�nition 2.5 (fuzzy query) A fuzzy query

is a tuple

v  A ?

where A is an atom, and v is a variable (possi-

bly instantiated) that represents a truth value in

B([0; 1℄).

2.5. Least Model Semanti
s

The Herbrand Universe U is the set of all

ground terms, whi
h 
an be made up with the


onstants and fun
tion symbols of a program, and

the Herbrand Base B is the set of all ground

atoms whi
h 
an be formed by using the predi-


ate symbols of the program with ground terms

(of the Herbrand Universe) as arguments.

De�nition 2.6 (interpretation) An interpre-

tation I 
onsists of the following:

1. a subset B

I

of the Herbrand Base,

2. a mapping V

I

, to assign a truth value, in

B([0; 1℄), to ea
h element of B

I

.

The Borel Algebra B([0; 1℄) is a 
omplete lat-

ti
e under �

BI

, that denotes Borel in
lusion, and

the Herbrand Base is a 
omplete latti
e under �,

that denotes set in
lusion, therefore a set of all in-

terpretations forms a 
omplete latti
e under the

relation v de�ned as follows.

De�nition 2.7 (interval in
lusion �

II

)

Given two intervals I

1

= [a; b℄, I

2

= [
; d℄ in

E([0; 1℄), I

1

�

II

I

2

if and only if 
 � a and b � d.

De�nition 2.8 (Borel in
lusion �

BI

) Given

two unions of intervals U = I

1

[ : : : [ I

N

,

U

0

= I

0

1

[ : : : [ I

0

M

in B([0; 1℄), U �

BI

U

0

if

and only if 8I

i

2 U 9I

0

j

2 U

0

: I

i

�

II

I

0

j

where

i 2 1::N , j 2 1::M .

De�nition 2.9 (interpretation in
lusion v)

I v I

0

if and only if B

I

� B

I

0

and for all

B 2 B

I

, V

I

(B) �

BI

V

I

0

(B), where I = hB

I

; V

I

i,

I

0

= hB

I

0

; V

I

0

i are interpretations.

De�nition 2.10 (valuation) A valuation � of

an atom A is an assignment of elements of U to

variables of A. So �(A) 2 B is a ground atom.

De�nition 2.11 (model) Given an interpreta-

tion I = hB

I

; V

I

i

� I is a model for a fuzzy fa
t A  v, if

for all valuation �, �(A) 2 B

I

and v �

BI

V

I

(�(A)).
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� I is a model for a 
lause A 

F

B

1

; : : : ; B

n

when the following holds: for all valuation

�, if �(B

i

) 2 B

I

, 1 � i � n, and v =

F(V

I

(�(B

1

)); : : : ; V

I

(�(B

n

))) then �(A) 2

B

I

and v �

BI

V

I

(�(A)), where F is the

union aggregation obtained from F .

� I is a model of a fuzzy program, if it is a

model for the fa
ts and 
lauses of the pro-

gram.

Every program has a least model whi
h is usu-

ally regarded as the intended interpretation of the

program sin
e it is the most 
onservative model.

Let \ be the meet operator on the latti
e of inter-

pretations (I;v), then we 
an prove the following

result.

Theorema 2.1 (model interse
tion property)

Let I

1

= hB

I

1

; V

I

1

i,I

2

= hB

I

1

; V

I

1

i be models of a

fuzzy program P . Then I

1

\ I

2

is a model of P .

Proof. Let M = hB

M

; V

M

i = I

1

\ I

2

. Sin
e I

1

and I

2

are models of P , they are models for ea
h

fa
t and 
lause of P . Then for all valuation � we

have

� for all fa
t A v in P ,

{ �(A) � B

I

1

and �(A) 2 B

I

2

then

�(A) 2 B

I

1

\ B

I

2

= B

M

,

{ v �

BI

V

I

1

(�(A)) and v �

BI

V

I

2

(�(A)), then v �

BI

V

I

1

(�(A)) \

V

I

2

(�(A)) = V

M

(�(A))

therefore M is a model for A v

� and for all 
lause A 

F

B

1

; : : : ; B

n

in P

{ if �(B

i

) 2 B

M

, �(B

i

) 2 B

I

1

and

�(B

i

) 2 B

I

2

. Then �(A) 2 B

I

1

and

�(A) 2 B

I

2

. Hen
e �(A) 2 B

I

1

\

B

I

2

= B

M

.

{ if v = F(V

M

(�(B

1

)); : : : ; V

M

(�(B

n

))),

sin
e F is monotoni
, v �

BI

V

I

1

(�(A))

and v �

BI

V

I

2

(�(A)), then v �

BI

V

I

1

(�(A)) \ V

I

2

(�(A)) = V

M

(�(A))

therefore M is a model for A  

F

B

1

; : : : ; B

n

and M is model of P .

