
A Syntactic Approach to Combining
Functional Notation, Lazy Evaluation,

and Higher-Order in LP Systems?

Amadeo Casas1 Daniel Cabeza2 Manuel V. Hermenegildo1,2

{amadeo, herme}@cs.unm.edu
{dcabeza, herme}@fi.upm.es

1 Depts. of Comp. Science and Electr. and Comp. Eng., Univ. of New Mexico, USA.
2 School of Computer Science, T. U. Madrid (UPM), Spain.

Abstract. Nondeterminism and partially instantiated data structures
give logic programming expressive power beyond that of functional pro-
gramming. However, functional programming often provides convenient
syntactic features, such as having a designated implicit output argu-
ment, which allow function call nesting and sometimes results in more
compact code. Functional programming also sometimes allows a more di-
rect encoding of lazy evaluation, with its ability to deal with infinite data
structures. We present a syntactic functional extension, used in the Ciao
system, which can be implemented in ISO-standard Prolog systems and
covers function application, predefined evaluable functors, functional def-
initions, quoting, and lazy evaluation. The extension is also composable
with higher-order features and can be combined with other extensions
to ISO-Prolog such as constraints. We also highlight the features of the
Ciao system which help implementation and present some data on the
overhead of using lazy evaluation with respect to eager evaluation.

Keywords: Declarative Languages; Logic, Functional, and Logic-Functional
Programming; Lazy Evaluation; Higher Order.

1 Introduction

Logic Programming offers a number of features, such as nondeterminism and
partially instantiated data structures, that give it expressive power beyond that
of functional programming. However, certain aspects of functional programming
provide in turn syntactic convenience. This includes for example having a syn-
tactically designated output argument, which allows the usual form of function
call nesting and sometimes results in more compact code. Also, lazy evaluation,
which brings the ability to deal with infinite (non-recursive) data structures [1,2],
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while subsumed operationally by logic programming features such as delay dec-
larations, enjoys a more direct encoding in functional programming. Bringing
this syntactic convenience to logic programming can result in a more compact
program representation in certain cases and is therefore a desirable objective.

With this objective in mind, in this paper we present a design for an extensive
functional syntactic layer for logic programing. While the idea of adding func-
tional features to logic programming systems is clearly not new, and there are
currently a good number of systems which integrate functions and higher-order
programming into some form of logic programming, we feel that our proposal
and its implementation offer a combination of features which make it interesting
in itself (see Section 6 for a discussion of related work).

Our approach was inspired by some of the language extension capabilities
of the Ciao system [3]: Ciao offers a complete ISO-Prolog system, but one of
its most remarkable features is that, through a novel modular design [5], all
ISO-Prolog features are library-based extensions to a simple declarative kernel.
This allows on one hand not loading any (for example, impure) features from
ISO-Prolog when not needed, and on the other hand adding many additional
features at the source (Prolog) level, without modifying the compiler or the low-
level machinery. The facilities that allow this (grouped under the Ciao packages
concept [5]) are the same ones used for implementing the functional extensions
proposed herein, and are also the mechanism by which other syntactic and se-
mantic extensions are supported in the system. The latter include constraints,
objects, feature terms/records, persistence, several control rules, etc., giving Ciao
its multi-paradigm flavor.

However, while the Ciao extension mechanisms make implementation smoother
and more orthogonal in our view,3 a fundamental design objective and feature
of our functional extensions is that they are to a very large extent directly ap-
plicable to (and also relatively straightforward to implement in) any modern
(ISO-)Prolog system [6], and we hope to contribute in that way to their adop-
tion in such systems. Thus, we will also discuss ISO-Prolog when describing the
implementation of the proposed extensions.

The rest of the paper is organized as follows: first, we discuss in Section 2
our general approach to integrating functional notation. Section 3 presents how
we implemented this approach in Ciao. Section 4 shows an example of the use
of lazy evaluation, and how it is achieved by our implementation. Section 5
presents some experimental results. Finally, section 6 presents our conclusions
and discusses related work.

2 Functional Notation in Ciao

Basic Concepts and Notation: Our notion of functional notation for logic
programming departs in a number of ways from previous proposals. The fun-
damental one is that functional notation in principle simply provides syntactic
3 As we will try to highlight with the upfront intention of motivating the adoption of

the extension model by other logic programming systems.



sugar for defining and using predicates as if they were functions, but they can
still retain the power of predicates. In this model, any function definition is in
fact defining a predicate, and any predicate can be used as a function. The pred-
icate associated with a function has the same name and one more argument,
meant as the place holder for the result of the function. This argument is by
default added to the right, i.e., it is the last argument, but this can be changed
by using a declaration. The syntax extensions provided for functional notation
are the following:
Function applications: Any term preceded by the ~ operator is a function

application, as can be seen in the goal write(~arg(1,T)), which is strictly
equivalent to the sequence arg(1,T,A), write(A). To use a predicate argu-
ment other than the last as the return argument, a declaration like:
:- fun_return functor(~,_,_).
can be used, so that ~functor(f,2) is evaluated to f(_,_) (where functor/3
is the standard ISO-Prolog builtin). This definition of the return argu-
ment can also be done on the fly in each invocation in the following way:
~functor(~,f,2). Functors can be declared as evaluable (i.e., being in calls
in functional syntax) by using the declaration fun_eval/1. This allows avoid-
ing the need to use the ~ operator. Thus, “:- fun_eval arg/2.” allows
writing write(arg(1,T)) instead of write(~arg(1,T)) as above. This dec-
laration can also be used to change the default output argument:
:- fun_eval functor(~,_,_).
Note that all these declarations, as is customary in Ciao, are local to the
module where they are included.

Predefined evaluable functors: In addition to functors declared with the
declaration fun_eval/1, several functors are evaluable, those being:
– The functors used for disjunctive and conditional expressions, (|)/2 and

(?)/2. A disjunctive expression has the form (V1|V2), and its value when
first evaluated is V1, and on backtracking V2. A conditional expression
has the form (Cond ? V1), or, more commonly, (Cond ? V1 | V2). If
the execution of Cond as a goal succeeds the return value is V1. Otherwise
in the first form it causes backtracking, and in the second form its value
is V2. Due to operator precedences, a nested expression
(Cond1 ? V1 | Cond2 ? V2 | V3)
is evaluated as (Cond1 ? V1 | (Cond2 ? V2 | V3)).

– If the declaration :- fun_eval arith(true) is used, all the functors
understood by is/2 are considered evaluable (they will be translated
to a call to is/2). This is not active by default because several of those
functors, like (-)/2 or (/)/2, are traditionally used in Prolog for creating
structures. Using false instead of true the declaration can be disabled.

Functional definitions: A functional definition is composed of one or more
functional clauses. A functional clause is written using the binary operator
:=, as in opposite(red) := green.
Functional clauses can also have a body, which is executed before the result
value is computed. It can serve as a guard for the clause or to provide the
equivalent of where-clauses in functional languages:



fact(0) := 1.
fact(N) := N * ~fact(--N) :- N > 0.

Note that guards can often be defined more compactly using conditional
expressions:

fact(N) := N = 0 ? 1
| N > 0 ? N * ~fact(--N).

If the declaration :- fun_eval defined(true) is active, the function de-
fined in a functional clause does not need to be preceded by ~ (for example
the fact(--N) calls above).
The translation of functional clauses has the following properties:
– The translation produces steadfast predicates [7], that is, output argu-

ments are unified after possible cuts.
– Defining recursive predicates in functional style maintains the tail recur-

sion of the original predicate, thus allowing the usual compiler optimiza-
tions.

Quoting functors: Functors (either in functional or predicate clauses) can be
prevented from being evaluated by using the (^)/1 prefix operator (read as
“quote”), as in:
pair(A,B) := ^(A-B).
Note that this just prevents the evaluation of the principal functor of the
enclosed term, not the possible occurrences of other evaluable functors inside.

Scoping: When using function applications inside the goal arguments of meta-
predicates, there is an ambiguity as they could be evaluated either in the
scope of the outer execution or in the scope of the inner execution. The
default behavior is to evaluate function applications in the scope of the
outer execution. If they should be evaluated in the inner scope the goal
containing the function application needs to be escaped with the (^^)/1
prefix operator, as in findall(X, (d(Y), ^^(X = ~f(Y)+1)), L) (which
could also be written as findall(X, ^^(d(Y), X = ~f(Y)+1), L)), and
whose expansion is findall(X, (d(Y),f(Y,Z),T is Z+1,X=T), L). With
no escaping the function application is evaluated in the scope of the outer
execution, i.e., f(Y,Z), T is Z+1, findall(X, (d(Y),X=T), L).