Remark 2.1 (Least model semanti
) If we

let M be the set of all models of a program P ,

the interse
tion of all of this models,

T

M, is a

model and it is the least model of P . We denote

the least model of a program P by lm(P ).

Example 2.1 Let's see an example. Suppose we

have the following program P :

tall(peter) [0:6; 0:7℄_ 0:8

tall(john) 0:7

swift(john) [0:6; 0:8℄

good player(X) 

luka

tall(X); swift(X)

Here, we have two fa
ts, tall(john) and

swift(john) whose truth values are the uni-

tary interval [0:7; 0:7℄ and the interval [0:6; 0:8℄,

respe
tively, and a 
lause for the good player

predi
ate whose aggregation operator is the

Lukasiewi
z T-norm.

The following interpretation I = hB; V i is a

model for P , where

B = ftall(john); tall(peter); swift(john);

good player(john); good player(peter)g and

V (tall(john)) = [0:7; 1℄

V (swift(john)) = [0:5; 0:8℄

V (tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄

V (good player(john)) = [0:2; 0:9℄

V (good player(peter)) = [0:5; 0:9℄

note that for instan
e if V (good player(john)) =

[0:2; 0:5℄ I = hB; V i 
annot be a model of P , the

reason is that v = luka([0:7; 1℄; [0:5; 0:8℄) = [0:7 +

0:5� 1; 1 + 0:8� 1℄ = [0:2; 0:8℄ 6�

II

[0:2; 0:5℄.

The least model of P is the interse
tion of all

models of P whi
h is M = hB

M

; V

M

i where

B

M

= ftall(john); tall(peter); swift(john);

good player(john)g and

V

M

(tall(john)) = [0:7; 0:7℄

V

M

(swift(john)) = [0:6; 0:8℄

V

M

(tall(peter)) = [0:6; 0:7℄_ [0:8; 0:8℄

V

M

(good player(john)) = [0:3; 0:5℄

2.6. Fixed-Point Semanti
s

The �xed-point semanti
s we present is based

on a one-step 
onsequen
e operator T

P

. The least
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�xed-point lfp(T

P

) = I (i.e. T

P

(I) = I) is the

de
larative meaning of the program P , so is equal

to lm(P ).

Let P be a fuzzy program and B

P

the Herbrand

base of P ; then the mapping T

P

over interpreta-

tions is de�ned as follows:

Let I = hB

I

; V

I

i be a fuzzy interpretation, then

T

P

(I) = I

0

, I

0

= hB

I

0

; V

I

0

i

B

I

0

= fA 2 B

P

j Condg

V

I

0

(A) =

[

fv 2 B([0; 1℄) j Condg

where

Cond = (A v is a ground instan
e

of a fa
t in P and solvable(v))

or

(A 

F

A

1

; : : : ; A

n

is a ground

instan
e of a 
lause in P;

fA

1

; : : : ; A

n

g � B

I

and solvable(v);

v = F(V

I

(A

1

); : : : ; V

I

(A

n

))):

The set of interpretations forms a 
omplete lat-

ti
e so that, T

P

it is 
ontinuous.

Re
all the de�nition of the ordinal powers of a

fun
tion G over a 
omplete latti
e X :

G " � =

8

>

>

<

>

>

:

S

fG " �

0

j �

0

< �g

if � is a limit ordinal,

G(G " (�� 1))

if � is a su

essor ordinal,

and dually,

G # � =

8

>

>

<

>

>

:

T

fG # �

0

j �

0

< �g

if � is a limit ordinal,

G(G # (�� 1))

if � is a su

essor ordinal,

Sin
e the �rst limit ordinal is 0, it follows that

in parti
ular, G " 0 = ?

X

(the bottom element of

the latti
e X) and G # 0 = >

X

(the top element).

From Kleene's �xed point theorem we know that

the least �xed-point of any 
ontinuous operator

is rea
hed at the �rst in�nite ordinal !. Hen
e

lfp(T

P

) = T

P

" !.

Example 2.2 Consider the same program P of

the example 2.1, the ordinal powers of T

P

are

T

P

" 0 = fg

T

P

" 1 = ftall(john); swift(john);

tall(peter)g and

V (tall(john)) = [0:7; 0:7℄

V (swift(john)) = [0:6; 0:8℄

V (tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄

T

P

" 2 = ftall(john); swift(john); tall(peter);

good player(john)g and

V (tall(john)) = [0:7; 0:7℄

V (swift(john)) = [0:6; 0:8℄

V (tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄

V (good player(john)) = [0:3; 0:5℄

T

P

" 3 = T

P

" 2.

Lemma 2.1 Let P a fuzzy program, M is a

model of P if and only if M is a pre�xpoint of

T

P

, that is T

P

(M) vM .

Proof. Let M = hB

M

; V

M

i and T

P

(M) =

hB

T

P

; V

T

P

i.

We �rst prove the \if" dire
tion. Let A be

an element of B

T

P

, then by de�nition of T

P

there exists a ground instan
e of a fa
t of P ,

A  v, or a ground instan
e of a 
lause of P ,

A  

F

A

1

; : : : ; A

n

where fA

1

; : : : ; A

n

g � B

M

and v = F(V

M

(A

1

); : : : ; V

M

(A

n

)). Sin
e M is

a model of P , A 2 B

M

, and ea
h v �

BI

V

M

(A),

then V

T

P

(A) �

BI

V

M

(A) and then T

P

(M) vM .

�

Analogously, for the \only if" dire
tion, for

ea
h ground instan
e where fA

1

; : : : ; A

n

g � B

M

,

v = F(V

M

(A

1

); : : : ; V

M

(A

n

)), A 2 B

T

P

and

v �

BI

V

T

P

(A), but as T

P

(M) � M , B

T

P

� B

M

and V

T

P

(A) �

BI

V

M

(A). Then A 2 B

M

and

v �

BI

V

M

(A) therefore M is a model of P . �

Given this relationship, it is straightforward to

prove that the least model of a program P is also

the least �xed-point of T

P

.

Theorema 2.2 Let P be a fuzzy program,

lm(P ) = lfp(T

P

).
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Proof.

lm(P ) =

T

fM jM is a model of Pg

=

T

fM jM is a pre-�xpoint of Pg

from lemma 2.1

= lfp(T

P

) by the Knaster-Tarski

Fixpoint Theorem [22℄�

2.7. Operational Semanti
s

The pro
edural semanti
s is interpreted as a

sequen
e of transitions between di�erent states

of a system. We represent the state of a transi-

tion system in a 
omputation as a tuple hA; �; Si

where A is the goal, � is a substitution represent-

ing the instantiation of variables needed to get

to this state from the initial one and S is a 
on-

straint that represents the truth value of the goal

at this state.

When 
omputation starts, A is the initial goal,

� = ; and S is true (if there are neither previous

instantiations nor initial 
onstraints). When we

get to a state where the �rst argument is empty

then we have �nished the 
omputation and the

other two arguments represent the answer.

A transition in the transition system is de�ned

as:

1. hA [ a; �; Si ! hA�; � � �; S ^ �

a

= vi

if h v is a fa
t of the program P , � is the

mgu of a and h, �

a

is the truth value for a

and solvable(S ^ �

a

= v).

2. hA [ a; �; Si ! h(A [ B)�; � � �; S ^ 
i

if h  

F

B is a rule of the program P , � is

the mgu of a and h, 
 is the 
onstraint that

represents the truth value obtained apply-

ing the union-aggregation F to the truth

values of B, and solvable(S ^ 
).

3. hA [ a; �; Si ! fail

if none of the above are appli
able.

The su

ess set SS(P ) 
olle
ts the answers to

simple goals p(bx). It is de�ned as follows:

SS(P ) = hB; V i

where B = fp(bx)�jhp(bx); ;; truei !

�

h;; �; Sig

is the set of elements of the Herbrand Base

that are instantiated and that have su
-


eeded; and V (p(bx)) = [fvjhp(bx); ;; truei !

�

h;; �; Si; and v is the solution of Sg is the set of

truth values of the elements of B that is the union

(got by ba
ktra
king) of truth values that are ob-

tained from the set of 
onstraints provided by the

program P while query p(bx) is 
omputed.

Example 2.3 Let P be the program of example

2.1. Consider the fuzzy goal

� good player(X) ?

the �rst transition in the 
omputation is

hf(good player(X)g; �; truei !

hftall(X); swift(X)g; �;

� = max(0; �

tall

+ �

swift

� 1)i

unifying the goal with the 
lause and adding the


onstraint 
orresponding to Lukasiewi
z T-norm.

The next transition leads to the state:

hfswift(X)g; fX = johng; � = max(0; �

tall

+

�

swift

� 1) ^ �

tall

= 0:7i

after unifying tall(X) with tall(john) and adding

the 
onstraint regarding the truth value of the

fa
t. The 
omputation ends with:

hfg; fX = johng; � = max(0; �

tall

+ �

swift

�

1) ^ �

tall

= 0:7 ^ 0:6 � �

swift

^ �

swift

� 0:8i

As � = max(0; �

tall

+�

swift

�1)^�

tall

= 0:7^

0:6 � �

swift

^ �

swift

� 0:8 entails � 2 [0:3; 0:5℄,

the answer to the query good player(X) is X =

john with truth value the interval [0:3; 0:5℄.

In order to prove the equivalen
e between op-

erational semanti
 and �xed-point semanti
, it is

useful to introdu
e a type of 
anoni
al top-down

evaluation strategy. In this strategy all literals

are redu
ed at ea
h step in a derivation. For ob-

vious reasons, su
h a derivation is 
alled breadth-

�rst.