Laziness: Lazy evaluation is a program evaluation technique used particularly
in functional languages. When using lazy evaluation, an expression is not
evaluated as soon as it is assigned, but rather when the evaluator is forced
to produce the value of the expression. The when, freeze, or block control
primitives present in many modern logic programming systems are more
powerful operationally than lazy evaluation. However, they lack the simplic-
ity of use and cleaner semantics of functional lazy evaluation. In our design,
a function (or predicate) can be declared as lazy via the declarations:
:- lazy fun_eval function_name/N.
(or, equivalently in predicate version, “:- lazy pred_name/M.”, where M =
N + 1). In order to achieve the intended behavior, the execution of each
function declared as lazy is suspended until the return value of the function



is needed. Thus, lazy evaluation allows dealing with infinite data structures
and also evaluating function arguments only when needed.

Definition of real functions: In the previous scheme, functions are (at least
by default) not forced to provide a single solution for their result, and, fur-
thermore, they can be partial, producing a failure when no solution can be
found. A predicate defined as a function can be declared to behave as a
real function using the declaration “:- funct name/N.”. Such predicates
are then converted automatically to real functions by adding pruning oper-
ators and a number of Ciao assertions [8] which pose (and check) additional
restrictions such as determinacy, modedness, etc., so that the semantics will
be the same as in traditional functional programming.

We now illustrate with examples the use of the functionality introduced above.

Example 1. The following example defines a simple unary function der(X) which
returns the derivative of a polynomial arithmetic expression:

der(x) := 1.
der(C) := 0 :- number(C).
der(A + B) := der(A) + der(B).
der(C * A) := C * der(A) :- number(C).
der(x ** N) := N * x ** ~(N - 1) :- integer(N), N > 0.

Note that if we include the directive mentioned before which makes arithmetic
functors evaluable then we would have to write the program in the following
(clearly, less pleasant and more obfuscated) way:

:- fun_eval(arith(true)).
der(x) := 1.
der(C) := 0 :- number(C).
der(^(A + B)) := ^(der(A) + der(B)).
der(^(C * A)) := ^(C * der(A)) :- number(C).
der(^(x ** N)) := ^(N * ^(x ** (N - 1))) :- integer(N), N > 0.

Both of the previous code fragments translate to the following code:
der(x, 1).
der(C, 0) :-

number(C).
der(A + B, X + Y) :-

der(A, X),
der(B, Y).

der(C * A, C * X) :-
number(C),
der(A, X).

der(x ** N, N * x ** N1) :-
integer(N),
N > 0,
N1 is N - 1.

Note that in all cases the programmer may use der/2 as a function or as a
predicate indistinctly.

Example 2. Functional notation interacts well with other language extensions.
For example, it provides compact and familiar notation for regular types and
other properties (assume fun_eval declarations for them):



color := red | blue | green.
list := [] | [_ | list].
list_of(T) := [] | [~T | list_of(T)].

which are equivalent to (note the use of higher-order in the third example):

color(red). color(blue). color(green).
list([]).
list([_|T]) :- list(T).
list_of(_, []).
list_of(T, [X|Xs]) :- T(X), list_of(T, Xs).

Such types and properties are then admissible in Ciao-style assertions [8], such
as the following, and which can be added to the corresponding definitions and
checked by the preprocessor or turned into run-time tests [9]:

:- pred append/3 :: list * list * list.
:- pred color_value/2 :: list(color) * int.

Example 3. The combination of functional syntax and user-defined operators
brings significant flexibility, as can be seen in the following definition of a list
concatenation (append) operator:4

:- op(600, xfy, (.)).
:- op(650, xfy, (++)).
:- fun_eval (++)/2.
[] ++ L := L.
X.Xs ++ L := X.(Xs ++ L).

This definition will be compiled exactly to the standard definition of append in
Prolog (and, thus, will be reversible). The functional syntax and user-defined
operators allow writing for example write("Hello" ++ Spc ++ "world!")
instead of the equivalent forms write( append("Hello", append(Spc,
"world!"))) (if append/2 is defined as evaluable) or append(Spc, "world!",
T1), append("Hello", T1, T2), write(T2).