De�nition 2.12 (Breadth-�rst transition)



9

Given the following set of valid transitions:

hffA

1

; : : : ; A

n

g; �; Si !

hffA

2

; : : : ; A

n

g [ B

1

; � � �

1

; S ^ 


1

i

hffA

1

; : : : ; A

n

g; �; Si !

hffA

1

; A

3

: : : ; A

n

g [ B

2

; � � �

2

; S ^ 


2

i

.

.

.

hffA

1

; : : : ; A

n

g; �; Si !

hffA

1

; : : : ; A

n�1

g [ B

n

; � � �

n

; S ^ 


n

i

a breadth-�rst transition is de�ned as

hfA

1

; : : : ; A

n

g; �; Si !

BF

hB

1

[ : : : [B

n

; � � �

1

� : : : � �

n

; S ^ 


1

^ : : : ^ 


n

i

in whi
h all literals are redu
ed at one step.

For example a breadth-�rst derivation of the

above example is:

hf(good player(X)g; �; truei !

BF

hftall(X); swift(X)g; �;

� = max(0; �

tall

+ �

swift

� 1)i !

BF

hfg; fX = johng;

� = max(0; �

tall

+ �

swift

� 1)^

�

tall

= 0:7 ^ 0:6 � �

swift

^ �

swift

� 0:8i

Theorema 2.3 Given a ordinal number n and

T

P

" n = hB

T

P

n

; V

T

P

n

i. there is a su

essful

breadth-�rst derivation of lengh less or equal to

n+1 for a program P , hfA

1

; : : : ; A

k

g; �; S

1

i !

�

BF

h;; �; S

2

i i� A

i

� 2 B

T

P

n

and solvable(S ^ �

A

i

=

v

i

) and v

i

�

BI

V

T

P

n

(A

i

�).

Proof. The proof is by indu
tion on n. For the

base 
ase, all the literals are redu
ed using the

�rst type of transitions, that is, for ea
h literal

A

i

, it exits a fa
t h

i

 v

i

su
h that �

i

is the mgu

of A

i

and h

i

, and �

A

i

is the truth variable for

A

i

, and solvable(S

1

^ �

A

i

= v

i

). By de�nition of

T

P

, ea
h A

i

�

i

2 B

T

P

1

and ea
h v

i

�

BI

V

T

P

1

(A

i

�)

where hB

T

P

1

; V

T

P

1

i = T

P

" 1.

For the general 
ase, 
onsider the su

essful

derivation,

hfA

1

; : : : ; A

k

g; �

1

; S

1

i !

BF

hB; �

2

; S

2

i !

BF

: : :

: : :!

BF

h;; �

n

; S

n

i


onsider the transition

hfA

1

; : : : ; A

k

g; �

1

; S

1

i !

BF

hB; �

2

; S

2

i

When a literal A

i

is redu
ed using a fa
t the

result is the same as in the base 
ase, other-

wise there is a 
lause h

i

 

F

B

1

i

; : : : ; B

m

i

in P

su
h that �

i

is the mgu of A

i

and h

i

2 B�

2

and

B

j

i

�

i

2 B�

2

, by the indu
tion hypothesis B�

2

�

B

T

P

n�1

and solvable(S

2

^�

B

j

i

= v

j

i

) and v

j

i

�

BI

V

T

P

n�1

(B

j

i

�

2

) then B

j

i

�

i

� B

T

P

n�1

and by de�-

nition of T

P

, A

i

�

i

2 B

T

P

n

and solvable(S

1

^�

A

i

=

v

i

) and v

i

=�

BI

V

T

P

n

(A

i

�

1

). �

Theorema 2.4 For a program P there is a su
-


essful derivation

hp(bx); ;; truei !

�

h;; �; Si

i� p(bx)� 2 B and v is the solution of S and

v �

BI

V (p(bx)�) where lfp(T

P

) = hB; V i

Proof. It follows from the fa
t that lfp(T

P

) =

T

P

" ! and from the Theorem 2.3. �

Theorema 2.5 For a fuzzy program P the three

semanti
s are equivalent, i.e.

SS(P ) = lfp(TP ) = lm(P )

Proof. the �rst equivalen
e follows from Theo-

rem 2.4 and the se
ond from Theorem 2.2. �

3. Implementation and Syntax

3.1. CLP(R)

Constraint Logi
 Programming [23℄ began as

a natural merging of two de
larative paradigms:


onstraint solving and logi
 programming. This


ombination helps make CLP programs both ex-

pressive and 
exible, and in some 
ases, more eÆ-


ient than other kinds of logi
 programs. CLP(R)

[24℄ has linear arithmeti
 
onstraints and 
om-

putes over the real numbers.

We de
ided to implement this interpreter as

a synta
ti
 extension of a CLP(R) system.

CLP(R) was in
orporated as a library in the Ciao

Prolog system

1

.

Ciao Prolog is a next-generation logi
 program-

ming system whi
h, among other features, has

1

The Ciao system in
luding our Fuzzy Pro-

log implementation 
an be downloaded from

http://www.
lip.dia.�.upm.es/Software/Ciao.
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been designed with modular in
remental 
ompi-

lation in mind. Its module system [25℄ will permit

having 
lassi
al modules and fuzzy modules in the

same program and it in
orporates CLP(R).

Many Prolog systems have in
luded the possi-

bility of 
hanging or expanding the syntax of the

sour
e 
ode. One way is using the op/3 builtin

and another is de�ning expansions of the sour
e


ode by allowing the user to de�ne a predi
ate

typi
ally 
alled term expansion/2. Ciao has re-

designed these features so that it is possible to

de�ne sour
e translations and operators that are

lo
al to the module or user �le de�ning them.

Another advantage of the module system of Ciao

is that it allows separating 
ode that will be used

at 
ompilation time from 
ode whi
h will be used

at run-time.

We have written a library (or pa
kage in the

Ciao Prolog terminology) 
alled fuzzy whi
h im-

plements the interpreter of our fuzzy Prolog lan-

guage des
ribed in se
tion 2.

3.2. Syntax

Ea
h fuzzy Prolog 
lause has an additional ar-

gument in the head whi
h represents its truth

value in terms of the truth values of the subgoals

of the body of the 
lause. A fa
t A  v is rep-

resented by a Fuzzy Prolog fa
t that des
ribes

the range of values of v with a union of intervals

(that 
an be only an interval or even a real num-

ber in parti
ular 
ases). The following examples

illustrate the 
on
rete syntax of programs:

youth(45) youth(45):

�

[0:2; 0:5℄

S

[0:8; 1℄ [0.2,0.5℄v[0.8,1℄.

tall(john) 0:7 tall(john):

�

0.7.

swift(john) swift(john):

�

[0:6; 0:8℄ [0.6,0.8℄.

good player(X) 

min

good player(X):

�

min

tall(X); tall(X),

swift(X) swift(X).

These 
lauses are expanded at 
ompilation

time to 
onstrained 
lauses that are managed by

CLP(R) at run-time. Predi
ates : = :=2, : < :=2,

: <= :=2, : > :=2 and : >= :=2 are the Ciao

CLP(R) operators for representing 
onstraint in-

equalities. For example the �rst fuzzy fa
t is ex-

panded to these Prolog 
lauses with 
onstraints

youth(45,V):- V .>=. 0.2,

V .<=. 0.5.

youth(45,V):- V .>=. 0.8,

V .<. 1.

And the fuzzy 
lause

good player(X) :

�

min

tall(X), swift(X).

is expanded to

good_player(X,Vp) :- tall(X,Vq),swift(X,Vr),

minim([Vq,Vr℄,Vp),

Vp .>=. 0, Vp .=<. 1.

The predi
ate minim/2 is in
luded as run-time


ode by the library. Its fun
tion is adding 
on-

straints to the truth value variables in order to

implement the T-norm min.

minim([℄,_).

minim([X℄,X).

minim([X,Y|Rest℄,Min):-

min(X,Y,M),

minim([M|Rest℄,Min).

min(X,Y,Z):- X .=<. Y , Z .=. X.

min(X,Y,Z):- X .>. Y, Z .=. Y .

We have implemented several aggregation op-

erators as prod, max, luka, et
. and in a similar

way any other operator 
an be added to the sys-

tem without any e�ort. The system is extensible

by the user simply adding the 
ode for new ag-

gregation operators to the library.

3.3. Fuzzy Negation

We also provide the possibility of de�ning a

predi
ate that is the fuzzy negation of a given

fuzzy predi
ate. For example, not young=2 
an

be de�ned from young=2 (see �gure 2) with the

following line:

not_young :# fnot young/2.

that is expanded at 
ompilation time as:

not_young(X,V) :-

young(X,Vp),

V .=. 1 - Vp.
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3.4. Synta
ti
 Sugar

Fuzzy predi
ates with pie
ewise linear 
ontinu-

ous membership fun
tions like young/2 in Figure

2 
an be written in a 
ompa
t way:

young :# fuzzy_predi
ate([(0,1),(35,1),

(45,0),(120,0)℄).

This friendly syntax is translated to arithmeti



onstraints. We 
an even de�ne the predi
ate di-

re
tly if we so prefer. The 
ode expansion is the

following:

6

-

C

C

C

C

C

C

1

0

10 30 50

young(X,1):- X .>=. 0,

X .<. 35.

young(X,V):- X .>=. 35,

X .<. 45,

10*V .=. 45-X.

young(X,0):- X .>=. 45,

X .=<. 120.