Example 4. As another example, we define an array indexing operator for multi-
dimensional arrays. Assume that arrays are built using nested structures whose
main functor is ’a’ and whose arities are determined by the specified dimensions,
i.e., a two-dimensional array A of dimensions [N,M ] will be represented by the
nested structure a(a(A11,...,A1M), a(A21,..,A2M), ..., a(AN1,...,
ANM)), where A11,... ANM may be arbitrary terms.5 The following recursive
definition defines the property array/2 and also the array access operator @:

4 This operator, as well of other conveniences to be able to program in a more
functional-flavored style, are defined in an additional Ciao package.

5 We ignore for simplicity possible arity limitations, solved in any case typically by fur-
ther nesting with logarithmic access time (as in Warren/Pereira’s classical library).



array([N],A) :-
functor(A,a,N).

array([N|Ms],A) :-
functor(A,a,N),
rows(N,Ms,A).

:- op(55, xfx, ’@’).
:- fun_eval (@)/2.
V@[I] := ~arg(I,V). %% Or: V@[] := V.
V@[I|Js] := ~arg(I,V)@Js.

rows(0,_,_).
rows(N,Ms,A) :-

N > 0,
arg(N,A,Arg),
array(Ms,Arg),
rows(N-1,Ms,A).

This allows writing, e.g., M = array([2,2]), M@[2,1] = 3 (which could also
be expressed as array([2,2])@[2,1] = 3), where the call to the array property
generates an empty 2× 2 array M and M@[2,1] = 3 puts 3 in M [2, 1]. Another
example would be: A3@[N+1,M] = A1@[N-1,M] + A2@[N,M+2].

Example 5. As a simple example of the use of lazy evaluation consider the fol-
lowing definition of a function which returns the (potentially) infinite list of
integers starting with a given one:
:- lazy fun_eval nums_from/1.
nums_from(X) := [ X | nums_from(X+1) ].

Ciao provides in its standard library the hiord package, which supports a
form of higher-order untyped logic programming with predicate abstractions [10,11,12].
Predicate abstractions are Ciao’s translation to logic programming of the lambda
expressions of functional programming: they define unnamed predicates which
will be ultimately executed by a higher-order call, unifying its arguments ap-
propriately.6 A function abstraction is provided as functional syntactic sugar for
predicate abstractions:
Predicate abstraction ⇒ Function abstraction
{’’(X,Y) :- p(X,Z), q(Z,Y)}⇒ {’’(X) := ~q(~p(X))}
and function application is syntactic sugar over predicate application:
Predicate application ⇒ Function application
..., P(X,Y), ... ⇒ ..., Y = ~P(X), ...

The combination of this hiord package with the fsyntax and lazy packages
(and, optionally, the type inference and checking provided by the Ciao prepro-
cessor [9]) basically provide the functionality present in modern functional lan-
guages,7 as well as some of the functionality of higher-order logic programming.

Example 6. This map example illustrates the combination of functional syntax
and higher-order logic programming:

6 A similar concept has been developed independently for Mercury, but there higher-
order predicate terms have to be moded.

7 Currying is not syntactically implemented, but its results can be obtained by deriving
higher-order data from any other higher-order data (see [11]).



:- fun_eval map/2.
map([], _) := [].
map([X|Xs], P) := [P(X) | map(Xs, P)].

With this definition, after calling:

["helloworld", "byeworld"] = map(["hello", "bye"], ++(X)).

(where (++)/2 corresponds to the above definition of append) X will be bound
to "world", which is the only solution to the equation. Also, when calling:

map(L, ++(X), ["hello.", "bye."]).

several values for L and X are returned through backtracking:

L = ["hello","bye"], X = "." ? ;
L = ["hello.","bye."], X = [] ?

3 Implementation Details

As mentioned previously, certain Ciao features have simplified the proposed ex-
tension to handle functional notation. In the following we introduce the features
of Ciao that were used and how they were applied in this particular application.

Code Translations in Ciao: Traditionally, Prolog systems have included the
possibility of changing the syntax of the source code through the use of the
op/3 builtin/directive. Furthermore, in many Prolog systems it is also possi-
ble to define expansions of the source code (essentially, a very rich form of
“macros”) by allowing the user to define (or extend) a predicate typically called
term expansion/2 [13,14]. This is usually how, e.g., definite clause grammars
(DCG’s) are implemented.