Figure 2. Fuzzy predi
ate young/2

4. Closed World Assumption

We have to set a semanti
s to interpret our

fuzzy predi
ates. We have thought about two

main possibilities. E.g., if we have the de�nition

of age about 21=2 as

age_about_21(john,1):~ . age_about_21(susan,0.7):~ .

where the goal age about 21(X;V ) su

ess with

X = john and V = 1 or with X = susan and

V = 0:7. If we want to work with the Closed

World Assumption (CWA) [26℄ then we will ob-

tain V = 0 for any other value of X di�erent from

john and susan. The meaning is that the predi-


ate is de�ned for all values and the membership

value will be 0 if the predi
ate is not expli
itly de-

�ned with other value. In this example we know

that the age of john and susan is about 21 and

with CWA we are saying too that the rest of the

people are not about 21. This is the equivalent

semanti
s to the one in 
risp de�nitions but we

think that we usually prefer to mean something

di�erent, i.e. in this 
ase we 
an mean that we

know that john and susan are about 21 and that

we have no information about the age of the rest

of people. Therefore we do not know if the age

of peter is about 21 or not; and if we know that

ni
k's age is not about 21 we 
an expli
itly de-


lare

age_about_21(ni
k,0):~ .

We are going to work with this semanti
s for

fuzzy predi
ates be
ause we think it is the most

alike to human reasoning. So a fuzzy goal 
an

be true (value 1), false (value 0) or having other

membership value. We have added the 
on
ept

of unknown to represent no expli
it knowledge in

fuzzy de�nitions. The way of represent this new

state is very simple, using the 
ommon failure

of Prolog. We give it the meaning of unknown


onsidering that the meaning that it has in 
risp

logi
 is not ne
essary here be
ause in fuzzy logi


is represented with truth value 0. E.g. with our

de�nition of age about 21=2 we will get

?- age_about_21(john,V).

V = 1 ? ;

?- age_about_21(ni
k,V).

V = 0 ? ;

?- age_about_21(peter,V).

no

This means john's age is about 21, ni
k's age

is not about 21 and we have no data about peter's

age.

We are going to use 
risp Prolog predi
ates too

and Prolog works with the CWA. This means that

all information that is not expli
itly true then is

false. E.g., if we have the predi
ate de�nition of

student=1 as

student(john). student(peter).

then we have that the goal student(X) su
-


esses with X = john or with X = peter but

fails with any other value di�erent from these.

I.e, here we 
an have
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?- student(john).

yes

?- student(ni
k).

no

that means that john is a student and ni
k is

not. This is the semanti
s of Prolog and it is the

one we are going to adopt for 
risp logi
 be
ause

we want our system to be 
ompatible with 
on-

ventional Prolog reasoning. Noti
e the di�erent

interpretation of the Prolog failure for 
risp or

fuzzy goals.

5. Combining Crisp and Fuzzy Logi


Sometimes we use de�nitions of fuzzy predi-


ates that in
lude 
risp predi
ate 
alls (see work

[27℄ for more details). The de�nition usually uses


risp predi
ate 
alls as requirements that data

have to satisfy to verify the de�nition in a level

superior to 0. E. g. if we 
an say that a mature

student is a student whose age is about 21 then we


an de�ne the fuzzy predi
ate mature student=2

as

mature_student(X):~

student(X),

age_about_21(X).

The way of interpret this de�nition is salty


ompli
ated if we realize there are subgoals in the

body of the 
lause with two semanti
s be
ause


risp and fuzzy predi
ates has di�erent seman-

ti
s as we have seen in 4. In this example what

we want is that the goal mature student(X;V )

gives us V = 0 if X were not a student for a

value of X , and that V had the 
orresponding

value if X is an student and we know if his age is

about 21, and that if X were a student but we do

not know anything about his age then the result

will be unknown. E.g. we 
an interpret

?- mature_student(john,V).

.=.(V,1.0) ?

?- mature_student(susan,V).

.=.(V,0.0) ?

?- mature_student(peter,V).

no

as john is a mature student (he is a student and

his age is about 21), susan is not a mature stu-

dent (sin
e she is not a student) and we do not

know the value of maturity of peter as student

be
ause although he is a student, we do not know

if his age is about 21.

5.1. Solution: Fuzzify 
risp predi
ates

It is important to 
entre the problem to resolve.

We realize that the good way to fo
us the problem

of 
ombining 
risp and fuzzy logi
 is transforming


risp in fuzzy predi
ates before the 
ombination

and forth
oming we 
an deal with the more lo-


ated problem of how to fuzzify a 
risp predi
ate.

For the below example of 
risp predi-


ate student=1, we will produ
e the predi
ate

f student=2 that will be an equivalent fuzzy pred-

i
ate to the 
risp one.

f_student :# fuzzy student/1.

So there would be a new de�nition of

mature student=2 that will be

mature_student(X,M):~

f_student(X,M1),

age_about_21(X,M2).

For this reason the internal running of our fuzzy

is very homogeneous be
ause we only 
onsider

fuzzy subgoals in the body of the 
lause. Now

the only and not simple problem is how to fuzzify


risp predi
ates.

5.2. Fuzzi�ed Predi
ates

If we make a 
risp predi
ate turns into fuzzy,

then we have to keep the same semanti
s interpre-

tation. For our example we 
ould think in a �rst

glan
e that the 
orresponding fuzzi�ed de�nition

will be

f_student(john, 1):~ . f_student(peter, 1):~ .

Nevertheless it is not semanti
ally equivalent

to student=1. With the 
risp one we show that

john and peter are students and that any other

value of X in student(X) would make the goal to

fail. E.g. the goals

?- student(peter).

yes

?- student(susan).

no

means that peter is a student and susan not.

However, the de�nition of f student below means

that john and peter are students and that we do

not know whi
h values of owing will be V for the
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rest values of X in the goal f student(X;V ). I.e.,

the same goals

?- f_student(peter,V).

.=.(V,1.0) ?

?- f_student(susan,V).

no

means that peter is a student and that we do

not know if susan is a student or not when what

we would like to say is that we know that she is

not a student. So, the answer that is semanti
ally

equivalent to the �rst ones will be

?- f_student(peter,V).

.=.(V,1.0) ?

?- f_student(susan,V).

.=.(V,0.0) ?

This is the way of work of our fuzzi�ed pred-

i
ates, it is the only sound transformation that

keep the same meaning than in the 
risp predi-


ates. We have tried to get an automati
 method

to obtain the equivalent fuzzy predi
ate to a 
risp

one keeping this semanti
s.

The �rst simple approa
h is to use the 
ut of

Prolog to implement the 
orresponding fuzzi�ed

predi
ate. So, for a predi
ate student(X) will be:

f_student(X,V):-

student(X),!,

V .=. 1.

f_student(V,0).

The result is that V = 1 if the goal pred(X)

su

ess and V = 0 otherwise. With our

example we obtain the expe
ted results for

f student(peter; V ) and f student(susan; V ) but

we �nd the problem in goals as:

?- f_student(X,1).

X = john ? ;

no

where the 
ut avoids the ba
ktra
king and it is

impossible to get all the solution. This problem

is simply resolve with the alternative transforma-

tion:

f_student(X,V):-

if(student(X),V=1,V=0).

It resolves the problem of the ba
ktra
king be-


ause of the implementation of the if=3 predi
ate

and returns us

?- f_student(X,1). ?-f_student(susan,V).

X = john ? ; .=.(V,0.0)

X = peter ? ;

no

This is not only useful to give 
onstru
tive an-

swers to goals of fuzzi�ed predi
ates but it is the

way of getting 
onstru
tive solutions in fuzzy 
on-

sults of a fuzzy predi
ate that is de�ned 
ombin-

ing 
risp and fuzzy logi
.

6. Examples

6.1. Example 1

A simple example 
ould be trying to measure

the possibility that a 
ouple of values, obtained

throwing two loaded di
e, sum 5. Let us suppose

we only know that one die is loaded to obtain

a small value and the other is loaded to obtain

a large value. We deal with the fuzzy 
on
epts

small and large (Figure 3):

small(1) :~ [0.9,1℄. small(2) :~ [0.9,1℄.

small(3) :~ [0.6,0.7℄. small(4) :~ [0.3,0.4℄.

small(5) :~ [0,0.1℄. small(6) :~ [0,0.1℄.

large :# fnot small/2.

654321

1

0

small

654321

0

large

1

Figure 3. Fuzzy predi
ates small/2 and large/2
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In fuzzy Prolog, this problem 
an be repre-

sented using for example, min-max logi
 or other

T-norm and T-
onorm as prod and dprod. With

our fuzzy Prolog we 
an use any of them as, in

the following two programs:

die1(X):~ die1(X):~

small(X). small(X).

die2(X):~ die2(X):~

large(X). large(X).

two_di
e(X,Y):~ min two_di
e(X,Y):~ prod

die1(X),die2(Y). die1(X),die2(Y).

sum(5):~ max sum(5):~ dprod

two_di
e(4,1), two_di
e(4,1),

two_di
e(1,4), two_di
e(1,4),

two_di
e(3,2), two_di
e(3,2),

two_di
e(2,3). two_di
e(2,3).

?- sum(5,V). ?- sum(5,V).

V .=. [0.6,0.7℄ ? V .=. [0.66,0.83℄ ?

yes yes

two di
e(X,Y) represents the possibility that the

�rst die gives X and at the same time the se
ond

die gives Y. The predi
ate sum(5) aggregates the

possibilities of the four 
ases in whi
h the two di
e


an sum 5. To 
onsult the truth value of a goal

we are going to use an additional argument, i.e.

sum(5,V). Other syntax is to use another predi-


ate truth(Goal,V) to obtain the truth value V

of a goal Goal. In this 
ase, it is equivalent to

truth(sum(5),V). In the 
onsults of our exam-

ple we 
an observe the di�erent provided answers

for ea
h aggregation operator.