However, these features, in their original form, pose many problems for mod-
ular compilation or even for creating sensible standalone executables. First, the
definitions of the operators and, specially, expansions are often global, affecting
a number of files. Furthermore, it is not possible to determine statically which
files are affected, because these features are implemented as a side-effect, rather
than a declaration: they become active immediately after being read by the code
processor (top-level, compiler, etc.) and remain active from then on. As a result,
it is impossible just by looking at a source code file to know if it will be affected
by expansions or definitions of operators, which may completely change what the
compiler really sees, since those may be activated by the load of other, possibly
unrelated, files.

In order to solve these problems, the syntactic extension facilities were re-
designed in Ciao, so that it is still possible to define source translations and
operators, but such translations are local to the module or user file defining
them [5]. Also, these features are implemented in a way that has a well-defined
behavior in the context of a standalone compiler, separate compilation, and
global analysis (and this behavior is implemented in the Ciao compiler, ciaoc



[15]). In particular, the load compilation module/1 directive allows separat-
ing code that will be used at compilation time (e.g., the code used for program
transformations) from code which will be used at run-time. It loads the module
defined by its argument into the compiler.

In addition, in order to make the task of writing source translations easier,
the effects usually achieved through term expansion/2 can be obtained in Ciao
by means of four different, more specialized directives, which, again, affect only
the current module and are (by default) only active at compile-time. The pro-
posed functional syntax is implemented in Ciao using these source translations.
In particular, we have used the add sentence trans/1 and add goal trans/1
directives. A sentence translation is a predicate which will be called by the com-
piler to possibly convert each term (clause, fact, directive, input, etc.) read by
the compiler to a new term, which will be used in place of the original term.
A goal translation is a predicate which will be called by the compiler to possi-
bly convert each goal present in each clause of the current text to another goal
which replaces the original one. The proposed model can be implemented in
Prolog systems similarly using the traditional term expansion/2 and operator
declarations, but having operators and syntactic transformation predicates local
to modules is the key to making the approach scalable and amenable to combi-
nation with other packages and syntactic extensions in the same application.

Ciao Packages: Packages in Ciao are libraries which define extensions to the
language, and have a well defined and repetitive structure. These libraries typi-
cally consist of a main source file which defines only some declarations (operator
declarations, declarations loading other modules into the compiler or the module
using the extension, etc.). This file is meant to be included as part of the file
using the library, since, because of their local effect, such directives must be part
of the code of the module which uses the library. Any auxiliary code needed
at compile-time (e.g., translations) is included in a separate module which is to
be loaded into the compiler via a load compilation module/1 directive placed
in the main file. Also, any auxiliary code to be used at run-time is placed in
another module, and the corresponding use module declaration is also placed in
the include file.

In our implementation of functional notation in Ciao we have provided two
packages: one for the bare function features without lazy evaluation, and an
additional one to provide the lazy evaluation features. The reason for this is
that in many cases the lazy evaluation features are not needed and thus the
translation procedure is simplified.

The Ciao Implementation of Functional Extensions: To translate the
functional definitions, we have used as mentioned above the add sentence trans/1
directive to provide a translation procedure which transforms each functional
clause to a predicate clause, adding to the function head the output argument,
in order to convert it to the predicate head. This translation procedure also
deals with functional applications in heads, as well as with fun eval directives.
Furthermore, all function applications are translated to an internal normal form.



On the other hand, we have used the add goal trans/1 directive to provide
a translation procedure for dealing with function applications in bodies (which
were previously translated to a normal form). The rationale for using a goal
translation is that each function application inside a goal will be replaced by
a variable, and the goal will be preceded by a call to the predicate which im-
plements the function in order to provide a value for that variable. A simple
recursive application of this rule achieves the desired effect.

An additional sentence translation is provided to handle the lazy directives.
The translation of a lazy function into a predicate is done in two steps. First, the
function is converted into a predicate using the procedure sketched above. Then,
the resulting predicate is transformed in order to suspend its execution until the
value of the output variable is needed. We explain the transformation in terms of
the freeze/1 control primitive that many modern logic programming systems
implement quite efficiently [16], since it is the most widespread (but obviously
when [17] or, specially, the more efficient block [16] declarations can also be
used). This transformation renames the original predicate to an internal name
and add a bridge predicate with the original name which invokes the internal
predicate through a call to freeze/2, with the last argument (the output of the
function) as suspension variable. This will delay the execution of the internal
predicate until its result is required, which will be detected as a binding (i.e.,
demand) of its output variable. The following section will provide a detailed
example of the translation of a lazy function. The implementation with block
is even simpler since no bridge predicate is needed.

We show below, for reference, the main files for the Ciao library packages
fsyntax:

% fsyntax.pl
:- include(library(’fsyntax/ops’)). %% Operator definitions
:- load_compilation_module(library(’fsyntax/functionstr’)).
:- add_sentence_trans(defunc/3).
:- add_goal_trans(defunc_goal/3).

and lazy (which will usually be used in conjunction with the first one):

% lazy.pl
:- include(library(’lazy/ops’)). %% Operator definitions
:- use_module(library(freeze)).
:- load_compilation_module(library(’lazy/lazytr’)).
:- add_sentence_trans(lazy_sentence_translation/3).

These files will be included in any file that uses the package. The Ciao system
source provides the actual detailed code, which follows the our description.

4 Lazy Functions: an Example

In this section we show an example of the use of lazy evaluation, and how a lazy
function is translated by our Ciao package. Figure 1 shows in the first row the



:- lazy fun_eval fiblist/0.

fiblist := [0, 1 | ~zipWith(+, FibL, ~tail(FibL))]

:- FibL = fiblist.

:- lazy fiblist/1.

fiblist([0, 1 | Rest]) :-

fiblist(FibL),

tail(FibL, T),

zipWith(+, FibL, T, Rest).

fiblist(X) :-

freeze(X, fiblist_lazy_$$$(X)).

fiblist_lazy_$$$([0, 1 | Rest]) :-

fiblist(FibL),

tail(FibL, T),

zipWith(+, FibL, T, Rest).

Fig. 1. Code translation for a Fibonacci function, to be evaluated lazily.

definition of a lazy function which returns the infinite list of Fibonacci numbers,
in the second row its translation into a lazy predicate8 (by the fsyntax package)
and in the third row the expansion of that predicate to emulate lazy evaluation
(where fiblist lazy$$$ stands for a fresh predicate name).

In the fiblist function defined, any element in the resulting infinite list of
Fibonacci numbers can be referenced, as, for example, nth(X, ~fiblist, Value).
The other functions used in the definition are tail/2, which is defined as lazy
and returns the tail of a list; zipWith/3, which is also defined as lazy and re-
turns a list whose elements are computed by a function having as arguments
the successive elements in the lists provided as second and third argument;9 and
(+)/2 which is defined as by the rule +(X, Y) := Z :- Z is X + Y.

Note that the zipWith/3 function (respectively the zipWith/4 predicate) is
in fact a higher-order function (resp. predicate).

5 Some Performance Measurements

Since the functional extensions proposed simply provide a syntactic bridge be-
tween functions and predicates, there are only a limited number of performance
issues worth discussing. For the case of real functions, it is well known that
performance gains can be obtained from the knowledge that the corresponding
predicate is moded (all input arguments are ground and the “designated out-
put” will be ground on output), determinate, non-failing, etc. [18,20]. In Ciao
8 The :- lazy fun eval fiblist/0. declaration is converted into a :- lazy

fiblist/1. declaration.
9 It has the same semantics as the zipWith function in Haskell.



:- fun_eval nat/1.

nat(N) := ~take(N, nums_from(0)).

:- lazy fun_eval nums_from/1.

nums_from(X) :=

[X | nums_from(X+1)].

:- fun_eval nat/1.

:- fun_eval nats/2.

nat(X) := nats(0, X).

nats(X, Max) := X > Max ? []

| [X | nats(X+1, Max)].

Fig. 2. Lazy and eager versions of function nat(X).

this information can in general (i.e., for any predicate or function) be inferred
by the Ciao preprocessor or declared with Ciao assertions [9,8]. As mentioned
before, for declared “real” (func) functions, the corresponding information is
added automatically. Some (preliminary) results on current Ciao performance
when this information is available are presented in [20].

In the case of lazy evaluation of functions, the main goal of the technique
presented herein is not really any increase in performance, but achieving new
functionality and convenience through the use of code translations and delay
declarations. However, while there have also been some studies of the overhead
introduced by delay declarations and their optimization (see, e.g., [21]), it is
interesting to see how this overhead affects our implementation of lazy evaluation
by observing its performance. Consider the nat/2 function in Figure 2, a simple
function which returns a list with the first N numbers from an (infinite) list of
natural numbers.