6.2. Example 2

A more real example 
ould be the problem of


ompatibility of a 
ouple of turns in a work pla
e.

For example tea
hers that work in di�erent 
lass

timetables, telephone operators, et
. Imagine a


ompany where the work is divided in turns of 4

hours per week. Many workers have to 
ombine a


ouple of turns in the same week and a predi
ate


ompatible=2 is ne
essary to 
he
k if two turns are


ompatible or to obtain whi
h 
ouples of turns are


ompatible. Two turns are 
ompatible when both

are 
orre
t (working days from Monday to Friday,

hours between 8 a.m. and 18 p.m. and there are

no repetitions of the same hour in a turn) and in

addition when the turns are disjoint.


ompatible(T1,T2):-


orre
t_turn(T1),


orre
t_turn(T2),

disjoint(T1,T2).

But there are so many 
ompatible 
ombina-

tions of turns that it would be useful to de�ne

the 
on
ept of 
ompatibility in a fuzzy way in-

stead of in the 
risp way it is de�ned above. It

would express that two turns 
ould be in
ompat-

ible if one of them is not 
orre
t or if they are

not disjoint but when they are 
ompatible, they


an be more or less 
ompatible. They 
an have

a level of 
ompatibility. Two turns will be more


ompatible if the working hours are 
on
entrated

(the employee has to go to work few days during

the week). Also, two turns will be more 
ompat-

ible if there are few free hours between the busy

hours of the working days of the timetable.

0

1

10 2 3 4 5

few_days

days

0

1

1

without_gaps

0 2 3 4 5 6 7 8 hours

Figure 4. Fuzzy predi
ates few days/2 and with-

out gaps/2

Therefore, we are handing 
risp 
on
epts
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(
orre
t turn=1, disjoint=2) and besides fuzzy


on
epts (without gaps=2, few days=2). Their

de�nitions, represented in �gure 4, are expressed

in our language in this simple way:

few_days :#

fuzzy_predi
ate([(0,1),(1,0.8),

(2,0.6),(3,0.4),

(4,0.2),(5,0)℄).

without_gaps :#

fuzzy_predi
ate([(0,1),(1,0.8),

(5,0.3),(7,0.1),

(8,0)℄).
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T1/T2
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11
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13

14

15

16

17

18

Hour

Day

T1

T1

T1

T1

T2

T2

T2

Figure 5. Timetable 1, 2, 3 and 4

A simple implementation 
ombining both types

of predi
ates 
ould be:


ompatible(T1,T2):~ min


orre
t_turn(T1),


orre
t_turn(T2),

disjoint(T1,T2),

append(T1,T2,T),

number_of_days(T,D),

few_days(D),

number_of_free_hours(T,H),

without_gaps(H).

Where append=3 gives the total weekly

timetable of 8 hours from joining two turns,

number of days=3 obtains the total number

of working days of a weekly timetable and

number of free hours=2 returns the number of

free one hour gaps that the weekly timetable has

during the working days.

Observe the timetables in �gure 5. We 
an

obtain the 
ompatibility between the 
ouple of

turns, T1 and T2, represented in ea
h timetable

with the 
onsult 
ompatible(T1; T2; V ). The re-

sult is V = 0:2 for the timetable 1, V = 0:6 for

the timetable 2. And V = 0 for the timetable

3 be
ause the turns are in
ompatible, and also

V = 0 for the timetable 4 be
ause turn T2 is not


orre
t.

7. Con
lusions and Future work

The novelty of the Fuzzy Prolog presented here

is that it is implemented over Prolog instead of

implementing a new resolution system. This gives

it a good potential for eÆ
ien
y, more simpli
ity

and 
exibility. For example aggregation operators


an be added with almost no e�ort. This exten-

sion to Prolog is realized by interpreting fuzzy

reasoning as a set of 
onstraints [21℄, and after

that, translating fuzzy predi
ates into CLP(R)


lauses. The rest of the 
omputation is resolved

by the 
ompiler.

Most of the other Fuzzy Prolog 
onsiders

only one operator to get the truth value of the

fuzzy 
lauses. We have generalized all opera-

tors through the 
on
ept of aggregation and this

makes our Fuzzy Prolog subsume all the means

of resolution of the others, but it is also given a

way to implement it. Another advantage of our

approa
h is that it 
an be implemented with little
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e�ort over any other CLP(R) system.

We have managed to 
ombine 
risp and fuzzy

logi
 in the same 
ompiler. This is a great ad-

vantage be
ause it lets us model many problems

using fuzzy programs. So we have extended the

expressivity of the language and the possibility of

applying it to solve real problems.

Presently we are working in several related is-

sues:

� Obtaining 
onstru
tive answers to negative

goals.

� Implementing operators to defuzzying truth

values.

� Constru
ting the syntax to work with dis-


rete fuzzy sets.

� Introdu
ing domains of fuzzy sets using

types.

� Implementing the expansion over other

CLP(R) systems.
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