Function take/2 in turn returns the list of the first N elements in the input
list. This nat(N) function cannot be directly executed eagerly due to the infinite
list provided by the nums from(X) function, so that, in order to compare time
and memory results between lazy and eager evaluation, an equivalent version of
that function is provided.

Table 1 reflects the time and memory overhead of the lazy evaluation version
of nat(X) and that of the equivalent version executed eagerly. As a further
example, Table 2 shows the results for a quicksort function executed lazily in
comparison to the eager version of this algorithm. All the results were obtained
by averaging ten runs on a medium-loaded Pentium IV Xeon 2.0Ghz, 4Gb of
RAM memory, running Fedora Core 2.0, with the simple translation of Figure 1,
and compiled to traditional bytecode (no global optimizations or native code).

We can observe in both tables that there is certainly an impact on the exe-
cution time when functions are evaluated lazily, but even with this version the
results are quite acceptable if we take into account that the execution of the pred-
icate does really suspend. Related to memory consumption we show heap sizes,
without garbage collection (in order to observe the raw memory consumption
rate). Lazy evaluation implies as expected some memory overhead due to the
need to copy (freeze) program goals into the heap. Also, while comparing with
standard lazy functional programming implementations is beyond the scope of
this paper, some simple tests done for sanity check purposes (with HUGS) show



Lazy Evaluation Eager Evaluation

List Time Heap Time Heap

10 elements 0.030 1503.2 0.002 491.2

100 elements 0.276 10863.2 0.016 1211.2

1000 elements 3.584 104463.0 0.149 8411.2

2000 elements 6.105 208463.2 0.297 16411.2

5000 elements 17.836 520463.0 0.749 40411.2

10000 elements 33.698 1040463.0 1.277 80411.2

Table 1. Performance for nat/2 (time in ms. and heap sizes in bytes).

Lazy Evaluation Eager Evaluation

List Time Heap Time Heap

10 elements 0.091 3680.0 0.032 1640.0

100 elements 0.946 37420.0 0.322 17090.0

1000 elements 13.303 459420.0 5.032 253330.0

5000 elements 58.369 2525990.0 31.291 1600530.0

15000 elements 229.756 8273340.0 107.193 5436780.0

20000 elements 311.833 11344800.0 146.160 7395100.0

Table 2. Performance for qsort/2 (time in ms. and heap sizes in bytes).

that the results are comparable, our implementation being for example slower
on nat but faster on qsort, presumably due to the different optimizations being
performed by the compilers.

An example when lazy evaluation can be a better option than eager eval-
uation in terms of performance (and not only convenience) can be found in a
concurrent or distributed system environment (such as, e.g., [22]), and in the case
of Ciao also within the active modules framework [3,23]. The example in Figure 3
uses a function, defined in an active module, which returns a big amount of data.
Function test/0 in module module1 needs to execute function squares/1, in
(active, i.e., remote) module module2, which will return a very long list (which
could be infinite for our purposes). If squares/1 were executed eagerly then the
entire list would be returned, to immediately execute the takeWhile/2 func-
tion with the entire list. takeWhile/2 returns the first elements of a (possibly
infinite) list while the specified condition is true. But creating the entire ini-
tial list is very wasteful in terms of time and memory requirements. In order to
solve this problem, the squares/1 function could be moved to module module1
and merged with takeWhile/2 (or, also, they could exchange a size parameter).
But rearranging the program is not always possible and it may also perhaps
complicate other aspects of the overall design.

If on the other hand squares/1 is evaluated lazily, it is possible to keep the
definitions unchanged and in different modules, so that there will be a smaller
time and memory penalty for generating and storing the intermediate result.
As more values are needed by the takeWhile/2 function, more values in the
list returned by squares/1 are built (in this example, only while the new gen-



:- module(module1, [test/1], [fsyntax, lazy, hiord, actmods]).

:- use_module(library(’actmods/webbased_locate’)).

:- use_active_module(module2, [squares/2]).

:- fun_eval takeWhile/2.

takeWhile(P, [H|T]) := P(H) ? [H | takeWhile(P, T)]

| [].

:- fun_eval test/0.

test := takeWhile(condition, squares).

condition(X) :- X < 10000.

:- module(module2, [squares/1], [fsyntax, lazy, hiord]).

:- lazy fun_eval squares/0.

squares := map_lazy(take(1000000, nums_from(0)), square).

:- lazy fun_eval map_lazy/2.

map_lazy([], _) := [].

map_lazy([X|Xs], P) := [~P(X) | map_lazy(Xs, P)].

:- fun_eval take/2.

take(0, _) := [].

take(X, [H|T]) := [H | take(X-1, T)] :- X > 0.

:- lazy fun_eval nums_from/1.

nums_from(X) := [X | nums_from(X+1)].

:- fun_eval square/1.

square(X) := X * X.

Fig. 3. A distributed (active module) application using lazy evaluation.

erated value is less than 10000), considerably reducing the time and memory
consumption that the eager evaluation would take.

6 Conclusions and Related Work

As mentioned in the introduction, the idea of adding functional features to logic
programming systems is clearly not new [24,25,17] and there are currently a
good number of systems which integrate functions and higher-order program-
ming into some form of logic programming. However, we feel that our proposal
and its implementation offer a combination of features which make it interesting
in itself. More concretely, the approach is completely syntactic, functions can be
limited or retain the power of predicates, any predicate can be called through
functional syntax, and lazy evaluation is supported both for functions and pred-



icates. Furthermore, functional syntax can be combined with numerous (Ciao)
syntactic and semantic extensions such as higher-order, assertions, records, con-
straints, objects, persistence, other control rules, etc., without any modification
to the compiler or abstract machine. Finally, and perhaps most importantly, and
again because of the syntactic nature of the extensions, they can be the target of
analysis, optimization, static checking, and verification (of types, modes, deter-
minacy, nonfailure, cost, etc.), as performed by, e.g., the Ciao preprocessor [9].
Finally, another important characteristic of our approach is that most of it can
be applied directly (or with minor changes) to any ISO-standard Prolog system.

The original version of the functional extensions was first distributed in Ciao
0.2 [4] and later used as an example in [5]. The full description presented herein
includes some minor changes with respect to the currently distributed version [3]
which will be available in the next release. The performance of the package for
lazy evaluation was tested in this system with several examples. As expected,
lazy evaluation implies time and memory overhead, which justifies making lazy
evaluation optional via a declaration.

Returning to the issue of related work, Lambda Prolog [26] offers a highly ex-
pressive language with extensive higher-order programming features and lambda-
term (pattern) unification. On the other hand it pays in performance the price
of being “higher order by default,” and is not backwards compatible with tra-
ditional Prolog systems. It would be clearly interesting to support pattern uni-
fication, but we propose to do it as a further (and optional) extension, and
some work is in progress along these lines. HiLog [27] is a very interesting logic
programming system (extending XSB-Prolog) which allows using higher-order
syntax, but it does not address the issue of supporting functional syntax or
lazyness. Functional-logic systems such as Curry or Babel [31,32] perform a full
integration of functional and logic programming, with higher-order support. On
the other hand, their design starts from a lazy functional syntax and semantics,
and is strongly typed. However, it may also be interesting to explore support-
ing narrowing as another optional extension. Mercury [28] offers functional and
higher-order extensions based on Prolog-like syntax, but they are an integral part
of the language (as opposed to an optional extension) and, because of the need
for type and mode declarations, the design is less appropriate for non strongly-
typed, unmoded systems. As mentioned above, in our design type and mode dec-
larations are optional and handled separately through the assertion mechanism.
Also, Mercury’s language design includes a number restrictions with respect to
Prolog-like systems which bring a number of implementation simplifications. In
particular, the modedness (no unification) of Mercury programs brings them
much closer to the functional case. As a result of these restrictions, Mercury
always performs the optimizations pointed out when discussing our funct dec-
laration (or when that type of information is inferred by CiaoPP).10 Oz [30] also
allows functional and (a restricted form of) logic programming, and supports

10 However, recent extensions to support constraints [29] recover unification, including
the related implementation overheads and mechanisms (such as the trail), and will
require analysis for optimization, moving Mercury arguably closer to Ciao in design.



higher-order in an untyped setting, but its syntax and semantics are quite dif-
ferent from those of LP systems. BIM Prolog offered similar functionality to our
~/2 operator but, again, by default and as a builtin.

References

1. Narain, S.: Lazy evaluation in logic programming. In: Proc. 1990 Int. Conference
on Computer Languages. (1990) 218–227

2. Antoy, S.: Lazy evaluation in logic. In: Symp. on Progr. Language Impl. and Logic
Progr (PLILP’91), Springer Verlag (1991) 371–382 LNCS 528.

3. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garćıa, P., (Eds.),
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